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Abstract
An information criterion (IC) like the Akaike IC (AIC), can be used to select the best hypothesis from a set
of competing theory-based hypotheses. An IC developed to evaluate theory-based order-restricted hypotheses
is the Generalized Order-Restricted Information Criterion (GORIC). Like for any IC, the values themselves
are not interpretable but only comparable. To improve the interpretation regarding the strength, GORIC
weights and related evidence ratios can be computed. However, if the unconstrained hypothesis (the default)
is used as competing hypothesis, the evidence ratio is not affected by sample-size nor effect-size in case the
hypothesis of interest is (also) in agreement with the data. In practice, this means that in such a case strong
support for the order-restricted hypothesis is not reflected by a high evidence ratio. Therefore, we introduce
the evaluation of an order-restricted hypothesis against its complement using the GORIC (weights). We show
how to compute the GORIC value for the complement, which cannot be achieved by current methods. In a
small simulation study, we show that the evidence ratio for the order-restricted hypothesis versus the
complement increases for larger samples and/or effect-sizes, while the evidence ratio for the order-restricted
hypothesis versus the unconstrained hypothesis remains bounded. An empirical example about facial burn
injury illustrates our method and shows that using the complement as competing hypothesis results in much
more support for the hypothesis of interest than using the unconstrained hypothesis as competing hypothesis.

Translational Abstract
In an informative hypothesis, academic expertise (i.e., theory) about the population of interest is included
in the hypothesis in terms of order-restrictions on the model parameters. As an example, in an ANOVA
setting, we might expect that the group means follow a certain order (e.g., H1: �1 � �2 � �3 � �4). As
another example, in a linear regression model, we might expect that the (standardized) regression
coefficients are subject to multiple one-sided restrictions (e.g., H2: �1 � 0; �2 � 0; �3 � 0). In the
absence of a competing informative hypothesis, an order-restricted hypothesis is typically evaluated
against the unconstrained hypothesis Hu (all orderings are allowed). However, a problem arises if the
order-restricted hypothesis H1 is in agreement with the data: Then, the estimated parameters for H1 are
identical to the estimated parameters of Hu. Therefore, we introduce an AIC-type/information-theoretic
method for evaluating an informative hypothesis Hm against its complement, where the complement Hc

is defined as Hc: not Hm (all orderings are allowed except the ordering in H1).The method is illustrated
using an empirical example about facial burn injury. In addition, the method is implemented in the
user-friendly R package restriktor.

Keywords: complement, evidence ratio, level probabilities, model selection, order restrictions

The evaluation of a researcher’s theory is often key to research.
For example, consider a study about facial burn injury. A burn

event can have an avers impact on a person’s quality of life. The
scars can affect physical appearance and may constitute a source of

This article was published Online First October 31, 2019.
Leonard Vanbrabant, Department of Data-analysis, Ghent University,

and Municipal Health Service (GGD) West-Brabant, Noord-Brabant,
Breda, the Netherlands; Nancy Van Loey, Association of Dutch Burn
Centers, Noord-Holland, Beverwijk, the Netherlands, and Department of
Clinical Psychology, Utrecht University; Rebecca M. Kuiper, Department
of Methods and Statistics, Utrecht University.

Leonard Vanbrabant is now at the Department of Methods and Statistics,
Utrecht University.

The data and the ideas in this article are currently not posted or
shared elsewhere. Rebecca M. Kuiper is supported by a grant from the
Netherlands organization for scientific research: NWO-VENI-451-16-
019.

Correspondence concerning this article should be addressed to Leonard
Vanbrabant, Municipal Health Service (GGD) West-Brabant, Doornbos-
laan 225-227, 4816 CZ Breda, the Netherlands. E-mail: l.vanbrabant@
ggdwestbrabant.nl

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Psychological Methods
© 2019 American Psychological Association 2020, Vol. 25, No. 2, 129–142
ISSN: 1082-989X http://dx.doi.org/10.1037/met0000238

129

mailto:l.vanbrabant@ggdwestbrabant.nl
mailto:l.vanbrabant@ggdwestbrabant.nl
http://dx.doi.org/10.1037/met0000238


rumination acting as a reminder to the event (Nolen-Hoeksema,
Wisco, & Lyubomirsky, 2008). Based on previous research (Van
Loey et al., 2014), it is expected that injury characteristics that may
be perceived as distressing such as facial burn injury and larger
burns may be triggers for the activation and prolongation of
rumination. In addition, a gender effect is also expected because
disfiguring scars resulting from burns may be of greater impor-
tance to woman as compared with men (Ghriwati et al., 2017). We
therefore hypothesized that the means of rumination for men with
and without facial burn injury and the mean of rumination for
women without facial burn injury would be lower than the mean of
rumination for women with facial burn injury. In symbols, this hy-
pothesis can be stated as: H1 : {�men; no facial burns, �men; facial burns,
�

women; no facial burns
} � �women; facial burns, where � are the population

means for rumination for the four groups determined by gender
and facial burns, adjusted for the population effects of some
covariates. Note that no particular order is assumed among the first
three means. This form of theory-based hypothesis is known as an
order-restricted (OR) hypothesis or informative hypothesis (Hoij-
tink, 2012) because the order of the means is restricted based on
theory and/or academic expertise.

To evaluate such OR hypothesis, three methods can be distin-
guished, that is, OR hypothesis testing (e.g., Kudô, 1963), model
selection using OR information criteria (e.g., Anraku, 1999; Mul-
der, & Raftery, in press), and model selection using the Bayes
factor (e.g., Mulder, Hoijtink, & Klugkist, 2010). In this current
article, we focus on model selection using information criteria.
Akaike’s IC (AIC; see, e.g., Akaike, 1973, 1998) is probably the
most familiar and widely used information criterion employed in
the social and behavioral sciences. Nevertheless, the AIC is not
suitable when the model parameters (e.g., means or regression
coefficients) are subject to order restrictions. A modification of the
AIC that can deal with simple order restrictions1 (i.e., Order-
Restricted Information Criterion [ORIC]) in the exponential family
was proposed by Anraku (1999). Kuiper, Hoijtink, and Silvapulle
(2011) generalized the ORIC (GORIC) to accommodate any linear
inequality restrictions in multivariate normal linear models (except
for range restrictions, which bounds a parameter to a specific
interval, e.g., �1 � � � 1). Information criteria like the AIC,
ORIC, and GORIC are calculated as minus two times the maxi-
mum log-likelihood (under the hypothesized model) plus twice a
penalty term value. The main difference between the methods is in
calculating the penalty term value, which is less straightforward to
compute in case of order restrictions.

