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1  |  INTRODUC TION

Keeping global warming below 1.5°C (consistent with art. 2 of the 
Paris Agreement) requires immediate action to reach net-zero carbon 
dioxide (CO2) emissions in the coming decades (IPCC WG3, 2022). 
Net-zero CO2 emissions are achieved when anthropogenic emissions 
are balanced by anthropogenic CO2 removal. To limit global warming 

to 1.5°C, nearly all scenarios rely on the removal of CO2 from the 
atmosphere. This is also the case for many scenarios limiting global 
warming to well below 2°C (IPCC WG1, 2021), confirming earlier as-
sessments (van Vuuren et al., 2013).

In the discussions on carbon dioxide removal (CDR) techniques, 
SOC sequestration has gained significant societal and scientific 
attention in recent years. The exact climate change mitigation 
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Abstract
The role of soil organic carbon (SOC) sequestration as a ‘win-win’ solution to both 
climate change and food insecurity receives an increasing promotion. The opportunity 
may be too good to be missed! Yet the tremendous complexity of the two issues at 
stake calls for a detailed and nuanced examination of any potential solution, no matter 
how appealing. Here, we critically re-examine the benefits of global SOC sequestra-
tion strategies on both climate change mitigation and food production. While esti-
mated contributions of SOC sequestration to climate change vary, almost none take 
SOC saturation into account. Here, we show that including saturation in estimations 
decreases any potential contribution of SOC sequestration to climate change mitiga-
tion by 53%–81% towards 2100. In addition, reviewing more than 21 meta-analyses, 
we found that observed yield effects of increasing SOC are inconsistent, ranging from 
negative to neutral to positive. We find that the promise of a win-win outcome is 
confirmed only when specific land management practices are applied under specific 
conditions. Therefore, we argue that the existing knowledge base does not justify the 
current trend to set global agendas focusing first and foremost on SOC sequestration. 
Away from climate-smart soils, we need a shift towards soil-smart agriculture, adapta-
tive and adapted to each local context, and where multiple soil functions are quanti-
fied concurrently. Only such comprehensive assessments will allow synergies for land 
sustainability to be maximised and agronomic requirements for food security to be 
fulfilled. This implies moving away from global targets for SOC in agricultural soils. 
SOC sequestration may occur along this pathway and contribute to climate change 
mitigation and should be regarded as a co-benefit.
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potential of SOC sequestration is strongly debated, but unlike other 
CDR techniques, SOC sequestration is claimed to be a ‘no regret’ 
or a ‘win-win’ option because its implementation provides numer-
ous co-benefits and few trade-offs (IPCC WG1,  2021). Indeed, 
management interventions aiming at SOC sequestration have long 
been claimed to enhance soil fertility and productivity, increase 
soil biodiversity, improve water retention and purification, and re-
duce erosion, compaction, runoff and water pollution (Lal,  2004; 
Paustian et al., 1997, 2016; Smith, 2012). Improvement of these ‘soil 
functions’ would lead to larger and more stable yields globally, thus 
safeguarding global food security and adaptation of global agricul-
tural production to climate change (Lal, 2004; Rumpel et al., 2019). 
Increasing enthusiasm is pushing towards ever more optimistic pre-
dictions, with, for example, claims that SOC sequestration would 
be key to supporting five (FAO,  2017), seven (FAO,  2019) and up 
to 12 Sustainable Development Goals (Smith et al., 2019). As a re-
sult, several recent papers (Amelung et al., 2020; Chabbi et al., 2017; 
Kopittke et al.,  2022; Rumpel et al.,  2019) and high-level interna-
tional initiatives (the '4p1000 initiative’ launched during the COP21 
in 2015, the Koronivia workshops held during the COP23 in 2018 
and FAO's RECSOIL program) call for rapid upscaling and imple-
mentation of SOC sequestration practices to solve concurrently the 
challenges of climate change and food security.

Yet already more than 15 years ago, Janzen  (2006) highlighted 
that a trade-off exists between storing C in soils for the benefit of 
climate change mitigation, and using soil C during soil organic matter 
(SOM) decomposition for the release of nutrients to support plant 
production. In parallel, both climate change (Smith, 2012) and food 
security (Giller,  2020) have been described as ‘wicked problems’, 
highlighting their daunting complexity and the formidable interna-
tional social, political, economic and scientific interdisciplinary effort 
that is required to offer even partial solutions. In such a context, 
claims that a blanket solution can solve climate change and food 
insecurity concurrently should prompt some degree of scepticism. 
Like any ongoing scientific discussion, it needs relentless and rigor-
ous examination.

