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Abstract: Organic semiconductors have emerged as potential alternatives to conventional inorganic
materials due to their numerous assets and applications. In this context, the star-shaped triindole
core stands as a promising system to design new organic materials with enticing charge-transporting
properties. Herein, we present the synthesis of three thiophene-containing triindole derivatives
that feature N-alkyl chains of different lengths, from methyl to decyl. The impact of the alkylation
patterning on the crystallinity of the thin films and their resultant performance as semiconductor have
been analyzed. All derivatives displayed p-type semiconductor properties, as demonstrated via both
TOF measurements and integration in organic thin-film transistor (OTFT) devices. The attachment of
longer alkyl chains and the functionalization of the silicon substrate with octadecyltrichlorosilane
(OTS) prompted better OTFT characteristics, with a hole mobility value up to 5 × 10−4 cm2 V−1 s−1.
As elucidated from the single crystal, this core is arranged in a convenient cofacial packing that
maximizes the π-overlapping. The analysis of the thin films also corroborates that derivatives
possessing longer N-alkyl chains confer a higher degree of order and a more adequate morphology.

Keywords: alkylation patterning; carbazole; organic chemistry; organic semiconductors; OTFTs;
triindole; thin-film morphology

1. Introduction

The current upsurge in organic electronics acknowledges the potential of organic semi-
conductors as a realistic alternative to conventional inorganic materials [1,2]. Even though
the state-of-the-art technology in this area still cannot compete with the performance of
crystalline silicon in terms of charge mobility, several materials have already surpassed the
milestone of 10 cm2 V−1 s−1 [3,4]. Furthermore, the aim of organic materials is not substi-
tuting inorganic ones in high-performing applications but rather granting desired features
in next-generation devices, such as flexibility or transparency. Their many advantages also
encompass uses from the fabrication of large-area displays with a lower production cost to
the modulation of their properties via facile synthetic methods [2,5–7].

The π-conjugated backbone of an organic compound rules fundamental properties,
such as the electronic profile, the arrangement in the solid state, the air stability, and the
optical characteristics [8–10]. Since the structural design represents the cornerstone of
an organic semiconductor, the investigation of this topic has led to countless molecular
structures developed from a wide array of building blocks [3,6,11–15]. Apart from the key
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role of the main aromatic nucleus, however, additional structural features can be equally
decisive in governing the semiconductor characteristics of a material. A prime example of
this is the inclusion of flexible alkyl chains, which not only improve the solubility but also
influence the intermolecular interactions in the solid state [16–20]. Therefore, the alkylation
patterning in a particular core should be carefully addressed to extract its full potential in
terms of charge carrier mobility.

In this way, 9H-carbazole emerges as a highly promising nucleus that can supply
several characteristics needed in novel materials, e.g., hole-transporting properties with sta-
bility against oxidative doping by atmospheric oxygen [13,21] and high fluorescence [22,23].
Additionally, it embeds nitrogen as a heteroatom that provides a suitable point to insert
alkyl chains. The case of the diindolo[3,2-a:3′,2′-c]carbazole core, also known as triindole,
represents a particularly enticing system constructed from carbazole that features a star-
shaped π-extension [24,25]. The successful integration of triindole-based structures in as-
sorted devices, such as OSCs [26–28], OLEDs [29–31], and, more recently, OTFTs [18,32–34],
clearly reinforces their potential.

