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Abstract: In this study, an analysis of the influence of extractives, suberin and lignocellulosic com-
ponents on the pyrolysis decomposition and fire reaction mechanisms of a cork oak powder from
Quercus suber L. is presented. The summative chemical composition of cork powder was determined.
Suberin was the main component at 40% of the total weight, followed by 24% of lignin, 19% of
polysaccharides and 14% of extractives. The absorbance peaks of cork and its individual components
were further analyzed by means of ATR-FTIR spectrometry. Thermogravimetric analysis (TGA)
showed that the removal of extractives from cork slightly increased the thermal stability between
200 ◦C and 300 ◦C and led to the formation of a more thermally stable residue at the end of the cork
decomposition. Moreover, by removing suberin, a shift of the onset decomposition temperature to a
lower temperature was noticed, indicating that suberin plays a major role in enhancing the thermal
stability of cork. Furthermore, non-polar extractives showed the highest flammability with a peak
of heat release rate (pHRR) of 365 W/g analyzed by means of micro-scale combustion calorimetry
(MCC). Above 300 ◦C, the heat release rate (HRR) of suberin was lower than that of polysaccharides
or lignin. However, below that temperature it released more flammable gases with a pHRR of
180 W/g, without significant charring ability, contrary to the mentioned components that showed
lower HRR due to their prominent condensed mode of action that slowed down the mass and heat
transfer processes during the combustion process.

Keywords: cork; suberin; lignocellulosic material; thermal stability; flammability

1. Introduction

Interest in bio-materials is rapidly growing due to concerns about the environment
and their unique characteristics: they are renewable, completely or partially recyclable and
bio-degradable [1–3].

Cork is a biological tissue that is the outer bark of the oak tree Quercus suber L. that
acts as a protective layer and is harvested each 9–12 years [4–8]. Due to cork’s remarkable
properties such as super compressibility without fracture, full recovery, impermeabil-
ity and heat insulation, this lignocellulosic material has been widely used in various
applications, for example, wine stoppers and construction materials for acoustic and
thermal insulation [9–12].

The macroscopic cellular structure of cork presents an alveolar structure similar to a
honeycomb with close cellular structure and thin-walled cells. The cells are rectangular
prisms, packed base-to-base in columns parallel to the radial direction of the tree. The walls
of cork cells are made of a thin, lignin-rich middle lamella (internal primary wall), a thick
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secondary wall of suberin and wax lamella and an outer tertiary wall of polysaccharides
such as cellulose and hemicellulose (Figure 1) [13,14].
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Suberin, the main component of cork, is a polyester consisting of natural aliphatic
and aromatic macromolecules linked via ester bonds that provides cork with corrosion
resistance and anti-aging characteristics [15]. The second major component of cork is
lignin, a highly cross-linked aromatic phenolic polymer which causes durability of cork
by increasing stress resistance, mechanical strength and hardness of cork cellular walls.
Polysaccharides are also present in cork cellular structure as polysaccharide derivatives
consisting of chains of mono-saccharides with intermediate linkages and contribute to
the structural rigidity of the cork cells [10,16,17]. Finally, the last parts of cork chemical
composition are extractives, which generally include phenolic compounds, terpenoids,
fatty acids, resin acids and waxes [18].

Different applications have been reported for components of cork; for example,
suberin is used as a starting agent for production of polyurethane [19] and polyester
polymers [20,21] and a grafting agent for polymer composites [22], ink additives [23] and
cosmetic and pharmaceuticals products [24,25]. Lignin has applications within the sus-
tainable construction industry such as lignin admixture and additives for concrete, lignin
modified asphalts, lignin-based paints and coatings [26] or as reinforcing fillers in polymeric
composites and an adhesive promoter in natural fiber composites [27,28]. Polysaccharides
are used in pharmaceutical [17], food and packaging applications [29,30].

