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Drawing Conclusions from Cross-Lagged
Relationships: Re-Considering the Role of the

Time-Interval

Rebecca M. Kuiper and Oisín Ryan
Utrecht University

The cross-lagged panel model (CLPM), a discrete-time (DT) SEM model, is frequently used
to gather evidence for (reciprocal) Granger-causal relationships when lacking an experimental
design. However, it is well known that CLPMs can lead to different parameter estimates
depending on the time-interval of observation. Consequently, this can lead to researchers
drawing conflicting conclusions regarding the sign and/or dominance of relationships.
Multiple authors have suggested the use of continuous-time models to address this issue.

In this article, we demonstrate the exact circumstances under which such conflicting
conclusions occur. Specifically, we show that such conflicts are only avoided in general in
the case of bivariate, stable, nonoscillating, first-order systems, when comparing models with
uniform time-intervals between observations. In addition, we provide a range of tools, proofs,
and guidelines regarding the comparison of discrete- and continuous-time parameter estimates.

Keywords: continuous-time SEM, cross-lagged panel model (CLPM), first-order vector
autoregressive (VAR(1)) model, lagged effects

INTRODUCTION

The cross-lagged panel model (CLPM), a discrete-time (DT)
structural equation modeling (SEM)model, is a popular method
used to analyze longitudinal panel data consisting of multiple
repeated measurements of a set of variables. The CLPM is
conceptually similar to the first-order vector autoregressive
(VAR(1)) model used in time series analysis (cf. Hamilton,
1994), which has seen a recent growth in popularity for the
analysis of experience sampling data (cf. Bolger & Laurenceau,

2013; Chow, Ferrer, & Hsieh, 2011; Hamaker, Dolan, &
Molenaar, 2005). This type of SEM model is particularly
appealing in that it offers the opportunity to assess potentially
Granger-causal (Granger, 1969) or predictive relationships
between variables when lacking an experimental design, using
cross-lagged regression parameters.

However, this type of lagged regression suffers from the
well-known problem of time-interval dependency. That is,
although this model takes into account the longitudinal structure
of the data with respect to the order of measurement occasions, it
does not explicitly account for the amount of time that elapses
between measurement occasions. This has two major practical
implications for researchers. First, if observations within a study
are gathered with unequal time-intervals, the standard CLPM
will lead to biased results, because it will model the unequal
time-intervals as if they were equidistant. Second, even if all
observations are equally-spaced in time, the estimated lagged
effects will be specific to the time-interval used in the study.
That is, the estimated lagged relationships between variables
will vary as a function of the amount of time between measure-
ments (a.o., Gollob & Reichardt, 1987). This means that
researchers who study the same phenomenon with different
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uniform time-intervals will come across different estimates of
seemingly the same lagged effects. Importantly, this can in some
instances lead to researchers studying the same phenomena
coming to opposite conclusions regarding the sign and relative
strengths (i.e., order of predictive dominance) of lagged effects.
To overcome both of the problems posed by the time-interval
dependency issue, the use of a Continuous-Time (CT)Modeling
approach has been suggested repeatedly in the literature (e.g.,
Boker, 2002; Chow et al., 2005; Oravecz, Tuerlinckx, &
Vandekerckhove, 2009; Oud & Delsing, 2010a). In particular,
both Voelkle, Oud, Davidov, and Schmidt (2012) and Boker,
Neale, and Rausch (2004) have demonstrated how these models
can be estimated in SEM-based software.

In the current article, we will focus specifically on the
issue of comparability between CLPM effect estimates of
the same phenomena when different uniform time-intervals
are used in data collection. This is an issue that is particu-
larly important in the social sciences at the moment, where
issues such as replicability and meta-analyses have seen
recent widespread critical attention. We offer an accessible
account of the specific conditions under which conclusions
regarding the sign and relative strengths of effects are invar-
iant under different choices of uniform time-interval.

First, we will begin with an introduction to the key
concepts behind the standard CLPM and its continuous-
time equivalent, both SEM-based approaches, and a treat-
ment of how these models are related to one another. This
treatment includes a number of formulas and tools by which
effect estimates based on another time-interval or time-scale,
or using another model, can be made comparable, with
corresponding R code in an Appendix. Second, we will
examine the issue of researchers who use different uniform
time-intervals to come to different conclusions with regard
to the sign and relative strength of effects. Although pre-
vious authors have been at pains to point out that this can
sometimes occur, we will elucidate the exact circumstances
in which this will or will not occur. In the general case,
within the first-order processes, only when researchers are
studying univariate processes or stable bivariate processes
with real eigenvalues, are such conclusions insensitive to the
choice of uniform time-interval or choice of model. We
conclude with some recommendations for substantive
researchers and a discussion of related pertinent issues.

PRELIMINARIES

In this section, we will introduce the key concepts used through-
out the rest of the article. The CLPM is briefly discussed, along
with some shortfalls of this model which motivate the rest of the
current article. Following this, we briefly introduce the contin-
uous-time model (CTM) that has been suggested by various
authors as a means of overcoming the two time-interval

problems associated with the CLPM, a DT model. Finally, we
will show how these two models can be related in a straightfor-
wardmanner, a finding that is then utilized throughout the rest of
the article.

