
An Agent-based Approach to Automated Game Testing: an
Experience Report

I. S. W. B. Prasetya
Utrecht University
the Netherlands

S.W.B.Prasetya@uu.nl

Fernando Pastor Ricós
Universitat Politècnica de València

Spain
fpastor@pros.upv.es

Fitsum Kifetew
Davide Prandi

Fondazione Bruno Kessler
Italy

{kifetew,prandi}@fbk.eu

Samira
Shirzadeh-hajimahmood

Utrecht University
the Netherlands

S.shirzadehhajimahmood@uu.nl

Tanja E. J. Vos
Open Universiteit and Universitat

Politècnica de València
The Netherlands and Spain

tanja.vos@ou.nl,tvos@vrain.upv.es

Premysl Paska
Karel Hovorska

GoodAI
Czechia

karel.hovorka@goodai.com

Raihana Ferdous
Angelo Susi

Fondazione Bruno Kessler
Italy

{rferdous,susi}@fbk.eu

Joseph Davidson
GoodAI
Czechia

joseph.davidson@goodai.com

ABSTRACT
Computer games are very challenging to handle for traditional
automated testing algorithms. In this paper we will look at intel-
ligent agents as a solution. Agents are suitable for testing games,
since they are reactive and able to reason about their environment
to decide the action they want to take. This paper presents the
experience of using an agent-based automated testing framework
called iv4xr to test computer games. Three games will be discussed,
including a sophisticated 3D game called Space Engineers. We will
show how the framework can be used in different ways, either
directly to drive a test agent, or as an intelligent functionality that
can be driven by a traditional automated testing algorithm such as
a random algorithm or a model based testing algorithm.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Interactive games.

KEYWORDS
automated game testing, agent-based testing, model-based game
testing, 3D game testing

This is a preprint of a paper with the same title. It is published in
the 13th Workshop on Automating TEST case Design, Selection
and Evaluation (ATEST), 2022. The finalprint is published by ACM
and can be found here: https://doi.org/10.1145/3548659.3561305

1 INTRODUCTION
Computer games are notoriously hard to test automatically. Imagine
we want to test some specific state in a computer game. To do this,
the tester may need to guide an in-game character through thou-
sands of fine grained interactions to arrive in the state of interest;

only then the tester can check one or more assertions on that state.
In other types of interactive systems, such as web or mobile appli-
cations, testers can use a record and replay technology to automate
the execution of tests. A tester would record manual sessions where
he/she interacts with the application under test. The recorded se-
quence of interactions are then used as test cases by replaying them.
Unfortunately this works poorly, and even more so in the game
setup as recorded game plays are very fragile. E.g. non-determinism
would break recorded game plays, which is problematical because
this is prevalent in computer games, e.g. due to their randomized
logic or presence of concurrent components. Furthermore, if the
game designer changes the layout of the game world, or the place-
ment of some game items just a little, which happens frequently
during the development, these also break recorded tests. So, to ro-
bustly automate the execution of test cases, we need a solution that
possess reactivity (ability to react to unexpected changes) and some
"intelligence" to autonomously re-plan the test sequence if needed,
e.g. if the world layout has changed. There is one programming
paradigm that allows these to be programmed naturally, namely
agent programming. As such this makes an agent programming
framework a good candidate to be used as the base to build an
automated game testing solution – iv4xr is such a framework.

The iv4xr framework provides a Java implementation of test
agents [13]. A test agent can be connected to a game under test
through an interface, and then used to autonomously drive a player
character to do automated play testing. The framework provides
concepts such as ’tactic’ and ’goal structure’ to abstractly program
reactive behavior and complex testing tasks. The framework also
provides automated path finding and terrain exploration [12] to
enable a test agent to autonomously find a target game object it
wants to test, regardless the layout of the game world.

ar
X

iv
:2

21
1.

06
38

6v
1

 [
cs

.S
E

]
 1

1
N

ov
 2

02
2

https://orcid.org/0000-0002-3421-4635
https://orcid.org/0000-0002-5790-193X
https://orcid.org/0000-0003-1860-8666
https://orcid.org/0000-0001-9885-6074
https://orcid.org/0000-0002-5148-3685
https://orcid.org/0000-0002-5148-3685
https://orcid.org/0000-0002-6003-9113
https://orcid.org/0000-0002-5026-7462
https://doi.org/10.1145/3548659.3561305

ATEST, November, 2022, Singapore Prasteya et al.

Figure 1: A high-level architecture of iv4xr framework.

This paper presents our experience of using iv4xr framework to
test three different games: a Nethack-like 2D game called MiniDun-
geon, a 3D game called Lab Recruits, and a commercial 3D game
called Space Engineers. Each will show a different use case of iv4xr.

This paper is structured as follows. Section 2 gives a brief overview
of iv4xr and its agent programming. Section 3 gives an overview
of the three case studies that we will present; Sections 4, 5, and 6
discuss each in more details. Section 7 gives a brief overview of
related work, and finally Section 8 concludes.

2 THE IV4XR TEST-AGENT FRAMEWORK
The high-level architecture of the iv4xr framework is shown in
Figure 1. A test agent can be connected to a game under test
(GUT) through an interface called Environment. The game devel-
opers should implement this interface. It should provide a method
observe() to observe the state of the game, and methods imple-
menting primitive actions the agent can do on the game, such as
interacting with a nearby game object, or moving to a certain direc-
tion for some unit of distance. What actions are to be provided, and
how much observation observe() reveals, are up to the developers
to decide. However, there are some aspects to consider. For exam-
ple, allowing the agent to instantly access to the state of all game
objects would make testing easier, but this might be computation-
ally excessive as the GUT might then need to send over the states
of thousands of objects to the agent. We also lose some realism
as actual players can only see objects visible in their screens. An
all-seeing agent might take actions that actual users would not do.