As a result of cork processing and manufacturing of different cork products, the cork
industry generates substantial amounts of cork dust (the so-called “cork powder”), approx-
imately 30% of the bulk material, which is usually considered a waste with low economic
value and burned in boilers of industrial processes or disposed of in landfills [31–33].
Therefore, it is economically interesting to find a more valuable alternative application
for this industrial waste bio-material. Recent studies were carried out in order to ob-
tain “green materials” to improve polymers fire retardancy through the development
of flame-retardant bio-composites [34]. Lignocellulosic-based materials are capable of
producing charred residues, which can be particularly important for developing more
sustainable intumescent flame retardants (IFR). Several studies reported that halogen-free
flame retardants combined with bio-based materials such as starch [35], lignin [36] and cel-
lulose [37] resulted in an improvement in fire retardancy of thermoplastics by producing a
foamed, thermally stable char and consequently protecting the underlying material against
fire propagation.
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In this sense, it is important to fully understand the chemical nature of cork powder to
find a more valuable application for this bio-waste as, for instance, a potential synergistic
in flame retardant systems. Although some studies are conducted to investigate the
thermal stability of cork powder, to the best of authors’ knowledge, there is a lack of
studies regarding its flammability and the mechanisms of action of cork’s main chemical
components in its fire reaction.

With all that in mind, the thermal stability and fire behavior of cork powder and of its
extractives, the suberin and lignocellulosic components, are investigated in further detail
in the present work.

2. Materials and Methods

The cork powder was kindly provided by Corcho de Extremadura (Mérida, Spain);
dichloromethane, ethanol, methanol, chloroform, sodium methoxide and sulfuric acid were
purchased by LabKem (Barcelona, Spain).

The particle size distribution of the cork powder, as received, was determined by
a laser diffraction particle size analyzer using a LS 13 320 equipment (Beckman Coulter,
Indiana, USA). LS 13 320 software (Beckman Coulter, Indianapolis, IN, USA) was used to
calculate the values such as D50, which is the median diameter or the medium value of the
particle size distribution and the value of the particle diameter at 50% in the cumulative
distribution. The D90 was also calculated to describe the diameter where 90% of the
distribution has a smaller particle size and ten percent has a larger particle size. The mean
value, a calculated value similar to the concept of average, was also obtained. An AccuPyc
II 1340 helium pycnometer (Micrometritics, Norcross, GA, USA) was used to determine the
density of the cork powder. The morphology of the cork particles was analyzed using a
JSM-5610 scanning electron microscope (JEOL, Tokyo, Japan). The samples were prepared
by sputter depositing a thin layer of gold onto the upper and inner surface of ashes in argon
atmosphere using a SCD005 Sputter Coater (Bal-Tec, Los Angeles, CA, USA).

In order to determine cork composition, chemical analyses that included the determi-
nation of ash, extractives, suberin, lignin and cellulose were carried out. All experiments
were performed in duplicate. The ash content was determined by incinerating 2 g of cork at
500 ◦C over 12 h, following TAPPI standard T 15 os-58. Successive Soxhlet extractions
(Figure 2) were performed using 3 g of samples to separate extractives with dichloromethane
(DCM) for 6 h, ethanol for 8 h and water for 20 h, following TAPPI standards (T204 om-88
and T207 om-93) [38,39]. After each extraction step, the solution was evaporated, and
the solid residue weighed. The suberin content of the cork was determined using an
extractive-free material by methanolysis for de-polymerization [40]. A total of 1.5 g of
extractive-free cork was refluxed with 250 mL of 3% NaOCH3 in CH3OH over 3 h, filtered
and then refluxed with CH3OH for 15 min. After filtration, the residue was acidified with
2 M H2SO4 to pH 6 and evaporated in a rotating evaporator. The residue was suspended
in 100 mL of water and extracted with 100 mL CHC13 three times; then the combined
extracts were dried over Na2SO4 salt, filtered, evaporated and weighted as suberin. Lignin
was determined after acid hydrolysis with 72% H2SO4 at 30 ◦C for 2 h and boiling for 4 h
after dilution with water to 4% H2SO4, following TAPPI T-222 standard. The residue was
washed with hot water, dried and determined as lignin [41,42].



Materials 2023, 16, 3829 4 of 17Materials 2023, 16, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 2. Soxhlet extraction procedure of cork powder. 

