
Received 6 March 2023, accepted 14 April 2023, date of publication 24 April 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3269902

Optimizing Iterative Data-Flow Scientific
Applications Using Directed
Cyclic Graphs
DAVID ÁLVAREZ AND VICENÇ BELTRAN
Barcelona Supercomputing Center, 08034 Barcelona, Spain

Corresponding author: David Álvarez (david.alvarez@bsc.es)

This work was supported in part by the European Union’s Horizon 2020/EuroHPC Research and Innovation Programme (DEEP-SEA)
under Grant 955606; in part by the Spanish State Research Agency—Ministry of Science and Innovation, Generalitat de Catalunya, under
Project PCI2021121958 and Project 2021-SGR-01007; in part by the Spanish Ministry of Science and Technology under Contract
PID2019-107255GB; and in part by Severo Ochoa under Grant CEX2021-001148-S/MCIN/AEI/10.13039/501100011033.

ABSTRACT Data-flow programmingmodels have become a popular choice for writing parallel applications
as an alternative to traditional work-sharing parallelism. They are better suited to write applications with
irregular parallelism that can present load imbalance. However, these programming models suffer from
overheads related to task creation, scheduling and dependency management, limiting performance and
scalability when tasks become too small. At the same time, many HPC applications implement iterative
methods or multi-step simulations that create the same directed acyclic graphs of tasks on each iteration.
By giving application programmers a way to express that a specific loop is creating the same task pattern on
each iteration, we can create a single task directed acyclic graph (DAG) once and transform it into a cyclic
graph. This cyclic graph is then reused for successive iterations, minimizing task creation and dependency
management overhead. This paper presents the taskiter, a new construct we propose for the OmpSs-2 and
OpenMP programming models, allowing the use of directed cyclic task graphs (DCTG) to minimize runtime
overheads. Moreover, we present a simple immediate successor locality-aware heuristic that minimizes task
scheduling overhead by bypassing the runtime task scheduler. We evaluate the implementation of the taskiter
and the immediate successor heuristic in 8 iterative benchmarks. Using small task granularities, we obtain a
geometric mean speedup of 2.56x over the reference OmpSs-2 implementation, and a 3.77x and 5.2x speedup
over the LLVM and GCC OpenMP runtimes, respectively.

INDEX TERMS Taskiter, data-flow programming, ompss-2, openmp, iterative applications.

I. INTRODUCTION
Task-based programming models, pioneered by Cilk [1],
have become popular for writing parallel applications since
they are better suited than work-sharing models (such as
OpenMP’s parallel for) to uncover parallelism from dynamic
and irregular applications. Generally, these models allow pro-
grammers to express parallelism in a tree-like manner, recur-
sively creating tasks. Under this nested-parallel structure, the
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cost of spawning each task is small, and scheduling can be
done optimally through work-stealing.

However, not all parallel applications can be easily writ-
ten in a tree-like or recursive structure. To give program-
mers greater flexibility when writing parallel programs,
data-flow programming models appeared as a subset of task-
based programming. In data-flow programming, parallelism
is expressed as a directed acyclic graph (DAG) of tasks,
where edges represent dependence relations needed to pre-
serve sequential consistency. Some examples of these pro-
gramming models include OpenMP Tasks [2], OmpSs-2 [3],
PaRSEC [4], StarPU [5], Xkaapi [6] and TBB Graphs [7].
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Amongst data-flow programming models, some rely on
users building the task DAG manually through a special
syntax, and then scheduling these DAGs. This paradigm often
comes at the cost of having to substantially alter a program to
adapt it to the data-flow model.

Other data-flow programming models such as OpenMP
and OmpSs-2 tasking rely instead on implicit DAG creation.
In this paradigm, users annotate their source code with tasks,
and specify their data dependencies. Then, a runtime will
build the DAG online, defining dependency relations based
on the specified data dependencies. This model provides
more productivity than manually defining the task DAG.
Furthermore, the runtime can use the provided data depen-
dencies to infer data-locality information, which can then be
leveraged during scheduling.

However, the cost of the extra productivity of implicit data-
flow programming models is a larger tasking overhead. Cre-
ating tasks becomesmore complex as data dependenciesmust
be registered and tracked.Moreover, data-flow programs usu-
ally have a single thread creating tasks, which can become a
bottleneck. Finally, scheduling becomes more challenging as
well: as data-flow programming does not necessarily exhibit
a recursive task creation pattern, and dependencies can have
one-to-many relations, work-stealing scheduling algorithms
can suffer from high contention.

In this scenario, data-flow programs must regulate the size
of the created tasks to minimize the relative impact of tasking
overheads. This forces data-flow programmers to strike a
balance in task granularity. We define task granularity as the
duration of each task in an application [8].

The effects of task granularity on performance have been
widely described in literature [9], [10], [11], [12]. Adverse
effects are found both when task granularities are too small
and when they are too coarse. When the granularity is too
small, task creation, scheduling and dependencymanagement
become a bottleneck, and tasks cannot be created fast enough
to feed all cores. This situation produces two adverse effects
that hinder performance: First, some cores remain idle, as not
enough work is being created. Second, as the number of tasks
ready to execute is very low, there is little chance of applying
locality-aware scheduling policies. However, when tasks are
too coarse, there may not be enough tasks to feed all cores, the
program can suffer from load imbalance, and locality-aware
scheduling policies may lose effectiveness as task working
sets grow and stop fitting in cache.

Thus, we want to create tasks in a balanced region, where
granularity is not too fine nor too coarse. This is normally
achieved through granularity tuning, but there are relevant
situations where tuning is impossible. For example, when the
problem size is too small or when scaling out an application.
In these cases, it is critical that the runtime efficiently sup-
ports small task granularities.

