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Abstract
When observing data on a patient-reported outcome measure in, for example,
clinical trials, the variables observed are often correlated and intended to mea-
sure a latent variable. In addition, such data are also often characterized by a
hierarchical structure, meaning that the outcome is repeatedly measured within
patients. To analyze such data, it is important to use an appropriate statistical
model, such as structural equation modeling (SEM). However, researchers may
rely on simpler statistical models that are applied to an aggregated data struc-
ture. For example, correlated variables are combined into one sum score that
approximates a latent variable. This may have implications when, for example,
the sum score consists of indicators that relate differently to the latent variable
being measured. This study compares three models that can be applied to ana-
lyze such data: the multilevel multiple indicators multiple causes (ML-MIMIC)
model, a univariatemultilevel model, and amixed analysis of variance (ANOVA)
model. The focus is on the estimation of a cross-level interaction effect that
presents the difference over time on the patient-reported outcome between two
treatment groups. The ML-MIMIC model is an SEM-type model that considers
the relationship between the indicators and the latent variable in a multilevel
setting, whereas the univariate multilevel and mixed ANOVA model rely on
sum scores to approximate the latent variable. In addition, the mixed ANOVA
model uses aggregated second-level means as outcome. This study showed that
theML-MIMICmodel produced unbiased cross-level interaction effect estimates
when the relationships between the indicators and the latent variable being
measured varied across indicators. In contrast, under similar conditions, the
univariate multilevel and mixed ANOVA model underestimated the cross-level
interaction effect.
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1 INTRODUCTION

This simulation study compared three different statistical models on their performance in estimating a cross-level inter-
action effect in the presence of correlated data. These models are the multilevel multiple indicator multiple causes
(ML-MIMIC) model, the univariate multilevel regression model, and the mixed analysis of variance (ANOVA) model.
The ML-MIMIC model is a structural equation model (SEM) (Bollen, 1989) and SEMs form a flexible modeling frame-
work to model complex (multivariate) correlated data in order to explain the relationship among a number of observed
variables and latent variables. In general, SEMs consist of ameasurementmodel part and a latent variablemodel part. The
measurement model is a confirmatory factor analysis model where the covariance among observed variables is analyzed
to investigate howwell the observed variables measure a prespecified number of latent variables and where measurement
error is taken into account (Brown, 2014). The latent variable model is a regression model where the effects of indepen-
dent latent variables or independent observed variables are assessed on dependent latent variables or dependent observed
variables. The ML-MIMICmodel is an SEM that combines both model parts (Jöreskog & Goldberger, 1975; Muthén, 1989)
in the presence of a hierarchical data structure (Mehta & Neale, 2005).
The ML-MIMIC model can be regarded as an alternative to a univariate multilevel regression model (Hox et al., 2018;

Singer & Willett, 2003) (often referred to as mixed model in the medical literature (Brown & Prescott, 2015)) where the
outcome represents the sum score of a number of correlated items froma questionnaire.When this outcome ismeasured at
multiple occasions over time nested within patients, the univariate multilevel regression then models the effect over time
within patients on this univariate outcome by including time as within-patient-level covariate. By adding covariates at the
between-patient-level predicting the univariate outcome at the patient level, differences in this time effect can be assessed
between patients by including a cross-level interaction effect. The latent variable model part of the ML-MIMIC model
works in a similarway by including covariates at thewithin-patient and between-patient level predicting the latent variable
outcome at both levels and a cross-level interaction can be added. However, in contrast to using the sum score to estimate
the latent variable in a univariate multilevel regression, the measurement model part of the ML-MIMIC model models
the actual relationships between the questionnaire items and the latent variable and it accounts for measurement error,
thereby precluding the need for sum scoring a-priori. This will lead to less biased latent variable estimates as compared
to sum scores (Bollen, 1989).
Summation of questionnaire items is a way of aggregating data. An additional aggregation step to (multivariate)

correlated hierarchical data is the derivation of patient-level means of a univariate outcome out of multiple repeated
observations. In such cases, a mixed ANOVA model can be used to analyze group differences on repeated patient-level
means. The ML-MIMIC model, the univariate multilevel regression model, and the mixed ANOVAmodel can all be used
to estimate the cross-level interaction effect, but there is a difference in the way the data are treated by applying aggre-
gation. In this simulation study, we will investigate under what circumstances data aggregation becomes problematic in
the presence of correlated variables (i.e., questionnaire items) that measure a latent variable in a multilevel context by
comparing the three models. This simulation study is motivated by an applied example where data on a patient reported
outcome measure were collected as part of a clinical trial.
The trial that served as themotivationwas a double-blind, placebo-controlled, randomized clinical trial investigating the

efficacy of the on-demand use of the combined administration of testosterone and sildenafil (T+S), compared to placebo,
in American women diagnosed with hypoactive sexual desire disorder (HSDD; which currently is part of the diagnosis
female sexual interest/arousal disorder [FSIAD]) caused by low sensitivity of the brain for sexual cues (Trial registration:
ClinicalTrials.gov: ID: NCT01432665) (Tuiten et al., 2018). During the trial, patients were instructed to take themedication
prior to an anticipated sexual event and report about the event using the validated Sexual Event Diary (SED) (Van Nes
et al., 2017). The SED is a web-based questionnaire that patients had to fill out within 24 h following a sexual event. For
each sexual event, patients had to indicate the level of pleasure, inhibition (“ability to let yourself go”), sexual desire,
bodily arousal, and subjective arousal on five-point Likert scale items (1 = not at all, 5 = totally). These items intend
to measure the latent variable sexual functioning, the outcome of interest (Kessels et al., 2019, 2021; Van Nes et al., 2017).
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Furthermore, in this trial, all patients startedwith a 4-week baseline establishment (BLE) periodwhere nomedicationwas
used by any patient. After the BLE period, patients were randomly assigned to an active drug (T+S) or placebo treatment
and continued with an 8-week active treatment period (ATP) where patients used the drug they were randomly assigned
to. These design elements, study period (BLE vs. ATP), and treatment group (placebo vs. T+S) were included as covariates
(explanatory variables for the outcome sexual functioning), where study period was a within-patient-level covariate and
treatment group a between-patient-level covariate. The cross-level interaction effect between study period and treatment
group on the outcome sexual functioning was of primary interest.
In the previouswork,we compared the application of theML-MIMICmodel, the univariatemultilevel regressionmodel,

and themixed ANOVAmodel on the clinical trial data. For the univariate multilevel regressionmodel andmixed ANOVA
model, the items were combined into a sum score to estimate the latent variable sexual functioning at each event, whereas
in the ML-MIMIC model, the items were included as indicators in a multilevel latent variable model. For the mixed
ANOVA model, the sum score per event was averaged over all events observed during the BLE period and all events
during the ATP, thereby creating two patient-level mean scores. The three models were compared on the cross-level
interaction effect between study period and treatment group on the latent construct sexual functioning (Kessels et al.,
2019, 2021), and the results of this work indicated that the parameter estimates of the cross-level interaction effect across
these three different models were very comparable. Part of this result could be explained by the fact that the relationship
between the items and the latent variable were very much alike across items, as proven by the nearly identical factor
loadings.
Although the sum score is a popular method for applied researchers and clinicians to approximate a latent variable

(DiStefano et al., 2009), the use of sum scores should carefully be considered. By employing sum scoring, it is assumed
that all items have equal weight in relation to the latent variable (McNeish & Wolf, 2020). When it turns out that items
have varying weights, caution is warranted. When items relate differently to the latent variable, it means that two subjects
having identical sum scores may have different latent variable scores. This can have implications when the sum score of a
(patient reported) outcome is used as outcome in a clinical trial to assess treatment efficacy. For example, if the covariate
represents treatment groupmembership and two patients fromdifferent groups have equal sum scores, but different latent
variable scores, this difference will not be detected when using sum scores to approximate the clinical outcome. Also, the
aggregation step that creates patient-levelmeans out ofmultiple repeated observationsmay be problematic. One drawback
is the potential loss in power, because aggregation leads to a loss of information.
The potential issues with aggregating the sexual event data have led to the motivation of proposing the ML-MIMIC

model for analyzing such data (Kessels et al., 2021), because the ML-MIMIC model does not require aggregated data.
ML-MIMIC models have been gaining popularity in educational and psychological research (Davidov et al., 2019; Jak
et al., 2014; Roesch et al., 2010), but these models are less commonly used for analyzing patient reported outcomes in
clinical trials. Exampleswhere theML-MIMICmodel could offer a promising alternative for analyzing the data are clinical
trials that study the impact of different treatments on health-related quality of life outcomes and other patient-reported
outcomes, such as oncology trials (Osoba, 2002). For example, in Reck et al. (2018) and in Pompili et al. (2018), quality of life
summary scales were compared between two different treatment groups in patients with advanced squamous non–small
cell lung cancer. In both examples, the scales were derived by creating sum scores and univariate multilevel regressions
were used to compare the scales between different groups of patients. However, the application of the ML-MIMIC model
for analyzing patient-reported outcomes is just one of many potential use cases, which is why the results of this study can
easily be translated to other research areas.
To our knowledge, there have been no studies where the performance of the ML-MIMIC model in estimating a cross-

level interaction effect was compared to the univariate multilevel regression and mixed ANOVA. Cao et al. (2019) did
examine the performance of the ML-MIMIC model in estimating a cross-level interaction effect using a simulation study.
Although that study can be considered the first study to examine the cross-level interaction between two covariates on a
latent factor in an SEM context, the study did not made a comparison between the ML-MIMIC model and other models.
Furthermore, in the simulation study by Cao et al. (2019), the factor loadings were not varied across items, whichwill be of
particular interest in this study aswe expect that it will have an impact on the accuracy in estimating a latent variable using
sum scoring or latent variable modeling. Finch and French (2011) conducted a simulation study to assess the performance
of the MIMIC model in the presence of multilevel data. The authors compared the ML-MIMIC model to the standard
MIMIC model that ignored the multilevel data structure. This study found that it is important to consider the multilevel
data structure, but this simulation study was limited by the fact that it did not include a cross-level interaction effect. The
current simulation study can be seen as an extension of the work by Cao et al. (2019) and Finch and French (2011).
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2 METHODS

In this section, we will first present the three different models along with their notations. The models will be presented
considering the applied example introduced in Section 1. Then, we discuss the simulation study design, the conditions
varied during the simulations, and how themodels were fitted. Section 2 is ended by explaining the criteria that were used
to evaluate the three models.