The evaluation of an OR hypothesis (e.g., H1) requires at least
one competing hypothesis. Sometimes researchers have another hy-
pothesis of interest and want to know which hypothesis is best, for
example H1 versus H2 : �men; no facial burns � �men; facial burns �
�women; no facial burns � �women; facial burns. The difference between
the two is that in H2 the means are fully ordered. In practice,
researchers often do not have such a specific competing hypothesis
and only the unconstrained hypothesis Hu, where no restrictions
are imposed on the model parameters, remains included as com-
peting hypothesis in the set. Therefore, in this article, we focus
solely on the set of hypotheses with one OR hypothesis Hm and the
unconstrained hypothesis Hu.

The hypothesis with the lowest GORIC value is the preferred
one. The GORIC values themselves are not interpretable and only
the differences between the values can be inspected. To improve

the interpretation, so-called GORIC weights (wm) can be com-
puted, which are derived from the Akaike weights (Akaike, 1978;
Burnham & Anderson, 2002) and are comparable with posterior
model probabilities (see Burnham & Anderson, 2002, pp. 302–
305). An IC weight wm represents the relative likelihood of hy-
pothesis m given the data and the set of M hypotheses (Burnham
& Anderson, 2002; Kuiper, 2011; Wagenmakers & Farrell, 2004).
For example, if we compare hypothesis H1 against hypothesis Hu,
we can examine the ratio of the two corresponding weights, that is
w1/wu. This evidence ratio is considered as the strength of evidence
in favor of model m (in this example, m � 1) of being the best
model (Burnham & Anderson, 2002; Wagenmakers & Farrell,
2004).

The evidence ratio should increase for larger samples and/or
effect-sizes. However, if the OR hypothesis of interest Hm is in
agreement with the data, increasing the sample-size and/or effect-
size does not affect the evidence ratio if the unconstrained hypoth-
esis is used as competing hypothesis (assuming that Hm is true and
remains in agreement with the data). In that case, both hypotheses
Hm and Hu are in line with the data, since Hu is always in line with
the data, and consequently both hypotheses have the same maxi-
mized log-likelihood value. Then, the difference in GORIC values
equals the difference in penalty term values, which are indepen-
dent of sample-size and effect-size. The latter case is illustrated in
Figure 1, where we generated 500 data sets according to an
ANOVA model with four uncorrelated ordered means which are in
agreement with H1, with a sample-size of n � 50 per group and
various effect-sizes f (Cohen, 1988, pp. 274–275). The results (cf.
see triangles in Figure 1) show that at first the mean evidence ratio
(on a log scale) of w1/wu increases slightly for increasing effect-
sizes and that afterward it stabilizes at an upper-bound value of
approximately exp(1.09) � 2.97 on the original scale. It is at this
point that the data are for each simulation run in agreement with
H1 and thus the maximized log-likelihood values of H1 and Hu

are the same. The boundary value equates the exponential differ-
ence of the penalty term values between Hu and H1, that is,
exp(5.00–3.91) � exp(1.09) � 2.97; as will become clear later on.
Consequently, strong support for the OR parameters is not ex-
pressed in a high evidence ratio if compared to the unconstrained
hypothesis and many research questions may be erroneously dis-
missed as irrelevant. It is important to note that the boundary issue
is not specific to the order-restricted IC literature but can also be
found in the Bayes factor literature (e.g., Mulder et al., 2009,
2010). They solve the boundary issue by comparing the order-
restricted hypothesis against its complement.

The objective of this study is to show that this upper bound issue
can also be solved by replacing the unconstrained hypothesis by
the complement of the hypothesis of interest (cf. see circles in Figure
1). The complement is defined as Hc � ¬ Hm, where ¬ denotes “not.”
For example, for the OR hypothesis H1 : {�men; no facial burns,
�men; facial burns, �women; no facial burns} � �women; facial burns with
four means there are four ways in which the four means can be
ordered in such an ordering. Hypothesis H1 consists of one of these
four combinations, therefore the complement represents the 4 �
1 � 3 remaining ways in which the four means can be ordered. In

1 Simple order restrictions are of the form �1 � �2 � . . . � �J, where
J is the total number of groups and where � can be replaced by an �.
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this “simple” case, it is easy to write out the complement but this
is often not the case. In many cases, it is a cumbersome or even
impossible task to write up all possible combinations that belong to
the complement, because the number of combinations increases
excessively with the number of parameters. For example, for the
OR hypothesis H2 with four means there are 24 ways (i.e., 4! �
4 	 3 	 2 	 1) in which the four means can be ordered in a simple
order ordering. Moreover, the GORIC is often not defined when
the complement comprises multiple combinations. This is because,
the GORIC is only defined for restrictions that form a closed
convex cone2 (ccc, e.g., H1 and H2).

The novelty of this article is that we introduce the GORIC for the
situation that the restrictions in the complement are not a ccc. We
show (a) how to determine the log-likelihood for the complement and
(b) how to determine the penalty term value for the complement.

The remainder of this article is organized as follows. First, we
provide some technical background about the computation of the
GORIC and the corresponding penalty term value for the uncon-
strained hypothesis and an OR hypothesis Hm. Second, we intro-
duce how the GORIC is computed for the complement of Hm.
Third, we illustrate our method with the empirical example intro-
duced at the beginning of this section. Finally, we give some
concluding remarks and recommendations.

Technical Background

Before we introduce the GORIC for the complement, some
technical background is inevitable. The results given in this part
are for the linear regression model, where the regression coeffi-
cients are subject to linear inequality and/or linear equality restric-
tions. The method can readily be adapted to multivariate normal
linear models. This is briefly discussed in the last section.