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy us-
ing a Nicolet™ 510 (Thermo Fisher Scientific, Waltham, MA, USA) with ZnSe lenses, and 
a single-reflection diamond ATR element was employed to analyze the chemical nature of 
cork and its components. The measurements were obtained in the spectral range of 4000 
cm−1 to 400 cm−1. 

Thermal stability under pyrolysis conditions was characterized by means of thermo-
gravimetric analysis (TGA) under nitrogen atmosphere, using a STA 449F5 equipment 
(Netzsch-Gerätebau GmbH, Bayern, Germany) with a constant heating rate of 10 °C min−1 
from 30 °C to 1000 °C. For each experiment, a mass of 5 mg ± 0.5 mg and a gas flow rate 
of 250 mL min−1 were used. 

A micro-scale combustion calorimeter (MCC), also known as a pyrolysis combustion 
flow calorimeter (PCFC) from Fire Testing Technology (FTT), was used under the proce-
dure of ASTM D7309. In this technique, each sample (5 ± 0.5 mg) was exposed to a heating 
rate of 1 °C/s from 150 to 700 °C under N2. The pyrolysis gases were evacuated into an 
oven at 900 °C, containing an 80/20 of N2/O2 mixture, where its total combustion took 
place. The analysis was performed in triplicate. MCC is a useful instrument to determine 
the heat release rate and the fuel content of the decomposing volatile products. From this 
technique, the peak of heat release rate (pHRR), the temperature of the pHRR (TpHRR) and 
total heat release (THR) were measured, and the curves of HRR versus temperature plot-
ted. 

3. Results and Discussion 
3.1. Particle Size Distribution, Density and Morphology of Cork Powder 

A density of 1.526 g/cm3 was registered in accordance with the studies reported for 
the density of cork powder and cell walls [43,44]. A symmetric distribution with a 218 µm 
average value of particle size, a D50 of 147 µm and a D90 of 500 µm for cork powder were 
obtained. 

Cellular structure of cork powder was observed by scanning electron microscopy 
(SEM) (Figure 3). The cells are described as rectangular prisms in previous studies and are 
packed base-to-base in columns parallel to the radial direction of the tree [14]. The anisot-
ropy of cork’s cellular structure, which was observed in SEM, can result in its anisotropic 
properties [45]. In Figure 3, a representative particle with an average diameter size of 200–

Figure 2. Soxhlet extraction procedure of cork powder.

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy using
a Nicolet™ 510 (Thermo Fisher Scientific, Waltham, MA, USA) with ZnSe lenses, and a
single-reflection diamond ATR element was employed to analyze the chemical nature
of cork and its components. The measurements were obtained in the spectral range of
4000 cm−1 to 400 cm−1.

Thermal stability under pyrolysis conditions was characterized by means of thermo-
gravimetric analysis (TGA) under nitrogen atmosphere, using a STA 449F5 equipment
(Netzsch-Gerätebau GmbH, Bayern, Germany) with a constant heating rate of 10 ◦C min−1

from 30 ◦C to 1000 ◦C. For each experiment, a mass of 5 mg ± 0.5 mg and a gas flow rate of
250 mL min−1 were used.

A micro-scale combustion calorimeter (MCC), also known as a pyrolysis combustion
flow calorimeter (PCFC) from Fire Testing Technology (FTT), was used under the procedure
of ASTM D7309. In this technique, each sample (5 ± 0.5 mg) was exposed to a heating rate
of 1 ◦C/s from 150 to 700 ◦C under N2. The pyrolysis gases were evacuated into an oven
at 900 ◦C, containing an 80/20 of N2/O2 mixture, where its total combustion took place.
The analysis was performed in triplicate. MCC is a useful instrument to determine the heat
release rate and the fuel content of the decomposing volatile products. From this technique,
the peak of heat release rate (pHRR), the temperature of the pHRR (TpHRR) and total heat
release (THR) were measured, and the curves of HRR versus temperature plotted.

