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1. Introduction

We study the metastable behavior of the stochastic Blume–
Capel model [5,16] under the Glauber dynamics with zero-
boundary conditions.

The metastable behavior of the Blume–Capel model has
been firstly rigorously studied in [14] in finite volume in the
limit of temperature tending to zero. In that paper the pa-
rameters have been chosen so that the metastable state is
unique. The same regime is studied in [11,13,17] choosing
the parameters in such a way that the model exhibits two
not degenerate in energy metastable states [3]. The regime
of infinite volume has been considered in [18,20].

Metastability is a widely studied phenomenon that has
been investigated on mathematical grounds in the past fifty
years from different point of views and with several ap-
proaches. We will use, here, the so–called pathwise ap-
proach, originally proposed in [9] and developed in several
more recent studies [12,19,22,23]. This method provides a
standard way to characterize metastable states and a tech-

nique to compute its exit time and to describe the typical
exit trajectories.

Two more approaches to the rigorous mathematical de-
scription of metastability have been developed in the last
decades, the potential–theoretic approach [6, 7, 21] and the
trace method [2].

The study of metastability is typically conducted for pe-
riodic boundary conditions; these are, indeed, a rather nat-
ural setup in this context. In particular periodic boundary
conditions were considered in all the studies of the Blume–
Capel model mentioned above. In the present paper we
shall consider the case of zero-boundary condition, which
is particularly important from the point of view of applica-
tions. Indeed, not periodic boundary conditions mimic the
presence of a defect in the system.

In the presence of defects (or boundaries), the nucleus
of the new phase forms in contact with the impurities (or
boundaries), so that the properties of the impurities con-
trol the nucleation rate. The nucleation starts indeed at
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phase boundaries or impurities, since at these sites the free
energy barrier is lower, and the nucleation is facilitated.
Therefore, the nucleation observed in practice is usually
catalyzed and it is named heterogeneous nucleation: see
for instance [8, 25] for the crystallization case, and [30] for
the condensation.

In order to understand the general mechanisms trigger-
ing the heterogeneous nucleation, Monte Carlo simulations
for simple toy models (e.g., Ising and lattice gas models)
are often used, see [4]. For instance, in [24] Monte Carlo
simulations for two-dimensional Ising models are used for
studying the roles of pores on the surface in the nucleation
process. The simulations show that the nucleation occur-
ring at pores has nucleation rate of orders of magnitude
higher than the one starting on flat surfaces. This behavior
is very common for porous materials, which often present
indeed the well known phenomenon of capillary condensa-
tion, i.e., the condensation of liquid bridges in the pores,
see [26].

Simulations of two dimensional Ising model have also
been used for studying the the role of microscopic impuri-
ties (i.e., sites with fixed spins) in the bulk [29]: the het-
erogeneous nucleation, starting from a single fixed spin, is
more than four orders of magnitude faster than homoge-
neous nucleation. Therefore, small microscopic impurities
strongly promote nucleation, making very difficult to pu-
rify a sample sufficiently in order to observe homogeneous
nucleation. The same conclusions are obtained as well for
the two-dimensional Potts model [28] with competitive nu-
cleating phases.

Heterogeneous nucleation plays also a pivotal role in
the process of crystallization of proteins on surfaces (see
[27]): by tuning the geometrical properties of the surface
(porosity, pore size, roughness), heterogeneous nucleation
can be activated, enhancing the probability of obtaining
crystals with appropriate size. The paper [15] uses a two-
dimensional Ising model for showing the dependence of the
nucleation rate on the the polymeric surfaces used as sub-
strate for heterogeneous nucleation. Different rough sur-
faces are modeled indeed with different profiles of fixed
spins at the boundaries.

The effect of the boundary conditions on the metastable
behavior was studied on rigorous terms in [10] in the frame-
work of the Ising model; there the free boundary condition

case was considered. The authors proved that the main fea-
tures characterizing the metastable behavior in the case of
periodic boundary conditions remain unchanged. But some
new effects show up: the main difference with the periodic
case is that the nucleation phenomenon is no more spa-
tially homogeneous, in the sense that the critical droplet,
which has to be formed to nucleate the stable state, ap-
pears necessarily at one of the four corners of the lattice.
Other details are different, such as the size of the critical
droplet and, consequently, the exponential estimate of the
exit time.

In this paper we shall show that, due to the three–state
character of the Blume–Capel model, the metastability sce-
nario proven for periodic boundary conditions [14] changes
deeply when different boundary conditions are considered.

h=2λ h=λ
h

λ

Figure 1: Schematic representation of the behavior of the
Blume–Capel model in the region h, λ > 0 in the case of
periodic boundary condition (top pictures) and in the case
of zero-boundary condition (bottom pictures). Light gray
for minuses, dark gray for pluses, and white for zeros.

The Hamiltonian of the Blume–Capel model depends
on two parameters, the magnetic field h and the chemical
potential λ. The spin variables can take three values, −1,
0, and +1. We limit our discussion to the case λ, h > 0,
where the chemical potential term equally favors minus and
plus spins with respect to zeroes and the magnetic field fa-
vors pluses and disadvantages minuses with respect to the
zeroes. In this parameter region, in the periodic case, it
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was proven in [14] the following result (see Figure 1 for
a schematic description): the stable state is the homoge-
neous plus state and the metastable state is the homoge-
neous minus states. Moreover, for h > 2λ the system exits
the metastable state via the formation of a zeroes square
droplet and reaches the homogeneous zero state. Then, at
a random time the transition from the zero state to the
stable state is realized via the formation of a plus square
droplet. For 2λ > h the system exits the metastable state
via the formation of a plus square droplet separated by the
sea of minuses by a layer of zeroes of width one (with minus
at the corners in the case λ > h). In this way the stable
state is directly reached.

This scenario changes drastically when zero-boundary
conditions are considered: for h > λ the metastable state
is the homogeneous zero state and the plus stable state is
reached via the formation of a plus square droplet at any
point in the lattice. For λ > h, on the contrary, the sit-
uation is similar to the periodic boundary condition case,
but, starting from the minus metastabe state, the stable
phase is nucleated at one of the four corners of the lattice
via the formation of a plus square droplet separated by the
sea of minus by a one site zero layer. Thus, the nucleation
is spatially homogeneous for h > λ and spatially not homo-
geneous for λ > h. This scenario will be proved rigorously
in the region λ > h of the parameter plane.

The paper is organized as follows. In Section 2 we in-
troduce the model. In Section 3 we state the main results.
In particular in Section 3.1 we present the heuristic study
of the metastable behavior in the whole parameter region
h, λ > 0, while in Section 3.2 we state formal results for
the restricted region λ > h > 0. Section 4 is devoted to
the proof of the results stated in Section 2 and 3, while
the proofs of the more technical lemmas are reported in
Section 5.

2. Model and definitions

In this section we first define the model and then state our
main results. Proofs are postponed to the following sec-
tions.

2.1. The lattice

We consider the set Z2 embedded in R2 and call sites its
elements. Given two sites i, i′ ∈ Z2 we let |i − i′| be their

Euclidian distance. Given i ∈ Z2, we say that i′ ∈ Z2 is a
nearest neighbor of i if and only if |i−i′| = 1. Pairs of neigh-
boring sites will be called bonds. A set I ⊂ Z2 is connected
if and only if for any i ̸= i′ ∈ I there exists a sequence
i1, i2, . . . , in of sites of I such that i1 = i, in = i′, and ik

and ik+1 are nearest neighbors for any k = 1, . . . , n− 1.
A column, resp. a row of Z2 as a sequence of vertical,

resp. horizontal, connected sites.
Given I ⊂ Z2 we call internal boundary ∂−I of I the

set of sites in I having a nearest neighbor outside I. The
bulk of I is the set I \∂−I, namely, the set of sites of I hav-
ing four nearest neighbors in I. We call external boundary
∂+I of I the set of sites in Z2 \ I having a nearest neighbor
inside I.

A set R ⊂ Z2 is called a rectangle (resp. square) if the
union of the closed unit squares of R2 centered at the site
of R with sides parallel to the axes of Z2 is a rectangle
(resp. a square) of R2. The sides of a rectangle are the four
maximal connected subsets of the its internal boundary ly-
ing on straight lines parallel to the axes of Z2. The length
of one side of a rectangle is the number of sites belonging
to the side itself. A quasi-square is a rectangle with side
lengths equal to n and n+ 1.

For any set I ⊂ Z2 we call rectangular envelope of I the
smallest (with respect to inclusion) rectangle R ⊂ Z2 such
that I ⊂ R. Two rectangles of Z2 are called interacting if
there exists a site not belonging to them at distance one
from both of them. Given a finite set I ⊂ Z2, the bootstrap
construction associates to I a collection of not interacting
rectangles through the following sequence of operations: i)
partition I in maximal connected subsets; ii) Consider the
family of rectangles obtained by collecting the rectangu-
lar envelope of each maximal connected subset of I; iii)
Partition the family of rectangles in maximal sequences of
pairwise interacting rectangles; iv) Consider a new family
of rectangles obtained by collecting the rectangular enve-
lope of the union of the rectangles of each of the maximal
sequences constructed at point iii); v) Repeat the opera-
tions iii) and iv) until the family of rectangles constructed
at point iv) is made of pairwise not interacting rectangles.

2.2. The Blume–Capel model

Consider the square Λ = {1, . . . , L}2 ⊂ Z2. Let {−1, 0,+1}
be the single spin state space and X := {−1, 0,+1}Λ be the
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configuration or state space. With +1+1+1, −1−1−1, 000 we denote the
homogeneous configurations in which all the spins are equal
to +1, −1, and 0, respectively. Let η ∈ X and A ⊆ Λ, we
denote by ηA the restricted configuration of η on the subset
A. We say that two configurations σ and η are communi-
cating if and only if they differ at most for the value of the
spin at one site, and we denote by σ ∼ η.

The Hamiltonian of the model is

H(η) =
J

2

∑
i,j∈Λ:
|i−j|=1

[η(i)− η(j)]2 + J
∑

i∈∂−Λ

∑
j∈Z2\Λ:
|i−j|=1

[η(i)]2

−λ
∑
i∈Λ

η(i)2 − h
∑
i∈Λ

η(i)

(2.1)
for any η ∈ X , where J > 0 is called the coupling con-
stant, λ, h ∈ R are called chemical potential and magnetic
field respectively. The first term at the right–hand side
of (2.1) will be called internal interaction term, the sec-
ond term boundary interaction term, and the last two will
be called site terms. We stress that the second term ac-
counts for the interaction between the spins at the sites of
the internal boundary of Λ and the zero external boundary
conditions: each site of the internal boundary contributes
with one single bond, excepted for the four sites at the cor-
ners of Λ, which contributes with two bonds each. We will
refer to H(η) as the energy of the configuration η.

In order to state our results we will rely on the following
assumptions on the parameters of the model1.

Condition 1. We assume that the parameters of the model
satisfy the following properties:

1. J ≫ λ, h > 0,

2. L >
(

2J
λ−h

)3

,

3. 2J
λ+h ,

2J
λ−h ,

2J+λ−h
λ+h , J+λ+h

h are not integers.