In the most basic form, a test agent drives the GUT by invoking
its Environment’s actions and samples the GUT’s state as it goes to
check if the GUT is in the correct state. Iv4xr is inspired by so-called
BDI (Belief-Desire-Intent) agents [2, 5, 14]. This type of agents has
a quite different execution model than a traditional procedure, so
it is useful to first explain this. A BDI agent has a set of goals and
runs in so-called deliberation cycles until its goal set is empty. At
every cycle, the agent observes its environment, decides which
action to do, and executes the action. It also decides if the current
goal is accomplished, or if it should be dropped, and if so, which
goal to pursue next. Specific for an Iv4xr agent, it accumulates all
observations it gets so far into what can be seen as ’belief’: the latest
observation is factual, but older observations in the belief may no
longer be valid in the actual GUT state. A BDI agent is allowed to act
on belief, e.g. if an object 𝑜 exists in its belief, it can optimistically

decide to go to 𝑜 , believing it still exists in the actual game world.
The fact that a BDI agent runs in deliberation cycles also makes it
highly reactive, as it allows the agent to continuously, or at least
frequently, sample the state of the GUT and immediately acts after
each sampling, which makes it very suitable for controlling a game.

The basic form of BDI agent programming is to specify which
action to select at each deliberation cycle, which can be expressed
declaratively with guarded actions a la Action System [3]. The
snippet below shows an example of how this looks like in iv4xr
(some concrete syntax are omitted). 𝐵 represents the agent’s belief;
𝐵 → 𝑒𝑥𝑝𝑟 is a lambda expression that, here, represents an action.

var 𝑡𝑎𝑐𝑡𝑖𝑐1 = ANYof (
action().do1(𝐵 → 𝐵.𝑒𝑛𝑣 ().𝑚𝑜𝑣𝑒𝑈𝑝 ()).on(𝑔1) ,
action().do1(𝐵 → 𝐵.𝑒𝑛𝑣 ().𝑚𝑜𝑣𝑒𝐷𝑜𝑤𝑛()).on(𝑔2) ,
...

action().do1(𝐵 → 𝐵.𝑒𝑛𝑣 ().𝑢𝑠𝑒𝐻𝑒𝑎𝑙𝐾𝑖𝑡 ()).on(𝑔𝑘))

where𝑚𝑜𝑣𝑒𝑈𝑝 (),𝑚𝑜𝑣𝑒𝐷𝑜𝑤𝑛(), 𝑢𝑠𝑒𝐻𝑒𝑎𝑙𝐾𝑖𝑡 (), etc are methods we
can imagine as provided by the Environment 𝑒𝑛𝑣 (), and 𝑔1 ..𝑔𝑘 are
guards specifying when the corresponding action is enabled for
execution (e.g. 𝑔1 could require that the way upwards is clear).
Only enabled actions are executable; if there are more than one, the
ANYof combinator will select one randomly. In iv4xr, a system of
actions such as the one above is called a tactic. Given a tactic, an
agent will keep executing it until its current goal is achieved (or
it runs out of budget). E.g. this goal could be ’to obtain a key’ (e.g.
because we want to check its properties).

If we remove all the guards, the tactic above would be how we
can program a random test agent. Guards add some intelligence
in choosing better actions (than just randomly), e.g. the action
𝑢𝑠𝑒𝐻𝑒𝑎𝑙𝐾𝑖𝑡 () can be guarded so that it becomes enabled when the
character health drops under a certain critical level.

2.1 Navigation
A basic, but important, task that should be automated is navigation.
The previous 𝑡𝑎𝑐𝑡𝑖𝑐1 can do it, but not effectively. In fact, naviga-
tion in a game wold is usually non-trivial due to its complex layout
and presence of dynamic obstacles. A standard solution is to rep-
resent walkable parts of the game world, which can be an infinite
continuous space, as a finite navigation graph, after which a path
finding algorithm such as A* [8] can be applied to guide the agent
to get to a target location. Iv4xr provides several ways to do this
reduction. For example if the GUT can export a so-called navigation
mesh, iv4xr can convert it to a navigation graph. Figure 2 shows an
example of such a mesh in a game engine called UNITY. A mesh is
a finite set of connected triangles that cover a walkable surface. As
such, it induces a navigation graph. If the GUT does not produce a
navigation mesh, iv4xr can also construct a navigation graph on
the fly, based on the geometry of the objects an agent sees.