Linear Model and Order-Restricted Hypotheses

Consider the standard linear regression model,

yi � xi
T� � �i, i � 1, . . . , n, (1)

where � � (
1, . . . , 
p)T is the parameter vector of interest,
xi � �xi1, . . . , xip�T is a vector of predictor variables3 for person i,
and �i � ��1, . . . , �n�T is a vector of normally distributed random
errors: �i � N�0, �2�. Let the (unconstrained) maximum likelihood
estimates be denoted by �̂ and the order-restricted mle’s denoted
by �̃m. The latter is the solution of maximizing the likelihood under
the restrictions in Hm, a well-studied restricted optimization prob-
lem in the statistical literature (Nocedal & Wright, 2006).

We consider three types of hypotheses, namely Hu : � � �p, where
�p is the p-dimensional Euclidean space, Hm : � � C, where C is also
a space in �p and is a (reallocated) closed convex cone (Kuiper,
Hoijtink, & Silvapulle, 2012), and Hc : ¬Hm, which is not necessarily
a (reallocated) closed convex cone. Because, most applications only
involve linear restrictions, we only consider linear hypotheses.

The GORIC

The GORIC for the unconstrained hypothesis Hu is defined as

GORICu � �2 � LLu � 2 � PTu, (2)

where LLu is the maximized log-likelihood value and the penalty
term value is defined as PTu � 1 � p. Note that GORICu equals
the AIC for Hu.

The GORIC for the OR hypothesis Hm is defined as

GORICm � �2 � LLm � 2 � PTm, (3)

where LLm is the maximized log-likelihood value for the OR
hypothesis Hm and PTm is the penalty term value for Hm. The
penalty term value equals

PTm � 1 � �
j�0

p

j � LPj(p, �, Hm).

In an univariate regression model � � �XTX��1 is the unscaled4

covariance matrix of the parameters with X � �x1
T, . . . , xn

T�T of order
n 	 p and LPj(p, �, Hm) are the level probabilities (chi-bar-square
weights). A level probability LPj, is the probability that the OR mle �̃m

has j levels (under the null-hypothesis), where j � p � “the number
of active restrictions”; and the LP’s sum to 1. We will clarify the
computation of PTm using two examples. Consider Figure 2a, where

2 If we only consider linear hypotheses, then a closed convex cone (ccc)
can be written in the form R� 	 r, where R is a matrix with known
constants, r a vector with known constants and � a vector with the model
parameters. If the restrictions in Hm or Hc cannot be written in this form,
then they do not form a ccc. For example, the complement of H : �1 	 0;
�2 	 0, that is Hc : 
1 � 0 & 
2 	 0; 
1 � 0 & 
2 � 0; 
1 	 0 & 
2 �
0 cannot be written in the form R� 	 r. For more details regarding ccc’s,
we refer the interested reader to Berman (1973).

3 In case of an intercept, xi1 � 1 for all i’s and 
1 is interpreted as the
intercept.

4 The calculation of the level probabilities is invariant for positive
constants like �2 (known or unknown; Silvapulle & Sen, 2005, p. 32) or
even for �̃2, the OR mle of �2.
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Figure 1. Mean evidence ratio (on a log scale and based on 500 simu-
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the unconstrained parameter space is determined by the two param-
eters 
1 and 
2 and is divided into four quadrants (Q1 to Q4). If we
assume that 
1 and 
2 are independent of each other (i.e., � � I,
where I is an identity matrix), then each quadrant is assigned a level
probability of 0.25 under H0 : 
1 � 
2 � 0. The permissible gray
shaded area is defined by the order restrictions H3 : 
1 	 0, 
2 	 0.
Then, the probability that j � 2, that is, none of the restrictions are
active (i.e., j � p � 0 � 2 � 0 � 2), is 0.25 (Q1). The probability that
j � 1, that is, that one restriction is active (i.e., j � 2 � 1 � 1), is
0.25 � 0.25 � 0.50 (Q2 and Q4). The probability that j � 0, that is,
that both restrictions are active (i.e., j � 2 � 2 � 0), is 0.25 (Q3).
Consequently, the penalty term value for the OR hypothesis H3 can be
computed as PT3 � 1 � 0 	 0.25 � 1 	 0.50 � 2 	 0.25 � 2. In
addition, consider Figure 2b, where the parameter space is restricted
by the order restrictions H4 : 
1 	 
2. Because the order restriction
divides the unconstrained parameter space into two spaces, Q1 and Q2

are now two half-spaces. Again, assume that � � I and again we have
two parameters (i.e., p � 2), but now we only have one order
restriction (i.e., q1 � 1). Consequently, there can be zero or at
maximum one active restriction and thus the probability that j � 0,
that is, that we have two active restrictions, is 0. This is because, if we
impose one order restriction on two parameters, one parameter is
allowed to vary freely, while the other parameter is restricted by the
value of this free parameter. The probability that j � 1, that is, that the
order restriction is active, is 0.5 (Q2). The probability that j � 2, that
is, that the order restriction is not active, is 0.5 (Q1). Hence, the
penalty term value for the OR hypothesis H4 is computed by PT4 �
1 � 0 	 0 � 1 	 0.5 � 2 	 0.5 � 2.5.

Equipped with this knowledge, we rewrite the penalty term PTm.
This becomes helpful for determining the penalty for the comple-
ment of Hm, which is discussed later on. Let q1 � 0 be the number
of order restrictions and q2 � 0 the number of equality restrictions.
Then, p � q1 � q2 � F, with F the number of remaining, free
parameters. Then, the penalty for Hm can be rewritten as:

PTm � 1 � �
j�0

p

j � LPj(p, �, Hm)

� 1 � 0 � LP0 � 1 � LP1 � . . . � p � LPp

� 1 � (F � 0) � LPF�0 � . . . � (p � q2) � LPp�q2

� 1 � (F � 0) � LPF�0 � . . . � (F � q1) � LPF�q1

� 1 � F � 0 � LPF�0 � . . . � q1 � LPF�q1
,

(4)

using that LP0 to LPF�1 are 0 (because F free parameters in Hm

denote that there are always at least F “inactive” restrictions); and
that LPp�q2�1 to LPp are 0 (because the q2 equality restrictions in
Hm are always active); and that the LP’s sum to 1.

From the penalty term value PTm, it follows that for q1 order
restrictions and q2 equality restrictions, and thus F � p � q2 free
parameters, the penalty term value for a hypothesis with solely
equality restrictions equals 1 � F � 1 � p � q2, which equals the
penalty term value of the AIC.