The Gibbs measure associated with the Hamiltonian
(2.1) is

µβ(η) =
1

Zβ
exp{−βH(η)} (2.2)

where Zβ =
∑

η′∈X exp{−βH(η′)} is the partition function
and β > 0 is the inverse temperature.

The time evolution of the model will be defined by as-
suming that spins evolve according to a Glauber dynamics,

with the Metropolis weights. More precisely, we consider
the discrete time Markov chain σt ∈ X , with t ≥ 0, with
transition matrix pβ defined as follows: pβ(η, η

′) = 0 for
η, η′ ∈ X not communicating configurations,

pβ(η, η
′) =

1

2|Λ|e
−β[H(η′)−H(η)]+ (2.3)

for η, η′ ∈ X communicating configuration such that η ̸= η′

(where, for any real a, we let [a]+ = a if a > 0 and 0 if
a < 0), and

pβ(η, η) = 1−
∑
η′ ̸=η

pβ(η, η
′) (2.4)

for any η ∈ X . The dynamics can be described as follows:
at each time a site is chosen with uniform probability 1/|Λ|
and a spin value differing from the one at the chosen site
is selected with probability 1/2, then the flip of the spin at
the chosen site to the selected spin value is performed with
the Metropolis probability.

The probability measure induced by the Markov chain
started at η is denoted by Pη and the related expectation
is denoted by Eη.

Lemma 2.1. The Markov chain defined above is reversible
with respect to the Gibbs measure (2.2), i.e., the detailed
balance condition

µβ(η)pβ(η, η
′) = µβ(η

′)pβ(η
′, η) (2.5)

is satisfied for any η, η′ ∈ X .

2.3. Paths, energy costs, metastable states

A sequence of configurations (ω1, ω2, . . . , ωn) ∈ Xn such
that ωi and ωi+1 are communicating for any i =

1, 2, . . . , n − 1 is called a path of length n. A path
(ω1, . . . , ωn) is called downhill (resp. uphill) if and only
if H(ωi) ≥ H(ωi+1) (resp. H(ωi) ≤ H(ωi+1)) for any
i = 1, 2, . . . , n − 1. In particular, a path (ω1, . . . , ωn) is
called two-steps downhill if and only if H(ωi) ≥ H(ωi+2) ≥
H(ωi+1) for any i = 1, 2, . . . , n − 2. Given two configura-
tions η, η′ ∈ X , the set of paths with first configuration η

and last configurations η′ is denoted by Ω(η, η′).
Given a path ω = (ω1, . . . , ωn), its height Φ(ω) is the

maximal height reached by the configurations of the path,
more precisely,

Φ(ω) = max
i=1,...,n

H(ωi) . (2.6)

1With the notation 0 < a ≪ b we mean 0 < a < cb for some suitable positive constant c that we are not interested to compute exactly.
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Given two configurations η, η′, the communication height
between η and η′ is defined as

Φ(η, η′) = min
ω∈Ω(η,η′)

Φ(ω) . (2.7)

Any path ω ∈ Ω(η, η′) such that Φ(ω) = Φ(η, η′) is called
optimal for η and η′.

The stability level of a configuration η ∈ X is

Vη := Φ(σ, Iη)−H(η), (2.8)

where Iσ is the set of configurations with energy strictly
lower than H(η). If Iσ is empty, then we define Vσ = ∞.

The metastable states are those states where the sta-
bility level is maximum. We denote by Γm the maximal
stability level,

Γm := max
σ∈X\X s

Vσ. (2.9)

Moreover, we define the energy barrier as Φ(m, s) −
H(m), where m is a metastable state and s is a ground
state.

2.4. Energy landscape

A crucial ingredient for several results discussed in this sec-
tion is the value of the energy difference (energy cost) as-
sociated with each possible spin flip.

The energy differences for a spin flip for all neighbor
configurations obtained from (2.1) are listed in table 2.1.
Since, as noted above, the boundary interaction term is
equal to the internal interaction with fixed zero condition
in the external boundary, the energy difference associated
with possible spin flips at the boundary is given by the
rows of table 2.1 with at least one zero among the nearest
neighbors (at least two for the flip of a spin at the corners
of Λ).

As we will see below, the homogeneous states −1−1−1, 000,
and +1+1+1 will play a crucial role in our study. We remark
that, from (2.1), it follows

H(±1±1±1) = 4JL− |Λ|(λ± h) and H(000) = 0. (2.10)

Thus, under the assumptions (1) and (2), the energy hier-
archy of the homogeneous states is

H(+1+1+1) < H(000) < H(−1−1−1) for h ≥ λ (2.11)

and

H(+1+1+1) < H(−1−1−1) < H(000) for h < λ. (2.12)

The ground state of the system (or of the Hamiltonian)
is the configuration where the Hamiltonian (2.1) attains its
absolute minimum2.

Lemma 2.2. Under Condition 1 the homogeneous state
+1+1+1 is the ground state of the system.

We say that a configuration η ∈ X is a local minimum
of the Hamiltonian if and only if for any η′ ̸= η communi-
cating with η we have H(η′) > H(η). Important examples
of local minima, in suitable regions of the parameter plane
λ–h, are the homogeneous states. We make this remark
rigorous in the following lemma.

Lemma 2.3. Assume (1) is satisfied. For h > λ the homo-
geneous state 000 is a local minimum of the Hamiltonian. For
h < λ the homogeneous states 000 and −1−1−1 are local minima
of the system.

We stress that for h > λ the state −1−1−1 is not a local
minimum, indeed, from row 1 in table 2.1, it follows that
the four corner spins can be flipped to zero by decreasing
the energy. Moreover, by repeating similar flips a downhill
path from −1−1−1 to 000 can be constructed.

Based on the above lemma, at the heuristic level, we can
expect that the homogeneous states −1−1−1 and 000 are poten-
tial metastable states in the region of the parameter plane
considered in the lemma.

3. Main results

In this section, we present the main results of the model.
However, in Section 3.1 we first use some preliminary
heuristic arguments for describing the general metastable
behavior in the region 0 < h, λ ≪ J . Afterwards, we will
state the actual theorem in the subregion h > λ > 0.

2We note that if the second term at the right–hand side of (2.1) was not present, then, both for free and periodic boundary conditions,
for λ > 0, the ground state would be the plus homogeneous configuration +1+1+1 for h > 0 and the minus homogeneous configuration −1−1−1 for
h < 0. This would follow from the fact that in these homogeneous states the interaction contribution to the Hamiltonian is zero and the site
contribution is minimal.
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minuses zeroes pluses minus to zero minus to plus zero to plus

4 0 0 4J + λ− h 16J − 2h 12J − λ− h

3 1 0 2J + λ− h 12J − 2h 10J − λ− h

3 0 1 +λ− h 8J − 2h 8J − λ− h

2 2 0 +λ− h 8J − 2h 8J − λ− h

2 1 1 −2J + λ− h 4J − 2h 6J − λ− h

2 0 2 −4J + λ− h −2h 4J − λ− h

1 3 0 −2J + λ− h 4J − 2h 6J − λ− h

1 2 1 −4J + λ− h −2h 4J − λ− h

1 1 2 −6J + λ− h −4J − 2h 2J − λ− h

1 0 3 −8J + λ− h −8J − 2h −λ− h

0 4 0 −4J + λ− h −2h 4J − λ− h

0 3 1 −6J + λ− h −4J − 2h 2J − λ− h

0 2 2 −8J + λ− h −8J − 2h −λ− h

0 1 3 −10J + λ− h −12J − 2h −2J − λ− h

0 0 4 −12J + λ− h −16J − 2h −4J − λ− h

Table 2.1: Energy difference for a spin flip for all neighbor configurations (opposite sign for reversed flip). The number
of neighbor minuses, zeroes, and pluses is reported in the first three columns and the energy difference in the last three.
For flips at the boundary (resp. corners) see the rows with at least one (resp. two) zero among the nearest neighbors.

3.1. Heuristic discussion

We approach the heuristic study of the Blume–Capel model
with zero-boundary conditions in the whole region 0 <

h, λ ≪ J . We will have to distinguish several subregions
where the metastable behavior will show peculiar features.

This analysis is based on a very simple idea: the ho-
mogeneous states, if local minima of the Hamiltonian, are
potential metastable states of the system. When several
possible metastable states are present, the true one is the
one from which the system has to overcome the largest bar-
rier to reach the stable state. In order to compute such a
barrier we imagine that the transition is realized through a
sequence of local minima in which a droplet of stable phase
grows in the sea of the metastable one.

3.1.1. Region h > λ > 0

In view of Lemma 2.3 we are interested in the structures
that give rise to local minima with zero background.

From rows 13–15 of table 2.1 it follows that a config-
uration in which the sites with plus spin form a rectangle
plunged in the sea of zeroes is a local minimum. We stress

that the rectangular plus droplet can be located at one cor-
ner of the lattice Λ. We add that if the shape of the plus
region is not a rectangle, then, since there exists at least
a zero with more than two neighboring pluses, from rows
13–15 of tables 2.1 it follows that the configuration is not
a local minimum.

The energy of a square plus droplet of side length ℓ

plunged in the sea of zeroes with respect to the energy of
000 is 4JL − (λ + h)ℓ2. Since its maximum is attained at
2J/(λ + h), we can infer that this is the critical length,
in the sense that droplets with side length smaller than
2J/(λ + h) tend to shrink, otherwise they tend to grow.
Moreover, we note that the difference of energy between
the critical droplet and the configuration 000 is 4J2/(λ+ h).

At the level of our very rough heuristic discussion, we
can conclude that the metastable state is the 000 configu-
ration, the transition to the stable state is performed via
the nucleation of a square droplet of pluses of side length
2J/(λ+h) at any site of the lattice Λ (homogeneous nucle-
ation), and the exit time is of order exp{β4J2/(λ+ h)}.

cjs-bcg_zero.tex – 6 giugno 2023 6 1:29



3.1.2. Region λ > h > 0

In view of Lemma 2.3 we are interested in the structures
that give rise to local minima with zero or minus back-
ground.

In the case of zero background, the same discussion as
in Section 3.1.1 suggests that the system can exit the state
000 by overcoming the energy barrier 4J2/(λ+h) and reach-
ing the stable state+1+1+1 via the formation of a critical square
droplet of pluses with side length 2J/(λ+ h). But also the
possibility that the system abandons 000 reaching −1−1−1 must
be explored: from rows 1, 2, and 4 of table 2.1 it follows
that a configuration in which the sites with minus spin
form a rectangle plunged in the sea of zeroes is a local min-
imum. The energy of a square minus droplet of side length
ℓ plunged in the sea of zeroes with respect to the energy of
000 is 4JL− (λ− h)ℓ2. The critical length is 2J/(λ− h) and
the difference of energy between the critical droplet and
the configuration 000 is 4J2/(λ− h). Since in this parameter
region 4J2/(λ+h) < 4J2/(λ−h) we can conclude that the
system, starting from 000, will perform a direct transition to
the stable state +1+1+1 paying the energy cost 4J2/(λ+ h).

