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Abstract: Although the principal aim of the rockfall management is to prevent rock boulders from

reaching the buildings instead of the buildings resisting the boulder impacts, there usually exists

a residual risk that has to be assessed, even when structural protection measurements are taken.

The evaluation of the expected damage of buildings due to rockfalls using empirical data from past

events is not always possible, as transferring and applying damage observations from one area to

another can be unrealistic. In order to simulate potential rockfall scenarios and their damage on

buildings, numerical methods can be an alternative. However due to their increased requirements in

expertise and computational costs, their integration into the risk analysis is limited, and simpler tools

to assess the rockfall vulnerability of buildings are needed. This paper focuses on the application

of artificial intelligence AI methods for providing the expected damage of masonry walls which are

subjected to rockfall impacts. First, a damage database with 672 datasets was created numerically

using the particle finite element method and the finite element method. The input variables are the

rock volume (VR), the rock velocity (RV), the masonry wall (t) and the masonry tensile strength

fm. The output variable is a damage index (DI) equal to the percentage of the damaged wall area.

Different AI algorithms were investigated and the ANN LM 4-21-1 model was selected to optimally

assess the expected wall damage. The optimum model is provided here (a) as an analytical equation

and (b) in the form of contour graphs, mapping the DI value. Known the VR and the RV, the DI can

be directly used as an input for the vulnerability of masonry walls into the quantitative rockfall risk

assessment equation.

Keywords: artificial neural networks; failure; machine learning; masonry structures; optimization

algorithms; rockfalls; transfer functions; damage; rockfall impact

1. Introduction

The damage of buildings caused by rockfalls can be devastating. The expansion
of urban areas toward rocky slopes, on the one hand, and the temperature and rainfall
extremes which have been observed in the past decades and have been associated with
climate change, on the other, have been intensifying the disastrous phenomena, with direct
(physical) and indirect (social, economic) impacts. Although the rockfall impacts are not as
extensive as the earthquake impacts, their sum is substantial.

Figure 1 shows characteristic examples of building damage caused by rockfalls. In
Greece, in 2022, a rockfall in Crete killed a person hosted in a touristic apartment. In 2018,
on the island of Mytilene, a residential area was affected by rockfalls and 14 houses were
evacuated. The wall of a house was destroyed by a rock block of about 15 m3, in Alyki,
Viotia, in 2019. Worldwide, several urbanisms have been damaged by rockfalls, amongst
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others during the 2015 Gorkha earthquake in Nepal and the 2011 Christchurch earthquake
in New Zealand. Residences in mountainous villages such as the Clua in the Pyrenees,
Spain, are threatened by rockfalls, while touristic infrastructure is affected frequently, as in
the case of a hotel in Bolzano, in the Alps, which was hit by a rockslide in 2021. Further
examples in Central Italy are presented in [1].
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Figure 1. Examples of rockfall damage for buildings (a) collapse of a touristic apartment in Ierapetra,

Crete, Greece. (b) Wall damage in Alyki, Voitia, Greece. (c) Residences hit by rockfalls in Mytilene,

Greece. (d) A rock block impacting a wall in Clua, Pyrenees, Spain.

The rockfall quantitative risk assessment is a powerful tool for expressing the expected
loss in objective terms, which are usually financial (e.g., €/year). The expected damage
for buildings which are exposed to rock block impacts during rockfalls is required as an
input for the rockfall quantitative risk assessment [2]. Although there exist sophisticated
and detailed methodologies for the assessment of the rockfall hazard and risk, the rockfall
structural vulnerability is still scarcely deepened [3]. The existing research work in this field
is limited compared to the work on the protection measures that aim at the stabilization,
interception, or catchment of rock blocks. This is ought to the fact that the rockfall risk
reduction is far more effective when aiming at the installation of protection measures,
rather than at the reinforcement of buildings against rockfalls. Accordingly, the relatively
few studies on the rockfall damage of buildings focus on providing the expected damage
to be used for the QRA instead of discussing strengthening measures.

The approaches for assessing the damage of buildings due to rockfalls include empir-
ical methods, which are based on the observation of damage from past events [4,5]. An
example of an empirical database has been presented by [6], who registered the rockfall
damage of buildings at the Christchurch earthquake and mapped it using a terrestrial laser
scanner (TLS). A good correlation was indicated between the damage extent, in terms of
affected area inside the building, and the rock block kinetic energy. Empirical methods
can associate the damage with the rock motion properties (size and impact velocity). The
advantage of empirical methods is that they can take into consideration the existence of non-
structural details as for example the presence of openings and protective elements around
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the building. However, they, usually, do not differentiate between building typologies
and characteristics.

The use of computational methods to model the behavior of buildings that are affected
by fast moving landslides is less common, although it has been well established for rockfall
protection measures [7]. A numerical methodology for the calculation of fragility curves for
reinforced concrete buildings in areas affected by earthquake-induced landslides has been
developed by [8]. This methodology is applicable to a variety of soil types, slopes, and
buildings. Fragility curves for reinforced concrete buildings subjected to differential settle-
ments caused by landslides have been calculated at [9], based on the statistical processing
of the damage that has been obtained by structural numerical analysis. More recently, the
Material Point Method was proposed by the authors in [10] to investigate the landslide–
structure interaction, using a coupled approach for simulating the fast propagation of a
saturated soil and the stress–strain response of a masonry structural element.

In particular for rockfalls, analytical and numerical methods have been investigated
for the assessment of the damage of reinforced concrete and masonry buildings by [11,12].
A methodology was presented at [13] for the assessment of damage of masonry structures
due to rock block impacts. The methodology considers the wall characteristics (wall width
and material properties) and the rock block properties (velocity and volume). The back
analysis of three rockfalls causing damage to masonry walls was made. The damage was
expressed in terms of a damage index DI that is equal to the percentage of the damaged
surface divided by the total surface of the wall.

Although analytical methods provide flexibility in modelling different scenarios of
structural element typologies and rock properties, they are difficult to be applied by non-
experts, and their direct integration into the rockfall risk assessment is not effective, in
terms of cost and time. The application of damage predictive mathematical models that
use a regression equation, based on the observed damage from real events, as proposed
by [5], could overcome this issue.

The value of the aforementioned masonry structure damage index DI has a strong non-
linear nature regarding its correlation with the mechanical and geometrical characteristics of
the masonry as well as with the volume and speed of the impacting rock blocks. This makes
difficult the prediction of masonry wall failure using deterministic classical computational
techniques, such as the least square method and regression analysis-based approaches.