In case of order restrictions, the exact computation of the
level probabilities when �  I and for q � 4 is a difficult task
in general because the probabilities can no longer be expressed
in closed form. Fortunately, the probabilities can be approxi-
mated by using the multivariate normal probability distribution
function with additional Monte Carlo steps (Grömping, 2010)
or they can be computed easily and sufficiently precise by
Monte Carlo simulation (Silvapulle & Sen, 2005; Wolak, 1987).

Introduction of the GORIC for Hc

Here, we introduce the GORIC for the complement of Hm,
which is defined as

GORICc � �2 � LLc � 2 � PTc, (5)

where LLc is the maximized log-likelihood value for the comple-
ment of Hm and PTc is the penalty term value. Recall that for the
computation of the GORIC value for Hm the order-restricted

Q1Q1Q1Q1Q1Q1Q1Q1Q1Q2Q2Q2Q2Q2Q2Q2Q2Q2

Q3Q3Q3Q3Q3Q3Q3Q3Q3 Q4Q4Q4Q4Q4Q4Q4Q4Q4

�2

� 1

Q1Q1Q1Q1Q1Q1Q1Q1Q1

Q2Q2Q2Q2Q2Q2Q2Q2Q2

�2

� 1

a b

Figure 2. Illustration to illuminate the computation of the penalty term value of Hm. The gray shaded area is
the permissible area under Hm. (a) H3 : 
1 	 0, 
2 	 0. (b) H4 : 
1 	 
2.
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hypothesis is required to be a ccc. However, the complement Hc is
in many cases not a ccc. For example, the complement of H3 : 
1 	
0, 
2 	 0, that is, Hc, is constructed by the quadrants Q2, Q3, and
Q4 (see Figure 3a), and can be written as

Hc :


1 � 0 & 
2 	 0 (Q2)
and

1 � 0 & 
2 � 0 (Q3)
and

1 	 0 & 
2 � 0 (Q4).

(6)

Note that in this case, the complement can be written out easily
but, for many hypotheses, it is a difficult or even impossible task
to write up the complement. Because, Hc is not a ccc, the LLc and
the PTc values cannot be computed directly like the LLm and the
PTm values.

Computing the Log-Likelihood for Hc

To compute the LLc value, we first need to ascertain whether the
restrictions in Hm are in line with the data or not. If at least one
inequality restriction is violated, then the data are automatically in
line with the complement and the LLc value equals the LLu value.
This is illustrated for H3 : 
1 	 0, 
2 	 0 in Figure 3a, where the
permissible area is Q1 and the quadrants Q2, Q3, and Q4 form the
complement. Because the unconstrained mle’s �̂ lie in Q3 (here,
both restrictions are violated), the data are in line with the com-
plement and the LLc is equal to LLu. Note that the same applies if
the mle’s lie in Q2 or Q4. On the other hand, if the data are in line
with the restrictions in H3, then we have to find the mle’s of � that
are closest to � � Hc, given �, which is denoted by �̃c. Let us
inspect a bivariate case with � � I (solid circles), as depicted in
Figure 3b. The solid circles of the contour plot indicate that the two
parameters 
1 and 
2 are uncorrelated. As a reminder, the lines of
the contour plot correspond to parameter values which have equal

log-likelihood values and lines closer to �̂ result in a higher
log-likelihood value, because �̂ is the value for which the log-
likelihood is maximized (without imposing restrictions on the
parameters). Clearly, the solution 
̃c is on the boundary of the
restricted parameter space Hm. Because there are many boundary
solutions (see thick black lines), we have to search for a solution
that has the shortest distance between �̂ and the two boundaries,
given �. Fortunately, we do not have to investigate each point on
the thick black lines but only the points �̃c1 and �̃c2. The point �̃c1

is computed by treating the inequality restriction for 
1 as equality
restriction (i.e., 
1 � 0, 
2 	 0). Analogously, for the point �̃c2,
where 
2 is treated as equality restriction (i.e., 
1 	 0, 
2 � 0).
Thus, in general, there are in total q1 possibilities to be investi-
gated. Notably, in case of equality restrictions, all q2 equalities are
“freed.” The LL corresponding to that point that results in the
highest log-likelihood value, given �, equals the LLc value (here,
�̃c1).

As mentioned above, the solution of �c is dependent on the
covariance matrix �. To clarify this, again consider Figure 3b. The
solid contour lines show the solution of �̃c if � is an identity matrix
(i.e., �̃c1). It can easily been seen that, if the covariance matrix is
not an identity matrix (e.g., see dot-dashed line) that the solution
of �̃c alters (here, it is �̃c2).

Computing the Penalty Term Value for Hc

The penalty term value for Hm can be seen as the expected
number of “inactive” restrictions (i.e., j � p � “the number of
active restrictions” which implies that free parameters denote
“inactive” restrictions) plus one for the variance term. The ex-
pected number of “inactive” restrictions is the sum of the expected
number of “inactive” restrictions for 1 � p � q2 subspaces (where
0 to p � q2 restrictions are “inactive”). If we apply this

�����������̂�̂�̂�̂�̂�̂�̂�̂�̂

Q1Q1Q1Q1Q1Q1Q1Q1Q1Q2Q2Q2Q2Q2Q2Q2Q2Q2

Q3Q3Q3Q3Q3Q3Q3Q3Q3 Q4Q4Q4Q4Q4Q4Q4Q4Q4

�2

� 1

���������

�~c1�~c1�~c1�~c1�~c1�~c1�~c1�~c1�~c1

�~c2�~c2�~c2�~c2�~c2�~c2�~c2�~c2�~c2

Q2Q2Q2Q2Q2Q2Q2Q2Q2

Q3Q3Q3Q3Q3Q3Q3Q3Q3 Q4Q4Q4Q4Q4Q4Q4Q4Q4

�2

� 1

a b

Figure 3. The gray shaded area (i.e., Q1) is the permissible area under H3 and the other quadrants (white area)
are the permissible areas under its complement Hc. (a) H3 : 
1 	 0, 
2 	 0. The mle’s �̂ lie in Q3 and is thus
in agreement with Hc. (b) H3 : 
1 	 0, 
2 	 0, for � � I (solid lines) and for �  I (dashed lines). The mle’s
�̂ lie in Q1 and is thus not in agreement with Hc.
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principle on the complement, then only two distinct subspaces can
be distinguished (and not 1 � p � q2). The first subspace is the one
not in agreement with the complement (cf. Q1; i.e., the space fully
in agreement with Hm). For this subspace, the number of “inactive”
restrictions equals the number of free parameters in Hc, denoted by
Fc. Note that the free parameters in Hm (F) remain free in Hc and
the q2 equality restrictions in Hm are “freed” in Hc. Thus, Fc �
F � q2 � p � q1. The probability of Fc levels in Hc (LPFc