For what concerns the minus background case, we note3

that a rectangle of pluses in the sea of minuses is not a local
minimum, since (see row 6 of table 2.1) the flip to zero of
one plus with two pluses and two minuses among its neigh-
bors (corner) decreases the energy of the configuration.

Some relevant structures that are local minima are re-
ported in Figure 2. To prove that the depicted structures
are local minima the reader can use table 2.1. The five
structures in the figure will be addressed in the sequel as (a)
frame, (b) boundary frame, (c) corner frame, (d) chopped
corner frame, (e) chopped boundary frame.

For each structure we compute its energy with respect
to −1−1−1 as a function of the side length ℓ of the internal plus

square. With an intuitive notation we have:

∆a(ℓ) =− 2hℓ2 + 4Jℓ+ 4J(ℓ+ 2) + 4ℓ(λ− h),

∆b(ℓ) =− 2hℓ2 + 4Jℓ+ 2J(ℓ+ 2) + (4ℓ+ 2)(λ− h),

∆c(ℓ) =− 2hℓ2 + 4Jℓ+ (4ℓ+ 3)(λ− h),

∆d(ℓ) =− 2hℓ2 + 2Jℓ+ 2J(ℓ+ 1)− 2J + 2ℓ(λ− h),

∆e(ℓ) =− 2hℓ2 + 3Jℓ+ J(3ℓ+ 2) + 3ℓ(λ− h). (3.13)

Now, we note that

∆a −∆d =4Jℓ+ 8J + 2ℓ(λ− h),

∆b −∆d =2Jℓ+ 4J + (2ℓ+ 2)(λ− h),

∆c −∆d =(2ℓ+ 3)(λ− h),

∆e −∆d =2Jℓ+ 2J + ℓ(λ− h). (3.14)

Since these differences are all positive, we can conclude that
the mechanism providing the transition from −1−1−1 to +1+1+1 is
the formation and growth of a chopped corner droplet.

(a)

(b)

(c) (d)

(e)

(a)

(b)

(c) (d)

(e)

Figure 2: Representation of local minima in the sea of mi-
nuses. Light gray for minuses, dark gray for pluses, and
white for zeros.

The length ℓ maximizing the energy (critical length) of
such droplet is [2J+(λ−h)]/(2h) and the energy of the crit-
ical droplet, with respect to −1−1−1, in the limit 0 < h < λ ∼ 0

is 2J2/h.
At the level of this heuristic analysis, it seems that the

mechanism of the chopped corner frame is the best to per-
form the transition from the homogeneous −1−1−1 state to the

3We also note that a rectangle of zeroes in the sea of minuses is not a local minimum, since (see row 4 of table 2.1) the flip to minus of one
zero with two zeroes and two minuses among its neighbors (corner) decreases the energy of the configuration. But this remark is not relevant
from the metastability point of view, since, in view of (2.12), the transition from −1−1−1 to 000 is of no interest in this region of the parameters.
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stable state +1+1+1. This transition is performed via the nu-
cleation of a chopped corner frame of internal side length
[2J + (λ− h)]/(2h) (not homogeneous nucleation) and the
exit time is of order exp{β2J2/h}. To establish which,
between −1−1−1 and 000, is the metastable state in the region
0 < h < λ we note that in this region of the parameter
plane 4J2/(λ + h) < 2J2/h and, so, the metastable state
is −1−1−1. Moreover, we remark some relevant facts: the tran-
sition from the metastable to the stable state is direct, the
nucleation is not homogeneous, and the exit time does not
depend on λ.

3.2. Main results for the region λ > h > 0

In the rest of the paper, we present the main results for
the model in the region 0 < h < λ. . The first the-
orem states that every configuration of X different from
{−1−1−1,+1+1+1} has a stability level strictly lower than Γ, where
Γ is the energy barrier to reach +1+1+1 starting from −1−1−1, i.e.
Γ = H(σs) −H(−1−1−1) where σs is the critical configuration
represented in Figure 3. In particular,

Γ = 4Jlc + 2λlc − 2h2l2c − 2h (3.15)

where
lc = ⌊2J + λ− h

2h
⌋+ 1. (3.16)

Figure 3: The critical configuration σs which contains a
critical chopped corner frame with side length lc.

Proposition 3.1. Let η ∈ X be a configuration such that
η ̸∈ {−1−1−1,+1+1+1}, then Vη < Γ.

This result suggests that the only configurations with a
stability level greater than or equal to Γ could be −1−1−1, +1+1+1.
This is confirmed by Theorem 3.2, where we identify the

unique metastable state −1−1−1 and the stable state +1+1+1 in the
region λ > h > 0.

In the following theorem, we state the recurrence of the
system to the set {−1−1−1,+1+1+1}. In particular, Equation (3.17)
implies that the system reaches with high probability ei-
ther the state −1−1−1 (which is a local minimizer of the Hamil-
tonian) or the ground state in a time shorter than eβ(Γ+ϵ),
uniformly in the starting configuration η for any ϵ > 0.
In other words we can say that the dynamics speeded up
by a time factor of order eβΓ reaches with high probability
{−1−1−1,+1+1+1}.

Theorem 3.1 (Recurrence property). For any ϵ > 0 and
sufficiently large β, the function

β → sup
η∈X

Pη(τ{−1−1−1,+1+1+1} > eβ(Γ+ϵ)) (3.17)

is SES4.

In the next theorem we identify the metastable state
and we compute the maximal stability level. Recalling the
Γ in (3.15), we have

Theorem 3.2. (Identification of metastable state) In the
region λ > h > 0, the unique metastable state is −1−1−1 and
Γm = Γ.

Last goals is finding the asymptotic behavior as β →
∞ of the transition time for the system started at the
metastable state −1−1−1.

Theorem 3.3 (Asymptotic behavior of τ+1+1+1 in probability).
For any ϵ > 0, we have

lim
β→∞

P−1−1−1(e
β(Γ−ϵ) < τ+1+1+1 < eβ(Γ+ϵ)) = 1. (3.18)

4. Proof of main results

In this section we collect the proofs of all the lemmas stated
in Section 2 and of all theorems stated in Section 3.

4.1. Proof of Lemma 2.1

The statement is trivial in the cases η and η′ not communi-
cating and η′ = η. Thus, suppose η ̸= η′ are communicat-
ing: if H(η) = H(η′) then (2.5) is immediate, on the other
hand if H(η′) > H(η) (the opposite case can be treated

4We say that a function β 7→ f(β) is super exponentially small (SES) if limβ→∞
log f(β)

β
= −∞.
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analogously) the statements follows from the definition of
the Gibbs measure (2.2) and the fact that

pβ(η, η
′) =

1

2|Λ|e
−β[H(η′)−H(η)] and pβ(η

′, η) =
1

2|Λ| .

4.2. Proof of Lemma 2.2

Recall we assumed that Condition 1 is in force.
Case 1: pick a configuration η ̸= +1+1+1, such that there

is at least a minus spin. Consider the configuration η′

obtained by flipping in η all the minuses to plus. We
H(η′) < H(η), indeed, i) the internal interaction term at
the right–hand side of (2.1) is smaller for η′ since nothing
changes for the bonds between minus spins of η and for the
bonds in which, in η, one site has spin minus and the other
has spin zero, on the other hand the interaction decreases
if, in η, one of the sites of the bond has spin minus and
the other has spin plus; ii) the boundary interaction term
is the same in η and η′; iii) the chemical potential term in
η′ is the same as the one in η; iv) the magnetic field in η′

is smaller than that in η by the amount 2h for each flipped
spin. If η′ = +1+1+1 the proof is over, otherwise there exists
in η′ at least a zero spin and the proof is completed in the
following case.

Case 2: consider a configuration η′ ̸= +1+1+1, such that
there is no minus spin. Consider the configuration η′′ ob-
tained by flipping to plus all the zero spins in η′ associ-
ated with the sites belonging to one of the not interacting
rectangles obtained by applying the bootstrap construction
(see Section 2.1) to the set of sites where η′ is plus one. If
η′′ ̸= η′ then H(η′′) < H(η′) because it is possible to con-
struct a downhill path from η′ to η′′ such that at each step
a zero spin with at least two neighboring plus sites and
no neighboring minus is flipped to plus decreasing the en-
ergy of the configurations (see rows 13–15 in table 2.1). If
η′′ = +1+1+1 the proof is over. In case η′′ ̸= +1+1+1, let ℓ be the
largest side length of the rectangles in which η′′ is plus one:

Case 2.1: suppose ℓ < 2J/(h+ λ). Consider the config-
uration η′′′ obtained by flipping to zero all the pluses in one
of the sides of length ℓ. From (2.1) we get H(η′′′)−H(η′′) =

−2J +(λ+h)ℓ, which implies H(η′′′) < H(η′′). By remov-
ing one side after the other we prove H(000) < H(η′) and,
from (2.11), which is valid under the hypotheses of this
lemma, we get H(+1+1+1) < H(η′).

Case 2.2: suppose ℓ > 2J/(h + λ). Now, consider
one of the rectangles on which η′′ is plus one with max-
imal side length equal to ℓ. Consider the configuration η′′′′

obtained by flipping to plus all the zeros associated with
sites neighboring one of the sides of this rectangle whose
length is equal to ℓ. From (2.1) we get H(η′′′′)−H(η′′) =

2J − (λ+ h)ℓ, which implies H(η′′′′) < H(η′′).
If η′′ has a single rectangle of pluses, this growth mech-

anism can be continued until +1+1+1 is obtained proving the
statement of the lemma. If η′′ has two or more rectangles
of pluses, this growth mechanism can be continued until two
or more interacting rectangles are found. In such a case,
by performing bootstrap mechanism steps and boundary
growth of rectangles the +1+1+1 configuration will be eventu-
ally constructed completing the proof of the lemma.

4.3. Proof of Lemma 2.3

Case h > λ: row 11 of table 2.1 implies that the state 000 is
a local minimum of the Hamiltonian, since all the possible
spin flips have a positive energy cost.

Case h < λ: the fact that 000 is a local minimum is proven
as above. Moreover, from row 1 of the tables 2.1 it follows
that the state −1−1−1 is a local minimum of the Hamiltonian,
as well.

4.4. Proof of Proposition 3.1

The proof of Proposition 3.1 is based on lemmas 4.4-4.10.
which are listed at the end of this subsection. We prove
that for every configuration η ̸∈ {−1−1−1,+1+1+1}, the stability
level is strictly smaller than the energy barrier Γ. For tech-
nical reasons, we consider the restricted region λ

2 < h < λ,
in which the metastable behavior is the same of the region
0 < h < λ. First of all, given a configuration η ∈ X , we
consider the set C(η) ⊆ Λ defined as the union of the closed
unitary square centered at sites i with the boundary con-
tained in the dual of Z2 and such that η(i) = +1. The
maximal connected components C1, ..., Cm, with m ∈ N, of
C(η) are called clusters of pluses. We define in the same
way the clusters of minuses and the clusters of zeros. If
the boundary of a cluster forms internal right angles, then
we call them convex corners. Otherwise, we call the other
angles concave angles. Moreover, we call convex side of a
cluster the side with both adjacent convex corners. Other-
wise, we call the side concave side. We observe that each
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cluster has at least one convex side, since Λ is finite and
there are zero-boundary conditions. We partition the set of
all configurations in any subsets according to peculiar prop-
erties of the contained clusters and we provide the stability
level of each of these subsets. In particular, we first an-
alyze the configurations with at least a cluster of pluses
and we find their stability level, see Lemmas 4.4, 4.5, 4.6,
4.7, 4.8, 4.9. Then, we continue to analyze the remain-
ing configurations by computing the stability level for such
configurations that contains only zero and minus spins, see
Lemma 4.7, 4.10. In this way, we conclude the proof.