To overcome this issue, data-flow programming mod-
els have been optimized over time to minimize these task
management overheads [13], [14], [15]. Task creation is

generally optimized using scalable memory allocators
[16], [17]. Task scheduling is optimized with scalable
scheduling techniques, such as work-stealing variants [18]
or delegation-based schedulers [13]. Finally, task depen-
dency management requires fine-grained locking or wait-
free implementations to achieve good performance. However,
these optimizationsmay not be enough to achieve competitive
performance when very fine-grained tasks are needed.

At the same time, many HPC applications present an iter-
ative pattern, creating the same tasks with the same depen-
dencies for each iteration. This results in identical tasks
and dependency graphs concatenated one after the other.
For example, this happens in iterative methods and solvers,
machine learning training phases and multi-step simulations.
As such, iterative programs can spend a significant amount
of time creating, scheduling and managing tasks and depen-
dencies that are the same for each iteration.

This paper presents and implements two techniques that
drastically reduce the main sources of runtime overhead in
iterative data-flow applications.

First, we propose a new taskiter construct for the OmpSs-
2 [3] and OpenMP [2] programming models. The taskiter
construct annotates loops where each iteration generates the
same directed acyclic graph (DAG) of tasks and dependen-
cies. The runtime system then leverages this information to
construct a directed cyclic task graph (DCTG) based on the
DAG of the first iteration. Dependencies between different
iterations are considered and linked in this new directed
cyclic graph. In the DCTG, task descriptors and dependency
structures are reused for each iteration, drastically reducing
task creation and dependency management overheads for any
iterations after the first one. The taskiter construct does not
create any implicit barriers between iterations or after the con-
struct, allowing it to be transparently mixed with successor or
predecessor tasks or taskiter constructs.
Secondly, we present a new immediate successor schedul-

ing technique that preserves data locality while drastically
reducing scheduling overheads by bypassing the scheduler.
Unlike the taskiter, this technique is not restricted to iterative
applications.

We note that both proposals can be implemented in other
data-flow programming models [4], [5], [6], [19], since
the ideas are generally applicable. However, we focus on
OpenMP and OmpSs-2 in order to provide a working imple-
mentation that can be compared to the current state-of-the-art.

Finally, we will show in the evaluation how both contri-
butions present a particular synergy that results in significant
performance improvements for small granularities.

Specifically, our contributions are as follows:
1) We propose the taskiter construct for OmpSs-2 and

OpenMP to reduce runtime overheads in iterative data-
flow applications.

2) We present the immediate successor scheduling tech-
nique designed to forego most of the scheduling over-
head and maximize data locality.
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3) We implement both the taskiter construct and the
scheduling policy on the state-of-the-art Nanos6
OmpSs-2 implementation, which is competitive with
mainstream OpenMP implementations [13].

4) We evaluate the taskiter construct on 8 iterative bench-
marks and find an average speedup of 3x with a geo-
metric mean of 2.56x for small task granularities.

The rest of this document is structured as follows:
Section II reviews the current state of the art, Section III
introduces the taskiter construct and Section IV introduces
the immediate successor technique. Then, we evaluate our
contributions in Section V, and present the conclusions
in Section VI.

II. RELATED WORK
The effects of task granularity on application performance
have been thoroughly studied in literature [9], [10], [11], [12].
Moreover, several proposals to reduce task management and
scheduling overhead have been proposed.

A. TASK MANAGEMENT OVERHEAD
Tasking overhead can be tackled through granularity tuning,
runtime optimizations and model-oriented solutions.

Automatic granularity tuning has been actively researched
for task-based programming models. Multiversioning [20]
can generate compiler transformations with different task
granularities and choose the most appropriate at runtime.
Another work explored using cut-off mechanisms [12], where
the runtime decides the optimal cut-off point based on a user-
provided cost function. Finally, in [21] authors propose an
automatic oracle-guided granularity control mechanism for
Cilk in which users may elide providing cost functions in
some cases.

Some works have focused on optimizations that can be
applied to task-based runtimes to reduce synchronization
overheads and scale better [13], [15]. Both granularity tuning
and runtime optimizations are complementary approaches,
which can be combined with model-oriented solutions such
as the taskiter.

Other approaches have focused on reducing task overheads
by decreasing the total number of tasks that have to be
created. Worksharing tasks [22] and Chapel’s coforall
construct [23] can parallelize all iterations from a loop
using a single task, reducing their overhead. Similarly,
Index Launches [24] can automatically compact several task
launches in a loop without need for explicit annotation. Poly-
tasks [25] also merge several similar tasks when they are
created at the same time, provided tasks are managed through
queues. These approaches reduce the total number of tasks
created by an application. In contrast, the proposed taskiter
focuses on task reuse, and both approaches can be freely
combined, as they are complementary.

In [14], the authors propose the dep_pattern clause
to cache data dependency patterns reducing dependency
management overhead. Our proposal goes further, not only
caching dependency structures but preventing task creation

altogether. Moreover, the dep_pattern clause must be
placed on a parent task, which in OpenMP would prevent
placing dependencies between iterations to overlap their
execution.

Another approach is task DAG caching, provided by the
CUDA Graph API [26], which allows GPU programmers to
record a graph of kernel invocations and memory copy oper-
ations and re-invoke them, removing a significant amount of
overhead. The graph API was also motivated by applications
with an iterative structure, like machine learning training.
However, CUDAGraphs require a barrier between iterations,
which prevents the overlap of kernels frommultiple iterations
and limits the applicability of policies like the immediate
successor. Similarly, OpenCL’s Command-buffer [27] allows
programmers to record a DAG of OpenCL commands and
then submit it multiple times in iterative applications. TBB
Graphs [28] also allow task graphs that contain cycles, but the
programmer must explicitly instantiate all nodes and edges of
a task graph manually.