c ) equals
the probability of having p � q2 levels in Hm (LPp�q2

; cf. proba-
bility of ending up in Q1 is LPp�q2

� LP2 � 0.25), that is, the
probability finding the mle in Hm (under the null). The second
subspace is the one fully in agreement with the complement (cf.
not Q1, that is, Q2, Q3, and Q4) and has p � Fc � q1 “inactive”
restrictions (note that there are no equality restrictions in Hc). The
corresponding level probability is denoted by LPFc�q1

c and equals
the probability of not finding the mle in Hm but in Hc which equals
�1 � LPp�q2

�. Mimicking Equation 4, the penalty term value for Hc

is given by

PTc � 1 � (Fc � 0) � LPFc�0
c � (Fc � q1) � LPFc�q1

c

� 1 � (p � q1) � q1 � (1 � LPp�q2
)

� 1 � p � q1 � LPp�q2
.

(7)

Another way of establishing PTc follows from the fact that
the complement is the whole space minus the space fully in
agreement with Hm and, therefore, its penalty equals the penalty
of the whole space (i.e., 1 � p) minus the expected number of
“inactive” restrictions in the space Hm. The expression for the
latter equals the last part in Equation 4, that is, q1 � LPF�q1

.
Then, it follows that the expected number of “inactive” restric-
tions in Hc equals

PTc � 1 � p � q1 � LPF�q1
. (8)

This expression is equal to Equation 7, because F � q1 � p � q2.
To illustrate, the penalty term value for the complement of H3 :


1 	 0, 
2 	 0 is computed by PTc � 1 � 2 � 2 	 0.25 � 2.5
and the penalty term value for the complement of H4 : 
1 	 
2 is
computed by PTc � 1 � 2 � 1 	 0.5 � 2.5. Because the
complement of H4 (i.e., 
1 � 
2) is a ccc, we can use the PTm

formula as well, which also renders a penalty of 2.5. In Appendix
A, we illustrate the computation of the PTm and the PTc values in
case of three parameters.

In the next section, we show by means of a brief illustration and
the results from a simulation study that the evidence ratio for the
order-restricted hypothesis compared with its complement is
boundless.

Unbounded GORIC Weights in Case
of the Complement

Once the GORIC values for Hm and its complement are known,
the GORIC weights can be easily obtained as follows

ws �
exp{�0.5(GORICs)}

exp{�0.5(GORICm)} � exp{�0.5(GORICc)}
, (9)

where the subscript s equals m or c for hypothesis Hm and
hypothesis Hc, respectively. From these weights, we can deter-
mine the evidence ratio for Hm against its complement wm/wc.
This ratio is interpreted as the strength of evidence for Hm given

the data and Hc (Kuiper, 2011; Wagenmakers & Farrell, 2004).
For example, for Figure 3b with �  I (e.g., dot-dashed lines),
n � 50, and f � 0.20, the evidence ratio for H3 : 
1 	 0, 
2 	
0 compared with Hc equals w3/wc � 0.92/0.08 � 11.50. This
ratio tells us that hypothesis H3 is the best out of the two
(because it is larger than 1) and that H3 is 11.50 times more
supported than Hc. Notably, because we sampled from H3, H3 is
true. To contrast, if we want to determine the evidence ratio for
H3 against the unconstrained hypothesis Hu, that is, w3/wu, we
have to replace the GORICc by the GORICu in Equation 9 and s
equals m or u for hypothesis Hm and hypothesis Hu, respectively.
Note that w3 now not equates 0.92 from above, because the
weights depend on the set of hypotheses. Therefore, if Hc is
replaced by Hu, the weights must be recomputed for the two
hypotheses in the set. Then, the evidence ratio equals w3/wu �
0.62/0.38 � 1.63. This clearly shows the advantage of using the
complement as competing hypothesis. Namely for the same data,
we could obtain support for H3 of 1.63 (the maximum support) or
a support of 11.50 when comparing to Hc (using n � 50).

In Appendix B, we present a simulation study in which we
investigated the performance of the evidence ratio weights. The
simulation results show the benefits of evaluating an OR hypoth-
esis against its complement. While, for small effect-sizes and/or
sample-sizes, the difference between the evidence ratio for the true
Hm when using the complement or unconstrained as competing
hypothesis is minimal, the difference increases rapidly and pro-
foundly for larger effect-sizes and/or sample-sizes. More impor-
tantly, the evidence ratio for the true Hm against its complement is
boundless for increasing effect-sizes and/or sample-size and might
therefore be more compelling, whereas the evidence ratio for the
unconstrained hypothesis as competing hypothesis has an upper
bound. Therefore, we recommend to replace the unconstrained
hypothesis by the complement of the hypothesis of interest as
competing hypothesis.

Burns Example

To illustrate the method, we analyze the empirical example
introduced in the introduction in which we sought to determine
possible risk factors for ruminating thoughts after a burn injury.
The data are based on a cohort study consisting of 245 individuals
with burns, aged 18- to 74-years-old. The response variable is
rumination. Moreover, for the current illustration, we included
gender (0 � men, 1 � women) and facial burns (0 � no, 1 � yes)
together with its interaction as predictor variables and Hospital
Anxiety and Depression Scale (HADS; M � 3.85, SD � 3.66), age
(M � 41.06, SD � 13.94), and the number of surgical operations,
which is a measure of severity of the burns (SO; M � 1.14, SD �
1.76) as covariates.