2.1 ML-MIMICmodel

AMIMICmodel describes the linear relation between observed variables and latent factors in ameasurementmodel and a
latent variable model. In anML-MIMICmodel with two-level data, these relationships are defined at the within-level and
between-level, where the relationships at thewithin-level are allowed to vary across the between-level. Based on the sexual
event data described in the previous section, consider the multivariate response vector𝑌𝑌𝑌𝑒𝑖 containing five observed item
scores on event 𝑒 for patient 𝑖, intended to measure one latent variable at the within-patient and between-patient level.
The two-level measurement model can then be written as:

𝑌𝑌𝑌𝑒𝑖 = 𝜇𝜇𝜇 +ΛΛΛ𝑤𝜂𝑒𝑖(𝑤) +ΛΛΛ𝑏𝜂𝑖(𝑏) + 𝜖𝜖𝜖𝑒𝑖(𝑤) + 𝜖𝜖𝜖𝑖(𝑏). (1)

The observed scores𝑌𝑌𝑌𝑒𝑖 are predicted by a regression equation involving a vector of between-level intercepts𝜇𝜇𝜇, the within-
patient factor loading matrix ΛΛΛ𝑤 multiplied by the within-patient latent variables 𝜂𝑒𝑖(𝑤) for event 𝑒, the between-patient
factor loading matrixΛΛΛ𝑏 multiplied by the between-patient latent variable 𝜂𝑖(𝑏) for patient 𝑖 plus a within-patient vector of
residual error terms 𝜖𝜖𝜖𝑒𝑖(𝑤), and a between-patient vector of residual error terms 𝜖𝜖𝜖𝑖(𝑏). The residual error terms are multi-
variate normally distributed with means of zero and covariance matricesΘΘΘ𝑤 andΘΘΘ𝑏 for the within-patient residual terms
and between-patient residual terms, respectively. The factor loading matrices reflects the pattern and magnitude of the
relationship between the observed items and latent variables (factors) on both levels.
An important measurement assumption inML-MIMICmodels is the across-level invariance of factor loadings. Across-

level invariance of factor loadings is a prerequisite to properly adopt the ML-MIMIC model described above, because it
ensures that the same latent variable is measured at both levels. Mehta and Neale (2005) show that with equal factor
loadings across levels, 𝜂𝑒𝑖(𝑤) + 𝜂𝑖(𝑏) = 𝜂𝑒𝑖 , where 𝜂𝑒𝑖 is a latent variable that is composed of within- and between-patient
deviations. This means that the within-patient latent variable now has a random intercept at the between-patient level.
Equal factor loadings across levels also indicates that latent factor variances are directly comparable, because invariant
factor loadings equates the scale across levels of the common latent variable (Mehta & Neale, 2005). By comparing the
latent factor variances, the proportion of variance located at the between-patient level can be calculated. This measure
is also known as the intraclass correlation (ICC) of the factor, which is one of the conditions manipulated in this sim-
ulation study. Therefore, equal factor loadings across levels is also a prerequisite to manipulate the ICC of the common
factor.
When there are covariates at the within-level and between-level, these covariates are included in the latent variable

model part of the ML-MIMICmodel with direct effects on the within-level and between-level latent variables. The regres-
sion coefficient of a within-level covariate on the within-level latent variable can be modeled as a random effect. This
random effect indicates that the effect of that within-level covariate varies across second-level units at the between-level
and this random effect can (partly) be explained by between-level covariates. If the effect of a between-level covariate on
the random coefficient is significant, there exists a cross-level interaction effect, whichmeans that the within-level covari-
ate effect on the within-level latent variable depends on the value of the between-level covariate. An ML-MIMIC model
with one latent variable at the within-level (𝜂𝑒𝑖(𝑤)) and between-level (𝜂𝑖(𝑏)), one covariate at the within-level (𝑋𝑒𝑖(𝑤)) and
between-level (𝑋𝑏(𝑖)), a random slope, and a cross-level interaction effect is presented in Figure 1. The latent variablemodel
part of this ML-MIMIC model can be written by the following set of equations:

𝜂𝑒𝑖(𝑤) = 𝛾𝑖(𝑤)𝑋𝑒𝑖(𝑤) + 𝜁𝑒𝑖(𝑤), (2)

𝜂𝑖(𝑏) = 𝛾(𝑏)𝑋𝑖(𝑏) + 𝜁𝑖(𝑏), (3)

𝛾𝑖(𝑤) = 𝛾10 + 𝛾(𝑐)𝑋𝑖(𝑏) + 𝜁𝛾𝑖(𝑤) , (4)
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5 of 20 KESSELS and MOERBEEK

F IGURE 1 ML-MIMIC population model from which the data were generated in one of the conditions.
Note: the bold S represents the random slope and other bold dots also indicate the parameter is random. The observed indicators are depicted
as rectangles and latent variables are depicted as circles. The single arrows represent direct effects, whereas double arrows represent
(co-)variances. The factor variances represent the variance under an unconditional model.

where 𝛾𝑖(𝑤) and 𝛾(𝑏) represent the within-patient and between-patient effects of the covariates on within-level and
between-level latent variable, respectively, andwhere 𝛾𝑖(𝑤) represents the random slope of thewithin-level covariate𝑋𝑒𝑖(𝑤).
This random slope is a function of the average slope 𝛾10, the effect of the between-level covariate 𝛾(𝑐), and the residual 𝜁𝛾𝑖(𝑤) ,
implying that the variance of 𝛾𝑖(𝑤) is not fully explained by the between-level covariate. The random slope residual (𝜁𝛾𝑖(𝑤))
and random intercept residual (𝜁𝑖(𝑏)) are bivariate normally distributed with means of zero, and a 2 × 2 covariance matrix.
The variance of the random slope reflects the degree to which the effect of study period varies across patients (after differ-
ences due to the between-level covariate between patients are considered). The residual term 𝜁𝑒𝑖(𝑤) is normally distributed
with a mean of zero and within-level factor variance. The regression effect 𝛾(𝑐) represents the cross-level interaction effect
between study period and treatment group. The combined model for the within-level latent factor, 𝜂𝑒𝑖(𝑤), can be written
as follows by substituting Equation (4) into Equation (2):

𝜂𝑒𝑖(𝑤) = 𝛾10𝑋𝑒𝑖(𝑤) + 𝛾(𝑐)𝑋𝑒𝑖(𝑤)𝑋𝑖(𝑏) + 𝜁𝛾𝑖(𝑤)𝑋𝑒𝑖(𝑤) + 𝜁𝑒𝑖(𝑤). (5)

When comparing latent factor means across groups in SEMs, strongmeasurement invariance is a prerequisite to appro-
priately interpret latent mean differences (Meredith, 1993). This means that at least factor loadings and intercepts should
be invariant across groups to ensure that any difference between groups is only attributable to the difference in latent fac-
tor means. A (ML-)MIMIC model estimates one model for the full combined sample of respondents (Muthén, 1989). This
means that in a (ML-)MIMIC model, it is implicitly assumed that strong measurement invariance holds across groups
located at the within-level and between-level. More specifically, factor loadings, intercepts, residual variances, and factor
variances are implicitly assumed to be invariant across all groups when applying MIMICmodels. In practice, this implicit
measurement invariance assumption may be too strict and in a previous article (Kessels et al., 2021), we illustrated how
to verify this assumption, inspired by the work of Kim et al. (2015). In the current simulation study, it was assumed that
the measurement parameters were invariant across groups.

2.2 Univariate multilevel model

In the univariate multilevel model, the multivariate response vectors 𝑌𝑌𝑌𝑒𝑖 containing five observed scores on event 𝑒 for
subject 𝑖 are combined into one univariate score by taking the sum of the five observed scores. This creates the observed
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univariate outcome 𝑌𝑒𝑖 measured at event 𝑒 for patient 𝑖. Considering the within-level covariate 𝑋𝑒𝑖(𝑤) and the between-
level covariate 𝑋𝑖(𝑏), the univariate multilevel regression model can be described as follows:

𝑌𝑒𝑖 = 𝛾00 + 𝛾10𝑋𝑒𝑖(𝑤) + 𝛾(𝑏)𝑋𝑖(𝑏) + 𝛾(𝑐)𝑋𝑒𝑖(𝑤)𝑋𝑖(𝑏) + 𝜁𝛾𝑖(𝑤)𝑋𝑒𝑖(𝑤) + 𝜁𝑖(𝑏) + 𝜁𝑒𝑖(𝑤), (6)

where 𝛾00 is the fixed intercept, 𝛾10 is the fixed main effect of the within-level covariate, 𝛾(𝑏) is the fixed main effect of
the between-level covariate, and 𝛾(𝑐) is the fixed cross-level interaction effect. Furthermore, 𝜁𝑖(𝑏) and 𝜁𝛾𝑖(𝑤) represent the
residuals of the random intercept and random slope at the between-level, respectively, and 𝜁𝑒𝑖(𝑤) represents the within-
level residual error term. Also, in the multilevel regression, the residuals of the random intercept and random slope are
bivariate normally distributedwithmeans of zero and a 2 × 2 covariancematrix. Thewithin-level residual term is normally
distributed with zero mean and variance 𝜎2

𝜁𝑒𝑖(𝑤)
. The fixed regression coefficients 𝛾10 and 𝛾(𝑐) in Equation (6) correspond

to 𝛾10 and 𝛾(𝑐) in Equation (5), respectively, whereas the fixed regression coefficient 𝛾(𝑏) in Equation (6) corresponds to
𝛾(𝑏) in Equation (3).