For the simulation of this kind of highly nonlinear phenomena, soft computing tech-
niques such as artificial neural networks (ANN) have been proposed, during the last three
decades, with many applications to medicine [14–19]. These applications have been grow-
ing rapidly in engineering over the last two decades [20–32]. The main disadvantage of
these techniques has been reported to be that their function is a black box, thus despite
the plethora of relevant publications, the results are not transferable. To overcome this
limitation, during the past decade, particular emphasis has been put on the formulation of
analytical equations that describe the architecture of the structure of ANN’s. Many of the
relevant publications contain as Supplementary Materials, graphical user interfaces (GUI)
to verify their reliability and to permit their use by other researchers [33–36].

In this work, a big analytical database has been developed for the training of deep
neural networks, aiming at the development of a robust and reliable forecasting mathemat-
ical model for the estimation of the rockfall damage of masonry structures. The analytical
database was developed using numerical methods in order to calculate the aforementioned
quantitative DI. Furthermore, a closed-form equation (analytical formula) has been derived,
based on the optimal ANN model.

The paper is organized in seven sections. In Section 2, the research significance of this
work for rockfall risk assessment studies is discussed. Section 3 focuses on the numerical
analysis that has been made for the creation of the damage database. Section 4 presents the
materials and methods that were used for the development of the forecasting mathematical
model for the damage index. Section 5 provides a closed-form equation for the estimation
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of the damage index and its mapping. In Section 6, the limitations of the proposed model
are presented and in Section 7, some concluding remarks.

2. Research Significance

Load-bearing masonry structures are common in mountainous areas where rockfall
events occur frequently. The methodology which is presented here is focused on the
assessment of the damage of walls due to rockfall impacts. Risk assessment for rockfalls
can be expressed quantitatively using the following equation, adapted from [37], which
should be summed up for all the expected rockfall magnitudes and intensities:

R = P(L)× P(T : L)× P(S : T)× V(E : S)× C (1)

where:
R is the risk in terms of expected annual loss;
P(L) is the annual frequency of the rockfall events of a given magnitude;
P(T : L) is the probability of a rockfall reaching the element at risk with a given intensity;
P(S : T) is the temporal spatial probability of the element at risk;
V(E : S) is the vulnerability of the element at risk for a rockfall event of a given

magnitude and intensity;
C is the cost of the element at risk.
For buildings, the vulnerability expresses the expected degree of loss, on a scale of 0

(no loss) to 1 (total loss).
Taking into consideration the limitations of the empirical and analytical methods for

the damage assessment that were explained in Section 1, risk assessment practitioners
require simple-to-use tools, in order to obtain vulnerability values for the application of
Equation (1). To fill this gap, the goal of this work was to develop a closed-form equation
(analytical formula) for the vulnerability that takes into account the complexities of masonry
response, based on an analytically derived wall damage database and an ANN model.

The work presented here takes into consideration only the damage of the wall elements.
The proposed damage index DI to be used for the vulnerability value, as it will be explained
in detail in the following sections, is given by Equation (2).

DI = Damaged wall area/Total wall area (2)

This DI does not provide direct information for the loss of the overall stability of the
building, nor for the propagation of the block into the building, although these two are key
factors for the extent of structural and non-structural damage that will determine the repair
cost of the building, as well as the exposure of the people within it. A thorough investigation
of these has been out of the scope of the present work. Nevertheless, it is expected that
the larger the DI, the larger the affected area, because of the higher kinetic energy of the
rock. Accordingly, the exposure of people inside the building will be increased. The
overall stability of the structure depends on the specific setting of the building. Despite of
structures made of masonry walls being statically indeterminate, high energy rock impacts
may lead to overall building damage and collapse. However, in order to incorporate
this into the vulnerability value, a more precise analysis for a specific building setting
would be required.

3. Rockfall Impact Force and Wall Damage Assessment

As aforementioned, given the difficulties for obtaining a large and comprehensive
wall damage database from historical events, a numerical methodology was preferred
for the database creation. The methodology, which was introduced by [13] consists in
the coupling of two separate numerical processes: (1) first, the rockfall actions which are
transmitted from the rock block to the wall during the block-wall interaction are calculated
for a selected range of rock block sizes and wall characteristics, using a numerical model,
and then (2) the predicted rockfall action contact forces are applied as an external load to
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the wall in order to calculate the DI. For the completeness of the paper, the processes are
briefly described.

3.1. Rockfall Impact Forces

Besides the velocity and kinetic energy of the rock boulder, the transmission of energy
from the impacting rock to the wall depends on: the geometry of the impacting bodies,
the relative stiffness, the absorbed local energy in the contact zone (damage produced),
the loading time-evolution and the impact area [13]. The shape of the boulder also affects
the motion properties of the rock, before and after the impact, and its potential bouncing.
Given the large amount of the uncertainty that is involved, on top of the characteristic inho-
mogeneity of masonry structures, the numerical analysis of the impacts aims at providing
an indication of the expected impact force rather than a precise value of it.

The particle finite element method (PFEM) coupled with the contact domain method
(CDM) was used for being appropriate to capture the impact characteristics of a rock
boulder on a masonry wall, as described in [13]. The PFEM is founded on the Lagrangian
description of particles and motion, and it combines a meshless definition of the continuum
containing a cloud of particles with standard mesh-based finite element techniques. The
initial developments of the particle finite element method (PFEM) took place in the field
of fluid mechanics [38,39] because of the PFEM capability of tracking and modelling free
surfaces. Later on, the particle finite element (PFEM) was applied to a variety of simulation
problems and to solid mechanics, with the first applications to problems involving large
strains and rotations, multiple body contacts, and creation of new surfaces (riveting, powder
filling, ground excavation and machining) [40].

Using the PFEM for the modelling of large deformations and the contact domain
method (CDM), the transmission of the forces to the wall can be simulated properly.
According to this method [41] there is no contact stiffness parameter (or penalty parameter).
The method uses a Lagrange Multiplier approach to impose the contact constraint, which
involves a remeshing strategy, for the geometrical contact detection. We apply this strategy
in the particle finite element method to detect the contact area and the active contact set.
The constraints are imposed directly at the balance equations.

Different models have been used for the solution of the contact problem: two-dimensional
(plane-strain), axisymmetric, and three-dimensional. We studied the results from the three
different models, to conclude that for the given wall-block system the transmitted forces of
the three formulations are of the same order of magnitude. A two-dimensional approach
was preferred for reasons of time efficiency and for reducing the computational cost. The
model is shown in Figure 2.

As the transmitted forces vary with time, the envelope of the maximum contact forces
and the stress distribution in the direction of the movement are extracted. The following
assumptions were made for the simplification of the problem.