Starting from this perspective, we re-examine the terminol-
ogy and concepts underlying climate mitigation through SOC se-
questration and the empirical evidence supporting the promised 
win-win with food security. We critically review estimates of the 
global SOC sequestration potential and quantify the potential con-
tribution of SOC sequestration to reaching net-zero CO2 emissions 
in a 1.5°C target climate scenario for the 2100 horizon. While we 
focus here on the technically achievable SOC sequestration po-
tential, we also acknowledge that many large social, economic and 
political barriers exist to the implementation of SOC sequestration 
practices that cast yet more doubt on the global mitigation poten-
tial of SOC sequestration (Amundson & Biardeau, 2018; Bradford 
et al., 2019). Then, we review the existing evidence on the effect 
of increasing SOC stocks on above-ground plant production. Here, 
we focus on plant production as a key soil function because of its 
obvious link to food security, although we acknowledge that other 
functions are also key.

2  |  SOC SEQUESTR ATION: CONCEPTS 
AND TERMINOLOGY

Soils are the largest reservoir of C in the terrestrial biosphere, con-
taining 1700 Gt C in the top meter, that is, four times as much C as 
global vegetation, twice as much as the atmosphere and 160 times 
as much as the current annual anthropogenic CO2 emission rate 
(Friedlingstein et al., 2022). Soils also contain a significant amount of 
inorganic C (Lal et al., 2021), but here we focus exclusively on SOC, 
claimed to hold the largest climate change mitigation potential and 
to benefit numerous soil functions.

Small changes in global SOC stocks (a few tenths of a percent) 
could lead to proportionally large contributions to global CO2 emis-
sions (tens of percent; Paustian et al., 2016). This makes soil both a 
prime candidate to lock up CO2 from the atmosphere, and a major 
threat as poor land management practices and environmental 
changes release CO2 from soils and enhance global warming. For a 
given area, net sequestration of SOC is the difference between in-
puts of C to the soil and the release of C into the atmosphere as CO2 
(or methane) from the decomposition of accumulated organic matter 
by soil heterotrophic organisms. SOC sequestration can therefore 
be defined as a state of the soil in which the soil C inputs exceed 
the soil C release, leading to an increase in SOC stocks. Therefore, it 
follows that SOC sequestration may be achieved by either increasing 
inputs to the soil or decreasing losses.

Although this definition is widely accepted, it is worth highlight-
ing some common misconceptions. For example, SOC sequestration 
in a given soil is commonly implied to contribute to climate change 
mitigation (Chenu et al.,  2019). However, this is only true when 
sequestration results from a net gain of C from the atmosphere 
(Powlson et al.,  2011). As such, increasing C inputs from photo-
synthesis is the most effective climate change mitigation strategy. 
Increasing organic amendment application, which represents a 
transfer of C from one place to another, leads to a net atmospheric 
decrease only when the soil stabilisation of the added material is 
more effective at the application site than at the site from where 
it is exported (Kirschbaum et al., 2020). Furthermore, the emission 
of other greenhouse gases such as nitrous oxide (N2O), can negate 
or exceed the benefit of sequestering SOC in some conditions 
(Guenet et al., 2021; Lugato et al., 2018). Agriculture is responsible 
for approximately 70% of global anthropogenic N2O emissions (Tian 
et al., 2020), largely due to the inefficient use of nitrogen fertilisers. 
We, therefore, argue that a lack of consideration for nitrogen use ef-
ficiency is a missed opportunity to strongly reduce the greenhouse 
gas footprint of agriculture as much as it is a trade-off with SOC 
sequestration (Powlson et al., 2011). Another misconception arises 
from the lack of distinction between SOC stocks and changes in SOC 
stocks. It is critical to stress that while SOM and SOC remain the 
most commonly measured soil variables (Bünemann et al.,  2018), 
they provide little insight into SOC sequestration and the role of soils 
in mitigating climate change. First, SOC stocks measured at a given 
point in time provide no information on a trend—SOC sequestration 
involves a dynamic change in SOC stocks that can be quantified only 
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by monitoring the stocks over time or by quantifying the balance 
between soil C uptake and release. Second, ‘measuring SOC’ often 
entails measuring concentrations (in unit mass of C per unit mass of 
soil), which do not inform on the quantities of SOC stored in the soil. 
Concentrations need to be converted to stocks (in unit mass of C 
per unit of land area to a sufficient depth to avoid the effects of soil 
compaction). This is usually done by multiplying the concentration 
by the soil bulk density, which may change over time as a result of 
changing management practices. More accurate methods exist that 
account for changing bulk densities, such as the equivalent soil mass 
basis (Wendt & Hauser, 2013).

3  |  CLIMATE CHANGE MITIGATION 
POTENTIAL OF SOC SEQUESTR ATION

3.1  |  Estimates of global soil organic carbon 
sequestration potential

Several methods can be used to quantify the global potential of soil 
to sequester atmospheric CO2.

