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Abstract
In this paper, we combine two main topics in mechanics and optimal control theory:
contact Hamiltonian systems and Pontryagin maximum principle. As an important
result, among others, we develop a contact Pontryaginmaximumprinciple that permits
to deal with optimal control problems with dissipation. We also consider the Herglotz
optimal control problem, which is simultaneously a generalization of the Herglotz
variational principle and an optimal control problem. An application to the study of a
thermodynamic system is provided.
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1 Introduction

This paper tries to combine two important topics in mechanics and control theory:
Hamiltonian contact systems and Pontryagin maximum principle in optimal control.

On the one hand, Hamiltonian contact systems are getting a great popularity in
recent times because they allow to describe dissipation dynamics, and several other
types of physical systems in thermodynamics, quantum mechanics, circuit theory,
control theory, etc. (see for instance Bravetti 2019; Goto 2016; Kholodenko 2013;
Ramirez et al. 2017; de León and Sardón 2017; Gaset et al. 2020b; Simoes et al. 2020;
Sussmann 1999). Recently, a generalization of contact geometry has been developed to
describe field theories with dissipation (Gaset et al. 2020a, c). In fact, the Hamiltonian
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formulation in the scenario of contact structures exhibits very different characteristics
to its counterpart in symplectic manifolds. Indeed, these differences are based on the
fact that in the contact case they are Jacobi structures, more general than those of
Poisson related to the symplectic ones. In variational terms, one can show that contact
Hamiltonian equations can be derived from the so-called Herglotz principle, which
includes as a particular case the classical Hamilton principle.

On the other hand, the Pontryagin maximum principle (PMP), see Pontryagin et al.
(1962), Barbero-Liñan andMuñoz-Lecanda (2009) and references therein, is the most
useful instrument for finding solutions to an optimal control problem. In fact, the
PMP is the paradigm in the theory of optimal control, and since its formulation has
never ceased research on its incredible properties, from very different points of view,
although we will focus here on its more geometric aspects. An immediate issue arising
from possible applications is that of studying problems of optimal control from the
point of viewofHamiltonian contact systems, and therefore of systemswith dissipative
properties among many others. And, then, it seems very natural to ask whether a
Pontryagin maximum principle could be developed to deal with a contact control
problem. To our knowledge the relationship between contact Hamiltonian systems and
the Pontryagin maximum principle was first noticed in Ohsawa (2015) and developed
in Jóźwikowski and Respondek (2016).

Trying to look to both topics with a common viewpoint, we consider weather the
solution curves to the Pontryagin maximum principle admit a formulation in terms
of Hamiltonian contact systems in an adequate manifold. Conversely, we examine if
the Herglotz variational problems can be understood as a particular class of optimal
control problems.

With all this in mind, the paper is structured as follows. Sections 2 and 3 are
dedicated to review the elements of Hamiltonian contact systems and Pontryagin
maximum principle, both necessary to understand the object of the manuscript.

So, Sect. 2 is devoted just to recall the main notions and results about contact
Hamiltonian systems, including the so-called Herglotz principle, a natural extension
of the well-known Hamilton principle. As we said above, this section will facilitate a
better understanding of the rest of the paper.

Section 3 is dedicated for the Pontryagin maximum principle in several formula-
tions. We introduce the classical optimal control problem, the associated extended
system, the classical Pontryagin maximum principle and its transformation into the
symplectic and presymplectic formulations. This last one is used in several sections
of the article.

In Sect. 4wediscuss an interesting particular case ofHamiltonian dynamics; indeed,
given a vector field X on a manifold M , one can define the complete lift of X to the
cotangent bundle T ∗M which is just the Hamiltonian vector field corresponding to the
Hamiltonian function determined byX: just its evaluation on the points of the cotangent
bundle. Hence the dynamics of a general vector field is described as the corresponding
to a Hamiltonian vector field in a symplectic manifold. But this dynamics on T ∗M is
richer than one could expect. In fact, if the manifold M decomposes as M = R× Mo,
and the vector field has a particular symmetry property, one has a very natural setting to
identify two different geometric behaviours according to the value of themomentun po
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corresponding to the global coordinate xo. Indeed, one is a (pre) symplectic geometry,
when po = 0, and the second one, a contact geometry, when po =/ 0.

Sections 5, 6 and 7 are the bulk of the paper. Section 5 is in a broader sense
a direct application of Sect. 3. We consider an optimal control system given by
(M,U , X , I , xa, xb) where M = R × Mo, that is, we study the so-called extended
system associated to an optimal control problem defined by a vector field depending
on controls, X(x, u), and a cost function F . Applying Theorem 5 in Sect. 3, we know
that this problem is equivalent to solving the dynamics of the presymplectic system
(T ∗M ×U , ω, H), where X = F ∂

∂xo
+ Xi ∂

∂xi
, H = Fpo + Xi pi is the linear Hamil-

tonian given by X , and ω is the presymplectic form obtained by lifting the canonical
symplectic form, ωM ∈ �2(T ∗M), to T ∗M × U . Here, U represents obviously the
space of controls. The corresponding presymplectic algorithm provides the solutions,
and we can distinguish two cases: the regular one, when the controls can be obtained
as functions of the rest of variables, or the singular one, that produces higher order
conditions. Again, the evolution of the momentum po is constant, and this permits, as
above, to discuss the cases where po = 0 or po �= 0. With this in mind, we are able to
state the Contact Pontryagin maximum principle (Theorem4).

Section 6 is just devoted to interpret the Herglotz principle as an Optimal Control
Problem, and derive the Herglotz equations of motion using the corresponding Pon-
tryagin principle. In Sect. 7 we state the Herglotz Optimal Control Problem and find
the solution equations. In this situation, the extremal condition, given as an integral of
the cost function in the classical optimal control problems, is changed into an extremal
condition on the solutions of a differential equation on a new variable to bemaximized.
This problem is a generalization of the classical optimal control systems in the sense
that we obtain the classical equations if the cost function and the extremal condition
is like in the classical situation. Finally, in Sect. 8 we apply the above results to an
example coming from Thermodynamics.

Being aware that in practical applications of optimal control it is necessary to use
more general classes of functions andmappings, as it is usual in this kind of theoretical
approaches, all the manifolds and mappings are considered as of C∞-class. The usual
Einstein convention for summation indices will be understood unless indicated. As
general references for notations and basic results on geometry, mechanics and control
we use (Abraham and Marsden 1978; Bullo and Lewis 2005; Bloch 2015).

2 Precontact Hamiltonian Systems

In this section we review the necessary theory of contact manifolds, contact and
precontact dynamical systems, in both Hamiltonian and Lagrangian formulations,
and Herglotz variational principle and its generalized Euler–Lagrange equations. See
Arnold (1978), Bravetti (2017), Bravetti et al. (2017), de León and Lainz-Valcázar
(2019), Gaset et al. (2020a), Geiges (2008), Guenther et al. (1996), Lainz-Valcázar
and de León (2019) and Liu et al. (2018) for details.
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2.1 Contact Manifolds and Hamiltonian Systems

A contact manifold (M, η) is a (2n+1)-dimensionalmanifold equippedwith a contact
form η, that is a 1-form satisfying η ∧ (dη)n �= 0. Then, there exist a unique vector
field R, called the Reeb vector field, such that

iR dη = 0 , iR η = 1. (1)

Given (M, η), there is a Darboux theorem for contact manifolds: around each point
in M one can find local Darboux coordinates (qi , pi , z) such that

η = dz − pi dq
i , R = ∂

∂z
. (2)

As an example, and a natural model, we have the extended cotangent bundle T ∗Q×
R of an n-dimensional manifold Q, which carries a natural contact form

ηQ = dz − θQ, (3)

where θQ is the pullback of theLiouville 1-formof T ∗Q, θQ = pidqi , being (qi , pi , z)
the natural bundle coordinates of T ∗Q × R.

If (M, η) is a contact manifold, the map:

�̄ : T M → T ∗M,

v �→ ιvdη + η(v)η.

is a vector bundle isomorphism over M .
Given a Hamiltonian function H : M → R, we can define a dynamical system. The

triple (M, η, H) is called a contact Hamiltonian system. The associated Hamiltonian
vector field XH is the solution to the following equation

�̄(XH ) = dH − (R(H) + H) η. (4)

In Darboux coordinates, XH has the local expression

XH = ∂H

∂ pi

∂

∂qi
−

(
∂H

∂qi
+ pi

∂H

∂z

)
∂

∂ pi
+

(
pi

∂H

∂ pi
− H

)
∂

∂z
. (5)

Therefore, an integral curve (qi (t), pi (t), z(t)) of XH satisfies the differential equa-
tions

dqi

dt
= ∂H

∂ pi
,

dpi
dt

= −∂H

∂qi
− pi

∂H

∂z
,
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dz

dt
= pi

∂H

∂ pi
− H .

2.2 Precontact Manifolds and Hamiltonian Systems

Let η be a 1-form on an m-dimensional manifold M . We define the characteristic
distribution of η as

C = ker η ∩ ker dη ⊆ T M, (7)

which we suppose to be regular, that is, of constant rank. We say that η is a 1-form of
class c if the rank of the distribution C is m − c. There exist some characterizations of
this notion for a 1-form given in the following (Godbillon 1969).

Proposition 1 Let η be a one-form on an m-dimensional manifold M. Then, the fol-
lowing statements are equivalent:

1. The form η is of class 2r + 1.
2. At every point of M,

η ∧ (dη)r =/ 0, η ∧ (dη)r+1 = 0. (8)

3. Around any point of M, there exist localDarboux coordinates x1, . . . xr , y1, . . . yr ,
z, u1, . . . us, where 2r + s + 1 = m, such that

η = dz −
r∑

i=1

yidx
i . (9)

In these Darboux coordinates, the characteristic distribution of η is given by

C =
〈{

∂

∂ua

}
a=1,...,s

〉
. (10)

A pair (M, η) of a manifold M equipped with a form η as above will be called
a precontact manifold (see Godbillon 1969). The form η will be called a precontact
form.

Remark 1 The distribution C is involutive and it gives rise to a foliation of M . If the
quotient π : M → M/C has a manifold structure, then there is a unique 1-form η̃ such
that π∗η̃ = η. From a direct computation, η̃ is a contact form on M/C. This justifies
the name of precontact form.

Given (M, η), the following map

� : T M → T ∗M
v �→ ιvdη + η(v)η,

(11)
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is a morphism of vector bundles over M and its kernel is C.
A Reeb vector field for (M, η) is a vector field R on M such that

ιRdη = 0, η(R) = 1, (12)

or, equivalently �(R) = η.
We note that there exist Reeb vector fields in every precontact manifold. Indeed we

can define local vector fieldsR = ∂
∂z in Darboux coordinates and can extend it using

partitions of unity. However, unlike on contact manifolds, they are not unique. In fact,
given a Reeb vector field R and any section C of C, we have that R′ = R + C is
another Reeb vector field.

2.2.1 Precontact Hamiltonian Systems and the Constraint Algorithm

A precontact Hamiltonian system is a precontact manifold (M, η) with a smooth
function H : M → R called the Hamiltonian. We denote it by (M, η, H).

For a precontact Hamiltonian system (M, η, H), given a submanifold M ′ ⊂ M ,
a Hamiltonian vector field along M ′ is a vector field X ∈ X(M), such that X |M ′ ∈
X(M ′) and solution to the equation

�(X) = dH − (H + R(H))η, (13)

at the points of M ′, and being R any Reeb vector field. It can be seen that, if this
equation holds for one Reeb vector field, it will hold for all of them.

