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Multivariate Small Area
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The Case of Continuous
and Binary Variables
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Abstract

Large-scale sample surveys are not designed to produce reliable estimates for small areas. Here, small area

estimation methods can be applied to estimate population parameters of target variables to detailed geo-

graphic scales. Small area estimation for noncontinuous variables is a topic of great interest in the social

sciences where such variables can be found. Generalized linear mixed models are widely adopted in the

literature. Interestingly, the small area estimation literature shows that multivariate small area estimators,

where correlations among outcome variables are taken into account, produce more efficient estimates than

do the traditional univariate techniques. In this article, the author evaluate a multivariate small area esti-

mator on the basis of a joint mixed model in which a small area proportion and mean of a continuous vari-

able are estimated simultaneously. Using this method, the author “borrows strength” across response

variables. The author carried out a design-based simulation study to evaluate the approach where the indi-

cators object of study are the income and a monetary poverty (binary) indicator. The author found that the

multivariate approach produces more efficient small area estimates than does the univariate modeling

approach. The method can be extended to a large variety of indicators on the basis of social surveys.
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Large-scale sample surveys are usually not designed to produce accurate and precise

estimates for small population domains, for example, small geographic areas or small

groups in the population (e.g., on the basis of cross-classification between ethnic

groups and age bands). However, many social phenomena, such as poverty, well-being,

and social exclusion show an important spatial heterogeneity at a small geographic

level (Molina and Strzalkowska-Kominiak 2020; Moretti, Shlomo, and Sakshaug

2020; Pratesi 2016). Importantly, policymakers in charge of implementing subnational

social policies ask for disaggregated estimates of social indicators. Thus, small area
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estimates of such phenomena should be produced and released to support decision

makers (Pratesi 2016).

In recent years, there has been growing attention to the methodological develop-

ment of small area estimation methods. Statistical models are now prominent in this

field. Indeed, model-based estimators “borrow strength” from related areas using link-

ing models, and they provide more efficient estimates than do direct estimators (see

Pfeffermann 2013; Rao and Molina 2015).

The small area estimation approach using linear mixed models is now widely used.

These models are powerful given that they include random area effects to take into

account between-area variation, that is, the unexplained variability between the small

areas. A pioneer work in this context is the Battese, Harter, and Fuller model (Battese,

Harter, and Fuller 1988), with further work on mean squared error (MSE) estimation

proposed by Prasad and Rao (1990). This model is applicable to continuous response

variables, and normality is assumed for the individual error and random area effects.

In case of failure of the model assumptions, extensions are proposed in the literature,

for example, to account for heteroscedasticity and outliers. Readers may refer to Rao

and Molina (2015) for an extensive review of methodological developments.

In the presence of binary outcomes, the generalized linear mixed model (GLMM)

with logit link function, that is, a logistic mixed model, is widely adopted. Specifically,

an empirical plug-in predictor (EPP) under a GLMM is used in small area estimation

of proportions in official statistics (Chandra, Chambers, and Salvati 2012; Chandra,

Kumar, and Aditya 2018; Molina and Strzalkowska-Kominiak 2020; Rao and Molina

2015; Salvati, Chandra, and Chambers 2012). For example, the U.K. Office for

National Statistics and the Australian Bureau of Statistics use this method (Chambers,

Salvati, and Tzavidis 2016; Chandra et al. 2018). Binary variables can be found in most

surveys. For instance, some poverty and well-being indicators are based on binary vari-

ables (Betti and Lemmi 2013). Additionally, some social indicators estimated on

Labour Force Surveys are also constructed on these types of variables (see Chambers

et al. 2016; Molina and Strzalkowska-Kominiak 2020). Hence, there is a high demand

for small area proportions.

Because many social phenomena are naturally multidimensional (Betti and Lemmi

2013), and therefore correlated, this property can be used to further improve small area

estimates (Benavent and Morales 2016; Fabrizi, Ferrante, and Pacei 2005; Moretti

et al. 2020; Moretti, Shlomo, and Sakshaug 2021; Ubaidillah et al. 2019). In this con-

text, multivariate small area estimation methods can be applied. Moretti et al. (2020)

proposed the use of multivariate small area estimation methods to estimate latent well-

being indicators, under the use of the multivariate extension of the Battese, Harter,

and Fuller model. This model was studied in detail by Datta, Day, and Basawa (1999).

Recently, Moretti (2022) extended a GLMM with logit link function to the case of

bivariate proportions, showing good results in terms of efficiency compared with its

univariate setting.

In this article, I investigate the multivariate small area estimation problem of con-

tinuous and binary response variables jointly. In particular, I apply a joint mixed-

modeling strategy to the small area estimation of the mean of a continuous variable
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and proportion of a binary variable. This is an important problem in sociology and

related social sciences. In fact, when building poverty indicators, they can be based on

income and measured by a binary indicator taking a value of 0 or 1, denoting whether

the personal or household income falls below a poverty threshold (for a review and

discussion of poverty indicators, see Pratesi 2016). Therefore, income and poverty

indicators are correlated; this can be accounted for in the small area models by assum-

ing a joint modeling strategy.

NOTATION AND MULTIVARIATE SMALL AREA ESTIMATION
PROBLEM

I now present the notation used in the article and the small area estimation problem

we are studying. Let us consider a finite target population U with size N that is parti-

tioned into D nonoverlapping (disjoint) small areas, Ud , d = 1, :::, D of size Nd such

that [D
d = 1 Ud = U and

PD
d = 1 Nd = N . A random sample s of size n is selected from U .

nd denotes the sample size in small area d, and
PD

d = 1 nd = n.