Both masonry and rock were considered homogenous, elastic, and deformable bodies,
with properties described by the modulus of elasticity, E, the Poisson ratio, v, and the
density. The variation of the stiffness of the rock representing different rock lithologies
was not considered for the presented analysis and it has not been included in the variables.
A fixed value of the Young’s modulus equal to E = 10 GPa has been assumed, which
corresponds to a unique rock type. This value tends to the lower end of the Young’s moduli
encountered for sedimentary rocks.

An elastic contact was assumed, according to which the energy is not damped. The
modelling of the damage around the contact area due to the rock-block contact is made
in a second computational stage in order to be able to define study cases with bounded
complexity. The numerical modelling of the damage and the fracture combined with the
rock impact is a very interesting problem but it remains very difficult to characterize. So,
in this first stage, for the calculation of the contact forces, the assumption of no damage
during the rock-wall contact was made. It is expected that in the case of damage, part or the
total of the block energy will be absorbed so that the block does not rebound. Parametric
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simulations considering continuous damage with small rock mass and impact velocity
indicated that the total contact energy is preserved, and that the resulting contact forces
are of the same order of magnitude as in the elastic case, however the rebound is damped.
Thus, it is considered that the assumption of no damage is slightly more conservative and
it is easier to be reproduced by other researchers.
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Figure 2. Contact force evolution in 2D and 3D models and integration of the equivalent force.
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A cubic block shape was assumed, with edge length calculated to provide each time
the total boulder volume. Besides cubic, different shapes of rock blocks may be assumed
(spherical, polyhedric . . . ), resulting in differences in the estimated contact area. The
assumption of a cube simplifies the extraction of the geometry of the contact area, being
the same with the cube edge. It is highlighted that assuming a cubic rock shape and a
full rock-wall contact is not conservative concerning the stresses developed on the wall,
considering the much larger contact area than in the case of a spherical rock. Furthermore,
the rotational velocity of the spherical rock could contribute to the damage of the wall,
which is a scenario that has not been investigated in this work. The casuistry of possible
rock shapes, trajectories, and contact zones is enormous and must be generalized in some
way. The selection of the cubic block was made in this work in order to simplify the
calculations related to the force application area on the wall.

With respect to the last point, a further assumption was made for the determination
of the impact stress distribution area. For cubic blocks, the application area is initially
expected to be the same as the cube edge, given that when the impact starts, the two bodies
are in full contact. However, the analysis indicates that for flexible walls, right after the
first contact, due to flexure around the horizontal and vertical axis passing from the center
of the wall, the block forces get concentrated near the cube edge boundaries and they are
calculated by the PFEM accordingly. This provides different evolutions of the interaction
force, changing the magnitude of the contact forces with time. In higher speed contacts,
some oscillations are also present, which is a known numerical instability resulting from
numerical time integration when modelling impact problems. To overcome these issues an
equivalent force was calculated, based on the balance of the produced impulses, as given
by Equation (3). We determined the contact duration as the total time during which there
is partial or total contact between the two bodies, considering the presence or absence of
contact forces.

J =
∫

Fdt (3)

where
J: impulse
F: transmitted force to the wall during the total contact time t.
For the development of the damage database, which is presented in detail in Section 4,

walls of 3 m height with 6 m length, with width varying between 0.40 m and 1 m, and
blocks of 1 m3 to 20 m3, with velocities ranging from 1 m/s to 30 m/s were considered.
The homogenized material mechanical properties are calculated according to Eurocode
6 and specifically § 3.6.2.3 for the compressive strength and § 3.6.3 for the wall tensile
strength [42], for stone units and general-purpose mortar.

An illustration of the contact forces calculation is given in Figure 2. In this example,
the rock boulder is a quadrilateral of 1 × 1 m2 with an initial velocity of 1 m/s. The
wall was fixed at it base. The wall has been considered fixed at its base to simulate the
foundation. Rotational degrees of freedom were attributed to the top nodes. The main
reason for choosing the hinge at the top was to simulate rotations due to out of plane
loading. The parametric analyses indicated the minimum and maximum values for the
equivalent forces (Table 1).

Table 1. Equivalent theoretical forces and tension transmitted to the wall from the block impact, for

the four extreme scenarios of the parametric analysis.

Rock Volume
(m3)

Rock Velocity
(m/s)

Wall Thickness
(m)

Numerical
Force (MN)

Equivalent
Theoretical
Force (MN)

Application
Area (m2)

Equivalent
Tension (MPa)

1 1 0.4 0.210 0.227 1 × 1 0.227
1 1 1.0 0.307 0.352 1 × 1 0.352

20 30 0.4 106.870 112.880 2.7 × 2.7 15.473
20 30 1.0 153.010 164.830 2.7 × 2.7 22.610
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3.2. Wall Damage

Finite element analysis has been widely used for the numerical calculation of stress
and strain state of masonry walls [43–45]. Besides permanent and functional loads, there is
a wide literature on the seismic behavior of masonry walls, however there are less works
on the impact behavior of wall structures. The stress–strain response of reinforced masonry
structures due to debris flow impact has been studied by [46]. Wall displacements due to
boulder impacts were studied in [47], assuming different wall thicknesses and masonry
mechanical characteristics. To the knowledge of the authors, there are scarce studies that
quantify the expected damage considering a variety of boulder kinematics.

To fill this gap, the methodology that has been described in detail at [13] was used
here. Using the software SAP2000, three-dimensional finite element models of the afore-
mentioned walls were developed. For the stress analysis, the same constitutive laws were
applied for the wall, as described in Section 3.1.

The stress results for the top and bottom faces of the shell elements were processed
using the FAILURE software developed by [48]. The software is compatible with the stress
output from the finite element analysis and applies a modified Von-Mises criterion which
is specifically adapted for masonry structures.

The modified Von-Mises criterion (Figure 3) consists in a failure curve which is formed
by four surfaces S1, S2, S3, and S4 (section on the horizontal plane of zero shear stress). Each
surface represents a certain biaxial stress state: S1 represents compression in parallel to
both principal axes, S2 tension in parallel to one principal axis and compression in parallel
to the other, S3 tension in parallel to both principal axes and S4 vice versa to S3. Failure
occurs for a point on the circumference or outside the closed curve area. The curves are
given by Equations (4)–(7).
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Figure 3. Modified Von-Mises failure criterion for masonries.