Notice that, since � is not an isomorphism, then (13) might not have solutions at
everypoint of themanifoldM . Furthermore, solutions, if they exists, are not necessarily
unique. Indeed, adding a section C of C to a solution X gives rise to a new solution
X ′ = X + C . In order to obtain the maximal submanifold along which Hamiltonian
vector fields are defined, we can develop a constraint algorithm. To do so, let γH =
dH − (H +R(H))η ∈ �1(M) and define inductively M0 = M , and for any positive
integer i ,

Mi = {p ∈ Mi | (γH )p ∈ �(TpMi−1)}, (14)

where we assume that all Mi are manifolds.
The algorithm will eventually stop, that is, we will find a positive integer i such

that Mi = Mi−1. We call this submanifold the final constraint submanifold M f . If
M f has positive dimension, there will exist Hamiltonian vector fields along M f . The
pair (M f , X) will be called a Hamiltonian vector field solution to the Hamiltonian
precontact system (M, η, H).

A useful characterization of such pairs is given by the following

Proposition 2 X is a Hamiltonian vector field along M ′ for (M, η, H) if and only if,
at the points of M ′,

η(X) = −H , (15a)
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LX η = gη, (15b)

where g : M ′ → R. Moreover, if this holds, then g = −R(H) for any Reeb vector
field R.

Proof Let X be a Hamiltonian vector field along M ′. By the definition of �, equation
(13), at the points of M ′, becomes

ιXdη + η(X)η = dH − (H + R(H))η, (16)

and, by contraction with R, we obtain

η(X) = −H . (17)

Combining (16) and (17), we deduce

ιXdη + dιXη = −R(H)η, (18)

but the left-hand side of this equation equals LX η byCartan’s formula, hence X fulfills
(15) at the points of M ′.

Now assume that X satisfies (15) on the points of M ′. Once again, by contraction
of (15b) with a Reeb vector field R, we have

g = ιR LX (η) = ιR(ιXdη + d(η(X))) = −ιR(dH) = −R(H). (19)

Combining this with (15), we can easily retrieve (16). �

2.2.2 Morphisms of Precontact Hamiltonian Systems

Let (M, η, H) and (M̄, η̄, H̄) be precontactHamiltonian systems.Amap F : M → M̄
is said to be a conformal morphism of precontact systems if F∗η̄ = f η and F∗ H̄ =
f H for some non-vanishing function f : M → R. If f = 1, we say that F is a strict
morphism of precontact systems.

Theorem 1 Let F : M → M̄ be a conformal morphism of precontact systems. Assume
that X , X̄ are F-related vector fields defined along submanifolds M ′ ⊆ M and M̄ ′ =
F(M ′) ⊆ M̄, respectively. Therefore, if X̄ is a Hamiltonian vector field along M̄ ′,
then X is also a Hamiltonian vector field along M ′.

Proof Since X̄ is a Hamiltonian vector field, its satisfies (15) along M̄ ′

η̄(X̄) = −H̄ , (20a)

LX̄ η̄ = ḡη̄. (20b)

Pulling back by F , we obtain

f η(X) = − f H , (21a)
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LX ( f η) = (ḡ ◦ F) f η. (21b)

From this expression, we obtain

η(X) = −H , (22a)

LX (η) = gη, (22b)

where g = ḡ ◦ F − (LX f )/ f . Hence X is a Hamiltonian vector field. �
Observe that if F is a diffeomorphism, then we have a bijective correspondence

between pairs of Hamiltonian vector fields along submanifolds.

2.3 The Lagrangian Formalism

Unlike T ∗Q × R, the manifold T Q × R does not have a canonical contact structure.
However, given a Lagrangian function L : T Q × R → R one can construct the
1-form

ηL = dz − θL, (23)

where θL is the associated Lagrangian 1-form, which in bundle coordinates (qi , vi , z)
is written as

θL = ∂L

∂vi
dqi . (24)

The Lagrangian L is said to be regular if its Hessian matrix with respect to the
velocities,

(Wi j ) =
(

∂2L

∂vi∂v j

)
, (25)

is regular.
One can see that ηL is contact form when L is regular. Furthermore, ηL is a pre-

contact form when (Wi j ) has constant rank (see de León and Lainz-Valcázar 2019,
Section).

The energy of the Lagrangian is EL = �(L)−L where� is the canonical Liouville
vector field on T Q, � = vi ∂

∂vi
, extended in the usual way to T Q × R with the same

local expression.
Hence, provided L is such that (Wi j ) has full (resp. constant) rank we have that

(T Q × R, ηL, EL) is a contact (resp. precontact) Hamiltonian system. Let ξL be a
Hamiltonian vector field for this contact or precontact system. From a direct compu-
tation one can see that every integral curve (qi (t), vi (t), z(t)) of ξL is a solution of
the Herglotz equations:

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= ∂L

∂vi

∂L

∂z
, (26)
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and ż(t) = L(qi (t), vi (t), z(t)). These equations are also called generalized Euler–
Lagrange equations.

Notice that, in the contact case, ξ̄L is a second order differential equation, a SODE,
meaning that its integral curves satisfy vi (t) = q̇i (t) . In the precontact case, the
situation is more subtle. If there exist solutions, which are not necessarily unique,
there is at least one which is a SODE. The details are explained in de León and
Lainz-Valcázar (2019, Section 10).

2.3.1 The Herglotz Variational Principle

The integral curves of a contact Lagrangian system can also be obtained from a varia-
tional principle. Unlike in the case of Hamilton’s principle, the action is not an integral
of the Lagrangian, but it is given by an ordinary differential equation on a new variable
z.

Given a Lagrangian function, L : T Q × R → R, for qo, q1 ∈ Q, we consider the
set �(q0, q1) of curves γ : [a, b] → R such that γ (a) = q0, γ (b) = q1; and fix
z0 ∈ R. We define the functional

Z : �(q0, q1) → C∞([a, b] → R), (27)

which assigns to each curve γ the curve Z(γ ) that solves the following ODE:

dZ(c)

dt
= L(c, ċ,Z(c)),

Z(γ )(a) = z0.
(28)

Finally, the action is given by evaluating the solution at the endpoints:

A : �(q0, q1) → R, γ �→ Z(γ )(b) (29)

Using techniques from calculus of variations (de León and Lainz-Valcázar 2019, Sec-
tion 5), one can proof the following:

Theorem 2 (Contact variational principle) Let L : T Q × R → R be a Lagrangian
function and let γ ∈ �(qo, q1). Then, (γ, γ̇ ,Z(γ )) satisfies the Herglotz’s equations
(26) if and only if γ is a critical point of A.

These Herglotz equations, called also generalized Euler–Lagrange equations, are

d

dt

(
∂L

∂vi

)
γ

− ∂L

∂qi
− ∂L

∂z

∂L

∂vi
= 0.

Observe that they are not linear on the Lagrangian.
In Sect. 6 we provide a new proof of this last statement based on the Pontryagin

maximum principle.
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3 A Quick Survey on Optimal Control and Pontryagin Maximum
Principle

Roughly speaking, for our interest the Pontryagin maximum principle, PMP, trans-
forms an optimal control problem into a presymplectic one. The method is to mimic
the lifting of a vector field, X ∈ X(M), to the cotangent bundle, T ∗M , using the
Hamiltonian function associated to the natural operation, by duality, of the vector
field X on the cotangent bundle. This is done for a control depending vector field but
in the particular case where the original manifold M is the product M = R × Mo

where Mo is a manifold.
This Section tries to introduce what is an optimal control problem and how works

the Pontryagin maximum principle in the different situations that we are interested
in. For a clearest exposition, we suppose that all the manifolds and mappings are of
C∞-class.

Since the original result and proof of Pontryagin and collaborators, Pontryagin
et al. (1962), there are numerous expositions with applications and proofs on the
Pontryagin principle; in this review we follow Barbero-Liñan and Muñoz-Lecanda
(2009) for notations and statements. There a detailed proof is given and a extensive
bibliography is included.

3.1 The Optimal Control Problem

3.1.1 Statement of the Problem

Consider the diagram:

T Mo

τo

Mo ×U

Xo

π1
Mo

with the following elements:

1. Mo is a differentiable manifold, dim Mo = mo. It is the state space for the vector
field Xo. The points inMowill be denoted by x and,when necessary, the coordinates
in M0 will be denoted by (xi ).

2. U ⊂ R
k is called the control set. Its elements are denoted by u, the controls, and

we denote by (ua) its local coordinates, that is u = (u1, . . . , uk).
3. Xo is a vector field along the projection Mo × U → Mo. Given u ∈ U we denote

by Xu
o = Xo( . , u) ∈ X(Mo). It gives the dynamics of the problem.

Suppose thatwe have given a function F : Mo×U → R, an interval I = [a, b] ⊂ R

and xa, xb ∈ Mo. With all these elements (Mo,U , Xo, F, I , xa, xb) we have the
following
Optimal control problem, OCP: Find curves γ : I → Mo ×U , γ = (γo, γU ), such
that
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(1) end points conditions: γo(a) = xa, γo(b) = xb,
(2) γ is an integral curve of Xo: γ̇o = Xo ◦ γ , and
(3) minimal condition: S[γ ] = ∫ b

a F(γ (t))d t is minimum over all curves satisfying
(1) and (2).

The function F is called the cost function of the problem.
In local coordinates, if X = Xi ∂

∂xi
, then the differential equation for the curve γ

are

ẋ i = Xi (x j , u).

The minimal condition allows to obtain the solution for the controls u = u(t). Intro-
ducing them in the differential equation and integrating them we have the curves
solution of the optimal control problem.

3.1.2 The Extended Optimal Control Problem

To solve the above problem it is necessary to incorporate into the vector field the cost
function as a direction in the tangent bundle of the state space. This is made by the
construction of the so called extended problem.

Associated with the previous elements, consider the diagram:

T M = TR × T Mo

τ

M ×U = R × Mo ×U

Xo

π1
M = R × Mo

where the points in M = R× Mo are denoted by (xo, x), and the vector field X along
the projection π1 is

X = F
∂

∂xo
+ Xo.

Remark 2 Observe that [∂/∂xo, X ] = 0, hencewe are in a situationwhere the direction
associated to xo is specifically identified. In particular this implies that the vector field
X is projectable to Mo. This situation is going to be used in other parts of this and
other sections.

From the original elements we have at the beginning, (Mo,U , Xo, F, I , xa, xb),
we now have (M,U , X , I , xa, xb) and we consider the following problem:
Extended optimal control problem, EOCP: Find curves γ̂ : I → R × Mo × U ,
γ̂ = (γ o, γo, γU ), such that

(1) end points conditions: γo(a) = xa, γo(b) = xb, γ o(a) = 0,

(2) γ̂ is an integral curve of X : ˙
(γ o, γo) = X ◦ γ̂ , and

(3) maximal condition: xo(b) is maximal over all curves satisfying (1) and (2).
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Remember that F is the cost function of the original optimal control problem.
This extended optimal control problem is equivalent to the initial optimal control

problem as defined above, that is there is a bijection between the set of solutions γ

of the first problem and the set of solution γ̂ of the second one corresponding to the
variables x1, . . . , xmo . The variable xo is not relevant to the problem, it is an additional
variable used to identify the direction with maximal increment in the tangent bundle
to M and to prove the Pontryagin maximum principle.

In the sequel we only consider this form of the optimal control problem and
we always refer to this statement as optimal control problem. We denote it by
(M,U , X , I , xa, xb).

3.2 The Pontryagin Maximum Principle

As we have said above, the solution to this problem was obtained by Pontryagin and
collaborators in 1954. For a modern proof and applications, see Barbero-Liñan and
Muñoz-Lecanda (2009) and references therein.