The first one is based on calculations of historical C losses from 
cultivated soils (comparing C stocks from ‘virgin’ and cultivated soils 
on similar soil types and land use) and ‘assuming a recovery of one-
half to two-thirds of historical C losses as a reasonable upper limit’ 
(Paustian et al., 1997). Early estimates of historical C losses varied 
widely, from 40 Gt C (148 Gt CO2) to as much as 537 Gt C (1989 Gt 
CO2) (Lal, 2001). The most recent estimate (using data-driven statis-
tical modelling) puts global C losses at 116 Gt C (430 Gt CO2) over 
the last 12,000 years of human land use (Sanderman et al., 2017), 
suggesting a global SOC sequestration potential of 285 Gt CO2 
under the two-thirds recovery assumption.

The second and most common method uses ‘bottom-up’ ap-
proaches where average SOC sequestration rates are estimated for 
different management practices over varied experimental duration, 
from 5 to more than 80 years (Paustian et al., 1997). Then, these es-
timated rates are extrapolated to regional or global scale by mul-
tiplying the rate with the estimated land area available for a given 
practice. The management practices, referred to as natural climate 
solutions (NCS) (Griscom et al.,  2017), include many agricultural 
practices such as no-till, cover-cropping, improved nutrient, water, 
and grazing management, agroforestry, as well as interventions in 
other land-use sectors such as forestry and wetland management 
and peat restoration. Bottom-up estimates vary widely in the liter-
ature, from 0.4 (IPCC, 2019) up to 9.1 Gt CO2 year−1 (Lal, 2018). The 
variety of underlying assumptions used to estimate the availability 
of land area for specific practices contributes greatly to this variabil-
ity (Fuss et al., 2018). Moreover, different studies focus on different 
subsets of practices, from large ranges of NCS (Bossio et al., 2020), 
to agriculture and forestry (Minasny et al., 2017), agricultural lands 
only (IPCC WG3, 2022; Smith et al., 2008) or croplands only (Zomer 
et al., 2017). Whether biochar application should be included in es-
timates from agricultural management is also debated (Smith, 2016). 

Most recently, SOC sequestration in croplands, grasslands, agrofor-
estry and biochar was estimated between 1.8 and 4.1 Gt CO2 year−1 
(IPCC WG3,  2022). We also observe that depth is inconsistently 
reported in review papers. As mentioned above, SOC stocks (and 
therefore sequestration rates) are usually measured to a constant 
depth and then converted per unit surface area (implicitly to this 
constant depth). These reviews, therefore, potentially combine es-
timates of sequestration rates that are not directly comparable (i.e. 
sequestration rates estimated to a depth of 2 m cannot be averaged 
directly with sequestration rates estimated to 30 cm depth; Knotters 
et al.,  2022). This also contributes to the discrepancies between 
global estimates. Bossio et al.  (2020) calculated recently the con-
tribution of soils to the total mitigation potential of 20 NCS across 
different land-use sectors with stringent limits on the area availabil-
ities to safeguard biodiversity and food security (leaving sufficient 
area available for food production; Griscom et al., 2017). The authors 
found a global technical SOC sequestration potential of 3.3 Gt CO2 
year−1, far less than previous estimates which did not constrain the 
available land area (Fuss et al., 2018), and with greater recognition of 
the need to use multiple solutions and address multiple objectives 
concurrently.

As an alternative approach, Janzen et al.  (2022) argued that 
global SOC sequestration is most constrained by photosynthesis, 
the primary source of soil C inputs. The authors estimated global 
photosynthetic C inputs and, from this, estimated a global SOC se-
questration potential of around 0.52 Gt CO2 year−1.

Interpreting global SOC sequestration estimates in terms of 
their climate change mitigation potential is problematic because 
of a number of well-known limitations as briefly mentioned in the 
previous section (Baveye et al., 2018; Powlson et al., 2011; Rumpel 
et al., 2019). In the following sections, we emphasise two aspects—
saturation and non-permanence—that we deem particularly un-
derrated and critical to the interpretation of SOC sequestration 
potentials.

3.2  |  Saturation

SOC sequestration saturates over time (Six et al.,  2002; 
Smith, 2012). This ‘sink saturation’ is due to either a finite avail-
ability of mineral surfaces and other physico-chemical properties 
responsible for the persistence of C in soils, defining a maximum 
storage capacity, or to environmental constraints on C input sta-
bilisation and decomposition rates leading to a new equilibrium 
value for SOC and defining an ‘effective’ storage capacity (Stewart 
et al., 2007). Therefore, converting estimated SOC sequestration 
rates into total SOC sequestration potential requires the time taken 
to reach a new equilibrium to be defined. Twenty years is often 
mentioned as a standard (Fuss et al., 2018; Smith et al., 2016), but 
other values are used, ranging from 5 to 50 years (Lal et al., 2018) 
and up to 85 years (Mayer et al.,  2018). Furthermore, both the 
maximum and effective stabilisation capacities of soils depend on 
pedoclimatic conditions (Angers et al., 2011; McNally et al., 2017), 
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suggesting that both the timespan of SOC accumulation and the 
rate of decrease in SOC sequestration are highly context depend-
ent. A notable exception is peat and other organic soils such as 
mollisols, which are not bound to a maximum storage capacity, 
but require very specific conditions over large time spans to ac-
cumulate SOC. In mineral soils, texture is particularly influential, 
with sandy soils generally showing lower C storage capacities than 
heavier soils (Angers et al., 2011; McNally et al., 2017).

