
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1
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Abstract—This paper presents two algorithms to control the
speed of doubly-fed induction motors. The controllers are de-
signed using the complex-valued sliding mode methodology to
track either the rotor or the stator current. An outer loop
controls the mechanical speed. The control schemes are validated
experimentally and compared on a laboratory setup.

Index Terms—Complex-valued sliding mode control, Current
control, Doubly-fed induction machines, Speed control

I. INTRODUCTION

DOUBLY-fed induction machines (DFIM) are an attractive
alternative in some applications due to their ability to

be controlled through the rotor windings, and with power
electronics that convert a fraction of the power required by
conventional schemes. The use of DFIMs has been mainly
related to variable speed generators, such as wind turbines
[1] or flywheel energy storage systems [2]. However, the use
of DFIMs for drive applications has also been considered
for traction systems [3], marine applications [4], and aircraft
propulsion [5].

The control of DFIMs has been studied in the literature
using various methods. Most often, the schemes are based on
reference frame orientation strategies such as the stator-flux
oriented control [6], or the stator-voltage oriented control [7].
Other alternatives proposed to control DFIMs include nonlin-
ear output feedback algorithms [8], passivity-based controllers
[9], backstepping approaches [10], and robust controllers based
on H∞ optimization [11]. A different approach for the control
of DFIMs is direct power control (DPC) [12], [13], or direct
torque control (DTC) for drive applications. DPC is a table-
based strategy with advantages of simplicity, low computa-
tional burden and fast dynamic responses. Compared to the
methods mentioned above, DPC does not require a modulation
component converting the continuous signals provided by the
control algorithm into the switching signals.

Another family of controllers for DFIMs is the one based
on sliding modes. Sliding mode controllers (SMC) applied
to power converters exhibit the same characteristics as DPC:
direct generation of on/off signals, simplicity of the control
scheme, quick responses, together with robustness properties
and tools to analyse the closed-loop stability [14]. However,
the use of SMC for three-phase electrical machines still
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requires the Clarke and Park (αβ or dq) transformations. This
implies that the sliding manifolds defined by the control design
do not correspond to the three-phase signals of the inverter, and
the calculated switched control actions need to be converted.

Usually, the conversion from the dq coordinates to the
three-phase switching signals is achieved by approximating
the switched control actions obtained from the sliding mode
algorithms by smooth functions and by a modulation stage
through pulse-width modulation (PWM) or space-vector mod-
ulation (SVM). See examples in [15] [16], or a similar design
using αβ-coordinates in [17]. Alternatively, the continuous
control actions can be obtained using higher-order sliding
modes, but still, the modulation stage is required. Examples
include second-order sliding mode controllers [18] or the
super-twisting algorithm [19]. Another approach to applying
SMC in three-phase electrical machines is the use of a
decoupling matrix that keeps the problem definition in the
three-phase coordinates [20]. Still, the matrix strongly depends
on the knowledge of the machine inductances, which are often
affected by magnetic saturation.

The representation of induction machines using complex-
valued dynamical models was proposed in [21] and was
applied for the control of DFIMs [22]–[24]. The advantages
of the complex-valued models are the order reduction and
simplication of the control design. Recently, sliding modes
techniques have been adapted to complex-valued systems [25]
and applied to the control of squirrel-cage induction motors
[26].

This paper aims to control a DFIM using complex-valued
sliding modes. The benefits of using a complex-valued sliding
mode controller (cSMC) are:

• Simple control algorithm
• Finite-time convergence
• No modulation stage required

The speed regulation of a DFIM is considered in this
paper, using an internal loop based on cSMC for the machine
currents. Two alternatives are presented: one controlling the
rotor currents and another controlling the stator currents.

