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Abstract

Autonomous Driving Systems have become a reality in our society. Everyday, progress
is made to increase vehicles’ autonomy to drive without restrictions in roads and cities.
To achieve that, researchers are always seeking for new methods to ensure the safety of
the vehicles. A promising strategy is to improve the quality of the collected perception
data as it directly influences the overall performance of the autonomous system. However,
despite the advances achieved in detection methods and algorithms, perception is currently
physically restricted by the available on-board sensors and their line-of-sight.

To overcome this limitation, the autonomous system should not only capture on-board
perception data, but also enhance it with data exchanged with other agents in the envi-
ronment. This is known in research as Collective Perception, where mobile and stationary
agents share object detection and sensor data inside an Intelligent Transport Systems
network.

This master’s thesis brings together a collection of ETSI standards with the goal of de-
veloping a well-defined architecture for future implementation of a Secure Collaborative
Perception Network in the context of Smart Cities. The architecture has been designed
using the open-source software Capella Arcadia following a Model Based Software Engi-
neering methodology.

Keywords: Automated Driving Systems, Collective Perception, Intelligent Transport
Systems, Model Based Systems Engineering
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1 Introduction

This master thesis has been developed at Fraunhofer Institute of Cognitive Systems,
specifically in the department of Cognitive Systems Engineering, where one of the research
focus is the modelling and research on Automated Driving Systems.

1.1 Motivation

Automated Driving Systems (ADS) can be divided into 4 high-level functions: Perception,
Path-Planning, Localization and Vehicle-Dynamics Control. The importance of perception
relies on the necessity to obtain data of the surroundings of the vehicle. Without this data
it is impossible to perform any of the other functions and its quality directly influences
the overall results of the system.

A lot of advances have been made in recent years into perception detection methods and
algorithms. However, perception quality of current systems is constrained by the range of
available on-board sensors and their line-of-sight [10].

In order to solve this limitation, research has been extended to Collaborative Perception
(CP) where the sensors information is combined across multiple agents to improve the
quality of the captured data. With the addition of CP, systems can obtain two important
benefits: extension of a vehicles field-of-view, thus removing the line-of-sight sensitivity,
and improving the confidence of observations as detections can be overlapped by two or
more agents [10].

1.2 Goals

The main goal of this thesis is to define, implement and evaluate a Collaborative Per-
ception Software Architecture for an Smart City environment. The developed software
architecture is based on the guidelines proposed in the ’Intelligent Transport Systems
(ITS); Vehicular Communications; Basic Set of Applications; Specification of the Collec-
tive Perception Service, ETSI TS 103 324’[6] in addition to other ETSI from the ITS
Collection.

The software architecture is developed using Arcadia Capella software, a powerful tool
that allows the systems engineer to implement the architecture in different levels and
views.

1.3 Scope

The focus of this master thesis is placed on the generation, transmission and reception
of Collective Perception Messages, the managing of Object Detection information and
methods to establish a secure communication. Meanwhile, The physical communication
channel itself, the sensor data processing and object detections algorithms and processing
times are out of the scope of this development.

9



1.4 Workplan

The project workplan is shown below. The starting date was at the end of September 2022.
The first weeks consisted of learning about the topic to be developed by reading papers
and some standards. Also, during the first month, it was necessary to learn the basics
of Capella modelling software. Also, the report writing process started and a literature
review was maintained through almost the entire master thesis in a constant search for new
standards to add to the architecture. The architecture development is divided into three
steps that were performed subsequently, although constant minor revisions were carried
out through the whole development. Finally, the report ended with the completion of the
results and conclusions part.

Phases of the Project
2022 2020

Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr.

Literature
Report

Learning Capella

Architecture

System Analysis
Logical Architecture

State machine

Conclusions

Figure 1: Gantt diagram of workplan
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2 Terms, Symbols and Abbreviations

• AA: Authorization Authority

• ADS: Automated Driving Systems

• AT: Authorization Ticket

• CAM: Coordinated Awareness Message

• CCMS: Cooperative-ITS Credential Management System

• CC: Canonical Credentials

• CP: Collaborative Perception

• CPS: Collaborative Perception Service

• CPM: Collaborative Perception Message

• CRL: Certificate Revocation List

• EA: Enrolment Authority

• EC: Enrolment Credentials

• ETSI: European Telecommunications Standards Institute

• ICT: Information and Communication Technologies

• ITS: Intelligent Transport Systems

• ITS-S: Intelligent Transport Systems Station

• MA: Misbehaviour Authority

• MBSE: Model Based Systems Engineering

• MD: Misbehaviour Detection

• MR: Misbehaviour Report

• LDM: Local Dynamic Map

• PKI: Public Key Infrastructure

• REC: Replicable Elements Collection

• RPL: Replica

• SC: Smart City

• SE: Systems Engineering

• SoS: System of Systems

• UML: Unified Modeling Language

• V2X: Vehicle-to-Everything communication
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3 State of the art

This chapter introduces the relevant work associate with this manuscript. First, it intro-
duces the concept of Smart Cities alongside their proposed architecture and challenges.
Second, Automated Driving Systems (ADS) Levels, main Capabilities and Challenges are
explained. How these ADS can share data with each other trough V2X Communication is
then explain. Next, the Intelligent Transport Systems (ITS) environment is introduced as
a reference to establish an V2X network. The different levels and elements that compose
an ITS architecture are described. Finally, an introduction is made to Systems Engineer-
ing and the different processes and tools that are used, to introduce the development part
of this thesis.

3.1 Smart Cities

3.1.1 Definition

There is no universal definition for a Smart City (SC), as there is no single model to build
one, every city in the world is unique. Different authors have proposed definitions for the
Smart City concept. Some examples are:

Kulkarni et al. ”The smart city refers to a local entity, i.e., a distinct city, region or
small locality which takes a holistic approach to employing information technologies with
real-time analysis that encourages sustainable economic development.”[11]. From this def-
inition three main topics can be extracted: locality, information technologies and sustain-
ability.

Nelson et al. ”The smart city is a territory with a high capacity for learning innova-
tions, built on the creativity of its residents, their knowledge development, and their digital
infrastructure for communication and knowledge management.”[12]. In this second defi-
nition the concepts of a locality and technology can be found again, although it focuses
more on the knowledge development.

These main concepts keep appearing on different authors definitions, with two final ex-
amples being:

Wilson et al. ”Smart city has high productivity as they have relatively higher educated
people, knowledge-intensive jobs, output-oriented planning systems, creative activities and
sustainability-oriented initiatives.”[13]

Xiong et al. ”The applications of Information and communication technology with their
effects on human capital, education, social and relational capital and environmental issues
are often indicated by the residents of the smart city.”[14].

Despite the absence of an unified concept, from a technical perspective, Smart Cities
are areas where Information and Communication Technologies (ICT) are widely used
in infrastructures and services. SC share common attributes, such as sustainability or
knowledge development. By putting all these common attributes together authors have
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defined a set of key characteristics over which smart cities are build: Sustainability, Quality
of life, Smartness and Urbanization[15].

3.1.2 Architecture

Various works introduce Smart City software architectures to manage the complexity and
ease its implementation. Table 1 shows a variety of proposals with different goals and ap-
plications. However, due to the high variability in specific needs, a generic implementation
approach does not exist.

Architecture Sensing Layer Network Layer Data Management
Layer

Application Layer

Zanellaa et al.[11] Deployed a sensor net-
work

A communication
approach using con-
strained application
protocol (CoAP)

Applied an averaging
filter for 10 reading to
process data

Proposed HHTP-
based interface for
each IoT node

Silva et al.[12] Proposed deploying
sensor network

Occupied various
transmission mediums
to gather data

Proposed a Kalman
filter optimization
based Big Data
analytic approach

Proposed a parti-
tioned application
layer to optimize
event execution

Al-Hader et al.[13] Proposed a geo-
graphic information
system (GIS)

- Proposed application,
business and informa-
tion management ap-
proach

-

Anthopoulos and
Fitsilis[14]

Represented public
and private data
creation and storage

Incorporated various
transmission mediums

Introduced enterprise
architecture, policies
and rules

Provide informa-
tion and services
without information
replication

Lugaric et al.[14] Data acquisition via
physical grid

Agent based mod-
elling for communica-
tion infrastructure

Agent based mod-
elling for data ex-
change and decision-
making

-

Table 1: Some Smart City Architecture proposals

Although the specific implementation has not been possible to generalize, authors have
reached a consensus regarding the overall conceptual architectural and main elements
distribution. In Figure 2 it can be observed how the different functions from a SC are
organized and divided into different layers.
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Figure 2: Layered architecture of generic smart city[1]

• Sensing Layer: Sensing layer provides an information collection interface, which
is of vital importance for the management as it will be the foundation for all future
decision-making. Additionally, because the information is so varied, obtaining data
is not a simple task.

• Transmission Layer: Transport layer is the assembly of different correspondence
organization that compose the primary support of the smart city architecture to
connect data sources with management stations.

• Data Management Layer: To reach the desired decision, all the received data
must first be processed, then analyzed. It is possible to carry out a variety of tasks,
including combination, information preparation, stockpiling, occasion, decision man-
agement, etc.

• Application Layer: Citizens only perceive performance based on the application
output since they are unaware of the data management layer. The application layer
handles and stores information in a variety of ways to enhance city operation. Ad-
ditionally, information exchange between various applications is promising for intel-
ligent urban planning.

Applications in Smart Cities can be developed to improve a diverse range of city compo-
nents: education, healthcare, energy consumption, transportation, etc. This thesis focus
on the transportation part of the SC scheme. One of the best ways to obtain a better
transportation network is by collectively using information and communication technolo-
gies instead of the traditional individual transportation.
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This information can then be used for example to provide passengers with information
about road congestion, alternative routes and modes of transportation, etc.[15]. Vehic-
ular ad hoc networks (VANET) have raised in attention with the integration of Intel-
ligent Transportation Systems (ITS) which use vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2I) communication to share real-time data.

The integration of smart transportation systems in smart cities upgrades the operational
efficiency of the city and at the same time optimizes time, cost, reliability and safety of
the city mobility[1].

3.1.3 Challenges

Although the Smart City concept is already widely accepted and there has been seen some
real implementation, it still faces challenges in certain areas that are crucial for further
development. Authors in [1] and [15] go through a review of the main challenges for the
future of smart cities with respect to: cost, security, heterogeneity, data collection and
analysis. A summary of each category is described below:

Cost To establish a real smart city implementation, design and maintenance cost are one
of the major problems to be tackled. Design cost is the financial capital needed for deploy-
ing the smart city initial infrastructure, while operational costs are the capital needed for
daily city operations and maintenance tasks. Low initial design costs augment the prob-
ability of real-world implementation of smart cities and minimal operational costs are
demanded to assure sustainability on the long run. For example, reducing Carbon Foot-
print by having an efficient management of resources and usage of renewable energies or
having great Failures Management against natural disasters, can be two great functional-
ities to be added to a SC, but they come with a cost demand. The real challenge resides
on finding the trade-off between functionalities and performance with costs.

Security Smart cities are susceptible to harmful malware attacks due to their reliance
on data. This vulnerability poses a serious threat to the city’s management systems,
as these systems are responsible for coordinating critical functions that are vital to the
city’s smooth operation. Thus, it is crucial for smart cities to implement strong security
measures to safeguard against such attacks and mitigate their potential impact.