Most critically, the concept of sink saturation suggests not only a 
limited storage capacity but also that the rate of SOC sequestration 
decreases as SOC approaches the maximum or effective storage ca-
pacity (Poulton et al., 2018; Stewart et al., 2007). Saturation, there-
fore, implies not only that SOC sequestration is time-limited but 
also that sequestration rates decrease exponentially as soon as SOC 
stocks start to increase (Baveye et al.,  2018). Most studies, how-
ever, with one notable exception (namely, Sommer & Bossio, 2014), 
assume a constant sequestration rate over the defined time pe-
riod required to reach a new equilibrium (Bossio et al., 2020; Fuss 
et al., 2018). Some assessments provide only an annual rate in a spe-
cific year and compare this to other negative emission or emission 
reduction options. By doing so, the IPCC WG3 (2022) ranks SOC se-
questration as the fourth most effective option in 2030, just behind 
the solar and wind energy transition. This is misleading and an unfair 
comparison because the potential of SOC sequestration will decline 
and reach zero over time, while it will be continued through time 
for most other options, including transitioning to non-CO2 emitting 
energy production.

Here, we use the estimate of Bossio et al.  (2020) as a starting 
value for SOC sequestration rates and illustrate the large overes-
timations in C sequestration potentials arising when C saturation is 
ignored. We compare the effect of three assumptions on the evolu-
tion of observed sequestration rates over time and illustrate their 
consequence for global SOC sequestration potential estimates: 
(1) a constant sequestration rate over time, (2) a rapid exponential 
decrease in sequestration rates with a 10-year exponential decay 
half-life; previously observed from converting croplands to grass-
land, which is arguably the fastest way to sequester SOC through 
land-use change (Baveye et al., 2018), and (3) a slow exponential de-
crease in sequestration rates: with a 30-year half-life (Figure 1a). The 
impact of these assumptions on global SOC sequestration potential 
is striking (Figure 1b): for the 2100 horizon, they are 257, 121 and 
49 Gt CO2 for constant, slowly decreasing and rapidly decreasing 
rates, respectively. This suggests that SOC sequestration potentials 
estimates that disregard saturation are overestimated by 53%–81%.

Finally, it is important to note that soils are not static: soil is 
formed at the soil-bedrock interface (saprolite) at the bottom of the 
soil column (mostly on centennial to millennial timescales), and soil 
is transported by erosion, exposing subsoil layers at the eroded site 
and burying topsoil layers where the eroded soil is deposited. Full 
accounting of these processes would be required to understand 
the carbon balance at larger temporal and spatial scale (Kirkels 
et al., 2014). Reviewing knowledge on the creation and redistribu-
tion of soils on SOC storage is beyond the scope of this article, but it 

is worth mentioning as it exposes yet another layer of complexity in 
the prediction of SOC sequestration.

3.3  |  Non-permanence

SOC sequestration is also reversible. This means that improved man-
agement practices must be maintained for SOC stocks to remain at 
their maximum potential after the new equilibrium has been reached 
(Smith,  2012). Although some authors argue that this is realistic 
(Rumpel et al., 2019), SOC remains vulnerable to losses and is sensi-
tive to a range of environmental factors. This vulnerability remains 
poorly understood. Particularly, the reappraised role of aggregation, 
organo-mineral interactions and microbial eco-physiology in regu-
lating soil C dynamics (Lehmann & Kleber, 2015; Liang et al., 2017) 
questions knowledge of SOC sensitivity to factors such as tempera-
ture (Bradford et al., 2016; Conant et al., 2011; Moinet et al., 2018, 
2020, 2021) and water availability (Moinet et al., 2016). The large 
variability in the responses of SOC stocks to soil warming (van 
Gestel et al.,  2018) suggests a context-dependent response and a 
highly uncertain future for newly sequestered SOC, even when best 
management practices are maintained. Arguably, the residence time 
of sequestered SOC is less than that of the C stored in fossil fuel res-
ervoirs (millennia). This implies that, in the long-term, avoiding CO2 
emissions is much more effective at limiting global warming than re-
moving atmospheric CO2, a fact referred to as ‘asymmetry’ in IPCC 
terminology (IPCC WG1, 2021).