A task DAG caching proposal for OpenMP is the
taskgraph clause for the target and task con-
structs [29]. Similar to CUDA Graphs, authors present a way
to record and re-play task DAGs for OpenMP tasks. How-
ever, the approach requires task DAGs to be defined inside
their own dependency domain with an implicit barrier at the
end. This barrier limits the applicability of policies like the
immediate successor. Moreover, dependencies between tasks
inside the construct and tasks outside it or in other replays
are not allowed, breaking the data-flow execution model. The
taskgraphmodel is a caching strategy and not a task DAG
transformation like the one proposed in this paper.

These task caching proposals can potentially improve the
performance of iterative applications. However, as we will
show in the experimental evaluation, the taskiter construct
outperforms task caching approaches.

B. SCHEDULING
Manyworks have tackled overhead reduction in task schedul-
ing. Scalable schedulers have been traditionally implemented
through work-stealing [18], in which each creator thread has
a local task queue and can steal from other creators if they
run out of work, distributing the scheduling load. Delegation-
based techniques [13] are also a suitable implementation,
especially on data-flow models where there is often a single
creator thread, and thus work-stealing does not offer signifi-
cant benefits.

Moreover, there have been proposals for locality-aware
scheduling, mainly focused on preventing remote accesses
on NUMA systems. For example in [30] authors develop
a mechanism to accept data distribution hints on malloc
calls and then leverage data dependency information to
determine the best NUMA nodes to schedule a task. These
approaches usually improve data locality at the cost of adding
some overhead during task submission or scheduling. How-
ever, our focus is not on optimal locality but on improving
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locality while simultaneously eliminating most of the
scheduling overhead.

The philosophy for our scheduling work is similar to Cilk’s
work-first principle [1]: to remove scheduling overheads
from worker threads. However, the heuristic we propose in
Section IV is adapted for data-flow applications, works well
under any amount of available parallelism, and provides addi-
tional locality improvements.

III. THE TASKITER CONSTRUCT
Iterative applications often generate the same dependency
graph on each iteration. Dependencies always form a directed
acyclic graph of tasks, enforcing restrictions on execution
order to maintain serial consistency. Additionally, some task
instances from an iteration i will depend on task instances
from previous iterations, as we avoid using global barriers.
An example of this pattern is shown in the left part of Figure 1,
showing two iterations of an iterative application, whichmod-
els a Gauss-Seidel method with a 4-block matrix. Dependen-
cies between task instances of the same iteration are shown in
solid lines, and dashed lines indicate dependencies between
iterations.

The taskiter construct is designed to prevent creating and
executing the same DAG for each iteration. Instead, the pro-
grammer can express that a loop generates the same DAG N
times. The programming model runtime will instead generate
a directed cyclic task graph (DCTG), as shown in the right
part of Figure 1. To build the DCTG the runtime executes the
first iteration of the loop and generates a regular task DAG.
When the first iteration ends, the left and right sides of the
DAG are connected, as shown in Figure 1. This representation
is then used to execute the remaining N − 1 iterations, skip-
ping task creation and significantly minimizing dependency
management overheads.

Specifically, dependency management consists of two
main components. First, when tasks are created, the runtime
must track which tasks are declaring a dependency on each
memory location and then apply some logic to transform
this information into dependencies between tasks. The second
component is dependency release, which tracks the outstand-
ing dependencies for each task, and schedules them when
all predecessors have finished. While we cannot remove the
overhead of dependency release, as it has to be done for
every iteration, we can skip the first dependency management
component and calculate the dependencies only in the first
iteration.

In essence, we create the task instances and their related
data structures once and then reuse the same data structures
for all following iterations.

Moreover, the proposed DCTG representation is much
more compact in memory than creating the task instances for
every iteration. This leads to lowermemory usage, whichmay
otherwise be a problem for data-flow programming models
when the number of task instances is very large.

Thismodelmakes it possible to execute task instances from
different iterations simultaneously in a pipelining effect, as

the DCTG has no implicit barrier between iterations. This
pipelining effect is shown on Figure 2, where thanks to iter-
ation pipelining, the available parallelism is improved. Note
that many previous approaches described in Section II did not
allow pipelining.

Additionally, dependencies from task instances on the first
and last iterations can be matched to tasks outside the taskiter
construct, maintaining the data-flowmodel. Note that the task
instances of the first iteration can be executed while building
the DCTG, not introducing any performance penalty.

LISTING 1. Taskiter applied to a sample Gauss-Seidel Heat Equation
application. reps is a matrix of representatives (one per matrix block).

The syntax of the taskiter construct for OpenMP and
OmpSs-2 is defined as the following:

#pragma omp taskiter [clause [...]] new-line

loop

#pragma oss taskiter [clause [...]] new-line

loop

The loop can be any loop statement, provided it fulfills the
following conditions:

1) The dependency graph generated by the tasks inside
the construct must remain constant for each iteration.
However, nested tasks do not have this restriction.

2) The program must remain valid if the code inside the
loop body but outside any task is executed only once.
This condition can be ignored if the update clause is
specified, which we explain later on.

The first condition is what the user is actually annotating
with the taskiter construct: that the dependency graph for
the loop repeats itself and thus can be optimized to a cyclic
graph. However, this only needs to be true for first-level tasks
(created directly in the loop body), but not for tasks cre-
ated in deeper nesting levels, allowing irregularity between
iterations.

The second condition allows the implementation to execute
the loop body only once. Programs can generally be adapted
to fulfill this condition by taskifying any code inside the loop
body.