The surfaces which are illustrated in Figure 3 are given by:

S1 = σ
2
xx + σ

2
yy − σxxσyy + 3τ2 − f2

wc = 0, for σxx and σyy ≤ 0 (4)

S2 = σyy + (1 − σxx/a)
(

f2
wc − 3τ2

)1/2
= 0, for σxx ≥ 0 and σyy ≤ 0 (5)

S3 = σxx + σyy − a = 0 for σxx and σyy ≥ 0 (6)

S4: symmetrical to S2 with respect to the bisectional level of the first quadrant.
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where:

a = (fm/fmc)

√
f2
mc − 3τ2 (7)

fmc: compressive strength, fm: tensile strength, and σxx, σyy: principal stresses.
Figure 4 presents a typical output from the software FAILURE, where the discretization

of the wall into finite elements is distinguished. The damaged areas, as well as the type
of failure are marked with different colors on the wall, permitting the calculation of the
damaged wall area, and of the DI.
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Figure 4. Output from the failure analysis (left), for the simulation of a rockfall that damaged a brick

wall in Andorra la Vella, Andorra in 2014 (right). The dotted area marks the dimensions of the rock

block and the assumed block-wall contact area.

Using the finite element method, the forces on the nodes of the finite element model
of the wall can be calculated taking into account any vertical forces applied on the wall
including the self-weight of the structure. The nodal forces permit the calculation of the
stresses within each finite element using shape functions, thus the max values of σxx, σyy,
and τ that are used for the application of the modified Von-Mises failure criterion. In this
way the Equations (4)–(7) do take into account the vertical forces acting on the wall panel.

It is highlighted that the rock boulder impact may lead to out-of-plane failure of the
wall. Analytical approaches for assessing the out-of-plane mechanisms of walls have been
proposed by [49,50]. The use of the finite element method for the analysis of masonry
structures subjected to out-of-plane loading has been proposed by [51,52] amongst others.
In this work, the out-of-plane behavior of the wall is assessed by finite element stress-strain
analysis using homogenous finite elements of four-node thick shell type, as employed by
the software SAP2000. These elements include out-of-plane phenomena through two-way
bending information, which affect the σxx, σyy, and τ values of the modified Von Mises
failure criterion. Failure equations are applied for the front (top) and back (bottom) surfaces
of the shell elements. The assessment of wall damage due to rockfall impacts as presented
by [13] has provided realistic results. Nevertheless, the assessment of the out-of-plane
behavior of masonry can be improved in precision using solid elements [53] that take
into consideration the three-dimensional stress state of the problem. Such an analysis is
relevant for future work. However, considering that the proposed methodology provides
realistic results even under biaxial considerations, in this work we chose that one for the
development of the database. Using this methodology, parametric analyses were performed
using the input variables that are described in detail in Section 4.1, where the DI results are
also presented as part of the database.

4. Materials and Methods for the ANN Modeling

In this section, the methodology that was followed for the development of a robust
and reliable soft computing model for the estimation of the rockfall failure of masonry
walls is presented thoroughly and in depth. Emphasis is given on the database that was
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used for the training and the development of the ANN models, as well as on the set of
training algorithms and the activation functions.

4.1. Database Description

During the formulation of a machine learning-based computational model for the
modelling of a multidimensional problem with strong nonlinear characteristics, such as the
problem under investigation, it is a common that more attention is paid to the method than
to the database. However, the reliability of the database contributes decisively toward the
reliability of the model, making relevant the well-known phrase from computer science,
garbage in, garbage out (GIGO). Additionally, the database should describe sufficiently the
studied problem with respect to data cardinality and completeness including the full range
of possible values for the involved parameters.

To estimate the rockfall damage of a wall, a big analytical database was developed
using the methodology that is described in the previous section. The database consists
of 672 datasets. Each of the 672 datasets is defined by the values of five parameters that
are involved in the problem. The first four values correspond in order to the rock volume
(VR), the rock velocity (RV), the thickness of the masonry wall (t), and the masonry tensile
strength (fm), which are the input parameters, while the last value corresponds to the
damage index (DI) which is the output parameter. The database is appended to this paper
as Supplementary Materials (excel file entitled Database).

In Table 2, the statistical indices for the four input parameters are presented, as well
as for the output parameter. Moreover, in Table 2 and in Figure 5 the Pearson correlation
coefficients (R) are presented. The values of the last row of this matrix refer to the degree
of correlation of the output parameter with each of the other four input parameters. Ac-
cording to this table, it is indicated that the value of the DI is in strong dependence of the
rock velocity (R = 0.596) and the rock volume (R = 0.534), followed by the value of wall
thickness (R = 0.304), while the smallest correlation is that with the masonry tensile strength
(R = 0.151).

Table 2. Statistical analysis of the input and output parameters for the training and development of

artificial neural networks for the prediction of rockfall masonry wall failure.

Variables Statistical Indices

Parameter Symbol Units Category Min Average Max STD CV

Volume of Rock VR m3 Input 1.00 9.00 20.00 7.11 0.79
Rock Velocity RV m/s Input 1.00 15.14 30.00 9.80 0.65

Thickness of Masonry Wall t m Input 0.40 0.70 1.00 0.22 0.32
Masonry Tensile Strength fm MPa Input 0.10 0.35 0.60 0.17 0.49

Damage Index DI % Output 0.00 71.00 99.72 27.06 0.38

                   
 

 

 
        ffi          

 
 

 
 

 
 

 
 

Figure 5. Pearson correlation coefficients between the examined variables.
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In Figure 6 the histograms and the scatter plots of the used input and output pa-
rameters of the database are presented. They indicate the correlation capability of the
database and the value ranges for each parameter. They also show where the data are
deficient and where the database should be updated in order to achieve greater reliability
and completeness.

4.2. Artificial Neural Networks

In 1958, psychologist Frank Rosenblatt [54] formulated and proposed the neural
network architecture as an artificial intelligence mathematical model, whose structure
resembles the functionality of biological neurons in the brain of mammals. In this first
work, the perceptron simulant was proposed, which was the first introduced structure of
artificial neural network. The perceptron structure achieved to simulate how the human
brain interprets optical sensory input and is able to learn recognizing objects. Even if it was
the first one to be proposed, it comprised the main architecture basis for the vast majority of
the neural networks that have been introduced and used extensively in all scientific areas.

Perceptron marked a historical turning point in our artificial intelligence timeline and
coined a term that was proved to incorporate an entire area within AI. These AI methodolo-
gies come as a product of a technological era where a multitude of complex problems with
strongly non-linear characteristics are not amenable to solution using classical methods,
such as regression and least-squares optimization. Despite the innovation introduced by
this architecture, more than four decades were necessary until the nineties, when neural
networks were used widely, beginning with medical applications [55–63] and followed by
computational engineering [64–74].