Grasping the potential impact of SOC sequestration on climate 
change necessitates a comparison with the reductions in CO2 concen-
trations that are required. This has been done, for example, by com-
paring estimated SOC sequestration potentials to CO2 emitted from 
anthropogenic activities (Minasny et al., 2017; Sommer & Bossio, 2014). 
Following this approach, the most optimistic global potential estimate 
of ca. 454 Gt CO2 (Lal, 2018) represents a little under 12 years of global 
CO2 emissions at the current rate of 39 Gt CO2 year−1, and 3.5 years 
of global CO2 emissions under our assumption of a fast decreas-
ing SOC sequestration rate. The more realistic estimate from Bossio 
et al. (2020) represents 1.2–4.2 years of global emissions. Such com-
parisons have been used to illustrate that SOC sequestration would 
allow ‘buying time’ while low-carbon technologies are being developed 
(Minasny et al., 2017). We contend that this is misleading because of 
the reversibility of SOC sequestration and the large uncertainties sur-
rounding its timespan. SOC sequestration cannot substitute emission 
reductions, even temporarily, nor does it delay the need for immedi-
ate and aggressive cuts in greenhouse gas emissions if we are to keep 
global warming under 1.5 or well-below 2°C (Anderson et al., 2019).

As an alternative representation of the contribution of SOC se-
questration to reaching the goals of the Paris agreement, we made 
some simple calculations. Current policies are expected to stabilise 
emission levels at the current rate (39 Gt CO2 year−1), while scenar-
ios focusing on current trends typically show a modest increase 
(IPCC WG3,  2022). Under these circumstances, cumulative emis-
sions would reach close to 3500 Gt CO2 (range of 3000–4000 Gt 
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CO2) by the end of the century. The total carbon budget to meet the 
1.5°C target is estimated at 500 Gt CO2 from early 2020 to 2100 
(IPCC WG1,  2021). This implies a total net reduction in emissions 
of around 3000 Gt CO2. Avoiding positive emissions (e.g. by decar-
bonisation and demand reduction) will be the main pathway. CDR 
can contribute to meeting the target by offsetting positive emis-
sions before net-zero is reached (e.g. from hard-to-abate sectors) or 
by contributing to net negative emissions. In this context, the pos-
sible contribution of SOC sequestration alone, under the unrealistic 
assumption of an unlimited sequestration potential, would range 

from 1.0% (IPCC, 2019) to 23.7% (Lal, 2018) of the efforts towards 
a 1.5°C target for the horizon 2100 (Figure 1c; taking 0.4 and 9.1 
Gt CO2 year−1 as initial rates). Contributions decrease to 11.1% and 
4.5% for the most optimistic SOC sequestration rate estimate (Lal 
et al., 2018) under the fast and slow assumptions, respectively; and 
to 4.0% and 1.6% for the more realistic initial SOC sequestration 
rate (3.3 Gt CO2 year−1 by Bossio et al., 2020; Figure 1d,e). The most 
recent estimated initial SOC sequestration rate (0.52 Gt CO2 year−1 
by Janzen et al., 2022) would suggest an insignificant contribution of 
between 0% and 1%.

F I G U R E  1  Visualisation of the impact of three different assumptions regarding C saturation on global soil organic carbon (SOC) 
sequestration and its potential to mitigate climate change to the horizon 2100. The three assumptions are as follows: An unrealistic constant 
sequestration rates over time, that is, no saturation limit (green dotted lines and frame); slow exponential decrease in sequestration rates 
(30 years exponential decay half-life; blue lines and frame); and fast exponential decrease in sequestration rates (10 years half-life; orange 
lines and frame). For the three assumptions, the temporal dynamics of global sequestration rates (a) and global SOC sequestration potential 
(b) are depicted for the example of the estimate from Bossio et al. (2020). The contribution of SOC sequestration to a pathway to 1.5°C 
target is represented for the whole range of literature estimates of sequestration rates in panels (c), (d) and (e), each panel corresponding to 
one assumption on saturation as indicated by the colours.

(a) (c)

(d)

(e)

(b)
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4  |  CONTRIBUTION OF SOC 
SEQUESTR ATION TO SOIL FERTILIT Y AND 
CROP YIELDS

Crops do not take up C from the soil. Therefore, the mechanisms 
through which SOC affects crop biomass and yield are always indi-
rect. Such mechanisms include an increased supply of nutrients from 
mineralisation of SOM, enhanced retention and buffering of nutri-
ent stocks through increased cation exchange capacity, improved 
water infiltration and better soil structure (and thus increased water 
and nutrient availability), or through shifts in the composition and 
structure of soil organism communities which may positively impact 
nutrient cycling and pest and disease control (Johnston et al., 2009; 
Watts & Dexter, 1997).