Let ydi = (ydi1, ydi2)T denote a vector of the values of k = 1, 2 variables of interest Y

for unit i in area d. We assume ydi1 is continuous and normally distributed, whereas

ydi2 takes value 0 or 1 only. We are interested in estimating the vector of means of Y

denoted by �Yd = (�Yd1, �Yd2). �Yd1 is the mean of the continuous variable Y1, and �Yd2 is

the proportion related to variable Y2, which is also a mean.

The generic element related to variable k is given by equation (1):

�Ydk = N�1
d

P
i2Ud

ydik = N�1
d

P
i2sd

ydik +
P
i2rd

ydik

 !
, ð1Þ

where sd denotes the sample elements and rd the out-of-sample elements in area d.

Looking at equation (1), we see that the population mean can be split into sample (sd)

and out-of-sample elements (rd) in area d.

The design-based direct estimator for the kth small area mean �Ydk is given by

�̂Y
DIR

dk =

P
i2sd

wdiydikP
i2sd

wdi

, ð2Þ

where wdi denotes the survey weight for unit i in area d.

It is well known that estimator (2) becomes unstable when nd is small, because it is

based on area-specific sample quantities only (see Rao and Molina 2015; Särndal,

Swensson, and Wretman 2003). Additionally, the estimator cannot be computed for

small areas with nd = 0. Therefore, model-based small area estimation methods that

“borrow strength” across small areas via statistical models are adopted to produce reli-

able, that is, accurate and precise, small area estimates of the target parameter given

by equation (1) (Rao and Molina 2015). For the estimator of the variance of equation

(2), see Rao and Molina (2015).
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Small Area Estimation under a Joint Mixed Model for Continuous and Binary

Outcome Variables

To build indirect small area estimators, statistical models with random area-specific

effects that account for between-area variability are used in small area estimation (Rao

and Molina 2015). In the univariate small area estimation setting, the Battese, Harter,

and Fuller model (Battese et al. 1988) can be used to obtain small area estimates of

the population mean in case of continuous variables, that is, �Yd1. In the case of binary

responses, the GLMM with logit link function is often used to estimate small area pro-

portions, �Yd2 (Chambers et al. 2016; Chandra et al. 2018). Prior literature shows that

use of multivariate mixed models in small area estimation provides more efficient esti-

mates than does the univariate case where separate models are estimated on each

response variable (Datta et al. 1999; Moretti et al. 2020; Rao and Molina 2015).

Here, we assume that ydi follows a joint mixed effects model. This is obtained by

assuming a multivariate distribution for the random effects of responses k = 1 and

k = 2 (Ivanova, Molenberghs, and Verbeke 2016). The model is presented below, for

i = 1, :::, Nd and d = 1, :::, D:

ydi1 = xT
di1b1 + edi1 + ud1

logit pdi2½ �= log pdi2

1�pdi2

h i
= hdi2 = xT

di2b2 + ud2

(
, ð3Þ

where xdi1 and xdi2 denote the vectors of observed values of p unit-level auxiliary vari-

ables for unit i in area d related to variables k = 1 and k = 2. These can be the same for

both responses, depending on data availability and specific modeling problems (Fuller

and Harter 1987; Ivanova et al. 2016; Moretti et al. 2020).

Model 3 is a multilevel model for multivariate mixed response types, explaining

two outcomes simultaneously (Goldstein 2011), in this case Y1 and Y2. Goldstein et al.

(2009) studied a similar modeling approach. Because we are aiming to predict the

small area means of the Y1 and Y2 variables, we cannot account for the correlation

structure between the two by including one of them as a predictor in a univariate model

instead of a joint modeling approach. In fact, in the model-based small area estimation

approach, we need auxiliary information of the predictors for all the units in the popu-

lation to build the EPP. These are not available from census or administrative data for

Y1 and Y2 (e.g., the income variable is not available as an auxiliary variable from exter-

nal data sources).

We assume multivariate (bivariate in this case) normality of the random area effects,

that is, ud = (ud1, ud2)T ;N (0, Su), where Su denotes a 232 positive-definite variance-

covariance matrix. The off-diagonal elements are the covariances between ud1 and ud2.

The matrix is given as follows:

Su =
s2

u1 ru �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

u1 � s2
u2

p
ru �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

u2 � s2
u1

p
s2

u2

� �
,

where ru denotes the correlation coefficient. In addition, we assume that

ydi2jud2;Binomial(1, pdi2) with pdi2 = E(ydi2jud2).

326 Sociological Methodology 53(2)



Model 3 can be written for i = 1, :::, nd without loss of generality. Therefore, the

model parameters are estimated on a random sample s drawn from the population U

(Rao and Molina 2015). Here, I estimate model parameters via the maximum likeli-

hood (ML) approach. For estimation details that are beyond the scope of the present

article, readers can refer to McCulloch (1994, 1997) and Booth and Hobert (1999) for

the theory, and Berridge and Crouchley (2011) for its implementation.

Because of the multivariate nature of the likelihood function, a Gaussian quadrature

has been adopted in the literature. ML estimation of the parameters is computationally

complex for this model (Berridge and Crouchley 2011; Coull and Agresti 2000).

Readers interested in the computations can refer to Appendix A.3 in Berridge and

Crouchley (2011). The implementation is fully available in R via the package sabre.1

This approach is also studied and evaluated in Rabe-Hesketh and Skrondal (2008) and

Skrondal and Rabe-Hesketh (2004).

To provide a small area estimator for �Yd , we consider an EPP. Empirical best pre-

dictors in the case of GLMMs are difficult to obtain analytically, and they are not

available in a closed form. EPPs are easier to obtain and widely used by statistical

agencies (e.g., the U.K. Office for National Statistics and the Australian Bureau of

Statistics) (Chambers et al. 2016; Chandra et al. 2018). This problem becomes even

more challenging in the case of joint modeling of mixed types responses.