For example, we can apply the taskiter construct to an
example Gauss-Seidel solver, which iterates through all
blocks of a matrix in a wave-front pattern. This results in
the code displayed in Listing 1. This code would fulfill the
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FIGURE 1. Example iterative application, pictured on the left without using the taskiter construct, and on the right when
using the taskiter construct.

FIGURE 2. Possible execution trace of the application pictured in Figure 1, with and without inserting
barriers between iterations. Task ij refers to task i from the previous figure in iteration j .

requirements of the taskiter, and it only requires the addition
of Line 1 from the plain tasks version of this solver.

In the current implementation, users must find suitable
loops to apply the construct manually, similar to other
OmpSs-2 and OpenMP constructs. The complexity of deter-
mining suitable loops to apply the taskiter on varies depend-
ing on the specific application. Generally, tracking usages of
the induction variable in a loop is a straightforward way to
determine if the task DAG changes, and does not require a
full analysis of the target application. Moreover, this proposal
could be combined with existing static and dynamic analysis
tools [31] to facilitate the usage of the taskiter construct.

Two new clauses can be combined with the proposed
construct:

• All clauses accepted in the task construct, since the
taskiter is a task on itself.

• The unroll(n) clause performs loop unrolling, exe-
cuting the initial n iterations instead of one. This clause
can be used for loops with a regular dependency graph
each n iterations. For example, a loop that behaves dif-
ferently for even and odd iterations can be unrolled two
times to generate the cyclic dependency graph. More-
over, with the unroll clause it is possible to have inter-
iteration dependencies of distance up to n.

LISTING 2. Using dependencies between sibling tasks and tasks inside a
taskiter region.

• A taskiter with the update clause will generate a cyclic
dependency graph for its tasks only once, but the loop
body will be executed for each iteration. Each time the
loop body is executed, the parameters used to create
each task instance will be recorded, allowing tasks in the
generated DCTG to have different parameters for each
iteration.

Use of the taskloop construct inside a taskiter is
allowed, including taskloops with dependencies [32].

The taskiter construct itself can also have dependencies,
which can be used to express a dependency from the first
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and last iterations of the taskiter to its sibling tasks. This
is demonstrated in Listing 2, where using dependencies is
convenient because the task in Line 13 can be created before
the full DAG of the taskiter in Line 5 is registered.

Task reductions are also supported inside a taskiter
region. Nevertheless, OpenMP task reductions imply bar-
riers between iterations, precisely what we try to avoid.
To efficiently support reductions inside a taskiter region,
in OmpSs-2 we synchronize the combination of reductions
with dependencies instead of barriers [33].

The loop transformed by the taskiter does not need to
perform a constant number of iterations; thus, executing the
next iteration can depend on an arbitrary condition. However,
when the loop does not have a run-time constant amount
of iterations, the implementation must guarantee that the
condition is checked between iterations and the taskiter is
stopped when the condition becomes false. Otherwise, when
the number of iterations is a run-time constant, the runtime
is free to overlap execution of tasks instances from as many
different iterations as the dependencies permit.

A. IMPLEMENTATION
When anOmpSs-2 or OpenMP compiler encounters a taskiter
construct, it encapsulates one iteration of the following loop
as a task. That task is instantiated and passed to the runtime
with the number of iterations to execute and a flag indicating
it is a taskiter. This special task is queued for execution and
will execute the loop’s body once, creating any child tasks
and registering the initial DAG. However, every child task
instance will inherit an iteration counter from the taskiter to
track how many times the task instance has to be executed.

FIGURE 3. Implementation of the taskiter with top and bottom maps.
Squares represent entries in the maps, and point to the first/last task to
declare a dependency on a specific address. The snapshot of the data
structures is taken before the transformation to a cyclic graph.

When the runtime has finished executing the first body of
the loop, it will access the bottom map, which is a data struc-
ture containing the last task that has declared a dependency
on each memory location. It will match those tasks to the
top map, which contains the first task that depends on each
memory location. If locations match, there is a dependency
from one iteration to the next, and we create an edge between

the last and first tasks depending on that location. This edge
is marked as crossing the iteration boundary.

An example of the top and bottom map structures is shown
in Figure 3. The pictured dependency graph corresponds to
the attached code fragment. In this example, for memory
location A, the top map points to task instance T1, which is
the first to declare a dependency on A. Likewise, T2 is the
last task instance to declare a dependency on A. Therefore,
there is a cross-iteration dependency where T1 depends on
the previous iteration’sT2.With these data structures, finding
the cross-iteration dependencies is reduced to matching all
entries from the bottom map to the ones on the top map.

Whenever a child task finishes, it decreases its iteration
counter, and unless it reaches zero, it will try to execute
again if its dependencies are satisfied. Each task instance
has two data structures that track outstanding dependencies:
for even and odd iterations. This way, we do not have to
reinitialize the data structures after each iteration. We can
track dependencies simultaneously for the current and next
iterations without inserting implicit barriers. Moreover, this
technique allows us tomaintain the wait-freedom ofNanos6’s
dependency system.

For applications where the transformed loop does not have
a run-time constant number of iterations, a special task is
inserted in the DCTG, which we call a control task. This
control task depends on every leaf task, and every root task
has a cross-iteration dependency on the previous iteration’s
control task. Inside the body of this inserted task, we check
the loop’s condition. If the condition is false, the taskiter is
canceled and finishes.

By default, taskiters with control tasks cannot pipeline
tasks from different iterations, since the control task serializes
iteration execution. However, these control tasks are strided
when the taskiter is unrolled, providing means to overlap
execution from different iterations. For example, on a taskiter
with unroll(2), the control task executed after iteration i
does not control the execution of iteration i + 1, but instead
controls the execution of i+2. This would allow a rolling win-
dow of two iterations being pipelined, and can be increased
with larger unroll values.