In addition to the risks of malware attacks, smart cities are also vulnerable to data
breaches that compromise the privacy of citizens. This is particularly concerning given
the constant collection of sensitive citizen information. Such breaches can occur through
attacks such as sidewalk attacks, cross-site scripting, and other similar threats. Sidewalk
attacks occur when a hacker intercepts data as it is being transmitted from a device,
while cross-site scripting attacks take advantage of vulnerabilities in websites to access
and manipulate sensitive information. To ensure the confidentiality, integrity, and privacy
of collected data, it is necessary to have robust security measures in place, which can be
expensive to implement.

Furthermore, the usage of a wide range of devices such as computers, smartphones, and
other smart devices by residents to access smart city services can increase the risk of data
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interception, which is another pressing concern that must be addressed to maintain the
privacy of sensitive data.

Heterogeneity Integrating the multitude of sensors, devices, and appliances from var-
ious vendors in a smart city is a daunting task due to their heterogeneity. The presence
of platform incompatibilities further complicates the process of integrating and inter-
operating these elements at the application layer, preventing the full realization of the
potential of smart cities. Additionally, integrating such heterogeneous critical systems
poses significant challenges from a safety standpoint, as protecting such data becomes an
even bigger concern.

Data Collection and Analysis The exponential growth of data generated from the
numerous devices in smart cities presents a significant challenge for efficient transfer,
storage, retrieval, and analysis. The management of large volumes of data is critical to
the smooth functioning of smart cities. As a result, smart cities are continually searching
for innovative ways to handle and analyze big data to ensure uninterrupted and seamless
operations.

3.2 Automated Driving Systems

Automated Driving Systems (ADS), also known as self-driving or autonomous vehicles,
have gained significant attention in recent years as a promising technology for improving
transportation safety and efficiency. In this chapter, an overview of the current state of
the art on ADS is provided, as well as the challenges and opportunities that lie ahead in
the development of these systems.

3.2.1 SAE Automated Driving Levels

As described by the Society of Automotive Engineers (SAE), transferring total control
from humans to machines is a step-by-step process on a scale of 0 to 5 levels. Level 0
means no automation and level 5 means full-time performance by an automated driving
system under all road and environmental conditions. SAE J3016 [16] defines the multiple
levels of driving automation. The standard provides descriptive and broad information
about this evolution but does not specify strict requirements.

SAE classifications are designed to clarify the role of a human driver, if any, during
vehicle operation. An environmental monitoring agent is the first discriminant condition.
For levels 0-2 of automation, a human driver monitors the environment; while for levels
3-5 of automation, the vehicle monitors the environment.

Another discriminant criterion is dynamic driving task (DDT) fallback mechanisms. In-
telligent driving automation systems (levels 4-5) embed the responsibility for automation
fallback constrained or not by operational domains, while for low levels of automation (lev-
els 0-3) a human driver is fully responsible. Figure 3 shows the remaining classification
factors used to define each level [16], [2].
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Figure 3: Automated driving levels[2]

3.2.2 ISO/TR 4804

The ”ISO/TR 4808 Road vehicles — safety and cybersecurity for automated driving sys-
tems — design, verification and validation” [3] outlines a framework for the development,
verification, validation, production, and operation of automated driving systems with a
focus on safety and cybersecurity. In particular, the document focuses on verification and
validation methods for automated driving systems at levels 3 and 4 of the SAE J3016[16]
classification, although it may also be applicable to lower levels of automation.

The technical report in question provides a general strategy for addressing the risks as-
sociated with automated vehicles. It is intended to be used as a starting point for the
development of safe automated driving systems, but it does not provide a comprehensive
and complete solution for ensuring the safety of such systems. Instead, it offers a general
framework that can be adapted and customized to the specific needs and requirements of
individual automated driving systems. It is important to note that this technical report
should be used in conjunction with other relevant standards and guidelines, in order to
ensure the safety and reliability of automated vehicle systems.

Capabilities of automated driving An automated driving system has a basic set of
system properties that are specified as capabilities. These are divided into two categories:
fail-safe and fail-degraded. Fail-safe capabilities are those that provide customer value and
enable the system to operate, but can also bring the system to a minimal risk condition
in the event of a failure. These capabilities can be discontinued if the safety relevance of
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their unavailability is low enough or if it is covered by other fail-degraded capabilities. Fail-
degraded capabilities, on the other hand, are those that do not provide customer value but
are necessary to ensure the safety of the system. These capabilities cannot be discontinued
and must be maintained in order to prevent the system from entering a hazardous state.
Fail-degraded capabilities are typically used to monitor system’s performance and detect
potential failures, as well as to trigger appropriate responses to ensure the safety of the
system and its occupants[3].

The operation of automated driving systems can be understood using the classic sense-
plan-act design paradigm (Figure 4) from robotics and automation literature. In this
model, the components of the system are divided into three main categories: sensing and
perception, planning and control, and actuation and stability. These categories provide a
general, implementation-independent view of the system and its functions and together
they enable the system to operate autonomously and make driving decisions.

Figure 4: Sense-Plan-Act design paradigm[3]

Based on the allocation of capabilities to the basic functions for sense – plan – act, it is
possible to allocate requirements for elements that the automated vehicle is reasonably
safe as depicted in Figure 41. In this master thesis, the focus is placed on two capabilities:
FS 2: Perceive relevant static and dynamic objects and FS 6 Communicate and interact
with other road users. A description of both is located in the Appendice A.

3.2.3 Safety Challenges

A multidisciplinary approach across all levels of the functional hierarchy is necessary
to ensure the safety of fully autonomous vehicles, including hardware fault tolerance,
resilient machine learning, collaboration with humans operating conventional vehicles,
system validation for use in highly unstructured environments, and appropriate regulatory
approaches. Authors in [17] explore the different range of safety challenges and concerns
that need to be faced. Safety Engineering and Social Acceptance are explained in the next
paragraphs. The remaining challenges are explained in Appendice B.

Safety Engineering Assuming the existence of small-scale deployment of fully au-
tonomous Level 4 vehicles on the road, the challenge becomes managing failures that may
be infrequent for any single vehicle, but will happen often when deploying at a big scale.
The current accepted practice for vehicle computer-based system safety, which relies on
the driver to be responsible for vehicle safety, needs to be modified as a fully autonomous
vehicle eliminates the human driver’s responsibility entirely. Another safety certification
concern is validating the use of self-adaptive system behavior by autonomous vehicles,
which may lead to different behaviors during operation than was displayed during testing
and certification.
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One method for ensuring safety in highly autonomous systems is to switch control back
to a human driver in the event of an equipment failure, allowing them to take over driving
responsibility. However, if the human is not paying attention, there needs to be a fail-
operational autonomy capability in place to maintain control until the human can take
over. Cars can achieve a safe state quickly, so a strategy is to switch to a short ”safing
mission” mode when a critical component fails, allowing the car to pull over to the side of
the road without the need for complex driving autonomy. This ”safing mission” has less
strict reliability and redundancy requirements and potentially reduce overall system cost
and complexity, while still keeping the vehicle safe. By designing a safe shutdown mission
capability, the safety requirements on primary vehicle autonomy can also be relaxed.

Social Acceptance The process of gaining social acceptance for autonomous vehicles
will undoubtedly be complex. While a primary incentive for adoption is the expectation
that autonomous vehicles will be safer drivers than humans, it is unrealistic to assume
that this will mean zero accidents, especially in the early stages of implementation. Some
cases will be straightforward, such as when avoiding a collision is physically impossible,
such as when a tree falls on top of a car during a storm. However, determining the
standard for autonomous safety will be challenging, such as whether it should be better
than an excellent human driver or just a typical one, and how a typical driver should
be characterized. Particularly tricky situations will arise when an ordinary human driver
could have avoided an accident, but the autonomous vehicle did not, leading to questions
about the vehicle’s liability in such cases.

3.3 Vehicle to Everything (V2X) Communication

Communication between vehicles and other objects (V2X) has the potential to signifi-
cantly advance vehicle safety technologies. It allows V2X equipped vehicles to exchange
their telemetry data to raise awareness, especially in NLoS (Non Line-of-Sight) circum-
stances.

A message known as the Basic Safety Message (BSM), also known as the Coordinated
Awareness Message (CAM), is sent to accomplish this. Although they are defined accord-
ing to two distinct standards, BSM by the Society of Automotive Engineers (SAE)J2735[18]
and CAM by the European Telecommunications Standards Institute (ETSI) European
Standard (EN) 302 637-2[19], both messages have the identical content. From now on, we
will only refer to both as ”CAM Service”.

Through the usage of CAM, connected vehicles can share their location and kinematic
state (velocity and acceleration) to other surrounding vehicles. Then, this extended infor-
mation can be used in safety applications, such as Intersection Collision Warning [20].

Nevertheless, not every item on the road may have V2X capability, e.g., non-V2X vehi-
cles, pedestrians, obstacles, animals. As a result, a brand-new service called Collective
Perception Service (CPS), also named as Collaborative or Cooperative Perception, has
been developed to overcome this limitation, enabling the V2X vehicles to share observa-
tions of non-connected items. The Collective Perception Message (CPM), produced and
consumed by participating vehicles, is intended to supplement the CAM service[21].
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CPS is a method based on improving the perception quality of autonomous systems by
combining sensor information from multiple agents, such as multiple autonomous vehicles
or a combination of autonomous vehicles and infrastructure. This allows the system to
overcome the limitations of individual on-board sensors and improve the overall perception
range and accuracy. In addition, CP not only extends the field-of-view of individual vehi-
cles, but also can improve the confidence of observations within an area that is overlapped
by the perception range of two or more connected agents. Overall, cooperative perception
has the potential to significantly improve the perception quality of autonomous systems,
enabling them to make more accurate and reliable decisions in complex and dynamic
environments[10].

The standard ETSI 103 324 Collective Perception Service [6] is, at the moment of writing
this report, under development with its publication date set for May the 5th of 2023.

3.4 Intelligent Transport Systems

In ETSI standards the V2X forms part of the Intelligent Transportation System (ITS)
Environment, which has already a well developed collection of standards focusing on a
diverse range of subtopics.

In this environment there are different ITS-Stations (ITS-S) that will be able to exchange
messages and information inside a defined communication network. This ITS-S can be
from a diverse origin, from moving vehicles, to roadside stations or pedestrians.

Figure 5: ITS Environment[4]

ETSI Standards have a well defined architecture for ITS-S. As it can be observed in Figure
6, the architecture is distributed in different layers according to the different functionalities
they contain:

• Application Layer: provides ITS services using the information available in the other
layers. Three classes of applications have been distinguished at this level: Road
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Safety, Traffic Efficiency and Other Applications.

• Facilities Layer: provides generic support facilities to applications. The nature of
the different facilities can be diverse: application support, for example time man-
agement, information support, like detection’s database, or communications support
like messages generation.

• Network and Transport Layer: one single layer for network and transport functions.
It has the possibility to incorporate Multi-protocol options.

• Access Layer: constitutes the physical level of the communication channel, the tech-
nology that is used to send and receive messages (e.g. 5G, Ethernet, etc.).

• Management: in charge of managing internal communications inside the ITS station.

• Security: provides security services to the management entity. Can also be considered
as a specific part of the management entity itself.

Figure 6: ITS Station reference architecture[5]

3.4.1 CP Service

The CP Service is a facility that operates the CPM protocol and provides two functions:
sending and receiving Collective Perception Messages . It uses the services provided by the
protocol entities of the ITS (Intelligent Transportation System) networking and transport
layer to transmit the CPM.
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CPMs are used in the ITS network to share information about the perceived environment
of an ITS subsystem, including the presence of road users, objects, and free spaces on the
road. These messages are exchanged between ITS-Ss (Intelligent Transportation System -
Systems) to help them understand and navigate their environment, including identifying
areas of the road that are free from road users and collision-relevant objects.