Given the above optimal control problem (M,U , X , I , xa, xb), for any u ∈ U , we
consider the symplectic problem given by

1. Manifold: T ∗M .
2. Symplectic form ωM , the 2-canonical form of T ∗M .
3. Hamiltonian function: Hu = X̂u = poFu + pi (Xu)i .

Where we have denoted by Xu the vector field X( . , u), and similarly with the
other elements. The Hamiltonian function is the natural one associated to the vector
field Xu on the cotangent bundle T ∗M . We call this problem (T ∗M, ωM , Hu). It is a
Hamiltonian symplectic system.

As we know, the associated Hamiltonian vector field, Xu
H, defined by i(Xu

H)ωM =
d Hu , is locally given by

Xu
H = Fu ∂

∂xo
+ (Xu)i

∂

∂xi
−

(
λo

∂Fu

∂xi
+ p j

∂(Xu) j

∂xi

)
∂

∂ pi
. (30)

This is no more than the canonical lifting of a vector field X on a manifold M to
its cotangent bundle T ∗M and denoted usually by X∗, in this particular case (Xu)∗.
We will go on these ideas on the following section with more detail and other points
of view.

With this in mind we have: see Barbero-Liñan and Muñoz-Lecanda (2009) for a
detailed proof

Theorem 3 (Pontryagin maximum principle) Given the optimal control problem
(M,U , X , I , xa, xb), let γ̂ : I → R×Mo×U be an optimal solution, γ̂ = (γM , γU ),
then there exists σ̂ : I → T ∗M × U = T ∗

R × T ∗Mo × U, σ̂ = (σT ∗M , σU ) such
that

(1) it is a solution to the Hamiltonian problem (T ∗M×U , ω, Hu), that is, an integral
curve of Xu

H, for some fixed u ∈ U,
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(2) γ̂ = π ◦ σ̂ , where π : T ∗M × U → M × U is the natural projection, and γ̂

satisfies the end points condition; hence σU = γU ,
(3) H(σT ∗M (t), γU (t)) = supv(t)∈U H(σT ∗M (t), v(t)) for every t ∈ I .

This Theorem gives a necessary condition the solutions must fulfill. The way it is
applied is as follows: condition (3) allows to obtain the solution for u(t) and with this
solution we can integrate the Hamiltonian vector field Xu

H, obtaining the curves σ̂ (t)
and hence γ̂ (t) and the initially desired solution γo(t).

The differential equations defining the integral curves of Xu
H are the following:

ẋo = ∂Hu

∂ po
= F, ṗo = ∂Hu

∂xo
= 0, (⇒ po = ct)

ẋ i = ∂Hu

∂ pi
= Xi , ṗi = −∂Hu

∂xi
= −po

∂F

∂xi
− p j

∂X j

∂xi

(31)

As we are assuming that all the elements of the problem are of C∞-class, and we
suppose furthermore that U ⊂ R

k is an open set, then condition (3) in the Theorem
can be changed to

(3′) ∂H
∂u |σ̂ (t) = 0 for every u ∈ U .

Hence in order to obtain the solution γU , if possible, we have this last expression as
other equations to add to (31). If (u1, . . . , uk) is a basis forRk , we have the equations

∂H

∂u1
= 0, . . . ,

∂H

∂uk
= 0 (32)

together with Eq. (31) to solve the optimal control problem.
In the sequel we will assume that U is an open subset of Rk .
Then instead of Theorem 3, we have the following

Theorem 4 (Weak Pontryaginmaximumprinciple)Given the optimal control problem
(M,U , X , I , xa, xb), with U ⊂ R

k an open set, let γ̂ : I → R × Mo × U be a
solution, γ̂ = (γM , γU ), then there exists σ̂ : I → T ∗M ×U = T ∗

R × T ∗Mo ×U,
σ̂ = (σT ∗M , σU ) such that

(1) it is a solution to the Hamiltonian problem (T ∗M × U , ω, Hu), that is, it is an
integral curve of Xu

H, for any fixed u ∈ U,
(2) γ̂ = π ◦ σ̂ , where π : T ∗M × U → M × U is the natural projection, and γ̂

satisfies the end points condition; hence σU = γU ,
(3) minimality conditions: ∂H

∂u |σ̂ (t) = 0 for every u ∈ U and for every t ∈ I .

3.3 The Presymplectic Approach to PMP

Now we try to give another approach to the Pontryagin maximum principle more
adequate for our problems. It is stated as a presymplectic problem and goes as follows.

Consider the problem given by (M,U , X , I , xa, xb) and the solution by means of
the symplectic system (T ∗M, ωM , Hu) with Eqs. (31) and (32). Take the projection

π1 : T ∗M ×U → T ∗M
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and the 2-formω = π∗
1 ωM ∈ �2(T ∗M×U ). It is a presymplectic form and its kernel

is given by

ker ω =
{

∂

∂u1
, . . . ,

∂

∂uk

}
.

We can consider the presymplectic system (T ∗M × U , ω, H) whose dynamical
equation is given by

i(XH) ω = d H .

Being a presymplectic system, the compatibility equations are given by i(Z)d H =
0 for every Z ∈ ker ω, that is Eq. (32).

Changing Theorem 4 to this new situation we have

Theorem 5 (Presymplectic Pontryaginmaximum principle)Given the optimal control
problem (M,U , X , I , xa, xb), with U ⊂ R

k an open set, let γ̂ : I → M × U =
R × Mo × U be a solution, γ̂ = (γM , γU ), then there exists σ̂ : I → T ∗M × U =
T ∗

R × T ∗Mo ×U, σ̂ = (σT ∗M , σU ) such that

(1) it is a solution to the Hamiltonian presymplectic problem (T ∗M ×U , ω, H), that
is it is an integral curve of XH, solution to the equation i(XH) ω = d H,

(2) γ̂ = π ◦ σ̂ , where π : T ∗M × U → M × U is the natural projection, and γ̂

satisfies the end points condition; hence σU = γU ,
(3) minimality, compatibility, conditions: ∂H

∂u |σ̂ (t) = 0 for every u ∈ U and for every
t ∈ I .

A solution to the equation i(XH) ω = d H is given by:

XH = F
∂

∂xo
+ Xi ∂

∂xi
−

(
λo

∂F

∂xi
+ p j

∂X j

∂xi

)
∂

∂ pi
. (33)

Observe that this solution exists all over the manifold T ∗M × U and that po is
constant for every curve solution to the problem.

Suppose that the compatibility equations allow us to determine the controls
u1, . . . , uk , that is we can obtain ua = ψ(xo, xi , po, pi ), then we say that the optimal
control problem is regular, otherwise it is called singular. In the singular case, it is
necessary to apply an algorithm of constraints, that is to go to higher order conditions,
to obtain the controls perhaps on a submanifold of T ∗M ×U . See Barbero-Liñan and
Muñoz-Lecanda (2009, 2012) for details on these ideas and Gotay and Nester (1979)
for the used algorithm.

Note that the weak and the presymplectic approaches to the maximum principle
are equivalent since the local equations are the same.

Remark 3 Along this appendix and for simplicity in the exposition,we have considered
that the set of controlsU is an open set in anEuclidean space, hencewehave the product
M ×U . We can change this situation by a non-trivial bundle C → M , instead of the
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natural projection M × U → M , considering the controls as the elements of the
fibres. The local equations are the same that we have obtained in the trivial case for
the controls.

4 Dynamics of Vector Fields as Contact Dynamics

It is well known that the integral curves of a vector field in a manifold M can be
obtained as projection of integral curves of a Hamiltonian vector field in the cotangent
bundle. We can extend this dynamics to the contact associated manifold T M × R, as
in Eq. (3), what gives the additional equation ż = 0, that is in a trivial way. We want
to obtain a non-trivial extension.

In this section we study how to obtain these integral curves as solutions of a contact
dynamical system in an adequate contact manifold, at least in the case that the original
vector field has some symmetry properties. Here we recover a similar situation we had
in the Pontryagin maximum principle in its symplectic approach. See Sect. 3.

4.1 The General Case

Let M be a manifold and X ∈ X(M) a vector field. Let X̂ : T ∗M → R the natural
function defined by X̂(α) = α(X) = <α, X>. In a canonical coordinate system
(xi , pi ) in T ∗M , we have that X̂(x, p) = pi Xi .

As it is well known, if ωM = −d θM is the symplectic canonical 2-form in T ∗M ,
we can consider the Hamiltonian symplectic system (T ∗M, ωM , X̂). Then the Hamil-
tonian vector field YX̂ ∈ X(T ∗M), defined by i(YX̂ )ωM = d X̂ , has local expression

X = Xi ∂

∂xi
, ⇒ YX̂ = Xi ∂

∂xi
− p j

∂X j

∂xi
∂

∂ pi

if (xi ) and (xi , pi ) are coordinates ofM and T ∗M respectively.By this local expression
we have that YX̂ = X∗, where X∗ is the so-called canonical lifting of X ∈ X(M) to
T ∗M . The integral curves of YX̂ projected to M are the integral curves of X as we can
see by direct observation of the above local expression. With this method, we have
transformed any vector field in a Hamiltonian one but doubling the dimension. For
details about these constructions we refer to de León and Rodrigues (1989), Yano and
Ishihara (1973).

Observe that the Hamiltonian X̂ depends linearly on the momenta.

4.2 The CaseM = R×Mo

In this Sectionwe analyze the specific casewhere in themanifoldM there is a particular
“direction”, that isM = R×M0. This situation allows us to split up the integral curves
of a vector field, with a symmetry property, into two different classes: one following
a symplectic geometry and the other class under a contact geometry. This study is
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connected with the ideas developed in Ohsawa (2015) where the contact structure is
associated to the projective manifold associated to T ∗M .

4.2.1 The Symplectic Case

Suppose now that we have one direction specially identified in the tangent bundle to
themanifold, that isM = R×Mo.When necessary we denote by (xo, xi ) a coordinate
system in M and (xo, xi , po, pi ) its natural extension to T ∗M .

Let X ∈ X(M) and suppose that

[
∂

∂xo
, X

]
= 0.

In coordinates this means that, if X = Xo ∂
∂xo + Xi ∂

∂xi
, then the coordinates Xo and

Xi of the vector field X do not depend on xo. In particular this implies that X is
projectable to Mo.

Remark 4 What is the meaning of this situation? Suppose we have two vector fields
Xo, X ∈ X(M) with [Xo, X ] = 0. Then around any regular point of Xo we can
choose a local coordinate system (U , xo, xi ), with i = 1, . . . , n, if dim M = 1 + n,
and U ⊂ M an open set, with Xo|U = ∂/∂xo. Hence we have the above situation but
locally. In this case the local decomposition {xo} × {xi } is not unique.

This is what we called above “particular symmetry property” for the vector field
X . We can observe that it is a common situation at least locally.

This is a situation we are going to tackle when trying to relate contact structures
and optimal control. The variable xo will correspond to the cost function F as we have
seen in Sect. 3 in our review of the Pontryagin maximum principle.

If we proceed in this case as above in the general situation, with i(X∗)ωM = d H ,
where the Hamiltonian function H is defined by

H = X̂ = poX
o + pi X

i

then the corresponding Hamiltonian vector, using [∂/∂xo, X ] = 0, is given by

X∗ = Xo ∂

∂xo
+ Xi ∂

∂xi
− 0

∂

∂ po
−

(
po

∂Xo

∂xi
+ p j

∂X j

∂xi

)
∂

∂ pi
.