Herein, we report the synthesis of a set of new triindole derivatives functionalized
with thiophene moieties and their integration in OTFT devices. The inclusion of sulfur-
containing heterocycles, such as thiophene, represents a well-known strategy in the search
for novel materials within organic electronics [35–40]. The advantages of attaching sulfu-
rated moieties, such as 5-methylthien-2-yl and benzothien-2-yl, to the triindole core, instead
of aromatic hydrocarbons, have been already demonstrated in our research group [33].
In this particular study, the 3,8,13-tri(thiophen-2-yl)-10,15-dihydro-5H-diindolo[3,2-a:3′,2′-
c] carbazole nucleus has been characterized as a p-type semiconductor and structurally
ameliorated considering both the molecular and the device design. Synthetically, this core
has been N-alkylated with chains of different lengths, from methyl to decyl, as shown in
Figure 1. Regarding the architecture of the device, the focus has been placed on optimizing
the interface between these semiconductors and the Si/SiO2 substrate in a bottom-gate
top-contact OTFT. In fact, the presence of a passivation coating or anchored groups in
the interface can greatly influence the growth and features of a vacuum-deposited thin
film [41–45]. Specifically, the SiO2 surface has been either functionalized with octade-
cyltrichlorosilane (OTS) as an aliphatic self-assembled monolayer (SAM) or coated with
polystyrene (PS) as an aromatic polymeric layer. The effects of both the N-alkylation pat-
terning and the passivation layer over the performance of this core have been correlated
with the degree of order and morphology of the thin films, confirming the relevance of an
adequate structural design.
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Figure 1. Molecular design of the studied thiophene-substituted triindoles 1a–c and the architecture
of the OTFT devices, constructed over Si/SiO2 substrates coated with either OTS or PS.

2. Materials and Methods
2.1. Synthesis and Characterization

The commercially available chemicals were employed as received. Chemicals and
reagents were as follows: 5-bromoisatin (Alfa Aesar, 91.2%), sodium hydride (Aldrich, 60%
dispersion in mineral oil), methyl iodide (Acros Organics, 99%), 1-bromohexane (Aldrich,
98%), 1-bromodecane (Aldrich, 98%), hydrazine hydrate (Sigma-Aldrich, reagent grade,
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55% N2H4), phosphorous(V) oxychloride (Acros Organics, 99%), 2-thienylboronic acid
(TCI, 98.7%), and Pd(PPh3)4 (Acros Organics, 99%). Anhydrous DMF (Thermo Scientific)
was kept under nitrogen atmosphere over a molecular sieve. Dichloromethane (VWR) was
distilled from CaH2. Flash chromatography was carried out over commercial silica gel
(VWR, 40–63 µm). All synthetic procedures were carried out in open-air atmosphere unless
otherwise stated.

2.2. Instrumentation and Methods

Here, 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were collected in a Varian
Mercury spectrophotometer (Varian Inc., Palo Alto, CA, USA). In the case of compound
1a, the 13C NMR (100 MHz) spectrum was recorded in a Bruker 400 MHz Avance III.
The analysis of the NMR spectra was achieved using MestRec Nova software (version
14.2.0). The solvent signal was used to reference all the spectra. Absorption spectra were
registered on a Varian Cary UV–Vis–NIR 500E spectrophotometer (Palo Alto, CA, USA)
and emission spectra were registered using a PTI fluorimeter (Birmingham, AL, USA).
1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOP) was selected as the standard (λEx = 300 nm,
Φ = 0.93 in cyclohexane) for the analysis of the fluorescence quantum yields, as suggested
in the literature protocol [46]. Fluorescence quantum yields of thin films were determined
by means of an integrating sphere. Cyclic voltammograms were registered in a cylindrical
three-electrode cell using the following electrodes: an Ag/Ag+ electrode (1 mM AgNO3 in
acetonitrile) as the reference electrode, a glassy-carbon electrode as the working electrode,
and a platinum wire as the counter electrode. All voltammetric curves were recorded with
a microcomputer-controlled potentiostat/galvanostat Autolab with PGSTAT30 equipment
(Metrohm Autolab BV, Utrecht, The Netherlands) and GPES software (version 4.9) under
quiescent conditions, at a scan rate of 100 mV s−1 and under an argon atmosphere. The
solutions were prepared in distilled dichloromethane (1 mM) with tetrabutylammonium
hexafluorophosphate (TBAP) as the supporting electrolyte (0.1 M). The potentials were
referred to the Fc+/Fc redox couple. The ionization potentials (IP) were calculated from
the onset of the first oxidation peak as IP = oxEonset + 5.39, where 5.39 eV stands as the
formal potential of the Fc+/Fc couple in the Fermi scale [47]. The electron affinities (EA)
were estimated as EA = IP − Egap. The optical gap energies (Egap) were estimated from the
absorption spectra (λonset). Ionization potentials (IP) in the solid state were measured by
the photoelectron emission method in air. Thin films for IP measurements were prepared
by vacuum thermal evaporation (10−6 mbar) of the organic compounds on glass slides
coated with fluorine-doped tin oxide. A negative voltage of 300 V was applied to the
sample substrate. A deep UV deuterium light source (ASBN-D130-CM) and a CM110
1/8m monochromator (Spectral Products, Putnam, CT, USA) were used for illumination
of the samples with monochromatic light. A 6517B Keithley electrometer (Keithley, Solon,
OH, USA) was connected to the counter electrode for the photocurrent measurement,
which was flowing in the circuit under illumination. An energy scan of the incident
photons was performed while increasing the photon energy. Thermogravimetric analyses
(TGA) were recorded at a heating rate of 20 ◦C min−1 under nitrogen atmosphere using
a TA Instruments Q50 (New Castle, DE, USA). The extraction of the charge drift mobility
was performed by means of the TOF technique. The organic compounds were vacuum-
deposited (10−6 mbar) on pre-cleaned indium tin oxide (ITO)-coated glass substrates, and
then 80 nm of an aluminum layer was also deposited via thermal vacuum evaporation
using a mask (area = 0.06 cm2). Photo generation of charge carriers was performed by a
light pulse through the ITO. A Keithley 6517B electrometer was used to apply external
voltages with a pulsed third-harmonic Nd:YAG laser EKSPLA NL300 (pulse duration
of 3–6 ns, λ = 355 nm). A Tektronix TDS 3032C digital storage oscilloscope was used
to record the TOF transients. The transit times (tt) were calculated using the kink on
the curve of the transient in the log–log scale. The drift mobilities were calculated as
µ = d2/Utt, where d is the layer thickness and U is the surface potential at the moment of
illumination. Zero-field mobilities (µ0) and field dependence parameters (α) were extracted
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from µ = µ0eαE1/2
. The single crystal was analyzed using a D8 Venture System (Bruker AXS,