Lemma 4.4. Let η be a configuration that contains a bond
of type (+,−), then there exists a configuration η′ commu-
nicating with η with a downhill path.

Lemma 4.5. Let η be a configuration that contains at least
a cluster of pluses. If this cluster has a shape different from
a rectangle, then Vη < 2(λ− h).

Lemma 4.6. If η contains either a cluster of pluses with at
least a convex side length l1 < 2J

λ+h or a cluster of minuses
with at least a convex side length l2 < 2J

λ−h , then Vη < 2J .

Lemma 4.7. Let η be a configuration that contains either
a cluster of pluses with at least a side length l1 > 2J

λ+h at
distance strictly greater than two from a minus spin, or a
cluster of minuses with at least a side length l2 > 2J

λ−h at
distance strictly greater than two from a plus spin. Then
Vη < 2J .

Lemma 4.8. Let η be a configuration that contains a clus-
ter of pluses with at least a side length l > 2J+λ−h

h . Then
Vη < 5J .

Lemma 4.9. Let η be a configuration that contains a clus-
ter of pluses with at least a side length 2J

λ+h < l < 2J+λ−h
h .

Then Vη < Γ∗ where Γ∗ = 2J2

h .

Lemma 4.10. The stability level of 000 is strictly smaller
than Γ, i.e., V000 < Γ

The proofs of the previous lemmas are in Section 5.1.

4.5. Proof of Theorem 3.1

Let Γ as in definition (3.15). By applying [19, Theorem 3.1]
with V ∗ = Γ and Proposition 3.1, we get the proof.

4.6. Proof of Theorem 3.2

In this proof, we identify the unique metastable state and
we compute the value of the maximal stability level. To do
this, we first construct a reference path to find an upper
bond for the stability level of −1−1−1, i.e. V−1−1−1 ≤ Γm, and then
we give a lower bond of V−1−1−1 such that V−1−1−1 ≥ Γm by using
a new procedure based on the computation of the number
of bonds in any configuration. In this way, we can conclude
the proof.

4.6.1. Upper bound for V−1−1−1

We define the reference path as a path from −1−1−1 → +1+1+1

consisting in a sequence of configurations with increasing
clusters as close as possible to chopped corner frame such
that Φ(ω) −H(−1−1−1) = Γm. Hence, V−1−1−1 ≤ Γm. We denote
by σF

m,n the configuration that contains a chopped corner
frame with horizontal side length m and vertical side length
n. We choose the site in one of the four corners of Λ and
we consider its two nearest neighbors. We flip these three
minus spins to zero leaving with an energy cost equals to
3(λ−h), see Table 2.1. Then, we flip the zero in the corner
to plus increasing the energy by 4J−(λ+h). Thus the total
energy cost to obtain σF

1,1, i.e. to form a chopped corner
frame of both side lengths equal to one, is to 4J +2λ− 4h.
Next, we flip the minus spins at distance smaller than or
equal to

√
2 from the zeros, and then we construct a square

2×2 of pluses. In this way a chopped corner frame of both
side lengths two is formed, see Figure 4

Figure 4: The first part of the reference path, from −1−1−1 to
σF
2,2, a chopped corner frame of both side lengths equal to

two.

We grow up this chopped corner frame by considering
a minus spin at distance one from this frame and from the
boundary of Λ (this is the effect of the zero-boundary con-
ditions) and by flipping it to zero with an energy cost of
(λ−h). Then, we flip from zero to plus the unique zero with
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two zero nearest neighbours and we repeat these two steps
to grow up the chopped corner frame 2 × 2 to a chopped
corner frame 2× 3. Thus, we obtained σF

2,3. Next, we grow
up the chopped corner frame 2× 3 by considering a minus
spin along the longest side at distance one from the frame
and the boundary of Λ and by flipping it to zero. Then,
we flip from zero to plus the unique zero with two zero
nearest neighbours and we repeat these two steps until we
obtain σF

3,3. We continue in the same manner by flipping
first a minus to zero and then a zero to plus, (see Figure
5) until the chopped corner frame invades all the lattice Λ

obtaining the configuration +1+1+1.

Figure 5: A part of the reference path from σF
n−1,n to σF

n,n.

In the following we compute the communication height
of this procedure. First of all, we compute the energy cost
between the configuration −1−1−1 and a configuration σF

m,n.
Suppose m ≤ n, we have

H(σF
m,n) = 2J(n+m) + 4JL− (λ+ h)nm

− (λ− h)(L2 − nm− n−m) (4.19)

where 2(m + n) is the number of bonds (0,+), 4L is the
number of bonds (0,−), mn is the number of pluses, and
(L2−nm−n−m) is the number of minuses in σF

m,n. Thus,
by equation (2.10), we obtain

H(σF
m,n)−H(−1−1−1) = 2J(n+m) + λ(n+m)

− h(2mn+ n+m) (4.20)

In particular,

H(σF
n,n−1)−H(−1−1−1) = 2J(2n− 1) + λ(2n− 1)

− h(2n(n− 1) + 2n− 1) (4.21)

H(σF
n,n)−H(−1−1−1) = 4Jn+ 2λn− h(2n2 + 2n) (4.22)

H(σF
n,n+1)−H(−1−1−1) = 2J(2n+ 1) + λ(2n+ 1)

− h(2n(n+ 1) + 2n+ 1) (4.23)

We have that H(σF
n,n−1) > H(σF

n,n) > H(σF
n,n+1) for

n > 2J+λ−h
2h , and H(σF

n,n−1) < H(σF
n,n) < H(σF

n,n+1) for
n < 2J+λ−h

2h . Thus, the communication height Φ(ω) along
the reference path ω is equal to Φ(σF

lc,lc−1, σ
F
lc,lc

), where lc is
defined in (3.16). Starting from σF

lc,lc−1 to reach the config-
uration σF

lc,lc
, the maximal height is given by the first three

steps and its value is 2J − (λ+ h) + 2(λ− h). Indeed, the
first step is the flip of the minus spin at distance one from
the chopped corner frame and from the boundary of Λ in to
zero. The energy cost of this flip is (λ−h). The second step
is the flip of the unique zero with two zero nearest neigh-
bours in to plus, and its energy cost is 2J − (λ + h). The
third step is the flip of the minus at distance one from the
first flipped minus and at distance two from the boundary
of Λ in to zero. the energy cost of this last flip is (λ − h).
The rest of the path to reach σF

lc,lc
is composed by a se-

quence of flipping a zero into a plus with the decrease of
energy of (λ+ h) followed by flipping minus into zero with
an energy cost of (λ − h), thus it is a two-steps downhill
path. Hence, using the equations (4.21),(4.22) and (4.23),
we have

Φ(−1−1−1,+1+1+1)−H(−1−1−1) = Φ(σlc,lc−1, σlc,lc)−H(−1−1−1)

≤ H(σlc,lc−1) + 2J − (λ+ h) + 2(λ− h)−H(−1−1−1)

= 4Jlc + 2λlc − 2h2l2c − 2h = Γ. (4.24)

We note that Γ > Γ∗, where

Γ∗ =
2J2

h
. (4.25)

4.6.2. Lower bound for V−1−1−1

To find the lower bound of −1−1−1, we use lemmas 4.13-4.22,
which are collected at the end of this subsection. We de-
note with Mn+ the manifold with a fixed number n+ of
pluses. Fixed n+

c = lc(lc − 1), we define

σc = σF
lc−1,lc (4.26)

see Figure 6.

Remark 1. We observe that in σc the smallest rectangle
that contains the frame of pluses and zeros has side lengths
lc and lc + 1. Moreover, the envelope of this rectangle con-
tains 2(2lc−1) bonds between a plus and a zero, and 2lc+1

bonds between a minus and a zero. The other bonds in the
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envelope are between two spins of the same type. Out of
this envelope there are 4L − (2lc + 1) bonds between a mi-
nus and a zero according to the zero-boundary conditions,
and the other bonds are between two spins of the same type.

To find a lower bound for the stability level of −1−1−1, we
divide the proof into two main steps: in the first step,
we prove that σc in (4.26) is the energy minimizer in the
manifold Mn+

c
; in the second step we show that a path

from Mn+
c

to Mn+
c +2 has minimal communication height

if it starts from σc. Hence, in Lemma 4.16 we prove that
σc = argmaxξ∈M

n
+
c

H(ξ). To do this, we use corollary 4.1
and lemmas 4.11, 4.12, 4.13, 4.14 and 4.15 to prove that
if η ∈ Mn+

c
is a configuration that differs from σc then

η ̸∈ M , where

M = {σ |H(σ) = min
ξ∈M

n
+
c

H(ξ)}. (4.27)

Then, the second step consists in proving that a path
from Mn+

c
to Mn+

c +2 with minimal communication height
has to start σc. In particular, by applying lemmas 4.17-
4.22, we show that the path with minimal communication
height crosses two peculiar configurations that we call σ̃c

and σs. The configuration σc, respectively σ̃c, differs from
σs as shown in Figure 3 and 6. The energy of these two
configurations are

H(σ̃c) = H(σc) + 2J − (λ+ h) + (λ− h), (4.28)

H(σs) = H(σc) + 2J − (λ+ h) + 2(λ− h). (4.29)

Figure 6: The shapes of the configurations σc and σ̃c. We
note that the cluster of pluses can be attached in one of
the four corners of Λ and the protuberance can be attached
along one of the two sides of the cluster of pluses. With
an abuse of notation, we denote all of these configurations
with σc (or σ̃c).

Therefore V−1−1−1 ≥ H(σs) = Γ. Summarizing, V−1−1−1 = Γ

and for any η ∈ X \ {−1−1−1,+1+1+1} we have Vη < Γ. Thus,
by [11, Theorem 2.4],−1−1−1 is the unique metastable state.

We define strip of pluses (resp. strip of minuses) the
connected subset of a column or a row of Λ filled with pluses
only (resp. minuses only).

Corollary 4.1. Let η be a configuration that contains a
strip of minuses with at least a side length l > 2J

λ−h at
distance strictly greater than two from a plus spin. Then
Vη < 2J .

Lemma 4.11. Let η ∈ Mn+
c

be a configuration that con-
tains a rectangle R with side lengths l1, l2 > ⌊ 2J

λ−h⌋+2 with
inside no plus spins. Assume that ηR\∂−R ̸= −1−1−1R\∂−R. If
η(x) = −1 for at least a site x ∈ R \∂−R, then there exists
a configuration η′ ∈ Mn+

c
such that H(η′) < H(η).