The associated system of differential equations is:

ẋo = Xo, ṗo = 0, ẋ i = Xi , ṗi = −po
∂Xo

∂xi
− p j

∂X j

∂xi

This is the description of the Hamiltonian system (T ∗M, ωM , H) with H = X̂ .
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4.2.2 The Relation with Contact Dynamics

Observe that the vector field X∗ is tangent to the submanifold defined by po =
constant, hence we can reduce the problem to those hypersurfaces of T ∗M . We have
two different situations and, by comparison with the situation of the optimal control
and the symplectic Pontryaginmaximumprinciple,wewill callnormal and abnormal
situations.
(a) The normal situation po =/ 0

For λo ∈ R, λo =/ 0, let N ⊂ T ∗M be the submanifold defined by po = λo and let
j : N ↪→ T ∗M be the natural inclusion. Obviously the dimension of N is odd, hence
it cannot be a symplectic manifold. We denote by (xo, xi , pi ) the coordinates induced
in N by the coordinates we have in T ∗M .

Consider now the canonical 1-form θM ∈ �1(T ∗M) and let η = − j∗θM , then we
have the following result

Lemma 1 (N , η) is a contact manifold. The Reeb vector field is R = − 1
λo

∂
∂xo .

The proof is direct using its local expression, η = −λod xo − pid xi . The minus
sign comes from a convention in the definition of the symplectic form in T ∗M and
the 1-form and 2-form in a contact manifold.

Let HN = j∗H be the restriction of H to N . We have that , locally, HN =
λoXo + pi Xi and we have a Hamiltonian contact system given by (N , η, HN ). Let
XN ∈ X(N ) be the corresponding contact Hamiltonian vector field, that is:

i(XN )η = −HN , i(XN )d η = d HN − (L(R)HN )η

whose local expression is

XN = Xo ∂

∂xo
+ Xi ∂

∂xi
−

(
λo

∂Xo

∂xi
+ p j

∂X j

∂xi

)
∂

∂ pi
, (34)

with the usual notation confusing the functions on T ∗M and their restrictions to N .
With this in mind, we have that:

Theorem 6 The vector field X∗ ∈ X(T ∗M) is tangent to N and, on the points of N , it
is equal to XN .

Hence the normal integral curves to the vector field X∗ are solutions of a Hamil-
tonian contact dynamics on a corresponding contact manifold. The contact system is
(N , η, HN ).
Comment: A little calculus

Here we give the corresponding calculus to obtain the expression in (34).
We have that HN = λoXo + pi Xi and η = −λod xo − pid xi . Denoting XN by

XN = ao
∂

∂xo
+ ai

∂

∂xi
+ bi

∂

∂ pi
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the first contact dynamical equation is:

i(XN )η = −HN ⇒ −λoao − ai pi = −λoX
o − pi X

i

and the second one

i(XN )d η = d HN − (L(R)HN )η ⇒
−bid x

i + aid pi = λo
∂Xo

∂xi
d xi + Xid pi + p j

∂X j

∂xi
d xi .

Hence

ai = Xi , bi = −λo
∂Xo

∂xi
− p j

∂X j

∂xi
, ao = Xo

as we wanted.
(b) The abnormal situation po = 0

This case corresponds to λo = 0 and the submanifold No ⊂ T ∗M defined by
po = 0. Let jo : No ↪→ T ∗M be the natural inclusion and ηo = j∗o θM .

Observe that ηo = −pid xi is not a contact form. In fact, as mo = dim Mo, we
have that ηo ∧ (d ηo)

mo−1 =/ 0, but ηo ∧ (d ηo)
mo = 0.

We can consider the 2-form ωo = d ηo, the Hamiltonian Ho = j∗o H and the
presymplectic manifold (No, ωo, Ho). Observe that ker ωo = { ∂

∂xo }. The Hamiltonian
presymplectic equation

i(Xo)ωo = d Ho

gives the solution

Xo = Xi ∂

∂xi
− p j

∂X j

∂xi
∂

∂ pi
+ A

∂

∂xo
,

where A is arbitrary and corresponds to ker ωo. In fact we have that ẋo = A.
It does not exist any constraint because the vector field Xo is defined on the whole

manifold No. This is because the only constraint is given by LT Ho = 0 with T ∈
ker ωo and this is fulfilled globally on No.
Comment: Observe that T ∗M = ⋃

λ∈R Nλ , hence with this decomposition we obtain
all the solutions of the initial Hamiltonian problem on T ∗M given by the Hamiltonian
H .

5 The Contact Dynamics Approach to PontryaginMaximum Principle

Following the ideas of the previous sections, we study a contact approach to the
Pontryagin maximum principle, in particular to the so-called normal solutions to the
optimal control problem. In particularwewill obtain the normal solutions of an optimal
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control problem as projection of the integral curves of a Hamiltonian contact system
in adequate manifolds. The abnormal solution can be obtained with another different
approach given at the end of this section.

5.1 Statement of the Problem

Let (M,U , X , I , xa, xb) be an optimal control problem. We know by Theorem 5 that
to solve this problem we need to study the associated Hamiltonian presymplectic
system (T ∗M × U , ω, H), that is to obtain an integral curve of the vector field XH
solution to the equation i(XH) ω = d H , where

ω = π∗
1ωo = dxo ∧ dpo + dxi ∧ dpi , H = X̂ = poF + pi X

i

and π1 : T ∗M ×U → T ∗M . Recall that ker ω = {∂/∂ua}.
The solution to the equation i(XH) ω = d H is given by:

XH = F
∂

∂xo
+ Xi ∂

∂xi
−

(
λo

∂F

∂xi
+ p j

∂X j

∂xi

)
∂

∂ pi
+ Aa ∂

∂ua
. (35)

Observe that this solution exists all over the manifold T ∗M × U and that po is
constant for every curve solution to the problem. The last term corresponds to the
elements of ker ω.

The minimality, compatibility, conditions are ∂H
∂ua = 0 for every a, are used to

determine the controls.
As we said in Sect. 3, if the compatibility equations allows us to determine the

controls u1, . . . , uk , that is we can obtain ua = ψ(xo, xi , po, pi ), then we say that
the optimal control problem is regular, otherwise it is called singular. In the singular
case, it is necessary to apply an algorithm of constraints, that is to go to higher order
conditions, to obtain the controls perhaps on a submanifold of T ∗M × U . Suppose
that we are in the regular situation, hence we have determined the controls by the
compatibility conditions.

With the regularity assumption as the controls ua has been determined, we have that
XH is projected to themanifold T ∗M andhas components only in (xo, xi , po, pi ).Then
we have:

XH = F
∂

∂xo
+ Xi ∂

∂xi
−

(
λo

∂F

∂xi
+ p j

∂X j

∂xi

)
∂

∂ pi
(36)

because we are in the symplectic case.
We know that, for all the solutions of the associated presymplectic formulation, we

have that the moment po(t) is a constant. Following the previous section, we will try
to classify the solutions according to the real value of po. Hence we define and study

(a) Normal solutions: those with po = λo =/ 0.
(b) Abnormal solutions: those with po = λo = 0.
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5.2 Normal Solutions: po = �o =/ 0

Let N ⊂ T ∗M be the submanifold defined by po = λo and j : N ↪→ T ∗M be
the natural inclusion. We denote by (xo, xi , pi ) the coordinates induced in N by the
coordinates we have in T ∗M .

Consider now the canonical 1-form θM ∈ �1(T ∗M) and let η = −( j)∗θM , then
we have that

Lemma 2 (N , η) is a contact manifold. The Reeb vector field is R = − 1
λo

∂
∂xo .

Let HN = ( j)∗H the restriction of H to N , then HN = λo(X)o + pi (X)i and
we have a Hamiltonian contact system given by (N , η, HN ). Let XN ∈ X(N ) be the
corresponding contact Hamiltonian vector field, that is the solution to the equations

i(XN )η = −HN , i(XN )d η = d Hn − (L(R)HN )η

whose local expression is

XN = Xo ∂

∂xo
+ Xi ∂

∂xi
−

(
λo

∂Xo

∂xi
+ p j

∂X j

∂xi

)
∂

∂ pi
. (37)

With the usual notation denoting by the same names the functions on T ∗M and their
restrictions to N .

With this in mind and following Sect. 4.2.1, we have that:

Proposition 3 The vector field XH ∈ X(T ∗M) is tangent to N and, on the points of
N , it is equal to XN .

Hence, for every u ∈ U , all the normal solutions to the optimal control problem
are solutions to a contact Hamiltonian problem.

5.3 Abnormal Solutions: po = �o = 0

Let No ⊂ T ∗M the submanifold defined by po = 0. Let jo : No ↪→ T ∗M be the
natural inclusion and ηo = j∗o θM .

As above, ηo = −pid xi is not a contact form and we have that ηo ∧ (d ηo)
mo = 0.

We can consider the 2-form ωo = d ηo, the Hamiltonian Ho = j∗o H and the
presymplectic manifold (No, ωo, Ho). Observe that ker ωo = { ∂

∂xo }. The Hamiltonian
presymplectic equation

i(Xo)ωo = d Ho

gives the solution

Xo = Xi ∂

∂xi
− p j

∂X j

∂xi
∂

∂ pi
+ Aa ∂

∂ua
,
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where Aa are arbitrary and correspond to ker ωo.
And it does not exist any constraint because the vector field Xo is defined on the

whole manifold No.
Note: We can also solve the precontact problem given by (Nu

o , ηuo , H
u
o ).

Comment: Observe that T ∗M = ⋃
λ∈R Nλ , hence with this decomposition we obtain

all the solutions of the Hamiltonian problem on T ∗M given by the Hamiltonian H .
Some of them, the normal solutions, as contact problems, and the abnormal solutions
as symplectic ones.

With all this in mind, we have proved the following

Theorem 7 (Contact Pontryagin maximum principle) Consider the optimal control
problem (M,U , X , I , xa, xb), with U ⊂ R

k an open set. Let σ̂ : I → T ∗M × U =
T ∗

R × T ∗Mo × U, σ̂ = (σT ∗M , σU ), be a solution of the presymplectic Pontryagin
maximum principle for such problem and suppose we are in the regular case, that is
the minimality conditions (∂H/∂u) = 0, for every u ∈ U and for every t ∈ I allows
to determine the controls. Then

(a) if σ̂ is a normal solution with po = λo =/ 0, then s it is an integral curve of
the contact Hamiltonian system (N , η, HN ), as described above, with HN =
λoF + pi Xi .

(b) if σ̂ is an abnormal solution, then it is an integral curve of the presymplectic
Hamiltonian system (No, ωo, Ho), as described above, with Ho = pi Xi .

For the normal solutions, they satisfy the differential equations:

ẋo = ∂H

∂ po
= F, ṗo = ∂H

∂xo
= 0, (⇒ po = ct)

ẋ i = ∂H

∂ pi
= Xi , ṗi = −∂H

∂xi
= −po

∂F

∂xi
− p j

∂X j

∂xi

∂H

∂u1
= 0, . . . ,

∂H

∂uk
= 0

where H = λoF + pi Xi with λo =/ 0.
For the abnormal solutions, the corresponding differential equations are

ẋ i = ∂H

∂ pi
= Xi , ṗi = −∂H

∂xi
= −p j

∂X j

∂xi

∂H

∂u1
= 0, . . . ,

∂H

∂uk
= 0

where H = pi Xi .
Comment: We note that in Ohsawa (2015), an approach to Pontryagin maximum
principle is given in terms of contact systems. Indeed, the author works in the projec-
tivization of the cotangent bundle, PT ∗(M0 × R). In that approach, the normal and
abnormal solutions are unified, and the abnormal ones correspond to the hyperplane
at infinity. However this manifold is not a contact manifold in the sense we are using,
so we are forced to remove the hyperplane at infinity and obtain T ∗M0 × R.
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This can be seen as a different formulation of Theorem 7 in our paper, where
we treat separately both kind of solutions, which correspond to different geometries
(contact and presymplectic). In addition, in that reference the author does not study
the relationship between the Herglotz variational principle and optimal control, which
is the focus of our paper.