2.3 Mixed ANOVAmodel

The mixed ANOVAmodel was applied to an aggregated data structure. Here, we follow the procedure similar to previous
work on this topic (Kessels et al., 2019, 2021), which was motivated by the real-world clinical trial example outlined in
Section 1. This means that the univariate outcome 𝑌𝑒𝑖 defined in the previous section, which denotes the sum of the
observed scores at event 𝑒 for patient 𝑖, was averaged over all events belonging to the same level of thewithin-level grouping
covariatewithin a patient. Let the levels of thewithin-level covariate be denoted by 𝑡 = 1, 2when thewithin-level covariate
presents a dichotomous grouping covariate. Then, for each patient, 𝑌𝑡𝑖 was calculated as the average sum score over
the events observed at 𝑡 = 1 and 𝑡 = 2, resulting in two aggregated means for each patient. Furthermore, let 𝑋𝑡𝑖(𝑤) be
the aggregated within-level covariate and let 𝑋𝑖(𝑏) be the between-level covariate. Subsequently, we can write the mixed
ANOVA model as a random intercept-only multilevel equation (Hox et al., 2018):

𝑌𝑡𝑖 = 𝛾00 + 𝛾10𝑋𝑡𝑖(𝑤) + 𝛾(𝑏)𝑋𝑖(𝑏) + 𝛾(𝑐)𝑋𝑡𝑖(𝑤)𝑋𝑖(𝑏) + 𝜁𝑖(𝑏) + 𝜁𝑡𝑖(𝑤), (7)

where the fixed regression coefficients have the same interpretation as the regular multilevel model in Equation (6), as
well as the within-level residual term and the residual of the random intercept. The mixed ANOVAmodel does not have a
random slope, indicating that thewithin-level covariate effect does not vary across second-level units.Model 7 is analogous
to a mixed between-within-subject ANOVA, as a multilevel model with only a random intercept assumes compound
symmetry (Hox et al., 2018). Compound symmetry requires that all population variances of the repeated measures are
equal and that all population covariances of the repeated measures are equal, which is the same restriction present in
repeated measures ANOVA (Maxwell & Delaney, 2004).

2.4 Design of the simulation study

The purpose of this simulation study was to compare the ML-MIMIC model (Equations (1), (3), and (5)), the multilevel
model using the sum scores per measurement as univariate outcome (Equation (6)) and themixed ANOVA (Equation (7))
applied to the aggregated data on the performance and accuracy in estimating and testing the cross-level interaction effect.
The three different models were compared on type I error rate, statistical power, standard error (SE) of the cross-level
interaction effect, relative bias of the estimated interaction effect, relative SE bias of the estimated SE of the interaction
effect, and mean square error (MSE) of the interaction effect.
All data were generated under a two-level ML-MIMIC model with one dichotomous covariate on the between-level,

𝑋(𝑏), one dichotomous covariate on the within-level, 𝑋(𝑤), their cross-level interaction effect, and a one-factor solution
with five observed indicators specified at both levels as depicted in Figure 1. Furthermore, the population model that was
used to generate the data included a random intercept, a random slope for the within-level main effect, and a covariance
between the random intercept and random slope. Data were generated in two steps. First, two dichotomous covariates
and their interaction were created, which were used along with the fixed main effects and fixed cross-level interaction
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7 of 20 KESSELS and MOERBEEK

TABLE 1 Overview of conditions varied in the simulation study and their values.

Condition Levels
Factor loadings (Λa) (1, 1, 1, 1, 1), (1, 0.95, 0.80, 0.90, 0.85)

(1, 0.90, 0.60, 0.80, 0.70)
Sample size between-level (𝑛2) 50, 100, 200
Sample size within-level (𝑛1) 10, 20
Factor variances (𝜏2, 𝜋2) (0.10, 0.90), (0.25, 0.75)
Residual variances within-level (Θ𝑤) (0.36, 0.36, 0.36, 0.36, 0.36), (0.60, 0.19, 0.36, 0.42, 0.51)
Magnitude interaction effect (𝛾(𝑐)) 0, 0.20, 0.40

Note: Item-level ICCs can be derived using factor variances and residual variances and ranged between 0.09 and 0.24.
aFactor loadings were equal across the within-level and the between-level.

effect to generate factor scores at both levels using Equations (5) and (3) for the within-level and between-level factor
scores, respectively. At the between-level, two residual scores were generated that represented the residual factor scores
(𝜁𝑖(𝑏)) and residual slopes (𝜁𝛾𝑖(𝑤)). These were drawn from a bivariate normal distribution with zero means and covariance
matrix with the between-level factor variance, hereafter denoted as 𝜏2, and random slope variance on the main diagonal
and the covariance between the between-level factor and random slope on the off-diagonal. Residual factor scores at the
within-level, 𝜁𝑒𝑖(𝑤) in Equation (5), were drawn from a normal distributionwithmean zero and standard deviation equal to
the square root of the within-level factor variance, hereafter denoted as 𝜋2. In the next step, the factor scores were used to
generate the five observed indicator scores for each within-level unit using Equation (1). Residual scores for the observed
indicators at the within-level (𝜖𝑒𝑖(𝑤) in Equation (1)) and indicator means at the between-level (𝜖𝑖(𝑏) in Equation (1)) were
drawn from a multivariate normal distribution with zero means and diagonal covariance matrix with the within-level or
between-level residual variances at the main diagonal. The intercepts (𝜇) at the between-level were set to zero.
Five conditions were varied in this simulation study: factor loadings, sample size at the within and between-level, ICC

value of the factor by varying the factor variances, residual variance of the indicators at thewithin-level, and themagnitude
of the cross-level interaction effect. These conditions and their levels are listed in Table 1.
Sum scores approximate factor scores when the unstandardized factor loadings are nearly identical across the indicators

and in such a circumstance, sum scores may provide a valid alternative to factor scores (McNeish & Wolf, 2020). On
the other hand, the more the factor loadings differ across the indicators, the more discrepancy is expected between an
analysis on sum scores and an analysis on factor scores with factor scores expected to have less bias in such situations as
compared to sum scores. To study the influence of this trade-off, three different conditions for the factor loadings were
used. In the first condition, all loadings were set equal to 1. In the second condition, factor loadings were set to 1, 0.95,
0.80, 0.90, and 0.85 to create a condition with small differences in loadings between the indicators. In the third condition,
larger differences in factor loadings were specified by setting the factor loadings to 1, 0.90, 0.60, 0.80, and 0.70. In all
three conditions, across-level measurement invariance was assumed, that is, equality of within-level and between-level
factor loadings.
Three conditions were specified for the sample size (𝑛2) at the between-level: 50, 100, 200. Similar values were used in

previous simulation studies withmultilevel (factor) models (Cao et al., 2019; Finch & French, 2011; Hox &Maas, 2001; Jak,
2019; Maas & Hox, 2005). At the within-level, two conditions for the sample size (𝑛1) were specified: 10, 20. These values
represent the overall number of observations per second-level unit. The within-level sample sizes also match those used
in previous research (Cao et al., 2019; Finch & French, 2011; Hox & Maas, 2001; Maas & Hox, 2005). The total sample size
(𝑁) is equal to 𝑛2 × 𝑛1 creating a minimum total sample size of 𝑁 = 500 and a maximum total sample size of 𝑁 = 4000.
Considering the motivating example, the sample size can be regarded as the number of patients in a clinical trial (𝑛2) with
the number of events nested within each patient at the within-level sample size (𝑛1). Note that the sample size can just as
well be interpreted as the number of clusters in a cluster randomized trial (𝑛2) with the number of patients nested within
each cluster as the within-level sample size (𝑛1). Therefore, this simulation study offers insights for other applications in
medical research as well.
The unconditional ICC of the common factor was alsomanipulated in this simulation study as previous studies showed

that the ICC has an impact on statistical power and parameter estimates in ML-MIMIC models (Cao et al., 2019; Finch &
French, 2011). The unconditional ICC is defined as: 𝜏2∕(𝜏2 + 𝜋2)where 𝜏2 and 𝜋2 are the factor variances at the between-
level and within-level, respectively, under a model without any covariates. Consequently, the ICC can be manipulated by
varying the factor variances. In one condition, the between-level factor variance was set to 0.10 and the within-level factor
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KESSELS and MOERBEEK 8 of 20