Reconsider, the hypothesis of interest
H1 : {�men; no facial burns, �men; facial burns, �women; no facial burns} �

�women; facial burns. A natural choice to evaluate the OR hypothesis
H1 would be an order-restricted 2 	 2 ANCOVA model. Because
an ANCOVA is just a special case of the linear regression model,
the model can be written as a linear function. To obtain adjusted
means for a person with an average score on the covariates, the
covariates HADS, age and SO are centered at their average and are
denoted by Z_HADS, Z_age and Z_SO, respectively. Then, the
model can be written as follows:
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Ruminationi � 
1 � 
2 facialBurnsi � 
3 genderi

� 
4 genderi � facialBurnsi � 
5 Z _ HADSi

� 
6 Z _ agei � 
7 Z _ SOi � �i,

for i � 1, . . . , 245.

On the left-hand side of the � operator, we have the response
variable rumination and on the right-hand side we have the factors
facial burns and gender and its interaction, and the centered covariates
Z_HADS, Z_age and Z_SO. The interaction between gender and
facial burns is included using the 	 operator. Then, the four adjusted
means with average scores on the covariates are computed as:

�men; no facial burns � 
1

�men; facial burns � 
1 � 
2

�women; no facial burns � 
1 � 
3

�women; facial burns � 
1 � 
2 � 
3 � 
4.

The R (R Core Team, 2019) code and the output from the
analyses can be found in Appendix C.

The results show that the OR hypothesis H1 is 0.891/0.109 �
8.198 times more supported by the data than its complement. For
comparison, the results for the unconstrained hypothesis show that
hypothesis H1 is 0.734/0.266 � 2.754 times more supported by the
data, which is its maximum support. Assuming H1 is true, using
the complement of Hm instead of Hu, we have now have more
compelling evidence.

Summary and Discussion

In this article, we introduced the evaluation of an order-restricted
(OR) hypothesis against its complement using the GORIC (weights).
The GORIC is an information criterion that can be used to evaluate
competing hypotheses in univariate and multivariate normal linear
models, where the regression parameters � are subject to linear
(in)equality restrictions. The interpretation can be improved by com-
puting GORIC weights and related evidence ratios reflecting the
strength of evidence for one hypothesis versus another.

We advise that one should evaluate their theory against its
complement Hc instead of the unconstrained hypothesis Hu. The
advantage of our method is that the evidence ratio for an OR
hypothesis Hm compared with its complement is boundless. The
evidence ratio for Hm compared to Hu is neither increased by a
larger sample-size nor by a larger effect-size, if the data are in
agreement with the hypothesis of interest (i.e., theory). Conse-
quently, using the complement as competing hypothesis leads to
much more support for the hypothesis of interest assuming it is
true, compared with using the unconstrained hypothesis as com-
peting hypothesis. In case the complement is not true, then the
results are comparable to evaluating the order-restricted hypothesis
against the unconstrained hypothesis. Furthermore, in case that Hm

is almost true, then there is less support for Hm when compared
with its complement than when compared with the unconstrained
hypothesis. This is because the log-likelihood values are almost
identical and the difference between the penalty term values is
larger between Hm and Hu than between Hm and Hc. Consequently,
in such cases, it is also better to evaluate Hm against its comple-
ment as the support for Hm against Hu might be overstated because
Hm is not true. Besides that the complement has practical benefits,

it is also more substantive: When looking at the interpretation of
the complement and the unconstrained hypothesis, the latter can be
seen as all possible theories including the target hypothesis Hm,
whereas the former denotes the possible theories without the target
hypothesis Hm. We believe that this makes more sense if you
would like to know whether your theory is better than all other
theories (and how much). Comparing your theory against all
possible theories including the targeted one makes less sense to us.

The method was illustrated using an empirical example about
facial burn injury. In six easy steps (shown in Appendix C), we
showed how to compute the evidence ratio of the researchers
theory against its complement using the R package restriktor (see
http://www.restriktor.org).

We assumed that researchers often do not have specific com-
peting hypotheses. While, this is probably often the case, it is
conceivable that the set of hypotheses contains more than one
competing hypothesis. In these cases, the problem that the evi-
dence ratio for Hm against Hu is not affected by increasing sample-
size and/or effect-size after a specific value can still occur. For
example, consider the set with three hypotheses: H2, H5 : �1 �

�2 � �3 � �4 (which is a subset of H2) and the unconstrained
hypothesis Hu. If H5 is true, then all three hypotheses are true and
all evidence ratios are bounded (Kuiper et al., 2011, p. 107).
However, the evaluation of a set of multiple OR hypotheses
against its complement is less straightforward because determining
the complement for multiple hypotheses might not always be
trivial (especially for software).

The results presented in this article are for the univariate linear
regression model but fortunately they can easily be adapted for the
multivariate normal linear model. One should keep in mind that,
unlike in the univariate setting, where �̃ does not depend on the
order-restricted covariance matrix, denoted by �̃, in the multivar-
iate normal linear model �̃ does depend on �̃ and �̃ on �̃ (Kuiper
et al., 2012). Hence, an iterative procedure is needed to calculate
them. The procedure is implemented in restriktor.
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Appendix A

Example of Computing the PTc in Case of Three Parameters

Consider Figure A1, the unconstrained parameter space is de-
termined by the three parameters 
1, 
2, and 
3 (and is of course
the whole space and not just the one depicted in Figure A1). The
gray shaded area is a closed convex cone and is defined by the
order restrictions HA1 : 
1 � 
2, 
1 � 
3. The level probabilities
corresponding to HA1 (assuming � � I)) equal LP0 � 0, LP1 �
1
6, LP2 � 1

2 and LP3 � 1
3. Next, we will elaborate on the values for

LP0 and LP3. The level probability LP3 � 1
3 is the probability that

the vector with OR estimates �̃ is identical to the unconstrained
estimates (i.e., �̃ � �̂ and j � 3). This probability equals the
proportion of the gray shaded area compared with the whole cube
and of course also of HA1 versus the whole space. A level prob-
ability of LP0 � 0, that is, the probability that there are j � 0
levels, which means that it is impossible that the vector with OR
estimates �̃ has three active restrictions, which makes sense with
two order restrictions. Hence, the penalty term value for HA1

equals PTA1 � 1 � 0 � 0 � 1
6 � 1 � 1

2 � 2 � 1
3 � 3 � 31

6.
Using the expression in Equation 8, the penalty term value for Hc

equals PTc � 1 � p � q1 � LPp�0 � 1 � 3 � 2 � 1
3 � 31

3. For
comparison, PTu � 1 � 3 � 4.

(Appendices continue)