From this, two tactics can be constructed [12]. First,𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 (𝑜),
which when repeatedly executed would guide the agent to reach the
location of an object 𝑜 , if the location is known. Second, 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ()
to guide the agent to the closest unexplored area of the game world.
So, rather than the previous 𝑡𝑎𝑐𝑡𝑖𝑐1 we can now have the following,
if the goal is to obtain some object ’key’ 𝑘 :

An Agent-based Approach to Automated Game Testing: an Experience Report ATEST, November, 2022, Singapore

Figure 2: The picture to the right shows the mesh (blue surface),
consisting of triangles (edges colored red), in a UNITY game.

var 𝑡𝑎𝑐𝑡𝑖𝑐2 = FIRSTof (
action().do1(𝐵 → 𝐵.𝑒𝑛𝑣 ().𝑢𝑠𝑒𝐻𝑒𝑎𝑙𝐾𝑖𝑡 ()).on(𝑔) ,
𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 (𝑘) ,
𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ())

Above we use a priority-based selector FIRSTof rather than the
previous random selector ANYof. The sub-tactic𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 (𝑘) will
take the agent to the key 𝑘 , if its location is known. Else the tactic
is not enabled; FIRSTof will instead choose 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 () to explore
the world until the agent sees 𝑘 . Though, if its health drops too
low, it will first use a healing kit to fix itself. Note that the last
adds reactivity to handle an ’emerging situation’, namely when the
health drops too low. This can be extended to handle more emerging
situations, such as approaching enemies, and thus equipping the
test agent with some logic to make it more adept in surviving the
game (useful, as a dead agent can’t perform testing tasks).

2.2 Formulating a Testing Task: Goal
Structures

An Iv4xr agent can be given multiple goals. Unlike other agent
programming languages, iv4xr requires the goals to be structured.
A goal structure is tree with goals as leaves and control-combinators
as nodes, specifying either an order or a priority with which its
subgoals are to be solved. For example a sequential testing task to
find the key 𝑘 , to pick it up, and to check that it can be used on
door 𝑑 can be formulated as a goal structure such as the one below:

SEQ ("𝑘 is found" .withTactic(𝑇1 (𝑘)),
"𝑘 is picked up" .withTactic(𝑇2 (𝑘)),
"𝑑 is found" .withTactic(𝑇1 (𝑑)),
"𝑘 is used on 𝑑" .withTactic(𝑇3 (𝑘,𝑑)))

SEQ requires its subgoals to be solved in the order they are given.
For more combinators, including conditional and repetition, see
[13], with which even a test algorithm can be expressed, e.g. when
the exact sequence of sub-tasks is not known upfront [15].

2.3 Integration with Other Testing Tools
Another value of the iv4xr framework is to be used as a rich adapter
to enable traditional automated testing tools to target computer
games (see also the architecture in Fig. 1). For example we used this
scheme to allow a GUI-testing tool TESTAR [16] and a model-based
testing (MBT) tool to target games in two of our case studies. E.g.

TESTAR exploits iv4xr Environment and navigation graph to per-
form smart monkey testing. The MBT tool can efficiently generate
test cases from an EFSM model of a game, which subsequently
are translated to goal structures for a test agent to execute. This
is a very simple integration scheme. A translator must indeed be
written, but this only need to be written once for each game.

3 CASES OVERVIEW
In the coming sections we will discuss our experience in using iv4xr
for testing three different games: MiniDungeon, Space Engineers,
and Lab Recruits. With each we also want to show a different way
of using iv4xr. In the MiniDungeon case we will show a direct use
of a iv4xr test agent to check a set of correctness properties of the
game, such as the reachability of key objects in the game. The game
has much randomness in its logic and enemies too. The test agent
needs to be able to deal with both to remain robust and survive
long enough to complete its testing tasks.

In the Space Engineers case we will show a setup where iv4xr is
leveraged to enable another testing tool, in this case the GUI testing
tool TESTAR [16], to do automated exploratory game testing.

In the Lab Recruits case shows a setup where iv4xr agents are
used as an intelligent executor for model based testing (MBT). This
setup allows the behavior of a game under test to be described
abstractly using e.g. an extended finite state machine (EFSM), where
the concrete layout of the game world can be abstracted away from
the model. An MBT algorithm can very efficiently generate abstract
test cases from such a model. These abstract cases are fed to the
agents that will carry them out. The agents exploit automated
navigation and exploration from iv4xr (Section 2.1) to explore the
concrete world layout to find the game objects in the test cases.

4 MINIDUNGEON
MiniDungeon is a small 2D, turn-based, Nethack-like game written
in Java. Figure 3 shows a screenshot. The game can be played by
a one or two players. Figure 3 shows two players (circled blue).
The players’ goal is to cleanse the shrine (circled white). To do so,
a scroll is required (gray icon) which a player must bring to the
shrine. Only a holy scroll will cleanse the shrine, but the player
does not know which scroll is holy until he/she tries it. If the shrine
is cleansed, it becomes a portal that takes the player to the next
level. This goes on until the final level; cleansing the shrine there
wins the game. Along the way there are monsters (blue figures) that
can hurt players, but also potions to help them. A greedy strategy
that just collects all scrolls and potions does not work because the
player’s bag has limited space, which is either 1 or 2.

The case. The source code is about 1.2K lines. There are unit tests
providing good coverage for their respective targets. However, in
total they only cover 20% of the whole code base because a large
part of the game is simply hard to unit test.

Monsters, shrines, scrolls, potions, and even players are so-called
game objects. As common in game implementations, MiniDungeon
has a so-called game loop, where at every iteration it executes the
entire state update for each new turn; so, executing the players’
move and all monsters’ move for the turn. Game objects may have
multiple properties, but they do not have much behavior on their
own. For example, when a monster move, the logic that decides

ATEST, November, 2022, Singapore Prasteya et al.

Figure 3: The MiniDungeon game.

where to move resides in the game loop. This cannot be delegated
to the monster-object itself, since the latter only knows its own
state and does not know which neighbouring squares are empty to
move to. So essentially, most of the game logic resides inside the
game loop. Unfortunately this game loop is hard to unit-test.

