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Abstract—This short paper presents an architectural overview
of an agent-based framework called iv4XR for automated testing
that is currently under development by an H2020 project with
the same name. The framework’s intended main use case of is
testing the family of Extended Reality (XR) based systems (e.g.
3D games, VR sytems, AR systems), though the approach can
indeed be adapted to target other types of interactive systems.
The framework is unique in that it is an agent-based system.
Agents are inherently reactive, and therefore are arguably a
natural match to deal with interactive systems. Moreover, it is
also a natural vessel for mounting and combining different AI
capabilities, e.g. reasoning, navigation, and learning.

Index Terms—AI for automated testing, automated testing XR
systems, agent based testing, AI for testing games

I. INTRODUCTION

The iv4XR Framework1 is an open source agent-based
framework for automated testing of ’Extended Reality’ based
systems. This subfamily of interactive systems includes 3D
games, 3D simulations, VR systems, and AR (Augmented
Reality) systems. The domain urgently needs test automation
support as manual testing is becoming very expensive and
tool support is scarce (even record and replay is often not
available). An agent is essentially a program that interacts with
an environment by repetitively performing actions, either on
its own initiative or as reaction to events generated by the
environment. An agent is thus inherently a reactive program,
and in this sense it is fundamentally different than e.g. a

This work is supported by EU Horizon 2020 research and innovation
programme, grant 856716 project iv4XR (Intelligent Verification/Validation
for Extended Reality Based Systems) and by national funds through FCT,
Fundação para a Ciência e a Tecnologia, project UIDB/50021/2020

1https://github.com/iv4xr-project/aplib

procedure or a service. Arguably, this makes agents a more
natural framework for testing interactive systems.

The iv4XR Framework is currently under development by
an H2020 project with the same name. It has reached a
working prototype level, and is undergoing internal piloting.
To deal with the huge and fine grained interaction space of
XR systems, iv4XR necessarily relies on AI. It has however
its own, rather unique, perspective of how AI is to be deployed
to aid software testing.

While the current interest in AI mainly focuses in machine
learning, iv4XR’s main AI is agent-based AI. The agent
community has long insisted that intelligent agent is AI, a
position that is also supported by the AI community [1], [2],
[3]. Iv4XR is inspired by a popular concept of intelligent
agents called Belief-Desire-Intent (BDI) [4], [5], [6]. An agent
is thought to have a mental state, which includes its ‘beliefs’
and ‘desires’. ‘Desires’ are formulated as goals that the agent
seeks to achieve. ‘Intent’ represents the agent’s plan towards
achieving a goal; this corresponds to the concept of function or
method in traditional programming. The intelligent part comes
from the agent’s ability to reason, e.g. through reasoning rules,
about its believes and goals, to decide which goal to pursue,
and which plan to use. This approach combines a proactive
dimension, that together with the reactive nature of agents
provides more versatility and strength for automated testing
than just invoking e.g. a random tester or a genetic algorithm.

‘Belief’ is also different than the traditional concept of
‘state’. A BDI system acknowledges that belief is not nec-
essarily the same as the reality. For example, suppose a test
agent wants to test if a certain button in the UI of some
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system under test (SUT) behaves correctly. To find the button,
it might believe that the button is located in e.g. panelx. By
acknowledging that this is only a belief, and not necessarily
a fact, we would be more compelled to program what the
agent should do if the belief turns out not to hold, e.g. if
the developer has moved the button to panely . This mindset
encourages the development of robust test strategies.

Agent-based AI and machine learning are not mutually
exclusive. For example, reinforcement learning can be seen as
an approach for finding a policy for an agent towards solving a
goal. This can be leveraged by combining it with BDI agent’s
ability to reason. Reasoning rules improve the agent’s ability
to discern which actions in a given state are much more likely,
or else unlikely, to lead to worthy rewards towards reaching
the goal, hence pruning the space that the agent has to explore
to learn. Conversely, when not all reasoning rules are known,
techniques such as rules learning can be used to learn them.

Iv4XR has more features than just BDI, e.g. goal-based
and tactical programming [7], automated navigation and ex-
ploration, and integration with other testing tools such as
TESTAR [8]. A demonstration is available, where iv4XR
is used to automate the testing of a 3D game called Lab
Recruits2. Larger pilots are work in progress.

This short paper presents an architectural overview of the
iv4XR Framework. Section II introduces the key concepts, the
architecture of a test agent, and explains how it works. Section
III explains iv4XR’s design pattern to make it extensible for
targeting an arbitrary SUT. Section IV discusses some related
work. Section V concludes and mentions future work.