The Discrete-Time (DT) Cross-Lagged Panel Model
(CLPM)

The CLPM is a popular DT SEM-based model used for the
analysis of longitudinal panel data, that is, data inwhich the same
set of variables is measured repeatedly at several measurement
occasions (cf. Finkel, 1995; Hamaker, Kuiper, & Grasman,
2015; Rogosa, 1980). The CLPM can be seen as an extension
to panel data of the first-order vector autoregressive (VAR(1))
model from time-series analysis (cf. Hamilton, 1994). For the
sake of simplicity, although we will discuss issues relevant to
generalVAR(1)models, wewill use theCLPM term throughout.
In these models, q variables (y) measured at each measurement
occasion (m) are regressed on themselves and each other at the
previous measurement occasion (m� 1). For the sake of nota-
tional simplicity, and without loss of generality, we will assume
throughout that the variables y are standardized, and thus, so too
are all parameter estimates. Notably, when comparing parameter
estimates, one should examine the standardized parameters to
allow for a fair comparison of the size of lagged effect
parameters.

The CLPM can then be represented in the general case,
using solely the structural equation, as:

ym ¼ Φym�1 þ �m (1)

where ym are the q standardized variables of interest at
measurement occasion m, which implies an intercept of
zero and results in standardized parameters; �m represents
a m -vector of errors that are independent and identically
distributed but may be contemporaneously correlated; and
Φ is the q� q matrix consisting of standardized autoregres-
sive and cross-lagged parameters. The elements of the effect
matrix Φ are denoted by ϕjk and represent the effect of
variable j at measurement occasion m� 1 on variable k at
measurement occasion m for j; k ¼ 1; . . . ; q, which is the
same for all measurement occasions (m). In case of a stable
and therefore stationary process, the modulus (i.e., the abso-
lute value) of the eigenvalues are smaller than 1. This
implies that the process is mean-reverting, that is, tends to
drift toward its long-term mean, here, zero, because of the
standardized variables.

An example of a bivariate CLPM is shown in Figure 1.
Researchers who apply the CLPM are generally interested
in the standardized cross-lagged parameters, ϕ12 and ϕ21 in
Figure 1, and the comparison of their relative strengths.
Stability of the constructs is controlled for through the
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inclusion of the autoregressive effects, that is, parameters
ϕ11 and ϕ22 in Figure 1 (cf. Rogosa, 1980). Due to the fact
that the CLPM controls for this stability, it is often believed
that the cross-lagged regression parameters obtained with
this model are the most appropriate measures for studying
causality in longitudinal correlational data (Deary,
Allerhand, & Der, 2009) and determining which variable
has a stronger causal influence on the other (Bentler &
Speckart, 1981). Such conclusions are based on the notion
of Granger causality (Granger, 1969).1 The CLPM is a
flexible model that can be used for many different numbers
of variables. Adaptations of the CLPM have been proposed,
for example, for the study of mediation (Maxwell, Cole, &
Mitchell, 2011) and the estimation of dynamical networks
(Bringmann et al., 2013).

The CLPM can be described as a DTmodel in that the model
does not explicitly account for the length of the time-intervals
between measurement occasions. Thus, the CLPM fails to
account for the fact that: (i) the time-intervals between measure-
ment occasions may be unequal, and (ii) the variables measured
continue to exist and influence each other in-between measure-
ment occasions. Although this may appear to be mainly theore-
tical or conceptual concerns, the DT nature of the CLPM has
rather practical implications for researchers. As has been pointed
out by numerous researchers (e.g., Gollob & Reichardt, 1987;
Pelz & Lew, 1970; Voelkle & Oud, 2013), the estimated cross-
lagged and autoregressive effect matrix Φ may vary as a func-
tion of the length of the time-interval, that is, the amount of time
that elapses, between two consecutive measurement occasions:
Δtm ¼ tm � tm�1, where tm represents the exact time point at
which measurementm is made. This means that two researchers

studying the same phenomenon may come across completely
different estimates of the same effects purely due to differences
in the choice of which time-interval to use, even when they both
have equal time-intervals between measurements within their
studies.

To reflect the time-interval dependency of the CLPM, we
can rewrite the DT effect matrix Φ as ΦðΔtmÞ. Notably, in
the case of unequal time-intervals, the estimated Φ matrix is
a mix of ΦðΔtmÞ estimates for different time-intervals and
thus most probably a biased estimate. Therefore, in this
article, we will focus on applications of the CLPM in
cases where there is a uniform time-interval of measure-
ment, that is, Δtm ¼ Δt for all m. Consequently, we will use
ΦðΔtÞ throughout the article.

Continuous-Time Model (CTM) Equivalent of the CLPM

CTM overcomes the time-interval dependency problem by
explicitly taking the time-interval dependent nature of the
relationships between variables at different measurement occa-
sions into account. Conceptually, the CTM assumes that the
processes of interest take on values and, moreover, influence
each other at every moment in time, not only on the occasions
at which the researcher measures them. For a substantive
rationale for using this type of model in a psychology or social
science setting, we refer readers to Boker (2002).

The CTM of interest in this case is the first-order sto-
chastic differential equation model also referred to as the
multivariate Ornstein-Uhlenbeck process, that is,

dyðtÞ
dt

¼ AyðtÞ þ Ω
dwðtÞ
dt

(2)

where the q� qmatrixA, referred to as the drift matrix, contains
the standardized parameters which relate the values of the stan-
dardized variables in y at a particular time t to the derivative (i.e.,
rate of change) in yðtÞwith respect to time (Oravecz, Tuerlinckx,

FIGURE 1 Bivariate relationship between y1 (e.g., child health) and y2 (e.g., maternal health) for time points t ¼ 0; . . . ; ðT � 1ÞΔt with autoregression parameters
ϕ11 and ϕ22, and cross-lagged parameters ϕ12 and ϕ21. In case of a symmetric relationship, the cross-lagged/reciprocal parameters are equal, that is, ϕ12 ¼ ϕ21.