3. Results and Discussion
3.1. Particle Size Distribution, Density and Morphology of Cork Powder

A density of 1.526 g/cm3 was registered in accordance with the studies reported
for the density of cork powder and cell walls [43,44]. A symmetric distribution with a
218 µm average value of particle size, a D50 of 147 µm and a D90 of 500 µm for cork powder
were obtained.

Cellular structure of cork powder was observed by scanning electron microscopy
(SEM) (Figure 3). The cells are described as rectangular prisms in previous studies and
are packed base-to-base in columns parallel to the radial direction of the tree [14]. The
anisotropy of cork’s cellular structure, which was observed in SEM, can result in its
anisotropic properties [45]. In Figure 3, a representative particle with an average diameter
size of 200–250 µm can be observed, in agreement with the obtained average dimensions.
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Likewise, it was observed that cutting or grinding cork during industrial processing results
in the deformation or partial breakage of its cellular structure.
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3.2. Chemical Composition and Characterization of Cork Components

The results obtained for the summative chemical composition of cork powder are
summarized in Table 1. The chemical composition of cork mainly depends on different
factors such as geographic origin of cork, climate of the origin, soil, tree dimensions and
growth conditions [14]. The results were in agreement with the range reported for cork
components in the literature [15,16].

Table 1. Chemical composition of cork powder.

Chemical Component Wt% *

Suberin 40
Lignin 24
Polysaccharides 19
Extractives 14

-DCM Extractives 7
-Ethanol Extractives 3
-Water Extractives 4

Ash 3
Total mass 100

* Each value is the average of performed experiments with variation coefficients within 0.02–0.8.

The chemical nature of cork powder and its main components was characterized by
means of ATR-FTIR spectrometry. Figure 4 shows the normalized ATR-FTIR spectra of cork
powder, extractive-free cork, desuberized cork, suberin and lignin.
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Figure 4. ATR-FTIR spectra of cork powder, extractive-free cork, desuberized cork, suberin
and lignin.

All materials presented a broad absorbance band between 3700 cm−1 and 3000 cm−1,
characteristic of the hydroxyl groups stretching, presented in their chemical structure.
Peaks at 2920 cm−1 and 2850 cm−1 were mainly attributed to the aliphatic chains of
suberin, characteristics of asymmetric and symmetric C–H stretching vibrations,
respectively [46–48]. The absorbance peaks at 1735 cm−1, 1235 cm−1 and 1150 cm−1

were assigned to C=O, symmetric and asymmetric C–O stretching of the suberin ester
group, respectively [46–52]. The peak registered at 1460 cm−1 is also characteristics of
C–H asymmetric deformation of suberin, as well as of lignin and polysaccharides [47,50].
Desuberized (lignin and polysaccharides) cork showed a disappearance of the main ab-
sorbance peaks of suberin at 2920, 2850, 1735, 1235 and 1150 cm−1. This fact indicates
that suberin was successfully extracted from the cork powder. Furthermore, besides the
mentioned characteristic peaks of suberin, peaks between 1600 cm−1 and 1500 cm−1 and at
1095 cm−1 were registered in the Suberin spectra (see Figure 4), which could be related to
lignin and polysaccharide presence. Particularly, C=C stretching registered at 1600 cm−1

and 1510 cm−1 was assigned to the stretching of G-lignin aromatic ring vibrations [22].
The absorbance peaks at 1095 cm−1 and 1035 cm−1 are characteristic of C-O vibrations
stretching the vibration of polysaccharides and lignin, respectively [47,50,52].

The spectrum of the extractive-free cork was identical to the one of the cork powder,
which can be due to the relatively low amount of extractives in the cork (see Table 1).

Figure 5 shows the ATR-FTIR spectra of cork extractives. In fact, extractives are not chemi-
cally bonded to the cork structure and can be extracted by polar and non-polar
solvents [14]. Non-polar extractives were extracted by DCM, and polar extractives were
extracted by ethanol and water. Non-polar extractives reportedly consist of waxes with
aliphatic and aromatic compounds such as glycerol, fatty acids, triterpenes, while the main
parts of polar extractives are phenolic compounds such as phenolic acids and tannins [14,53].
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Figure 5. ATR-FTIR spectra of DCM, ethanol and water extractives.