For example, the game loop moves the monsters in random
directions. Imagine we want to verify that it will never move a
monster to an occupied square. To do this with the usual unit-
testing setup we will need to create a set of test fixtures in the form
of a game level, seeded with at least one monster and different game
objects in different neighboring squares. This is combinatorial in
nature, so it takes substantial effort to hand-craft the fixtures. Then,
to test the monster’s move, we run a the game loop for one ore more
turns on all the fixtures, and repeated multiple times using different
random seeds to account for the randomness in the move’s logic.
A more practical approach is to implant the check as an assertion
inside the game; a snippet of this is shown below:

/ / move the monster to sq :
. . .
i f (Debug .ON) as se r t (wor ld [sq . x] [sq . y]== nul l) ;
wor ld [sq . x] [sq . y]=m;

And thenwe simply ’play’ the game several times. The implanted as-
sertion will catch erroneous monster-moves. This does not require
manually creating fixtures. We also want to do the play testing au-
tomatically. To achieve this we program an automated play testing
agent using iv4xr.

Iv4xr solution
We first implement the Environment component in Figure 1 that
serves as the interface between the agent and the GUT. Its main
APIs is shown below:

c l a s s MyAgentEnv extends I v 4 x rEnv i r onment {
WorldModel ob s e r v e (agen t I d)
WorldModel command (agent Id , cmd)

}

The method command(𝑎, 𝑐𝑚𝑑) simulates a key pressed by a player
as a command. E.g. the key ’w’ and ’s’ cause the agent 𝑎 to move
up respectively down, whereas ’q’ causes the game to end.

The method observe(𝑎) returns what the agent 𝑎 currently sees.
In Fig. 3 we artificially set the view distance to ∞, but normally
the view is limited, e.g. only 3 squares away. Observation is repre-
sented as an iv4xr datastructure called WorldModel. Essentially, it
is a set of ’entities’, each representing a game object as a record of
a unique ID, timestamp, its physical location, and a list of name-
value pairs describing the object’s other properties/state. Entities
may have sub-entities if needed. As mentioned, the agent automat-
ically accumulates observations into its belief, also represented as
a WorldModel. In this belief, when e.g. a monster was observed,
the observation is kept even if the monster is no longer visible. It
is maintained until a new observation updates the monster’s state,
or if the new observation says the monster has been destroyed.
This belief gives the agent more information/depth for making its
decision, rather than just reacting to what it currently sees.

Automated exploration and navigation. We cannot do much auto-
mated play testing if the agent is not able to autonomously explore
a game level and navigate to game objects. To support we imple-
ment the tactics 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 () and 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 () discussed in Section
2.1. Iv4xr provides the main worker functions that do the calcula-
tion over the navigation graph, but the calculation results still need
to be translated to calls to actual movement actions as provided by
GUT through the Environment. This requires some programming
work, but not much (40-50 lines).

Survivable play testing. When the GUT has hazards (such as aggres-
sive monsters), just automated navigation as above is not sufficient.
The agent must be smart enough to handle the hazards in order to
live long enough to reach the state it is tasked to check. Program-
ming a survivable play testing agent takes more effort.

Imagine a goal 𝑒𝑛𝑡𝑖𝑡𝑦𝐼𝑛𝐶𝑙𝑜𝑠𝑒𝑅𝑎𝑛𝑔𝑒 (𝑜) that is achieved when the
agent reaches a square next to the object 𝑜 . To solve it, rather than
simply using 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 (𝑜), we use a tactic similar to 𝑡𝑎𝑐𝑡𝑖𝑐2 from
Section 2.1, extended with more combat sub-tactics, e.g. line 4 to
attack a monster that engages the agent and line 3 to quaff a rage
potion to increases the agent’s power when in combat.

1 FIRSTof (
2 useHea l ingPo t () . on_ (hasHealPot_and_HpLow) ,
3 useRagePotAc t ion () . on_ (hasRagePot_and_inCombat) ,
4 a t tackMons te r () . on_ (inCombat_and_hpNotCr i t i ca l) ,
5 nav iga t eToTac (o) ,
6 e x p l o r e () ,
7 ABORT ())

Programming a complete playtest. As an example of a complete
playtest we configure MiniDungeon to generate a game world
consisting of 𝑁=2 levels. We program the test agent to first cleanse
level-1’s shrine, and then that of level-2, which would then wins the
game for the agent. A playtest does not have to be winning though,
but a winning playtest usually covers most key features of the game.
To cleanse a shrine the agent will have to try different scrolls until
it gets the right one. We do not want to explicitly program the
sequence of scrolls to try. This would make the test less robust.
Instead we use an implementation of the online search algorithm
in [15] to let the agent autonomously do the search. The algorithm
will require some components to be ’plugged-in’, such as the goal

An Agent-based Approach to Automated Game Testing: an Experience Report ATEST, November, 2022, Singapore

𝑙𝑜𝑐𝑠 𝑐𝑐

MiniDungeon (GUT) 1196 325
iv4xr-lib (playtest infrastructure) 869 219
Environment implementation 177
Tactic and goal lib 426
Utils and other 266

unit tests 236 129
agent playtests 196 74

Table 1: The GUT, tests and test-infrastructure size and complexity,
given in, respectively, lines of code (𝑙𝑜𝑐𝑠) and cyclomatic number (𝑐𝑐).