                   
 

 

 
        ffi          

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Cont.
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Figure 6. Histograms and scatter plots of the used input and output parameters of the database:

(a,b) volume of rock; (c,d) rock velocity; (e,f) thickness of masonry wall; (g,h) masonry tensile

strength; (i,j) damage index.

The structure of an artificial neural network is comprised of a clique of nodes that
are interconnected as the biological neurons do, in a way that was inspired by the central
nervous system (CNS), whose elementary functions are simulated at each node. Each
node in the network is fed with a set of arithmetical inputs from different sources (from
other neurons or the environment). A computation is executed using these inputs and
an output is produced. This output is provided to the environment or is fed as input to
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other neurons in the network. Given the nature of the topology of the network three basic
types of neurons are distinguished: input neurons, output neurons, and computational or
hidden neurons.

The input neurons do not perform any computations, they simply accept the envi-
ronmental inputs of the network. The computational neurons have the same structure
and functionality as the Perceptron. They multiply each input by the respective synaptic
weight, they calculate the total sum of products, and they add the bias. This sum is applied
as argument to the activation function, which each node implements internally.

More precisely a conventional architecture of the feed forward ANN starts with an
input layer followed by a single or multiple hidden layer(s) and terminates with the output
layer. Each layer contains an array of nodes and each node receives inputs from nodes of
the previous layer, forms a weighted sum, adds a bias, and then transforms them by an
activation function to obtain its own output signal. Detailed and in-depth state-of-the-art
reports on ANNs can be found in [75,76].

4.3. Performance Indices for the Assessment of Soft Computing Forecasting Models

For the assessment of the effectiveness and the reliability of the computational pre-
dictive mathematical simulants, a multitude of statistical indices has been proposed. In
Table 3, the most important and widely accepted performance indices of the effectiveness of
the forecasting mathematical models are presented [77–87]. Among these, the most spread
is the Pearson’s correlation factor R that also exhibits significant weaknesses, mainly if
embodied in the code. Among its weaknesses is that besides taking its value into account
(the more it tends to one, the better is the respective mathematical predictive model), its
inclination angle should also be considered (the more it tends to 45◦, the better is the predic-
tive model). With respect to that, an extreme example is given, where a model irrespectively
from the values of the input parameters, provides the same output value. In this case the
value of the index R is equal to one, while at the same time the slope of the line is zero.

Table 3. Statistical performance indices.

Performance Index Analytical Formula Ideal Values

Mean Absolute Error (MAE) MAE = 1
n

n
∑

i=1
|(ỹii − yi)|

0

Mean Absolute Percentage Error (MAPE) MAPE = 1
n

n
∑

i=1

∣∣∣ yi−ỹi
yi

∣∣∣× 100 0

Root Mean Squared Error (RMSE) RMSE =

√
1
n

n
∑

i=1
(yi − ỹi)

2 0

Variance Account For (VAF) VAF =
(

1 −
var(yi−ỹi)

var(yi)

)
× 100 100

Pearson correlation coefficient, also known as Pearson’s r (R)
R =

√
∑

n
i=1 (yi−yavg)

2−∑
n
i=1 (yi−ỹi)

2

∑
n
i=1 (yi−ymean)

2

1

alpha 10 (a10-index) a10 − index = m10
n 1

where yi and ŷi represent actual and modelled ith value, n is the sample numbers, ymean is the average of actual
values, and m10 is the number of datasets with value of rate experimental (true) to predicted value between 0.90
and 1.10.

With the aim of a better and also more reliable assessment of the performance of
the predictive mathematical models, an index has been proposed recently [88,89], known
as the a10-index (last equation in Table 3) that has gained wide acceptance in the recent
years [90–97]. This index has the advantage of being understandable and comprehensible,
as it has a physical interpretation. It is defined as the percentage of datasets for which
the deviation between true and predicted value is less than 10%. The a20-index has been
also proposed mainly in the case of experimental databases being used for the training of
surrogate models. The deviation between true and predicted value for the a20-index is less
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than 20%. A detailed and in-depth state-of-the-art report on performance indices for the
assessment of soft computing forecasting mathematical models can be found in [98–103].

5. Results and Discussion

5.1. Training and Development of ANN Models

In order to identify the optimal ANN model for the prediction of rockfall failure of
masonry walls, different architectures of ANN models have been trained and developed.
It is well-known that the method of artificial neural networks is an inherently heuristic
method and, accordingly, the involved parameters such as the number of neurons per
hidden layer, the transfer functions, the optimization algorithms, the data normalization
techniques, and the possible combinations of these are of huge cardinality. For the present
study, the following steps were included:

1. Splitting of the database into training, validating, and testing datasets. The splitting of
the database affects significantly the reliability of the developed mathematical model.
The splitting took place so as to have, as much as possible, equal distribution for all
the parameters, as well as to achieve a minimum deviation of the performance indices
values, for both the training and testing datasets. In the present study, the 672 datasets
were split into 448 training (66.66%), 112 validating (16.67%), and 112 testing (16.67%)
datasets. The databases used for the training and the development of the ANN models
are appended as Supplementary Materials in the excel file titled Database.xls.

2. Selection of training algorithms. For the training of the ANN models, six different
optimization algorithms were selected, which are presented in Table 4.

3. Normalization of data. For the normalization of data, four (4) different normalization
techniques including minmax and z-score techniques were used (Table 5).

4. Activation functions. For each ANN architecture, twelve (12) different transfer func-
tions were used (Table 5). These correspond to 144 (12 × 12) different combinations for
each ANN architecture with one hidden layer, and accordingly to 1728 (12 × 12 × 12)
combinations in the case of ANNs with two hidden layers.

Table 4. Optimization algorithms for the training and development of ANN models applied in

this study.

Nr. Algorithm Matlab Function Abbreviation

1 Levenberg–Marquardt Algorithm [93–96] trainlm LM

2 Gradient descent backpropagation [97] traingd GD

3 Gradient descent with momentum backpropagation [97] traingdm GDM

4
Gradient descent with momentum and adaptive learning rate

backpropagation [97]
traingdx GDX

5 Scaled conjugate gradient backpropagation [97,98] trainscg SCG

6
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton

backpropagation [99–102]
trainbfg BFGS

Considering all the parameters presented in Tables 4 and 5, 3,456,000 different ANN
models were trained and developed. These models were ranked according to their perfor-
mance. The best 20 models are presented in Table 6. The set of the best 20 ANN models
corresponds to the models trained by the Levenberg–Marquardt Algorithm [104–107]. It is
also indicated that the minmax normalization technique dominates. In Table 7, the best
ANN models for each one of the six different training algorithms are presented. The second-
best training algorithm is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton
backpropagation algorithm [107–110].
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Table 5. Training parameters of ANN models applied in this study.