Lemma 4.12. Let η ∈ Mn+
c

be a configuration that con-
tains a rectangle R with side lengths l1, l2 > ⌊ 4J

λ−h⌋+2 with
inside no plus spins. Let S = R \ ∂−R and η(x) = 0 for
every x ∈ S, then the configuration η′ ∈ Mn+

c
such that

η′Λ\S = ηΛ\S and η′S = −1−1−1S has H(η′) < H(η).

Recalling the definition of the set M in (4.27),

Lemma 4.13. If η ∈ Mn+
c

is a configuration that con-
tains at least a column (or a row) with only zero spins,
then η ̸∈ M .

Lemma 4.14. Let η ∈ Mn+
c

be a configuration that con-
tains a cluster of pluses with a shape different from a quasi-
square with side lengths lc and lc − 1. Then η ̸∈ M .

Lemma 4.15. If η ∈ argmaxξ∈M
n
+
c

H(ξ), then ηQ = +1Q

and ηΛ\(Q∩∂+Q) = −1Λ\(Q∩∂+Q).

Lemma 4.16. H(σc) = minξ∈M
n
+
c

H(ξ).

Lemma 4.17. If ω is a path from σc to Mn+
c +1 such

that ω = (σc, η1, η2, ...ηn), n ≥ 1, with ηn ∈ Mn+
c +1 and

ηi ∈ Mn+
c

for every i = 1, ..., n− 1, then Φ(ω) ≥ H(σ̃c).

Lemma 4.18. If ω is a path from Mn+
c

to Mn+
c +1, then

Φ(ω) ≥ H(σ̃c).

Lemma 4.19. If ω is a path from σ̃c to Mn+
c +2 such

that ω = (σ̃c, η1, η2, ...ηn), n ≥ 1, with ηn ∈ Mn+
c +2 and

ηi ∈ Mn+
c +1 for every i = 1, ..., n− 1, then Φ(ω) ≥ H(σs).
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We define the set S as the set of all configurations of
Mn+

c +1 such that

a. the bonds of type (+,−) are not present;

b. the union of the cluster of pluses is composed by only
one cluster and its semi-perimeter is equal to 2lc;

c. the minimal rectangle that contains the cluster of
pluses has either side lengths (lc, lc) or (lc+1, lc−1);

d. the envelope of the cluster of pluses has a corner that
coincides with a corner of Λ.

e. there is only one strip of minuses in each column and
row of Λ.

We note that σ̃c ∈ S .

Lemma 4.20. Let η ∈ Mn+
c +1 be such that H(η) = H(σ̃c),

then η ∈ S .

Lemma 4.21. Let η ∈ S \ {σ̃c}. Every path ω : η → −1−1−1

is such that Φ(ω) > H(σs).

Lemma 4.22. If ω is a path from −1−1−1 to Mn+
c +2, then

Φ(ω) ≥ H(σs).

The proofs of the previous lemmas are in Section 5.2.

4.7. Proof of Theorem 3.3

By applying [19, Theorem 4.1] with η0 =−1−1−1 and our value
of Γ, we get the proof.

5. Proof of the lemmas of Section 4

In Section 5.1 we report the proofs of lemmas related to re-
currence property, while in Section 5.2 we gather the proofs
of the lemmas related to the computation of the energy bar-
rier.

5.1. Proofs of lemmas for the recurrence property

Proof of Lemma 4.4. Using the Table 2.1, it is possible to
reduce the energy of all configurations with a bond (+,−)

except the configuration where the plus and the minus are
near three pluses and three minuses respectively. In the lat-
ter case, we analyze the two columns (or rows) where the
plus and the minus belong to until we find a bond different

from (+,−). If there is a bond different from (+,−) then
the energy of η is reducible using the Table 2.1, otherwise
η contains two columns composed by all bonds (+,−). In
this case, by analyzing the last bond of the two columns
in internal boundary of Λ, we obtain a configuration that
is reducible in energy because of the zero-boundary condi-
tions and according to the Table 2.1 at row 5 (by flipping a
minus in to zero) or row 9 (by flipping a plus in to zero).

In order to prove the following lemmas we define a lo-
cal configuration of a configuration η ∈ X the rescricted
configuration ηUx

, where x is a site of Λ and Ux = {y ∈
Λ | |x− y| = 1}. See Figure 7 for some examples.

Proof of Lemma 4.5. First of all, suppose that η does not
contain bonds (+,−), otherwise we conclude by lemma 4.4.
Using Table 2.1, we find that the only local configurations
containing a plus that are not reducible with a flip are as
in Figure 7.

+

+

++

+

(I)

+

+

++

0

(II)

+

+

0+

0

(III)

0

+

0s

0

(IV )

0

+

−+

0

(V )

0

+

+−
−

(V I)

Figure 7: Local configurations with at least a plus spin that
are not reducible in energy using Table 2.1. The spin s in
picture (IV ) takes values in {−1, 0}.

Let η be a configuration that contains at least a local
configuration of type (V ) in Figure 7. We consider η′ ob-
tained from η by flipping the minus spin to zero and the zero
at the center to plus. In this way, we have H(η′) < H(η)

and Φ(η, η′) − H(η) ≤ (λ − h), recalling that η does not
contain bonds (+,−).
Next, suppose that η is a configuration that contains at
least a local configuration of type (V I). We consider η′

obtained from η in three steps: we flip the two minuses to
zero and then we flip the zero at the center to plus. In this
way, we have H(η′) ≤ H(η) + 2(λ− h)− (λ+ h) recalling
that η does not contain bonds (+,−). For the assump-
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tions h > λ
2 , in particular h > λ

3 , then H(η′) < H(η), and
Φ(η, η′)−H(η) ≤ 2(λ−h) recalling that η does not contain
bonds (+,−).
Follows that a cluster of pluses is composed by only local
configurations of types (I), (II), (III) with a plus at the
center and only local configurations of type (IV ) with a
plus in the neighborhood, thus is a rectangle and we have
concluded the proof.

Proof of Lemma 4.6. We prove the result for the cluster of
pluses, the other case is similar. Suppose that the cluster
of pluses has at least one convex side with length l1 < 2J

λ+h .
We flip the l1 pluses along the side to zero decreasing in
energy with a communication height smaller than or equal
to H(η)+(λ+h)(l1−1) < H(η)+2J . Indeed, starting from
a corner of the cluster and flipping the first l1 − 1 pluses,
the energy increases by λ+h at each flip, since the number
of the bonds between two equal spins does not change but
a plus is replaced by a zero, see Table 2.1 at row 13. Then,
during the l1-th flip, the energy decreases by 2J − (λ+ h),
see Table 2.1 at row 12.

Proof of Lemma 4.7. We prove the result for the cluster
of pluses, the other case is similar. Suppose that the clus-
ter of pluses has at least a side with length l1 > 2J

λ+h at
distance strictly greater than two from a minus spin. We
suppose that there are only zero spins at distance two from
the pluses along this side, see Table 2.1 Then, we consider
these l1 zeros and we flip them to plus obtaining η′ and de-
creasing in energy. In particular, the communication height
of the path connecting η to η′ is at most 2J−(λ+h)+H(η)

(if the side is convex, otherwise Φ(η, η′) = 0 indeed if the
side is concave then the energy decreases by λ+h see Table
2.1 at row 13), see Table 2.1 at row 12. Indeed the first flip
has an energy cost equal to 2J − (λ + h), since a zero is
replaced by a plus and the number of the bonds between
two equal spins has decreased by two. The other steps form
a downhill path. Thus, denoted by ω this path, we have
Φ(ω) = 2J − (λ+ h) +H(η) < 2J +H(η).

Proof of Lemma 4.8. Let η be a configuration as in the
assumption. Suppose that η does not contain bonds of
type (+,−) otherwise we conclude applying Lemma 4.4.
Moreover, the cluster of pluses is a rectangle otherwise the
statement is proven by Lemma 4.5. We consider a configu-
ration η′ obtained from η in the following way. All minuses

at distance
√
2 and 2 from the side of the rectangle with

length l > 2J+λ−h
h in η are replaced by zeros. Moreover,

all zeros at distance one from the same side are replaced by
pluses, see Figure 8. Next, we construct a path η → η′ with
Φ(ω)−H(η) < 5J and we show that H(η′) < H(η). In the
worst case scenario, all spins at distance

√
2 and 2 from the

rectangle are minuses. Thus, in particular we start flipping
the two minuses at distance

√
2 from the side of the rectan-

gle, and the energy increases by 2(λ−h). Next, we consider
one of the l minuses at distance two from the considered
side of the rectangle, and we flip it to zero. Then, we flip
the nearest zero to plus. Starting from a minus at distance
one from the minus considered before, we iterate these two
steps (−1 → 0 and 0 → +1) for l − 1 times obtaining η′

such that H(η′) < H(η). Indeed, the first flip of the minus
to zero has an energy cost of 2J + (λ − h) and the first
flip of the zero to plus has an energy cost of 2J − (λ+ h),
see Table 2.1 at row 2 and 12 respectively. The rest of the
steps has an energy cost of λ − h when we flip a minus to
zero and −(λ + h) when we flip a zero to plus. Thus, we
have H(η′) ≤ H(η) + 4J + 2(λ − h) − 2hl < H(η) since
l > 2J+λ−h

h , and the communication height along this path
is 2(λ − h) + [2J + (λ − h)] + [2J − (λ + h)] + (λ − h) =

4J + 3λ− 5h < 5J since we chose J >> λ > h.

Figure 8: On the left, in dark gray, an example of cluster
of pluses of η with some minus spins at distance

√
2 and 2.

On the right, the evolution of this cluster in η′: all minuses
at distance

√
2 and 2 from the cluster are replaced by zeros,

and all zeros at distance one are replaced by pluses.

Proof of Lemma 4.9. We observe that if η contains a clus-
ter of pluses with at least a side length l > 2J

λ+h at distance
strictly greater than two from a minus spin, then the proof
is concluded by Lemma 4.7. Thus, suppose that there are
some minuses at distance d smaller than or equal to two
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from the cluster of pluses. In particular
√
2 ≤ d ≤ 2, oth-

erwise there is a bond of type (+,−) and we conclude the
proof by Lemma 4.4. Moreover, the cluster of pluses is a
rectangle, otherwise the proof is over by Lemma 4.5. We
observe that the rectangle of pluses has both side lengths in
( 2J
λ+h ,

2J+λ−h
h ), otherwise we conclude applying Lemma 4.6

or Lemma 4.8. Denote by l+ = ⌈ 2J
λ+h⌉ and lF = ⌊ 2J+λ−h

h ⌋,
moreover we indicate by l̃ = ⌊J+λ+h

h ⌋. Next, we construct
a path ω from η to η′, where η′ is a configuration such that
H(η′) < H(η) and Φ(ω) − H(η) < Γ. In order to find η′,
we distinguish two cases. Let m, k be the two side lengths
of the rectangle of pluses and we suppose k ≥ m, then we
have:

1. both sides have length strictly greater then l̃, that is
k,m ∈ [l̃ + 1, lF ].

2. at least one of two side lengths is smaller than l̃, that
is m ∈ [l+, l̃].