6 Herglotz Variational Problem as an Optimal Control Problem

In Sect. 2.3.1 we have studied the Herglotz variational principle; there we obtained
the contact equations for a Hamiltonian contact system as solution of a variational
problem but with a generalization of the Hamilton variational principle. This more
general principle was stated and solved in 1930 by Gustav Herglotz, see Herglotz
(1930) and Guenther et al. (1996). The idea was to change the integral statement
on the curves solution to the problem by a differential equation defined precisely by
the Lagrangian function. Interest in this approach has been increasing since the last
referred publication and its relationwith contact dynamics and dissipation systems, see
for example Georgieva and Guenther (2002) and Bravetti et al. (2017) and references
therein. In this section we approach Herglotz principle as an optimal control problem
and find the corresponding differential equations, the generalized Euler–Lagrange
equations, with a new proof through the Pontryagin maximum principle.

6.1 Statement of the Problem

We begin recalling the statement of the Herglotz variational problem as we did in
Sect. 2.3.1.

Let Q be a smooth manifold and F : T Q×R → R a smooth function and consider
the following problem:
Herglotz variational problem: Find curves � = (γ, ζ ) : I = [a, b] → Q ×R, such
that

(1) end points conditions: γ (a) = qa, γ (b) = qb, ζ(a) = 0,
(2) � is an integral curve of ż = F(q, v, z): ζ̇ = F(γ (t), γ̇ (t), ζ(t)), for every t ∈ I ,

and
(3) extreme condition: ζ(b) is maximum over all curves satisfying (1) and (2).

Observe thatwe have considered the differential equation ż = F(q, v, z) depending
on the curves γ . In the case that the function F does not depend on the variable z, that
is F : T Q → R, then the differential equations is ż = F(γ, γ̇ ), hence by integration,
the problem is the classical variational one defined by: find the curves γ (t)minimizing

S[γ ] =
∫ b

a
F(γ (t), γ̇ (t) d t

with initial conditions γ (a) = qa, γ (b) = qb.
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As we know, Herglotz obtained that the curves γ solution to this problem satisfy
the so-called generalized Euler–Lagrange equations

d

dt

(
∂F

∂vi

)
γ

− ∂F

∂qi
− ∂F

∂z

∂F

∂vi
= 0.

In this section we will obtain these differential equations as an application of the
Pontryagin maximum principle to a suitable optimal control problem associated to the
Herglotz variational problem.

To do so, we begin by giving a geometric statement of the Herglotz problem. Given
the function F : T Q × R :→ R, consider the right up triangle of the following
diagram

TR

τo

T Q × R

τQ×IR

π2

Z

R

I
�

�̂

Q × R

where Z ∈ X(R, π2) is the vector field on R along the projection π2 defined by

Z = F
∂

∂z
.

Now taking the full diagram, we have the following problem associated with the vector
field Z
Geometric Herglotz variational problem: Find curves � : I = [a, b] → Q × R,
� = (γ, ζ ), such that

(1) end points conditions: �(a) = (qa, 0), γ (b) = qb,
(2) � is an integral curve of Z : ζ̇ = F(�̃(t)), for every t ∈ I , where �̃ = (γ ′ =

(γ, γ̇ ), ζ ), and
(3) extreme condition: ζ(b) is maximum over all curves satisfying (1) and (2).

Obviously the two above problems are equivalent. The difference is only in the lan-
guage used to state them.

6.2 Optimal Control Approach to the Herglotz Variational Problem

Associated to the function F : T Q × R :→ R, consider the following diagram

T (Q × R)

τQ×R

T Q × R
τQ×IR

Y

Q × R
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where Y is the vector field on Q×R along the projection τQ × IR : T Q×R → Q×R

defined by Y ((q, v), z) = ((q, z), v, F), which in local coordinates Y is given by

Y = vi
∂

∂qi
+ F

∂

∂z
.

This vector field corresponds to the system of ordinary differential equations:

q̇i = vi , ż = F(qi , vi , z).

Observe that the first sumand of the vector field Y is a canonical vector field along
the projection τQ : T Q → Q, it corresponds to the identity map IT Q : T Q → T Q.
Hence the vector field Y is associated in a natural way to the function F .

These elements define a control system with vector field Y ∈ X(Q ×R, τQ × IR),
on the state space Q × R, and with the fibres of T Q as the set of controls; that is for
every state (q, z) ∈ Q × R, the controls are the elements v ∈ TqQ.

On this control system we state the following optimal control problem: Consider
the diagram

T (Q × R)

τQ×R

T Q × R
τQ×IR

Y

Q × R

I

�
�̃

�′

where, if � = (γ, ζ ), then �̃ = (γ ′, ζ ) = ((γ, γ̇ ), ζ ).
For a curve � : I → Q × R, we take its canonical lifting to the tangent bundle,

�′ : I → T (Q × R), that is: if � = (γ, ζ ) then �′ = ((γ, ζ ), (γ̇ , ζ̇ )).
We say that a curve � is an integral curve of the vector field Y if:

�′ = Y ◦ �̃, (γ̇ , ζ̇ ) = Y (γ, γ̇ , ζ ) = (vi (γ, γ̇ ), F(γ, γ̇ , ζ )) ,

which, in local coordinates, is a solution to the above system of differential equations:

q̇ i = vi , ż = F(qi , vi , z).

Hence we have the optimal control problem given by:
Optimal control problem associated to Herglotz variational problem:
Find curves � : I = [a, b] → Q × R, � = (γ, ζ ), such that

(1) end points conditions: �(a) = (qa, 0), γ (b) = qb,
(2) � is an integral curve of Y : �′(t) = Y (�̃(t)), for every t ∈ I and
(3) optimal condition: ζ(b) is maximum over all curves satisfying (1) and (2).
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Observe that the optimal condition can be stated as:

max z(b) = max
∫ b

a
ż(t)dt = max

∫ b

a
F(q(t), q̇(t), z(t))dt,

hence we have a classical optimal control theory with F as the cost function.
This optimal control problem, which can be solved using the Pontryagin maximum

principle, is equivalent to the above Herglotz variational problem: if � = (γ, ζ ) is
a solution to the above optimal control problem then γ is a solution to the Herglotz
variational problem and ζ̇ = F(γ, γ̇ , ζ ), and conversely.

We denote this problem by (M,U , X , I , xa, xb) = (Q×R, T Q,Y , I , qa, qb)with
the notation described in Sect. 3.

6.3 Application of the Presymplectic Form of the Pontryagin Maximum Principle

According to Sect. 3, first we have to extend the problem and declare the direction
where the optimization must be done using the cost function.

6.3.1 The Extended Problem

Observe that in the above optimal control problem, (Q × R, T Q,Y , I , qa, qb), the
cost function is F , that corresponds also to the state variable z, then we need to extend
the problem adding a new variable with F as derivative. Denote by qo ∈ R this new
variable. The differential equation to add to the system is q̇o = F(q, v, z). To change
to this extended problem we need to consider the diagram

T (R × Q × R)

τ

R × T Q × R
IR×τQ×IR

Ŷ

R × Q × R

,

and take the control system given by the dynamical vector field Ŷ ∈ X(R × Q ×
R, IR × τQ × IR), which in coordinates reads

Ŷ = F
∂

∂qo
+ vi

∂

∂qi
+ F

∂

∂z
,

with the manifold R× Q ×R as state space and with controls the fibres of T Q, that
is for every state (qo, q, z) ∈ R × Q × R, the controls are the elements of v ∈ TqQ.

On this system, the precise statement of the optimal control problem we have is:
Extended optimal control formulation of the Herglotz variational problem:
Find curves �̂ : I = [a, b] → R × Q × R, � = (γ o, γ, ζ ), such that

(1) end points conditions: �̂(a) = (0, qa, 0), γ (b) = qb,
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(2) �̂ is an integral curve of Ŷ : �̂′(t) = Ŷ (
˜̂
�(t)), for every t ∈ I , where ˜̂

� : I →
R × T Q × R, ˜̂

� = (γ o, (γ, γ̇ ), ζ ), and
(3) extreme condition: ζ(b) is maximum over all curves satisfying (1) and (2).

This is the optimal control problem denoted by (R × Q × R, T Q, Ŷ , I , qa, qb).

6.3.2 Solution of the Extended Problemwith the Presymplectic Form of the
Pontryagin Maximum Principle

Following Sect. 3, to solve this optimal control problem consider the projection

π̂1 : T ∗(R × Q × R) × T Q → T ∗(R × Q × R).

This lastmanifold has a canonical symplectic formωR×Q×R ∈ �2(T ∗(R×Q×R)),
ωR×Q×R = −dθR×Q×R, which in canonical coordinates, (qo, po, qi , pi , z, pz), reads

ωR×Q×R = −dθR×Q×R = −d(podq
o + pidx

i + pzdz)

= dqo ∧ dpo + dxi ∧ dpi + dz ∧ dpz .

Let ω = π̂∗
1 ωR×Q×R, then ω is a presymplectic form in T ∗(R × Q × R) × T Q, its

kernel being the vector fields tangent to T Q which are vertical vector fields, that is
tangent to the fibres of τQ : T Q → Q. Hence ker ω is locally generated by

∂

∂v1
, . . . ,

∂

∂vn
,

if dim Q = n. The local expressions of ω and ωo are the same, with the usual abuse
of notation for the local coordinates.

With the vector field Ŷ , as usually, we can built a natural Hamiltonian function
given by H : T ∗(R × Q × R) × T Q → R, locally given as

H
(
qo, po, x

i , pi , z, pz, v
i ) = poF + piv

i + pz F,

and consider the presymplectic system (T ∗(R × Q × R) × T Q, ω, H).
The corresponding Hamiltonian vector field XH, satisfying the equation iXHω =

dH , is locally given by

XH = F
∂

∂qo
+ 0

∂

∂ po
+ vi

∂

∂qi
+ F

∂

∂z
(38)

−
(
po

∂F

∂qi
+ pz

∂F

∂qi

)
∂

∂ pi
−

(
po

∂F

∂z
+ pz

∂F

∂z

)
∂

∂ pz
+ Ai ∂

∂vi
, (39)

where the last term corresponds to the kernel of ω.
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The compatibility conditions for the presymplectic system, or the Pontryagin max-
imum principle optimality conditions, are given by, see Gotay and Nester (1979) and
Muñoz-Lecanda and Román-Roy (1992),

LV H = 0

for every V ∈ ker ω, when restricted to the curves σ = (σ o, δ0, σ
i , δi , σ

z, δz, w
i ),

solution to the system of differential equations

q̇o = F, ṗo = 0 (40)

q̇i = vi , ṗi = −(po + pz)
∂F

∂qi
(41)

ż = F, ṗz = −(po + pz)
∂F

∂z
(42)

v̇i = Ai (43)

where the Ai are free. These differential equations correspond to the integral curves
of the vector field XH.

In local coordinates, the compatibility conditions are L ∂

∂vi
H = 0, for every i =

1, . . . , n. As H = (po + pz)F + pivi , we have:

L ∂

∂vi
H = (po + pz)

∂F

∂vi
+ pi = 0.

In the weak presymplectic Pontryagin maximum principle, these are the conditions
from where we can obtain the controls vi , looking for the critical points of H with
respect to the controls.