1 Various assumptions about the underlying causal process and model
are needed for reliable interpretation of these effects as representing causal
quantities. These will not be detailed or critically evaluated in the current
article.
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& Vandekerckhove, 2011; Oud & Delsing, 2010b; Voelkle &
Oud, 2013). The elements of A are denoted αjk , representing the
standardized effect of variable j on the rate of change in variable
k for j; k ¼ 1; . . . ; q. In case of a stable and therefore stationary
process, the eigenvalues of A are negative. The last term on the
right-hand side of Equation 2 is the continuous-time version of a
random error process that is independent and identically distrib-
uted, but may be contemporaneously correlated. For a detailed
discussion, see among others Oud and Delsing (2010b) and, for
details on how this model can be estimated in a SEM-frame-
work, see e.g., Boker (2002); Oud and Delsing (2010b).

This CTM can be considered the continuous-time analoge of
a DT VAR(1) process, that is, the CLPM shown in Equation 1.
However, the differential equation at the heart of the CTM
approach represents quite a different approach to modeling
longitudinal processes than the CLPM. The effect matrix A at
the core of the model, shown in Equation 2, does not represent
the relationships between variables at different measurement
occasions, but rather the relationship between the values of the
variables y at time t and their instantaneous rate of change. In
other words, the drift matrix represents how we would expect
the values of the variables y to change over a very short time-
interval after time t, given the values of those variables at time t.
The drift matrix controls the strength and the direction of the
centralizing tendency or dampening force (Oravecz &
Tuerlinckx, 2011; Oravecz et al., 2009): the tendency to stay
near the average position of the process (i.e., µ), which is zero in
case of standardized variables. For more details regarding the
interpretation of the drift matrix, see Ryan, Kuiper, and
Hamaker (in press).

Relating the CTM and the Discrete-Time Model (CLPM)

Although the DT CLPM and the CTM discussed above repre-
sent distinct ways of modeling longitudinal processes, they are
related to each other. It can be shown that the DT effect matrix
ΦðΔtÞ is actually a function of the drift matrix A:

ΦðΔtÞ ¼ eAΔt (3)

whereΦðΔtÞ,A and Δt are as defined above, and e is the matrix
exponential (if q > 1). Equality 3 will be key to the ideas and
tools presented in this article, as well as the proofs supporting
them. For an accessible introduction to the matrix exponential
and the logic behind this equality, see Voelkle et al. (2012).

Note that all CTMs have a unique DT-model equivalent;
however, not all DT models have a unique CTM equivalent.
Furthermore, when the DT process is not smooth and differ-
entiable (Boker & Nesselroade, 2002), there is no CTM
equivalent at all. An example is a univariate, first-order, auto-
regressive process with a negative autoregressive parameter,
because an exponential is always positive.2 As such, we will
refer to DT models with a CTM equivalent as ones that exhibit
‘positive autoregression’. Note that such ‘positive

autoregression’, first-order processes are often plausible
when analyzing psychological processes (cf. Koval &
Kuppens, 2012; Oravecz & Tuerlinckx, 2011). In some
cases, there may be many CTMs which generate the same
DT-model effect matrix ΦðΔtÞ. This occurs when ΦðΔtÞ has
complex eigenvalues, meaning there are multiple periodic-
equivalent or aliasing drift matrices A (cf. Hamerle, Nagl, &
Singer, 1991; Yue, Thunberg, & Goncalves, 2016). In practice,
this means that we cannot solve uniquely for A given ΦðΔtÞ
with complex eigenvalues. Notably, the converse is possible,
that is, one can solve uniquely for ΦðΔtÞ given an A with
complex eigenvalues.

We present here some properties of the exponential rela-
tionship which will be used in the proofs found in later
sections of the article. We make use of an eigenvalue
decomposition of the effect matrix A, that is,

A ¼ VDAV
�1 (4)

where V is a matrix of eigenvectors and DA is a diagonal
matrix containing the eigenvalues of A. For more details on
this, see Appendix A. The decomposition in (4) is important
as it allows us to more explicitly define how we can solve
for A and ΦðΔtÞ given one or the other, as will be discussed
next, which is helpful in comparing effect estimates.
Appendix B gives the accompanying proofs, as well as
details on how to calculate the expressions in the statistical
programming language R (R Core Team, 2013).

To find ΦðΔtÞ given A we can use,

ΦðΔtÞ ¼ eAΔt ¼ V eDAΔt V�1 (5)

where eDAΔtð¼ DΦðΔ tÞÞ represents the diagonal matrix con-
taining the scalar exponentials of the eigenvalues of A
multiplied by the scalar Δt. We can use this to relate any
two ΦðΔtÞ matrices which use different uniform time-inter-
vals, say, Φðd1Þ and Φðd2Þ, with the equality,

Φðd2Þ ¼ ðΦðd1ÞÞ
d2
d1 : (6)

Furthermore, we can solve for A given any ΦðΔtÞ by using,

A ¼ V ðlogðDΦðDtÞÞ=ΔtÞV�1; (7)

whereDΦðDtÞ is the diagonal matrix containing the eigenvalues
of ΦðΔtÞ. It is important to note that this expression should
only be used whenΦðΔtÞ does not have complex eigenvalues.

With regard to the comparison of drift matrices A between
researchers, different estimates can result from the same pro-
cess or even the same data if researchers choose a different
time-scale. That is, the estimate of A depends on the unit of
time we choose for Δt (e.g., half-hours vs. hours or weeks vs.