While seemingly sound, the generality of this narrative has been 
contested, both theoretically (Janzen, 2006) and empirically (Terrer 
et al., 2021), as mentioned in the introduction. So, what is the em-
pirical evidence for a causal link between SOC sequestration and 
improved crop biomass production and yields? In recent years, a 
large number of meta-analyses assessed the benefits of either SOC 
sequestration or management practices that lead to SOC seques-
tration, on crop yields. To shed more light on the premise that SOC 
sequestration for climate change mitigation will also increase plant 
production, we reviewed 21 of those meta-analyses, the methods 
they employed, the outcomes, the validity and the limitations of 
the studies (Table 1). This exercise led us to three main conclusions, 
successively elaborated in the following sections: (i) establishing 
causality between SOC sequestration and crop yield is problematic, 
(ii) the response variables used vary among the studies and all have 
limitations, and (iii) the outcomes vary with space, time and methods 
used. Altogether, the meta-analyses provide no convincing empirical 
support that there is a general positive correlation between SOC se-
questration and improvements in crop yield.

4.1  |  Establishing causality is problematic

The most straightforward method to assess the effect of SOC 
on crop yields is a space for time substitution (as done by Han 
et al., 2018; Oelofse et al., 2015; Oldfield et al., 2019; Schjønning 
et al.,  2018). Such studies compare crop production at several lo-
cations, some with larger SOC content than others, and assess dif-
ferences in yields. Implicitly, a similar yield difference is assumed 
to occur when the SOC would have changed over time in one lo-
cation. Interpretation is problematic, however, as soil texture and 
climate are strong confounding factors. Soil texture and climate 
affect SOC stocks (Burke et al., 1989; Feller & Beare, 1997; Hoyle 
et al., 2016; Miller et al., 2004) but also affect crop yields directly 
(van Ittersum & Rabbinge,  1997). Furthermore, if SOC can affect 
crop yield through the mechanisms mentioned earlier, the reverse 
may also be true: larger crop yields may lead to increased biomass 
inputs to the soil, through crop residues, roots and stubble, and may 
therefore positively affect the soil C balance. The direction of the 

causality in a correlation observed between SOC stocks and crop 
yields is therefore contested, both in spatial and time series observa-
tions (Figure 2).

Correlating crop yields to a change in SOC stocks (or to a man-
agement practice that enhances SOC stocks) over time in the same 
location (as done by Alvarez et al., 2017; Chen et al., 2018; Cooper 
et al., 2016; Dawe et al., 2003; Du et al., 2020; Han et al., 2018; Islam 
et al., 2022; Jeffery et al., 2017; Kuyah et al., 2019; Li et al., 2021; 
Luo et al., 2018; Soussana et al., 2019; Wei et al., 2016; Zavattaro 
et al., 2017) is not subject to such confounding environmental fac-
tors but has other limitations. To increase SOC stocks (relative to a 
control treatment) in an experimental field, a change in management 
practices is required. Yet management changes not only affect SOC 
but may also influence crop yields directly (Figure 2). For example, 
cultivation of a cover crop can increase SOC stocks and, at the same 
time, can reduce N losses, thereby increasing soil N supply and pos-
sibly crop yields (Thapa et al., 2018). Another example is that of bio-
char, for which beneficial effects on crop yields are mainly observed 
in tropical acid soils (Jeffery et al., 2017), most likely due to the ame-
lioration of aluminium toxicity (Shetty et al., 2021).

4.2  |  Limitations of response variables used

An additional complication that arises when assessing the contribu-
tion of SOC sequestration to crop yields is the composition of SOM, 
which changes over time. Often, adding organic amendments to 
soil is assumed to be representative of SOC sequestration (Dawe 
et al., 2003; Islam et al., 2022; Wei et al., 2016) as additional C inputs 
favour a positive soil C balance. However, fresh organic amendments 
are not equivalent to a long-term change in SOC stocks. Fresh or-
ganic amendments contain large amounts of nutrients (such as N, 
phosphorus [P] and potassium [K]), which are more readily avail-
able for crops than the nutrients contained in older, stabilised SOM. 
Fresh organic amendments may therefore have larger benefits for 
crop yields than older and more stable SOM. When analysing field 
experimental data, such NPK effects can be excluded by assessing 
yield response curves to N application in the presence of sufficient P 
and K supply and calculating the difference in attainable crop yields 
(as done by Hijbeek et al.,  2017; Oelofse et al.,  2015; Schjønning 
et al.,  2018). In such cases, attainable crop yields are the plateau 
of the yield response curve. An increase in the plateau suggests 
improvements in other soil functions, beyond nutrient supply, that 
stimulate crop yields.

Alternatively, one can assess the influence of an increase in SOC 
on agronomic N use efficiency or N recovery (as done by Oelofse 
et al.,  2015; Ravensbergen et al.,  2021; Schjønning et al.,  2018; 
Vanlauwe et al., 2011). These indicators assess the additional yield 
or crop N uptake per additional kg N applied. An increase would 
confirm the hypothesis that larger SOC stocks lead to improved 
soil structure, water holding capacity, or soil quality in general (al-
though we acknowledge that the term is controversial; Bünemann 
et al., 2018), leading to more plant production per unit N applied. 
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When experimental treatments receive sufficient P and K applica-
tion, a change in agronomic N use efficiency is also representative of 
the long-term effect of SOC on crop yield.