Karlsruhe, Germany) equipped with a multilayer monochromator and a Mo microfocus
(λ = 0.71073 Å). The frames were integrated with the Bruker SAINT software package
(version SAINT V8.38A) via a narrow-frame algorithm. The structure was elucidated and
refined using the Bruker SHELXTL software package. Out-of-plane GIXRD measurements
were performed on vacuum-deposited thin films (semiconductor thickness = 75 nm) with a
PANalytical X’Pert PRO MRD diffractometer (Almelo, the Netherlands) possessing a PIXcel
detector, a parabolic Göbel mirror at the incident beam, and a parallel plate collimator at
the diffracted beam (Cu Kα radiation (λ = 1.5418 Å), with a work power of 45 kV × 40 mA).
The optimized angle of incidence used was 0.20◦ (1a) or 0.18◦ (1b,c). The morphology
of the layers, analyzed by means of atomic force microscopy (AFM), was profiled using
an AFM Dimension 3100 system connected to a Nanoscope IVa electronics unit (Bruker,
Billerica, MA, USA).

2.3. OTFT Fabrication and Characterization

OTFTs were constructed in a bottom-gate top-contact geometry using thermally-
oxidized crystalline-silicon wafers with a SiO2 layer as the gate dielectric. The gate side
of the substrates was partially unprotected with ammonium fluoride. Then, the wafers
were cleansed by subsequent ultrasonic treatments in acetone, isopropyl alcohol, and water,
dried by a nitrogen blow, and heated at 100 ◦C for 5 min. The SiO2 surface was then either
functionalized with octadecyltrichlorosilane (OTS) or coated with polystyrene (PS). The
functionalization with OTS SAMs [48,49] was achieved by immersing the substrates in a
solution of OTS in toluene (2 mM) for 24 h at room temperature. Then, the substrates were
cleaned by subsequent ultrasonic treatments in toluene, acetone, and isopropyl alcohol,
and finally dried by a nitrogen blow and heated at 100 ◦C for 5 min. The coating with PS
was carried out with a solution of PS in toluene (4 mg mL−1), which was spin-coated onto
the wafer. The substrate was spun at 1500 rpm for 5 s and 2500 rpm for 33 s with a P6700
spin-coater (Specialty Coating System, Indianapolis, IN, USA). The organic semiconductor
was deposited by thermal evaporation in a vacuum system with a base pressure below
10−6 mbar. The temperature was manually controlled to ensure a stable deposition rate
of 0.3 Å s−1 until a thickness of ca. 75 nm was obtained. Then, the substrates were
transferred to a different vacuum chamber to deposit the metallic contacts. Gold was
chosen as the metal for the drain and source electrodes, which were defined with a metallic
mask possessing a channel length (L) of 80 µm and width (W) of 2 mm. The OTFTs were
electrically characterized in the dark under ambient conditions using a Keithley 2636A
source meter (Solon, OH, USA). The charge carrier mobility was extracted in the saturation
regime (µsat) from Equation (1), as follows:

ID =
W Cox µ

2 L
(VG−Vth)

2 (1)

where W and L are the channel width and length, respectively, and Cox is the unit dimen-
sional dielectric capacitance of the gate insulator.

3. Results and Discussion
3.1. Synthesis and Characterization

The synthesis towards the final compounds 1a–c, which started with the commercially
available 5-bromoisatin, is presented in Scheme 1. The alkylation of the starting material
was conducted under standard conditions, using NaH and CH3I to obtain 2a or K2CO3
and the corresponding 1-bromoalkane in the case of 2b and 2c. Then, the reduction via
the Wolff–Kishner reaction led to the 5-bromooxindole derivatives 3a–c. The cycloconden-
sation towards the brominated triindole systems, accomplished with POCl3 under reflux,
prompted a higher yield for the derivatives featuring shorter alkyl chains. Finally, the
attachment of the thiophene moieties was achieved through the Suzuki–Miyaura cross-
coupling reaction [50]. It should be mentioned that the severe insolubility of the methylated
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precursor 4a required the use of microwave irradiation to provide the desired compound
1a in a comparable yield.
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Scheme 1. Synthetic route followed to furnish the organic semiconductors 1a–c. Reagents and
conditions: (i) NaH and CH3I in DMF at RT for the synthesis of 2a or (ii) K2CO3 and R-Br in DMF at
RT for the synthesis of 2b,c; (iii) NH2NH2·H2O, reflux; (iv) POCl3, reflux; (v) 2-thienylboronic acid,
Pd(PPh3)4 and K2CO3 in THF:H2O, µW (1a) or reflux (1b,c).

3.2. Physical Characterization

The thermal and optical properties in solution and in the solid state of compounds
1a–c are compiled in Table 1. Remarkably, all compounds are suitable for the vacuum-
evaporation process, with decomposition temperatures (Td) that surpass 425 ◦C (TGA
scans are depicted in the Supporting Information).

Table 1. Thermal and optical properties in solution and in the solid state of derivatives 1a–c.

Solution 2 Solid State 3

Compound Td (◦C) 1 λabs,max (nm) λem,max (nm) Φf
4 λabs,max (nm) λem,max (nm) Φf

4

1a 476 317, 344 395, 414 0.14 315, 353 432 0.02
1b 433 318, 344 397, 415 0.15 316, 350 424 0.03
1c 427 318, 344 397, 415 0.15 313, 352 424 0.03

1 Onset decomposition temperature obtained from TGA. 2 Optical properties determined from a 10 µM solution
in CH2Cl2. 3 Optical properties determined from a vacuum-evaporated thin film of the compound deposited over
quartz. 4 Fluorescence quantum yield (Φf) obtained with an integration sphere (λex = 330 nm).

In terms of the optical properties, derivatives 1a–c display similar characteristics
regardless of the length of the N-alkyl chains. All of them emit into the UV–blue region,
peaking at 415 nm in CH2Cl2 and displaying a considerable fluorescence quantum yield
of ca. 0.15. In the solid state, the emission spectra are slightly red-shifted and broadened,
with a decay of the fluorescence quantum yield to ca. 0.03, which is associated to the
aggregation of the triindole systems. The absorption and emission spectra of derivatives
1a–c are represented in the Supporting Information.