2When using another specification of the CTM, it can model first-order
DT processes with negative eigenvalues: Fisher (2001) demonstrates this
with the use of two continuous-time Ito processes.
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months). However, assuming each researcher is capturing the
same underlying dynamics, no contradictory conclusions will
result: see Appendix B for more details, including a useful
transformation to use in case of different time-scales.

COMPARING RESULTS BASED ON DIFFERENT
UNIFORM TIME-INTERVALS

Until now we have seen that the parameter estimates of the
CLPM vary as a function of the time-interval between
measurements, and introduced the alternative CTM that
explains this phenomenon. We now wish to establish in
what circumstances this time-interval dependency leads to
misleading or inconsistent substantive conclusions. We first
distinguish three types of substantive conclusions research-
ers may be interested in. Subsequently, we examine whether
inconsistencies in these conclusions occur due to the use of
different uniform time-intervals, in the context of bivariate
and higher-variate CLPMs.

Three Types of Substantive Conclusions in Terms of
Standardized Model Parameters

Here, we define three main types of conclusions which
researchers are generally interested in, and which are
based on the relative size or sign (positive vs. negative)
of parameters of the CLPM. For each of these types, we
end with an example of a misleading result in terms of
matrix elements ðp; sÞ (i.e., ϕpsðΔtÞ) which can occur
using two different uniform time-intervals, namely for
Δt ¼ d1 and d2 (both finite and positive). Notably, we
express these inequalities in terms of the population para-
meters, and not estimates. The reason for this is that we
wish to make clear that these are misleading conclusions
which may occur even in scenarios in which the para-
meter estimates are highly precise.

I. Order of dominance of the standardized autoregression
effects.

Although researchers are generally more interested in
the cross-lagged effects, they may also be interested in
determining which of the processes under investigation
is most stable by comparing the size of the correspond-
ing standardized autoregressive effects. For instance,
Koval and Kuppens (2012) study the autoregressive
relationship of emotional inertia, and individual differ-
ences therein.

A misleading result is obtained if, for example,

ϕppðd1Þ > ϕssðd1Þ ϕppðd2Þ < ϕssðd2Þ; for p � s:

II. Order of dominance of the cross-lagged effects.
Researchers are generally interested in whether the standar-

dized cross-lagged effect of y1 on y2 is greater than the stan-
dardized cross-lagged effect of y2 on y1, or vice versa. For

instance, Nohe, Meier, Sonntag, and Michel (2015) conduct a
meta-analysis in which they compare the lagged effect of
work-family conflict on strain to the lagged effect of strain
on work-family conflict. As another example, in a sample of
persons diagnosed with burnout, Schuurman, Ferrer, De Boer-
Sonnenschein, and Hamaker (2016) investigated whether the
effect of competence at occasion m� 1 on exhaustion at
occasion m was stronger or weaker than the corresponding
cross-lagged effect of exhaustion on competence.

A misleading result is obtained if, for example, for ‘cor-
responding’ cross-lagged effects,

ðaÞ ϕpsðd1Þ > ϕspðd1Þ & ϕpsðd2Þ < ϕspðd2Þ; for p � s

In the general multivariate case, we may also be inter-
ested in comparing any cross-lagged parameters we esti-
mate. In this case, a misleading result is obtained if:

ðbÞ ϕpsðd1Þ> ϕuvðd1Þ & ϕpsðd2Þ< ϕuvðd2Þ; for p� s and u� v

III. Sign of the standardized cross-lagged effect.
Researchers are also generally interested in whether, for

example, the cross-lagged effect of y1;m�1 (e.g., physical well-
being) on y2;m (e.g., social well-being) is positive or negative.
For example, Schuurman et al. (2016) inspect and interpret the
sign of the cross-lagged effects before comparing the ordering.

A misleading result is obtained if, for example,

ϕpsðd1Þ > 0 & ϕpsðd2Þ < 0; for p � s:

These are three types of conclusions, regarding the ordering
and sign of the lagged effects, which are commonly of
interest to substantive researchers. The interested reader is
referred to the Misleading Results section where we, among
others, discuss other possible substantive conclusions
researchers might wish to make.

No Misleading Conclusions: Bivariate, Stable,
Nonoscillating, First-Order Systems

We first inspect the case of bivariate CLPMs, that is, bivari-
ate first-order systems, see Figure 1 for an example. Let us
assume, without loss of generalization, the following values
for the 2� 2 eigenvector-matrix V and the 2� 2 eigenva-
lue-diagonal-matrix DΦðd1Þ of ΦðΔt ¼ d1Þ:

V ¼ v11 v12
v21 v22

� �

DΦðd1Þ ¼
λ1 0
0 λ2

� �
;

with λ1 and λ2 the eigenvalues of ΦðΔt ¼ d1Þ.3
Consequently, V�1 is given by:

3Often the eigenvectors are chosen such that the sum of the squared
elements are 1; e.g., v211 þ v221 ¼ 1.
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V�1 ¼ 1

jV j
v22 �v12
�v21 v11

� �
; where jV j

¼ v11 � v22 � v12 � v21;
and Φðd1Þ by

Φðd1Þ ¼ 1

Vj j
v11 � λ1 � v22 � v12 � v21 � λ2 �ðλ1 � λ2Þ � v11 � v12

ðλ1 � λ2Þ � v21 � v22 �v12 � v21 � λ1 þ v11 � v22 � λ2

� �
:

From Equation 6, using n ¼ d2=d1 for ease of notation, it
follows that:

Φðd2Þ ¼ ðΦðd1ÞÞn
¼ V ðDΦðd1ÞÞnV�1

¼ 1

Vj j
v11 � λn1 � v22 � v12 � v21 � λn2 �ðλn1 � λn2Þ � v11 � v12

ðλn1 � λn2Þ � v21 � v22 �v12 � v21 � λn1 þ v11 � v22 � λn2

� �
;

with

ðDΦðd1ÞÞn ¼
λn1 0
0 λn2

� �
:

We can assess whether it is possible for misleading conclu-
sions I to III to occur in the bivariate case by expressing the
associated parameter inequalities in terms of eigenvalues
and eigenvectors. Namely, all three types of misleading
results are obtained when the sign of ðλ1 � λ2Þ differs
from that of ðλn1 � λn2Þ.