𝑒𝑛𝑡𝑖𝑡𝑦𝐼𝑛𝐶𝑙𝑜𝑠𝑒𝑅𝑎𝑛𝑔𝑒 (𝑜) mentioned before, but also a goal to make
𝑜 interacted (after the agent stands next to it). Once the algorithm
is set up, we can use it to automate a task of the form:

𝑠𝑜𝑙𝑣𝑒𝑟 (𝑎,𝑇 , 𝑜, 𝜙)

This constructs a goal structure for an agent 𝑎, that seeks to change
the state of object 𝑜 to a new state satisfying 𝜙 . In our case, 𝑜 is
a shrine and 𝜙 is "𝑜 is cleansed". It does this by autonomously
searching objects of type 𝑇 and then using them, one at a time,
until the aforementioned goal is accomplished.

So now the whole playtest can be written, essentially, just as:

SEQ (𝑠𝑜𝑙𝑣𝑒𝑟 (𝑎, 𝑆𝑐𝑟𝑜𝑙𝑙, 𝑠ℎ𝑟𝑖𝑛𝑒1, ”𝑠ℎ𝑟𝑖𝑛𝑒1 is cleansed”),
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑒𝑑 (𝑠ℎ𝑟𝑖𝑛𝑒1),
𝑠𝑜𝑙𝑣𝑒𝑟 (𝑎, 𝑆𝑐𝑟𝑜𝑙𝑙, 𝑠ℎ𝑟𝑖𝑛𝑒2, ”𝑠ℎ𝑟𝑖𝑛𝑒2 is cleansed”))

The test passes if this goal structure is solved. Additionally, various
assertions over the agent’s belief are also checked, e.g. that the
agent health is expected to eventually drop below its maximum
(as there are monsters attacking the player) but it never drops to 0,
that the number of items in its bag never exceeds the bag’s capacity,
that the agent never walks through a wall, and so on.

Experience
Table 2 shows the improvement we get. Without agent, the unit
tests only covers 18.8% (𝑈𝑐𝑜𝑣) of the total code base . With the agent
play tests we can cover 88.4% (𝑎𝑙𝑙𝑐𝑜𝑣), which is a huge improvement.
Furthermore the latter found two bugs that were not found by unit
testing. These are subtle bugs that are difficult to catch at the unit
level unless we specifically were looking for them. For example one
of the bugs occurs when the two players are in different levels but
the 𝑥𝑦-projection of their visibility areas overlap. The bug caused
some squares that should be visible to a player to be missed. Such
a situation is just hard to anticipate at the unit level.

Table 1 gives some indication on the investment and effort
needed to do agent playtesting. The library that provides a im-
plementation of 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 along with smart tactics and goal-
structures is about 850 lines large, which substantial relative to the
size of the GUT. Fortunately, it is less complex (see the 𝑐𝑐 number).
This part is a one-off investment. The playtests themselves are
smaller and less complex than all the unit tests together. Given the
huge gain in the test coverage, and the convenience with which we
can subsequently write automated playtests, the extra investment
in the infrastructure is arguably well spent.

𝐶 𝑖 𝑐𝑐 𝑈𝑐𝑜𝑣 𝑃𝑇𝑐𝑜𝑣 𝑎𝑙𝑙𝑐𝑜𝑣 𝑈𝑏𝑢𝑔 𝑃𝑇𝑏𝑢𝑔
Entity 11 360 21 81% 97.8% 100% 2
Maze 1 320 18 89.9% 95% 95% 1
MiniDungeon 2 2282 197 14.2% 84.4% 84.5% 2
MDApp 1 1228 89 0% 92.3% 92.3%
All 15 4790 325 18.8% 88.2% 88.4% 3 2

Table 2: The table shows some statistics of four classes that made
the game MiniDungeon, and how well the tests cover them. 𝐶 : the
number of classes that a top-level class has; 𝑖 : the number of instruc-
tions; 𝑐𝑐 : cyclomatic complexity; 𝑈𝑐𝑜𝑣, 𝑃𝑇𝑐𝑜𝑣 : instruction coverage
of respectively unit tests and play tests with an agent; 𝑎𝑙𝑙𝑐𝑜𝑣 : the
coverage of combined tests;𝑈𝑏𝑢𝑔, 𝑃𝑇𝑏𝑢𝑔 : the number of bugs found
by respectively unit tests and play testing with an agent.

5 SPACE ENGINEERS: TESTAR-IV4XR
Space Engineers (SE) is a complex open-world game developed by
Keen Software House and GoodAI (GA). It offers users the simu-
lation of a realistic 3D environment with volumetric physics and
objects with mass, inertia, and velocity. SE users can use multiple
types of blocks and tools to build any structure like bases or space-
ships. Figure 4 shows a construction in the space of the game. The
testing process of SE consists of a team of testers who manually
test the functionality and visuals of aspects of the game. Given the
game’s complexity, more than 10,000 manual tests are performed
for each major release.

Figure 4: An example of a Space Engineers level.

TESTAR is an open-source tool for scriptless GUI testing that
automatically generates test sequences of (state, action)-pairs at
run-time. This scriptless tool does not follow previously created
or recorded scripts or models to select which action to execute,
but instead follows an action selection mechanism (ASM) to make
decisions on the fly. The main advantage of this is that it is really a
push and go approach to complement manual testing.