Spectrum of dichloromethane extractives (DCM) showed a broad absorbance band
with low intensity between 3700 cm−1 and 3000 cm−1, which is characteristic of hydroxyl
groups. This band has a significantly lower intensity than that of polar extractives. The
strong peaks at 2920 cm−1 and 2850 cm−1 are characteristic of symmetric and asymmetric
C–H vibrations present in the aliphatic structure of terpenes of the waxy material. At
1710 cm−1, characteristic peaks of carbonyl as carboxylic acid function group and at
1460 cm−1 characteristic of aromatic C–C vibration were presented [54–56]. In addition, the
peak at 720 cm−1 was attributed to the C–H bond related to the vinyl group of terpenes [51].

The absorbance band between 3700 cm−1 and 3000 cm−1 was also observed for ethanol
extractives with a higher intensity compared to the non-polar one, corresponding to OH
groups of tannins and phenolic compounds. The vibrations at 2920 cm−1 and 2850 cm−1

are characteristic of C-H vibrations present in aliphatic parts of phenolic acids found in
ethanol extractives such as, ferulic acid, vanillic acid and cinnamic acid [14]. The signs at
1710 cm−1, 1600 cm−1,1460 cm−1 and 1075 cm−1, respectively, correspond to C=O car-
boxylic stretching, aromatic C=C stretch, aromatic C–C vibration, C–O asymmetrical stretch-
ing, which are typically observed in phenolic compounds [51,56,57].

ATR-FTIR spectra of water extractive of cork also presented the same broad band of
OH groups at 3700–3000 cm−1. The intensity of the peaks at 2920 cm−1 and 2850 cm−1,
corresponding to C-H vibrations, which are characteristics of phenolic compounds or
water-soluble polysaccharides, was much lower compared to the rest of extractives. The
signals of C=O stretching at 1710 cm−1, aromatic C–C vibration at 1600 cm−1 and C–O
asymmetrical stretching at 1050 cm−1 were also registered for water extractives due to the
presence of phenolic compounds [57]. Furthermore, compared to the rest of the extractives,
the water extractive showed a decrease of 1710 cm−1 and 1460 cm−1 peaks intensity and a
shift in C–O asymmetrical stretching from 1075 cm−1 to 1050 cm−1.

3.3. Thermal Stability of Cork Powder and Its Main Components

Thermogravimetric analyses were carried out in order to characterize the role of
each component in thermal stability of cork powder. Comparative thermogravimetric
curves (TG) of pyrolysis and the first derivative of TG curves (dTG) obtained for cork and
extractive-free cork are presented in Figure 6. In addition, the temperature corresponding
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to the maximum mass loss rate (Tpeak), mass loss (ML) of each decomposition step and the
amount of residue remained at 800 ◦C are shown in Table 2.
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Table 2. TG and dTG data of thermal degradation and residue of cork and its main components.

Materials TD Step Tpeak (◦C) ML (%) R800◦C (%)

Cork
1 280 10.5

13.12 400 70.1

Extractive-free cork
1 300 8.7

17.12 400 71.4

Desuberized cork
1 65 5.1

32.62 125 4.9
3 270 49.8

Suberin
1 295 33.8

9.52 420 52.1
3 740 1.5

Lignin 1 60 6.7
29.42 350 32.5

DCM extractives 1 360 95.8 1.4

Ethanol extractives
1 310 66.1

16.72 645 16.9

Water extractives
1 280 16.3

60.12 520 12.1
3 745 11.4

Untreated cork started to decompose between 180 ◦C and 290 ◦C (see Figure 6),
followed by a higher mass loss of 70.1% between 290 ◦C and 600 ◦C.