Parameter Value Matlab Function(s)

Training Algorithm Six different optimization algorithms (See Table 5)

Data splitting Ten different cases based on ten different random generation numbers

Normalization
Without any normalization

Minmax in the range [0.10–0.90], [0.00–1.00] and [−1.00–1.00]
Zscore

Mapminmax
zscore

Number of Hidden Layers 1

Number of Neurons per
Hidden Layer

1 to 50 by step 1

Control random number
generation

Ten different random generation
rand(seed, generator),

where the generator range
from 1 to 10 by step 1

Training Goal 0

Maximum Number of Epochs 200

Cost Function
Mean Square Error (MSE) mse
Sum Square Error (SSE) sse

Transfer Functions

Hyperbolic Tangent Sigmoid transfer function (HTS) tansig
Log-sigmoid transfer function (LS) logsig

Linear transfer function (Li) purelin
Positive linear transfer function (PLi) poslin

Symmetric saturating linear transfer function (SSL) satlins
Soft max transfer function (SM) softmax

Competitive transfer function (Co) compet
Triangular basis transfer function (TB) tribas

Radial basis transfer function (RB) radbas
Normalized radial basis transfer function (NRB) radbasn

Hard-limit transfer function (HL) hardlim
Symmetric hard-limit transfer function (SHL) hardlims

Based on the above, the optimum ANN model is the ANN LM 4-21-1 model (Table 8)
which has 24 neurons, and has been optimized by the Levenberg–Marquardt algorithm, and
the mean square error (MSE) is as a cost function. Data normalization has been performed
with the minmax technique. The normalized radial basis transfer function (NRB) has been
used for the input layer and the Hyperbolic Tangent Sigmoid transfer function (HTS) for
the output layer. The optimal ANN LM 4-21-1 model achieved almost ideal values of the
performance indices (Table 8). The validation results are also shown in Figures 7 and 8
where the analytical vs predicted values of the damage index for the testing and training
datasets are presented.
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Table 6. Best twenty optimum architectures of ANN models based on testing datasets RMSE index.

Ranking Algorithm Normalization Technique Cost
Function

Transfer Function

Architecture

Datasets Performance Indices

Input
Layer

Output
Layer

Testing Training All

R RMSE R RMSE R RMSE

1 LM Minmax [0.00, 1.00] MSE NRB HTS 4-21-1 0.9995 0.8081 0.9996 0.7868 0.9994 0.9671
2 LM Minmax [0.00, 1.00] MSE NRB RB 4-34-1 0.9995 0.8354 0.9997 0.6537 0.9995 0.9008
3 LM Minmax [0.00, 1.00] MSE NRB HTS 4-27-1 0.9995 0.8602 0.9996 0.7280 0.9993 1.0337
4 LM Minmax [0.10, 0.90] SSE HTS SSL 4-42-1 0.9995 0.8634 0.9998 0.5505 0.9995 0.8414
5 LM Minmax [0.10, 0.90] MSE NRB HTS 4-24-1 0.9995 0.8644 0.9995 0.8194 0.9989 1.2777
6 LM Minmax [0.00, 1.00] MSE HTS HTS 4-25-1 0.9995 0.8654 0.9997 0.6288 0.9995 0.8444
7 LM Zscore MSE HTS Li 4-35-1 0.9995 0.8684 0.9997 0.6253 0.9994 0.9555
8 LM Minmax [0.10, 0.90] SSE NRB LS 4-23-1 0.9995 0.8693 0.9996 0.7422 0.9994 0.9536
9 LM Minmax [0.00, 1.00] MSE LS LS 4-28-1 0.9995 0.8706 0.9998 0.5918 0.9994 0.9680

10 LM Minmax [0.00, 1.00] MSE HTS PLi 4-45-1 0.9995 0.8718 0.9999 0.4541 0.9994 0.9201
11 LM Minmax [0.00, 1.00] MSE LS LS 4-22-1 0.9995 0.8720 0.9996 0.7678 0.9993 1.0018
12 LM Minmax [0.10, 0.90] SSE HTS HTS 4-46-1 0.9995 0.8722 0.9997 0.6828 0.9973 1.9940
13 LM Minmax [0.10, 0.90] SSE HTS LS 4-32-1 0.9995 0.8748 0.9997 0.6752 0.9993 1.0328
14 LM Minmax [0.00, 1.00] SSE HTS HTS 4-25-1 0.9995 0.8752 0.9996 0.7647 0.9994 0.9680
15 LM Minmax [0.10, 0.90] SSE NRB HTS 4-26-1 0.9995 0.8756 0.9996 0.7151 0.9994 0.9707
16 LM Minmax [0.00, 1.00] SSE HTS LS 4-36-1 0.9995 0.8756 0.9998 0.5441 0.9994 0.9381
17 LM Minmax [0.10, 0.90] MSE NRB SSL 4-35-1 0.9995 0.8758 0.9997 0.6646 0.9989 1.2517
18 LM Minmax [0.10, 0.90] SSE NRB HTS 4-33-1 0.9995 0.8772 0.9998 0.5607 0.9995 0.8885
19 LM Minmax [0.00, 1.00] MSE NRB Li 4-35-1 0.9995 0.8778 0.9998 0.4932 0.9995 0.8455
20 LM Zscore MSE SM Li 4-31-1 0.9995 0.8786 0.9998 0.5436 0.9995 0.8279

Table 7. Optimal ANN architectures for the six different algorithms used for the optimization of ANN models.

Ranking Algorithm Normalization Technique Cost
Function

Transfer Function

Architecture

Datasets Performance Indices

Input
Layer

Output
Layer

Testing Training All

R RMSE R RMSE R RMSE

1 LM Minmax [0.00, 1.00] MSE NRB HTS 4-21-1 0.9995 0.8081 0.9996 0.7868 0.9994 0.9671
2 BFGS Minmax [−1.00, 1.00] SSE NRB HTS 4-28-1 0.9994 0.9255 0.9996 0.7830 0.9993 0.9982
3 SCG Zscore SSE RBn Li 4-27-1 0.9991 1.1463 0.9990 1.1684 0.9986 1.4210
4 GDM Minmax [−1.00, 1.00] SSE TB HTS 4-27-1 0.9949 2.9277 0.9939 2.9486 0.9926 3.3273
5 GDX Zscore SSE TB Li 4-26-1 0.9938 3.0616 0.9937 3.0540 0.9929 3.2752
6 GD Minmax [0.00, 1.00] SSE TB LS 4-18-1 0.9764 5.9139 0.9733 6.1335 0.9700 6.6204
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Table 8. Summary of prediction capability of the optimum ANN LM 4-21-1 model.