Figure A1. The permissible, gray area is defined by HA1 : 
1 � 
2, 
1 �


3, depicted for 
1, 
2 and 
3 between �1 and 1.
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Appendix B

Simulation Study

Design

We generated 500 samples according to the ANOVA model5

yi � �1xi1 � . . . � �4xi4 � �i, i � 1, . . . , n, where we assume that
the residuals are standard normally distributed. We considered the
OR hypothesis H1 : �1 � �2 � �3 � �4, its complement Hc : ¬H1

and the unconstrained hypothesis Hu : �1, �2, �3, �4. Note that Hc

does not equal �1 	 �2 	 �3 	 �4; it does contain this but also
the other (22) orderings of simple ordering combinations of �1 to
�4 (excluding the one ordering in Hm). Data were generated under
hypothesis H1 with four uncorrelated independent means of size
n � 30, 50, 100, 200, 500 per group and for a variety of differences
among the population means, using effect-size f � 0, 0.10,
0.20, . . . , 1 (Cohen, 1988, pp. 274–275). Notably, f � 0 corre-
sponds to sampling from the boundary of both Hm and Hc. If we
sample values from a H1 population with increasing effect-size,
this will evidently lead to more and more support for H1. Let the
differences between the means, d, be equally spaced, where d is

defined as d �
2f�p

��i�1
p �2i�1�p�2

under the restriction that �i�1
p �i � 0

and � � 1. Then, the p ordered means can be computed as

�i �
��p�1�d

2 � �i � 1�d. Appendix D shows the computed
population means for the various effect-sizes (f).

Simulation Results

All results are obtained using the R package restriktor (see
http://www.restriktor.org) employing the GORIC function. The
results of the simulation study are presented in Figure B1, B2, and
B3, and are obtained by computing the mean value of the relative
evidences in each of the 500 simulation runs. Furthermore, to
improve visibility, we took the natural logarithm values of the
means and we used a varying range of sample-sizes and effect-
sizes.

The results clearly illustrate the benefits of evaluating Hm versus
its complement: The mean evidence ratio for H1 versus Hc (mean
w1/wc) increases rapidly for larger effect-sizes (see Figure B1a)
and sample-sizes (see Figure B1b), while the mean evidence ratio
using the unconstrained hypothesis as competing hypothesis (mean
w1/wu) is clearly bounded after a certain value (see Figures B1c
and B1d, respectively). To illustrate, consider for example Figure
B1a, where the mean evidence ratio for H1 versus Hc (mean w1/wc)
for a medium effect-size (f � 0.30) and n � 100 is exp(2.63) �
13.87 (on the original scale), while the mean evidence ratio for H1

versus Hu (mean w1/wu) is bounded at exp(1.92) � 6.82. Note that
the value 1.92 equals the difference in penalty term values; with
PTu � PT1 � (1.00 � 4.00) � (1.00 � 2.08) � 1.92, which equals

the difference in GORIC values, because the log-likelihood values
are here the same (i.e., LLu � LL1).

For small effect-sizes and small samples, the mean evidence
ratio for H1 using Hc is slightly lower than when using Hu. For
example, for f � 0.10 and n � 30 the mean evidence ratio for
w1/wc is exp(1.50) � 4.48 and for w1/wu the mean evidence ratio
is exp(1.61) � 5.00. In this case, using the complement is a bit
more conservative; although the conclusion is not different of
course. Furthermore, the evidence ratio for small effect-sizes (f �
0.20) does not increase very rapidly (see Figure B1b), independent
of sample-size. This is because, when examining small effects, the
complement is often true (even though the data were generated
under H1). This is illustrated in Figure B2. For example, if f � 0,
the mle’s are (except from some sampling variation) in 23/24
(approximately 95.8%) of the time not in agreement with H1 (and
thus in agreement with Hc). Thus, both hypotheses Hc and Hu have
the same maximized log-likelihood value with a probability of
probcu � 23/24. When f increases, the data/the mle’s will be more
and more in agreement with H1, and thus not with its complement
Hc and hence the proportion of equal maximized log-likelihood
values of Hu and Hc (and thus probcu) decreases. Logically, the
proportion of equal maximized log-likelihood values of H1 and Hu,
that is 1 � probcu, then increases.

The presented results so far are for the scenario that H1 is true,
but we are also interested in the performance if H1 is not true (i.e.,
Hc is true). Figure B3 shows the results for the situation that the
complement is true. Data were generated under the complement of
H1, for which we choose Hc : �1 	 �2 	 �3 	 �4. The means are
given in Appendix D and are now in reversed order compared with
the previous simulation. Again, we considered the OR hypothesis
H1, its complement Hc, and the unconstrained hypothesis Hu. The
results in Figure B3a show that the mean evidence ratio for H1

versus Hc (mean w1/wc) and for H1 versus Hu (mean w1/wu)
decreases rapidly for larger f. This is because, when the effect-size
and/or the sample-size increases, the data/mle’s will be more and
more in agreement with the complement Hc and of course also
with the unconstrained hypothesis Hu. The results shown in Figure
B3b are based on the same numerical results shown in Figure B3a
but now for Hc versus H1 (mean wc/w1) and for Hu versus H1

(mean wu/w1). They clearly show the nice property that if the
complement (and also Hu) is true, both evidence ratios wc/w1 and
wu/w1 show more support for larger effect-sizes and samples sizes.
Stated otherwise, both are boundless.

5 Note that the ANOVA model is a special case of the multiple regres-
sion model discussed in the main text.

(Appendices continue)
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a b

c d

Figure B1. Mean of the evidence ratio (on a log scale) for the situation that the OR hypothesis H1 is true (based
on 500 simulations). (a) Hypothesis H1 is compared with its complement Hc (mean w1/wc), for various
effect-sizes (f) and for n � 30, 50, 100 and 200. (b) Hypothesis H1 is compared with its complement Hc (mean
w1/wc), for various sample-sizes (n) and for f � 0.10, 0.20, 0.30 and 0.40. (c, d) same as (a, b) but now for
hypothesis H1 versus the unconstrained hypothesis Hu (mean w1/wu).