II. TESTING WITH IV4XR

Iv4XR is implemented as a Java library. This also means
that Java is the language to use when formulating testing
tasks —the advantage is that Java is a popular language, well
supported with development tools. Iv4XR also comes with a
set of APIs that mimic a Domain Specific Language (DSL),
allowing testers to formulate tasks more fluently. Since it is
not possible to have one automated testing framework to cater
all sorts of technologies and ontologies of the target systems,
iv4XR is designed from the outset to be extensible, relying
on two Java features to do this: inheritance to allow testers to
customize standard behavior, and λ-expression to allow new
behavior to be fluently passed as parameters.

Figure 1 shows a top level architecture of test agents. But
let us first explain iv4XR’s concept of ‘automated testing’.

A. What should we automate?

Given a System under Test (SUT), iv4XR facilitates the
development of strategies which can be used to automatically
‘solve’ testing tasks. Strategies might be SUT-specific, but
once developed they can be reused to automate all sorts of
testing tasks for the SUT (or its family). While testing tasks
can be automatically solved, iv4XR does expect the tester to
specify what the tasks are. This is different than automation

2https://github.com/iv4xr-project/iv4xrDemo

Fig. 1. An iv4XR test agent accepts testing tasks. Strategies are used to solve
them, which in turn make use of general AI capabilities such as reasoning
and navigation.

provided by tools like QuickCheck, T3, or Evosuite [9], [10],
[11] which only need the SUT to be given, after which they
can generate tests. Such an approach works when testing units
(e.g. a method or a class). An interactive system is however
more complicated. The state space is much larger, and has a
complicated structure. Without being more specific in what we
want to test, just wandering around trying different things is
unlikely to be effective, which is why iv4XR is aimed towards
task-level automation.

The simplest form of ‘testing tasks’ is the task to verify an
‘assertion’. Two common types of assertion-like properties are
these (borrowing CTL notation [12]):
• Existential EFφ, asserting the existence of an execution

that leads to a state satisfying φ. As an example: in a web
application a page named Purchase should be reachable.

• Universal AG(φ→ ψ), asserting that all states satisfying
φ should also satisfy ψ. For example, we might require
that the aforementioned page Purchase (the φ part)
contains a button named cancel, and clicking on it should
empty the user’s purchasing basket (the ψ part).

In both cases, a testing algorithm will have to find at least
one right sequence of interactions that would move the SUT
to φ. This part is often very challenging, whereas checking the
ψ part, in the case of a universal assertion, is usually straight
forward. For example, if the SUT is a computer game, and φ
is a key room in the game, verifying EF φ would effectively
require an algorithm that knows how to play the game, at least
as far as getting itself to reaching the room. Obviously, this
is not an easy feat. From this perspective, ‘strategies’ pointed
in Fig. 1 are, in the heart, typically aimed to guide the agent
towards different kinds of φ.

B. Test agent
Figure 1 shows the architecture of a test agent. The agent

controls the SUT by executing a series of actions. Actions can
be expected to be very primitive. E.g. if the SUT is a computer
game, an ‘action’ could be to move an in-game character in
a given direction for few frame updates. Modern games can
run at the rate of 100 frame updates/second, so such an action
will only move the character for a very small distance. Note
that having primitive actions is a good thing, as this allows
the agent to have refined control on the SUT, though the trade
off is that it needs to put more effort in planning.

To do anything, the test agent must be given a testing task,
see 1© in Fig. 1, e.g. to verify an assertion as discussed above.
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In terms of BDI agency, a task is a goal. When the agent
manages to complete the goal, we say that it is ‘solved’. To
solve a goal, a ‘tactic’ is needed. A tactic can be just a bunch of
actions {αi}, each can be guarded with some reasoning logic
gi determining when it makes sense to execute the action. E.g.
α0 could be to interact with an in-game button, and its g0 could
require the agent to be physically close enough to the button
(else the game might not allow the interaction); α1 could be
moving in the direction of the button, and its g1 could require
that the agent has a clear line of sight to the button.

Being a reactive program, the execution model of an agent is
very different than e.g. a procedure or a service. An agent runs
in (rapid) cycles. A cycle is either triggered by a clock tick or
by an incoming event. At each cycle, the agent checks which
actions in its current tactic are ‘enabled’; that is, having their
logic-guard evaluates to true. One is then chosen, randomly,
or according to some policy. The cycles are repeated until
the goal is solved (or the agent runs out of budget). Note
that the actions’ guards essentially form the reasoning part
for solving the goal. Iv4XR additionally provides combinators
similar to the idea of tactic combinators in theorem proving
[13], [14] to structurally combine simpler tactics to construct
more complicated ones. Indeed, programming a tactic might be
non-trivial for testers, so this part should be made transparent,
or at least mitigated. We will return to this later.