Therefore, we can write the EPP of the small area means under model 3 for area d

as follows:

�̂Y
EPP

d1 = N�1
d

P
i2sd

ydi1 +
P

i2rd
xT

di1b̂1 + ûd1

� �
�̂Y

EPP

d2 = N�1
d

P
i2sd

ydi2 +
P

i2rd
m̂di2

� �
8<
: , ð4Þ

with m̂di2 = Ê(ydi2jud2) = exp(xT
di2b̂2 + ûd2)½1 + exp(xT

di2b̂2 + ûd2)��1
, where b̂1, b̂2, ûd1,

and ûd2 denote the estimates of the regression coefficients and predictions of random

effects, respectively.

In practical applications, the auxiliary variables are available at the unit level for the

sample units only, and area-specific aggregates are available for the population from

the census or administrative data. As a consequence, equation (4) cannot be applied;

however, a modification of it can be derived, and its performance is studied in the liter-

ature (Chandra et al. 2018). This is given as follows:

�̂Y
EPP1

d1 = fd �̂Y d1 + (1� fd) (�X
T

r, d1b̂1 + ûd1)

�̂Y
EPP1

d2 = fd �̂Y d2 + (1� fd) exp(�X
T

r, d2b̂2 + ûd2)½1 + exp(�X
T

r, d2b̂2 + ûd2)��1

(
, ð5Þ

where fd = nd=Nd is the sampling fraction in area d and �̂Y dk =
P

i2sd
ydik=nd .

�Xr, dk = (Nd � nd)�1(Nd
�Xdk � nd�xdk) denotes the means of the auxiliary variables for

the out-of-sample units, with �Xdk = N�1
d

P
i2Ud

�xdik and �xdk = n�1
d

P
i2sd

xdik , denoting

the means of the auxiliary variables in the population and sample, respectively, for

area d and k = 1, 2.

When the sampling fractions fd are small (negligible) and �Xdk’�Xr, dk , the EPPs

given in equation (5) can be written as follows (Chandra et al. 2018; Moretti 2022):
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�̂Y
EPP1:1
d1 = fd �̂Y d1 + (1� fd) (�X

T

d1b̂1 + ûd1)

�̂Y
EPP1:1
d2 = fd �̂Y d2 + (1� fd) exp(�X

T

d2b̂2 + ûd2)½1 + exp(�X
T

d2b̂2 + ûd2)��1:

(
ð6Þ

This is reasonable to assume in real data small area applications, given that fd may be

very small. Hence, in this article, I consider and evaluate EPP1.1 only.

MSE Estimation via Parametric Bootstrap

The MSE of equation (6) can be estimated via a parametric bootstrap algorithm. The

parametric bootstrap is widely studied and applied in the small area estimation litera-

ture, where simulation studies are designed to evaluate the algorithm’s performance

(González-Manteiga et al. 2007; Hobza, Morales, and Santamarı́a 2018; Moretti,

Shlomo, and Sakshaug 2020). Here, I extend the algorithm originally developed in

González-Manteiga et al. (2007) to the case considered in this article. Note that

Moretti et al. (2020) extended and evaluated the algorithm in González-Manteiga

et al. (2007) to the bivariate small area estimation of means problem in the case of

continuous variables.

The steps of the parametric bootstrap algorithm are as follows:

1. Estimate model given in equation (3) on the random sample s. The following estimates

are obtained: Ŝu b̂1, b̂2, and ŝ2
e .

2. Generate the bootstrap area-specific random effects as follows: u
�(b)
d ;N(0, Ŝu), and

individual error term for response k = 1 only, that is, e
�(b)
di1 ;N (0, ŝ2

e ). The asterisk

denotes the bootstrap quantities, and b denotes the bth bootstrap replication, b = 1, :::, B.

3. Calculate the true means of the bootstrap population for variables k = 1, 2 and area d:

�Y �(b)
d1 = �Xd1b̂1 + u

�(b)
1d

�Y �(b)
d2 = exp(�Xd2b̂2 + u

�(b)
d2 )½1 + exp(�Xd2b̂2 + u

�(b)
d2 )��1

(
: ð7Þ

4. Generate the bootstrap responses y
�(b)
di1 and y

�(b)
di2 according to model 3 for i 2 sd as fol-

lows:

y
�(b)
di1 = �xT

di1b̂1 + e
�(b)
di1 + u

�(b)
d1

y
�(b)
di2 ju

�(b)
d2 ;Binomial(1, p

�(b)
di2 )

(
, ð8Þ

where p
�(b)
di2 = exp(�xT

di2b̂2 + u
�(b)
d2 )½1 + exp(�xT

di2b̂2 + u
�(b)
d2 )��1

.

5. Estimate the joint mixed model given in equation (3) on the responses generated at step

4 and obtain the bootstrap EPP1.1 according to equation (6). These are denoted by
�̂Y

EPP1:1�(b)

d1 and �̂Y
EPP1:1�(b)

d2 .

6. Repeat steps 2 to 5 B times.

7. The bootstrap estimators for the MSE of �̂Y
EPP1:1�(b)

d1 and �̂Y
EPP1:1�(b)

d2 are given by
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^MSEboot
�̂Y

EPP1:1�(b)

d1

� �
= B�1

PB
b = 1

�̂Y
EPP1:1�(b)

d1 � �Y �(b)
d1

� �2

^MSEboot
�̂Y

EPP1:1�(b)

d2

� �
= B�1

PB
b = 1

�̂Y
EPP1:1�(b)

d2 � �Y �(b)
d2

� �2

,

8>><
>>: ð9Þ

for d = 1, :::, D, with B denoting the number of replicates, that is, B = 500 (Hobza et al.