variance to 0.90, creating an ICC of 0.10 (small ICC). In a second condition, the variances were set to 0.25 and 0.75 for
the between-level factor and within-level factor, respectively, creating an ICC of 0.25 (medium ICC). These ICC values
represent the factor ICC unconditional on the covariate effects, which is analogous to the ICC value under an intercept-
only multilevel regression model. In addition to the proportion of variance located at the between-level, the ICC is also
interpreted as the expected correlation between two randomly drawn events from the same patient. The ICC values used
in this simulation study are typical of psychological and educational data and correspond to ICC values used in previous
simulation studies with a multilevel CFA model (Cao et al., 2019; Finch & French, 2011; Hox & Maas, 2001; Jak, 2019;
Maas & Hox, 2005). Furthermore, ICC values ranging between 0.01 and 0.30 have been used in simulation studies for
calculating optimal sample sizes in cluster randomized trials (Candel & Van Breukelen, 2015; Moerbeek, 2012).
Different ICC values were also used to investigate if the ICC had an effect on the power when comparing the univariate

multilevel model with themixed ANOVAmodel. In previous work, where we used empirical data to compare a univariate
multilevelmodel to amixedANOVAmodel (Kessels et al., 2019), it was found that the𝑝-value of the cross-level interaction
effect of the multilevel model did not differ much from the 𝑝-value of the mixed ANOVA model. It was expected that the
mixed ANOVA model had less power, because the mixed ANOVA was applied to an aggregated data set and aggregating
data leads to a loss of information and therefore to a loss of power. However, the sum score of each event is likelymeasured
with error and multiple sum scores within a patient are correlated. Then, by aggregating the sum scores into means, the
resulting aggregated outcome will have less error, which could, in turn, lead to more power when applying the mixed
ANOVA using the aggregated outcome. These two tendencies could work in opposite directions concerning the power.
Since the ICC is also defined as the expected correlation between two randomly drawn scores of the same patient, this
tendency was investigated by varying the ICC value of the univariate outcome (latent variable and sum score).
The within-level residual variances of the indicators were also varied in this simulation study. The within-level residual

variances were all set to 0.36 in one condition, whereas in a second condition, these values were varied across indicators
and set to 0.60, 0.19, 0.36, 0.42, and 0.51. The rationale behind these selected values is based on the following consideration.
Sum scores assume that each indicator contributes an equal amount of information to the construct being measured,
which is referred to as unit-weighting (McNeish &Wolf, 2020). McNeish andWolf (2020) pointed out that unit-weighting
can be specified in a factor model by constraining all standardized loadings to the same value. This can be obtained by
setting all unstandardized factor loadings and residual variances to be equal across indicators. Consequently, a factor
model with equal unstandardized factor loadings and residual variances creates factor scores that are perfectly correlated
with sum scores. In the current simulation study, this perfect correlation was obtained in the conditions with equal factor
loadings and equal residual variances. Conditions where the residual variances differed across indicators were included
in addition to conditions with unequal factor loadings to explore the effect of both conditions on using the ML-MIMIC
model or sum scores. The residual variances at the between-level were set to 0.05 for all conditions, because between-level
residual variances need preferably to be close to zero in order to satisfy invariance of intercepts across between-level units
(Jak et al., 2013).
Finally, themagnitude of the cross-level interactionwasmanipulated as it has been shown that the power of amultilevel

regression model to detect a cross-level interaction effect mainly depends on the effect size of the interaction (Mathieu
et al., 2012). The magnitude of the cross-level interaction was set to 0, 0.2, and 0.4, which is consistent with cross-level
interaction values in previous simulation studies that studied cross-level interaction effects in multilevel data (Cao et al.,
2019; Mathieu et al., 2012). Conditions with an interaction effect of 0 were only used to assess type I error rates when there
is no interaction present in the population model.
Figure 1 shows the population values for all parameters in the condition with all factor loadings equal to 1, factor vari-

ances of 0.10 and 0.90 at the between-level and within-level, respectively, equal within-level residual variances of the
indicators, and an interaction effect of 0.20. The main effects of the covariates (0.40 and 0.50), the random slope variance
(0.50), the covariance between the random slope and the random intercept (0.10), and the residual variances of the indica-
tors at the between-level (0.05) were fixed across all simulation conditions, as can be seen in Figure 1. In sum, there were
a total of 3 × 3 × 2 × 2 × 2 × 3 = 216 different conditions. For each condition, 1000 data sets were generated. All data were
generated in R, version 4.0.4 (R Core Team, 2021).
Each generated data set was analyzed using the ML-MIMIC model, the multilevel model using the sum scores per

measurement as univariate outcome, and the mixed ANOVAmodel using the patient-level means of the sum scores. The
parameters of the ML-MIMIC model were estimated in Mplus, version 7.3 (Muthén & Muthén, 1998-2017) using robust
maximum likelihood estimation. The R-package MplusAutomation, version 0.8 (Hallquist & Wiley, 2018) was used to
load the parameter estimates directly into R. The latent factor scales of theML-MIMICmodel were identified by fixing the
factor loading of the first indicator to 1.00. The remaining factor loadings, latent factor variances, random slope variance,
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9 of 20 KESSELS and MOERBEEK

residual variances, and the covariance between the between-level factor and random slope were estimated without any
constraints. The difference in means between the groups was estimated by the regression coefficients.
For the univariate multilevel analysis, the sum score of the five generated indicators was derived for eachmeasurement

separately that served as the outcome variable in this analysis. For estimating the parameters of this multilevel model,
full information maximum likelihood was employed. The multilevel model was fitted including a random slope for the
within-level covariate and a covariance between the random slope and random intercept.
For the mixed ANOVA model, two average scores for each patient were derived: the average of the sum scores where

𝑋𝑤 = 0 and the average of the sum scores where 𝑋𝑤 = 1. This reduced the total sample size such that there were 𝑛2 × 2

observations when applying this model. The parameters of the mixed ANOVA model were estimated using a multilevel
model with a random intercept only. To ensure that these parameter estimates are equivalent to ANOVA estimates, we
employed restricted maximum likelihood estimation (as opposed to full information maximum likelihood estimation).
With balanced groups (which always applied in this simulation study), restricted maximum likelihood estimates of a
multilevelmodel with a random intercept only are equivalent tomixedANOVA estimates (Hox et al., 2018). Themultilevel
model and the mixed ANOVA model were analyzed in R, version 4.0.4 (R Core Team, 2021), using the lme4 package,
version 1.1-26 (Bates et al., 2015) together with the lmerTest package, version 3.1-3 (Kuznetsova et al., 2017). By activating
the lmerTest package before performing analyses using the lme4 package, the output of lme4 functions provides 𝑝-values
for the 𝑡-tests of the fixed regression parameters based on the Satterthwaite (Satterthwaite, 1946) approximation for the
calculation of the degrees-of-freedom.

2.5 Criteria for evaluation

Criteria for evaluation included admissible solution rates (ASR), type I error rate, statistical power, SE, relative parameter
bias, relative SE bias, and MSE. These criteria were derived for each model separately for each of the 216 conditions.
For the ML-MIMIC model, a replication was classified inadmissible if the model estimation did not terminate normally,
if there were any other error or warning messages, if no parameter estimates or SEs were produced or if the estimated
parameters were not possible, such as negative SEs or negative variances. Furthermore, if the correlation between the
random intercept or slope was larger than +1 or smaller than −1, it was also counted as an inadmissible solution. For
the multilevel model and the mixed ANOVA model, a replication was classified inadmissible if the model estimation
failed to converge, if a singular model was obtained, or if the estimated parameters were not possible, such as negative
SEs, negative variances or a correlation coefficient between the random intercept and random slope larger than +1 or
smaller than −1 (for the multilevel model only). The ASR was defined as the proportion of replications that produced
admissible solutions during the first 1000 replications. A replication where for at least one of the models an inadmissible
solution was obtained was discarded and not used in further analyses. The data generation process continued until 1000
replications were obtained for which all three models produced no inadmissible solutions. This ensured that all other
evaluation criteria were evaluated considering 1000 admissible solutions.
Type I error rate was defined as the proportion of replications where the models falsely rejected the null hypothesis of

no cross-level interaction effect at a two-sided test with 𝛼 = 0.05 under conditions where there was no cross-level inter-
action effect in the population. Statistical power was defined as the proportion of replications where the models correctly
rejected the null hypothesis of no cross-level interaction effect at a two-sided test with 𝛼 = 0.05 under conditions where
the population cross-level interaction effect was 0.2 or 0.4.
The relative bias, relative SE bias, and MSE were used to evaluate the accuracy of the interested cross-level interaction

effect 𝛾(𝑐) in Equations (5)–(7). To be able to compare these criteria across the three models, the cross-level interaction
effect estimates and their SEs of the univariate multilevel model and the mixed ANOVAmodel were rescaled to the same
scale as the factor, by dividing them by five (number of indicators).
The relative bias of parameter 𝛾(𝑐) is defined as:

Relative parameter bias =
𝛾(𝑐) − 𝛾(𝑐)

𝛾(𝑐)
, (8)

where 𝛾(𝑐) is the population parameter value that is used to generate the data sets and 𝛾(𝑐) is its estimated average
over the 1000 replicated data sets. The relative bias indicates how much the population parameter and the estimated
parameter differ.
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TABLE 2 Type I error rates under equal within-level residual variances.