The paper is organized as follows. Section II presents the
complex-valued model of the DFIM. The algorithm based
on the control of the rotor currents is developed in Section
III, and Section IV includes the stator current approach. The
implementation procedure, regarding the generation of three-
phase switching signals, is detailed in Section V. The results
of the experimental validation are presented in Section VI.
Finally, conclusions are stated in Section VII.
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Notation

j =
√
−1 is used, instead of i, to avoid confusion with elec-

trical currents; Cn denotes the complex n-dimensional space;
for z ∈ C, Re(z) and Im(z) denote the real and imaginary
parts, respectively, z∗, |z|, and δz denote the conjugate, the
magnitude, and the argument (angle), respectively.

II. DFIM MODEL

A. Three-phase to complex variables

Consider a three-phase electrical variable (voltage or cur-
rent) given by xabc(t) = (xa(t), xb, (t), xc(t))

T . The transfor-
mation of xabc ∈ R3 to a complex-valued variable, zαβ ∈ C
is defined by

zαβ(t) = Txabc(t) (1)

where
T = c

(
1, ej

2π
3 , e−j 2π

3

)
, (2)

for a constant c, with c =
√

2
3 preserving the definition of

power (used in this paper), or c = 2
3 , maintaining the signal

amplitude.

B. The DFIM complex model

A complex representation of the DFIM can be adapted
from Chapter 2 of [27]. The dynamics of the DFIM after the
complex transformation (1) is described by

Ls
dis,αβ

dt
+M

d
dt

(
ir,αβe

jnpθ
)
=−Rsis,αβ + vs,αβ (3)

M
d
dt

(
is,αβe

−jnpθ
)
+ Lr

dir,αβ
dt

=−Rrir,αβ + vr,αβ (4)

J
dω
dt

=− bω + τe − τL, (5)

where is,αβ , ir,αβ ∈ C are the stator and rotor currents;
vs,αβ ∈ C is the stator voltage; vr,αβ ∈ C is the rotor voltage,
which is used as a control input; Ls, Lr,M ∈ R are the stator,
rotor and mutual inductances; Rs, Rr ∈ R are the stator and
rotor resistances modelling the inductor losses; J ∈ R is the
rotor inertia; b ∈ R is the damping coefficient; np ∈ N is the
number of pole pairs; τL ∈ R is the load torque, and τe ∈ R
is the electromagnetic torque given by

τe = npM Im(is
(
ire

jnpθ
)∗
). (6)

C. The stator-voltage oriented complex model

The model of the DFIM in the stator-voltage oriented
reference frame (also known as the dq-model) is obtained by
defining the stator and rotor transformations

zs = e−jθezs,αβ (7)

zr = e−j(θe−npθ)zr,αβ , (8)

respectively. Complex variables zs, zr ∈ C refer to both
voltages or currents, and the electrical phase θe(t), corresponds
to argument of vs,αβ . If c =

√
2
3 is used in (2), one gets

vs,αβ = Vse
jθe , (9)

where Vs is the magnitude of the complex voltage. Vs becomes
the rms value of the stator line-to-line voltage in steady-state.
However, complex variables are defined in arbitrary transient
conditions as well. With the stator-voltage oriented model,
vs = Vse

j0 = Vs ∈ R.
Using the transformations (7)-(8), the stator-voltage oriented

model of a DFIM in the complex coordinates is

Ls
dis
dt

+M
dir
dt

=− (Rs + jωsLs)is

− jωsMir + Vs (10)

M
dis
dt

+ Lr
dir
dt

=− j(ωs − npω)Mis

−
(
Rr + j(ωs − npω)Lr

)
ir + vr (11)

J
dω
dt

=− bω + τe − τL, (12)

where is, ir ∈ C are the stator-voltage oriented currents; vr ∈
C is the rotor voltage (control input); ωs ∈ R is the stator
frequency. In this new reference, the electromagnetic torque
is given by

τe = npM Im(isi
∗
r). (13)

In steady-state, active and reactive powers, P and Q respec-
tively, are equal to

P + jQ = Vsi
∗
s. (14)

D. Steady-state operation

The aim of a speed control algorithm for a DFIM is
to follow the mechanical speed reference together with the
regulation of the stator reactive power to a desired value, Qd.
Speed control can be achieved using a PI controller, where the
control input is the commanded torque, τde . See details in the
next section.