2018).

SIMULATION STUDY

In this section, I present the results of a design-based simulation study. Design-based

simulation studies are important because they allow one to evaluate the performance

of the estimators in case of repeated samples drawn from a fixed population that does

not exactly follow the assumed model (Molina and Strzalkowska-Kominiak 2020).

Generating the Population

As a fixed target population U , I use data from Lehtonen and Veijanen (2016). This is

available online from Pratesi (2016). These data were derived from AMELIA data (see

Burgard et al. 2017; Lehtonen and Veijanen 2016). AMELIA is a synthetic population

that allows comparative and reproducible research on the basis of European Union

Statistics for Income and Living Conditions variables (Burgard et al. 2017).

The population size in area d ranges between 12,550 and 42,340, and the areas are

D = 40. As variables of interest, I consider the logarithmic transformation of the

income, Y1, and a binary variable taking value 1 if the unit i in area d is poor and 0

otherwise, Y2. The unit i is poor if the value of the income is below the poverty line,

calculated as 60 percent of the median of the income (Chatterjee 2011). The auxiliary

variable, X1, is the age of unit i. Because of the nature of the response variables, the

random effects are highly correlated with r̂ = � 0:80. r̂ is obtained via a joint mixed

model estimated on the fixed population U .

Figure 1 shows the histogram of the logarithmic transformation of income, Y1, and

Figure 2 shows the bar chart of the binary variable, Y2, denoting whether the unit is

poor or not. Y1 is approximately normally distributed, but slightly skewed and with

some outliers; hence, it mimics real data distributions.

Simulation Steps and Quality Measures

The simulation consists of the following steps, where l = 1, :::, L; L = 500 denotes the

repetition:

1. From the target population U = [D
d = 1 Ud where Ud = f(ydi1, ydi2, xdi), i = 1, :::, Ndg,

select a sample s
(l)
d without replacement of size nd = 3 for d = 1, :::, D. Note that U is

fixed over the simulations because we are following a design-based simulation setting.

2. Estimate the joint mixed model given in equation (3) and the univariate mixed models

on each separate response in each sample s
(l)
d and obtain the univariate and multivariate
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predictors for both small area means. Readers can refer to the Battese, Harter, and

Fuller model (Battese et al. 1988) for the univariate setting and to Chandra et al. (2018)

for the small area estimation problem of proportions. The multivariate small area pre-

dictors are given by equation (6). The predictors are denoted by �̂yMEPP1:1(l)
d1 , �̂yMEPP1:1(l)

d2

and �̂yUEPP1:1(l)
d1 , �̂yUEPP1:1(l)

d2 , for the multivariate and univariate case, respectively, and lth

repetition. The direct estimates are also calculated via equation (2) and denoted by

�̂yDIR(l)
d1 , �̂yDIR(l)

d2 .

Figure 1. Histogram of log income, Y1.

Figure 2. Bar chart of indicator denoting whether the unit’s income is below the poverty line, Y2.
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3. The following measures of performance are calculated to evaluate the estimators for

k = 1, 2 in both the univariate and multivariate case (here, �̂y(l)
dk denotes any estimator for

the true value in the population, i.e., �ydk , for kth variable and dth area):

Absolute relative bias (ARB)

ARB(�̂ydk) =
L�1
PL

l = 1
(�̂y(l)

dk
��ydk)

�ydk

����
����, ð10Þ

Root MSE (RMSE)

RMSE(�̂ydk) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1

PL
l = 1

(�̂y(l)
dk � �ydk)

2

s
, ð11Þ

Relative root MSE (RRMSE)

RRMSE(�̂ydk) =
RMSE(�̂ydk )

�ydk
, ð12Þ

where �ydk denotes the true values for k = 1, 2.

% Relative reduction in terms of RMSE (RelRed%)

RelRed(�̂ydk)% = L�1
PL
l = 1

RMSE(�̂yMEPP1:1(l)

dk
)�RMSE(�̂yUEPP1:1(l)

dk
)

RMSE(�̂yUEPP1:1(l)

dk
)

3100: ð13Þ

To present summary statistics, the median across the small areas D is shown as a robust

central tendency measure that avoids the effect of extreme values in some small areas

(Chambers, Chandra, and Tzavidis 2011; Giusti et al. 2014). In this case, the same

notation as above is used but the index d is dropped.

Results

I now present the results of the simulation study with a focus on the quality measures

presented above. Table 1 shows the median across the small areas of the ARB and

RRMSE of the estimates obtained via the direct, univariate, and multivariate estima-

tors for k = 1 and k = 2 means.

As shown, the ARB is small (negligible) across all the estimators. The multivari-

ate approach produces estimates with a smaller ARB compared with the univariate

case. Thus, it does not introduce much bias in the small area estimates. Furthermore,

the multivariate small area predictor provides estimates with a smaller RRMSE

compared with the univariate and direct estimators. Hence, the multivariate

approach returns more efficient estimates compared with the univariate approach.

This latter point can be seen if we consider the percentage relative reductions in

terms of RMSE. Indeed, these are satisfactory and equal to RelRed(�̂yd1)% = � 35%

and RelRed(�̂yd2)% = �10%.

Figures 3 and 4 plot the RRMSE across the small areas where we compare the

RRMSE of the multivariate versus univariate approach and their direct estimators
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setting for k = 1 and k = 2, respectively. Figures 5 and 6 show the plots of the ARB

across the small areas for the three approaches for k = 1 and k = 2, respectively.

Descriptive statistics related to these figures are shown in Table 1.