The general structure of a CPM is illustrated in Figure 7. Different containers constitute
the whole CP Message. The main containers are discussed in the following paragraphs.

Figure 7: General Structure of a CPM [6]

ITS PDU Header The ITS PDU header is a common header that includes the in-
formation of the protocol version, the message type and the ITS-S ID of the originating
ITS-S. The Management Container offers details about the ITS-S Type and the Reference
Position of the ITS-S, regardless of whatever type of ITS-S distributes a CPM, which can
be either a moving ITS-S, e.g. a vehicle, or a stationary ITS-S, like a roadside unit.

Station Data Container If a CPM is generated by a vehicle-based ITS-S, then the
Station Data Container must contain the originating vehicle information object. This
container shall hold the dynamic information pertaining to the ITS-S originating the
message.

On the other hand, if the CPM is generated by a roadside ITS-S, then the Originating
Roadside ITS-S Container, containing the originating roadside information object, may
be present. If present, it should provide references to identification numbers supplied by
the MAP Message disseminated by the same roadside ITS-S.

Sensor Information Container The Sensor Information Container provides informa-
tion about the sensory capabilities available to an ITS subsystem. Different container
specifications are available to encode the properties of a sensor, depending on the ITS-S
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type at origin. If the time elapsed since the last CPM that included a sensor information
is equal to or greater than T AddSensorInformation, which is set to 1000ms, then a new
SensorInformationContainer must be included in the CPM. It is worth noting that Sensor
Information Containers are attached at a lower frequency than other containers, so it is
not mandatory to attach them in every message.

Perceived Object Container The information about objects should be added to the
Perceived Object Container by including a PerceivedObject DF. The inclusion manage-
ment of the objects depends on the profile configuration. If the profile UseObjectInclusion-
Rules is set to ”false,” all or some of the known objects will be included in the Perceived
Object Container. However, if the profile is set to ”true,” the inclusion rules will apply
differently for Type-A and Type-B objects.

To determine which objects to include in a CPM generation event, the transmitting ITS-S
selects objects from the object list that meet certain conditions. These conditions vary
depending on the assigned object class, which is either Type-A, objects with a subclass
from profile pedestrian, bicyclist and light vehicle or animal, or Type-B, which are objects
of any other class.

For Type-A objects, the transmitting ITS-S will include the object in the CPM if:

• It was first detected by the perception system after the last CPM generation event

• There is at least one object of Type-A in the object list that has not been included
in a CPM in the past 500ms, in which case all Type-A objects should be included
in the currently generated CPM.

For Type-B objects, the transmitting ITS-S will include the object in the CPM if:

• It was first detected by the perception system after the last CPM generation event

• The distance between the current position of the reference point of the object and
the position of the same point in the last CPM exceeds 4m

• The difference between the current estimated ground speed of the reference point
and the estimated absolute speed of the reference point in the last CPM exceeds
0.5m/s

• The orientation of the estimated object’s ground velocity at its reference point has
changed by at least 4 degrees since the last inclusion of the object in a CPM

• The time elapsed since the last inclusion of the object in a CPM exceeds T GenCpmMax

To reduce the number of generated messages, objects belonging to Type-B that are to be
included in the next generation event may be included in the currently generated CPM.
This may be achieved by predicting objects that are not selected for transmission in the
current message to the next CP message generation event. The predicted objects that
would then need to be included in a CPM in the next generation event may also be
selected for inclusion in the currently generated CPM.
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Free Space Addendrum The SensorInformationContainer in a CPM can contain in-
formation about free space and objects. Figure 8 illustrates the physical definition of the
free space.

If the free space area computed on the receiver side using the simple tracing approach
does not reflect the detected free space of the ITS sub-system generating the CPM,
the FreeSpaceAddendumContainer together with the corresponding FreeSpaceAddendum
DFs shall be added.

In cases where there is static information, such as a permanently shadowed region, the
FreeSpaceAddendumContainer shall be added whenever the SensorInformationContainer
is added to the currently generated CPM. Additionally, a CPM generated as part of a gen-
eration event may include additional information about monitored free space areas known
to the transmitting ITS-S by adding a FreeSpaceAddendum DF to the FreeSpaceAdden-
dumContainer.

Figure 8: Free Space definition [6]

3.4.2 Local Dynamic Map

A Local Dynamic Map (LDM) is part of the facilities of collaborative ITS. ITS applications
require data on moving items, such as adjacent automobiles, as well as fixed objects, such
as traffic road signs. Therefore, the LDM is a conceptual data store that is housed inside
an ITS-S and contains data that is pertinent to the functioning of ITS applications and
matters of connected road safety and traffic efficiency. Vehicles, infrastructure components,
traffic centers, personal ITS stations, on-board sensors, and other devices can all provide
data sources. The LDM provides tools for granting safe access to the data it manages.
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The access from Data Consumers to the data stored in the LDM is done through either
a publish/subscription for the applications or functions that need a data for a periodic
event or a query interface for a single request.

3.4.3 Position and Time Management

The Basic System Application specification (BSA) ETSI TR 102 638 [4] requires the
exchange of position and time information among ITS-Ss. This is facilitated by all CAM,
DEN and CPM, which are dependent on position and time information. To enable the
absolute knowledge of position and time for road safety ITS applications, ITS-Ss may
be equipped with a Global Navigation Satellite System (GNSS). The accuracy, integrity,
and reliability of position and time references may vary based on the ITS application
requirements. The PoTi entity in the facility layer manages position and time information
for use by ITS applications and services. Various augmentation methods may be applied
to improve the accuracy of position and time, and PoTi may support these augmentation
services by broadcasting augmentation data through message services [22].

3.4.4 Basic Transportation Protocol

The Basic Transport Protocol (BTP) is a connection-less transport service that operates
within the ITS ad hoc network. Its primary function is to multiplex messages from various
processes in the ITS facilities layer, such as CAM or CPM, and enable transmission
through different protocols.

Message multiplexing/demultiplexing is accomplished using 16-bit addresses called ports,
which function as communication endpoints that identify the source or destination proto-
col entity of an ITS station. This is similar to the two-stage packet transport system in the
IP protocol suite. BTP is a lightweight protocol with minimal processing requirements,
and its design assumes that its users are either tolerant of unreliable packet transport or
have reliable communication mechanisms built into their protocols [23].

The different assigned port numbers can be found in ETSI 103 248 [24]. For instance,
2001 corresponds to CAM, 2002 to DENM and 2009 to CPM. The complete list of BTP
Port numbers can be found in the Appendice E.

3.4.5 Secure Communication

Security issues raise with the implementation of an ITS network as a malware-agent can
connect to the general network and send misleading information regarding safety-critical
systems. For example, imagine an scenario where one false agent sends a CPM with
information regarding the state of a traffic-light on a crossing. If this information was
taken as true without scrutinising the consequences can be a fatal crash between ITS
vehicles.

One of the possible solutions is to implement a Public Key Infrastructure (PKI), also
known as a Cooperative-ITS Credential Management System (CCMS), which serves as a
certificate management system that facilitates the secure distribution, use, and revocation
of certificates to ITS stations (ITS-S). Revocation of trust credentials may take place
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under different situations, for example, the CCMS determines to remove a malicious ITS
station from the network after spotting it or the certificates granted to an ITS station are
withdrawn when the station reaches its ”ITS-S end of life” [9].

There are two types of certificates that an ITS-S must request before being able to make
full use of the ITS applications and services: Enrolment Certificate (EC) and Authoriza-
tion Tickets (AT). The Enrolment Certificate are a long term credential, issued by the
Enrolment Authority (EA), that grants permission to the ITS-S to be part of the ITS
Network as a certified and identified agent. However, once enrolled, if the ITS-S wants to
make use of one specific service, it must request Authorization Tickets to the Authoriza-
tion Authority (AA). These AT are single use and must be added for every execution of
that particular service, for example, every time a CPM wants to be added to the commu-
nication network, an AT must be used [25]. A diagram of this exchanges can be seen in
Figure 10.

Figure 9: ITS Communication PKI Reference Scenario [6]

3.4.6 Misbehaviour Detection

Another layer of security can be added to the previous PKI scenario by not trusting
completely the agents that have been granted a certificate and constantly checking that the
data that is being shared does not have any errors, thus possibly detecting malfunctioning
or malware agents. This process is known as Misbehaviour Detection and Reporting.

Misbehaviour detection and reporting is a main issue and does not have a trivial solution
for various reasons, such as that denigration of benign ITS stations cannot be ignored,
having the risk of false positive. In addition, having a network connection to the PKI
backend server is necessary for misbehavior detection. It cannot be taken for granted that
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there is always an open line of communication. As there are no real-time requirements for
the transmission of ”Misbehaviour Reports” (MRs), ITS stations may store information
on observed inappropriate behaviors or suspicious messages and submit it to the PKI
server, also known as the ”Misbehavior Authority” (MA), when a communication link is
available.

Despite all challenges, misbehaviour detection and reporting should be considered from
the start of the design of ITS Stations [9].

Different detection approaches are proposed in state of the art published works. Safety
services within C-ITS rely on the participation of every communication node in the net-
work, each of which is expected to send either beaconing data or warning messages. These
procedures are classified as message-based detection mechanisms since they are the con-
sequence of ”semantic level attacks”. Misbehaviour detection may also be based on the
assessment of a node’s trustworthiness based on the communications it transmits. These
systems are referred to as node trust-based detection systems. Some current proposed
methods are: False beacon information detection, False warning detection, Node trust
evaluation and Feasibility assessment[9].

Misbehaviour Detection works well in conjunction with the PKI Infrastructure, as the
certificate authorities can make use of the information obtained through misbehaviour
detection to revoke the certificate of those agents that are damaging the network. There-
fore, the Misbehaviour Authority is added to the reference architecture in Figure 10 in
conjunction to the EA and AA.

Figure 10: ITS Communication PKI Reference Scenario with Misbehaviour Detection [6]

27



3.5 Systems Engineering

Systems Engineering (SE) is a holistic and interdisciplinary approach to the design, de-
velopment, and deployment of complex systems. This field has its roots in the aerospace
and defense industries, where the need for sophisticated and reliable systems led to the
creation of a formal methodology for systems development. Today, SE is applied to a wide
range of domains, including aerospace, transportation, healthcare, information technol-
ogy, and many others. This capillarity is due to the success in optimizing the performance,
functionality, and safety of systems, while also addressing the needs of stakeholders and
considering the broader context in which the system operates.

The literature of SE is vast and encompasses a range of topics, including requirements
analysis, system architecture, system design, system integration, risk management, and
system testing and evaluation. In recent years, the field has also embraced new approaches
and technologies, such as Model-Based Systems Engineering or Systems-of-Systems. These
last two are key aspects of this thesis motivation and implementation.

3.5.1 V-Model

The Systems Engineering process typically begins with the identification of customer re-
quirements and the definition of system objectives. This is followed by the development
of system concepts and alternatives, the selection of the preferred solution, and the de-
tailed design of the system. Throughout the development process, Systems Engineers must
manage trade-offs between technical requirements, cost, and schedule, as well as address
risks and uncertainties. Once the system is developed, SE also play a critical role in its
integration, testing, and commissioning[26].

This life-cycle is illustrated with the V-Model, first developed by Bröhl and Dröschel in
the application area of software development in 1995. The ”V” symbol’s core meaning
is the gradual breakdown of the technical system into its component parts on the left
thigh and the gradual fusion of those parts into the whole system on the right thigh.
The properties of the product under development are regularly tested and confirmed in
addition to these two ”V” thighs. As a result, the correct system (validation) is developed
in the proper way (verification)[7].