Combining the steady-state response of (10) with (13) and
(14), the required stator current for given desired torque and
reactive power, τde and Qd, is

ids =
Vs

2Rs
−

√(
Vs

2Rs

)2

− ωs

npRs
τde −

(
Qd

Vs

)2

−j
Qd

Vs
. (15)

From the previous result, a limit is found to relate the
attainable torque and reactive power, with(

Vs

2Rs

)2

≥ ωs

npRs
τde +

(
Qd

Vs

)2

, (16)

see more details in [24]. Assuming small rotor resistances,
Rs ≈ 0, the stator current becomes

ids =
ωs

npVs
τde − j

Qd

Vs
. (17)

The corresponding desired rotor currents are obtained from
the steady-state response of (11)

idr = −Ls

M
ids − j

1

ωsM

(
Vs −Rsi

d
s

)
, (18)

combined with (15). Neglecting the stator resistances and
combining equation (18) with (17) results in

idr = −Ls

M

ωs

npVs
τde − j

(
Vs

ωsM
− Ls

M

Qd

Vs

)
. (19)
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III. SPEED CONTROLLER BASED ON A ROTOR CURRENT
COMPLEX-VALUED SMC

Complex-valued SMCOuter controller

ωd

(20)
τde

(15),(18)
idr +

(26)
σr

(32)
u DFIM

(10)-(11) ω

Qd

ir

−

ω

Fig. 1: Speed control scheme using the rotor currents (Rotor-cSMC).

The speed controller based on the rotor current feedback is
shown in Figure 1. The outer speed control loop consists in a
proportional-integral (PI) controller with the form

τde = KfKpω
d −Kpω +Ki

∫
(ωd − ω)dτ, (20)

where Kp,Ki are the PI gains, and Kf is a feedforward gain
applied to shift the location of the closed-loop zero and avoid
an overshoot in the speed response. Letting Kp = 2avJ and
Ki = a2vJ , where J is the moment of inertia of the motor and
load, the closed-loop poles of the velocity loop are placed at
s = −av . The value Kf = 2/3 yields a fast response without
overshoot. See more details in [24]. The required rotor current
is calculated from (19) with the torque command obtained in
(20) and the desired reactive power Qd.

The inner current loop based on complex-valued sliding
modes (called Rotor-cSMC), ensuring that ir reaches idr in
finite time, is described below.

A. Complex-valued sliding mode rotor current controller

The complex-valued algorithm is based on a switching
action in the complex plane that is equivalent to switching
between values described by a circumference, see details in
[25]. Since c =

√
2
3 is used in (2), the admissible rotor

voltages are described by

vr = Vdcu, (21)

where u ∈ C has unity modulus, Vdc = 2
√
2/3 vdc, if the DC

voltage of the three-phase inverter used to generate the rotor
voltages is defined between ±vdc.

Using (21), the electrical equations in (10) and (11) can be
written as

µ
dis
dt

=Φs −MVdcu (22)

µ
dir
dt

=Φr + LsVdcu (23)

where µ = LsLr −M2 > 0, and

Φs =− (LrRs + jωsµ+ jnpωM
2)is

+ (Rr − jnpωLr)Mir + LrVs (24)
Φr =(Rs + jnpωLs)Mis

− (RrLs + jωsµ− jnpωLrLs)ir −MVs. (25)

The sliding manifold proposed to track the rotor current
reference, idr , is

σr = ir − idr . (26)

The equivalent control is defined such that σ̇r = 0. Differen-
tiating (26) with respect to time and using (23), one gets

σ̇r =
1

µ
Φr +

Ls

µ
Vdcu− didr

dt
, (27)

so that the equivalent control is given by

ueq = − 1

VdcLs
Φr +

µ

VdcLs

didr
dt

. (28)

Consider the Lyapunov function candidate

Wr =
1

2
σ∗
rσr. (29)