The electrochemical properties of 1a–c, analyzed by means of cyclic voltammetry in
CH2Cl2, are listed in Table 2. All compounds exhibited a first quasi-reversible oxidation
process and a second irreversible one, whereas no reduction process could be observed.
Consequently, the ionization potentials could be estimated. Their values are slightly
conditioned by the length of the N-alkyl chains, ranging from 5.58 to 5.66 eV in derivatives
1a and 1c, respectively. These values are translated into quite low-lying HOMO energy
levels, conferring stability against atmospheric oxygen to the structure while also being
suitable for hole injection. The energy of the optical band gaps (Egap) was estimated to be
3.22 eV in all three cases, which is smaller than that of the bare triindole system (3.53 eV [20])
because of the more extended π-conjugation of the system. The ionization potentials were
also estimated in the solid state though the photoelectron emission technique as a closer
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approximation of the device conditions. The featured values, which go from 5.11 eV (1b,c)
to 5.18 eV (1a), should ensure an optimal injection process due to the closeness to the gold
work function (5.1 eV). The resulting energy levels are represented in Figure 2. The cyclic
voltammograms and the photoelectron emission spectra are compiled in the Supporting
Information.

Table 2. Electrochemical characterization of derivatives 1a–c.

Compound Egap (eV) 1 oxEonset (V) 2 IP (eV) 3 EA (eV) 4 IP (eV) 5

1a 3.22 0.18 5.58 2.36 5.18
1b 3.22 0.21 5.60 2.38 5.11
1c 3.22 0.27 5.66 2.44 5.11

1 Optical energy gap (Egap) estimated from the absorption spectrum (λabs,onset) in CH2Cl2. 2 Onset oxidation
potential (oxEonset) vs. Fc+/Fc determined from CV in dichloromethane (1 mM). 3 Ionization potential (IP)
estimated as IP = oxEonset vs. Fc+/Fc + 5.39. 4 Electron affinity (EA) estimated as EA = IP − Egap. 5 Ionization
potential (IP) in the solid state, determined via the photoelectron emission technique.
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The charge-transporting properties of the final compounds 1a–c were analyzed via the
time-of-flight (TOF) technique as a first approximation (Table 3). The graphics containing
the TOF transients and the dependence of the hole drift mobilities are collected in the
Supporting Information. All three compounds showed a non-dispersive behavior and an-
ticipated promising p-type semiconductor properties. As observed, the extracted mobility
values are highly conditioned by the N-alkylation patterning. Derivative 1a, featuring the
shortest N-alkyl chain, displays a maximum µh of 7 × 10−5 cm2 V−1 s−1 that is clearly
outdone by its analogs 1b,c (1 × 10−3 cm2 V−1 s−1). This enhancement, which goes up to
an order of magnitude, manifests the preference of longer N-alkyl chains in this particular
core. Nevertheless, a further elongation from hexyl to decyl did not show a substantial
modification using this technique.

Table 3. Charge carrier mobility values of derivatives 1a–c obtained from TOF measurements.

Compound µh (cm2 V−1 s−1) [E (V cm−1)] 1 µ0 (cm2 V−1 s−1) 2 α ((cm V−1)1/2) 3

1a 7 × 10−5 [7 × 105] 4 × 10−6 0.0034
1b 1 × 10−3 [2 × 105] 6 × 10−4 0.0017
1c 1 × 10−3 [2 × 105] 2 × 10−4 0.0053

1 Hole mobility (µh) at the specified electric field. 2 Zero-field mobility (µ0). 3 Field dependence (α). The
measurements were performed under ambient conditions at room temperature. The layers were prepared under
vacuum evaporation, with thicknesses ranging from 0.56 to 1.4 µm.
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3.3. Organic Thin-Film Transistors

Considering the appropriate hole-transporting properties in conjunction with the
adequate energy levels of compounds 1a–c, all of them were tested as p-type semiconduc-
tors in OTFT. The characteristics of the OTFT devices fabricated from 1a–c over OTS- and
PS-treated Si/SiO2 substrates are compiled in Table 4.

Table 4. OTFT characteristics of devices integrating compounds 1a–c over Si/SiO2 substrates passi-
vated with either OTS or PS.