𝚲 = (𝟏, 𝟏, 𝟏, 𝟏, 𝟏) 𝚲 = (𝟏, 𝟎.𝟗𝟓, 𝟎.𝟖𝟎, 𝟎.𝟗𝟎, 𝟎.𝟖𝟓) 𝚲 = (𝟏, 𝟎.𝟗𝟎, 𝟎.𝟔𝟎, 𝟎.𝟖𝟎, 𝟎.𝟕𝟎)

ICC 𝒏𝟐∕𝒏𝟏 MIMIC MLM MAOV MIMIC MLM MAOV MIMIC MLM MAOV
0.10 50/10 0.048 0.045 0.042 0.048 0.041 0.037 0.062 0.058 0.056

50/20 0.066 0.061 0.059 0.042 0.039 0.033 0.057 0.052 0.050
100/10 0.058 0.052 0.047 0.064 0.061 0.058 0.050 0.050 0.045
100/20 0.047 0.045 0.043 0.047 0.046 0.045 0.044 0.046 0.043
200/10 0.055 0.055 0.054 0.053 0.050 0.050 0.045 0.047 0.044
200/20 0.051 0.049 0.048 0.058 0.058 0.058 0.041 0.041 0.039

0.25 50/10 0.056 0.049 0.047 0.075 0.068 0.063 0.065 0.058 0.053
50/20 0.065 0.059 0.057 0.064 0.054 0.046 0.069 0.065 0.060
100/10 0.048 0.045 0.044 0.054 0.053 0.052 0.047 0.045 0.044
100/20 0.052 0.051 0.051 0.044 0.043 0.040 0.045 0.042 0.039
200/10 0.051 0.051 0.050 0.052 0.052 0.051 0.050 0.049 0.048
200/20 0.057 0.056 0.056 0.036 0.035 0.035 0.058 0.057 0.055

Note: 𝛾 = interaction effect; ICC = intraclass correlation; 𝑛2∕𝑛1 = sample size; MIMIC =Multilevel MIMIC model; MLM =Multilevel model; MAOV =Mixed
ANOVA model.
Shaded cells show type I error rates that differ significantly from the desired nominal alpha level of 0.05.

The relative SE bias of 𝛾(𝑐) indicates how much the average estimated SE 𝑠𝑒(𝛾(𝑐)) deviates from the standard deviation
𝑠𝑑(𝛾(𝑐)) over the 1000 estimates of 𝛾(𝑐):

Relative SE bias =
𝑠𝑒(𝛾(𝑐)) − 𝑠𝑑(𝛾(𝑐))

𝑠𝑑(𝛾(𝑐))
. (9)

A positive value implies that on average the estimated SEs are too large; whereas a negative value is related to an under-
estimation of the SEs. Muthén and Muthén (2002) suggest that parameter bias should not exceed 10% and SE bias should
preferably not exceed 5% for a parameter that is used to assess power.
Finally, theMSEwas calculated andused as criterium for evaluation. TheMSE is an overallmeasure of accuracy because

it considers bias and the standard deviation over the 1000 replications:

𝑀𝑆𝐸 = (𝛾(𝑐) − 𝛾(𝑐))
2 + 𝑠𝑑(𝛾(𝑐))

2. (10)

3 RESULTS

The main results with respect to the type I error rate, power, SE, and relative bias are presented in Tables 2–5. The ASR,
relative SE bias, and MSE results are presented in the Supporting Information. Since the results under the equal within-
level residual variance condition were similar to the results under the unequal within-level residual variance condition,
the tables presented here only contain the results under the equal residual within-level variance condition. For a complete
overview of all results, we refer to the Supporting Information. The results are discussed below per evaluation criterion.

3.1 ASR

The ASR was related to the ICC and sample size for the ML-MIMICmodel and the univariate multilevel model. For these
models, conditions with small sample sizes at the within-level and low ICC values produced relatively lower ASRs, as
presented in Table S1. Especially for the multilevel model, the ASR was below 80% in the smallest sample size condition
with a small ICC, as highlighted by the gray shaded cells in Table S1. This is not surprising as a relatively low ICC indicates
that there is little variation at the between-level. Consequently, together with a small sample size, a multilevel model
will then have difficulties estimating random slope variance increasing the likelihood that the model estimation will not
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11 of 20 KESSELS and MOERBEEK

TABLE 3 Power estimates under equal within-level residual variances.

𝚲 = (𝟏, 𝟏, 𝟏, 𝟏, 𝟏) 𝚲 = (𝟏, 𝟎.𝟗𝟓, 𝟎.𝟖𝟎, 𝟎.𝟗𝟎, 𝟎.𝟖𝟓) 𝚲 = (𝟏, 𝟎.𝟗𝟎, 𝟎.𝟔𝟎, 𝟎.𝟖𝟎, 𝟎.𝟕𝟎)

𝜸 ICC 𝒏𝟐∕𝒏𝟏 MIMIC MLM MAOV MIMIC MLM MAOV MIMIC MLM MAOV
0.20 0.10 50/10 0.121 0.115 0.109 0.125 0.120 0.111 0.111 0.103 0.095

50/20 0.146 0.139 0.134 0.146 0.138 0.127 0.142 0.133 0.127
100/10 0.185 0.181 0.169 0.187 0.186 0.181 0.199 0.199 0.193
100/20 0.233 0.230 0.222 0.223 0.215 0.205 0.207 0.198 0.195
200/10 0.324 0.319 0.316 0.354 0.354 0.349 0.294 0.293 0.288
200/20 0.392 0.391 0.385 0.390 0.389 0.385 0.382 0.380 0.377

0.25 50/10 0.139 0.130 0.116 0.124 0.117 0.102 0.133 0.129 0.121
50/20 0.172 0.164 0.153 0.163 0.149 0.133 0.145 0.133 0.126
100/10 0.198 0.189 0.177 0.211 0.205 0.197 0.176 0.172 0.168
100/20 0.251 0.246 0.238 0.221 0.216 0.210 0.246 0.235 0.232
200/10 0.376 0.370 0.366 0.366 0.365 0.361 0.337 0.336 0.335
200/20 0.426 0.422 0.421 0.418 0.410 0.404 0.410 0.405 0.402

0.40 0.10 50/10 0.346 0.329 0.306 0.331 0.322 0.312 0.315 0.297 0.282
50/20 0.404 0.388 0.376 0.400 0.378 0.368 0.395 0.377 0.352
100/10 0.562 0.557 0.547 0.567 0.568 0.553 0.568 0.559 0.554
100/20 0.693 0.691 0.683 0.688 0.678 0.671 0.659 0.649 0.639
200/10 0.843 0.841 0.841 0.862 0.860 0.855 0.846 0.845 0.844
200/20 0.930 0.928 0.927 0.932 0.931 0.929 0.919 0.913 0.912

0.25 50/10 0.360 0.345 0.337 0.360 0.344 0.329 0.355 0.344 0.334
50/20 0.445 0.427 0.414 0.419 0.401 0.388 0.428 0.411 0.398
100/10 0.605 0.602 0.596 0.610 0.606 0.595 0.606 0.595 0.589
100/20 0.705 0.696 0.687 0.715 0.709 0.703 0.688 0.678 0.673
200/10 0.890 0.886 0.884 0.871 0.870 0.868 0.863 0.857 0.855
200/20 0.943 0.942 0.939 0.945 0.943 0.941 0.944 0.944 0.942

Note: 𝛾 = interaction effect; ICC = intraclass correlation; 𝑛2∕𝑛1 = sample size; MIMIC =Multilevel MIMIC model; MLM =Multilevel model; MAOV =Mixed
ANOVA model.
Shaded cells show power estimates that exceed the desired 80%.

converge to a solution. However, as soon as the sample size at the within-level was 20, the ASR exceeded 90%. Overall,
the ASR was often well above 90% and often 100% in the larger sample size conditions for the ML-MIMIC model and
multilevel model. For the mixed ANOVA model, ASRs were all 100% across all simulation conditions, except for some
conditions with smaller sample sizes. The same pattern was observed between the different factor loading conditions and
between the within-level residual variance conditions.

3.2 Type I error

The type I error rates are presented in Table 2 and Table S2. For the ML-MIMIC model, type I error rates were around
0.06 and ranging from 0.04 to 0.08. This is consistent with the results of Cao et al. (2019), where the same range in type I
error rates was observed when testing cross-level interaction effects in ML-MIMIC models. When using the one-sample
proportion test, it is possible to seewhether the type I error rates differ significantly from the preferred nominal-level alpha
level of 0.05. In the case of 1000 replications and a 5% significant level, the lower limit value of alpha is 0.03649 and the
upper limit is 0.0635. The significant type I error values are highlighted by the gray shaded cells in Table 2. When looking
at these results, it can be seen that the type I error rate under theML-MIMICmodel was more often significantly different
from the nominal 5% alpha level compared to the univariate multilevel model and mixed ANOVA model. Type I error
rates that are significantly larger than the nominal alpha level of 0.05 are undesirable, especially when a model is used
in a clinical trial. For the ML-MIMIC model, 19% of the type I error rates were significantly larger than 0.05, usually with
second-level sample sizes of 50. The remaining type I error rates of theML-MIMICmodel were reasonably well controlled.
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TABLE 4 Standard error estimates under equal within-level residual variances.