The time derivative of (29) can be written as

Ẇr =
1

2
(σ̇∗

rσr + σ∗
r σ̇r)

= Re (σ∗
r σ̇r)

= Re
(
σ∗
r

(
1

µ
Φr +

Ls

µ
Vdcu− didr

dt

))
. (30)

Using the equivalent control definition

Ẇr = Re
(
σ∗
r

Ls

µ
Vdc (u− ueq)

)
, (31)

and the switching control policy

u = − σr

|σr|
, (32)

one gets

Ẇr = Re
(
σ∗
r

Ls

µ
Vdc (u− ueq)

)
= −Vdc

Ls

µ
Re

(
σ∗
r

(
σr

|σr|
+ ueq

))
= −Vdc

Ls

µ
Re (|σr|+ σ∗

rueq)

= −Vdc
Ls

µ
|σr|Re

(
1 +

σ∗
r

|σr|
ueq

)
= −Vdc

Ls

µ
|σr|Re

(
1 + |ueq|ej(δeq−δσr )

)
= −Vdc

Ls

µ
|σr| (1 + |ueq| cos(δeq − δσr

)) . (33)

The sliding motion. Ẇr < 0, is guaranteed if

|ueq| < 1. (34)

Remark 1: As expected, the control action must remain
within the circle of unity radius. Note also that ueq can be
reduced by increasing the inverter dc voltage.

B. Ideal sliding dynamics
The ideal dynamics occur when σ̇r = σr = 0 and describe

how the system behaves during the sliding motion. From (22),
replacing u by the equivalent control obtained in (28)

µ
dis
dt

= Φs +
M

Ls
Φr − µ

M

Ls

didr
dt

. (35)

Further, using (24)-(25),

dis
dt

= −(Rs + jωsLs)is + vs −M

(
jωsi

d
r −

didr
dt

)
, (36)

which is stable since Rs > 0.
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IV. SPEED CONTROLLER BASED ON A STATOR CURRENT
COMPLEX-VALUED SMC

Complex-valued SMCOuter controller
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−

ω

Fig. 2: Speed control scheme using the stator currents (Stator-cSMC).

Figure 2 shows the control scheme based on a stator current
control (Stator-cSMC). The outer loop is the same as in
Section III, but using the stator current reference equation (17)
instead of (19). The cSMC required to track the stator current
reference is different. Details are given in the next sections.

A. Complex-valued sliding mode stator current controller

The proposed sliding manifold is

σs = kpĩs + ki

∫
ĩsdτ − ir, (37)

where kp, ki ∈ C, and

ĩs = is − ids . (38)

This PI-like structure of the switching manifold is justified in
the analysis of the ideal sliding dynamics and further discussed
in Section IV-C.

Differentiating (37) with respect to time, using (22)-(23),
and after some algebra,

σ̇s =
kp
µ
Φs −

1

µ
Φr + kiĩs − kp

dids
dt

− κ

µ
Vdcu, (39)

where
κ = kpM + Ls. (40)

κ is a complex parameter that can be tuned using kp. From
(39), the equivalent control is defined as

ueq =
1

Vdcκ

(
kpΦs − Φr + kiµĩs − kpµ

dids
dt

)
. (41)

Similarly to Section III, consider the Lyapunov function
candidate

Ws =
1

2
σ∗
sσs, (42)

whose time derivative is

Ẇs = −Re
(
σ∗
s

Vdc

µ
κ (u− ueq)

)
. (43)

Then, with the switching control policy

u =
σs

|σs|
, (44)

one gets

Ẇs = − cos(δκ)Vdc
|κ|
µ
|σs| (1− |ueq| cos(δσ − δeq)) . (45)

The sliding motion is guaranteed if

cos(δκ) > 0 (46)
|ueq| < 1. (47)

The result suggests using kp such that δκ ∈
(
−π

2 ,
π
2

)
, for

example kp ∈ R and positive.