As shown in Figure 11, one of the main processes in the V-model is requirements and
architecture specification. The system architecture consists of a building structure in the
mechanical sense, signal flow structures and circuit diagrams in the electronic sense, as well
as the structuring of a software program into its modules and components, including the
respective interfaces, from a software perspective, all based on the functional structure and
underlying principles of action. Hence, the system architecture embodies the components,
connections, and fundamental ideas required for the creation and continued growth of a
system.

The evaluation of structural alternatives is done using understandable standards, like
the recognition of interdependencies, functional assessments, and taking exclusion criteria
into account. This evaluation should ideally be conducted with user input. On the basis
of system partitioning, an iterative process is used to establish the best feasible allocation
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Figure 11: V-model[7]

of the individual functions to the participating disciplines. The system architect’s job is
to break the system down into manageable components. A system is disassembled step
by step from the functional, property, and implementation points of view, starting with
the necessary system functions and properties. Verifiable units—system components with
assigned stated needs and pertinent interface data—are the end product. The quantity
and style of interfaces within an architecture and to the system boundary have a big
impact on a system’s simplicity, flexibility, and testability.[7]

One tool that facilitates all the mentioned tasks is the usage of a model based approach.

3.5.2 Model-Based Systems Engineering

Model-Based Systems Engineering (MBSE) is a systems engineering approach that em-
phasizes on the use of models to represent and manage the complexity of systems. More-
over, it is a method for designing and developing systems in a consistent, efficient, and
effective manner, using graphical and mathematical representations to capture the re-
quirements, architecture, design, and behavior of a system. In that way, MBSE provides
a common understanding of a system’s behavior and to facilitate communication among
stakeholders.

MBSE emerged in response to the increasing complexity of modern systems, which are
often composed of many interrelated components, and require the integration of multiple
disciplines and technologies. The traditional approach to systems engineering, which relies
primarily on text-based documentation, is often insufficient to fully capture and manage
this complexity. MBSE, on the other hand, provides a visual and graphical representation
of a system, enabling engineers to capture the relationships between system components
and to understand the system’s behavior over time.
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Figure 12: Benefits of MBSE [8]

In addition to the visual representation, the use of models in MBSE provides other ben-
efits, represented in Figure 12. First, it allows for the early detection and resolution of
issues in the design process by validating the architecture, reducing the risk of costly and
time-consuming changes later in the development cycle. Second, it enables engineers to
reuse models among different architectures that share common functions or components.
The model also opens the possibility to use other engineering tools with ease. Finally
it supports collaboration and communication among stakeholders, by allowing ti have
different architecture derivations that help with updates and modifications.

The MBSE process typically begins with the development of a high-level system archi-
tecture, which is represented as a set of interconnected models. These models can include
functional models, which describe the behavior of the system, and physical models, which
describe the physical components and their relationships. The models are then refined
and developed in more detail, capturing the requirements, design, and behavior of the
system. Throughout the process, the models are used to support analysis, simulation, and
verification, as well as to guide the development of the system[27].

The literature of MBSE covers a range of topics, including modeling languages, modeling
methodologies, model-based verification and validation, and the integration of MBSE with
other systems engineering processes and practices. There is also a growing body of research
exploring the use of MBSE in specific domains, such as aerospace, defense, healthcare,
and transportation.

To implement the models for a MBSE Architecture, different software have been developed
over the years. Among all the available options, SysML has raised as the traditional choice
for companies to use.
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3.5.3 Capella and Arcadia Method

The MBSE tool Capella, inspired on SysML, has been analyzed in this work and has
been selected as tool of choice for this master thesis implementation. Table 2 shows a
comparison between Capella and SysML illustrating their differences and similarities.

Capella is specifically designed with the goal of Define, Analyse, Design and Validate
SYS/SW/HW Architectures. The intention is to be able to create a model that facilitates
the systems engineering process by connecting all the people involved in the process, as
it is illustrated in Figure 13. Some examples of this would be sharing proposed solutions
among stakeholders, support efficient collaboration in the engineering process or allow an
early evaluation and justify the Architectural Design easing the Impact Analysis.

Figure 13: Goals of Arcadia Capella[8]

With these goals in mind, Capella proposes a development process called ”Arcadia Method”
where the system is developed in different levels according to different goals to fulfill. Fig-
ure 15 represents this levels into a diagram with the correspondence relationship between
those.
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SysML Arcadia/Capella
Positioning A universal and uniform modeling lan-

guage for modeling systems. SysML of-
fers extremely sophisticated and rich ex-
pression tools for a wide range of ap-
plications, from high-level architecture
modeling to intricate design at the cut-
ting edge of simulation.

The Arcadia/Capella solution focuses on the creation
of systems architectures, drawing inspiration from
SysML concepts. The expression methods are occa-
sionally decreased compared to SysML for the goal
of a simpler learning curve and because of the pre-
cise scope addressed by Arcadia/Capella. Instead of
having modeling ”experts” own the model on behalf
of systems engineers, Arcadia/ultimate Capella’s ob-
jective is to have systems engineers embrace the cul-
tural shift brought about by MBSE. Therefore, the
techniques and concerns of system engineering prac-
titioners are a major driving force behind Arcadia/-
Capella.

Method Despite the fact that a variety of en-
gineering methodologies might be used,
SysML is not linked to any single tech-
nique. As a result, SysML just offers a
vocabulary and makes no recommenda-
tions for how to structure models, when
to apply particular concepts, etc.

The Arcadia method, in accordance with the
IEEE 1220 standard and covering portions of
ISO/IEC/IEEE 15288, enforces an approach struc-
tured on various engineering perspectives, establish-
ing a clear separation between system context and
need modeling (operational need analysis and sys-
tem need analysis), and solution modeling (logical
and physical architectures).

Language Technically, the SysML language itself
is defined as an extension of the Uni-
fied Modeling Language (UML). Both
UML and SysML are general-purpose
languages that target a broad range of
engineering fields and rely on engineer-
ing paradigms that were developed in
software utilizing techniques like types,
inheritance, etc.

The UML/SysML standard and the NATO Archi-
tecture Framework (NAF) standard are most com-
parable to the Arcadia principles (75% and 5%, re-
spectively). Ad-hoc imports and exports allow for in-
teroperability with SysML tools. Some of the SysML
ideas have been simplified or specialized due to the
emphasis on architectural design in order to better
align with the notions system engineering practition-
ers already use in their engineering documents and
assets. For instance, this is the situation with topics
connected to functional analysis.

Diagrams SysML includes diagrams inherited from
UML2 and adds new diagrams:

• 4 diagrams are the same as
UML2 diagrams (Sequence, State
Machine, Use Case and Package);

• 3 diagrams are extensions of
UML2 diagrams (Activity, Block
definition and Internal Block);

• 2 diagrams are new diagram
types (Requirement and Para-
metric).

Arcadia method is supported by various kinds of di-
agrams largely inspired by UML and SysML:

• Architecture diagrams;

• Data flow diagrams;

• Functional chains diagrams;

• Sequence diagrams;

• Tree diagrams;

• Mode and States diagrams;

• Classes and Interfaces diagrams;

Table 2: Capella and SysML Comparison[8]
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Figure 14: Capella Implementation Levels[8]

Operational Analysis In the operational analysis stage, the needs of the stakeholders
and the context of the system are defined. Three main tasks are developed:

• Identify and collect stakeholder operational needs

• Specify what the system’s users must accomplish

• Define entities, actors, roles, activities and concepts

The focus on this layer is to define the problem that needs to be solved for the stakeholders.
In our specific case, the topic and needs were already introduced with the proposal of the
thesis by Fraunhofer IKS department, and the requirements will be extracted from the
ETSI standards for the implementation. Therefore, there is no need in this thesis to
develop this layer in Capella as the results it offers are already present.

System Analysis In the System Analysis stage we formalize system requirements. The
main tasks to perform here are the following:

• Determine the system’s boundary and combine the needs and requirements

• Specify what the system needs to do for the users

• Model functional dataflows and dynamic behaviour

Notice that the word ”system” is being used for the first time. It is deliberate to maintain
the operational analysis step in a solution-neutral manner. In this stage the system’s
functions, boundaries, and interactions with the outside world start to be considered.
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However, at this point the focus only remains in ”What” the systems will do, leaving the
”How” for the later design stages.

Logical Architecture In the Logical Architecture level the focus is on the system , its
components and functions. We can perform different tasks in this level:

• Define how the system will work so as to fulfill expectations

• Specify the different components that the system is composed of

• Create State Machines for the system and components

• Model functional dataflows and dynamic behaviour

• Define data ex-changes between components

The System in the previous stage was treated as a ”black box”, only specifying ”What”
it needed to do. Now, we are prepared to define its subsystems and the functions that will
then be assigned to these in order to explain ”How” the needs will be achieved. During
this process, necessary adjustments will be made to the system functions, such as creating
more specific sub-functions, while taking into account how the various system components
interact functionally.

Physical Architecture The system is viewed in its idealized form in the logical ar-
chitecture. Physical components required to construct the system may not completely
match logical components. During the Physical Architecture stage the system’s physical
architecture is created. A series of tasks are performed in this level:

• Specify how the system will be developed and built

• Software vs. hardware allocation

• Specification of interfaces, deployment configurations, trade-off analysis

In this concrete implementation an in-depth Physical Layer has not been developed as this
work is intended to serve as a base for future development of a Collaborative Perception.
The goal of this model is to be used by diverse projects which might use or not the same
hardware configuration as others. Therefore the implementation will remain as the generic
foundation upon which future development will be based on.

Each layer has different type of diagrams formed by diverse elements that help us create
and show the model from multiple points of view. It is important to emphasize that the
diagrams are not just drawings with boxes, but part of a model where all the elements
are related to each other and can interact in multitude of ways. This is named in Capella
as ”Dynamic Behaviour”, and it lets the user create relationships such as assigning avail-
able functions in an specific mode or create exchange diagrams using functions from a
architecture diagram.
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Figure 15: Capella Dynamic Behaviour[8]
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4 System Design

The case study of this master thesis is a Model Based Software Architecture for Collabora-
tive Perception in the context of Smart Cities. As introduced in section 3.3, Collaborative
Perception Service (CPS) is a recent addition to the Intelligent Transport Systems (ITS)
and Vehicle to Everything (V2X) communication where the aim is share the sensors ac-
quired data and object detection between different agents to increase their performance.
As the topic is still on development from the standard perspective, the creation of a model
architecture is a really important step to facilitate the future implementation.

This thesis has focused on developing a scalable and modular software architecture while
adhering to the aforementioned systems engineering concepts. This kind of architecture
enables the reusability of already existing elements and enables an easy and quick adaption
to future projects.

Our architecture will consist of a Model of the ITS Environment, like the one shown in
Figure 16, consisting of various mobile ITS-S (vehicles), a fixed roadside ITS-S represent-
ing the city infrastructure and an object to be detected and whose information will be
shared through the network.

Figure 16: System Design Diagram
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4.1 User Cases

A use-case is a thorough description of how a system can be utilized by a user, or a group
of users, to accomplish a certain goal. To understand and explain how a system should
be used and how it should respond to user needs, use-cases are frequently used in system
analysis and design. The Table lists the features of the intended system:

Table 3: Use-Cases of the system.

Use-Cases Definition Realization

UC-1 A mobile ITS-S (vehicle) drives while processing on-
board sensor data and environment data provided by
an ITS Network.