Model Datasets
Performance Indices

a10-index R RMSE MAPE VAF

ANN LM
4-21-1

Training 0.9888 0.9996 0.7868 0.0144 99.9115

Test 0.9911 0.9995 0.8081 0.0128 99.9099
                   

 

 

 

 

 
                             

         
Figure 7. Analytical vs predicted values of the damage index for testing datasets, using the developed

ANN LM 4-21-1 model.
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Figure 8. Analytical vs predicted values of the damage index for training datasets, using the devel-

oped ANN LM 4-21-1 model.
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5.2. Closed-Form Equation for the Estimation of Damage Index

In the previous sub-section, the architecture of the proposed ANN LM 4-21-1 model
for the prediction of the damage index of masonry walls under rockfalls was presented.
The input parameter weights and biases are also provided, so that other researchers and
practitioners can verify the reliability of the proposed model.

Under the prism of the above considerations, Equation (8) describes analytically the
proposed ANN LM 4-21-1 model and can be used for the estimation of the damage index of
masonry structures under rockfalls as a function of the input parameters: the rock volume
(VR), the rock velocity (RV), the thickness of masonry wall (t), and the masonry tensile
strength fm:

DInorm = tan sig([LW{2, 1}]× [radbasn([IW{1, 1}]× [IP] + [B{1, 1}])] + [B{2, 1}]) (8)

DIreal =
(DInorm − a)× (DImax − DImin)

b − a
+ DImin (9)

where a = 0.00 and b = 1.00 are the lower and upper limits of the minmax normalization
technique applied on the data, DImax = 99.72 and DImin = 0.00 are the maximum and
minimum values of the damage index present in the database, that was used for the training
of the ANN models. The tansig and radbasn are the hyperbolic tangent sigmoid transfer
function (HTS) and the normalized radial basis transfer function (NRB), respectively. Their
details (equations and graphs) are presented in Table 9.

Table 9. Transfer functions used in the optimum proposed ANN LM 4-21-1 model.

SN
Transfer Function/Equation/Matlab

Function
Graph

1

The normalized radial basis transfer
function (NRB)
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a =
exp(−n2)

sum(exp(−n2))

a = f(n) = radbasn(n)
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The hyperbolic tangent sigmoid transfer
function (HTS)
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f ∗  

 

a = f(n) = 2
1+exp(−2 ∗ n)

− 1

a = f(n) = tan sig (n)

Equation (9) describes the proposed ANN LM 4-21-1 model in a purely mathematical
form so that its reproduction becomes straightforward. In Equation (8), [IW{1, 1}] is a
21 × 4 matrix that contains the weights of the hidden layer; [LW{2, 1}] is a 1 × 21 vector
with the weights of the output layer; [IP] is a 4 × 1 vector with the four (4) input variables;

[B{1, 1}] is a 21×1 vector that contains the bias values of the hidden layer; and [B{2, 1}]
is a 1 × 1 vector with the bias of the output layer. The [IP] vector consists of the four (4)
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normalized values of the input variables of the rock volume (VR), the rock velocity (RV),
the thickness of masonry wall (t), and the masonry tensile strength fm. IP is defined by:

[IP] =




a + (b − a)
(

VR−min(VR)
max(VR)−min(VR)

)

a + (b − a)
(

RV−min(RV)
max(RV)−min(RV)

)

a + (b − a)
(

t−min(t)
max(t)−min(t)

)

a + (b − a)
(

fm−min(fm)
max(fm)−min(fm)

)




(10)

where the min(VR) = 1.00, max(VR) = 20.00; min(RV) = 1.00, max(RV) = 30.00; min(t) = 0.40,
max(t) = 1.00; and min(fm) = 0.10, max(fm) = 0.60 are the lower and higher values of the
input parameters (Table 2). The values of the final weights and biases that determine the
matrices [IW{1, 1}], [LW{2, 1}], [B{1, 1}], and [B{2, 1}] are presented in Table 10.

Table 10. Final values of weights and bias of the ANN-LM 4-21-1 model.

IW{1,1} [LW{2,1}]T [B{1,1}] [B{2,1}]

(21 × 4) (1 × 21) (21 × 1) (1 × 1)

−0.3652 0.9489 −2.9307 0.9458 −1.3912 1.7557 1.5653

1.7306 1.3115 7.7442 0.8606 −1.0532 −9.5504

−16.6491 18.5646 −16.2404 −0.1639 −0.1469 19.8556

−1.2270 −0.6461 2.2374 0.2739 4.5887 1.4360

−0.0602 0.6190 −0.1182 −0.0056 22.3429 −1.7328

−0.0483 −0.7170 0.8289 2.6856 0.8243 0.7565

1.7158 −2.4048 −4.8431 −0.3589 −1.0335 0.7911

−0.3454 −2.5670 0.7348 −0.7525 −0.6348 1.3841

5.5504 19.0378 −2.2654 −0.9111 −0.7584 −4.5451

4.0931 −5.0231 1.9202 0.0946 −0.5279 −0.6546

4.2287 −2.0062 −2.1430 −0.3746 −1.0895 0.5203

3.9949 4.2281 −1.2621 −0.4834 −2.4858 0.3005

1.5895 2.2236 −2.0486 −0.0550 0.5094 −0.8105

−1.5270 0.0059 −1.5890 1.3683 −1.2488 0.1031

0.6285 −7.4145 −1.1262 0.0401 −4.1664 −0.5063

−8.4275 2.3670 0.2385 0.8626 0.5009 −0.3484

6.8743 3.1965 0.6128 0.4617 0.4097 −2.0923

−0.6447 2.0363 −2.5711 0.6641 −1.3161 −0.2042

−3.9182 3.0640 0.5657 0.3649 −2.7053 −1.9747

−7.8553 8.6296 0.0836 0.0502 −3.5478 −6.7058

−3.1907 −0.4128 −0.1650 0.4660 −4.5351 −0.2191

Note: [IW{1, 1}] is the matrix of weight values between the input layer and the first hidden layer; [LW{2, 1}] is
the matrix of weight values between the first hidden layer and the output layer; [B{1, 1}] is the matrix of bias
values for the hidden layer, and [B{2, 1}] is the matrix of bias values for the output layer.