A computer game like SE is however not a GUI application in the
traditional sense, as it does not expose a widget tree that a typical
GUI testing tool can target. To be able to target SE we exploit iv4xr,
in particular its Environment and Core components. Similar to
the MiniDungeon case (Section 4), the Environment’s observe()
constructs aWorldModel that keeps track of active game objects.
ThisWorldModel has the same role as a widget tree in a GUI and

ATEST, November, 2022, Singapore Prasteya et al.

allows TESTAR to target the game objects it tracks. We integrated
TESTAR with iv4xr and use it as an exploratory test agent on SE
[9]. The logical flow of TESTAR consists of: connecting with the
SE system, realizing an observation to obtain information about all
existing virtual entities in a specific range, deriving the possible
actions to execute, and selecting one to transit to a new state. There
are two types of actions: basic commands and compound tactics. A
basic command action is the most basic event we can execute in SE,
e.g., move or rotate one step, equip a tool and start or stop using a
tool. A compound tactic action contains several basic commands
that simulate user decisions. For example, to interact with a block,
we need to rotate the agent to aim at the block, move to reach the
block, equip a tool and then start using this tool.

One of the main challenges in SE was to allow agents to calculate
the navigation to a position to reach blocks. Because, unlike other
game systems, SE does not have the functionality to produce a
default navigation mesh. To deal with this, the iv4xr framework
allows using the geometry information of the observed entities
to construct a navigation graph on the fly, and calculate if the
agent can follow a path of nodes to reach a position. TESTAR agent
uses this feature to derive compound tactical actions, containing
navigation, over the 3D space adjacent to an observed block. Figure
5 shows a representation of how the geometry of an SE level is used
to calculate the navigable space.

Figure 5: An example of the agent observation and use of block
geometry to compute navigable space in Space Engineers. The floor
contains 2D navigable nodes (yellow lines). The walls require the use
of a jet-pack to fly over them (orange lines). The agent can observe a
series of interesting blocks to interact (green lines).

Experience
A computer game like SE is very challenging for any automated
testing tool to target, as the tool will also have to deal complex
calculation to control terrain navigation and body motion, which
most GUI testing tools are not equipped with. Using the above
setup with iv4xr, TESTAR can now do this. We then use the setup
to do automated exploratory testing on SE. As the ASM policy we
simply use guided random, where priority is given to interacting
with game objects that have not been tried before. The objective
of the exploratory agent is to navigate to the interesting blocks,

interact with them, and automatically validate their physics such as
material integrity. We use TESTAR’s feature for specifying oracles
to strengthen the test by adding generic oracles to test the robust-
ness of SE systems, e.g., to detect if the process crashes or hangs or
to find exception messages in the application log. Additionally, to
test part of the game’s functional aspects, custom oracles are also
added, such as validating that the jet-pack settings are correct after
interacting with functional blocks that move the agent.

We apply this exploratory test on various levels of SE to verify
the TESTAR agent functionality regarding navigable actions and
oracles. A video of one of these tests can be seen here1 where
TESTAR explored a small level for about three minutes and found
a jet-pack bug.

6 LAB RECRUITS: MBT-IV4XR
In this example, we exploit iv4xr to enable model based testing
(MBT) of computer games. MBT is widely used in industrial engi-
neering, but applications in gaming are quite limited [6, 7]. A major
burden is the complex layout of the game world, which is very dif-
ficult to describe in the usual behavioral models (e.g. FSM) used in
MBT. The iv4xr framework adds an intermediate abstraction level
that provides navigation primitives and goal structures, allowing
MBT to focus on the behavioural aspects of the game.

Figure 6: A small level in the Lab Recruits game. It has three rooms
guarded by doors (marked yellow). There are four buttons (red), each
can toggle the state of zero or more doors. The player is marked by the
blue circle. The goal of this level is to reach the white marked room.

Here, we apply MBT through iv4xr on Lab Recruits2, a 3D maze
game. The game allows players to explore a level, that typically con-
sists of rooms guarded by doors, which can be opened by toggling
the right buttons. The button-door connections are many-to-many,
defining non-trivial paths that a player must discover to arrive at a
given room. Other game objects include fire hazards and goal flags
that give points and heal the player. A small Lab Recruits level is
shown in Fig. 6. Game levels are defined as CSV files, which include
the layout of the world and the (initial) placements of game objects.
We exploit this to write a level generator [6], capable of creating
very large levels (which otherwise would be very labour intensive
to craft by hand), along with an Extended Finite State Machine
(EFSM) [4] that models the logic of the levels.

Fig. 7 shows the EFSM that models the level in Fig. 6. Note that
the EFSM does not contain information about the physical layout of
the world, but only the reachability relation between neighboring
entities (doors and buttons). With the model at hand, a test case is
1https://www.youtube.com/watch?v=ho1EMVtr8C4
2https://github.com/iv4xr-project/labrecruits

https://www.youtube.com/watch?v=ho1EMVtr8C4
https://github.com/iv4xr-project/labrecruits

An Agent-based Approach to Automated Game Testing: an Experience Report ATEST, November, 2022, Singapore

Figure 7: An EFSM modelling the behavior of the level in Fig. 6.
Red circle nodes are in-game buttons; squares are doors. Each door is
represented by a pair of nodes, representing the two sides of the door.
The agent starts at 𝑏0. Solid black transitions represent travel between
two game objects. Blue transitions represent travel through a door
(only possible if it is open). A red transition represents the toggling
of the associated button. The extended state of the EFSM consists of
the state of the doors, which is either open or closed (not shown). All
doors are initially closed. Toggling a button will toggle the state of
associated doors (not shown).