SYS-1, SYS-2

UC-2 The mobile ITS-S exchanges detected objects with
the other ITS-S in the Network

SYS-3, SYS-4, SYS-5, SYS-6

UC-3 The mobile ITS-S relies on a secure communication
network

SYS-7, SYS-8

4.2 System Assumptions

In systems engineering, Assumptions refer to the conditions or premises that are consid-
ered to be true, without being explicitly verified or proven. These assumptions are made
in order to simplify the analysis and design of a system and to facilitate decision-making.
These ones can be of different types, including time, resource, quality, capacity, safety or
performance constraints, among others. The assumptions of the implemented system are
shown in Table 4.

Table 4: Assumptions of the system

Assumptions Definition

AS-1 Communication Channel does not have a Bandwidth limitation

AS-2 Communication Channel does not have any package losses

AS-3 Communication Channel does not have any transmission/reception errors

AS-1 Object Detection storage limit is never reached

AS-4 Processors have always enough computing power to meet any possible timing
constraint

AS-5 There is always an infrastructure in reach from mobile ITS-S

AS-6 All the infrastructure stations share the same data

AS-6 Malicious attacks can not be done directly to the infrastructure or agents
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4.3 System Requirements

Functional System Requirements are the specifications that must be met for the system to
work as intended and meet the needs of the users. Table 5 shows the list of requirements
realizing the specified user cases.

Table 5: Functional System Requirements.

Requirements Definition Realization

SYS-1 System shall exchange Perception Information between Agents UC-1

SYS-2 System must be able to detect objects in the enviroment UC-1

SYS-3 System must store detected objects information UC-2

SYS-4 System must be able to Transmit CPM UC-2

SYS-5 System must be able to Receive CPM UC-2

SYS-6 System shall determine its position and time UC-2

SYS-7 System shall establish an Authorization based Communication UC-3

SYS-8 System shall detect Misbehaviour Agents in the Network UC-3

In addition, non-functional systems requirements are defined to illustrate the requirements
imposed on the methodology followed for development of the system, and not the system
itself. The non-functional system requirements list is shown in Table 6.

Table 6: Non-Functional System Requirements

Requirements Definition

NFR-1 System is to be implemented using modelling software Capella

NFR-2 System development should follow the proposed Arcadia Method work princi-
ples

NFR-3 The components from the system must be based on existing ETSI Standards

NFR-4 System Environment shall be based on an ITS Enviroment
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5 Software Architecture Development

The system architecture has been developed in two stages: System Analysis and Logical
Architecture, following the Arcadia Method introduced in Section 3.5.3.

5.1 System Analysis

The system analysis stage consists on defining the context of our system and what does
it need to accomplish, without getting into details of how this will be achieved.

5.1.1 System Context

The first diagram we will implement is named as System Context, where the actors that
will interact with our system are defined. The main system represents one of the ITS-S,
while the other possible ITS-S are represented as actor ITS n, leaving the possibility open
for scalability. The city Infrastructure is constituted as another actor. Finally an Object
actor is also defined for the detection user cases. Figure 17 shows the Capella diagram.

Figure 17: System Context

5.1.2 Mission and Capabilities

After having defined the actors that will interact with our system, the mission statement
and capabilities need to be defined. A system’s mission statement outlines the purpose,
objectives, and values of the system in a short and understanding way. It provides guidance
for the system’s development and operation and acts as a guide for decision-making.
The primary features of a mission statement are being specific, measurable, achievable,
relevant, and time-bound (SMART). To guarantee its ongoing relevance, it should also
be adequately communicated to all stakeholders and evaluated and updated frequently.
Therefore the Mission statement is defined as: Establish a secure Collaborative Perception
Service in an ITS Environment.

Capabilities relate to the different processes the system should fulfill to achieve the de-
fined mission, which correlate with the main Functional System Requirements defined in
5. In Figure 18 the capabilities defined in the Capella model can be observed. There are
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two main capabilities that define the two major processes of our system: Exchange Per-
ception Information and Ensure Safety. From the perception part two sub-processes are
obtained: Manage Object Detections, which then consist of Detect Object and Store Object
Information, and Establish Communication that separates into transmission and recep-
tion of the Collaborative Perception Messages (CPM). For the safety part two different
features to ensure a secure communication are implemented: Establish an Authorization
based communication and Misbehaviour Detection.

Figure 18: System Mission and Capabilities

5.1.3 Functional Breakdown

Having defined the capabilities, the next step is to add the System Requirements in
the form of System Functions. Try to think abstractly while expressing the functional
requirements of the system. If the results are overly detailed, the future design team’s
ability to come up with solutions that truly satisfy the needs is limited. It is not the goal
to predict how the system will carry out its functions through system analysis, just to
identifying these duties, or functional needs. For the design team, having a detailed set of
functional requirements can be really beneficial.

The diagram that allocates all system functions is named as Functional Breakdown. Figure
19 shows the four Parent, or Tree, functions that have been implemented based on the
main capabilities of the system. Leaf functions are then created to add further detail
to those previous processes. A Leaf function is defined as the one which does not have
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any sub-functions. An Enter Scene function has also been defined for the object to be
detected.

Figure 19: System Analysis Functional Breakdown

5.1.4 System Architecture

With the complete list of system functions the first Architecture Diagram can be created.
These are probably the views with most information available in Capella, as it allows
us to see the different functions, allocate them to different agents or components, more
details about that in the Logical Architecture, and implement and observe the Functional
Exchanges between them. A Functional Exchange represents the information/data that
is being sent or received through the corresponding outputs and inputs of the System
Functions.

Therefore, the first Architecture View is created, with the main system representing a
mobile agent, and the three external actors, the infrastructure, ITS n and Object. Next
step is to allocate the functions to the elements, allowing then to show them in the
diagram, as it is done in Figure 20 with the tree functions.
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Figure 20: System Architecture Tree Functions

However, in Capella, functional exchanges must be defined only at the lowest possible leaf
functions. Therefore, a view with these sub-functions is created.

Figure 21: System Architecture Leaf Functions

With the leaf functions in place, the Functional Exchanges between them can be defined.
Functional Exchanges are defined as the information/data that is shared between two
functions. The collection of Functional Exchanges from the System Analysis level can be
found on the following Table 7.
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Table 7: System Analysis Functional Exchanges

Functional Exchange Source Function Target Function

Physical presence Enter Scene Obtain data from surroundings

Localization data
Obtain Localization

Information
Generate CPM

Time data
Obtain Localization

Information
Generate CPM

Object information Read Object Detectons Generate CPM

Received CPM Manage CPM Reception Decode CPM

Received object information Decode CPM Misbehaviour Detection

Received object information Decode CPM Update Object Detection List

Complete CPM Generate CPM Encode CPM

Encoded CPM Encode CM Manage CPM Transmission

Certificate request Manage Certificate Request Manage Certificate Authorities

Valid certificate Manage Certificate Authorities Manage Certificate Request

Misbehaviour Report Misbehaviour Detection Manage Certificate Authorities

Figure 22 shows the resulting architecture view after the addition of the Functional Ex-
changes.

Figure 22: System Architecture Leaf Functions with Functional Exchanges

As mentioned before, the previous steps are not just building diagrams, but a model.
Therefore, if the previous diagram where there were only the Parent functions are checked,
it is observed how the Functional exchanges also appear, but not all of them. Only the
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functional exchanges that happen between functions under different parents show, and
the ”internal” exchanges that take place inside a main function remain hidden, as seen in
the following Figure 23.

Figure 23: System Architecture Tree Functions with Functional Exchanges

The remaining step is to create a duplicate of the system to allocate the functions in
the ITSn actor and Infrastructure, giving them the capabilities of an ITS-S. The main
system works as the main development point from which the model rest of ITS-S will be
copied. This is know in MBSE as Replication, and Capella offers specific tools to perform
the process. The user is able to create a REC (Replicable Elements Collection) from any
collection of elements in Capella which can be used to create as many Replica (RPL) as
desired. In addition, RPL Instantiating is not limited to the current project, it is possible
to make usage of REC from other projects, opening the possibility to create Libraries to
increase the ease of reusability of developed Models. Instantiated RPLs keep the reference
from the original REC, which allows to update them if changes are done to the REC.

Therefore, a REC containing the functions and exchanges from the main System is created
and replicated as an RPL allocated in actors ITSn and Infrastructure. At the time of
creating the RPL, a Suffix can be added to differentiate the duplicated functions from the
originals. The results of this operation are shown in the Results Section 6.1.

5.2 Logical Architecture

Having completed the System Analysis stage it has been defined what are the functional
requirements of ”What” the system should do. Now, in the Logical Architecture level, the
focus will be on detailing this requirements to specify ”How” these requirements will be
meet. To do that, the main tool will be to create more specific and technical sub-functions.

Also important to notice, all the newly added functional requirements from this section are
based on an specific ETSI Standard. This will be really useful for future implementation
stages, where the design team will have he standards as a clear reference and it will ensure
that the model can be adopted not only by a specific project, but as a widely used starting
point for any one working with those standards.
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5.2.1 Components

In this stage, behavioral study is carried out and the subsystems are established. A sub-
system (referred to as a component in Capella) is a group of a system’s components that
performs a distinct function on its own. Component and interface definition assists in the
partition of design activities into smaller jobs that may be given to various development
teams.

The components of this architecture are based on the ITS Architecture, present in most
of ITS related standards, such as ETSI EN 302 665[5] or ETSI TS 103 324[6], shown in
Figure 6 and explained in Section 3.4.

Each of the layers of the ITS Station will be converted into a Component. In addition,
the facilities layer will also be divided into different sub-components depending on their
nature. To select these sub-components a literature research has been carried out into
different standards in order to find a good fit that could allocate the functions from
systems analysis and expand them into a more detailed sub-functions. The result of this
research is summarized in Table 8 while on Figure 24 we can observe the Component
Breakdown tree diagram showing all the parent and leaf components.

Figure 24: Logical Architecture Component Breakdown
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Table 8: Logical Architecture Component List and Related Standard

Component Parent Used Standard

ITS Station - ETSI EN 302 665 [5]

Application ITS Station ETSI TS 101 53 [28]

Network and Transportation ITS Station
ETSI EN 302 636-5 [23]
& ETSI TS 103 248 [24]

Access ITS Station ETSI EN 302 665 [5]

Safety ITS Station ETSI TS 102 940 [25]

Facilities ITS Station ETSI TS 102 894-1 [29]

Local Perception Manager Facilities -

Processor Local Perception Manager -

Sensors Local Perception Manager -

Misbehaviour Manager Facilities
ETSI TS 103 460 [9] &
ETSI TS 103 759 [30]

CP Service Facilities ETSI TS 103 324 [6]

CP Tranmission Manager CP Service ETSI TS 103 324 [6]

CP Reception Manager CP Service ETSI TS 103 324 [6]

Encoder CP Service ETSI TS 103 324 [6]

Decoder CP Service ETSI TS 103 324 [6]

POTI Facilities ETSI EN 302 890 [22]

LDM Facilities ETSI EN 302 895 [31]

Infrastructure - ETSI EN 102 940 [25]

Enrolment Authority Infrastructure ETSI EN 102 940 [25]

Authorization Authority Infrastructure ETSI EN 102 940 [25]

Misbehaviour Authority Infrastructure ETSI EN 103 460 [9]

Local Perception related components do not have an assigned standard, as the expansion
on this topic is out of the scope of this thesis.