The removal of extractives from cork shifted the decomposition temperature, at a
5% of mass loss, from 260 ◦C to 280 ◦C and led to the formation of a more thermally
stable residue between 500 ◦C and 800 ◦C. This fact implies that extractives can act as
a catalyst by reducing the decomposition temperature of untreated cork and promoting
the thermal decomposition of other components. Similar behavior was also observed
for the contribution of extractives to the wood thermal degradation [58–60]. However,
this effect contradicts the role of extractives in thermal stability improvement of cork in
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oxidative atmosphere [7]. An analysis of the different extractives’ thermal stabilities was
also conducted; the TG curves of the extractives are shown in Figure 7.
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As it is possible to see in Figure 7, at 5% of mass loss, ethanol extractives showed a
lower decomposition temperature compared to DCM and water extractives. Furthermore,
above 350 ◦C, the polar extractives (ethanol and water extractives) showed a lower mass loss
rate compared to the one observed for non-polar DCM extractives. In fact, the non-polar
extractives only presented a 1.6% residue at 800 ◦C (see Table 2). Meanwhile, the amount
of residue at 800 ◦C for water and ethanol extractives was 60.1% and 16.7%, respectively.

In order to evaluate the possible catalytic effect of extractives on the cork thermal
decomposition, the experimental and calculated TG and dTG curves of cork were compared
(Figure 8). The calculations were obtained from the TG/dTG contribution of the extractive-
free cork and individual extractives; calculated cork = (86% × extractive-free cork + 7% × DCM
extractives + 3% × ethanol extractives + 4% × water extractives).
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The calculated curves show, between 200 ◦C and 300 ◦C, a slightly higher thermal
stability than those registered in the experimental curves of cork. Thus, when extractives
are inherently present in the cork composition, they promote a slightly higher thermal
decomposition than expected in that range of temperature. Moreover, between 500 ◦C and
800 ◦C, the calculated curve shows a higher weight percentage than that of the experimental
curve. These facts reinforce the catalytic effect of extractives on the beginning and end of
cork thermal decomposition.

The comparative TG and dTG of cork, desuberized cork, suberin and lignin are shown
in Figure 9. Desuberized cork (or suberin free cork) showed a lower thermal stability than
cork below 400 ◦C. This might be due to a higher loss of free and bounded water also
observed in the case of polysaccharides from different bio-materials [61–63]. Its major mass
loss occurred at 270 ◦C, 130 ◦C lower than that of cork, confirming the thermal stability
effect of suberin on cork thermal behavior. The higher residue observed in the desuberized
cork samples could be due to the presence of sodium from the sodium methoxide, used for
the extraction of suberin [7].
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N2 atmosphere.

Suberin decomposes in two main steps, similar to cork. The first peak started slowly at
175 ◦C and continued to 390 ◦C, with a mass loss of 33.8%. It should be said that the mass
loss of this step could be affected by the presence of residual lignin and polysaccharides
detected in ATR-FTIR curves. The second and major thermal decomposition step, between
390 ◦C and 500 ◦C, showed a 20 ◦C shift of Tpeak to higher temperature compared to
cork. This indicates that suberin contributes to increase the thermal stability of cork [51].
However, in both the mentioned thermal decomposition steps, the mass loss rate (%/min)
was higher than that of cork.
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Furthermore, it was reported that suberin is mainly composed ofω-hydroxy acids and
α,ω-diacids [41]. The decomposition peaks ofω-hydroxy acids andα,ω-diacids, presented
in suberin of different types of cork, were reported to be at 429 ◦C and
480 ◦C, respectively [41]. In this sense, it can be concluded that the present suberin is
mainly composed ofω-hydroxy acids.

Lignin degraded in a broad step between 140 ◦C and 600 ◦C with a mass remaining
of 59.4% at 600 ◦C. At lower temperatures, lignin decomposes due to the cleavage of
alkyl-aryl ether linkages, while at higher temperatures the cleavage of aromatic rings
and C–C bonds is the cause of thermal degradation [7,41]. A small weight loss below
100 ◦C, due to free or bonded water, was also observed for lignin. By comparing lignin
with desuberized cork (lignin and polysaccharides), it can be seen that lignin appears to be
more thermally stable than polysaccharides at temperatures lower that 400 ◦C. Particularly,
from the dTG desuberized and lignin curves, it is possible to observe that the mass loss rate
of lignin was lower than that of desuberized sample. In addition, that Tpeak of the major
step decomposition, between 140 ◦C and 600 ◦C, was 75 ◦C higher in the case of lignin.
This fact confirms that polysaccharides are the main responsible component for the first
temperature peak in the thermal degradation of cork due to its lowest thermal stability
among the other main components, and the same results were also observed for the cork
components’ contributions to the thermal behavior of cork in oxidative atmosphere [7].