Among the meta-analyses reviewed, some studies tried to cor-
rect for NPK effects on crop yields by assessing the ratio of N, P 
and/or K between treatments or aiming to standardise nutrient sup-
ply (Chen et al., 2018; Dawe et al., 2003; Zavattaro et al., 2017). At 
the same time, the authors acknowledged that this approach is am-
biguous as a control treatment with equal NPK supply from mineral 
fertiliser is required, while relative nutrient mineralisation rates of 
organic amendments vary strongly with the quality of the amend-
ment and across locations (Schröder, 2005). As a result, it is unclear 
whether findings from those studies represent the effect of old or 
fresh organic matter. In Table 1, such studies are classified as ‘uncer-
tain in some cases’.

4.3  |  Conflicting evidence

Findings of the recent meta-analyses vary from negative to neu-
tral to positive yield effects of increasing SOC (or organic amend-
ments; Table 1). It is striking that neutral or negative effects are 
found much more often when studies correct for N, P and K sup-
ply (Table 1, top section). By contrast, a majority of the studies in 
which N, P and K supply was included found a positive effect of 
SOC on crop yields (Table 1, bottom section). Based on the previ-
ous section, we argue that these latter yield effects are not rep-
resentative of expected yield increases when sequestering carbon 
over long periods of time in more persistent forms, as required to 
mitigate climate change.

In short, increasing SOC stocks does not always increase crop 
yields, and can also negatively affect them. Terrer et al.  (2021) 
showed a trade-off between SOC sequestration and plant biomass 
production in a meta-analysis of 108 elevated CO2 experiments 
across forests and grassland ecosystems, most likely due to compe-
tition for N between soil and plants. This was affirmed by another 

recent study (van der Pol et al., 2022), who found that converting 
a fallow-grain crop rotation to a continuous grain crop rotation in-
creased grain yield and SOC stocks only when a legume crop was 
also included in the rotation (enhancing inputs from biological N2 
fixation). Competition for nutrients (particularly for N) is therefore 
a strong candidate explanation for observed negative yield effects.

Another critical point to stress is the context specificity of the 
relationship between SOC and yield. From the eight meta-analyses 
which gave insights into the longer-term effect of SOC sequestra-
tion on soil fertility and crop yields (i.e. correcting for NPK supply), 
four studies investigated the role of soil texture (Chen et al., 2018; 
Hijbeek et al., 2017; Oelofse et al., 2015; Zavattaro et al., 2017) and 
one investigated the role of climate (Chen et al., 2018). Considering 
soil type, three studies consistently found greater benefits on sandy 
soils. Only one study (Oelofse et al.,  2015) found unclear effects 
across eight soil types, with borderline positive effects on coarse 
sandy loam and fine sandy clay loam soils but negative effects 
on fine sandy soils. A clearer picture was obtained by Zavattaro 
et al. (2017) who found significantly more benefits on light than on 
medium-textured soils (response ratio of 1.051 vs. 0.866). Similarly, 
whereas Hijbeek et al.  (2017) found no overall yield effects of or-
ganic amendments, attainable crop yields were increased on soils 
with smaller clay content (an additional 0.13% increase in attainable 
yields when using organic amendments for 1% less clay particles). 
Finally, when assessing the yield change in the final years of experi-
ments, Chen et al. (2018) found a positive yield difference for sandy 
soils, but not for any of the other soils investigated (clay, loam or silty 
soils) when standardising NPK supply. Using the same data selection, 
the authors also found a positive yield effect in tropical climates, 
with no significant yield differences in the final experimental year in 
the other climate zones (subtropical and continental).

Beyond pedo-climatic conditions, the initial SOC stocks are also 
critical. This was very clearly demonstrated in the meta-analysis of 
Oldfield et al. (2019), who showed that the yield effect of SOC sat-
urates, with no further increase beyond a SOC content of approxi-
mately 2%.

F I G U R E  2  Illustration of the complexity of unravelling causal relations between an increase in soil organic carbon (SOC) stocks and crop 
yields. Agricultural practices that increase SOC stocks may also enhance crop yields, suggesting that the evolution of SOC and yield in time 
may correlate with no causal link between them. Moreover, even if a causal link exists, determining which SOC or yield is the cause, and 
which is the effect, is problematic.

Agricultural practice
(organic 

amendment, 
reducing tillage, 

cover crops) 

Crop yield

Soil C

?

?
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5  |  SOIL-SMART AGRICULTURE

Two key points emerge from our review: (i) the climate mitigation 
potential of SOC sequestration is modest, at best, on a global scale, 
and context-specific, and (ii) correlations between SOC sequestra-
tion and crop yield are strongly context dependent and it is highly 
uncertain whether a causal link exists. Therefore, SOC sequestra-
tion is most certainly not a win-win option under all conditions.