In the present situation, these functions are constraints defining a submanifold of
T ∗(R × Q × R) × T Q, and the Hamiltonian vector field solution, XH, have to be
tangent to this submanifold, hence:

LXH

(
(po + pz)

∂F

∂vi
+ pi

)
= 0,

but

LXH

(
(po + pz)

∂F

∂vi
+ pi

)

= (po + pz)

(
v j ∂2F

∂q j∂vi
+ F

∂2F

∂z∂vi
− ∂F

∂q j
− ∂F

∂z

∂F

∂vi
+ A j ∂2F

∂v j∂vi

)
,

where A j = v̇ j . Hence we have:

(po + pz)

(
v j ∂2F

∂q j∂vi
+ F

∂2F

∂z∂vi
− ∂F

∂qi
− ∂F

∂z

∂F

∂vi
+ v̇ j ∂2F

∂v j∂vi

)
= 0.
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Which on the curves solution gives

LXH

(
(po + pz)

∂F

∂vi
+ pi

)
= (po + pz)

(
d

dt

∂F

∂vi
− ∂F

∂qi
− ∂F

∂z

∂F

∂vi

)
= 0.

These differential equations are a necessary condition, for a curve σ on themanifold
T ∗(R × Q × R) × T Q, to be solution of the presymplectic system have to satisfy
when it is projected to Q × R .

But we have that

Lemma 3 On the solution curves the quantity po+ pz vanishes if and only if it vanishes
at the initial point.

Proof : We know that ṗz = −(po + pz)
∂F
∂z and ṗo = 0, hence po is a constant. Then,

the differential equation defining pz is

ṗz = −pz
∂F

∂z
− po

∂F

∂z
= −Apz − poA,

where, on the solution curves, A is a function of t . This is a linear differential equation
whose general solution is

pz(t) + p0 = (pz(0) + p0) exp

(
−

∫
∂F

∂z

)

and the proof is finished. �

6.4 The Final Results

From the above Lemma we obtain that:

Theorem 8 If σ = (σ o, δ0, σ
i , δi , σ

z, δz, w
i ) is a solution to the presymplectic system

(T ∗(R × Q × R) × T Q, ω, H), then its projection to Q × R, (σ i , σ z), satisfies the
equations

d

dt

∂F

∂vi
− ∂F

∂qi
− ∂F

∂z

∂F

∂vi
= 0

Hence if we include in the statement the original problem, we have proven the
following

Theorem 9 If σ = (σ o, δ0, σ
i , δi , σ

z, δz, w
i ), σ : I → T ∗(R × Q × R) × T Q, is a

solution to the presymplectic system (T ∗(R × Q × R) × T Q, ω, H), then

(a) its projection to R × Q × R, �̂ : I = [a, b] → R × Q × R, � = (γ o =
σ o, γ = (σ i ), ζ = δz), is a solution to the extended optimal control problem
(R × Q × R, T Q, Ŷ , I , qa, qb)
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(b) its projection to Q × R, � : I = [a, b] → Q × R, � = (γ = (σ i ), ζ = δz), is a
solution to the optimal control problem (Q × R, T Q,Y , I , qa, qb).

As we know, this optimal control problem is equivalent to the Herglotz variational
problem given by the function F : T Q × R :→ R, the interval I = [a, b] and the
initial conditions qa, qb, then we have proven the

Theorem 10 Given the manifold Q and the function F : T Q×R :→ R. If� = (γ, ζ )

is a solution to the Herglotz variational problem defined by F, then � satisfies the
differential equations

d

dt

∂F

∂vi
− ∂F

∂qi
− ∂F

∂z

∂F

∂vi
= 0,

which are known as generalized Euler–Lagrange equations for the Herglotz problem.

SeeGuenther et al. (1996), Georgieva andGuenther (2002) for comparison between
different proofs.

7 Herglotz Optimal Control Problem

In this section we give a generalization of the classical optimal control problem in the
same way that Herglotz variational problem is a generalization of Hamilton principle
in mechanics.

7.1 Statement of the Problem

As it was described in Sect. 3, a classical optimal control problem is given by the
elements (M,U , X , F, I , xa, xb). The cost function F : M × U → R is used to
express the optimization condition as an integral

S[γ (t) = (x(t), u(t))] =
∫ b

a
F(x(t), u(t))d t,

which is a functional on the curves γ : I → M×U , satisfying some initial conditions
and being integral curves of the vector field X , that is ẋ = X(x(t), u(t)).

This is “similar” to the classical variational calculus with F in the role of the
Lagrangian and the integrability condition for the curves as a constraint.

But the generalization proposed and studied by Herglotz changes the integral
functional as the element to optimize by a differential equation satisfied by a new
variable, denoted by z, differential equation just defined by the cost function F , that
is ż = F(x, u, z), instead of the above integral; see Sects. 2.3.1 or 6 for more details.

Nowwe propose a generalization of the classical optimal control problem following
the ideas of Herglotz.
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Remembering the elements giving us an optimal control problem, we have the
diagram

T M

τM

M × R ×U

X

π
M,

that is X ∈ X(M, π), X(x, z, u), and a cost function, F(x, z, u), to integrate on the
curves solution to the differential equation given by X . Instead of this cost function,
we take a function F : M × R × U → R, depending also on a new variable z, and
consider the following problem:
Herglotz optimal control problem:

Find curves γ : I = [a, b] → M × R ×U , γ = (γM , γz, γU ), such that

(1) end points conditions: γM (a) = xa, γM (b) = xb, γz(a) = 0,
(2) γM is an integral curve of X : γ̇M = X ◦ (γM , γz, γU ),
(3) γz satisfies the differential equation ż = F(x, z, u), and
(4) maximal condition: γz(b) is maximum over all curves satisfying (1), (2) and (3).

The differential equations corresponding to this problem are

ẋ i = Xi (x, z, u), ż = F(x, z, u). (44)

If the function F does not depend on z, then the maximal condition takes the form

(4′) z(b) =
∫ b

a
F(x, u)dt is maximum

which gives a classical optimal control problem. Hence we have a generalization of
the classical problem in the sense of Herglotz.

In order to solve this problem we begin by transforming it into a classical optimal
control problem.

7.2 Solution to Herglotz Optimal Control Problem

There is another way to organize all these elements, (M,U , X , F, xa, xb), in a shorter
form. Consider the following diagram

T (M × R)

τM×R

M × R ×U

Z

π
M × R

I

γ
�
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where Z = X+Y , that is Z = Xi ∂
∂xi

+F ∂
∂z , locally. And the curves are� = (γM , γz),

γ = (�, γU ) = (γM , γz, γU ).
Then we have another equivalent statement:

Herglotz optimal control problem: Find curves γ : I = [a, b] → M × R × U ,
γ = (γM , γz, γU ), � = (γm, γz) such that

(1) end points conditions: γM (a) = xa, γM (b) = xb, γz(a) = 0,
(2) �M is an integral curve of Z : �̇M = Z ◦ γ , and
(3) optimal condition: γz(b) is maximum over all curves satisfying (1), and (2).

Condition (2) is written as (γ̇,γ̇z) = Z ◦ γ , that is

ẋ i = Xi (x, z, u), ż = F(x, z, u). (45)

which are the same set of differential equations as Eq. (44). Hence both problems are
equivalent. In the sequel we refer to this second form.

Observe that with this approach, we have a classical optimal control problem and
we can find its solution following the method of Sect. 3, in particular by applying the
weak presymplectic form of the Pontryagin maximum principle, Theorem 5. In this
case, the function to optimize is one of the directions of state space which is given by
z.

We begin, as usual, by extending the vector field, hence obtaining the extended
system adding a new variable xo for the variable z to maximize. The new vector field
is

X = F
∂

∂xo
+ Xi ∂

∂xi
+ F

∂

∂z
∈ X(R × M × R).

Then the associated Hamiltonian is H(xo, po, xi , pi , z, pz, u) = poF+ pi Xi + pz F ,
defined on the manifold T ∗(R × M × R) × U . The presymplectic form is ω =
dxo ∧dpo +dxi ∧dpi +dz∧dpz , with kernel given by the tangent vector fields toU ,
and the Hamiltonian vector field XH, solution to the equation iXHω = dH , is locally
given by

XH = F
∂

∂xo
+ 0

∂

∂ po
+ Xi ∂

∂xi
+ F

∂

∂z

−
(
po

∂F

∂xi
+ p j

∂X j

∂xi
+ pz

∂F

∂xi

)
∂

∂ pi
−

(
po

∂F

∂z
+ pi

∂Xi

∂z
+ pz

∂F

∂z

)
∂

∂ pz

+Aa ∂

∂ua
,

where the last term corresponds to the kernel of ω.
Observe that this solution exists all over the manifold T ∗(R × M × R) × U and

that po is constant for every curve solution to the problem.

123



Journal of Nonlinear Science (2023) 33 :9 Page 33 of 46 9

Being a presymplectic system, the compatibility equations are given by i(Z)d H =
0 for every Z ∈ ker ω, that is equations

∂H

∂u1
= 0, . . . ,

∂H

∂uk
= 0 (46)

which, together with the equations coming from the vector field XH, give us a set
of equations to solve the optimal control problem. Recall that these compatibility
conditions are the same that the optimality ones.

As in ordinary optimal control problems, suppose that the compatibility equa-
tions allow us to determine the controls u1, . . . , uk , that is we can obtain ua =
ψa(xo, xi , po, pi ), then we say that the optimal control problem is regular, oth-
erwise it is called singular. In the singular case, it is necessary to apply an algorithm
of constraints, that is to go to higher order conditions, to obtain the controls perhaps
on a submanifold of T ∗(R × M × R) ×U .

The differential equations associated with the above vector field XH, together with
equations (46) are the solution equations to the Herglotz optimal control problem.

Remark 5 Tounderstand the significance of these equations,we can compare the above
set of equations with the corresponding ones for a classical optimal control system.
Apart from the compatibility conditions, which are the same, the vector field solution,
see Theorem 5, was given by

XN = F
∂

∂xo
+ Xi ∂

∂xi
−

(
λo

∂F

∂xi
+ p j

∂X j

∂xi

)
∂

∂ pi
. (47)

Comparing this vector field XN with the above XH, in this last we have a new vari-
able, z, hence two new terms, one for ż and the other for ṗz . Moreover, the term
corresponding to pi has changed.

But if the cost function F does not depend on z, then we have that ṗz = 0, hence
pz = constant, and both equations, the classical and the Herglotz optimal control, are
the same. In fact in this last case,we can change the differential equation ż = F(x, z, u)

and the optimality condition by the integral to be optimized

∫ b

a
F(x, u)dt

and we obtain exactly the classical problem.
Hence, as we proposed at the beginning of the section, we actually have a general-

ization of the classical optimal control problem from the point of view of the equations
solving the problem.

7.3 Contact Formulation for the Normal Solutions

We can analyze the set of normal solutions, that is po =/ 0, in the aim of Sect. 4.2.2
and obtain these solutions as integral curves of contact dynamical systems.
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To proceed suppose we are in the regular situation, that is themaximality conditions
allows us to determine the controls. To study this situation we can fix the controls,
they are determined by the last equations solution to the problem, and analyze the
other equations as solutions of a symplectic problem. Then, once fixed u = uo, our
manifold is T ∗(R×M ×R). In this manifold we can analyze the problem as a contact
dynamical system.