SiO2/OTS SiO2/PS

Compound µh (cm2 V−1 s−1) Ion/Ioff µh (cm2 V−1 s−1) Ion/Ioff

1a 7 × 10−5 103 6 × 10−5 102

1b 2 × 10−4 104 1 × 10−4 103

1c 5 × 10−4 104 2 × 10−4 104

As observed, the length of the N-alkyl chains appears as the main factor to modulate
the hole mobility. In fact, the substitution of the N-methyl by the N-decyl implies an
increase in the µh up to an order of magnitude over OTS-treated substrates, from 7 × 10−5

to 5 × 10−4 cm2 V−1 s−1. The trend displayed by OTFT devices is, therefore, consistent
with the results collected via TOF measurements. The effect of the N-alkylation on the per-
formance of triindole also surpasses that of the nature of the aromatic moieties. Specifically,
the attachment of alternative sulfurated scaffolds (i.e., 5-methylthien-2-yl and benzothien-
2-yl) or aromatic hydrocarbons (i.e., phenyl and naphtyl) could only modulate the µh from
2 × 10−4 to 4 × 10−4 cm2 V−1 s−1 [33]. The Ion/Ioff ratios follow the same tendency, with
higher and more suitable values of ca. 104 in the case of the N-decylated 1c. Considering
the effect of the passivation layer, OTS-containing devices slightly outperform their PS
counterparts. This effect is also more significant with derivatives featuring longer N-alkyl
chains. Another point to highlight is that devices fabricated with the N-methylated deriva-
tive 1a display very linear saturation characteristics and low threshold voltage. Contrarily,
derivatives 1b,c exhibit a kink, so the charge mobility values were extracted from the region
at higher VG, as suggested in the literature [51,52]. The OTFT characteristics of devices
fabricated from compounds 1a–c over OTS-treated substrates are illustrated in Figure 3,
whereas those of their PS counterparts can be found in the Supporting Information. The
evolution of the hole mobility through time was also monitored to evaluate the air stability
of this core, a feature that is highly coveted in organic electronics. As shown in Figure 3d,
compounds 1a–c exhibit minimal fluctuation of the hole mobility throughout a month.
Their notorious air-stability was also corroborated by a shelf lifetime surpassing 100 days
(Figure S7).

3.4. Solid-State Characterization
3.4.1. Crystallographic Data

The crystal structure of derivative 1a could be elucidated by means of single-crystal
X-ray diffraction. The ORTEP projection and the molecular packing detailing the main
intermolecular interactions are depicted in Figure 4. Compound 1a crystallized in space
group P–1 of the triclinic system, with dimensions a = 7.2546 (7) Å, b = 14.2460 (14) Å,
c = 14.4915 (15) Å, α = 95.662 (5)◦, β = 100.412 (4)◦, and γ = 98.766 (4)◦, and a total
volume of 1443.5(3) Å3. The intermolecular packing could be classified as a β-type or
sheet [53,54], featuring slightly displaced cofacial interactions. This type of arrangement
is often considered as optimal for charge transport due to the strong π-overlap between
molecules [54,55]. Specifically, the π–π interactions show conveniently short distances as
close as 3.34 Å (Figure 4c). The methyl chains also assist and reinforce the packing with
CH···π interactions. It should be noted that the triindole backbone is not entirely planar,
since the peripheral benzene rings display a deviation of ca. 9◦ with respect to the central
one. The thiophene moieties also show torsion angles with respect to the triindole nucleus
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that go from 13.4 to 40.8◦ (Figure 4a). In spite of this, the arrangement of derivative 1a is
prone to facilitating the charge transport throughout the material.
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3.4.2. Order and Morphology of the Thin Films

In order to correlate the characteristics of the OTFT devices based on derivatives
1a–c with the analyzed structural variations, the crystallinity and disposition within the
thin films was evaluated by means of grazing incidence X-ray diffraction (GIXRD). The
GIXRD patterns, illustrated in Figure 5a,b, are consistent with the tendency exhibited by the
OTFT devices. The longer the N-alkyl chains, the sharper and more intense the diffraction
peaks, which indicates a more prominent degree of order and crystallinity in the thin films.
Comparing the nature of the passivation layer, the outperforming OTS-treated devices also
provide more crystalline films than their PS analogs in derivatives 1b,c.
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Figure 5. GIXRD patterns of thin films of 1a–c deposited over Si/SiO2 substrates passivated with
OTS (a) and PS (b), and the proposed arrangement of 1a over the substrate and the π-stacking
direction (c), based on the GIXRD patterns and the elucidated single-crystal structure.