3.4. Micro-Scale Combustion Calorimeter (MCC)

In order to assess the flammability properties of cork and its components, a micro-
scale combustion calorimeter (MCC) was used. In general, the fire behavior of materials is
characterized by the amount of released heat when the material is exposed to a fire. MCC
allows to obtain the HRR of materials using a low amount of the sample [64]. As it was
described in Section 2, the MCC analysis consists of first heating the sample under pyrolysis
conditions in a nitrogen atmosphere; then the degradation gases are purged by an inert gas
to the combustor, a chamber at 900 ◦C with a mixture of nitrogen (80%) and oxygen (20%),
where these products are oxidized. The most representative flammability parameters,
pHRR (peak heat release rate), TpHRR (temperature to pHRR) and THR (total heat released)
are summarized in Table 3. TpHRR represents the maximal heat flow temperature, and THR
is obtained by integration of MCC curves.

Table 3. Main results obtained from micro-scale combustion calorimetry.

Samples pHRR (W/g) THR (kJ/g) Temperature to
pHRR (◦C)

Cork
230 ± 12

31.5 ± 0.3
330 ± 1

70 ± 5 475 ± 1

Extractive-free cork
225 ± 12

27.7 ± 0.9
330 ± 2

70 ± 5 455 ± 1

Desuberized cork
90 ± 2

24.1 ± 0.4
225 ± 1

105 ± 8 365 ± 1
80 ± 4 580 ± 0

Suberin
135 ± 17

27.2 ± 0.5
325 ± 1

175 ± 11 390 ± 1
80 ± 2 480 ± 0

Lignin 110 ± 12
26.8 ± 0.5

290 ± 1
95 ± 12 490 ± 1

DCM extractive 365 ± 4 36.6 ± 0.7 410 ± 2

Ethanol extractive 220 ± 10 30.1 ± 0.9 385 ± 0

Water extractive 35 ± 0 4.1 ± 0.1 310 ± 2
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Figure 10 presents the heat release rate curves of cork powder and extractive-free
cork. The cork started to degrade around 200 ◦C, and the heat release rate continued to
increase by increasing the temperature due to the release of combustible gases during
decomposition until it reached a maximum of 230 W/g at 330 ◦C.
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The removal of extractives from the cork shifted the starting temperature of degrada-
tion from 220 ◦C to 250 ◦C with a 12% lower THR, confirming that the extractives act as
catalysts by reducing the decomposition temperature of cork and promoting the thermal
decomposition of other components; a similar trend was also observed in TGA.

Heat release rate curves for cork extractives are presented in Figure 11. The highest
value of pHRR, 365 W/g at 410 ◦C, was registered for dichloromethane extractive. This
non-polar extractive started to decompose at 190 ◦C in one step with almost no residue
remaining, showing its high flammability. Ethanol extractive started at 180 ◦C with a
pHRR of 220 W/g at 385 ◦C, and then water extractive at about 200 ◦C with a pHRR of
35 W/g at 310 ◦C, which reached its pHRR at a lower temperature; however, its pHRR
and THR were much lower compared to DCM and ethanol extractives. DCM extractives
showed the highest TpHRR, and together with ethanol extractive, they can be considered
the main combustible parts of extractives with the highest pHRR and THR, which can
be due to the presence of highly combustible compounds such as waxes, fatty acids and
triterpene [53,65].