(Appendices continue)
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Figure B2. Proportion of data sets (based on 500 simulations) that result
in equal log-likelihood values for the complement of H1 : �1 � �2 � �3 �

�4, that is, Hc, and the unconstrained hypothesis Hu (i.e., LLc � LLu), for
various effect-sizes (f) and n � 30, 50, 100, 200.

a b

Figure B3. Mean of the evidence ratio (based on 500 simulations) for the situation that the complement Hc of
the OR hypothesis H1 is true, for various effect-sizes (f) and for n � 30 and 200. (a) The closed circles denote
H1 versus Hc (mean w1/wc), for n � 30 (solid line) and n � 200 (dashed line). The closed triangles denote H1

versus the unconstrained hypothesis Hu (mean w1/wu). (b) Same as (a) but now for Hc versus H1 (mean wc/w1)
and Hu versus H1 (mean wu/w1), for n � 30 and n � 200. Note that Figure B3b is on a log scale.

(Appendices continue)
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Appendix C

R Code to Run the Burns Example

In what follows, we describe all steps to compute the evidence ratio for hypothesis H1 compared with its complement and H1 compared
with the unconstrained hypothesis using the R package restriktor.

Step 1: Load your data set into R.

burns �� read.csv("burns.csv", header = TRUE, sep = " ")

More information about how to load your data into R, can be found online at
http://restriktor.org/tutorial/importdata.html.

Step 2: Center the covariates HADS, age, and SO at their average. This can be done in R as follows:

burns$Z_HADS �� burns$HADS � mean(burns$HADS, na.rm = TRUE)
burns$Z_age �� burns$age � mean(burns$age, na.rm = TRUE)
burns$Z_SO �� burns$SO � mean(burns$SO, na.rm = TRUE)

Step 3: Fit the unconstrained linear regression model using the lm() function.

fit.lm �� lm(Rumination � 1 + gender + facialBurns +
gender:facialBurns +
Z_HADS + Z_age + Z_SO,
data = burns)

For clarity reasons, we explicitly added an intercept term by specifying the value 1. The interaction between gender and facial
burns is included using the : operator.

Step 4: Create the restriction syntax for restriktor. Now that the model is defined in R, we are left with specifying the order restrictions.
This is done in restriktor by specifying a so-called restriction syntax. Order restrictions are defined by means of inequality
restrictions (� or �) or by equality restrictions (� �). In addition, a convenient feature of the restriktor restriction syntax
is the option to define new parameters that are linear in the original model parameters. This can be done using the :� operator.
In this way, we can compute the four adjusted means and impose order restrictions among these means. The restriction syntax
is enclosed within single quotes. Then, for hypothesis H3 the restriction syntax might looks as follows:

myRestrictions <− '
m1 :� .Intercept.
m2 :� .Intercept. + facialBurns
m3 :� .Intercept. + gender
m4 :� .Intercept. + facialBurns + gender + gender.facialBurns

m1 � m4
m2 � m4
m3 � m4 '

It is important to note that variable/factor names of the interaction effects in objects of class lm contain a semicolon (:) between
the variable names (e.g., gender:facialBurns). To use these parameters in the restriction syntax, the semicolon must be
replaced by a dot (.; e.g., gender.facialBurns). In addition, the intercept of a fitted objects of class lm is denoted in the
output as (Intercept) and not as 1 anymore. To use the intercept in the restriction syntax, the parentheses must also be
replaced by a dot (i.e., .Intercept.). More information about the restriction syntax can be found online at
http://restriktor.org/tutorial/syntax.html.

(Appendices continue)
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Step 5: Compute the GORIC weights and the evidence ratio using the goric() function from the restriktor package.

out.c <− goric(fit.lm,
constraints = myRestrictions,
comparison = "complement")

The first argument to the goric() function is the unconstrained fitted object of class lm. The second argument is the restriction
syntax specified in the previous step. To compare H3 with its complement Hc, the argument comparison has to be set to
"complement" (by default it is set to "unconstrained").

Step 6: Interpret the results. A brief overview can be requested using the print() function. A more detailed overview can requested
by the summary() function as follows:

summary(out.c, brief = TRUE)
Restriktor: generalized order-restricted information criterion (GORIC):
Results:

model loglik penalty goric goric.weights
1 myRestrictions −660.024 6.987 1334.022 0.891
2 Complement −661.942 7.173 1338.230 0.109

----------
Relative GORIC-weights:

vs myRestrictions vs complement
myRestrictions 1.000 8.198
complement 0.122 1.000

----------
The order-restricted hypothesis myRestrictions has 8.198 times more support than its
complement.

Below are the results for H1 compared with the unconstrained hypothesis.
out.u <− goric(fit.lm,

constraints = myRestrictions,
comparison = "unconstrained")

summary(out.u, brief = TRUE)
Restriktor: Generalized order-restricted information criterion (GORIC):
Results:

model loglik penalty goric goric.weights
1 myRestrictions −660.024 6.987 1334.022 0.734
2 unconstrained −660.024 8.000 1336.048 0.266

----------
Relative GORIC-weights:

vs myRestrictions vs unconstrained
myRestrictions 1.000 2.754
unconstrained 0.363 1.000

----------------
Note: In case of equal log-likelihood (loglik) values, the relative weights are solely

based on the difference in penalty values.

(Appendices continue)
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Appendix D

Population Means for First Simulation Study

Effect-size Population means

f �1 �2 �3 �4

0 0 0 0 0
.1 �.134 �.044 .044 .134
.2 �.268 �.089 .089 .268
.3 �.402 �.134 .134 .402
É É É É É
1 �1.341 �.447 .447 1.341

Note. In the second simulation, we used the reverse ordering of these means.

Received December 14, 2018
Revision received May 24, 2019

Accepted July 16, 2019 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

142 VANBRABANT, VAN LOEY, AND KUIPER


	Evaluating a Theory-Based Hypothesis Against Its Complement Using an AIC-Type Information Criter ...
	Technical Background
	Linear Model and Order-Restricted Hypotheses
	The GORIC

	Introduction of the GORIC for Hc
	Computing the Log-Likelihood for Hc
	Computing the Penalty Term Value for Hc
	Unbounded GORIC Weights in Case of the Complement

	Burns Example
	Summary and Discussion
	References
	Appendix A Example of Computing the PTc in Case of Three Parameters
	Appendix B Simulation Study
	Design
	Simulation Results

	Appendix C R Code to Run the Burns Example
	Appendix D Population Means for First Simulation Study