In the first case, we obtain η′ growing the rectangle of pluses
as in proof of Lemma 4.8. In particular, we grow the side
of the rectangle with length k for lF − k times, that is the
rectangle grows up until it reaches the longer side length
lF . We observe that to grow the side of length k, we have to
add m pluses along the side of length m, see Figure 9. We
call η̃ this configuration. Along this first part η → η̃ of the
path η → η′, the energy increases, because the rectangle
is not supercritical. Then, we will grow up a supercritical
rectangle until we obtain η′ with H(η′) < H(η). Along this
last part of path the energy decreases because it is a two-
steps downhill path, so the communication height between
η and η′ is the same between η and η̃. Then, as proof of
Lemma 4.8, we have

∆H(side growth of length m) ≤ 4J + 2(λ− h)− 2hm

(5.30)
Thus, we obtain

∆H(total growth) ≤ (lF − k)∆H(growth side of length m)

≤
(2J + λ− h

h
− k

)
(4J + 2(λ− h)− 2hm). (5.31)

To find an upper bound for the communication height, we
have to sum the energy difference from the rectangle with
longer side length k to lF with the energy cost to reach the
rectangle with side length lF +1. In particular, we conclude

finding the following upper bound

Φ(η, η′)−H(η) ≤
lF∑
j=k

∆H(growth side of length m)

+ (4J + 3λ− 5h)

≤ (4J + 2(λ− h)− 2hm)(lF − k + 1)

+ (4J + 3λ− 5h)

≤ (4J + 2(λ− h)− 2h(l̃ + 1))(lF − l̃)

+ (4J + 3λ− 5h)

< Γ∗. (5.32)

where the second inequality follows from k,m ≥ l̃, and the
last one follows from l̃ = ⌊J+λ+h

h ⌋ and J >> λ > h.

Figure 9: The rectangular cluster of pluses with side lengths
k and m grows the side with length m for lF − k times. In
this way we obtain a configuration containing a rectangular
cluster of pluses with side lengths lF and m.

In the second case, we obtain η′ shrinking the rectangle
of pluses as in proof of Lemma 4.6. In particular, we cut
the side of the rectangle with length m until the cluster of
pluses is replaced by a cluster of zeros, see Figure 10. First
of all, we prove that H(η′) < H(η). We observe that

k ≤ lF <
2Jm

(λ+ h)m− 2J
, (5.33)

where the second inequality is due to h > λ
2 . Then, by

(5.33) we have

H(η)−H(η′) = 2J(k +m)− (λ+ h)km > 0. (5.34)

To find an upper bound for the communication height,
first of all we compute the energy to cut a side of the rect-
angle and the communication height along this part of the

cjs-bcg_zero.tex – 6 giugno 2023 15 1:29



path ω. For the first k − 1 times, we have

∆H(shrink side of length m) = (λ+ h)m− 2J (5.35)

And Φ(ω)−H(η) = (λ+ h)m. Indeed, when we cut k − 1

sides of length m, we obtain a configuration with a rectan-
gle 1×m, so the path toward η′ is a downhill path. Thus,

Φ(η, η′)−H(η) ≤
k−2∑
j=1

∆H(shrink side of length m)

+ (λ+ h)m

= [(λ+ h)m− 2J ](k − 2) + (λ+ h)m

< [(λ+ h)l̃ − 2J ](lF − 2) + (λ+ h)l̃

<
2J2

h
= Γ∗. (5.36)

where for the first inequality we used m ≤ l̃ and k ≤ lF .
The second inequality follows from the values of l̃, lF and
the assumption h > λ

2 , J >> λ > h.

Figure 10: The rectangular cluster of pluses with side
lengths k and m shrinks until it is totally replaced by a
rectangular cluster of zeros with the same size.

Proof of Lemma 4.10. To prove the result, we provide a
path from 000 to +1+1+1. We define our path ω : 000 7→ +1+1+1 as
a sequence of configurations from 000 to +1+1+1 with increasing
clusters as close as possible to quasi-square, see Figure 11.

Figure 11: A part of the path ω : 000 7→ +1+1+1. The white part
represents the region with zero spins, the dark gray region
is the cluster of pluses. We remark that the first flip from
zero to plus can occur at any site of Λ with the same prob-
ability, this is the case of the homogeneous nucleation.

We construct a path in which at each step we flip one
spin from zero to plus. We flip the spin at the origin and
then we add clockwise three square units to obtain the first
square with side length l = 2. Then we flip the zero spins
on the top of the square 2 × 2, adding consecutive square
units until we obtain a quasi-square 2× 3. Next we flip the
zero spins along the longest side to obtain a square 3 × 3.
We go on in the same manner flipping consecutive zero
spins at distance one to the cluster of pluses. We iterate
this nucleation process until the quasi-square takes up all
the space Λ. In the following we compute the communica-
tion height of this procedure. First of all, we compute the
energy cost between the configuration 000 and a configura-
tion with a rectangular cluster of pluses with side lengths
m and n, called σm,n,

H(σm,n)−H(000) = 2J(n+m)− (λ+ h)mn (5.37)

where 2(m + n) is the number of bonds (0,+) and mn is
the number of pluses in σm,n. The equation (5.37) attains
the maximum for (m,n) =

(
2J
λ+h ,

2J
λ+h

)
, that corresponds

to a configuration with a square of pluses with side length
ñ = ⌊ 2J

λ+h⌋+ 1. Starting from σñ,ñ to reach the configura-
tion σñ+1,ñ, the energy cost is given by the first step and
its value is 2J − (λ+h), see Table 2.1 at row 12, the rest of
the path is a downhill path. Thus, recalling that H(000) = 0,
using the value of ñ and the assumption λ > h, we have

Φ(000,+1+1+1)−H(000) ≤ Φ(σñ,ñ, σñ+1,ñ)−H(000)

= H(σñ,ñ) + 2J − (λ+ h)−H(000)

= 4Jñ− (λ+ h)ñ2 + 2J − (λ+ h)

=
4J2

λ+ h
+ 2J − 2(λ+ h) <

2J2

h
< Γ. (5.38)
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5.2. Proofs of lemmas for the energy barrier

Proof of Corollary 4.1. If a configuration contains a strip
of minuses as in the assumptions, then there exists a clus-
ter of minuses containing this strip with at least a side
length l > 2J

λ−h at distance strictly greater than two from
a plus spin, then we conclude by applying Lemma 4.7.

Proof of Lemma 4.11. Let η be a configuration as in the
assumptions. We distinguish two cases: (i) η contains at
least a cluster of minuses with shape different from a rectan-
gle, (ii) η contains only cluster of minuses with rectangular
shape. In the first case, there is at least a zero spin with
two minus spins at distance one, then we find η′ by using
Table 2.1 at row 4 (by flipping this zero in to a minus). In
the second case, we find η′ by applying either Lemma 4.6
or Lemma 4.7, according to the side length of the cluster
of minuses.

Proof of Lemma 4.12. Consider η and η′ as in the assump-
tion. The energy difference between η and η′ is given by

H(η′)−H(η) = 2J(l1 − 2 + l2 − 2)

− (λ− h)(l1 − 2)(l2 − 2)

< 2J
8J

λ− h
− (λ− h)

( 4J

λ− h

)2

= 0. (5.39)

To compute the communication height Φ(η, η′), we argue as
in proof of Lemma 4.10. Indeed the computation of Φ(η, η′)
is similar to one of Φ(000,+1+1+1, hence it is strictly smaller than
Γ∗.

Proof of Lemma 4.13. Let η be a configuration as in the
assumption and we suppose by contradiction that η ∈ M .
First of all, we observe that if η contains at least one of
the local configurations in Figure 12 (or one of their rota-
tions), then there exist η′ ∈ Mn+

c
such that H(η′) < H(η)

by using Table 2.1, thus η ̸∈ M .

0

−
−−

−
0

−
−−

0

0

−
0−

0

0

0

−−
0

Figure 12: If η contains one of these local configuration,
then it reducible in energy by flipping the zero in the cen-
ter in to minus, see Table 2.1.

From now on, we suppose that η does not contain the
previous local configurations in Figure 12. For the assump-
tion, η contains at least a column (or a row) with only zero
spins, then η contains at least one of the configurations in
Figure 13.

0

0

00

0

(I)

0

0

0+

0

(II)

0

0

++

0

(III)

0

0

0−
0

(IV )

0

0

+−
0

(V )

Figure 13: Local configurations with the center site along
a column filled by only zero spins.

We observe that η does not contain only local con-
figurations of type (I) among those in Figure 13, indeed
η ∈ Mn+

c
. Moreover, we show that if η contains only local

configurations of type (I) and (II) among those in Figure
13, then η ̸∈ M . Indeed, in this case η does not contain
minus spins and by [1] we have H(η) ≥ H(ξ) where ξ is
the configuration with a quasi-square of pluses in a sea of
zeros, and for L large enough we have

H(ξ) = 4J(2lc − 1)− (λ+ h)lc(lc − 1), (5.40)

H(σc) = 4J(2lc − 1)− (λ+ h)lc(lc − 1) + 4JL

− (λ− h)(L2 − lc(lc − 1)− (2lc − 1)), (5.41)

that is H(ξ) > H(σc), and η ̸∈ M . With the same argu-
ment, we may state that if η contains only local configura-
tions of type (I), (II) and (III) among those in Figure 13,
then η ̸∈ M .

Thus, we suppose that η contains at least a local con-
figurations of type (IV ) or (V ) and we start to analyze the
two columns (or rows) that contain the pair (−, 0) until we
find a pair (η(x), 0) such that η(x) ̸= −1. First of all, we
observe that if the strip of minuses in the first column has
a length smaller than 2J

λ−h , then there exists a configura-
tion η′ ∈ Mn+

c
with H(η′) < H(η) by Lemma 4.6, and so

η ̸∈ M . Moreover, if η(x) = +1 then we find η′ ∈ Mn+
c
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such that H(η′) < H(η) by using Table 2.1, and also in
this case η ̸∈ M . Thus, the unique possible pair (η(x), 0) is
(0, 0). In this case, there is a plus spin at distance two from
the strip of minuses, otherwise η satisfies the assumptions
of Corollary 4.1 and so η ̸∈ M , see Figure 14.

0

0

+

0

0

−
00

−

0−

−
−

−

···

0

0

0

0− +

···

0−

0

0

+

−
00

−

0−
+

−
−

−

···

0

0

0

··· +

·

d1

d2

Figure 14: Neighborhood of the column with only zeros
spins with attached a strips of minuses.