𝚲 = (𝟏, 𝟏, 𝟏, 𝟏, 𝟏) 𝚲 = (𝟏, 𝟎.𝟗𝟓, 𝟎.𝟖𝟎, 𝟎.𝟗𝟎, 𝟎.𝟖𝟓) 𝚲 = (𝟏, 𝟎.𝟗𝟎, 𝟎.𝟔𝟎, 𝟎.𝟖𝟎, 𝟎.𝟕𝟎)

𝜸 ICC 𝒏𝟐∕𝒏𝟏 MIMIC MLM MAOV MIMIC MLM MAOV MIMIC MLM MAOV
0.20 0.10 50/10 0.266 0.266 0.271 0.267 0.240 0.244 0.268 0.214 0.219

50/20 0.230 0.230 0.235 0.232 0.209 0.213 0.233 0.186 0.190
100/10 0.188 0.188 0.190 0.188 0.169 0.171 0.190 0.152 0.153
100/20 0.165 0.165 0.166 0.165 0.148 0.150 0.165 0.133 0.134
200/10 0.132 0.132 0.133 0.133 0.120 0.121 0.134 0.107 0.108
200/20 0.117 0.117 0.118 0.118 0.106 0.106 0.117 0.094 0.094

0.25 50/10 0.252 0.252 0.257 0.254 0.228 0.233 0.254 0.203 0.207
50/20 0.225 0.225 0.230 0.224 0.202 0.206 0.227 0.182 0.186
100/10 0.180 0.180 0.182 0.180 0.162 0.163 0.181 0.145 0.147
100/20 0.161 0.161 0.162 0.162 0.145 0.147 0.162 0.129 0.131
200/10 0.128 0.128 0.129 0.128 0.116 0.116 0.129 0.103 0.104
200/20 0.115 0.115 0.115 0.115 0.103 0.104 0.116 0.092 0.093

0.40 0.10 50/10 0.266 0.266 0.271 0.266 0.239 0.244 0.268 0.214 0.219
50/20 0.232 0.232 0.236 0.231 0.208 0.212 0.232 0.186 0.190
100/10 0.188 0.187 0.189 0.188 0.169 0.171 0.190 0.151 0.153
100/20 0.164 0.164 0.166 0.165 0.149 0.150 0.165 0.132 0.134
200/10 0.133 0.133 0.134 0.133 0.119 0.120 0.134 0.107 0.108
200/20 0.117 0.117 0.118 0.118 0.106 0.106 0.118 0.094 0.095

0.25 50/10 0.253 0.252 0.257 0.254 0.228 0.233 0.255 0.204 0.208
50/20 0.225 0.225 0.230 0.227 0.204 0.208 0.226 0.181 0.184
100/10 0.180 0.180 0.182 0.181 0.162 0.164 0.181 0.145 0.146
100/20 0.162 0.162 0.163 0.161 0.145 0.146 0.162 0.129 0.130
200/10 0.128 0.128 0.129 0.129 0.116 0.116 0.129 0.103 0.104
200/20 0.114 0.114 0.115 0.115 0.103 0.104 0.115 0.092 0.092

Note: 𝛾 = interaction effect; ICC = intraclass correlation; 𝑛2∕𝑛1 = sample size; MIMIC =Multilevel MIMIC model; MLM =Multilevel model; MAOV =Mixed
ANOVA model.

For the univariate multilevel model, the type I error rates were slightly lower compared to the ML-MIMIC model,
especially under small sample size conditions. As shown in Table 2, type I error rates for the multilevel models never
exceeded 0.07. Also for the mixed ANOVA model, type I error rates were slightly lower than for the ML-MIMIC model
and even slightly lower than for themultilevel model. These results reveal that themixed ANOVAmodel has the best type
I error control among the three models, but the differences between the models were minimal.

3.3 Power

In almost all simulation conditions, the power of theML-MIMICmodel was larger than the power of themultilevel model
and themixedANOVAmodel, as presented in Table 3 and Table S3.When comparing themultilevel model with themixed
ANOVAmodel only, it shows that the power of themultilevel model was almost always larger than the power of themixed
ANOVA model with a few exceptions where the power of both models was the same. The differences in power between
the models became smaller with increasing sample sizes. However, overall, the differences between the power estimates
of the three models were small. The small power advantage of the ML-MIMICmodel over the other two methods and the
power advantage of the multilevel model over the mixed ANOVA model could be explained by base differences in type I
error rates, where we found the same pattern across the models. However, whether the power difference is purely due to
differences in type I error rates, is hard to evaluate.
For all three models, the power reached 80% under the simulation conditions with a cross-level interaction effect of

0.40, a between-level sample size of 200 and a within-level sample size of 10, regardless of the factor loading values, ICC,
and within-level residual variances, as highlighted by the gray shaded cells in Table 3 and Table S3.
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13 of 20 KESSELS and MOERBEEK

TABLE 5 Relative Bias under equal within-level residual variances.

𝚲 = (𝟏, 𝟏, 𝟏, 𝟏, 𝟏) 𝚲 = (𝟏, 𝟎.𝟗𝟓, 𝟎.𝟖𝟎, 𝟎.𝟗𝟎, 𝟎.𝟖𝟓) 𝚲 = (𝟏, 𝟎.𝟗𝟎, 𝟎.𝟔𝟎, 𝟎.𝟖𝟎, 𝟎.𝟕𝟎)

𝜸 ICC 𝒏𝟐∕𝒏𝟏 MIMIC MLM MAOV MIMIC MLM MAOV MIMIC MLM MAOV
0.20 0.10 50/10 0.028 0.029 0.029 0.011 −0.089 −0.089 −0.000 −0.200 −0.200

50/20 0.028 0.027 0.027 0.022 −0.079 −0.079 −0.019 −0.215 −0.215
100/10 −0.070 −0.071 −0.071 0.023 −0.080 −0.080 0.032 −0.174 −0.174
100/20 0.007 0.008 0.008 −0.020 −0.119 −0.119 −0.030 −0.223 −0.223
200/10 0.016 0.017 0.017 0.031 −0.073 −0.073 −0.008 −0.207 −0.207
200/20 −0.028 −0.028 −0.028 0.023 −0.079 −0.079 −0.011 −0.208 −0.208

0.25 50/10 0.045 0.046 0.046 −0.037 −0.134 −0.134 −0.030 −0.223 −0.223
50/20 0.023 0.023 0.023 −0.014 −0.112 −0.112 −0.027 −0.220 −0.220
100/10 −0.028 −0.029 −0.029 −0.010 −0.108 −0.108 −0.042 −0.233 −0.233
100/20 0.013 0.014 0.014 −0.015 −0.114 −0.114 0.027 −0.178 −0.178
200/10 0.045 0.046 0.046 0.014 −0.087 −0.087 0.008 −0.193 −0.193
200/20 0.005 0.005 0.005 −0.005 −0.105 −0.105 −0.019 −0.215 −0.215

0.40 0.10 50/10 0.026 0.027 0.027 0.035 −0.070 −0.070 −0.001 −0.200 −0.200
50/20 0.009 0.009 0.009 −0.012 −0.110 −0.110 −0.019 −0.214 −0.214
100/10 0.000 0.000 0.000 0.018 −0.084 −0.084 0.005 −0.196 −0.196
100/20 0.017 0.017 0.017 −0.002 −0.102 −0.102 −0.025 −0.220 −0.220
200/10 0.004 0.004 0.004 0.000 −0.100 −0.100 0.005 −0.196 −0.196
200/20 0.004 0.004 0.004 0.014 −0.087 −0.087 −0.008 −0.206 −0.206

0.25 50/10 0.004 0.004 0.004 0.028 −0.075 −0.075 0.012 −0.190 −0.190
50/20 0.013 0.013 0.013 −0.006 −0.105 −0.105 −0.014 −0.211 −0.211
100/10 0.017 0.017 0.017 0.011 −0.091 −0.091 0.009 −0.193 −0.193
100/20 −0.002 −0.001 −0.001 0.016 −0.086 −0.086 0.004 −0.197 −0.197
200/10 0.012 0.012 0.012 0.007 −0.093 −0.093 −0.004 −0.203 −0.203
200/20 −0.006 −0.006 −0.006 −0.000 −0.100 −0.100 0.019 −0.185 −0.185

Note: 𝛾 = interaction effect; ICC = intraclass correlation; 𝑛2∕𝑛1 = sample size; MIMIC =Multilevel MIMIC model; MLM =Multilevel model; MAOV =Mixed
ANOVA model.
Shaded cells show relative bias estimates that exceed 10%.

With respect to the power, the magnitude of the cross-level interaction effect and the sample size were the most impor-
tant factors. All other simulation conditions had little or no impact on the power. The powerwas often slightly larger under
conditions with an ICC of 0.25 compared to an ICC of 0.10 and this pattern was observed across all three models. The ICC
did not have an influence on the difference in power between the threemodels, which implies that the difference in power
between the multilevel model and mixed ANOVA model was not affected by the correlation between scores within the
same patient. The factor loading conditions did not have an impact on the power, nor on the difference in power between
the three models. Also with respect to the within-level variance conditions, no clear pattern could be observed.

3.4 Standard error

All SEs ranged from 0.10 (rounded) to 0.30 for all three models as seen in Table 4 and Table S4. The SEs varied as a
function of the sample size with SEs decreasing when the sample size increased. A similar relationship was observed
between the SEs and the ICC with larger ICCs having somewhat smaller SEs, but this relationship was weaker compared
to the relationship between sample size and SEs. The within-level residual variance conditions turned out to have no
impact on the estimated SEs.
In the conditions with equal factor loadings, the SE estimates between theML-MIMICmodel and the multilevel model

were almost equal, whereas the SE estimates of themixed ANOVAmodel were somewhat larger. However, the differences
in SE estimates between the mixed ANOVA model, on the one hand, and the ML-MIMIC model and multilevel model,
on the other hand, became smaller with increasing sample sizes. In the conditions with unequal factor loadings, the SE
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KESSELS and MOERBEEK 14 of 20

estimates of the multilevel model and mixed ANOVAmodel were smaller compared to SEs of the same models under the
equal factor loading condition. Under unequal factor loading conditions, SEs of the mixed ANOVA model were always
larger than the SEs of the multilevel model (again, differences between the models decreased with increasing sample
sizes). SEs of the multilevel model and mixed ANOVA model became even smaller, the more the factor loadings varied
across the indicators. Furthermore, in the unequal factor loading conditions, the SEs of the multilevel model and mixed
ANOVAmodel were smaller compared to the SEs of theML-MIMICmodel. In fact, the SEs of theML-MIMICmodel were
all approximately equal in size over the loading conditions, which shows that the various factor loading conditions only
had an impact on the SE estimates of the multilevel and mixed ANOVA model.