IV. IMMEDIATE SUCCESSOR
Using the taskiter, we can minimize the overhead of task
creation and dependency management. However, reducing
those overheads shifts the contention to the remaining source
of overhead: task scheduling. After introducing the task-
iter in our benchmarks, we observed that the scheduler
could become the bottleneck, limiting application perfor-
mance. Specifically, the speed at which tasks are inserted
and requested from the scheduler grows significantly, and
so does contention on the locking system of the scheduler.
The reference OmpSs-2 implementation currently features a
delegation-based centralized scheduler based on [13], but the
same contention can be observed in work-stealing implemen-
tations when there are few creators.
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This section presents a scheduling policy that maximizes
data locality for data-flow applications and can be applied
without acquiring any scheduler lock. This way, we minimize
the number of times any thread has to access the scheduler,
reducing contention.

This heuristic is based on a straightforward successor
locality principle. When one task has a dependency relation
with another task, defined by the list of memory locations in
their dependency clauses, they probably share a part of their
working set. The reasoning behind this principle is straight-
forward. Data dependencies specify which memory locations
a task will access. If two tasks declare a dependency on the
same location, both tasks will contain a memory reference to
the same location, sharing a part of their working set.

Formally, we define the working set of a task ti ∈ T as
W (ti), representing the set of all memory locations that ti
accesses during its execution. Then, we can define a depen-
dency relation, on which a task t1 depends on a task t0 as
t1 ≻ t0. This denotes constraints in execution order and
means that t1 and t0 share at least one memory location on
the declared data dependencies.

Then, we propose the successor locality principle:

∀t0, t1 ∈ T , t1 ≻ t0 → W (t0) ∩W (t1) ̸= ∅

Hence, for any pair of tasks t0 and t1, if t1 depends on t0,
the intersection of their working sets is not empty.

While it is possible to create a program on which the above
statement is not valid, it matches the patterns observable on
most HPC applications written using a data-flow model.

Data locality is paramount when scheduling tasks because
it allows applications to exploit the memory hierarchy when
the working sets fit in any cache level.

We can leverage this successor locality principle to bypass
the task scheduler while simultaneously preserving data
locality. We do this through the immediate successor mecha-
nism, which works as follows:

1) Whenever a task finishes its execution, the worker
thread executing it releases its dependencies and can
mark one or more successor tasks as ready.

2) The first task with the highest priority marked as ready
is kept into a local per-worker variable, becoming the
immediate successor. The priority of a task is cal-
culated from the priority clause, which the user
specifies.

3) The remaining ready tasks (if any) are placed into the
scheduler for other workers to grab.

4) If the worker has an immediate successor task, the
scheduler is bypassed, and the task is executed next.

This mechanism is illustrated in Figure 4, where a task
DAG is introduced, followed by execution traces with and
without the immediate successor. The sample task DAG is a
subset of a matrix multiplication application.When executing
without the immediate successor, each core will execute a
ready task, free its dependencies, and then enter the scheduler
to find the next ready task in the queue. No priority is given
to newly released tasks.

FIGURE 4. Sample task DAG and execution following the immediate
successor heuristic.

In contrast, when the immediate successor is enabled, cores
will execute the newly ready tasks immediately. For example,
when Task 1 ends, Task 6 is marked as ready. As Task
6 is the only task marked as ready, it will be assigned as
the immediate successor, and executed immediately without
entering the scheduler. Moreover, in the execution shown in
Figure 4, the execution time of Task 6 will be reduced due
to the presence of part of its working set in cache. Both the
removal of scheduling overhead and the increased locality
reduce the overall execution time when using the immediate
successor mechanism.

Note that we choose the first ready task amongst the ones
with the highest priority as the immediate successor. How-
ever, choosing the first one is arbitrary, as every ready task
follows the successor locality principle.

While this policy is simple, it minimizes the number
of times the scheduler is invoked, preventing contention.
Moreover, as we show during experimentation, it achieves
significant speedups for some applications thanks to its
locality-preserving property.

There is a trade-off when applying the immediate succes-
sor mechanism. Bypassing the scheduler can be problematic
when executing applications that rely on specific scheduling
policies (for example, task priorities). We can solve this issue
by modifying step 2 of the immediate successor algorithm,
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and adding a tunable probability that ready tasks are not
marked as immediate successors, allowing threads to enter
the scheduler every once in a while.

V. EXPERIMENTAL EVALUATION
To evaluate both the taskiter and the immediate successor
(IS) policy, we implemented both features on top of the
reference implementation for OmpSs-2. Most changes were
located in the Nanos6 runtime, although we added compiler
support for the construct in clang. Our changes in the Nanos6
runtime only add a small constant overhead to dependency
management for tasks inside a taskiter, which does not depend
on the number of iterations.

The version of Nanos6 with support for the taskiter con-
struct is available at https://github.com/bsc-pm/
nodes, and complementary material such as bench-
marks and scripts are located at https://github.com/
dave96/taskiter-ieee-access-2023.

A. METHODOLOGY
We conducted the evaluation for the taskiter on a node
equipped with an AMD EPYC 7742 (Rome) processor with
64 cores clocked at 2.25 GHz and SMT disabled. The system
has 1TiB of main memory at 3200MHz. The software stack
comprised a CentOS Linux 8.1 distribution with a Linux 4.17
kernel.

Wemeasured the performance when varying task granular-
ity on a set of data-flow benchmarks. We used a combination
of smaller benchmarks and larger established HPC applica-
tions. The goal is to gather a wide variety of computational
patterns representing many scientific applications. Follow-
ing, we include a brief description of each benchmark and
explain their relevance for this experiment:

• TheMultisaxpy benchmark performs a loop of n Single
A · X + Y kernels over two arrays. Each iteration is
embarrassingly parallel, stressing mainly task creation
and scheduling. Dependent tasks share the totality of
their working set, but this working set only fits in cache
when task granularity is small. Thus, this application can
clearly show the effect of low-overhead locality-aware
scheduling policies.