B. Ideal sliding dynamics and control tuning
The ideal sliding dynamics with the stator current controller

are different from those obtained in Section III-B. From (23),
replacing u by the equivalent control obtained in (41) and after
some algebra

κ
dir
dt

=− kp(Rs + jωsLs)is − jkpωsMir

+ kiLsĩs − kpLs
dids
dt

+ kpVs. (48)

On the other hand, from (37) with σ̇s = 0, one gets

kp
d̃is
dt

+ kiĩs −
dir
dt

= 0. (49)

Combining (48) with (49) results in the complex-valued linear
dynamics

κ
dir
dt

=− kp(Rs + jωsLs)is − jkpωsMir + kiLsĩs

+ kpVs − kpLs
dids
dt

(50)

κ
d̃is
dt

=− (Rs + jωsLs)is − jωsMir + Vs

− kiMĩs − Ls
dids
dt

(51)

The state matrix of (50)-(51) is

ACL =
1

κ

(
−jkpωsM −kp(Rs + jωsLs) + kiLs

−jωsM −(Rs + jωsLs)− kiM

)
(52)

with a characteristic polynomial,

det(sI −ACL) = s2 + (a1 + jb1)s+ (a2 + jb2), (53)

where

a1 =
Rs + kiM

κ
(54)

b1 = ωs (55)
a2 = 0 (56)

b2 =
kiωsM

κ
. (57)

Using the Complex Hurwitz test [22], stability is guaranteed
if coefficients of (53) satisfy

a1 > 0 (58)∣∣∣∣∣∣
a1 0 −b2
1 a2 −b1
0 b2 a1

∣∣∣∣∣∣ > 0. (59)

Assuming Rs, ωs, κ > 0, the conditions simplify to

Rs + kiM > 0. (60)

Tuning the controller consists in finding the values of kp, ki
fulfilling the conditions (46), (47) and (60). Note that (46)
and (60) are automatically satisfied if the gains are real and
positive.
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C. Why a “direct” current stator approach is not adequate?

In this section, it is shown that the simpler choice

σs = ĩs (61)

fails to ensure stability and the proposed sliding manifold in
(37).

Differentiating (61) with respect to time gives

σ̇s =
1

µ
(Φs −MVdcu)−

dids
dt

(62)

and the equivalent control is

ueq =
1

MVdc

(
Φs − µ

dids
dt

)
. (63)

Now, assuming that the sliding motion is guaranteed, σs = 0,
and replacing u = ueq, is = ids in (23), the rotor current
dynamics results in

dir
dt

= −jωsir +
1

M
Vs−

1

M
(Rs+ jωsLs)i

d
s −

Ls

M

dids
dt

. (64)

The rotor dynamics in (64) are only marginally stable. This
result confirms the dynamic analysis of the direct stator current
approaches presented in [28].

V. CONTROL LAW IMPLEMENTATION

The control designs proposed in the previous sections are
based on the stator-voltage oriented frame and, in a practical
scenario, need to be embedded in an overall control scheme
containing the three-phase to complex transformations, and
vice-versa. Figure 3 shows the block diagram of the controller
with all the necessary transformations. Equations (1), (7) and
(8) are used to calculate the complex currents and voltages
from three-phase variables, which are then used in the complex
sliding mode controller. The complex control action in the αβ
complex framework is obtained from (8) as

uαβ = ej(θe−npθ)u. (65)

The three-phase switching signals, sabc, are obtained from uαβ

as described in the next subsection.

DFIM

ωd

Qd

Control
Algorithm

u
ej(θe−npθ)

uαβ
Table I

sabc 3

3

Power grid

ω

ir,abc

is,abcTransformations
(1),(7)-(8) vs,abc

θe
θ

ir

is

Vs

Fig. 3: Overall control scheme.

A. From complex to three-phase switching signals

Using (65), the control signal is

uαβ = ej(θe−npθ)
σ

|σ|
. (66)

which results in

uαβ = ej(θe−npθ+δσ). (67)

The control values are restricted to the unit circle in the
complex plane (see the blue circle in Figure 4). Additionally,
the use of a switching converter limits the available control
values to a finite set defined by applying the transformation
(1) to the vector

sw = (sa, sb, sc)
T (68)

where, for a two-level bridge converter, si = {−1, 1} for i =
a, b, c. Black dots in Figure 4 correspond to the admissible
values for a two-level bridge converter.