3.5 Relative bias

Under all conditions, the relative parameter bias of the ML-MIMIC model was negligible, with all parameter bias values
far below 10% (see Table 5 and and Table S5). None of the simulation conditions had a serious impact on the relative
parameter bias of the ML-MIMIC model.
For the multilevel model and mixed ANOVA model, the relative parameter bias only varied as a function of the fac-

tor loading values. Under the condition with equal loadings, the relative parameter bias values were all acceptable and
below 10%. In fact, under the equal loading condition, the parameter bias across the three models were very comparable.
However, the more the factor loadings varied across indicators, the larger the relative parameter bias of the multilevel
model and mixed ANOVAmodel. Under the condition with factor loadings varying with a magnitude of 0.05, the relative
parameter bias of the multilevel model and mixed ANOVAmodel was around 10% or over 10%, as highlighted by the gray
shaded cells in Table 5 and Table S5. The relative parameter bias of both models was already around 20% when factor
loadings varied with a magnitude of 0.10. Under both varying loading conditions, the population cross-level interaction
effect was (severely) underestimated when applying the multilevel model or mixed ANOVA model, resulting in negative
bias. These results show that even in situations where the true factor loadings varied only minimally, relative parame-
ter bias can already exceed 10% when applying models that rely on sum scores. Under varying loading conditions, the
ML-MIMIC model clearly outperformed the multilevel model and mixed ANOVA model. Varying within-level residual
variances seemed to have no impact on the difference in relative parameter bias between the models, which suggests that
only the true factor loadings values affect the (relative) bias when using sum scores.
The relative parameter bias values between themultilevel model andmixed ANOVAmodel did not differ, meaning that

none of the simulation conditions had an impact on the difference between the two models that rely on sum scores.

3.6 Relative standard error bias

The relative SE bias results are presented in Table S6. Overall, the relative SE bias waswell controlled below 5% for all three
models. A few exceptions (7 out of 216 conditions) were observed for the ML-MIMIC model and multilevel model where
the SE bias exceeded the 5%, primarily under smaller sample size conditions within the unequal within-level residual
variance condition. For the ML-MIMIC model and multilevel model, the largest relative SE bias values were 0.08 and
0.085, respectively, and these were observed under the condition with unequal residual variances, a cross-level interaction
effect of 0.40, an ICC of 0.25, a sample size of 50/20, and factor loadings varyingwith amagnitude of 0.05 (see Table S6). For
the mixed ANOVA model, only in two occasions, the relative SE bias was above 5%. No clear pattern across the different
simulation conditions with respect to the relative SE bias was observed.

3.7 Mean squared error

Under the condition with equal factor loadings, the MSE across the different models was equal, as shown in Table S7.
For the multilevel model and the mixed ANOVA model, the MSE decreased with increasing variation across the factor
loadings, whereas for the ML-MIMIC model, the various factor loading conditions had no impact on the MSE. These
results indicate that under varying factor loading conditions, the multilevel model andmixed ANOVAmodel obtain more
accurate parameter estimates compared to the ML-MIMIC model. This observation implies that while the multilevel
model and mixed ANOVAmodel underestimate the cross-level interaction effect under the condition with varying factor
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15 of 20 KESSELS and MOERBEEK

loadings, this underestimation occurs with less variation over the replications. On the other hand, the ML-MIMIC model
shows more variation over the estimated cross-level interaction effects, but the average estimated cross-level interaction
effect over the replications lies close to the population value.
Furthermore, theMSE decreasedwith increasing sample sizes and theMSE also seemed a little smaller under the larger

ICC condition, which is line with the patterns observed for the statistical power and SE. Thewithin-level residual variance
conditions had no influence on the MSE. These results applied to all three models.

4 DISCUSSION

This simulation study compared the performance on estimating a cross-level interaction effect between three different
statistical models in the presence of correlated variables (i.e., questionnaire items) that measure a latent variable in a
multilevel context. The models compared in this simulation study varied in complexity and this complexity was partly
related to the way the data were treated. The ML-MIMIC model was regarded the most complex model and used the data
without conducting any aggregation steps. On the contrary, prior to applying the univariatemultilevelmodel, the observed
correlated indicators were first combined into one sum score that served as univariate outcome. For employing the mixed
ANOVAmodel, which was the most simplified statistical model of this simulation study, the data were further aggregated
by calculating two mean scores per patient representing the average scores of the two within-level covariate categories.
The main goal of this study was to examine under which conditions more simplified models may become problematic
when estimating a cross-level interaction effect.
The main result of this study was that the ML-MIMIC model produced unbiased cross-level interaction effect esti-

mates under all conditions compared to the univariate multilevel model and the mixed ANOVA model. Especially when
observed indicators had varying weights in relation to the latent variable, the multilevel model and the mixed ANOVA
model severely underestimated the cross-level interaction effect. This result confirmed our expectation and is consistent
with the arguments listed inMcNeish andWolf (2020)where the use of sum scores is discouraged as even small differences
in the relationships between the indicators and the latent variable can already lead to biased results. This study showed
that when unstandardized factor loadings across indicators are fairly close to each other, bias in estimating a cross-level
interaction effect can already exceed 10%. This finding may have serious implications for applied researchers, because the
use of sum scoring might be justified by the result of a factor analysis. Many researchers would interpret factor loading
values of 1, 0.95, 0.80, 0.90, 0.85 or 1, 0.90, 0.60, 0.80, 0.70 as sufficient evidence that sum scoring is allowed, but our results
revealed that even in these situations, sum scoring can be problematic. It is therefore recommended to always apply factor
analysis prior to composing and using sum scores in order to verify whether the indicators have equal weight (McNeish
& Wolf, 2020). However, alternative methods can imply sum scores as well, such as latent class analysis or psychomet-
ric network models, and it has been argued that in certain situations, sum scores can be justified based on a theoretical
model (Edelsbrunner, 2022). Also, a reason to use sum scores is that they canmore easily be compared across studies than
if different weighting is used across these studies (Widaman & Revelle, 2022). Nonetheless, to ensure scores are as precise
as possible, which is desired when comparing two different treatments in a clinical trial, the ML-MIMIC model should
be preferred.
An additional benefit of the ML-MIMIC model over the other two models is that the ML-MIMIC model generally

had larger statistical power in detecting a cross-level interaction effect. Models that obtain more power are attractive to
clinicians because this can lead to smaller required sample sizes. However, the differences in power between the three
models were small, which implies that the choice of which model to use based on power alone seems irrelevant. In fact,
this can be a reason not to pursue employing the more complicated ML-MIMIC model.
The interpretation of the results with respect to the power cannot be dissociated with the results on the SE and rela-

tive parameter bias. The simulation results revealed that the multilevel model and mixed ANOVA model had lower SEs,
especially in the conditions with unequal and slightly smaller factor loadings. This is consistent with previous research,
suggesting that regression coefficients between observed variables are estimated with more precision (and hence lower
SEs) compared to regression coefficients between observed variables and latent variables (Ledgerwood & Shrout, 2011;
Savalei, 2014; Wang & Rhemtulla, 2021). Particularly, the use of RML for estimating the parameters of the ML-MIMIC
model has contributed to the observed lower precision when applying the ML-MIMIC model (Savalei, 2014). This result
was also noted when considering the MSE, where the multilevel model and mixed ANOVA model turned out to be more
accurate compared to the ML-MIMIC model under the varying factor loading conditions.
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Intuitively, smaller SEs and better accuracy would lead to more power. A recent simulation study indeed showed that
a multiple regression on observed sum scores had larger power compared to a latent variable model (Wang & Rhemtulla,
2021). However, in that study, factor loadings were not varied across observed indicators. In contrast, our simulation study
particularly examined the effect of varying factor loadings on parameter bias and we discovered that under varying factor
loading conditions, the multilevel model and mixed ANOVA underestimated the cross-level interaction effect. Underes-
timation indicates that the effect size is smaller, which has a negative impact on power. Consequently, the smaller SEs
and larger negative bias work in opposite directions concerning the power for the multilevel and mixed ANOVA model.
Overall, although the ML-MIMIC model produced larger SEs, it did not induce bias in estimating the cross-level interac-
tion, which, in the end, resulted in slightly higher power in detecting this interaction effect. Therefore, when considering
the power, SEs, and relative bias results, the ML-MIMICmodel is preferred. These conclusions should be interpreted con-
sidering the current simulation conditions, because it is unclear whether the multilevel model and mixed ANOVA will
always underestimate the cross-level interaction effect.
With respect to the type I error rates, our simulation study showed that the ML-MIMIC model had more often a type I