Nevertheless, reaping the win-win between enhancing SOC and 
crop yields where and when possible is laudable. From this perspec-
tive, agendas that promote region-specific (or even more localised) 

assessments, as proposed recently (Amelung et al.,  2020), seem 
appropriate. Yet even when and where SOC sequestration can go 
hand-in-hand with improved soil fertility and crop yields, strategies 
to promote one may not be the best suited to promote the other. 
The influence of soil type is particularly illustrative of this conflict 
(Rusinamhodzi et al.,  2013). As discussed, clay soils have the larg-
est potential to store SOC, and those that are depleted offer the 
greatest opportunity to increase SOC stocks (Angers et al.,  2011; 
Kirschbaum et al., 2020; McNally et al., 2017), but it is in sandy soils 
that the effect of increasing SOC on crop yield may be the largest 
(Chen et al.,  2018; Hijbeek et al.,  2017; Zavattaro et al.,  2017). In 

F I G U R E  3  Conceptual figure illustrating potential conflicts between soil organic carbon (SOC) sequestration and food production. The 
figure depicts two hypothetical cases in which crop residues are removed from one field after harvest to be applied as OM inputs to another 
crop field. In panel a, residues are transferred from a sandy soil to a clay soil. After some years, a new equilibrium for SOC stock is reached. 
The clay soil gains more SOC than the sandy soil loses, due to its higher C stabilisation capacity (Kirschbaum et al., 2020). Therefore the 
net overall effect is that C is sequestered, to the benefit of climate (provided that no additional N2O or CH4 emissions would arise). The 
clay soil also sees crop yield increasing, but not as much as the yield in the sandy soil decreases, due to the stronger yield effect of organic 
amendments in sandy than clay soils (Hijbeek et al., 2017; Zomer et al., 2017). The net effect for yield is that less crops are produced overall. 
The reciprocal transfer, in panel b, leads to mirrored effects: Small yield loss in the clay soil and high yield gain in the sandy soil, and large 
CO2 emissions in clay soil and small SOC sequestration in the sandy soil with an overall SOC loss and aggravated climate change, but more 
food produced overall. Importantly, assuming that each field is owned by a different farmer, someone always loses. This clearly illustrates 
that local win-win scenarios can occur at the expense of fertility elsewhere.
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a context where organic resources are expensive and in high de-
mand (Giller et al., 2008), a strategy targeted at maximising overall 
SOC storage for climate change mitigation would dictate that or-
ganic matter should preferably be diverted from sandy soils to clay 
soils (Kirschbaum et al., 2020), at the expense of the fertility of the 
sandy soils. By contrast, a primary focus on soil fertility and yield 
improvement would dictate organic matter to be diverted from clay 
soils to sandy soils, at the expense of overall SOC storage (Figure 3). 
Importantly, in the former case, an overall yield decrease would 
mean that more land is needed overall to maintain food production 
constant, leading to more deforestation or less reforestation and 
therefore SOC and above-ground C losses elsewhere.

Ensuring global food security in a stabilised climate is a tre-
mendously complex endeavour. Our findings build on a wealth of 
knowledge showing the importance of local knowledge, of devel-
oping locally suited adaptative methods focusing on a wide set of 
environmental outcomes, and calling attention to social acceptabil-
ity and economic viability (Giller et al.,  2015; Pretty, 2018; Pretty 
et al., 2011). For example, while it is doubtful that increasing food 
production in Europe or North America would yield any benefit 
for global food security (Loos et al.,  2014), the link between food 
production and food security is absolutely critical for smallholder 
African farmers (Giller et al., 2021), with an estimated 7% reduction 
in poverty for every 10% increase in yield (Pretty et al., 2011). The 
hard reality is that difficult choices must be made, and these choices 
have to be made locally.

Without a doubt, soils have a critical role to play, and SOM, with 
the carbon it contains, is fundamental to maintaining soil fertility and 
supporting plant production. Furthermore, SOM is central to the nu-
merous functions delivered by soils (Kopittke et al., 2022). This, we 
do not question. However, our review demonstrates that the impor-
tance of SOC does not imply that increasing SOC stocks necessarily 
leads to an increase in yield. More generally, relationships between 
the multiple functions of soil are context-specific and numerous 
trade-offs exist (Schulte et al., 2014; Vazquez et al., 2021; Zwetsloot 
et al.,  2021). It is increasingly recognised that greater scientific 
knowledge and concurrent management of these soil functions will 
be critical (Kopittke et al., 2022; Schulte et al., 2014). We conclude 
that, if we are to ensure food security in a changing climate, let alone 
other sustainable development goals, SOC sequestration is simply 
not up to the challenge. SOC sequestration is indeed one of many 
approaches, one small piece of a very large puzzle, and it should be 
treated as such. We argue that including SOC sequestration in the 
narrative of global climate change mitigation is ill-suited and we call 
for a soil-smart approach, which will not always be ‘climate-smart’.
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