Thus, to assess whether these types of misleading con-
clusions can occur in bivariate, first-order systems based on
the use of a different uniform time-interval, it suffices to
assess whether there exists an λ1, λ2 and n such that λ1 > λ2
and λn1 < λn2 or vice versa. For a stable, ‘positive autoregres-
sion’, first-order process with real eigenvalues, the eigenva-
lues λ1 and λ2 of Φðd1Þ lie between 0 and 1. In that case,
there exist no n such that the sign of ðλ1 � λ2Þ differs from
that of ðλn1 � λn2Þ. Therefore, misleading conclusions I to III
cannot occur when inspecting bivariate, stable, ‘positive
autoregression’, nonoscillating, first-order systems employ-
ing different uniform time-intervals. Notably, the conclu-
sions one would draw from the continuous-time effect
matrix A in a bivariate, stable, nonoscillating, first-order
setting are the same as those one would draw from DT
model at any uniform time-interval, which is shown in
Appendix C.

In sum, researchers will not come to misleading or
inconsistent conclusions I to III in the case of bivariate,
stable, first-order systems with real eigenvalues due to the
use of a different uniform time-interval; that is, it is not
possible to: (i) obtain a different sign in cross-lagged effects;
(ii) find a different dominant cross-lagged effect; or (iii) find

a different dominant autoregression effect. We will illustrate
this next with an example.

Example

We will use the artificial example of Voelkle et al.
(2012): Suppose, we are examining two variables (q ¼ 2),
child’s health and maternal health. We are interested in the
effect of child’s health (y1;m�1) on maternal health one time
period later (y2;m), as well as the effect maternal health
(y2;m�1) has on child health one time period later (y1;m),
that is, ϕ12 and ϕ21 in Figure 1. Assume that the underlying
drift matrix is given as:

A ¼ �0:4472 0:2320
0:0435 �0:1170

� �
:

Now, take that we collect data generated by this under-
lying continuous-time process at time-intervals of Δt ¼ 1
(e.g., months). Estimating the DT standardized effect
matrix (asymptotically) yields:

ΦðΔt ¼ 1Þ ¼ 0:64 0:18
0:03 0:89

� �
:

Examining this effect matrix, we could make the following
three conclusions: (i) maternal health is more stable, that is,
has a stronger standardized autoregressive effect, than
child’s health, that is, ϕ22 ¼ 0:89 > ϕ11 ¼ 0:64; (ii) the stan-
dardized effect of maternal health on child’s health is greater
than the effect of child’s health on maternal health, that is,
ϕ12 ¼ 0:18 > ϕ21 ¼ 0:03; (iii) both standardized cross-
lagged effects are positive, that is, ϕ12 ¼ 0:18 > 0 &
ϕ21 ¼ 0:03 > 0.

Now, suppose that we had chosen a time-interval for
data collection that was twice as long, that is, Δt ¼ 2
(e.g., bi-monthly). In that case, we would have (asymp-
totically) come to the following DT standardized effect
matrix:

ΦðΔt ¼ 2Þ ¼ 0:42 0:27
0:05 0:80

� �
:

We can see that, although the standardized estimates for
each cross-lagged and autoregressive effects change with
this new time-interval, the conclusions drawn from this
effect matrix are same as for those drawn from the matrix
with the shorter time-interval: (i) ϕ22 ¼ 0:80 > ϕ11 ¼ 0:42;
(ii) ϕ12 ¼ 0:27 > ϕ21 ¼ 0:05; and (iii) ϕ12 ¼ 0:27 > 0 &
ϕ21 ¼ 0:05 > 0.

Using Equation 5, we can derive the DT standardized
effect matrix for any time-interval. This can be plotted,
as done in Figure 2, and is referred to as ΦðΔtÞ plot in
this article. The ΦðΔtÞ in Figure 2 shows that, for all
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time-intervals, one will not find misleading conclusions:
(i) & (ii) the autoregressive and cross-lagged effects do
not cross each other, which implies no difference in
order of dominance; and (iii) the cross-lagged effects
do not cross the zero-line at any time-interval, which
implies the same sign over the whole time range.

Furthermore, we can see that we reach the same
conclusions when examining only the drift matrix A:
(i) maternal health (y2) is more stable, that is, has an
autoregressive effect closer to zero, than child’s health,
that is, α22 ¼j j � 0:1170j j < α11 ¼j j � 0:4472j j; because
the diagonal elements will often be negative, we can
also state: α22 ¼ �0:1170 > α11 ¼ �0:4472; (ii) the
effect of maternal health on child’s health are greater
than the effect of
child’s health on maternal health, that is,
α12 ¼ 0:2320 > α21 ¼ 0:0435; (iii) both cross-lagged
effects are positive, that is, α12 ¼ 0:2320 > 0 &
α21 ¼ 0:0435 > 0.

In the next subsection, we will discuss that equiva-
lence of conclusions I to II drawn in the context of
different uniform time-intervals of measurement does
not hold in general when we are dealing with other
types of bivariate systems or systems of more than two
variables.