With the defined components, the first Logical Architecture is created. It is similar to
the one from system analysis stage, but now the system and actors have allocated inside
them the components and sub-components, as seen in Figure 25.
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Figure 25: Logical Architecture Components Only

In the following subsections each component is explained in detail to show which processes
have been implemented to illustrate how our system will operate.

5.2.2 Manage Object Detection

As mentioned, the Local Perception sensors and image processing are out of the scope of
this thesis. Therefore, the functions remain the same from the previous stage and they are
only allocated to their specific subcomponents. This is done to enable SoS Engineering
for future developments, where a whole new project could be created for the sensor fusion
processing part.

To address the storage of object detection information two functions were created at the
System Analysis stage: Update Object Detection List and Read Object Detection. These
two functions illustrate well what is the goal, in this case, to have a data base in form of
a list of objects in the environment over time and to be able to update or read a value
from this list.

A concrete solution to this goal can be achieved by the usage of a Local Dynamic Map,
specified in ETSI 302 895 [31]. This component is placed at the facilities layer and divides
the main tasks in two functions: LDM Service and LDM Maintenance.

The LDM Service is connected to authorized LDM Data Providers, who provide informa-
tion to the LDM, and LDM Data Consumers, to whom the data is made available by the
LDM. The LDM has three different type of interface ports:

• Transaction interface where the data of new detections is being exchanged with the
Data Providers
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• Two type of interfaces for Data Consumers

– Query interface for single time request

– Publish/Subscribe interface for Data Consumers that require a periodic or
event based service of data.

CPM Messages are generated periodically, so the interface used to send data to the CP
Service facilities will be a subscribe type.

Apart from that, LDM shall allow applications and other facilities to register and dereg-
ister as LDM Data Providers or LDM Data Consumers. It must also verify the authoriza-
tion of Data Providers or Consumers prior to any data access. This authorization can
be revoked at any moment by the security service.

LDM Maintanance is in charge of the long term storage of the Object Data. Data Object
must be mantained through their time validity and withitn the LDM Area of Manitenance.

The LDM considers a LDM Data Object to be valid during the time period starting on the
timestamp of the LDM Data Object and for the duration of the time validity period. A
LDM Data Provider shall specify the timestamp value, specified when adding or updating
the Data Object, and the time validity, which has a default value set on registration that
can be overwritten if it is specified at the addition or update of the Data Object, of every
LDM Data Object it provides to the LDM.

If an LDM Data Object ’s position crosses over with the LDM Area of Maintenance, the
LDM will consider it to be valid. Whenever an LDM Data Object is added or updated, the
corresponding LDM Data Provider provides the location. The LDM Area of Maintenance
is a territory that can be specified in relation to the current position of the host ITS-S.

Therefore, these new two functions replace the ones from the system analysis level. In
Figure 26 the resulting architecture can be observed, with the Actor, Local Perception
Manager and LDM components.

Figure 26: Manage Object Detection Architecture

The same functional exchange to request registration/subscription serves to register,
deregister or revoke the permission. The complete list of functions and exchanges can
be found in Table 9.
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Table 9: Object Detection Functional Exchanges

Functional Exchange Source Function Target Function

Physical presence Enter Scene Obtain data from surroundings

Sensor Data
Obtain Data from

Surroundings
Process Perception Data

Request provider register Process Perception Data LDM Service

Response provider register LDM Service Process Perception Data

Object information Process Perception Data LDM Service

New Object information LDM Service LDM Maintenance

Stored Object information LDM Maintenance LDM Service

5.2.3 Position and Time

Time and Position Management remain the same functions from the System Analysis
stage. The information is requested as a query and return to the consumer. To expand on
this topic, specific information can be found in ETSI 302 890 [22].

Figure 27: Position and Time Management

5.2.4 CP Service - Transmission

The process of generating Collective Perception Messages (CPMs), as defined in ETSI TS
103 324 [6], involves the creation and transmission of CPMs by the originating Intelligent
Transport System Station (ITS-S), which are then disseminated through the ITS net-
working and transport layer using the communication system in use. CPMs are generated
periodically by the ITS-S, with the rate controlled by the CP service. During each gener-
ation event, the ITS-S takes into account various factors, such as the dynamic behavior of
detected objects, the reception of CPMs from other ITS-Ss, potential receiver’s ability to
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compute detected free spaces based on the transmitted data, and the radio channel load
to create a new CPM.

Therefore, the standard matches with the division of processes from the systems analysis,
where the transmission process was divided into three main functions: Manage CPM
Transmission, Generate CPM and Encode CPM. The Logical Architecture stage adds new
subfunctions to expand on these three processes, in addition to newly added functionalities
to complement, all taken from the standard specification and requirements.

The Manage CPM Transmission oversees the following subtasks: Activate or terminate the
CPM Transmission operation, Determine the frequency of CPM Generation and Trigger
the CPM Generation.

On the other hand, the CPM Generation consists of all the various steps needed to con-
struct a CPM Message Containers, which have been presented in Section 3.4.1. As a result
the CPM Generation is divided in the following subfunctions: Perceived Object Container
Inclusion Management, Free Space Addendum Container Inclusion Management, Sensor
Information Container Inclusion Management, CPM Segmentation.

The functional chain will consist then of first the Transmission Manager activating the
operation, setting up the frequency, and requesting the periodic generation. Then, the
CPM is created by adding one by one the containers. Before leaving the Facilities Layer
the message is first encoded through the Encode CPM function to then travel through
the Network Layer, where the protocol is added. The used BTP Protocol is explained in
Section 3.4.4. Before the message is sent through the communication channel at the Access
Layer, the Authorization Ticket must be added to the message. Therefore the encoded
message goes first to Use Authorization Ticket and then to Add message to communication
channel, where the transmission process finished. Details on how the AT are obtained are
explained in Section 5.2.6.

Figure 28 illustrates the Logical Data Flow diagram for CPM Transmission and Gener-
ation. This type of diagram allows the user to showcase the different exchanges between
different functions.
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Figure 28: CPM Transmission Logical Data Flow

The following Table 10 contains all the functional exchanges that take place in the CPM
Transmission Logical Data Flow from Figure 28.
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Table 10: CPM Transmission Functional Exchanges

Functional Exchange Source Function Target Function

Desired new frequency
Determine CPM Generation

Frequency
Trigger CPM Generation

Activate Operation Command
Activate CPM Transmission

Operation
Trigger CPM Generation

Terminate Operation
Command

Terminate CPM Transmission
Operation

Trigger CPM Generation

Petition for CPM Generation Trigger CPM Generation
Perceived Object Container

Inclusion Management

Subscription request
Perceived Object Container

Inclusion Management
LDM Service

Subscription response LDM Service
Perceived Object Container

Inclusion Management

Object information LDM Service
Perceived Object Container

Inclusion Management

Request Localization
Information

Perceived Object Container
Inclusion Management

Obtain Localization
Information

Return Localization
Information

Obtain Localization
Information

Perceived Object Container
Inclusion Management

Request Time Information
Perceived Object Container

Inclusion Management
Obtain Time Information

Return Time Information Obtain Time Information
Perceived Object Container

Inclusion Management

Incomplete CPM
Perceived Object Container
Information Management

Free Space Addendrum
Container Inclusion

Management

Incomplete CPM
Free Space Addendrum
Container Inclusion

Management

Sensor Information Container
Inclusion Management

Incomplete CPM
Sensor Information Container

Inclusion Management
CPM Segmentation

Complete CPM CPM Segmentation Encode CPM

Encoded CPM Encode CPM Add Network Protocol

Encapsulated Message Add Network Protocol Use Authorization Ticket

Authorized Message Use Authorization Ticket
Add message to

communication channel

In the cases where the modelled function is of high complexity and has technical require-
ments that should be taken into consideration when implementing such function, these
requirements are added into the description of the function, so that the future design team
have them as a direct reference at all time. For example, in Figure 29 the description of the
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function Perceived Object Inclusion Management is shown, where the information from
the standard, introduced in Section 3.4.1, is added. This procedure had been done with
almost all the functions in the logical architecture.

Figure 29: Perceived Object Inclusion Management Description in Capella

5.2.5 CP Service - Reception

The function Manage CPM Reception is in charge of two tasks defined in ETSI TS 103
324 [6]: Triggering the decoding of the CPM upon reception of a CPM and Provisioning of
the decoded CPM to the LDM and other applications. Therefore, two new sub-functions:
Provide CPM and Trigger CPM Decoding are created for the Reception Manager.

The process of receiving a message is the opposite as the one described for the trans-
mission. The message is first received at the Access Layer through the function Receive
message from communication channel. Then, this received message is sent to the Security
Layer, where its PKI credentials, both the Enrolment Certificate and adequate Authoriza-
tion Ticket are verified. If correct, the verified message goes through the Transportation
Layer, where function Substract Network Protocol identifies the type of message and shares
it with the corresponding facility.

When the message arrives to the CP Service, the CPM Reception Manager triggers its
decoding. The message is then sent to Decode CPM and is returned after the process is
finished. Finally, the CPM is provided to the other facilities that require it, working as a
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Data Provider for the LDM and also facilitating the message to the Local Misbehaviour
Detection. The process of data provisioning and registration as Data Provider is already
explained in Section 5.2.2. It is also worth mentioning that Local Misbehaviour will also
have the LDM Service as data provider for the inputs apart from the Provide CPM. The
Misbehaviour Detection is developed in detail in Section 5.2.7. Figure 30 shows the final
Logical Data Flow diagram with all the functions that take place in the reception of CPM.

Figure 30: CPM Reception Logical Data Flow

Following Table 11 contains all the functional exchanges from Figure 30.
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Table 11: CPM Reception Functional Exchanges

Functional Exchange Source Function Target Function

Received message
Receive message from
communication channel

Verify Signature

Verified Message Verify Signature Substract Network Protocol

Encoded CPM Substract Network Protocol Trigger CPM Decoding

Encoded CPM Trigger CPM Decoding Decode CPM

Decoded CPM Decode CPM Provide CPM

Request provider register Provide CPM LDM Service

Response provider register LDM Service Provide CPM

Received Object Information Provide CPM LDM Service

Received Object Information Provide CPM Local Misbehaviour Detection

Object Information LDM Service Local Misbehaviour Detection

Request subscription Local Misbehaviour Detection LDM Service

Subscription response LDM Service Local Misbehaviour Detection

5.2.6 Authorization Based Communication

The need to ensure a secure communication in the ITS network can be pursued by different
methods. The selected solution for this implementation has been a Public Key Infrastruc-
ture. Diverse subfunctions are created to manage the certificate both at the individual
ITS-S, under the parent function Manage Certificate Request, and at the infrastructure,
from the parent function Manage Certificate Authorities, where the different Authorities
are located. These subfunctions take part in the different steps that need to be followed
to be granted access to the network [25].

Initialization First step to be followed is the Initialization. This function makes use
information present in the vehicle such as the canonical identity, a unique and immutable
value established by the manufacturer, in addition to information provided by the net-
work through the Provisioning function, to create a set of credentials know as Canonical
Credentials.

Enrolment The Enrolment function uses the Canonical Credentials to request the En-
rolment Credentials (EC) to the Enrolment Authority (EA). If the request is accepted,
the EA will return the correspondent EC to the agent. This process can be invoked again
when the end of life time of the EC is reached or if it is revoked for any other case.

Authorization Having a valid EC, grants the possibility to the Authorization function
to request Authorization Tickets (AT). Before accepting the request, the Authorization
Authority (AA) might request the EA to perform a validation on the received EC, to
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ensure it corresponds to a valid and certified agent. If the EA and AA accept the request,
the ITS-S will receive AT to be used in an specific application or functionality. These
tickets are single-use and are expelled through the Use Authorization Ticket function,
which is part of the CPM transmission cycle described in Section 5.2.4.