• The acoustic Full-Waveform Inversion is a proxy
application for exploration geophysics. It implements
an iterative method to generate high-resolution subsoil
velocity models through collected seismic data. The
FWI is divided into a forward propagation and a back-
ward propagation phase, both acting on the modeled
three-dimensional soil. Each created task has a large
number of many-to-many dependencies, placing stress
on dependency management performance.

• The N-Body simulation performs several timesteps of
the interaction of forces in a particle system. This bench-
mark is strongly compute-bound, thus data locality is
generally not impactful. It places uniform stress on the
components of data-flow runtimes, thus providing a rea-
sonable estimate of the amount of overhead introduced.

• The Heat Gauss-Seidel equation solver that was show-
cased in Listing 1. This application is a parallel stencil
that displays a wave-front pattern. This implies that the
amount of available parallelism varies throughout its
execution. As such, this benchmark is sensitive to the
introduction of barriers between iterations, as it prevents
overlapping the execution of several iterations to hide the
parallelism variations. It is strongly memory-bound.

• TheHeat (while), is the same application with a variable
iteration count instead of a fixed number of iterations.
It checks the solution’s convergence by computing a
residual for each iteration.

• The HPCCG is a proxy application for the Conjugate
Gradients algorithm, which finds the solution to a sparse
system of partial differential equations. It uniformly
stresses the components of data-flow runtimes (like the
N-Body), is memory-bound, and has 14 different task
regions.

• The HPCG [34] (High Performance Conjugate Gra-
dients) benchmark, with a fixed iteration count, is an
industry-standard benchmark for supercomputers. It fea-
tures 41 different taskified parallel kernels, together with
some wave-front phases. It is designed to reproduce
computational and data access patterns representing a
wide scientific application set. Moreover, task granular-
ity varies during HPCG’s execution, making granularity
tuning challenging. This benchmark is sensitive to both
data locality and runtime overheads.

• The HPCG (while) variant is the HPCG benchmark
with a variable iteration count, checking for convergence
on each iteration.

We run two experiments to evaluate the proposed exten-
sions. In the first experiment, we evaluate the performance of
our taskiter and immediate successor policy using two task
granularities: one where tasks are small, simulating a strong
scaling scenario, and another where granularity is optimal.
The main goal is to find out if the proposed extensions deliver
performance improvements in two scenarios: an optimal case,
where granularity tuning has already been manually done
for each application, and a case where task granularity is
constrained by the problem size or the number of total cores,
and thus is inevitably small. We evaluate each proposal in
isolation and then combine it with the rest.

In the second experiment, we do a granularity study for
each benchmark comparing the optimized Nanos6 against
the reference implementation, other OpenMP runtimes and
work-sharing versions of the benchmarks. Both experiments
were repeated ten times. In every figure we plot average
performance and standard error lines.

Finally, after presenting the results, analyze the HPCG
benchmark using execution traces.

B. EXPERIMENT 1: EVALUATION OF
PROPOSED EXTENSIONS
In the first experiment, we measure the normalized perfor-
mance, which is the performance of a specific execution
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FIGURE 5. Performance comparison of different variants when executed with optimal and small granularities.

relative to the maximum performance of all executions. This
normalized performance is obtained based on the figure of
merit provided by each application, and absolute performance
figures for all granularities are presented later in Section V-C.
We run the experiment on two different configurations to
observe the most relevant task granularities: First, at the opti-
mal granularity, where performance is in the optimal region.
Second, when tasks are too small but still more than 50%
peak performance is achieved. This second scenario simulates
a strong scaling situation, thus evaluating the scalability of
each solution. These granularities were obtained by running
a granularity study for each benchmark and selecting: the task
sizewhich delivers themaximumperformance, and the small-
est task size that results in more than 50% of the maximum
performance. The complete granularity study is available in
Section V-C.

In this experiment, we test seven variants of the Nanos6
runtime to verify the effect of both the taskiter and the imme-
diate successor policy:

1) Tasks is the base OmpSs-2 version of the applica-
tion, using tasks with dependencies, and no immediate
successor.

2) Tasks + Immediate Successor (IS) is the same
as the Tasks version but applies the immediate
successor policy. However, this immediate successor is
only applied inside the synchronization mechanism for
the task scheduler.

3) Tasks + IS Outside Scheduler is the Tasks version
using the immediate successor policy and bypassing the
scheduler when possible.

4) Task Caching is the application adapted to simulate a
task caching approach. We implemented the seman-
tics of the taskgraph construct [29], where all data
structures are cached between iterations, but without

transformation or matching. In other words, it is a task-
iter with a barrier between iterations. of dependencies
between one iteration and the next.

5) Taskiter is the application adapted to use a taskiter to
transform the main loop into a cyclic graph.

6) Taskiter + Immediate Successor (IS) is the same as
the Taskiter version but applies the immediate suc-
cessor policy inside the scheduler’s synchronization
mechanism.

7) Taskiter + IS Outside Scheduler is the Taskiter version
using the immediate successor policy and bypassing the
scheduler when possible.

Note that we split the evaluation for the IS policy into
two parts. First, we apply the logic behind the immediate
successor policy, but every task still has to go through the
existing scheduler queues (the Immediate Successor ver-
sion). This way, we can measure when performance increases
thanks to better data locality instead of just the reduction
of scheduling overhead. In the second part, we also use the
immediate successor to bypass the scheduler altogether when
an appropriate candidate is found, reducing the contention in
the scheduler (the IS Outside Scheduler version).
Additionally, we compare every result with two different

OpenMP runtimes: the GOMP runtime provided by GCC
10.2.0 and the LLVM OpenMP Runtime on its 13.0.0-rc1
version. We chose to compare against the GCC runtime as
a reference implementation for OpenMP, and against the
LLVM runtime because it is based on the Intel OpenMP run-
time, which is known to have very competitive performance.