Some testing tasks can be expected to be non-trivial. To
make them feasible for the test agent to solve, we can introduce
subgoals. Goal-combinators can be used to specify how to
combine them. The idea is similar to Behavior Tree from AI
[15]; an example is visualized below:

E.g. the SEQ combinator formulates a task where all its
subgoals must be solved in the specified sequence. Above, the
actual testing task is g4, e.g. as in a previous example, to verify
that a key room in a game is reachable. The subgoals g1..g3
can be thought as ‘lemmas’ to help in solving g4.

Figure 2 shows an example, at the code-level, of how a
testing task is specified, assigned to an agent, and how to
inspect the result of the task.

Many tasks are actually just variations of each other. E.g.
a testing task to check the state of some in-game button b0 is
just a variation of a similar task for checking another button
b2. We can therefore provide a parameterized goal to do this
task, and instantiate it on demand whenever we need to verify
some concrete button.

In Section II-A we mentioned ‘strategies’, and also as 2© in
Fig. 1. A strategy is a parameterized goal capturing a common
subtask. When formulating testing tasks, we can imagine that
testers have access to a library of these strategies; all they
need to do is to instantiate them, and to arrange them towards

solving the testing task they have in mind.
Of course, someone needs to provide the strategies in the

first place. We expect them to be quite SUT specific. E.g.
strategies for a shooter game cannot be expected to be reusable
for a train simulator. However, constructing them is a one-off
investment, after which testers can keep reusing them to write
automated testing tasks.

Since a strategy is essentially a goal, we need a tactic
to solve it. So, the one-off investment also involves the
development of common tactics. The basic building blocks
for tactics are the primitive actions as provided by the SUT
itself. To combine them, we indeed have the aforementioned
tactic combinators, but additionally we also have access to a
number of AI capabilities, indicated in 3© in Fig. 1:
• Reasoning: through actions’ guards as discussed before.
• Navigation: steering a virtual character to navigate

through a 3D virtual world is not trivial since it typically
also has to respect some physical laws. E.g. the virtual
character would not be able to see nor walk through a
solid obstacle; this complicates navigation a lot. Iv4XR
implements the path finding algoritm A* so that a tactic
can automatically steer a test agent to a given target
location. When the agent want to inspects some virtual
entity, but its location it not known (the tester may
deliberately abstract away the location, to make the test
more robust), the agent will then have to search the entity
first. Iv4XR also implements an algorithm inspired by
robot exploration to do this; for more on this see [16].

• Learning: Recall that an agent uses a ‘policy’ when deter-
mining which action among the set of enabled actions is
to choose for execution. The default policy is just random,
but a custom policy can be set, which in turn can be
obtained through learning.
Technically, a goal is a predicate φ evaluated over a
candidate C proposed by the tactic Tφ associated to φ.
The goal is solved when Tφ finds a C such that φ(C)
is true. To support unsupervised learning, φ can also be
formulated as a cost function: when a tactic proposes a
wrong C, φ(C) expresses an estimation of the remaining
effort, starting from what we know about C, to find a
solution. This would allow e.g. Reinforcement Learning
to be deployed to learn a policy.
Note that a policy is used on enabled actions, which
means it is used in combination with the agent’s own
reasoning (through action guards) as the latter determines
which actions are enabled.

III. INTERFACE PATTERN AND WORLD MODEL

To do its work the test agent will need an interface that
lets it control the SUT and inspect its state. For XR systems,
this is more challenging than e.g. browser-based applications.
There is a large variation in the used UI technologies and
there is no clear winner. Hence there is no common interfacing
technology either. To make iv4XR usable for as much users as
possible, the framework is provided open source and designed
from the outset with extensibility in mind. The trade off is



1 v a r t t a s k = SEQ(
2 FIRSTof (g1 ,g2 ) ,
3 REPEAT(g3 ) ,
4 / / g4 :
5 a s s e r t ( agen t , β → β .wom. g e t E l e m e n t (key ) 6= n u l l ) )
6

7 a g e n t . a t t a c h S t a t e ( new W3DAgentState . j a v a ( ) )
8 . a t t a c h E n v i r o n m e n t ( new EnvSUT ( ) )
9 . s e t D a t a C o l l e c t o r ( new T e s t D a t a C o l l e c t o r ( ) )

10 . s e t G o a l ( t t a s k )
11 . b ud ge t ( 1 0 0 0 )
12 . u s e D e l i b e r a t i o n ( p o l i c y )
13

14 w h i l e ( t t a s k . g e t S t a t u s ( )==INPROGRESS) a g e n t . u p d a t e ( ) ;
15

16 v a r v e r d i c t s = a g e n t . g e t T e s t D a t a C o l l e c t o r ( ) ;
17 a s s e r t T r u e ( v e r d i c t s . g e t N u m b e r O f F a i l V e r d i c t s S e e n ( ) == 0)

Fig. 2. An sample iv4XR code. Lines 1..5 specify a testing task. The last
goal, g4, is a task to verify if an in-game entity key is present in the game;
β represents the agent’s belief. Other goals are intermediate goals intended to
guide the agent in solving g4. Line 11 assigns the aforementioned task to a
test agent. Line 12 sets a computation budget for the agent, and line 13 sets
an action-selection ’policy’. Line 15 runs the agent in a simple loop. Finally,
line 18 checks if the agent found no violation.

that a company using iv4XR first has to put some effort to
instantiate its interface scheme, depicted in Figure 3.