The N-methylated 1a provides a rather amorphous arrangement regardless of the
passivation layer, agreeing with the lower OTFT performance and the small difference
between OTS and PS. Nevertheless, the availability of the single-crystal structure of 1a
permitted a closer insight into the arrangement of this material. From the simulated powder
diffractogram, the diffraction signal peaking at 2θ = 5.52◦ could be assigned as the plane
(010), which stands parallel to the substrate. As represented in Figure 5c, the π-system
of 1a adopts a perpendicular disposition with respect to the substrate. Consequently, the
π-stacking direction lays parallel to the substrate, ensuring a proper pathway for charge
transport. The morphology of the vacuum-deposited thin films of 1a–c over OTS- and
PS-treated substrates was analyzed by means of atomic force microscopy (AFM). The AFM
images, depicted in Figure 6, reveal quite homogeneous layers with small protrusions
or hillocks.
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sizes. The methylated derivative 1a presents a quite uniform surface with undefined
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domains of small grain sizes from 0.03 to 0.06 µm over PS, coinciding with the notoriously
low degree of order detected via GIXRD. The deposition over OTS constitutes a more
irregular layer but with slightly larger grains (0.1 µm). On the other hand, derivatives 1b,c
exhibit surface profiles with more defined regions and larger grain sizes from 0.15 to 0.3 µm
over both OTS and PS, agreeing with the higher degree of order of the films. In addition,
the minor roughness and morphology of 1c films are again accordant to the superior hole
mobilities extracted from the OTFTs.

4. Conclusions

Three thiophene-functionalized triindoles possessing different N-alkylation patterning
(1a–c) were successfully synthesized in a facile four-step route. The incorporation of the
thiophene moieties placed the ionization potential of the triindole nucleus at 5.11 eV in
the solid state, making it perfectly suitable for hole injection while still preserving stability
against oxidation. Particularly, the N-decylated derivative 1c reached a hole mobility up to
1 × 10−3 and 5 × 10−4 cm2 V−1 s−1 based on TOF and OTFT measurements, respectively.
In fact, the presence of longer N-alkyl chains not only endowed the thin films with a higher
degree of order and crystallinity, but also granted a more adequate morphology. The
deposition of the thin film and its characteristics were also ameliorated by functionalizing
the Si/SiO2 surface with OTS in comparison with the PS coating. All these factors directly
contributed to promoting the hole mobility in the respective OTFTs. Structurally, the strong
π–π interactions and the favorable β packing found in the single crystal correlate with the
good OTFT performance. Finally, the potential of these materials in organic electronics is
supported by their outstanding air stability, which implies a minimal decrease in the OTFT
performance and a shelf lifetime surpassing 100 days.

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings13050896/s1, Synthetic procedures and characterization;
Figure S1: TGA scans of compounds 1a–c. The decomposition temperatures (Td) were estimated from
the onset; Figure S2: Absorption and emission spectra of compounds 1a–c in: (a) dichloromethane
(10 µM) and (b) vacuum-evaporated thin films; Figure S3: Electrochemical data of compounds
1a–c: (a) cyclic voltammogram of 1b as representative (the inset shows the first oxidation step)
and (b) photoemission spectra of compounds 1a–c; Figure S4: Estimation of the hole mobility of
compounds 1a–c via the TOF technique: (a) TOF transients (the inset shows one of the transient
curves in the linear plot) and (b) electric field dependence of the hole mobility; Figure S5: Output
characteristics (VG from 0 to −40 V) of OTS-treated devices based on compounds: (a) 1a; (b) 1a;
and (c) 1c; Figure S6: OTFT characteristics of PS-treated devices incorporating derivatives 1a–c:
(a) transfer and saturation (VDS = −40 V) and (b) output characteristics; Figure S7: Transfer and
saturation (VDS = −40 V) characteristics of devices fabricated with compound 1b after 132 days
(above) and 1c after 122 days (below) over: (a) OTS- and (b) PS-treated substrates.
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