Misleading Conclusions

Although the substantive conclusions I to III are robust for using
different uniform time-intervals in DT, first-order models that
are bivariate, stable, and nonoscillating, this serves as the

exception that proves the rule. To the best of our knowledge,
the only equivalence that does exist in general is in the case of
symmetric effects matrices, implying equal ‘corresponding’
cross-lagged effects, which is shown in Appendix D. Namely,
if one finds a symmetric relationship, this will also be symmetric
with every other choice of time-interval and model.
Consequently, ϕps ¼ ϕsp (and also αps ¼ αsp) for all s; p ¼
1; . . . ; q and thus misleading conclusion IIa will not occur.
Nevertheless, misleading conclusions I, IIb, and III are still
possible when modeling a system of more than two variables.
Moreover, in case of a nonsymmetric effects matrix, even all
substantive conclusions can bemisleading, that is, I, IIa, IIb, and
III. Multiple examples of misleading results in trivariate, first-
order systems can be found in, for instance, Oud (2002, pp.
13–15) and Reichardt (2011).

In sum, except for DT, first-order models that are
bivariate, stable, and nonoscillating misleading results
can arise, also for the other bivariate, first-order systems.
The remaining systems can be classified as follows:

● bi- and higher-variate, first-order systems with com-
plex eigenvalues (both stable and unstable);

● bi- and higher-variate, unstable, first-order systems
with real eigenvalues;

● tri- and higher-variate, stable, first-order systems with
real eigenvalues.

Next, we will illustrate that misleading results can arise in
the above classes of systems, by giving a (counter-)example.
Additionally, we will illustrate that misleading results can arise
when inspecting other types of conclusions, already in case of
bivariate, stable, nonoscillating, first-order systems.

Bivariate, first-order systems with complex
eigenvalues counter-example

In case of bivariate, first-order systems with complex
eigenvalues, researchers can draw misleading conclusions I
to III from ΦðΔtÞ depending on the time-interval chosen. In
Appendix E we show that it is possible to specify ranges of
Δt for which the sign and order of dominance (of autore-
gressive and of cross-lagged parameters) are invariant.
Furthermore, we show that for every other range the sub-
stantive conclusions I to III made from ΦðΔtÞ match those
made from the drift matrix. Figure 3 displays the ΦðΔtÞ plot
for a system with

A ¼ �1:79 0:79
�3:93 �0:21

� �
:

This drift matrix reflects an oscillating system with eigenvalues
� 1� � 0:5π and eigenvectors ð1; 1� � 2Þ. From the ΦðΔtÞ
plot, one can see that for Δt between 0 and 2 and between 4 and
6: (i) ϕ11 < ϕ22; (ii) ϕ12j j < ϕ21j j; and (iii) ϕ12 > 0 & ϕ21 < 0.
Thus, for time-intervals Δt between 0 and 2 and between 4 and
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FIGURE 2 ΦðΔtÞplot: A bivariate example of how the parameter values
(i.e., the elements in ΦðΔtÞ) change as a function of the time-interval Δt.
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6, substantive conclusions I to III are not misleading. From the
ΦðΔtÞ plot, one can also see that for Δt between 2 and 4: (i)
ϕ11 < ϕ22; (ii) ϕ12j j > ϕ21j j; and (iii) ϕ12 < 0 & ϕ21 < 0. Thus,
for time-intervals Δt between 2 and 4, substantive conclusions I
to III are not misleading. Note that the results for these ranges
differ. Hence, for some combinations of Δt values, one will
obtain misleading conclusions I to III. Additionally, from the
drift matrix, one concludes that: (i) α11 ¼ 1:79 >j jα22j ¼ 0:21j ;
because the diagonal elements are negative, we can also state:
α11 ¼ �1:79 < α22 ¼ �0:21; (ii) α12j j ¼ 0:79 < α21 ¼ 3:93;
(iii) α12 ¼ 0:79 > 0 & α21 ¼ �3:93 < 0. Thus, for time-inter-
vals Δt between 0 and 2 and between 4 and 6, substantive
conclusions I to III are not misleading when comparing it to
the ones based on A. However, for time-intervals Δt between 2
and 4, conclusions I to III are misleading when comparing it to
the ones based on A. Be aware that, when we are dealing with
processes with complex eigenvalues, one needs to estimate the
CTM directly, rather than apply the transformation in Equation
13. That is to say, given the nonunique solutions when solving
for A from a ΦðΔtÞ with complex eigenvalues (e.g., using
Equation 13), even the various possible (i.e., aliasing) drift
matrices may lead to different conclusions regarding the signs
and orderings of dominance. This can, for example, be seen
from the aliasing drift matrices found in Hamerle et al. (1991,
pp. 203, 209).

In sum, in case of bi- or higher-variate systems with complex
eigenvalues, conclusions I to III based on DT-model effect
estimates may be contradictory depending on the time-interval
of observation.

Bivariate, unstable, first-order systems with real
eigenvalues counter-example

When the bi- or higher-variate, first-order process
with real eigenvalues is not stable, conclusions I to III
can be contradictory across different time-intervals. A
first-order process is unstable if at least one eigenvalue
has a positive real part. In Figure 4 the ΦðΔtÞ plot is
depicted for a bivariate, first-order process with one
positive and one negative eigenvalue. Here, we see that
the ordering of effects changes for Δt > 2.