From the EA perspective, the certificates can be revoked at any given time. One of the
possible causes is the inclusion of a given ITS-S into the Certificate Revocation List issued
by the Misbehaviour Authority (MA). This lists includes all the agents that haven been
determined to have acted with misbehaviour and therefore are banned from the network.
How Misbehaviour Detection and Misbehaviour Report work is explained in the following
Section 5.2.7.

The following Figure 31 shows the Logical Data Flow diagram containing all the functions
involved in the initialization, issuing, usage and revocation of certificates.

Figure 31: Certificate Issuing Logical Data Flow

Table 12 contains the functional exchanges from Figure 31.
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Table 12: Certificate Issuing Functional Exchanges

Functional Exchange Source Function Target Function

Network information Provisioning Initialization (ITS-S)

Canonical Credentials Initialization (ITS-S) Enrolment (ITS-S)

Enrolment request Enrolment (ITS-S) Enrolment (Infrastructure)

Enrolment credentials Enrolment (Infrastructure) Enrolment (ITS-S)

Enrolment credentials Enrolment (ITS-S) Authorization (ITS-S)

Request for Tickets Authorization (ITS-S) Authorization (Infrastructure)

Authorization Tickets Authorization (Infrastructure) Authorization (ITS-S)

Request verification Authorization (Infrastructure) Enrolment (Infrastructure)

Verification response Enrolment (Infrastructure) Authorization (Infrastructure)

Authorization Ticket Authorization (ITS-S) Use Authorization Ticket

Certificate Revocation List Response Verify Signature

Certificate Revocation List Response Enrolment (Infrastructure)

5.2.7 Misbehaviour Detection

Misbehaviour Detection works closely with the other facilities to add another layer of safety
to the authorization based communication. The goal is to compare the received data with
the local detections to check for errors that could lead to a potential malfunctioning or
malware agent in the network. However, the vehicle ITS-S does not have the granted
power to revoke certificates itself, therefore it will need to report those detected cases to
the Misbehaviour Agent (MA) which is part of the Infrastructure that will take further
actions if needed.

To achieve this goal, different subfunctions are created to model the requirements and pro-
cedures specified in ETSI 103 460 [9]. The complete cycle can be divided into three main
steps: Local Misbehaviour Detection, Misbehaviour Reporting and Misbehaviour Agent.

Local Misbehaviour Detection First, the Local Misbehaviour Detection receives the
input data from the LDM and CPM Reception Manager, through the functions Provide
CPM and LDM Service explained in their respective sections. The subfunction Detectors
is in charge of comparing the input data to find inconsistencies between the received
messages and the local detections. Diverse detection strategies are proposed, although
there is still not a defined method for the CP Standard. However, there is a potential
misbehaviour detection mechanism list for CAMs, which has been added in the Appendice
C. When an inconsistency is detected, the information is send to the Event Categorization
where it is classified into different type of errors or attacks. The category alongside the
previous information is then send to the Misbehaviour Reporting function.
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Misbehaviour Reporting Diverse functions are involved in the creation of the Mis-
behaviour Report(MR):

• Decision: concludes the necessity to generate or not a MR for the event observed in
the Local Misbehaviour Detection

• Generation: uses the data provided by the local misbehavior detection service and,
optionally, additional information collected from the State to construct the MR. It
also chooses whether to send the report to Storage or Transmission.

• Transmission: in charge sending the reports to the Misbehaviour Authority. If there
are multiple reports ready to be shared, Transmission selects which ones to send
and the order.

• Storage: saves MR provided by Generation and provides them to Transmission when
requested, deleting old reports.

• State: holds data needed by the other functions to perform their tasks and manages
three separate budgets: one for the report creation (processing time limits), the
second one for the storage of reports (total volume of generated reports might exceed
the available storage) and a third for transmission (as there might not be always an
available connection).

Misbehaviour Authority All the MR sent to the MA are stored in a database in func-
tion Misbehaviour Collection. Then, Investigation function is in charge of reviewing the
received MR from different ITS-S to corroborate the information that is being reported.
Finally, if the investigation is successful the Response function is the one in charge of
choosing the punishment to be applied to the correspondent ITS-S, such as revocation of
all the certificates. The detected misbehaviour agents are added to the Certificate Revo-
cation List (CRL) that is shared through the network to make it known to the individual
ITS-S.

The three processes described above are modelled in Figure 32, while the list of functional
exchanges can be seen in Table 13.
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Figure 32: Misbehaviour Detection and Report Functional Data Flow
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Table 13: [Misbehaviour Detection and Reporting Functional Exchanges

Functional Exchange Source Function Target Function

Received Object Information Provide CPM LDM Service

Request provider register Provide CPM LDM Service

Response provider register LDM Service Provide CPM

Request subscription Detectors LDM Service

Subscription response LDM Service Detectors

Object information LDM Service Detectors

Received Object Information Provide CPM Detectors

Detected Misbehaviour
Information

Detectors Event Categorization

Misbehaviour Event
Information

Event Categorization Decision

Misbehaviour Event
Information

Decision Generation

Misbehaviour Report Generation Storage

Misbehaviour Report Generation Transmission

Misbehaviour Report Storage Transmission

State Information State Decision

State Information State Generation

State Information State Storage

State Information State Transmission

Misbehaviour Report Transmission Misbehaviour Collection

Misbehaviour Information Misbehaviour Collection Investigation

Reported ITS Information Investigation Response

5.2.8 Applications

Applications make usage of all the data available in the Facilities Layer to achieve specific
goals. Although the Application Layer is out of the scope of this thesis, the layer and
some example functions based on the two main ITS Applications: Road Hazard Signaling,
specified in ETSI TS 101 539-1 [28], and Intersection Collision Warning, from ETSI TS
101 539-2 [20], are created to enable an easier transition if there is the desire to expand
on this topic in the future. The two allocated functions to the Application Layer can be
seen in Figure 33.
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Figure 33: Misbehaviour Detection and Report Data Flow

5.2.9 ITSn Replica

The last step in the Logical Architecture consists of creating a replica of the model created
in the system ITS to duplicate it in the external actors ITSn and Infrastructure, providing
them with the ITS functionalities. Same process from Section 5.1.4 is followed, using the
REC and RPL tools from Capella to create the replica.

One of the main benefits from an MBSE approach is the reusability that is given to
already implemented models, as this replica can be used as many times as desired and is
also not constrained to this specific project.

The resulting architecture is shown in Results Section 6.3 in a simplified version, only
adding to the diagram the lower levels of the ITS Architecture to obtain a more view,
while the complete replica from ITSn is added to the Appendice D.

5.3 State Machine

Capella offers the possibility to create State Machine diagrams to showcase the different
modes in which the system can operate and what conditions, processes or functions trigger
the transition between them. After creating the State Machine, each function in the
architecture can be assigned to any number of modes to indicate that it is enabled in that
operation scenario. The combination of all the functions available in a mode is named
after Configuration.

The implemented State Machine refers to the different perception modes that the system
can operate in, to allow the possibility of selecting which are the enabled functions in each
configuration. It also illustrates the certificate state in the secure communication network
and the steps needed to connect to the network. In the following paragraphs all the states
are described:

Figure 34 illustrates the ITS State Machine diagram in Capella. The next paragraphs
describe the different modes shown in the State Machine.
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Figure 34: ITS State Machine

PERCEPTION OFF The Initial State of the State Machine is PERCEPTION OFF,
where the perception functions are disabled. This mode will also work as the safe mode of
the perception system, meaning that if an error is detected the system will transition to
it. Transition to LOCAL PERCEPTION is done when the local perception is activated.

LOCAL PERCEPTION The system operates locally in this mode, executing object
detection’s and collecting information, but without having any exchange of data with other
ITS-S. Through the Connect to network transition the COLLECTIVE PERCEPTION
mode can be reached, but three checks need to be made: to have a communication channel
available, have the Canonical Credentials and possess a valid Enrolment Certificate. If the
answer is no to any of the checks the system enters the corresponding mode to obtain the
lacking element.

ESTABLISHING COMMUNICATION The system searches for a network to which
connect to. In the meantime the functions from LOCAL PERCEPTION are still active.
If the attempt fails the system returns to LOCAL PERCEPTION mode, if it succeeds, it
advances to the next check to reach COLLECTIVE PERCEPTION.

INITIALIZING The systems follows the procedures to obtain the Canonical Creden-
tials (CC) which are necessary to request the Enrolment Certificate, as seen in Section
5.2.6. This mode will most likely only be entered on the first transition to COLLEC-
TIVE PERCEPTION as the Canonical Credentials do not have a valid time life. After
the CC are obtained, the State Machine transitions to the last check. If the attempt is
failed it returns to the LOCAL PERCEPTION mode. As in the previous mode, LOCAL
PERCEPTION functions are still active during the creation of the credentials.

ENROLLING The system creates a request to obtain the Enrolment Credentials (EC)
to be granted access to the ITS network. Different from the CC, the EC do have an end
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of life time where they are no longer valid. Therefore, this mode can be accessed various
times during the execution after the credentials are revoked, being the reason time or
other factors. If the attempt is failed, the system returns to LOCAL PERCEPTION,
while if succeeds it transitions to COLLECTIVE PERCEPTION. The local perception
systems remained enabled at this mode too.

COLLECTIVE PERCEPTION The system uses local perception in conjunction
with the collective perception, enabling the CP Service functions to transmit and receive
object data. Local Perception, Collect Information, CPM reception and Misbehaviour are
enabled at all times and do not have any specific configuration inside this mode. However,
CPM Transmission can be activated or deactivated by the system and also depends on the
availability of Authorization Tickets (AT). Therefore three internal modes are established:

• UNACTIVE The transmission operation is deactivated. When the function acti-
vate CPM Transmission Operation is called it transitions to TRANSMITTING if
there are already Authorization Tickets (AT) available. If that is not the case and
the transmission is activated, the mode REQUESTING TICKETS is entered.

• REQUESTING TICKETS Function Authorization is called to request AT for
the CPM Transmission. When the AT are obtained, the mode TRANSMITTING is
entered. The system returns to UNACTIVE if the attempt to obtain AT fails or if
the transmission is terminated during the request.

• TRANSMITTING The process of CPM Generation and Transmission is enabled.
When the AT run out, the system transitions to REQUESTING TICKETS to obtain
new ones. If the operation is terminated the system returns to UNACTIVE.

The mode COLLECTIVE PERCEPTION is exited when the system disconnects from the
network or the credentials are revoked by any cause, entering the LOCAL PERCEPTION
mode. If the perception is terminated completely or an error is detected the transition
occurs to PERCEPTION OFF instead.

As introduced above, the implementation of a State Machine allows the user to assign
specific Modes to a function where it is enabled, creating Configurations. This information
has been added to the implemented Capella model, and an example is shown in Figure
35 where Trigger CPM Generation only shows as Available in TRANSMITTING mode,
while in Figure 37 the Process Perception Data is available in all the modes except of
PERCEPTION OFF.
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Figure 35: Trigger CPM Generation Available Modes

Figure 36: Process Perception Data Available Modes
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6 Results

This section covers the final results of the implemented Secure Collective Perception Ser-
vice in an ITS Environment Capella model.

Section 6.1 shows the final System Analysis Architecture with the added RPL to ITSn
and Interface. Additional functional exchanges Transmitted CPM have been added to
model the messages going through the network after leaving the ITS-S.