Fig. 4: Complex control values from (44) with a unit magnitude, blue
circle. Black dots correspond to the admissible values for a two-level bridge
converter.

The rationale of the switching policy is to approximate the
control value on the blue circle to the closer available switch
combination. This procedure divides the complex plane into
six sectors, as shown in Figure 4. In other words, this strategy
assigns a sector from the angle of uαβ , and the switching
policy is obtained form Table I.

∠uαβ Sector sa sb sc
−30◦ → 30◦ 1 1 −1 −1
30◦ → 90◦ 2 1 1 −1
90◦ → 150◦ 3 −1 1 −1
150◦ → 210◦ 4 −1 1 1
210◦ → 270◦ 5 −1 −1 1
270◦ → 330◦ 6 1 −1 1

TABLE I: From complex control values to three-phase abc switching values
for a 2-level converter.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the experimental setup. In the figure, GS
stands for grid supply, CS for current sensor, VS for voltage
sensor, and IM for induction motor (a squirrel-cage induction
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machine was used as a load). Simulink programs are loaded
on the dSPACE DS1104 module, which works as the interface
for data acquisition and control. The grid supply is at 60 Hz
and is stepped down from 120 V (phase rms) to approximately
7.6 V by the transformer box. The relay box can connect or
disconnect the lower voltage grid supply to/from the stator
windings of the DFIM. The relay control signal comes through
the dSPACE module from a user interface. The relay box also
includes a voltage reduction network for voltage measurement.
The oscilloscope captures four signals, two phases (A and
B) each of the stator voltages and the grid voltages from
the relay box to check the magnitudes, phase sequences, and
phase angles. A current sensor measures the current that flows
into the DFIM stator from the grid. The induction machine,
mechanically coupled with the DFIM, sends the position data
to dSPACE. This induction machine enables the option of
applying a variable load using a separate electrical supply (not
shown in Figure 5). The Hirel board, controlled by dSPACE,
supplies power to the rotor windings of the DFIM and sends
the current measurements to dSPACE. Table II shows the
values of the DFIM parameters.

According to [24], the code computes torque limits in real-
time. The computation ensures that the rotor currents stay
within a bound ir,max, in coordination with an anti-windup
procedure in the PI velocity controller in (20). Table III shows
the values of the controller parameters. The PI gains of the
current loop for the Stator-cSMC scheme place the poles of
(53) at s1 = −27.7 − j365.8 and s2 = −148.1 − j11.2. For
ki large, it turns out that one of the roots of (53) moves
towards s = −jωs, while the other root is approximately
given by s = −kiM/κ (with the values given, the estimate
of the second pole is s = −144.5, which is close to s2). The
underdamped pole s1 could cause concern, but this pole is
largely cancelled by a zero of the system at s = −jωs. The
zero is due to the impossibility of inducing a DC current on
the stator using the rotor currents.

Fig. 5: Setup of the experimental testbed.

Symbols Parameters Values
Rs DFIM stator resistance 0.66 Ω
Rr DFIM rotor resistance 0.94 Ω
Ls DFIM stator inductance 13.1 mH
Lr DFIM rotor inductance 9.8 mH
M DFIM mutual inductance 9.7 mH
np DFIM number of pole pairs 2
J Total moment of inertia 3.5× 10−4 kg m2

TABLE II: List and values of the machine parameters.

Symbols Parameters Values
av Desired pole for the speed loop 31.4 rad/s
kp Proportional gain (Stator-cSMC) 0.82
ki Integral gain (Stator-cSMC) 314

ir,max Maximum rotor current (peak, per phase) 6 A
vdc Maximum rotor voltage (peak, per phase) 7 V
fs Sampling frequency 5 kHz

TABLE III: List and values of the control parameters.