States Transitions Variables
L1 144 558 40
L2 155 646 40
L3 225 1439 40

Table 3: Characteristics of the EFSM models corresponding to three
randomly generated Lab Recruits levels.

generated as a sequence of transitions from the initial state. This
step happens offline (i.e., without executing on the GUT), greatly
speeding up the generation time (minutes, rather than hours). How-
ever, the produced test suites cannot be directly executed on the
GUT (Lab Recruits), since the information on how to navigate
through the game world is missing. For instance, a test case could
require going from 𝑏0 to 𝑏1, but the model does not have informa-
tion on how to navigate in Lab Recruits. The iv4xr framework fills
this gap by providing the notion of goal structure. In particular,
each transition of a test case generated from the EFSM is translated
into a goal along with the tactic to solve it. The whole test case,
which is a sequence of transitions, is translated to corresponding
SEQ goal structure similar to the example in Section 2.2 that can
be executed on Lab Recruits.

Experience
An empirical study of this setup has been presented in [6]. Here,
we will show a small example to discuss the experience. We au-
tomatically generate three large levels, L1, L2, and L3, and the
corresponding EFSM models; Table 3 shows their main features.
For each model, we take advantage of the search-based test gener-
ator tool EvoMBT3 to assess the performances of three test suite
generation strategies: pure Random generation, classic evolution-
ary strategy algorithm Mu+Lambda, and many objective algorithm
MOSA. For each model, each generation strategy runs 30 times for
300s. EFSM transition coverage observed is reported in Figure 8.

The EvoMBT tool supports execution on Lab Recruits of a test
suite generated on an EFSM model of a level. EvoMBT exploits the
iv4xr framework to translate an EFSM transition to a goal structure
3https://github.com/iv4xr-project/iv4xr-mbt

Figure 8: EFSM transition coverage achieved by different search-
based test generation strategies. For each model (L1, L2, and L3), the
plot report the boxplot of the transition coverage as well as the coverage
(gray dots) of each replica.

and to execute it on Lab Recruits. For each level and each generation
strategy, we selected a test suite generated from the EFSM model
and executed it on Lab Recruits. As can be seen from Table 4, the
mean execution time of a test suite on Lab Recruits is more than
two hours and a half, while the generation on the model required
only five minutes. Clearly, if test generation were done directly
on Lab Recruits the time required would not be feasible. Another
interesting point is the high number of failed tests when run on
Lab Recruits(mean value 50%). The execution of a test case fails
because the iv4xr agent does not complete a goal within a specified
time budget or because the agent cannot reach a specific position
in the current Lab Recruits level. The first problem can be solved by
increasing the agent’s time budget, thus making the execution more
time consuming. The second type of failure highlights a problem
in the Lab Recruits autonomous navigation support that we are
investigating.

Level Strategy Time(h) n Tests n Fails

L1 Random 2.79 108 6
L1 Mu+Lambda 1.31 60 52
L1 MOSA 2.62 160 118
L2 Random 3.54 252 179
L2 Mu+Lambda 0.46 33 33
L2 MOSA 4.15 302 219
L3 Random 1.04 67 9
L3 Mu+Lambda 6.05 133 9
L3 MOSA 1.87 95 23

Table 4: Exectution of the test suites generated from the EFSM models
on Lab Recruits.

The integration of the iv4xr framework with MBT enables fast
test suite generation while providing a natural and general notion
of coverage based on EFSM models. Here, we presented our expe-
rience with Lab Recruits a real 3D maze game, and we showed
that the combination of model base generation and the framework
iv4xr is effective in identifying potential issues in the game under
test. Future work includes supporting other game entities (e.g., fire
hazards) in the models, as well as the extension to multi-agent
scenarios.

https://github.com/iv4xr-project/iv4xr-mbt

ATEST, November, 2022, Singapore Prasteya et al.

7 RELATEDWORK
Until today the game industry heavily relies on manual play testing
to test games. Automated testing is rarely done. The challenges
range from process related, where testing is not rigorously im-
planted in development cycles, to engineering, e.g. the lack of test-
ing tools that can target games out of the box. Politowski et al. give
a good overview on issues and challenges of game testing in the
industry [11].

In terms of research, there are indeed work in automated play
testing, though in much less volume than in other areas of auto-
mated testing. For example the use of model based testing (MBT)
was investigated by Iftikhar et al. [7] and later by Ferdous et al.
[6]. However, recent work in automated play testing seem to focus
more on the use of machine learning, in particular reinforcement
learning (RL). E.g. Pfau et al. use RL to train an automated test
agent for an adventure game [10]. Zheng et al. use evolutionary
deep RL to do the same for an action game [17] (which has much
more dynamics than an adventure game). Ariyurek et al. use RL to
train an agent to play with different styles, e.g. killer or explorer
[1]. Gordillo et al. use curiosity driven RL to improve coverage.

Despite advances in RL, its scalabilty for game testing is still an
open discussion. RL requires a huge amount of training, which all
must be executed on the actual game where actions are relatively
much slower to execute. So, the overall computation cost might be
prohibitive e.g. for smaller companies. Moreover, if the game logic
is changed, or the world layout is changed, which happen very
often during the development, the agent may have to be retrained.