Figure 5a shows the performance of each evaluated ver-
sion versus the maximum figure of merit for each bench-
mark. Note that we stack the improvements of the immediate
successor policies. For instance, the solid orange color bar
refers to the Tasks version, while lighter orange bars show
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TABLE 1. Absolute performance for optimal granularities between the baseline OpenMP and OmpSs-2 versions and the application applying both the
Taskiter and the Immediate Successor.

how the Tasks version performs when combined with the two
immediate successor policies. Table 1 summarizes the abso-
lute figures of the OpenMP andOmpSs-2 baselines compared
against the best-performing version.

Generally, reducing overheads should have little effect on
optimal granularities, but any locality improvements may be
noticeable. There are several key insights we can extract from
these results. First, if we focus exclusively on the Tasks versus
the Taskiter version, we observe that performance remains
very similar. This is expected as these runs happen with opti-
mal granularities, and task creation overhead does not limit
performance. However, when we introduce the immediate
successor policy, we can achieve higher peak performance
on the HPCCG, HPCG and multisaxpy benchmarks, thanks
to increased data locality. Moreover, there is a significant dif-
ference between placing the IS policy inside and outside the
scheduler locking system. This difference is explained by the
implementation details of the IS inside the scheduler, where
immediate successors are placed in a shared array. When
a thread enters the scheduler with no assigned immediate
successor, it will try to grab a task from the global queue.
If no tasks are found, it will steal another thread’s immediate
successor, which can have detrimental effects on data locality.
When the IS is implemented outside the scheduler, successors
can not be stolen by other threads, thus preserving data local-
ity better and resulting in higher performance, even if there
was no contention in the scheduler.

For all benchmarks, the performance of the studied ver-
sions is either competitive or superior to other OpenMP
runtimes.

Figure 5b shows the same results for smaller granularities,
where we measure the scalability of each version. Again,
we normalized the performance to that of the best-performing
version. Table 2 summarizes the absolute figures of the
OpenMP and OmpSs-2 baselines compared against the best-
performing version. In this case, the Tasks version always
performs better than other OpenMP runtimes, which confirms
that our baseline is already a very scalable runtime. In turn,
the Taskiter version shows a better performance for small
granularities than Tasks, thanks to its reduced task creation
and dependency management overheads. We find that the
most scalable and best-performing version is the Taskiter +

IS Outside Scheduler.
We can also observe the synergistic effects of both con-

tributions for small granularities. For example, in the HPCG

benchmark, the IS policy produces no performance improve-
ment for the Tasks version but strongly affects the Taskiter
version’s performance. This is observed inmany benchmarks,
where the Tasks + IS Outside Scheduler has a much smaller
speedup than the Taskiter + IS Outside Scheduler version
due to the synergy between both contributions. Specifically,
when not using the taskiter, the immediate successor policy
may not be able to find a suitable successor task, since that
task may not have been created yet. However, when using
the taskiter construct, every task is already created after the
first iteration, thus providing more opportunities to apply
locality-based policies. We analyze further the HPCG’s case
in Section V-D.

The Task Caching version in optimal granularities either
works similarly to the base Tasks and Taskiter version or
causes a slowdown in cases like the Heat equation, where
adding a barrier between iterations decreases the available
parallelism due to its wave-front pattern. In small granular-
ities, the performance of task caching generally sits between
the Tasks and Taskiter versions as a middle-ground. However,
it is outperformed by the construct proposed in this paper in
all experiments.

C. EXPERIMENT 2: COMPARISON AGAINST THE BASELINE
The second experiment evaluates performance on a more
extensive range of task granularities for the Taskiter + IS Out-
side Scheduler version against both the GOMP and LLVM
runtimes and a work-sharing OpenMP version of each appli-
cation. The work-sharing versions were done using omp
for constructs on the parallelizable parts of each benchmark,
without major code changes except for the Heat application,
where the codewas adapted to iterate on thematrix’s elements
diagonally so the loop could be parallelized.

With this comparison, we want to show how the proposed
improvements affect the scalability of data-flow applications.
Moreover, we will show how the changes can make data-flow
programs compete and outperform work-sharing.

Overall, results from Figure 6 show that both the taskiter
and the immediate successor policy improve the performance
of data-flow iterative applications. Wemeasure task granular-
ity on instructions per task, as it is a metric that does not vary
between different versions and directly correlates with time.
Note that work-sharing versions have a fixed task granularity,
and hence are represented as straight lines.
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TABLE 2. Absolute performance for small granularities between the baseline OpenMP and OmpSs-2 versions and the application applying both the
Taskiter and the Immediate Successor.

FIGURE 6. Extended experimental evaluation for all granularities on the Taskiter with Immediate Successor against Task Caching, reference OpenMP
runtimes and work-sharing.

One result that stands out is Figure 6a, where there is a
very notable performance difference for specific granularities
in the Multisaxpy benchmark. In this benchmark, starting
at a granularity of 219, the task’s working set fits into its
L3 cache slice. Therefore, if another task using the same
data is immediately scheduled into the same core, all of its
working set is hot in cache, which is precisely what the

immediate successor policy does. The task creation improve-
ment provided by the taskiter also allows us to apply these
locality policies more effectively, producing a synergistic
effect. On the other hand, the LLVM and GOMP runtimes
do not have this locality policy implemented and schedule
other tasks instead, and the work-sharing version has to finish
one iteration before the next one starts. We achieve an 8.75x
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FIGURE 7. Execution traces for the first three iterations of the HPCG benchmark using 64 cores of the AMD machine. The time scale of each trace is the
same, a shorter trace implies less elapsed time.

speedup in the optimal granularity compared to the OpenMP
baseline.