As expected, Figures 3 to 6 demonstrate that the direct estimates suffer from a large

RRMSE but very small ARB across all the small areas. The multivariate approach pro-

vides estimates with a smaller RRMSE than both the univariate and direct approaches,

which is in line with the multivariate small area estimation literature. In addition, the

ARB of the multivariate estimates is negligible across all the areas, showing it does not

introduce a large bias in the estimates. I did not find any relationship between the sam-

pling fraction and performances of the multivariate approach over its univariate setting.

Table 1. Median Values across Small Areas of ARB and RRMSE of the Estimates Obtained
via the Direct, Univariate, and Multivariate Estimators for k = 1 and k = 2 Means

Estimator ARB RRMSE

�̂yDIR
1

.010 .091

�̂yDIR
2

.030 .842

�̂yUEPP
1

.018 .030

�̂yUEPP
2

.100 .164

�̂yMEPP
1

.014 .020

�̂yMEPP
2

.077 .150

Note: ARB = absolute relative bias; RRMSE = relative root mean squared error.

Figure 3. Relative root mean squared error (RRMSE) of small area estimates for direct (DIR;
dotted line), univariate (UEPP; dashed line), and multivariate (MEPP; solid line) estimators
for the mean of log income, k = 1, ordered by decreasing sampling fraction.
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Figures A1 and A2 and Table A1 in Appendix A provides additional simulation out-

puts that are helpful for interpreting the results.

In summary, the results of this simulation study are promising. Although the income

variable, Y1, does not follow a normal distribution perfectly (see Figure 1), as it occurs

with real data, the multivariate approach provides estimates with a smaller RRMSE

than the univariate case, and the ARB is negligible across the small areas. Potential

applications of this approach to social indicators are discussed in the next section.

Figure 4. Relative root mean squared error (RRMSE) of small area estimates for direct (DIR;
dotted line), univariate (UEPP; dashed line), and multivariate (MEPP; continuous line)
estimators for the poverty proportion, k = 2, ordered by decreasing sampling fraction.

Figure 5. Absolute relative bias (ARB) of small area estimates for direct (DIR; dotted line),
univariate (UEPP; dashed line), and multivariate (MEPP; solid line) estimators for the mean
of log income, k = 1, ordered by decreasing sampling fraction.
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CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this article, I studied the multivariate small area estimation problem in the case of

mixed-type variables. The multivariate small area estimation literature has paid partic-

ular attention to the case of continuous variables. However, noncontinuous variables

are widely diffused in social surveys. In this work, I considered the unit-level small

area estimation approach, assuming the auxiliary variables are known for all the

sampled units. I did not investigate the area-level approach in the present article. For

the area-level approach, the reader may refer to Fay (1987), and more recent studies

by Benavent and Morales (2016, 2020).

I compared a multivariate EPP with its univariate setting, where two mixed models

are estimated separately on each response variable in a design-based simulation study.

The predictors based on the univariate setting are used by different statistical agencies

due to their good properties. I found the multivariate approach provides more reliable

small area estimates than does the univariate approach. In particular, the multivariate

predictor produces small area estimates with a smaller RRMSE, as well as bias slightly

smaller than the univariate approach. Larger gains in efficiency can be seen for the

continuous case.

The modeling strategy evaluated in this article is flexible, because joint mixed mod-

els can account for variables measured on different scales at the same time. Thus, we

can improve the efficiency of the small area estimates by “borrowing strength” across

response variables in a model-based, small area estimation approach.

These types of variables are widely present in social surveys, where continuous

variables are strongly related to binary variables. Here, I considered income and pov-

erty indicators; however, future work will investigate other modeling scenarios, that is,

variables measured on other scales, such as models for count data. Indeed, the use of

multivariate mixed (multilevel) models is of particular relevance in sociology, where

Figure 6. Absolute relative bias (ARB) of small area estimates for direct (DIR; dotted
line), univariate (UEPP; dashed line), and multivariate (MEPP; solid line) estimators for the
poverty proportion, k = 2, ordered by decreasing sampling fraction.
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multivariate research questions can be formulated and answered by interpreting model

parameter estimates, in particular the association parameters. These association para-

meters, such as correlations, can be estimated via the use of multivariate models. For

example, the literature has shown a strong relationship between happiness and health

(see Argyle 1997; Graham 2012). If one considers a continuous latent variable measur-

ing happiness, and a binary variable measuring a health domain, the model object of

this study can be applied to investigate relationships in the case of multilevel data.

Pierewan and Tampubolon (2015) used a multivariate mixed model to investigate the

relationships between happiness and health. The model I proposed in this small area

estimation problem can be used to investigate subnational differences of such indica-

tors, and to produce more efficient estimates than in the scenario where two separate

multilevel models are estimated.

In the context of income and expenditures analysis, researchers might be interested

in studying relationships between deprivation and expenditures; these show correla-

tions (see Moretti and Shlomo 2023) that can be taken into account in the modeling

stage. Income is also related to food poverty. Thus, a binary variable indicating

whether a household is food deprived or at risk for food deprivation can be built, and

this is strongly related to household income (for the link between poverty and food

insecurity, see Wight et al. 2014). Therefore, similar to the approach followed in the

simulation study, the method proposed here is appropriate to provide geographic

understanding around food deprivation and monetary poverty dimensions.