Obviously programming a game play is much harder than, for
example, scripting a test sequence for a web application. For this rea-
son the fascination towards RL is understandable. However we can
also reduce the investment cost for building automation by provid-
ing a proper programming language, or at least a framework, that
offers the right concepts and abstraction so that the effort for pro-
gramming play testing becomes manageable. The iv4xr framework
tries to fill this role. The advantage of a more programming-based
approach is that we have much more control on the test agent
behavior, and we have also shown that a BDI test agent is robust
against development time changes [15].

8 CONCLUSION
We have discussed our experience of using iv4xr to do automated
testing on three different games, ranging from a turn-based 2D game
to a complex commercial 3D game. In all three cases the use of iv4xr
has successfully introduced automation and contributed in finding
bugs and issues. Unlike e.g. a machine learning based approach,
iv4xr is a programming approach that allows automated testing to
be programmed at a high level. The approach gives developers more
control on the behavior of the test agent while keeping the agent
versatile and robust. Moreover, we have demonstrated that iv4xr
can be used as a rich interface to enable more traditional testing
tools to target computer games. Building an interface between the
game under test and iv4xr along with a library of basic tactics and
goals does require some effort, but this is one off investment, after
which developers will benefit from powerful test automation.

ACKNOWLEDGMENTS
This work is supported by the EU ICT-2018-3 H2020 Programme
grant nr. 856716.

REFERENCES
[1] Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. 2019. Automated Video Game

Testing Using Synthetic and Human-Like Agents. IEEE Transactions on Games
(2019).

[2] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming
multi-agent systems in AgentSpeak using Jason. Vol. 8. John Wiley & Sons.

[3] K Mani Chandy and Jayadev Misra. 1988. Parallel Program Design: A Foundation.
Addison-Wesley.

[4] Kwang-Ting Cheng and Avinash S Krishnakumar. 1993. Automatic functional
test generation using the extended finite state machine model. In 30th ACM/IEEE
Design Automation Conference. IEEE, 86–91.

[5] Mehdi Dastani. 2008. 2APL: a practical agent programming language. Autonomous
agents and multi-agent systems 16, 3 (2008).

[6] Raihana Ferdous, Fitsum Kifetew, Davide Prandi, ISWB Prasetya, Samira Shirzade-
hhajimahmood, and Angelo Susi. 2021. Search-Based Automated Play Testing
of Computer Games: A Model-Based Approach. In International Symposium on
Search Based Software Engineering. Springer, 56–71.

[7] Sidra Iftikhar, Muhammad Zohaib Iqbal, Muhammad Uzair Khan, and Wardah
Mahmood. 2015. An automated model based testing approach for platform games.
In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE, 426–435.

[8] Ian Millington and John Funge. 2019. Artificial intelligence for games, 3rd edition.
CRC Press.

[9] Fernando Pastor Ricós. 2022. Scriptless Testing for Extended Reality Systems. In
International Conference on Research Challenges in Information Science. Springer.

[10] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. 2017. Automated game
testing with ICARUS: Intelligent completion of adventure riddles via unsuper-
vised solving. In Extended Abstracts Publication of the Annual Symposium on
Computer-Human Interaction in Play. 153–164.

[11] Cristiano Politowski, Fabio Petrillo, and Yann-Gaël Guéhéneuc. 2021. A survey
of video game testing. In 2021 IEEE/ACM International Conference on Automation
of Software Test (AST). IEEE.

[12] ISWB Prasetya, Maurin Voshol, Tom Tanis, Adam Smits, Bram Smit, Jacco van
Mourik, Menno Klunder, Frank Hoogmoed, Stijn Hinlopen, August van Casteren,
et al. 2020. Navigation and exploration in 3D-game automated play testing. In
Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation. 3–9.

[13] I. S. W. B. Prasetya, Mehdi Dastani, Rui Prada, Tanja EJ Vos, Frank Dignum,
and Fitsum Kifetew. 2020. Aplib: Tactical agents for testing computer games. In
International Workshop on Engineering Multi-Agent Systems. Springer, 21–41.

[14] Anand S Rao andMichael P Georgeff. 1991. Modeling rational agents within a BDI-
architecture. In Proceedings of the Second International Conference on Principles of
Knowledge Representation and Reasoning. 473–484.

[15] Samira Shirzadehhajimahmood, ISWB Prasetya, Frank Dignum, Mehdi Dastani,
and Gabriele Keller. 2021. Using an agent-based approach for robust automated
testing of computer games. In Proceedings of the 12th International Workshop on
Automating TEST Case Design, Selection, and Evaluation. 1–8.

[16] Tanja E. J. Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-Valdes, and
Ad Mulders. 2021. TESTAR – scriptless testing through graphical user interface.
Software Testing, Verification and Reliability 31, 3 (2021). https://doi.org/10.1002/
stvr.1771

[17] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu,
Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic online
combat game testing using evolutionary deep reinforcement learning. In 2019
34th International Conference on Automated Software Engineering (ASE).

https://doi.org/10.1002/stvr.1771
https://doi.org/10.1002/stvr.1771

	Abstract
	1 Introduction
	2 The iv4xr Test-agent Framework
	2.1 Navigation
	2.2 Formulating a Testing Task: Goal Structures
	2.3 Integration with Other Testing Tools

	3 Cases Overview
	4 MiniDungeon
	5 Space Engineers: TESTAR-iv4xr
	6 Lab Recruits: MBT-iv4xr
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