Moreover, for every configuration that contains a pair of
two consecutive columns filled by minuses and zeros, there
are some plus spins that split the strips of minuses in parts
with length smaller than 2J

λ−h , see Figure 14 for an exam-
ple, otherwise we can reduce the energy of η by applying
Corollary 4.1, and so η ̸∈ M . This implies that the dis-
tance between two pluses at distance two from the strip of
minuses is smaller than 2J

λ−h , see Figure 14.
Starting from the pair (0, 0), we focus on the first plus

at distance two from the column of minuses and we con-
sider the plus in the nearest column, see Figure 14. We
observe that the region between these pluses contains only
zero and minus spins for construction. In the following,
we will prove that this region is a rectangle with both side
lengths smaller than ⌊ 4J

λ−h⌋ + 2. Indeed, if this region is a
rectangle with side length greater than ⌊ 4J

λ−h⌋ + 2 and it
contains only zero spins, then we can apply Lemma 4.12
and so η ̸∈ M . However, if this region contains some mi-
nus spin then we may apply Lemma 4.11, indeed the as-
sumption and ηR\∂+R ̸= −1−1−1R\∂+R is satisfied otherwise η

contains the last local configuration in Figure 12. Hence,
the considered region is a rectangle with both side lengths
smaller than ⌊ 4J

λ−h⌋+2. Let d1 be the distance between the
two columns containing the two plus spins, d2 be the dis-
tance between the two rows containing the two plus spins,

then d1, d2 < ⌊ 4J
λ−h⌋ + 2, see Figure 14. Thus, the Eu-

clidean distance between the two pluses has to be smaller
than

√
2
(
⌊ 4J
λ−h⌋+2

)
. So, we can compute the maximal size

of the minimal rectangle containing all plus spins. Indeed
the diagonal of this rectangle is n+

c

√
2
(
⌊ 4J
λ−h⌋+ 2

)
and its

side lengths are smaller than lR = n+
c

(
⌊ 4J
λ−h⌋+ 2

)
.

Let

∂̃+R = ∂+R ∪ {x ∈ Λ \R : |x− y| =
√
2 ∀ y ∈ R},

the region Λ \ (R ∪ ∂̃+R) can be composed by two, three
or four rectangles that circumscribing R, see Figure 15.
We consider the rectangle RM with maximal area among
them and we prove that it has side lengths strictly greater
than ⌊ 4J

λ−h⌋ + 2. The maximal rectangle contained in
Λ \ (R ∪ ∂̃+R) has side lengths (L, x) with x ≥ L

2 −
n+
c

(
⌊ 4J
λ−h⌋+2

)
−1. In particular, we have L, x > ⌊ 4J

λ−h⌋+2,

since L >
(

2J
λ−h

)3

. Therefore, for every position of R in
Λ, there is a rectangle RM that contains only minus spins,
otherwise it satisfies the assumption of either Lemma 4.11
or Lemma 4.12, and so η ̸∈ M . Moreover, there is a strip
of minus with length y > ⌊ 2J

λ−h⌋, see Figure 15, attached to
RM . Thus, the rectangle SM attached to RM , see Figure
15, is filled by only minus spins, otherwise we can apply
Corollary 4.1 and η ̸∈ M . Follows that the column with
length L filled by only zero spins is not in Λ \ (R ∪ ∂̃+R),
then it is in ∂̃+R ∪ R. However, every column (and row)
in ∂̃+R ∪R has length strictly smaller than L, thus it is a
contradiction. We can conclude η ̸∈ M .

Proof of Lemma 4.14. Let η be a configuration as in the
assumption and suppose by contradiction that η ∈ M . Let
n0
η be the number of the zero spins in η. We first show that

if a column or a row contains only plus and zero spins, then
η ̸∈ M . Suppose that η contains a row r with only plus and
zero spins and we consider the maximal sequence of N > 0

consecutive columns that intersects r without plus spins.
This set of consecutive columns forms a rectangle RL,N

and we note that N > ⌊ 2J
λ−h⌋+ 2, indeed L

n+
c
> ⌊ 2J

λ−h⌋+ 2

see Condition 1. If one of them contains only zero spins,
then η ̸∈ M by Lemma 4.13. Thus, we may apply Lemma
4.11 and we obtain η ̸∈ M .
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Figure 15: The minimal value of x and y is L
2 −n+

c

(
⌊ 4J
λ−h⌋+

2
)
− 1, when R centered in the middle of Λ. In each case

L, x > ⌊ 4J
λ−h⌋+ 2.

Figure 16: In the picture, the cluster of pluses are in dark
gray. The white region indicates the zero region, while the
yellow region contains a mixture of zeros and minuses. The
set of the N column without pluses that intersect r is the
rectangle RL,N .

Follows that, for each column and row that contains at
least plus, one of the following conditions holds:

a) there are two bonds (+, 0) and at least two bonds
(−, 0). No bond (+,−) is present. In this case the
energy contribution is at least 4J , by the definition
of the hamiltonian function 2.1, and we denote by α1

the number of these columns and rows. See Figure
16.

b) there are a bond (+,−), at least a bond (−, 0) and
a bond (+, x) where x ∈ {−1, 0}. No more than one
bond (+, 0) is present. The energy contribution is at
least 6J and we denote by α2 the number of these
columns and rows. See Figure 16.

c) there are either at least four bonds (+, 0) and at least
two bonds (−, 0), or at least a bond (+,−), at least
a bond (−, 0) and more than one bond (+, x) where
x ∈ {−1, 0}. The energy contribution is at least 6J

and we denote by α3 the number of these columns
and rows. See Figure 16

Moreover, we observe that in η there are no column filled
with only zero spins, otherwise we apply Corollary 4.1.
Then, the energy contribution along every column and ev-
ery row is at least 2J according to the zero-boundary con-
ditions. We denote by α4 the number of these columns and
rows.

We note that
∑4

i=1 αi = 2L, since we found a partition
of the set of columns and rows in Λ according to the pres-
ence or the absence of pluses. Moreover, we observe that
by [1] a cluster of pluses with fixed area n+

c = lc(lc−1) has
perimeter p ≥ 2(2lc − 1). In particular, the cluster with
area n+

c has minimal perimeter if and only if it is a quasi-
square with semi-perimeter 2lc−1. In our case, the cluster
of pluses has area n+

c and a shape different from a quasi-
square for assumption, then its semi-perimeter is strictly
greater than 2lc − 1. We note that the semi-perimeter of
such cluster coincide with the number of columns and rows
with a plus, that is

∑3
i=1 αi ≥ 2lc − 1.

Let n−
η be the number of minuses in η, we can write the

energy function of η as

H(η) ≥ 4Jα1 + 6Jα2 + 6Jα3 + 2Jα4

− n+
c (λ+ h)− n−

η (λ− h), (5.42)
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and we have

H(η) ≥ 4J(α1 + α2 + α3) + 2J(α2 + α3)

+ 2J(2L− α1 − α2 − α3)− n+
c (λ+ h)

− n−
η (λ− h)

= 2J(α1 + α2 + α3) + 2J(α2 + α3 + 2L)

− n+
c (λ+ h)− n−

η (λ− h). (5.43)

Recalling the remark 1, we rewrite the energy of σc and
in the following we compare H(σc) with the energy of η in
(5.43).

H(σc) = 4J(2lc − 1) + 2J(2L− (2lc − 1))

− n+
c (λ+ h)− n−

σ (λ− h)

= 2J(2lc − 1) + 4JL− n+
c (λ+ h)− n−

σc
(λ− h).

(5.44)

We distinguish two cases according to the number of zeros
in η:

1. k > 2lc − 1 = n0
σc

;

2. k ≤ 2lc − 1 = n0
σc

.

In the first case, by (5.43) and recalling
∑3

i=1 αi ≥ 2lc − 1,
we obtain

H(η)−H(σc) ≥ 2J(α2 + α3) + (n−
σc

− n−
η )(λ− h)

= 2J(α2 + α3) + (n0
η − n0

σc
)(λ− h) > 0 (5.45)

since α2, α3 ≥ 0 and n0
η − n0

σc
> 0.

In the second case, we observe that η has to contain a
bond (+,−) since the semi-perimeter of its cluster of pluses
is strictly greater than 2lc − 1 and the number of zeros k

is smaller than 2lc − 1. This means that either α2 ≥ 1 or
α3 ≥ 1. In particular, if α3 = 0 (and α1 ≥ 1) then η con-
tains a single cluster of pluses with a shape different from
a quasi-square and in this case α1 + α2 > 2lc − 1. Hence,
by using (5.43) and (5.44), we obtain

H(η)−H(σc) > 2J(α2 + α3) + (n−
σc

− n−
η )(λ− h)

≥ 2J + (n0
η − n0

σc
)(λ− h)

= 2J + (k − 2lc + 1)(λ− h)

≥ 2J + (2− 2lc)(λ− h) ≥ 0 (5.46)

where the last inequality follows by (3.16), k ≥ 1 and
J >> λ > h > λ

2 .

Otherwise, if α3 ≥ 1 we note that η contains at least
two disconnected clusters of pluses and for the geometry
of the lattice, also in this case we have α1 + α2 > 2lc − 1.
Thus, arguing as above, we obtain the same result as in
(5.46).

Proof of Lemma 4.15. Let η ∈ argmaxξ∈M
n
+
c

H(ξ). By
Lemma 4.14 we have that η contains a single quasi-square
Q of pluses. Moreover, we may apply Lemma 4.11 or
Lemma 4.12 in the region Λ\Q, then we have ηΛ\(Q∪∂+Q) =

−1Λ\(Q∪∂+Q), otherwise η ̸∈ M .

Proof of Lemma 4.16. Let η ∈ Mn+
c
. By Lemma 4.15, we

have that ηQ = +1Q and ηΛ\(Q∩∂+Q) = −1Λ\(Q∩∂+Q),
otherwise η ̸∈ M . We will prove that if η ∈ M , then
η∂+Q = 0∂+Q. Suppose that there exists x, y ∈ ∂+Q ∩ Λ,
|x − y| = 1, such that η(x) = 0 and η(y) = −1, then
we find η′ ∈ Mn+

c
with H(η′) < H(η) by applying Ta-

ble 2.1 at row 5 (by flipping the minus in y in to zero).
Then, we have either η(x) = −1 for all x ∈ ∂+Q ∩ Λ,
or η(x) = 0 for all x ∈ ∂+Q ∩ Λ. However, in the first
case there exists x, y ∈ ∂+Q ∩ Λ, |x − y| = 1, such that
η(x) = η(y) = −1, then by flipping the two minuses in x

and y into zero, we obtain a configuration η′ ∈ Mn+
c

with
H(η′) = H(η) − 2J + 2(λ − h) < H(η) by applying Table
2.1 at rows 3 and 5. Thus, η∂+Q∩Λ = 0∂+Q∩Λ otherwise
η ̸∈ M .
According to the zero-boundary conditions, the energy of
η depends on the position of Q, then η can contain either
a frame, or a chopped boundary frame or a chopped corner
frame. The energy of these three configuration is computed
in (3.13) and by using (3.14), we can conclude that σc is
the unique argmaxξ∈M

n
+
c

H(ξ).