Every test agent maintains a state (W3DAgentState), which
includes what it believes to be the current SUT state. This
is represented by a so-called World Object Model (WOM),
or simply World Model. The agent’s state also contains a
pointer to an ‘Environment’ (W3DEnvironment), which would
provide a set of primitive actions used by the test agent to
control or observe the SUT, such as to move some small
distance, or to interact with an entity. The implementation
of these actions is, however, SUT dependent, hence cannot
be provided by W3DEnvironment itself. Developers therefore
need to provide the implementation in the form of the class
MyEnvironment that extends W3DEnvironment.

Each action from the Environment will also return a WOM,
representing what the agent observes at the end of the action.
Being an XR system, the SUT is assumed to represent a 3D
world. A WOM represents a fragment of this world. E.g. it
might list relevant entities in the world, along with their key
properties. While the WOM returned by an action represents
what the agent currently sees, the WOM maintained in the
agent state aggregates all the received WOMs. While this
maximizes the information the agent memorizes, some of the
information in its WOM might not reflect the actual SUT state.
The information is timestamped, but it is up to the agent to
decide what to do with it.

Another important aspect of the WOM is that it represents
a virtual world structurally, rather than visually. This allows
agents to reason about the world much more accurately, which
in turn also makes testing robust against all sorts of visual
changes during the development; something which game de-
signers can be expected to do quite often. Figure 4 shows
the structure of a WOM. It is actually inspired by Domain
Object Model (DOM) that is used by browers to provide a
common and structural interface to programmatically access

Fig. 3. The structure of the interface between iv4XR and the SUT. It is
a variation of the Proxy Design Pattern [17] with W3DEnvironment and
MyEnvironment taking the role of the abstract and concrete proxies.

Fig. 4. The tree structure of the World Object Model (WOM). A world has
0 or more entities; each in turn may consist of multiple sub-entities. Since
a WOM represents a 3D world, it keeps track e.g. the agent’s last known
position in the world, as well as that of the entities.

and manipulate web pages. Importantly, a DOM is agnostic
towards the actual ontology of the web page it represents.
Similarly, a WOM is agnostic towards the game’s specific
ontology, hence allowing test strategies to be crafted more
generally.

IV. RELATED WORK

The most studied type of AI to aid automated testing
is probably Reinforcement Learning (RL). One of the early
works is that of Mariani et al. [18] where RL is used to help
learning the behavioral model of the SUT, from which test
cases are then generated. RL is mainly used to train a policy
that optimize the discovery of new states (in other words, to
optimize the test coverage). Later works, e.g. as in the use
of RL in the GUI testing tool TESTAR [19], and similarly in
approaches for mobile app testing [20], [21] still follow the
same idea of how RL is exploited (so, to optimize coverage).
In contrast, iv4XR sees AI mainly as an instrument for solving
testing tasks.

Neural Networks (NN) have been proposed to be used to
as artificial specifications [22], [23], [24]. The idea is to train
an NN to approximate the behavior of a program P (x), after
which we can then use the NN as an oracle when testing P ,
in particular when the used testing algorithm generates a large
amount of test cases (e.g. as in random testing). The approach
suffers from false positives; even if there are only e.g. 5%,
each one will have to be manually investigated. The issue is
probably not to be blamed to the NN; it is a common issue in
specification learning.



Iv4XR is not the first attempt to use agents to aid testing.
Earlier works we can mention are [25], [26], [27]. These work
went as far as using agents, and even BDI, but did not explore
how they can actually exploit agent-based AI.

V. CONCLUSION, CURRENT STATUS, AND FUTURE WORK

We have given an overview of the iv4XR Framework. The
Framework provides an agent-based approach to automatically
solve testing tasks on interactive systems. It relies on agent-
based AI, with possibilities to be combined with learning-
based AI. The iv4XR Framework is under development and
has currently reached a prototype level. Currently it is being
piloted for testing 3D games, though as future work we
would like to cover VR systems as well. Actual integration
of learning AI is also future work, as well as the evaluation
of iv4XR on more pilots.
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