5.3. Mapping of Rockfall Masonry Wall Damage Index

To provide a friendly to use tool for estimating the rockfall damage of masonry walls,
and the vulnerability values to be imported into the rockfall risk equation, a series of
charts is provided (Figures 9 and 10). The reliability of the proposed model is further
supported by the observed smoothness of all the graphed curves, which indicates that there
is no overfitting.
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Figures 9 and 10 show the DI contours for two selected sizes of blocks, 5 m3 and 10
m3, for which the variability of the DI according to the input parameters can be observed.
For the larger blocks, the variability of the DI is smaller. The relation between the DI and
the wall width as well as with the masonry tensile strength is almost linear for 5 m3, while
for 10 m3 this linearity is not observed. The wall thickness has an important effect on
decreasing the DI for lower velocities and blocks up to 5 m3. For higher velocities and
bigger rock blocks, this effect is less apparent as the DI tends to be over 80%. The effect of
the masonry tensile strength, depending on the mortar strength and the wall units is also an
important parameter to be considered for the DI. However, in practice, for the vulnerability
assessment, this parameter is difficult to be estimated with accuracy.

                   
 

 

                                 
                                   
                            ff    

                                 
      ff                           ff      

                 

 
(a) 

 
(b) 

Figure 9. Cont.



Geosciences 2023, 13, 156 22 of 30                   
 

 

 
(c) 

                ff              
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Figure 10. Damage index contour maps for three different values of rock volume while the volume of

rock is equal to 10 m3: (a) rock velocity 5 m/s; (b) rock velocity 10 m/s; and (c) rock velocity 15 m/s.

6. Limitations and Future Work

Limitations of this work come at different stages of the analysis. Concerning the use
of the proposed DI for the vulnerability at the risk equation, it has to be taken into account
that this value refers to the initial impact onto a building, and that it does not take into
account the propagation of the rock into the building, a potential collapse of the building
due to loss of its overall stability, nor non-structural damage.

Limitations of this work with respect to the determination of the contact forces concern
the non-conservative assumption of cubic block shape and of full rock-wall contact during
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the impact. A fixed Young’s modulus was considered for the rock block, thus lithology
variation is not considered here. Nevertheless, this can be further investigated using the
proposed methodology. Moreover, the basic assumption of a rock moving horizontally and
impacting the wall with a horizontal velocity was made. Falling rocks or rocks impacting
the wall with a given incidence angle have not been considered here. In the same way,
only the kinetic energy of the rock block was simulated and further studies are needed in
order to determine which is the real effect of the boulder rotation in the characterization
of the impact.

The assessment of the out-of-plane response of the masonry can be improved using
solid finite elements, and specific failure criteria for the out-of-plane shear stress of the wall.
Different assumptions concerning the wall boundary conditions (in this work the wall was
considered fixed at the base and hinged at the top) and their effect on the damage can also
be investigated in the future. Moreover, the provided simulations address non-load-bearing
walls, without considering how the response of the masonry wall would change in function
of different vertical overlying weights.

Each computational predictive model is reliable only for the range of values of pa-
rameters that comprise the database that was used for its training and development. The
proposed ANN LM 4-21-1 model can provide reliable predictions for values of the input
parameters between the minimum and maximum value of each parameter as defined in
Table 2. For values out of these ranges, each prediction is risky because the proposed model
has not been trained accordingly. To enlarge the range of validity of the proposed model,
the authors plan to update the database. With respect to that, there is a double requirement
for the damage database. First, it should be extended to include different masonry types,
dimensions, and mechanical properties. A next step would be to interpret the mechanical
properties of the masonry and specifically the wall tensile strength into categorical masonry
classes (for instance according to age, materials etc.,).

7. Conclusions

A numerical methodology has been provided for assessing the expected damage
for masonry walls when impacted by rock blocks, in terms of a DI. A large database of
672 datasets has been created as a tank of damage values. The database includes four input
parameters, two characterizing the masonry wall (wall width and tensile strength) and two
the rock block kinematics (rock block volume and velocity).

Based on this database, a variety of AI algorithms has been tested to provide the
optimum model describing the DI. The optimal model to calculate the expected DI was the
ANN LM 4-21-1 model. Using this model, the a10-index was 0.9888 for the training and
0.9911 for the test data. The R index was calculated to be 0.9996 and 0.9995, respectively.
The fitted curves were observed to be smooth, which indicates that there is no overfitting.
Both the wall width and the masonry tensile strength were indicated to have an important
effect on the resultant damage. Neglecting them during the risk analysis could lead to
non-reliable results.

According to the selected AI model, an equation was extracted for the calculation of the
DI, which can be directly incorporated into the risk assessment equation. The application
constraints for the provided results, concerning database limitations and difficulties for the
characterization of the structural typology, should be taken into consideration, as described
in Section 6. Further comparison with real cases is needed for the verification of the results
of this work, which is possible using the proposed equation.

Supplementary Materials: The following supporting information can be downloaded at: https://

www.mdpi.com/article/10.3390/geosciences13060156/s1, Table S1: Database used for the training

and development of ANN models (Database.xls).
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Nomenclature

ANN(s) Artificial Neural Network(s)

[B{1, 1}] Vector that contains the bias values of the hidden layer

[B{2, 1}] Vector with the bias of the output layer

BPNN Back Propagation Neural Network

C Cost of the element at risk

CNS Central Nervous System

Co Competitive transfer function

DI Damage Index

F Transmitted force to the wall during the total contact time t

fm Masonry Tensile Strength

fmc Masonry Compressive Strength

J Impulse

HL Hard-limit transfer function

HTS Hyperbolic Tangent Sigmoid transfer function

[IP] Vector with the four (4) input variables

[IW{1, 1}] Matrix that contains the weights of the hidden layer

Li Linear transfer function

LS Log-Sigmoid transfer function

[LW{2, 1}] Vector with the weights of the output layer

MAPE Mean Absolute Percentage Error

MSE Mean Square Error

NRB Normalized Radial Basis transfer function

P (L) Annual frequency of expected annual loss the rockfall events of a given magnitude

PLi Positive Linear transfer function

P(T:L) Probability of the rockfall reaching the element at risk

P (S:T) Temporal-spatial probability of the element at risk

R Pearson correlation coefficient

RB Radial Basis transfer function

R Risk expressed in terms of expected annual loss

RV Rock Velocity

SHL Symmetric hard-limit transfer function

SM Soft Max transfer function

SSE Sum Square Error

SSL Symmetric Saturating Linear transfer function

t Thickness of Masonry Wall

TB Triangular Basis transfer function

V (E:S) Vulnerability of the element at risk with respect to the rockfall event

VR Volume of Rock

σxx, σyy principal stresses
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