It is important to acknowledge that the mixed models adopted in this article can be

extended to a spatial dependence setting (Chandra, Chambers, and Salvati 2019;

Chandra et al. 2018). Here, one strategy to incorporate spatial information into the

models is to extend the random effects model allowing for spatially correlated random

area effects. For instance, this can be achieved by using a simultaneous autoregressive

model (Anselin 1988; Cressie 2015). As highlighted by Chandra et al. (2018), in practical

applications, it is often reasonable to consider that the effects of neighboring geographic

areas are correlated (defined by a contiguity matrix that is included in the modeling

stage). Readers interested in simultaneous autoregressive models in small area estimation

can refer to the following literature, which presents extended evaluations and applica-

tions: Singh, Shukla, and Kundu (2005), Pratesi and Salvati (2008), Pratesi and Salvati

(2009), Molina (2009), Marhuenda, Molina, and Morales (2013), and Porter, Wikle, and

Holan (2015). In addition, Bayesian approaches to small area estimation considering con-

ditionally autoregressive models can model the spatial dependence (see Besag, York, and

Mollié 1991; Leroux, Lei, and Breslow 2000; Mercer et al. 2014). These spatial exten-

sions are widely used for small area estimation problems of health and social indicators

in sociology, demography, and epidemiology. Dwyer-Lindgren et al. (2016) used the spa-

tial Besag-York-Mollie model (Besag et al. 1991) to estimate mortality rates. The Centers

for Disease Control and Prevention PLACES project adopted a similar strategy to esti-

mate small area indicators of morbidity (https://www.cdc.gov/places/methodology/

index.html). Regarding poverty indicators, readers may refer to Marhuenda et al. (2013)

and Giusti, Masserini, and Pratesi (2017). In this article, I did not include a spatial process

into the random area effects. Spatial extensions of the proposed methods are interesting
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and useful for users, and they will be the subject of future research given they require par-

ticular methodological attention.

APPENDIX A: EXTRA OUTPUTS OF THE SIMULATION STUDY

Figure A1. Ratios between the small area estimates and true values for the estimates
obtained via direct (DIR; dotted line), univariate (UEPP; dashed line), and multivariate
(MEPP; solid line) estimators for the mean of log income, k = 1, ordered by decreasing
sampling fraction.

Figure A2. Ratios between the small area estimates and true values for the estimates
obtained via direct (DIR; dotted line), univariate (UEPP; dashed line), and multivariate
(MEPP; solid line) estimators for the poverty proportion, k = 2, ordered by decreasing
sampling fraction.
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APPENDIX B: R PROGRAM

This R program can be used to apply the methods used in this article. First, to estimate multi-

variate mixed models, such as the joint mixed model introduced in the article, the software

sabre can be installed from http://sabre.lancs.ac.uk/installing_intro.html and then installed in R

manually.

A possible R program that can be used to replicate the results of the simulation study for the

multivariate case is given below. An R program for the univariate case is available in Chandra

et al. (2018).

population=read.table("universe.txt", header=T)

population$AGE_new\- as.numeric(population$AGE)

povertyThreshold\- 0.6*median(population[["income"]])

population$poor\- as.numeric(ifelse(population$income\povertyThreshold, 1, 0))

population$log_income\- log(population$income)

population$income1\- population$income

population$income1[population$income1==0]\- 0.0000001

population$log_income1\- log(population$income1)

population$y1\- population$log_income1 #log_income1

population$y2\- population$poor #poor

population$x1\- population$AGE_new

population$area\- population$DIS

True_y1_bar\- aggregate(population$y1,

list(population$area),mean)[,2]#true mean y1

True_y2_bar\- aggregate(population$y2,

list(population$area),mean)[,2]#true mean y2

true\- cbind(True_y1_bar, True_y2_bar)

Table A1. Quantiles of the Distributions of the Small Area Estimates (with True Values)
Obtained via the Different Approaches for k = 1, 2

Estimator

Quantile

10% 20% 30% 40% 50% 60% 70% 80% 90%

�̂yMEPP
1

9.648 9.661 9.665 9.674 9.677 9.680 9.683 9.688 9.690

�̂yUEPP
1

9.657 9.659 9.661 9.662 9.665 9.667 9.670 9.671 9.674

�̂yDIR
1

9.587 9.590 9.600 9.649 9.648 9.638 9.659 9.799 9.823

�̂yTrue
1

9.588 9.598 9.606 9.618 9.625 9.631 9.643 9.791 9.818

�̂yMEPP
2

.222 .232 .233 .235 .238 .240 .249 .275 .278

�̂yUEPP
2

.224 .224 .234 .234 .237 .239 .249 .277 .278

�̂yDIR
2

.201 .206 .225 .233 .236 .245 .250 .269 .274

�̂yTrue
2

.200 .207 .227 .235 .238 .247 .250 .272 .277
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x1bar\- aggregate(population$x1,

list(population$area),mean)[,2]#true mean x1

D\- nrow(true)

Xbar\- cbind(int=rep.int(1,D), x1bar=x1bar)

M=50

K=2 #number of variables

Nd\- data.frame(table(population$area))[,2]

domsize\- data.frame(table(population$area))

colnames(domsize)[1]\- "area_code"; colnames(domsize)[2]\- "Nd"

N\- sum(Nd)

nd\- rep.int(3, D)

fd\- nd/Nd

n\- sum(nd)

areas\- rep.int(1:D, time=Nd)

S\- 500

EMSE_y1_EPP\- EMSE_y2_EPP\- ERMSE_y1_EPP\- matrix(NA, D, S)

ERMSE_y2_EPP\- Bias_y1_EPP\- Bias_y2_EPP\- matrix(NA, D, S)

EMSE_y1_HT\- EMSE_y2_HT\- ERMSE_y1_HT\- matrix(NA, D, S)