Trivariate, stable, first-order systems with real
eigenvalues counter-example

Let us consider the following 3� 3 drift matrix:

A ¼
�0:39 0:01 0:00
0:32 �0:35 �0:04

�1:46 1:18 �0:83

0
@

1
A;

where all three eigenvalues are real and negative: −0.67,
−0.55, and −0.35, thus reflecting a stable and therefore
stationary process with real eigenvalues. In Figure 5, one
can see how the elements in ΦðΔtÞ change as a function of
Δt. When inspecting the autoregressive effects, one can see
that the ordering for ϕ11 and ϕ22 changes as a function of the
time-interval Δt, that is, for small time-intervals, ϕ11 is lower
and, for longer time-intervals (approximately Δt > 2:5), it is
higher than ϕ22. Hence, we see misleading conclusion I.
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FIGURE 3 TheΦðΔtÞ plot for a bivariateΦðΔtÞwith complex eigenvalues,
where conclusions I to III may differ per time-interval Δt.

0 1 2 3 4 5 6

0
5

10

Φ(Δt) plot:
How do the VAR(1) parameters vary

as a function of the time−interval

Time−interval (Δt)

Φ
(Δ

t) 
va

lu
es

Φ(Δt)11

Φ(Δt)12

Φ(Δt)21

Φ(Δt)22
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negative and one positive real eigenvalue, where conclusions I to III may
differ per time-interval Δt.
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When inspecting the cross-lagged effects, one can see
that the ordering for ϕ21, ϕ31, and ϕ32 changes depending on
the employed time-interval. At first, the ordering from high
to low is: ϕ32, ϕ21, and ϕ31, Then, just before Δt ¼ 6, the
order of ϕ32 and ϕ21 changes. Furthermore, at approximately
Δt ¼ 7 and Δt ¼ 9, the ϕ31-line crosses that of ϕ32 and ϕ21,
respectively. Hence, we see misleading conclusion IIb.
Consequently, the conclusions about predictive strength
depends on the choice of time-interval. Notably, we expect
that one mostly wants to compare the counterparts of each
cross-lagged effect, as in conclusion type IIa. We can see
that ϕ31 (green dotted line) crosses ϕ13 (black dotted line).
Hence, we see also specifically misleading conclusion IIa.

Furthermore, we also see that for small time-intervals ϕ31
is negative; whereas, for larger time-intervals (higher than 5)
the sign of this effect is positive.4 Hence, we see misleading
conclusion III. Notably, this change in sign is because each
lagged-effect parameter is a nonlinear function both of the
time-interval Δt and every other element in the underlying
drift matrix A. In terms of interpretation, Deboeck and
Preacher (2016) have suggested for this reason that, in a
mediation context, the elements of ϕðΔtÞ should be

interpreted as total effects rather than direct effects. For a
further discussion of this issue in the case of more-than-
bivariate CT models, see Aalen, Røysland, Gran, and
Ledergerber (2012).

In sum, in this example, we can generate misleading
conclusions I to III, based on a single tri-variate, stable,
first-order process with real eigenvalues.

Other types of conclusions counter-example

Bear in mind that we have dealt with specific types of
conclusions that are commonly of interest. One may, for
example, also be interested in whether the lagged effect
of a variable on itself is greater or smaller than the lagged
effect of this variable on another variable. Such a conclu-
sion is time-interval dependent, even in the bivariate case
with real, negative eigenvalues. For example, in Figure 2
one can see that at first, ϕ11 > ϕ12, but after the time-
interval where the black lines cross the ordering reverses
(i.e., ϕ11 < ϕ12). Thus, some conclusions might be mis-
leading in a bivariate, stable, nonoscillating, first-order
system.

Moreover, the conclusions we focus on address com-
parisons of (cross-)lagged effects with each other
(inspecting the ordering of dominance) or with zero
(inspecting the sign) and do not address significance
testing. Testing whether an autoregressive or cross-
lagged parameter is different from zero depends on the
chosen time-interval, but not on the time-scale. Hence,
when the goal is significance testing, one should defi-
nitely use the CTM. Notably, the significance testing
result depends on a number of other factors, like sample
size. It is possible that in a realistic scenario, further
misleading conclusions will occur due to insufficiently
precise parameter estimates, or high uncertainty regard-
ing these estimates.

SUMMARY AND RECOMMENDATIONS

When studying time-varying phenomena, progress in any
substantive area of interest is dependent on researchers
being able to compare the effects estimated in different
studies. We showed, in the case of the common CLPM – a
DT, first-order model – how results based on other time-
intervals, —scales, or from different types of models (i.e.,
DT vs. CT) can be made comparable and facilitated this
with existing R functions.

Additionally, we have shown the exact circumstances
under which drawing three common types of conclusions
regrading ordering and sign of lagged effects from a CLPM
for a particular uniform time-interval is unproblematic. We
have shown that this only holds for bivariate, stable, non-
oscillating, first-order systems. That is, it is not possible to:
(i) find a different dominant autoregression effect; (ii) find a
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FIGURE 5 The ΦðΔtÞ plot for a trivariate ΦðΔtÞ, with change in dom-
inance and sign, that is, where conclusions I to III may differ per time-
interval Δt.

4 Oscillating patterns in our first-order processes of interest occur in the
case of complex eigenvalues for two or more variables, and can also occur
in case of real eigenvalues when inspecting three or more variables, like in
our example. When looking at a vector field (see Strogatz, 1994), one can
see the differences between these two scenarios; in case of complex eigen-
values, the trajectory is like a spiral.