For a given λo ∈ R, λo =/ 0, consider the submanifold Nλo ⊂ T ∗(R × M × R),
given by po = λo and the natural injection jλo : Nλo ↪→ T ∗(R × M × R). Let
η = − j∗λoθ ∈ �1(Nλo). Then we have

Lemma 4 For every fixed u ∈ U, the manifold (Nλo , η) is a contact manifold. Its Reeb
vector field is given by

Rλo = − 1

λo

∂

∂xo

The proof is straightforward using the local expression of η

η = −λodx
o − pidx

i − pzdz.

Let HNλo
= j∗λo H and consider the Hamiltonian contact system given by

(Nλo , η, HNλo
). Let Z ∈ X(Nλo) the corresponding Hamiltonian vector field, that

is the solution to the contact equations

i(Z)η = −HNλo
, i(Z)d η = d HNλo

− (L(Rλo)HNλo
)η

whose local expression is

XH = F
∂

∂xo
+ 0

∂

∂ po
+ Xi ∂

∂xi
+ F

∂

∂z

−
(
po

∂F

∂xi
+ p j

∂X j

∂xi
+ pz

∂F

∂xi

)
∂

∂ pi
−

(
po

∂F

∂z
+ pi

∂Xi

∂z
+ pz

∂F

∂z

)
∂

∂ pz
.

With the above expressions and comments we have proven the

Theorem 11 The normal solutions to the problem 7.2 corresponding to po = λo =/ 0
are the projections toR×M×R×U of the curves solution to the contact Hamiltonian
problem given by (Nλo , η, HNλo

).

The corresponding differential equations for the curves solution to this Hamiltonian
contact problem are :

ẋo = F

ẋi = Xi

ż = F
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ṗi = −po
∂F

∂xi
− p j

∂X j

∂xi
− pz

∂F

∂xi

ṗz = −po
∂F

∂z
− pi

∂Xi

∂z
− pz

∂F

∂z

Together with the maximization condition, that is the constraints obtained from the
compatibility of the presymplectic equation

∂H

∂u1
= 0, . . . . . . ,

∂H

∂uk
= 0

7.4 Reduction of the Problem

We remark that this problem is a generalization of Herglotz variational principle. On
the previous section, we showed that the equations obtained through the Pontryagin
maximum principle could be reduced to obtain the Herglotz equation. In this section,
we show that a similar reduction can be applied in this more general case.

We see from the differential equations above that, taking the same initial condition
for both variables, we will have xo = z for the solutions of problem 7.2. Then one of
them is irrelevant to the problem,we can eliminate it. As themomentum corresponding
to xo is constant, we can eliminate the pair (xo, po). Observe that, in fact, pz is also
irrelevant to the problem. Indeed, we can reduce the dimension of the state space of the
problem; this new manifold is what we will now construct. Consider the Hamiltonian

H0 : W0 = T ∗M × R ×U → R,

(xi , pi , z, u
a) �→ pi X

i (xi , z, ua) − pr∗1F(x, z, u),
(48)

where pr1 : T ∗M × R × U → M × R × U is the natural projection. Also consider
the canonical contact form on T ∗M × R

η0 = dz − pidx
i . (49)

Theorem 12 The normal solutions to the problem 7.2 corresponding to po = λo are
the projections to R × M of the curves solution to the contact Hamiltonian problem
given by (T ∗M × R, η0, H0).

The equations of motion of the aforementioned Hamiltonian problem are

ẋ i = Xi , (50a)

ṗi = pi
∂F

∂z
− p j

∂X j

∂xi
+ ∂F

∂xi
− ∂X j

∂z
pi p j , (50b)

ż = F (50c)
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subjected to the constraints

∂H

∂ua
= ∂F

∂ua
− p j

∂X j

∂ua
= 0. (50d)

Remark 6 In the case that the problem is singular, one would work instead with the
precontact system (T ∗M ×R×U , η0, H0), applying the appropriate constraint algo-
rithm.

Proof Let γ be a solution of the Herglotz optimal control problem. By Theorem 11,
we know that there exists a solution curve σ of the corresponding contact system on
Nλ0 . In order to prove this theorem, we will project σ onto a solution of the system
(T ∗M × R, η0, H0).

First of all, notice that the solutions satisfy x0 = z, hence σ will lie on the subman-
ifold j : Ñλ0 → Nλ0 defined by x0 = z.

The dynamical vector field X of the precontact system (Nλ0 , ηλ0 , Hλ0) is tangent
to the submanifold Ñλ0 . Indeed, the restriction of X to Ñλ0 are just the equations of
motion X̃ of the induced precontact system (Ñλ0 , η̃λ0 = j∗ηλ0 , H̃λ0 = j∗Hλ0). In
coordinates

η̃λ0 = (−λ0 − pz)dz − pidx
i , (51a)

H̃λ0 = (λ0 + pz)F + pi X
i (51b)

Consider the following commutative diagram,

Ñλ0

W0 R × M × R

M × R

τ
�λ0

τ0
π1

(52)

where

�λ0

(
xi , z, pi , pz

) = (
xi ,−(λo + pz)pi , z

)
. (53)

Notice that�λ0 is a submersion and a conformal equivalence of precontact systems:

�∗
λ0

η0 = −(λo + pz)η̃λ0 , (54a)

�∗
λ0
H0 = −(λo + pz)H̃λ0 , (54b)

By Theorem 1 projections of the solution curves of the precontact system on Ñλ0 are
solution curves to the contact system on T M × R. �
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As a consequence of this theorem, we can obtain again the Herglotz equations.
Consider the Herglotz problem in Sect. 6.1 for a Lagrangian L : T Q × R → R.
Notice that this problem is a particular case of the Herglotz optimal control problem,
where

• Controls are the velocities ua = vi .
• The cost function is the Lagrangian F = L .
• The control equation is X = vi ∂

∂xi
.

The solutions to this problem are given by Theorem 12:

q̇i = vi , (55)

ṗi = pi
∂L

∂z
+ ∂L

∂qi
(56)

ż = L (57)

with the constraints

∂L

∂vi
= pi , (58)

which are precisely Herglotz equations.

8 Application: Optimal Control on Thermodynamic Systems

One possible application of this theory is the study of thermodynamic processes which
minimize or maximize some thermodynamic potential. As an example, we apply our
formalism to the control systems considered in Van der Schaft and Maschke (2017).

The relation between symplectic and contact manifolds via the symplectification
procedure has permitted to go deeper in the geometric description of thermodynamic
systems. This way has been explored in Balian and Valentin (2001) (see also Arnold
1978; Libermann and Marle 1987; Ibáñez et al. 1997).

8.1 Homogeneous Hamiltonian Systems and Contact Systems

There is a close relationship between homogeneous symplectic and contact systems,
see for example Van der Schaft and Maschke (2017) where this relation is studied.
Here we briefly recall the ideas we need to follow the example.

In the general case, if π : M → B is a vector bundle, a function F : M → R

is homogeneous if, for any ep ∈ Mp = π−1(p) with π(ep) = p ∈ B, we have
F(λep) = λF(ep). In this situation the function F can be projected to the projective
bundle P(M) over B obtained by projectivization on every fibre. We are interested in
the case that M = T ∗(Q × R) → Q × R, with natural coordinates (qi , z, Pi , Pz)

Let H be an homogeneous Hamiltonian function on T ∗(Q ×R). Locally, we have
that H(qi , z, λPi , λPz) = λH(qi , z, Pi , Pz), for all λ ∈ R. Equivalently, one can
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write

H
(
qi , z, Pi , Pz

) = −Pz h
(
qi ,−Pi/Pz, z

)
, (59)

for Pz =/ 0, where h : T ∗Q × R → R, h(qi , pi , z) = H(qi , z,−pi ,−1) is well
defined.

With the above changes, we have identified the manifold T ∗Q×R as the projective
bundle P(T ∗(Q × R)) of the cotangent bundle T ∗(Q × R) taking out the points at
infinity, that is the subset defined by {Pz = 0}.

Following Van der Schaft and Maschke (2017, Section 4.1), the map

� : T ∗(Q × R) \ {pz = 0} → T ∗Q × R

(qi , z, Pi , Pz) → (qi , Pi/Pz, z) = (qi , pi , z),
(60)

sends the Hamiltonian symplectic system (T ∗(Q×R)\{pz = 0}, ωQ×R, H) onto the
Hamiltonian contact system (T ∗Q×R, ηQ, h), where ωQ×R = dqi ∧dPi +dz∧dPz
and ηQ = dz − pidqi . Observe that the natural coordinates of T ∗Q × R, denoted by
(qi , pi , z), correspond to the homogeneous coordinates in the projective bundle.

In fact, the map � is the projectivization; i.e., the map that sends each point in the
fibers of T ∗(Q × R) to the line that passes through it and the origin.

It can be shown that � provides a bijection between conformal contactomor-
phisms and homogeneous symplectomorphisms. Moreover, � maps homogeneous
Lagrangian submanifolds L ⊆ T ∗(Q × R) onto Legendrian submanifolds L =
φ(L) ⊆ T ∗Q × R. See Van der Schaft and Maschke (2017) and Sect. 8.3 for more
details on this topics.

8.2 Control of Contact Systems

On the contact natural manifold T ∗Q×R, with coordinates (qi , pi , z), assume that we
are given a parametrized family ofHamiltonians h : T ∗Q×R×U → R,U ⊂ R

k , with
Hamiltonian contact vector fields Xhu , where hu(qi , z, pi ) = h(qi , z, pi , u). Then
we can define the control system Z(q, p, z, u) = Xhu (q, p, z), where the following
diagram is commutative:

T (T ∗Q × R)

τT∗Q×R

T ∗Q × R ×U

Z

π
T ∗Q × R

I

γ
�

123



Journal of Nonlinear Science (2023) 33 :9 Page 39 of 46 9

A curve γ : I → T ∗Q ×R×U is an integral curve of Z , that is �′ = Z ◦ γ , if in
local coordinates satisfies the differential equations

dqi

dt
= ∂hu

∂ pi
,

dpi
dt

= −∂hu
∂qi

− pi
∂hu
∂z

,

dz

dt
= pi

∂hu
∂ pi

− hu .

One can consider the Herglotz optimal control problem given by Z , as we stated in
Sect. 7.2. Then, by Theorem 12, we know that the normal solutions are the projections
of the solutions to the contact system (T ∗(T ∗Q) × R, ηT ∗Q, H), where

H = pqi
∂hu
∂ pi

− ppi
∂hu
∂qi

− pi
∂hu
∂z

− pi
∂hu
∂ pi

+ hu . (61)

8.3 Application to Thermodynamic Systems

We consider thermodynamic systems in the so-called entropy representation. Hence
the thermodynamic phase space, representing the extensive variables, is the manifold
T ∗Q × R, equipped with its canonical contact form

ηQ = dS − pidqi . (62)

The local coordinates on the configuration manifold Q × R are (qi , S), where S is
the total entropy and qi ’s denote the rest of extensive variables. Other variables, such
as the internal energy, may be chosen instead of the entropy, by means of a Legendre
transformation.

The state of a thermodynamic system always lies on the equilibrium submanifold
L ⊆ T ∗Q × R, which is a Legendrian submanifold, that is, η|TL = 0 and dimL =
dim Q = n. The pair (T ∗Q×R,L) is a thermodynamic system. The equations (locally)
defining L are called the state equations of the system.

On a thermodynamic system (T ∗Q ×R,L), one can consider the dynamics gener-
ated by a Hamiltonian vector field XH associated to a Hamiltonian h. If this dynamics
represents quasistatic processes, meaning that at every time the system is in equilib-
rium, that is, its evolution states remain in the submanifold L, it is required for the
contact Hamiltonian vector field Xh to be tangent to L. This happens if and only if h
vanishes on L.