ERMSE_y2_HT\- Bias_y1_HT\- Bias_y2_HT\- matrix(NA, D, S)

y1_dir\- y2_dir\- y1_ind\- y2_ind\- matrix(NA, D, S)

y1_true\- y2_true\- matrix(NA, D, S)

for (s in 1:S) {

sample = strata(population, stratanames="area",

size=nd, method=c("srswor"), description=FALSE)

sample = getdata(population, sample)

sample = cbind(sample, w=1/sample$Prob)

x1bar_s\- aggregate(sample$x1,list(sample$area),mean)[,2]#sample mean x1

xbar_s\- cbind(int=rep.int(1,D), x1bar_s=x1bar_s)

y1bar_s\- aggregate(sample$y1,list(sample$area),mean)[,2]#sample mean y1

y2bar_s\- aggregate(sample$y2,list(sample$area),mean)[,2]#sample mean y2

y_bar_s\- cbind(y1bar_s, y2bar_s)

xbar_sam\- xbar_s

y1_HT\- direct(y=y1, dom=area, sweight=w, domsize=domsize,

data=sample, replace = FALSE)

y1_HT_est\- y1_HT$Direct

y2_HT\- direct(y=y2, dom=area, sweight=w, domsize=domsize,

data=sample, replace = FALSE)

y2_HT_est\- y2_HT$Direct

y_HT_est\- cbind(y1_HT_est, y2_HT_est)

multi_model\- sabre(sample$y1 ~ sample$x1,

sample$y2 ~ sample$x1,

case = sample$area,

first.family="gaussian", second.family="binomial",

second.link="l", correlated = "yes")
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model_results\- multi_model$fit.estimates.print.message

model_results\- unlist(strsplit(model_results, " "))

model_results\- as.data.frame(na.omit(model_results))

model_results\- as.numeric(as.matrix(model_results))

model_results\- as.data.frame(na.omit(model_results))

res\- model_results

beta\- matrix(c(res[1,], res[4,], res[7,], res[10,]), 2, 2)

Sigma_e\- matrix(c(res[13,]^2, 0, 0, 3.29), 2, 2)

cor_u\- res[22,]

Sigma_u\- matrix(c( (res[16,])^2, (res[16,]*res[19,])*cor_u,

(res[16,]*res[19,])*cor_u, (res[19,])^2), 2, 2)

y_EPP_0m1\- matrix(NA, D, M)

y_EPP_0m2\- matrix(NA, D, M)

for (m in 1 : M) {

u_m\- mvrnorm(D, numeric(K), Sigma_u)

u_star1m\- u_m[,1]

u_star2m\- u_m[,2]

u_rep_1m\- rep(u_m[,1], time=nd)

u_rep_2m\- rep(u_m[,2], time=nd)

y_EPP_0m\- Xbar %*% beta + cbind(u_star1m, u_star2m)

y_EPP_02m\- exp( Xbar %*% beta + cbind(u_star1m, u_star2m) ) /

(1 + exp( Xbar %*% beta + cbind(u_star1m, u_star2m) ) )

y_EPP_0m1[,m]\- y_EPP_0m[,1]

y_EPP_0m2[,m]\- y_EPP_02m[,2]

}

y_EPP_01\- rowMeans(y_EPP_0m1)

y_EPP_02\- rowMeans(y_EPP_0m2)

y_EPP\- cbind(y_EPP_01, y_EPP_02)

y_EPP_final\- matrix(NA, D, K)

for (d in 1 : D) {

y_EPP_final[d,]\- fd[d] * y_HT_est[d,] + (1-fd[d]) * y_EPP[d,] #y_bar_s

}

y1_EPP_final\- y_EPP_final[,1]

y2_EPP_final\- y_EPP_final[,2]

MSE_y1_EPP\- (y1_EPP_final - True_y1_bar)^2

RMSE_y1_EPP\- sqrt(MSE_y1_EPP)

BIAS_y1_EPP\- (y1_EPP_final - True_y1_bar)

MSE_y2_EPP\- (y2_EPP_final - True_y2_bar)^2

RMSE_y2_EPP\- sqrt(MSE_y2_EPP)

BIAS_y2_EPP\- (y2_EPP_final - True_y2_bar)

EMSE_y1_EPP[,s]\- MSE_y1_EPP

EMSE_y2_EPP[,s]\- MSE_y2_EPP

ERMSE_y1_EPP[,s]\- RMSE_y1_EPP
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ERMSE_y2_EPP[,s]\- RMSE_y2_EPP

Bias_y1_EPP[,s]\- BIAS_y1_EPP

Bias_y2_EPP[,s]\- BIAS_y2_EPP

y1_ind[,s]\- y1_EPP_final

y2_ind[,s]\- y2_EPP_final

MSE_y1_HT\- (y1_HT_est - True_y1_bar)^2

RMSE_y1_HT\- sqrt(MSE_y1_HT)

BIAS_y1_HT\- (y1_HT_est - True_y1_bar)

MSE_y2_HT\- (y2_HT_est - True_y2_bar)^2

RMSE_y2_HT\- sqrt(MSE_y2_HT)

BIAS_y2_HT\- (y2_HT_est - True_y2_bar)

EMSE_y1_HT[,s]\- MSE_y1_HT

EMSE_y2_HT[,s]\- MSE_y2_HT

ERMSE_y1_HT[,s]\- RMSE_y1_HT

ERMSE_y2_HT[,s]\- RMSE_y2_HT

Bias_y1_HT[,s]\- BIAS_y1_HT

Bias_y2_HT[,s]\- BIAS_y2_HT

y1_dir[,s]\- y1_HT_est

y2_dir[,s]\- y2_HT_est

y1_true[,s]\- True_y1_bar

y2_true[,s]\- True_y2_bar

}#end of simulation

MSE_SUMMARY\- data.frame(EMSEy1_EPP=rowMeans(EMSE_y1_EPP),

EMSEy2_EPP=rowMeans(EMSE_y2_EPP),

ERMSEy1_EPP=rowMeans(ERMSE_y1_EPP),

ERMSEy2_EPP=rowMeans(ERMSE_y2_EPP),

EMSEy1_HT=rowMeans(EMSE_y1_HT),

EMSEy2_HT=rowMeans(EMSE_y2_HT),

ERMSEy1_HT=rowMeans(ERMSE_y1_HT),

ERMSEy2_HT=rowMeans(ERMSE_y2_HT),

ERRMSEy1_EPP=rowMeans(ERMSE_y1_EPP)/rowMeans(y1_true),

ERRMSEy2_EPP=rowMeans(ERMSE_y2_EPP)/rowMeans(y2_true),

ERRMSEy1_HT=rowMeans(ERMSE_y1_HT)/rowMeans(y1_true),

ERRMSEy2_HT=rowMeans(ERMSE_y2_HT)/rowMeans(y2_true))