error rate that was significantly larger than the nominal alpha level of 0.05 compared to the univariate multilevel model
and mixed ANOVAmodel, especially in the smaller sample size conditions. Inflated type I error rates for the ML-MIMIC
model under small sample sizes were also found in previous studies (Cao et al., 2019; Finch & French, 2011). This finding
calls for some restraint when recommending the ML-MIMIC model for the analysis of clinical trials with small sample
sizes, because a decent type I error control rate is necessary when considering an analytic tool to be suitable for clinical
trials. For future research, other simulation conditions should be considered to further study the type I error rates in
ML-MIMIC models, such as different random slope variances (see further on) or different estimation methods. For the
univariate multilevel and mixed ANOVA model, the type I error rates were well under control. A possible explanation
for this finding could be the use of the Satterthwaite approximation for calculating the degrees of freedom, as it has been
shown that the Satterthwaite approximation resulted in improved type I error rates compared to likelihood ratio tests and
Wald-type tests with chi-square approximation when testing intercepts and slopes in mixed effects linear models under
small sample size conditions (Kuznetsova et al., 2017; Manor & Zucker, 2004).
Regarding the impact of the simulation conditions on the performance of the models and the comparison between the

models, it can be concluded that thewithin and between-level sample sizes and themagnitude of the cross-level interaction
were most relevant for the performance of the models on their own, which is in line with previous research (Cao et al.,
2019; Mathieu et al., 2012; Wang & Rhemtulla, 2021). Larger sample sizes lead to larger ASRs, larger power, smaller SEs,
and smaller MSEs. The magnitude of the interaction effect was highly associated with power. The power under a cross-
level interaction effect of 0.20 never exceeded 80%, which does not correspond to the work by Cao et al. (2019), where
a cross-level interaction effect of 0.20 already lead to power of 80% under the larger sample size conditions. The reason
for this discrepancy is because in the current simulation study, random slope variation was incorporated during the data-
generation process and this random slope variance was set at a relatively large value (0.50) compared to the study by Cao
et al. (2019). A larger random slope variation results in larger SEs and therefore lower power. In fact, Cao et al. did not
incorporate random slope variance during the data-generation process, but rather restricted the random slope variation
to a specified value of 0.10 during estimation of the ML-MIMICmodel. Important to note is that when there clearly exists
random slope variation, this should be included during model fitting as otherwise the SEs will be downward biased (Bell
et al., 2019). However, for power calculations during the design stage, providing an estimate of the random slope variation
is often not straightforward, but setting this artificially at a low valuemight lead to less required patients, whichmay result
in underpowered studies when the actual random slope variation is larger. The effect of varying random slope variances
was not part of this research, butmanipulating random slope variation would be an interesting feature to include in future
studies that investigate the performance of ML-MIMIC models. In addition to varying the random slope variance, future
studies on the performance of ML-MIMIC models in comparison to univariate regression models could also study the
impact of varying the covariance between the random intercept and random slope.
The impact of the ICC on the estimation of the cross-level interaction effect was small and did not result in noteworthy

findings, except that a small ICC had lower ASRs under the smallest sample size condition, especially for the multilevel
model. Overall, the negligible impact of the ICC on the estimation of the cross-level interaction effect was in line with Cao
et al. (2019). In fact, Cao et al. (2019) found that the ICC only had a large impact on the SE and power when a covariate
interaction was located at the between-level, where a larger SE and lower power was observed with increasing ICCs.
Clinicians who want to adopt the ML-MIMIC model should be aware of this result when they want to test an interaction
effect between two dichotomous covariates located at the patient level.
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When considering the impact of the simulation conditions on the comparison between the models, it was already
emphasized that the varying factor loading conditions had a major impact on the differences in relative bias between the
threemodels. In contrast, the different within-level residual variance conditions had no impact on the relative bias, which
suggests that a justified application of sum scoring is primarily affected by the factor loading values. This finding adds valu-
able information to the work of McNeish andWolf (2020), because it implies that mainly unstandardized factor loadings,
rather than standardized factor loadings, should be studied when planning to use sum scores in this specific ML-MIMIC
context. However, to gain a better understanding of the effect of varying residual variances in multilevel data, it would be
interesting to consider other (simulation) settings. For example, including conditions with varying between-level residual
variances as well (in addition to varying within-level residual variances), looking at more complicated models with more
latent variables, or focusing onmain effects of covariates on the within- and between-level would all be relevant topics for
future work.
The differences between the univariate multilevel model and the mixed ANOVA model were small. Especially with

respect to the relative bias, SE, and MSE, the differences were negligible. This corresponds with another study where no
difference in the parameter estimate and SEwas found between amultilevel model and amixed ANOVAmodel that relies
on summary measures using aggregated data when applied to multicenter intervention studies (Moerbeek et al., 2003).
However, the multilevel model has several advantages over the mixed ANOVA model. A multilevel model can handle
unbalanced measurements, it has the ability to accommodate missing data (Krueger & Tian, 2004), and in a multilevel
model, it is possible to examine varying drug effects across each patient by estimating a random effect (Kessels et al.,
2019). These advantages make the multilevel model way more flexible compared to the mixed ANOVA model. In addi-
tion, we found that the multilevel model had slightly larger power in detecting a cross-level interaction effect compared
to the mixed ANOVA model, which provides another argument for preferring multilevel modeling. The ICC had very
little impact on the power difference between the multilevel model and the mixed ANOVA model, which suggests that
the power was not affected by the correlation between scores within a patient. Therefore, this finding is not in line with
our expectations that aggregating data could lead to reduced measurement error due to correlated within-patient mea-
surements and therefore to larger power. However, because our study was not fully focused on studying this trade-off, the
simulation conditions were rather limited to investigate this more deeply. For example, different ICC values that range
from very low to very high could be interesting to incorporate in the simulation design as well as conditions with unbal-
anced data. Moreover, the data were simulated under a latent variable model that is not an ideal setting for comparing
models that cannot deal with latent variables appropriately.
Since our simulation code was used to simulate power, it can also be administered by applied researchers and statisti-

cians to calculate power and required sample sizes during the design stagewhen planning to use theML-MIMICmodel for
testing a cross-level interaction effect. To perform a power analysis, one needs to consider the factor loading values, main
and interaction effects, factor and indicator variances, and the random slope variance. However, specifying these parame-
ter values during the design stage can be quite challenging, especially when information on parameter values of previous
studies or expert knowledge is lacking. We therefore advice researchers to perform sensitivity analyses to study the effect
of multiple parameter values on the power and to assess under which conditions the model obtains well-controlled type
I error rates. As outlined above, the magnitude of the random slope variance has a negative impact on power that could
lead to underpowered studies when the random slope variance turns out to be larger than hypothesized. Althoughmanip-
ulating the random slope variance was not part of our study, a nice feature of our simulation code is that the random slope
variance can be adapted. This allows researchers to studymultiple scenarios and to avoid underpowered studies when one
selects the largest realistic random slope variance. Furthermore, our study revealed that the magnitude of the cross-level
interaction effect was the only condition, besides sample size, that was highly related with power. This indicates that the
power for the cross-level interaction effect test is less affected by factor loading values, the ICC, and within-level residual
variances, but that does not necessarily guarantee that this will also be the case in other situations.
When planning to use the ML-MIMIC model in their studies, researchers should be aware about the design used in

this simulation study in comparison to their own. In our simulation study, there were two dichotomous covariates at the
within-patient and between-patient level. Like regular multilevel regression models, the ML-MIMIC model can easily be
extended with more categorical and continuous covariates at both levels. Considering the applied example introduced at
the beginning of this paper, the covariate at the within-patient level (study period) models a change in time and each time
point is a collection of multiple events. This implies that the covariate study period is not treated any different than we
would treat, for example, the variable gender of patients in a cluster randomized trial where patients (level 1) are nested
within hospitals (level 2). For longitudinal studies, where, for example, a patient reported outcome measure is repeatedly
measured over timewithin patients andwhere each time point represents one observation of the patient reported outcome,
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time can bemodeled in anML-MIMICmodel as a within-patient covariate with multiple categories representing the time
points (e.g., by using dummy variables). However, this specific type of design was not examined in this simulation study,
so generalizing the results to those kind of longitudinal studies should be made with caution.
Furthermore, when applying the ML-MIMIC model in practice, it is important to verify the measurement invariance

assumptions. In ML-MIMIC models, invariance of factor loadings and intercepts across groups is implicitly assumed (as
was the case in our simulations), but it is advised to test these strict assumptions (Kessels et al., 2021; Kim et al., 2015), in
order to ensure that unbiased covariate effects are obtained. Research has shown that in situations where the measure-
ment invariance assumption is partly violated (some but not all intercepts and/or factor loadings are invariant), covariate
effects are still unbiased as long as the model is corrected for the invariant parameters (Hsiao & Lai, 2018). Researchers
should be aware that accuracy of covariate effects is affected by the measurement invariance status (Hsiao & Lai, 2018).
In addition, researchers should also consider the issue of response shift, the phenomenon where patients alter the way
they conceptualize and evaluate items over time (Carlier et al., 2019). Response shift might therefore affect measurement
invariance and impact the interpretation of constructs over time. The presence of response shift should therefore also be
investigated in ML-MIMICmodels and it has been shown that response shift plays a role in studies using patient reported
outcomes, such as quality of life outcomes in cancer studies (Ilie et al., 2019). However, how to deal with these possible
measurement invariance violations is beyond the scope of this study and we refer for this to other work (Carlier et al.,
2019; Kessels et al., 2021; Kim et al., 2015).
In sum, this research showed that when a cross-level interaction effect is of focal interest to, for example, assess the

difference between two treatments on a latent variable measured at multiple occasions, the ML-MIMIC model produced
unbiased cross-level interaction effects under all conditions. In contrast, models that rely on sum scores produced severely
negatively biased estimates under varying factor loading conditions. All models had comparable power. Since clinicians
and applied researchers are generally only interested in power and bias, theML-MIMICmodel is the preferredmodel, but
considering the type I error rates, caution is advised with small sample sizes.
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