Equivalently, by Sect. 8.1, one can consider the extended thermodynamic phase
space T ∗(Q × R) with its canonical symplectic form

ωQ×R = dqi ∧ dPi + dS ∧ dPS . (63)
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In this formulation, a thermodynamic system is a tuple (T ∗(Q × R),L)), where L
is a homogeneous Lagrangian submanifold. Dynamics are given by a homogeneous
Hamiltonian K . See Van der Schaft andMaschke (2017) for details and recall we have
identified, in Sect. 8.1, the bundle T ∗Q×Rwith the projective bundleP(T ∗(Q×R)).

Port-thermodynamic systems were introduced in Van der Schaft and Maschke
(2017), but in a homogeneous symplectic formalism.

Definition 1 (Port-thermodynamic system) A port-thermodynamic system on T ∗(Q×
R) is defined as a pair (L, K ), where the homogeneous Lagrangian submanifold L ⊂
T ∗(Q ×R) specifies the state properties. The dynamics is given by the homogeneous
Hamiltonian dynamics with parametrized homogeneous Hamiltonian K := Ka +
Kc

αu
α : T ∗(Q ×R) → R, u ∈ R

k , Kc : T ∗(Q ×R) → R
k , with Ka , Kc both equal

to zero on the points ofL, and Ka as the internal Hamiltonian. One need the additional
condition

∂K

∂S
|L ≥ 0, (64)

so that the second law of thermodynamics holds.

Using the results of Sect. 8.1, we could instead consider the following contact
formulation.

Definition 2 (Port-thermodynamic system, contact formalism) A port-thermodynamic
systemon (T ∗Q×R, ηQ) is defined as a pair (L, h),where theLegendrian submanifold
L ⊂ T ∗Q × R specifies the state properties. The dynamics is given by the contact
Hamiltonian dynamics with parametrized contact Hamiltonian h = ha + hcαu

α :
T ∗Q × R → R, u ∈ R

m , hc : T ∗Q × R → R
k , with ha, hc zero on L, and the

internal Hamiltonian ha satisfying

∂h

∂S
|L ≥ 0, (65)

so that the second law of thermodynamics holds.

Our theory provides tools to understand which of the available thermodynamic
processesminimize the entropy production of the system.Observe thatwe can consider
processes that maximize or minimize other thermodynamic variables, such as the
energy, via a Legendre transform.

8.4 Example: Gas–Piston–Damper System

We end this section with an explicit example which can be found in Van der Schaft
and Maschke (2017).

Consider an adiabatically isolated cylinder closed by a piston containing a gas with
internal energy U (V , S).

The extended phase space has the following extensive variables

• the momentum of the piston π ,
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• the volume of the gas V ,
• the energy E ,
• the entropy S.

They correspond to Q ×R with local coordinates (V , π, E, S). The Legendrian sub-
manifold is given by

L =
{
(V , π, E, pV , pπ , pE , S)|E = π2

2m
+U (S, V ), pV = −pE

∂U

∂V
,

pπ = −pE
π

m
, pE = 1/

∂U

∂S

}
(66)

The energy is then given by

h = pV
π

m
+ pπ

(
−∂U

∂V
− d

π

m

)
− d( π

m )2

∂U
∂S

+
(
pπ + pE

π

m

)
u, (67)

where d is the diameter of the piston and m is its mass.
The Hamiltonian vector field is given by

Xh = π

m

∂

∂V
+

(
−πd

m
+ u − ∂ U

∂V

)
∂

∂π
+ πu

m

∂

∂E

+
⎛
⎝

⎛
⎝pπ

∂2U

∂V ∂S
− π2d ∂2 U

∂S2

m2
(

∂U
∂S

)2
⎞
⎠pV + pπ

∂2U

∂V 2 − π2d ∂2 U
∂V ∂S

m2
(

∂U
∂S

)2
⎞
⎠ ∂

∂ pV

+
⎛
⎝

⎛
⎝pπ

∂2U

∂V ∂S
− π2d ∂2 U

∂S2

m2
(

∂U
∂S

)2
⎞
⎠pπ + d pπ

m
− pEu

m
− pV

m
+ 2πd

m2 ∂U
∂S

⎞
⎠ ∂

∂ pπ

+
⎛
⎝pπ

∂2U

∂V ∂S
− π2d ∂2 U

∂S2

m2
(

∂U
∂S

)2
⎞
⎠pE

∂

∂ pE

+
(

π2d

m2 ∂U
∂S

)
∂

∂S
(68)

We construct the contact Hamiltonian system (T ∗(T ∗Q)×R, ηT ∗Q, H) as in (61):

H = −
(
d pπ

m
− pEu

m
− pV

m
+ 2πd

m2 ∂U
∂S

)
Pπ

−
(
pπ

∂2

(∂V )2
U (V , S) − π2d ∂2

∂V ∂SU (V , S)

m2 ∂U
∂S

2

)
PV

−
(

πd

m
− u + ∂

∂V
U (V , S)

)
Ppπ + π PpE u

m
+ π PpV

m
− π2d

m2 ∂U
∂S

,

(69)
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where we denote by qi , pqi ,�qi ,�pqi
the natural coordinates on T ∗T ∗Q, where

qi runs through V , π, E , and �qi ,�pqi
are the corresponding moments to qi , pi

respectively.
The solutions to the control problem are then the integral curves of the Hamiltonian

vector field of this system, which are the following

V̇ = π

m

π̇ = −πd

m
+ u − ∂ U

∂V

Ė = πu

m

ṗV =
⎛
⎝pπ

∂2U

∂V ∂S
− π2d ∂2 U

∂S2

m2
(

∂U
∂S

)2
⎞
⎠pV + pπ

∂2U

∂V 2 − π2d ∂2 U
∂V ∂S

m2
(

∂U
∂S

)2

ṗπ =
⎛
⎝pπ

∂2U

∂V ∂S
− π2d ∂2 U

∂S2

m2
(

∂U
∂S

)2
⎞
⎠pπ + d pπ

m
− pEu

m
− pV

m
+ 2πd

m2 ∂U
∂S

ṗE =
⎛
⎝pπ

∂2U

∂V ∂S
− π2d ∂2 U

∂S2

m2
(

∂U
∂S

)2
⎞
⎠pE

Ṡ = π2d

m2 ∂U
∂S

�̇V = α�V − �π

m

�̇π = α�E − �πu

m

˙�pV = −pπ pV�V
∂3U

∂V 2∂S
− pπ�V

∂3U

∂V 3 − pV�pπ

∂2U

∂V ∂S
− pπ�pV

∂2U

∂V ∂S

+α�pV − �pπ

∂2U

∂V 2 + π2d pV�V
∂3 U

∂V ∂S2

m2
(

∂U
∂S

)2 − 2π2d pV�V
∂2 U
∂V ∂S

∂2 U
∂S2

m2
(

∂U
∂S

)3

−2π2d�V
∂2 U
∂V ∂S

2

m2
(

∂U
∂S

)3 + π2d�V
∂3 U

∂V 2∂S

m2
(

∂U
∂S

)2 + 2πd pV�π
∂2 U
∂S2

m2
(

∂U
∂S

)2 + π2d�pV
∂2 U
∂S2

m2
(

∂U
∂S

)2

+2πd�π
∂2 U
∂V ∂S

m2
(

∂U
∂S

)2

˙�pπ = −pπ
2�V

∂3U

∂V 2∂S
− 2 pπ�pπ

∂2U

∂V ∂S
+ α�pπ + π2d pπ�V

∂3 U
∂V ∂S2

m2
(

∂U
∂S

)2

−2π2d pπ�V
∂2 U
∂V ∂S

∂2 U
∂S2

m2
(

∂U
∂S

)3

123



Journal of Nonlinear Science (2023) 33 :9 Page 43 of 46 9

−d�pπ

m
+ �pE u

m
+ 2πd pπ�π

∂2 U
∂S2

m2
(

∂U
∂S

)2 + π2d�pπ
∂2 U
∂S2

m2
(

∂U
∂S

)2

+�pV

m
+ 2πd�V

∂2 U
∂V ∂S

m2
(

∂U
∂S

)2 − 2 d�π

m2 ∂U
∂S

˙�pE = −pE pπ�V
∂3U

∂V 2∂S
− pπ�pE

∂2U

∂V ∂S
− pE�pπ

∂2U

∂V ∂S
+ α�pE

+ π2d pE�V
∂3 U

∂V ∂S2

m2
(

∂U
∂S

)2

− 2π2d pE�V
∂2 U
∂V ∂S

∂2 U
∂S2

m2
(

∂U
∂S

)3 + 2πd pE�π
∂2 U
∂S2

m2
(

∂U
∂S

)2 + π2d�pE
∂2 U
∂S2

m2
(

∂U
∂S

)2 ,

(70)

where

α = ∂F

∂S
− � j

∂X j

∂S
=−pE pπ�pE

∂3 U
∂V ∂S2

−pπ
2�pπ

∂3 U
∂V ∂S2

−pπ pV �pV
∂3 U

∂V ∂S2
−pπ�pV

∂3 U
∂V 2∂S

+ �π

∂2U

∂V ∂S
−

2π2d pE�pE

(
∂2 U
∂S2

)2
m2

(
∂U
∂S

)3

− 2π2d pπ �pπ

(
∂2 U
∂S2

)2

m2
(

∂U
∂S

)3 −
2π2d pV �pV

(
∂2 U
∂S2

)2

m2
(

∂U
∂S

)3 +
π2d pE�pE

∂3 U
∂S3

m2
(

∂U
∂S

)2 +
π2d pπ �pπ

∂3 U
∂S3

m2
(

∂U
∂S

)2

+
π2d pV �pV

∂3 U
∂S3

m2
(

∂U
∂S

)2 +
π2d�pV

∂3 U
∂V ∂S2

m2
(

∂U
∂S

)2 −
2π2d�pV

∂2 U
∂V ∂S

∂2 U
∂S2

m2
(

∂U
∂S

)3 −
π2d ∂2 U

∂S2

m2
(

∂U
∂S

)2 +
2πd�pπ

∂2 U
∂S2

m2
(

∂U
∂S

)2 ,

and they are subject to the constraint

pE�π

m
+ π�pE

m
+ �pπ = 0. (71)

9 Conclusions and FutureWork

We have discussed several presentations of the so-called Optimal Control Theory,
using presymplectic and contact geometry. These relations allows us to obtain directly
a new proof of the equations solving the Herglotz variational principle. One of the
main results is just the derivation of a Pontryagin maximum principle in the setting of
Herglotz optimal control problems, a generalization of the classical optimal control.
We have also exhibited how the theory can be applied to thermodynamic systems.
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The results obtained in the present paper open many ways to follow, and our inten-
tion is to go in these directions; here, there are some of them:

1. Relations between the contact vakonomic dynamics and theHerglotz Optimal Con-
trol Problem, following the same lines that in Martínez et al. (2000, 2001) for the
symplectic case.

2. To study the more general case of Herglotz variational calculus with constraints as
in Gràcia et al. (2003) and references therein.

3. Reduction of the Herglotz Optimal Control Problem when we are in presence of
symmetries, and reconstruction of the original solutions from the reduced ones [see
Echeverría et al. (2003) and de León et al. (2004) for the classical setting].

4. Potential extensions to control problems with dissipation on Lie groupoids and
algebroids, and numerical methods to solve them, (see Cortés et al. 2006).

5. Study of contact mechanical systems with controls, their stabilization and tracking
problems (see for example, Cortés et al. 2002; Muñoz-Lecanda and Yániz-
Fernández 2002; Cortés and Martínez 2003).
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