Section 6.2 contains the final Logical Function Breakdown from the Logical Architecture
Level after all the subfunctions from Sections 5.2.2 to 5.2.7 are added to the model. The
relationship between the first parent functions and the specific leaf functions is clearly
appreciated. Important to notice how the lower a function in the hierarchy, the more
specific in the actual description of the process. Therefore, the upper layers describe
What the system does, while the lower ones transcribe this What into How.

Section 6.3 shows the final Logical Architecture Diagram containing the ITS Layers in
the form of Components and the respective allocated functions. Notice how the functions
shown in the diagram are not all Leaf functions. Just as an example, CPM Generation and
Manage CPM Transmission are located in the diagram, but their respective subfunctions
are introduced in Section 5.2.4. This illustrates the power of encapsulation of a MBSE
approach where the user can create understandable diagrams that are not too complex
to follow, while at the same time create deeper specification hidden inside other function
blocks. As done with the System Analysis, Transmitted CPM functional exchanges are
added to model messages being exchanged in the network between ITS-S.
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6.1 Final System Analysis Architecture

Figure 37: System Analysis Final Architecture
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6.2 Logical Functional Breakdown

Figure 38: Logical Functional Breakdown Part 1
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Figure 39: Logical Functional Breakdown Part 2
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6.3 Final Logical Architecture

Figure 40: Logical Architecture Final Architecture
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7 Conclusion and Future Developments

Enhancing Autonomous Driving Systems with Collective Perception, currently under
standardization, has a lot of potential and is increasingly attracting attention as a so-
lution to the physical limitation of vehicles on-board sensors packages.

This master thesis has modelled an architecture using the open-source MBSE software Ar-
cadia Capella and following the development workflow proposed by the Arcadia Method.
In addition, the developed model is compliant with an extensive collection of the European
Telecommunications Standards Institute (ETSI) standards from the Intelligent Transport
Systems (ITS) family.

Through the different architectural levels of abstraction, the benefits of applying a Systems
Engineering approach in engineering projects has been proved. Firstly, a high level of
reusability of the architectural components has been achieved, specially with multiple
instantiation of the ITS Stations (ITS-S). Secondly, it has demonstrated how a complex
system, coming from various research papers and extensive ETSI standards, is decomposed
into subsystems, easier to understand and implement. This allows a smooth transition
from the design phase to the implementation of the project. Thirdly, relevant information
is placed at different levels of abstraction of the model to specify future implementation
requirements. For example, reference to technical requirements of the standard are placed
inside the function description, or functions availability according operation modes from
the State Machine.

The developed Collective Perception Architecture integrates smoothly with the architec-
tural levels specified for Smart Cities, as it aligns with the layer distribution of an ITS.
The challenges of Heterogeneity, Data Collection and Security, are all addressed in the
proposed architecture, based on standards that can adapt to any specific configuration,
managing the collection and storage of data, and implementing various processes to im-
prove security.

This thesis can be further developed in various directions. A first extension would be to
design a Physical Architecture with the goal to have a specific deployment of the project.
A second development would be to implement the internal behaviour of the modelled
functions of the system. This would allow to perform simulations to study the robustness
of the network. Finally, subcomponents of the modelled Collective Perception Architecture
can be further developed as a new Capella project. The most interesting subsystems in this
regard, from the perception point of view, would be the sensor data acquisition and sensor
fusion processing. Concerning the communication, modelling the communication channel
would erase the assumption of an ideal message exchange. Exploring how Misbehaviour
Detection algorithms can be modelled is a very promising future research topic.
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Appendices

A ISO/TR 4808 Road vehicles - FS 2 and FS 6 Ca-

pabilities

Figure 41: Realizing fail-safe and fail-degraded capabilities[3]

FS 2: Perceive relevant static and dynamic objects An automated driving system
uses sensors to perceive its environment and safely navigate roads and highways. It gives
priority to entities that pose the greatest risk of collision, such as other vehicles, obstacles,
and road hazards. These entities are perceived, pre-processed, and provided to the system
in a safe manner. Examples of entities that the system may account for include dynamic
objects, such as other vehicles and their movement characteristics, static objects, such as
road boundaries and traffic signals, and obstacles that exceed a certain size.

Sensor fusion is the core element of an automated driving perception system, as it allows
the system to integrate data from a variety of onboard sensors, such as cameras, radar,
and lidar, localization, ego-motion and V2X information. As shown in Figure 42, this
data is used to generate a model of the present environment, which the system uses for
interpretation, prediction, and planning. Traffic rules may be used to optimize the world
model and ensure safe operation of the vehicle. The semantic knowledge of the perceived
environment is important for the system to understand the objects and entities it has
detected and their locations.
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Figure 42: FS 2: Perceive relevant static and dynamic objects[3]

FS 6 Communicate and interact with other road users The self-driving vehicle
moves in a predictable way, following all traffic laws and signals. This includes using turn
signals before changing lanes and maintaining a safe distance from other vehicles. The
vehicle may also use visual and auditory signals, as well as communication technologies
like V2X, to communicate its intentions and actions to other road users (see Figure 43).

Figure 43: FS 6: Communicate and interact with other road users[3]

B Automated Driving System Challenges

Authors in [17] explore the different range of safety challenges and concerns that Auto-
mated Driving Systems face:

Safety Engineering Assuming the existence of small-scale deployment of fully au-
tonomous Level 4 vehicles on the road, the challenge becomes managing failures that may
be infrequent for any single vehicle, but will happen often when deploying at a big scale.
The current accepted practice for vehicle computer-based system safety, which relies on
the driver to be responsible for vehicle safety, needs to be modified as a fully autonomous
vehicle eliminates the human driver’s responsibility entirely. Another safety certification
concern is validating the use of self-adaptive system behavior by autonomous vehicles,
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which may lead to different behaviors during operation than was displayed during testing
and certification.

One method for ensuring safety in highly autonomous systems is to switch control back
to a human driver in the event of an equipment failure, allowing them to take over driving
responsibility. However, if the human is not paying attention, there needs to be a fail-
operational autonomy capability in place to maintain control until the human can take
over. Cars can achieve a safe state quickly, so a strategy is to switch to a short ”safing
mission” mode when a critical component fails, allowing the car to pull over to the side of
the road without the need for complex driving autonomy. This ”safing mission” has less
strict reliability and redundancy requirements and potentially reduce overall system cost
and complexity, while still keeping the vehicle safe. By designing a safe shutdown mission
capability, the safety requirements on primary vehicle autonomy can also be relaxed.

Social Acceptance The process of gaining social acceptance for autonomous vehicles
will undoubtedly be complex. While a primary incentive for adoption is the expectation
that autonomous vehicles will be safer drivers than humans, it is unrealistic to assume
that this will mean zero accidents, especially in the early stages of implementation. Some
cases will be straightforward, such as when avoiding a collision is physically impossible,
such as when a tree falls on top of a car during a storm. However, determining the
standard for autonomous safety will be challenging, such as whether it should be better
than an excellent human driver or just a typical one, and how a typical driver should
be characterized. Particularly tricky situations will arise when an ordinary human driver
could have avoided an accident, but the autonomous vehicle did not, leading to questions
about the vehicle’s liability in such cases.

Computing Hardware Developing ultra-cheap hardware with safe failure behaviors
is certainly not an easy task, even with the usage of a safe mission plan. To do this,
a well implemented hardware and software architecture is required. As an example of
progress, chip manufacturers have created dual-core processing circuits that can at least
partially redundancy for computations [32]. To provide enough redundancy and fault
tolerance, though, a more extensive strategy will probably be needed. Such systems have
been designed for aircraft and other safety-critical applications for a very long time, which
provides extensive background knowledge.

The difficulty of latent fault detection in hardware is, although more subtle, also an im-
portant topic. Reliability calculations are routinely performed at the start of each mission
under the assumption of completely fault-free redundancy. The advantages of redundancy
are drastically reduced by any undiscovered flaw. Self-diagnosis errors of even a few per-
centage points have significant effects on the level of achievable dependability. For instance,
obtaining only 95% test coverage might drastically lower the level of feasible reliability
for redundant automobile systems.

Due to the fact that undiagnosed failures can build up over the course of a vehicle’s
working life, the likelihood of experiencing multiple independent, undiagnosable failures
is much higher than the likelihood of multiple failures occurring during a single driving
mission for diagnosed parts of the system. Therefore, it will be crucial to design chips
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with a very high level of diagnostic coverage that can be self-tested before each driving
cycle.

Human Computer Interaction As self-driving cars become more prevalent, their
ability to communicate and work together with humans will become increasingly impor-
tant. It is evident that there are risks associated with human supervisors being inattentive
in systems that are nearly fully autonomous. Even fully autonomous vehicles will need to
ensure that their passengers feel safe, in order to build trust and confidence, and will need
to learn how to anticipate the actions of other vehicles. While some argue that customer
trust is not a safety concern, it is crucial for the adoption of this technology, which, if it
fulfills its promise of saving lives on the road, will indirectly impact safety [33].

Many areas will require automation to behave in a way that humans can understand. This
means that humans should be able to easily comprehend the automation’s intentions and
why it exhibited a particular behavior. This will be particularly important in fields such as
human-vehicle interaction safety, where it is necessary to know if the autonomous vehicle
has noticed a pedestrian, for example, and in testing coverage, where it is necessary
to determine whether the automation has correctly identified the reason for its actions.
Additionally, design comprehension will be important in understanding where the machine
learning system is located and whether it covers all relevant aspects or just a subset of
them [33].

Legal Dealing with legal liability will be a significant challenge in the early stages of
deploying autonomous vehicles. When a mishap occurs involving a fully autonomous ve-
hicle, the passenger may not be at fault, as they are justifiably inattentive or even asleep.
In such situations, the primary source of information about the mishap would be the ve-
hicle’s data logs. However, this data cannot be blindly trusted if the mishap occurred due
to a malfunction in the vehicle’s system. In such cases, it cannot be assumed that the data
collected by the malfunctioning system is accurate. To address this issue, an independent
data recording system might need to be intentionally designed to provide reliable data
for mishap forensics. The currently deployed Event Data Recording devices may need to
be reevaluated and reconfigured to ensure that they can provide adequate data for this
purpose.

A critical issue regarding liability will be determining who is ultimately responsible for
ensuring proper vehicle operation. This responsibility falls on the vehicle occupant who
chose to rent a car with noticeable sensor damage, the vehicle manufacturer who relied on
a faulty training dataset from a third party, the mechanic who installed an incompatible
replacement sensor software, the mapping update service that failed to record a bridge
washout, or the operating system vendor who failed to deploy a security patch in a timely
manner to prevent a malicious incident. Although some of these issues are purely legal,
resolving many legal questions will require a solid technological foundation. While much
experience is being gained from pilot deployments, the legal implications of autonomous
vehicles are still largely unknown, along with several other legal topics.
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C Misbehaviour Detection Strategies

Table 44 presents potential local misbehaviour detection mechanisms related to the con-
tent of the received CAMs, i.e. CAM information components with suspicious values, and
related evidence issues for four different evidence levels [9].

Figure 44: Misbehaviour detection mechanisms for CAMs [9]

Detection levels are defined as follows:

• Level 1: Implausibilities within a single message.

• Level 2: Inconsistencies between successive messages.

• Level 3: Inconsistencies with the local environment.

• Level 4: Inconsistencies with respect to perceived physical attributes (based on-
board sensors or V2X physical layer techniques).
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D ITSn Replica Logical Architecture

Figure 45: ITSn RPL Logical Architecture
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E BTP Port Numbers

Figure 46: Well-known BTP Port Numbers
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