The first test consists of a reference profile from standstill
to 1800 rpm and changes of 30% above and below (see speed
profile in Figure 6). The desired stator reactive power is set
to zero and is not regulated with a feedback loop. Normally,
a separate procedure would be used to start the motor, but it
was decided to use the same controller with a brief increase in
rotor voltage, so that the capabilities of the control law could
be evaluated with a large transient command.

Figures from 6 to 9 compare the results obtained using the
two controllers proposed in Sections III and IV. The speed
behavior is almost identical because of the successful current
regulation of the inner loops and the common speed controller,
see Figure 6. The stator active and reactive powers are plotted
in Figure 7. The schemes were not designed to precisely track
the zero reactive power command, but tracking is found to
be superior with the stator current controller (bottom plot in
Figure 7). The error in the reactive power is associated with
the open-loop nature of this part of the control system and the
uncertainties in the parameters used to calculate (18).

Figures 8 and 9 show the real and imaginary parts of
the complex rotor and stator currents when using the Rotor-
cSMC and Stator-cSMC, respectively. One may observe that
the real and imaginary components of the currents are biased
relative to their references. This effect can be explained in two
ways. First, the control implementation is in discrete-time with
application to a nonlinear system. Biases are known to occur
in such cases even for real-valued sliding modes. Second, the
proposed method works in the complex domain and treats the
current components as a whole (the switching policy does not
depend separately on the real and imaginary components). This
effect becomes more noticeable when using the Rotor-cSMC
around zero speed, in the first and last seconds in Figure 8.

The second test consists in a sudden pulse of load torque.
An external load, approximately 0.12 N m in magnitude, is
applied at approximately t = 0.5 s for 0.5 s. Figures from 10
to 13 compare the results when using the Rotor-cSMC and the
Stator-cSMC. Again, the mechanical speed is similar for the
two algorithms (Figure 10), and the Stator-cSMC performs
better in regulating the reactive power (Figure 11) and the
currents (Figures 12 and 13).
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Fig. 6: Experimental results (Test 1, speed reference change): Mechanical
speed using the rotor current controller (top) and the stator current controller
(bottom). Reference speed black line.

Fig. 7: Experimental results (Test 1, speed reference change): Active and
reactive powers (P and Q) using the rotor current controller (top) and the
stator current controller (bottom). Active power, P , in yellow, and reactive
power, Q, in blue (top) or red (bottom).

VII. CONCLUSIONS

This paper proposed two control schemes for the speed reg-
ulation of a DFIM based on complex-valued sliding modes. In
the experimental tests, the Stator-cSMC algorithm performed
better than the Rotor-cSMC. The error in the reactive power
may not be important for motor operation but, if necessary, an
outer loop for the reactive power could be added to reduce the
effect of parameter uncertainties. Given the simplicity of the
Rotor-cSMC, a dedicated controller could be implemented at
a higher sampling rate than those feasible in the test setup, and
would likely result in improved current tracking performance.

Compared to control methods such as PI controllers, the
advantages of the proposed method are i) simplicity, ii) ab-
sence of a modulation stage (for example, PWM) with direct
control of switches, iii) no command limiting of rotor voltages
needed, and, for the Rotor-cSMC, iv) no parameter needed,
as opposed to impedances used for the coupling terms in

Fig. 8: Experimental results (Test 1, speed reference change): Real and
imaginary parts of the rotor current, top and bottom, respectively, when
using the Rotor-cSMC. Reference current provided by the PI controller and
equations (15) and (18) in black line.

Fig. 9: Experimental results (Test 1, speed reference change): Real and
imaginary parts of the stator current, top and bottom respectively, when using
the Stator-cSMC. Reference current provided by the PI controller and equation
(15) in black line.

standard PI controllers. Disadvantages of cSMC algorithms
are: i) higher current fluctuations at the same sampling time,
and ii) offset in filtered currents (more noticeable for the rotor
control algorithm).
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