Proof of Lemma 4.17. Consider a path ω as in the assump-
tion, and we suppose by contradiction that Φ(ω) < H(σ̃c).
If there exists η ∈ Mn+

c +1 ∩ ω such that σc ∼ η, then by
Table 2.1, we obtain

Φ(ω) ≥ H(η) = H(σc) + 4J − (λ+ h) > H(σ̃c). (5.47)

Then, we have σc ∼ η where η ∈ Mn+
c
∩ ω. We note that,

according to Table 2.1, if the configuration contains a clus-
ter of pluses with a quasi-square shape, then the minimal
energy contribution to add a plus is 2J − (λ + h). This is
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possible by flipping a zero with
0

+ · 0
0

nearest neigh-

bors into a plus, however all zero spins in σc have only a
plus and at most two zeros nearest neighbors. Thus, we
obtain η from σc by flipping a minus into zero in order to

create a zero with
0

+ · 0
0

nearest neighbors, otherwise

Φ(ω) ≥ H(σ̃c). We note that the minimal energy contri-
bution to obtain η is (λ − h) when we flip a minus with
at most two minuses nearest neighbors to zero, see Table
2.1. Then, we obtain from η a configuration η′ ∈ Mn+

c

by adding a plus in the site where there is the zero with
0

+ · 0
0

nearest neighbors. However, also in this case we

have Φ(ω) ≥ H(η′) = H(σc)+(λ−h)+2J−(λ+h) = H(σ̃c)

and this is a contradiction. We observe that if we remove
more than one minus before adding a plus, the communi-
cation height is even greater.

Proof of Lemma 4.18. Let ω = (η1, ....ηn), n ∈ N, be a
path as in the assumption. We consider the part of ω

from Mn+
c

to Mn+
c +1 and let ηi ∈ Mn+

c
∩ ω such that

ηi ∼ ηi+1 ∈ Mn+
c +1. If ηi ≡ σc, then we conclude by apply-

ing Lemma 4.17. Thus, suppose that ηi ̸≡ σc and assume by
contradiction that Φ(ω) < H(σ̃c). We have H(ηi) > H(σc)

by Lemma 4.16 and in particular since ηi ̸≡ σc from the
Table 2.1 we have H(ηi) = H(σc) + 2Ja + b(λ − h) with
a ∈ N and b ∈ Z such that 2Ja+ b(λ− h) > 0. Moreover,
ηi ∈ Mn+

c
, σ̃c ∈ Mn+

c +1 and H(ηi) < H(σ̃c), in particular
H(ηi) ≤ H(σ̃c)−2J+(λ+h) according to Table 2.1. Then,
by (4.28) we have

H(σc) < H(σc) + 2Ja+ b(λ− h)

= H(ηi) ≤ H(σ̃c)− 2J + (λ+ h)

= H(σc) + (λ− h). (5.48)

Follows that a = 0, b = 1 and so

H(ηi) = H(σc) + (λ− h). (5.49)

This also implies that ηi contains one less minus spin with
respect to σc. Moreover, ηi ∼ ηi+1 then ηi and ηi+1 differs
for only one plus. Hence, let α ∈ Z, by using Table 2.1,

(5.49) and (4.28), we obtain

H(σ̃c) > Φ(ω) ≥ H(ηi+1)

= H(ηi) + 2Jα− (λ+ h)

= H(σc) + (λ− h) + 2Jα− (λ+ h)

= H(σ̃c) + 2J(α− 1). (5.50)

Thus α ≤ 0. This implies that H(ηi+1) ≤ H(ηi)− (λ+ h)

and, according to Table 2.1, we have that ηi contains (at
least) a zero spin with at least two pluses nearest neighbors,
that is

0
+ · 0

+
,

0
+ · +

+
,

−
+ · +

+
,

+

+ · +

+

.

This implies that the cluster of pluses in ηi has at least a
convex corner and so it has a shape different from a quasi-
square. For this reason and the fact that ηi contains one
less minus spin with respect to σc, we proceed as in proof
of Lemma 4.14 and we can apply (5.45). Thus, we obtain

H(ηi) > H(σc) + (λ− h) (5.51)

and this is a contradiction for (5.49).

Proof of Lemma 4.19. Let ω be a path from σ̃c ∈ Mn+
c +1

to Mn+
c +2 without loops. Then, if there exists η ∼ σ̃c

such that η ∈ ω ∩ Mn+
c +2 then by Table 2.1, we have

Φ(ω) ≥ H(σ̃c) + 2J − (λ + h) and we conclude by (4.28)
and (4.29). Otherwise, if along ω we have that σ̃c ∼ η with
η ∈ Mn+

c +1 then we conclude Φ(ω) ≥ H(σ̃c) + (λ − h) by
using Table 2.1, (4.28) and (4.29).

Proof of Lemma 4.20. Let η ∈ Mn+
c +1 be a configuration

such that H(η) = H(σ̃c). Then, by using the same parti-
tion of the columns and rows in the proof of Lemma 4.14
(see conditions a.,b.,c. and Figure 16, we have

H(η)−H(σ̃c) = 4J(α1 − 2lc) + 2J(α4 − 2L+ 2lc)

+ 6J(α2 + α3) + (n−
c − n−

η )(λ− h)

= 2J(2α1 + α4 + 3α2 + 3α3 − 2L− 2lc)

+ (n−
c − n−

η )(λ− h). (5.52)

Since H(η) = H(σ̃c), follows that 2α1 + α4 + 3(α2 + α3) = 2(L+ lc)

n−
c = n−

η
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The second equality implies that the number of minuses in
η is the same as in σ̃c. Recalling that

∑4
i=1 αi = 2L, we ob-

tain α1+2(α2+α3) = 2lc. Moreover,
∑3

i=1 αi ≥ 2lc indeed
the minimal semi-perimeter of a cluster of pluses with area
n+
c is 2lc by [1]. Then, we derives α2 + α3 = 0. From the

definitions of α2 and α3, it follows that the bonds of type
(+,−) are not present and that the number of bonds (+, 0)

in each column and row is at most two. Hence, α1 = 2lc

and α4 = 2(L − lc). This implies that the union of the
clusters of pluses has a semi-perimeter equal to 2lc. By [1],
such union of clusters has to be contained either in a square
with both side length lc or in a rectangle with side length
lc − 1 and lc + 1. Moreover, the cluster of pluses can not
contain more than one protuberance along each side (oth-
erwise α3 ̸= 0), see Figure 17. We note that the cluster
is in the corner of Λ, otherwise either the number of zeros
is greater than the number of zeros in σ̃c, or η contains at
least a bond (+,−). Finally, we observe that in case the
configuration contains more than one strip of minuses in
at least a column or a row of Λ, then η contains a column
among the α4 columns with an energy contribution of 4J
instead of 2J and so H(η) > H(σ̃c). For the same reason,
the protuberance attached to the cluster is at distance one
from the boundary of Λ, see Figure 17. We may conclude
that η ∈ S .

Figure 17: Examples of clusters of pluses with area n+
c

and the same perimeter of a square with side length lc.
The first three clusters are contained in a configuration of
S .

Proof of Lemma 4.21. We consider a configuration η ∈
S \ {σ̃c}. By the property of S , the cluster of pluses
of every configuration in S has perimeter equal to 2lc, but
the number of the sites along the external-boundary of this
cluster (the so called site-perimeter) changes according to
the number of its concave angles. We note that σ̃c con-
tains 2lc sites along the external-boundary of the cluster
of pluses, instead the other configurations contains k > 1

concave angles (see the second and the third pictures in
Figure 17 for two examples with k = 2). Moreover, every
configuration in S contains 2lc zero spins, thus η ̸≡ σ̃c

contains k ≥ 1 zero spins at distance strictly greater than
one from the cluster. In particular, this zero spins are in
the minimal rectangle containing the cluster of pluses and
they are attached from the zero spins at distance one from
the cluster in order not to create more than one strip of
minuses in each column and row of Λ.
We consider the configuration ηk obtained from η by flip-
ping these k zero spins to minus, see Figure 18. For the
definition of the set S and by using Table 2.1, we have
H(ηk) = H(η) − k(λ − h). By Table 2.1, we note that ηk

is a local minimum, indeed every path from it is an up-hill
path. In particular, since to reach −1−1−1, ω must cross all the
manifold Mn+

c +1, Mn+
c
, Mn+

c −1, ..., M0, then we consider
ηm be the configuration with a protuberance with cardinal-
ity one obtained from ηk, see Figure 18 for an example of
ηm. The path that connected ηk with ηm is a two-steps
down-hill path, where the up-hill is the minimal positive
energy quantum λ − h, thus Φ(η, ηm) ≥ Φ(ω). We obtain
H(ηm) = H(ηk)+m(λ+h)− (m− 1)(λ−h) by flipping m

pluses to zero and m−1 zeros to minus as in Figure 18 and
by using Table 2.1. We note that m ≥ k, indeed the cluster
of pluses contains n+

c + 1 pluses in a rectangle lc × lc (or
(lc − 1)× (lc + 1)) then when it contains γ concave angles
then the protuberance has cardinality more than γ because
the pluses that are not present in the sites of the concave
angles must be located along the protuberance to be inside
the rectangle.

Assume by contradiction that Φ(ω) ≤ H(σs). Thus, we
have

H(σs) ≥ H(ηm) ≥ H(ηk) +m(λ+ h)− (m− 1)(λ− h)

≥ H(η)− (k +m− 1)(λ− h) +m(λ+ h)

= H(σ̃c)− (k +m− 1)(λ− h) +m(λ+ h)

≥ H(σ̃c) + (1− k)λ+ (2m+ k − 1)h

= H(σs)− kλ+ (2m+ k)h

≥ H(σs)− kλ+ 3kh (5.53)

where the equality is obtained by (4.28) and (4.29) and
the last inequality follows from m ≥ k. Then, we ob-
tain a contradiction, indeed H(σs) ≥ H(σs)− kλ+ 3kh ≥
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H(σs)− λ+ 3h > H(σs), since k ≥ 1 and h > λ/2.

Figure 18: On the left, a configuration η ∈ S . In the
middle ηk, with k = 2 in this case. On the right, an ex-
ample of the configuration ηm with m = 3 and such that
H(ηm) = H(ηk) +m(λ+ h)− (m− 1)(λ− h).

Proof of Lemma 4.22. Let ω = (η1, ..., ηk, ..., ηn), n ∈ N,

be a path as in the assumption where η1 ∈ Mn+
c

and
ηn ∈ Mn+

c +2. Thus, along ω, there exists a configura-
tion ηk ∈ Mn+

c +1. Let ωi and ωf be respectively the initial
and the final part of the path ω, i.e., ωi = (η1, ..., ηk) and
ωf = (ηk+1, ..., ηn). By Lemma 4.18, we have Φ(ωi) ≥
H(σ̃c). This implies that Φ(ω) ≥ Φ(ωi) ≥ H(σ̃c). Assume
by contradiction Φ(ω) < H(σs), then

H(σs) > Φ(ω) ≥ H(σ̃c) = H(σs)− (λ− h), (5.54)

where the last equality follows by (4.28) and (4.29). Thus,
Φ(ω) = Φ(ωi) = H(σ̃c) because λ−h is the minimal energy
difference of the model. Follows that there exists a configu-
ration η̃ along ωi such that H(η̃) = H(σ̃c) and η̃ ∈ Mn+

c +1.
Thus, by Lemma 4.20, we obtain η̃ ∈ S . If η̃ ̸= σ̃c, then
by Lemma 4.21 we obtain Φ(ω) ≥ Φ(ωi) > H(σs) and we
conclude the proof. Otherwise η̃ ≡ σ̃c and we conclude by
applying Lemma 4.19.
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