In Figure 12, experimental and calculated HRR curves of cork are compared. The calcula-
tion was obtained from the HRR contribution of the extractive-free cork and individual extrac-
tives, calculated cork = (86% × extractive-free cork + 7% × DCM extractives + 3% × ethanol
extractives + 4% × water extractives).
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The calculated curve exhibited higher onset decomposition than that obtained in
the experimental curve of cork. This observation confirms the catalytic effect hypothe-
sis of extractives, as it was also discussed previously in TGA analysis. Moreover, the
second pHRR of cork powder compared to the calculated HRR vs. temperature curve
of cork occurred at a higher temperature with a lowest HRR. This fact indicates that, as
well as extractives catalyze the beginning of cork thermal decomposition, they also pro-
mote the formation of a more thermal-stable carbonaceous residue at higher temperatures
(above 350 ◦C).

The comparative HRR curves of cork, desuberized cork, suberin and lignin are shown
in Figure 13.
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Following the same trend as it was observed in TGA, desuberized cork (or suberin free
cork) decomposes at lower temperatures (150 ◦C) than cork (200 ◦C). The peaks observed
between 200 ◦C and 320 ◦C of 90 W/g and 55 W/g, respectively, could be due to the release
of polysaccharides of small-chain length [66]. The broad decomposition between 350 ◦C and
450 ◦C with a pHRR of 105 W/g could be attributed to the release of combustible volatile
products from lignin [67]. The pHRR of 80 W/g at 580 ◦C is a result of the volatiles’ released
combustion when the charred layer formed during lignin pyrolysis was broken [68].

Lignin degraded in two broad steps with a lower TpHRR (290 ◦C) compared to suberin
and cork. By comparing lignin with desuberized cork (lignin and polysaccharides), it can
be seen that lignin appears to be more stable than polysaccharides at lower temperatures
as it started to decompose at 230 ◦C, about 50 ◦C higher than desuberized cork. As it
was described by other authors [67,69], the cleavage of the main chain of lignin involves
the scission of several oxygen functional groups from its structure with different thermal
stabilities. Therefore, a pHRR of 110 W/g at 290 ◦C that it is followed by a broad area of
70 W/g of HRR until approximately 425 ◦C can be observed, when probably the char was
broken and some flammable gases were released, giving rise to a higher release of heat of
95 W/g at 490 ◦C.

The MCC curve of suberin shows three steps. The TpHRR of the first peak is at 325 ◦C.
This higher decomposition temperature in comparison with the other constituents of cork
is in good agreement with the heat resistant characteristic reported in the literature [70].
The peaks at 390 ◦C and 480 ◦C with 175 W/g and 80 W/g of HRR are probably due to the
decomposition of the different hydroxy and diacid chains of suberin [7].

4. Conclusions

Chemical composition, thermal stability and fire behavior of cork and its main com-
ponents were investigated in this work. The ATR-FTIR spectra of cork and the individual
components showed that suberin was successfully extracted from cork powder; however,
the presence of a small fraction of lignin and polysaccharides, in the spectrum of suberin,
was detected. Thermal behavior of cork and extractive-free cork, in TGA analysis, revealed
that polar and non-polar extractives had a catalytic effect on the thermal degradation of
cork powder. It was also observed that by removing suberin from cork, the temperature
of maximum mass loss rate shifted to lower temperatures, implying suberin plays an
important role in enhancing the thermal stability of cork. Furthermore, MCC analysis was
conducted to study the flammability of cork and its components. The removal of extractives
from cork shifted the onset temperature of degradation from 220 ◦C to 250 ◦C and the
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temperature of the second pHRR from 475 ◦C to 450 ◦C, confirming that extractives act
as catalysts at the beginning and end of cork combustion. Among extractives, non-polar
extractives are the most combustible ones with the highest pHRR of 365 W/g. It was also
concluded that, although suberin is the most heat-resistant component by delaying the
thermal decomposition, it exhibits a high flammability as the temperature increases by
releasing flammable gases during the combustion without any significant charring effect.
It was also noted that the lignocellulosic part of cork starts to degrade by the formation
of a char barrier leading to the HRR reduction during the combustion; nevertheless, by
increasing the temperature, the char layer was no longer effective and could not protect the
underlying material. Further studies of cork powder or its main components as synergistic
additives in flame retardant systems can be promising.
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