Relbias\- data.frame(RB_HT_y1 = rowMeans(Bias_y1_HT) / rowMeans(y1_true),

RB_HT_y2 = rowMeans(Bias_y2_HT) / rowMeans(y2_true),

RB_EPP_y1 = rowMeans(Bias_y1_EPP) / rowMeans(y1_true),

RB_EPP_y2 = rowMeans(Bias_y2_EPP) / rowMeans(y2_true))

Estimates\- data.frame(y1_true = rowMeans(y1_true), y2_true = rowMeans(y2_true),

y1_EPP = rowMeans(y1_ind), y2_EPP = rowMeans(y2_ind),

y1_HT = rowMeans(y1_dir), y2_HT = rowMeans(y2_dir) )
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and Reproducible Methodological Research in Social Sciences and Official Statistics.” AStA

Wirtschafts- und Sozialstatistisches Archiv 11(3–4):233–44.

Chambers, Ray, Hukum Chandra, and Nikos Tzavidis. 2011. “On Bias-Robust Mean Squared Error

Estimation for Pseudo-Linear Small Area Estimators.” Survey Methodology 37(2):153–70.

Chambers, Ray, Nicola Salvati, and Nikos Tzavidis. 2016. “Semiparametric Small Area Estimation for

Binary Outcomes with Application to Unemployment Estimation for Local Authorities in the UK.”

Journal of the Royal Statistical Society: Series A (Statistics in Society) 179(2):453–79.

Chandra, Hukum, Ray Chambers, and Nicola Salvati. 2012. “Small Area Estimation of Proportions in

Business Surveys.” Journal of Statistical Computation and Simulation 82(6):783–95.

Chandra, Hukum, Ray Chambers, and Nicola Salvati. 2019. “Small Area Estimation of Survey Weighted

Counts under Aggregated Level Spatial Model.” Survey Methodology 45(1):31–59.

Chandra, Hukum, Sushil Kumar, and Kaustav Aditya. 2018. “Small Area Estimation of Proportions with

Different Levels of Auxiliary Data.” Biometrical Journal 60(2):395–415.

Chatterjee, Deen K. 2011. Encyclopedia of Global Justice: A–I. Berlin, Germany: Springer Science &

Business Media.

Coull, Brent A., and Alan Agresti. 2000. “Random Effects Modeling of Multiple Binomial Responses

Using the Multivariate Binomial Logit-Normal Distribution.” Biometrics 56(1):73–80.

Cressie, Noel. 2015. Statistics for Spatial Data. Hoboken, NJ: John Wiley.

Datta, Gauri Sankar, Bannmo Day, and Ishwar Basawa. 1999. “Empirical Best Linear Unbiased and

Empirical Bayes Prediction in Multivariate Small Area Estimation.” Journal of Statistical Planning

and Inference 75(2):269–79.

Moretti 341

https://orcid.org/0000-0001-6543-9418
http://sabre.lancs.ac.uk/sabreRuse_intro.html


Dwyer-Lindgren, Laura, Amelia Bertozzi-Villa, Rebecca W. Stubbs, Chloe Morozoff, Michael J. Kutz,

Chantal Huynh, Ryan M. Barber, et al. 2016. “US County-Level Trends in Mortality Rates for Major

Causes of Death, 1980–2014.” JAMA 316(22):2385–401.

Fabrizi, Enrico, Maria R. Ferrante, and Silvia Pacei. 2005. “Estimation of Poverty Indicators at Sub-

national Level Using Multivariate Small Area Models.” Statistics in Transition 7(3):587–608.

Fay, R. E. 1987. “Application of Multivariate Regression to Small Domain Estimation.” Pp. 91–102 in

Small Area Statistics, edited by R. Platek, J.N.K. Rao, C. E. Sarndal, and M. P. Singh. New York: John

Wiley.

Fuller, Wayne A., and R. M. Harter. 1987. “The Multivariate Components of Variance Model for Small

Area Estimation.” Pp. 103–23 in Small Area Statistics, edited by R. Platek, J.N.K. Rao, C. E. Sarndal,

and M. P. Singh. New York: John Wiley.

Giusti, Caterina, Lucio Masserini, and Monica Pratesi. 2017. “Local Comparisons of Small Area

Estimates of Poverty: An Application within the Tuscany Region in Italy.” Social Indicators Research

131(1):235–54.

Giusti, Caterina, Nikos Tzavidis, Monica Pratesi, and Nicola Salvati. 2014. “Resistance to Outliers of M-

Quantile and Robust Random Effects Small Area Models.” Communications in Statistics–Simulation

and Computation 43(3):549–68.

Goldstein, Harvey. 2011. Multilevel Statistical Models. Hoboken, NJ: John Wiley.

Goldstein, Harvey, James Carpenter, Michael G. Kenward, and Kate A. Levin. 2009. “Multilevel Models

with Multivariate Mixed Response Types.” Statistical Modelling 9(3):173–97.
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