In the FWI benchmark, shown in Figure 6b, we observe
that while the proposed extensions do not significantly
improve the performance for optimal granularities, there is
a significant improvement when moving onto smaller granu-
larities. LLVM OpenMP shows poor performance executing

FWI due to the asymptotical complexity of the dependency
registration algorithm, which slows down the creator thread
when using many task dependencies. Similarly, for the
N-Body benchmark in Figure 6c, the performance improve-
ments are also found in the smaller granularities, and all
data-flow implementations outperform the baseline work-
sharing version.
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Another relevant insight is the Gauss-Seidel heat equation
in Figures 6d and 6e. In the first variant, where the number of
iterations is fixed, the peak performance obtained is the same
for all runtimes, and the difference is seen in the smaller gran-
ularities only. However, when we check the residual at each
iteration, the performance of LLVM and GOMP drops due
to the barriers introduced by task reductions. In OmpSs-2,
reductions do not imply barriers, and the implementation
of the taskiter allows overlapping the execution of tasks
belonging to different iterations, maintaining the available
parallelism. This is also why the taskiter is the only version
able to outperform work-sharing parallelism in Figure 6e.
The HPCCG proxy application, shown in Figure 6f, shows

a similar profile as the Full-Waveform Inversion, as all vari-
ants have the same peak performance for optimal granu-
larities, but the proposed extensions allow to maintain that
performance when using smaller tasks.

Finally, for the HPCG benchmark, shown in Figures 6g
and 6h, only the OmpSs-2 versions are able to match the per-
formance of the work-sharing implementations. Moreover,
the Taskiter + IS Outside Scheduler is able to outperform all
other versions, including a higher peak performance for opti-
mal granularities. OpenMP tasks deliver lower performance
than OmpSs-2 in this benchmark due to the barriers that must
be introduced when using OpenMP task reductions.

D. HPCG EXECUTION TRACES
So far, we have seen the performance improvements that both
the taskiter and the immediate successor policy can deliver.
However, we can also leverage the instrumentation included
in Nanos6 to obtain execution traces and study exactly how
our contributions affect each application. We chose to study
the HPCG benchmark, which is affected by both contribu-
tions and showcases its synergistic effects. We obtained exe-
cution traces of the application for the granularity highlighted
in Figure 6g, and we show these traces in Figure 7.
In all the traces, each row represents one of the 64 cores of

the machine. The x-axis represents time, and each color is a
different task type, which we use to identify different phases
of the application. The code color for task types is shown
in the legend above the traces. Traces should be interpreted
in the following manner: in each row, corresponding to a
different core, a pixel is colored with the task type the core
is executing at each point in time. The time scale of each
trace is the same, but only three iterations are shown. For each
trace, we provide a not to scale zoomed section of a small
subset of the execution. We also show with arrows the section
corresponding to task creation.

The first trace displayed in Figure 7a shows the baseline
tasks version of the HPCG benchmark. Colors denote tasks
from different application phases, revealing an iterative pat-
tern. Arrows below the trace highlight the task creator core.
This thread executes the main task, which creates all other
tasks to be executed by the rest of the cores.

When we introduce the immediate successor policy,
as seen in Figure 7b, task creation remains the same, but task

scheduling changes. In contrast to the well-defined phases on
the previous trace, tasks are instead executed in a different
order in some instances (see the zoomed-in section). This
happens because each orange task depends on a yellow task,
and the immediate successor policy decides to schedule one
after the other. Note that sections that display this pattern
are shorter than in the previous trace because better data
locality causes tasks to execute faster, as part of the working
set is hot in the cache. Moreover, as shown in the zoomed-
in section, this produces an unexpected side effect. As tasks
execute faster, the task creator cannot keep up and fails to
create tasks fast enough to feed all the cores, producing a
starvation scenario.

The taskiter solves this starvation problem in Figure 7c.
In this case, the task creation is done only during the first
iteration, and then a DCTG is constructed, and there is no
need to create tasks again. The first iteration is as slow as
the other cases, but the following iterations are much shorter
because task creation does not limit performance. Moreover,
as all tasks are created, we can apply the immediate successor
policy more effectively, maximizing locality and exploiting
the memory hierarchy better.

VI. CONCLUSION
In this work, we have presented a new directive for OmpSs-2
and OpenMP, the taskiter. We have shown how it fits nat-
urally into iterative HPC applications and delivers signifi-
cant performance gains thanks to reducing task creation and
dependency management overheads. We also have combined
the taskiter with a scalable and straightforward immediate
successor heuristic that preserves data locality while reducing
scheduling overheads. Moreover, combining both proposals
results in a strong synergistic effect, as having faster task cre-
ation provides more chances to apply the proposed heuristic.

Our evaluation shows that applying both techniques to
data-flow iterative applications delivers significant scalability
improvements and speedups, achieving an average speedup
of 3x (2.56x geomean) for small granularities compared to
the Nanos6 reference implementation and a 4.62x and 7.02x
speedup (3.78x and 5.2x geomean) over the LLVM and GCC
OpenMP runtimes, respectively.Moreover, the resulting data-
flow applications using the right granularity can competewith
or outperform work-sharing on all benchmarks.

The applicability of the proposed approaches is limited
to data-flow programming models. Additionally, the taskiter
is limited to iterative applications with regular or periodic
dependency patterns.

In future work, we plan to extend the taskiter construct to
support device tasks in heterogeneous applications to expand
its applicability further.
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