CROSS-LAGGED CONCLUSIONS 817



different dominant cross-lagged effect; or (iii) obtain a dif-
ferent sign in cross-lagged effects for such processes.
Furthermore, we showed that under these constraints,
researchers will draw the same conclusions (regarding
types I to III) when they interpret the first-order continu-
ous-time model effect matrix directly rather than the first-
order DT effect matrix for a particular interval.

It should be stressed that the conditions for the three
‘common conclusions’ to be not misleading are strict,
namely within the first-order systems only the bivariate,
stable processes with real eigenvalues. Consequently, in
the general case, it might be best advised to inspect the
CTM parameter, that is, the drift matrix; either by trans-
forming the results of a DT model or estimating the CTM
directly. Namely, the drift matrix A allows for straightfor-
ward comparisons between the results of studies which use
different time-intervals of measurement, because it repre-
sents a time-interval invariant way of expressing the sign
and strength of influence between two processes. When
comparing two or more studies via the CTM parameter
estimate A, one only needs to ensure that you correct for
the use of different time-scales (e.g., months vs. weeks), as
outlined in Appendix B.

DISCUSSION

A restriction needed for the comparison of two CLPM effect
matrices is that within each study all the time-intervals are
equally spaced. Note that this is to ensure that the DT model
is not a (biased) mixture of parameter estimates for different
time-intervals. In certain contexts (e.g., in large-scale panel
surveys) this is a more realistic assumption than in others (e.g.,
in Experience SamplingMethod studies). One practical solution
to the problem of unequally spaced time-intervals in the estima-
tion of the CLPM is to insert missing data such that the data
have (approximately) equal time-intervals, that is, are (approxi-
mately) equally-spaced in time. Such a practical solution could
thus allow researchers to use the CLPM and compare CLPM
results from studies in which time-intervals are (made) approxi-
mately equal. We note, however, that this equally-spaced data
assumption of the CLPM does not imply that all researchers
should collect equally-spaced data. To the contrary, it might be
advantageous to use unequal time-intervals to ensure that we
have a chance to observe or better estimate oscillating patterns
(Voelkle & Oud, 2013, Section 1.2). Additionally, one should
then apply the CTM to the unequally spaced data and draw
conclusions from the resulting drift matrix.

In this article, we restrict ourselves to first-order pro-
cesses which display ‘positive autoregression’, that is, sys-
tems which can be modelled with first-order CTMs, as
specified in this article. That is, first-order DT processes
with real, negative eigenvalues cannot be represented by a
first-order CTM like specified in Equation 2.

We showed that, only in bivariate, stable, first-order
systems in which the eigenvalues of the effect matrix are
real, researchers using different uniform time-intervals
will not in general come to contradictory conclusions
regarding the sign and relative ordering of effects. This
can be interesting when, for example, studying one phe-
nomenon in dyads with an observational study such that
the intervals are (approximately) equal. However, this
finding should not be taken as an argument for examining
only bivariate (stable, first-order) relationships. Namely,
when a system is truly trivariate and when omitting a
relevant variable, the results will be affected accordingly
(i.e., the resulting bivariate autoregression matrix will not
be a subset of the one obtained by the trivariate model,
see Kuiper & Hamaker, n.d.). Thus, to make reliable
conclusions, it is necessary to include all relevant vari-
ables in your model.

From our results, one can conclude that in the general case,
researchers should draw their substantive conclusions on the
basis of the drift matrix, rather than the DT effect matrix at a
particular time-interval. This can be done in two ways; by
indirect or direct estimation of the CTM. The indirect method
of CTM estimation consists of first estimating the CLPM and
then solving for the underlying drift matrix. However, this
method can only be applied under the constraint that the true
drift matrix has real eigenvalues (cf. Hamerle et al., 1991; Yue
et al., 2016). Notably, in case the drift matrix (estimate) has
complex eigenvalues, the drift matrix cannot always be uniquely
solved for by the DT effect matrix for a particular interval.
Additionally, transformations of ΦðΔtÞ for different time-inter-
vals then are only uniquely defined for multiples of the chosen
time-interval Δt. Thus, if there is cyclic behavior, direct estima-
tion of the CTM may be more appropriate. One may also wish
then to estimate a second-order rather than a first-order differ-
ential equation model. Direct estimation of the CTM has numer-
ous other advantages; for example, multilevel CTMs can
account for having different time-intervals between measure-
ment both within- and between- participants, as is common in
Experience Sampling Method data.5

To conclude, we have shown the exact circumstances
under which drawing three common types of conclusions
regarding the ordering and sign of lagged effects from a
CLPM for a particular uniform time-interval is unproblematic.
We have shown that this only holds for bivariate, stable, first-
order systems in which the eigenvalues of the effect matrix
are real. In the more general case, we have shown that taking

5One can find specifications of multilevel CTMs in, for instance,
Oravecz and Tuerlinckx (2011) and Voelkle and Oud (2013). Various soft-
ware packages exist to estimate CTMs, for example, the Bayesian
Hierarchical Ornstein-Uhlenbeck Model (BHOUM) toolbox package
(Oravecz, 2014); CT-SEM (Driver, Voelkle, & Oud, 2017), an R package
based on OpenMx and STAN, for modeling continuous-time appropriately;
and generalized local linear approximation (GLLA) via OpenMx (Boker,
Deboeck, Edler, & Keel, 2010).
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a CT modeling approach leads to more clarity and describes
more accurately (in a time-interval invariant way) how
dynamic processes relate to one another.
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APPENDIX A

Eigenvalue Decompositions

Based on the eigenvalue decomposition, a (diagonalizable)
square matrix A can be written as:

A ¼ VDV�1; (8)

where V is a (nonsingular) matrix containing the eigen-
vectors of A, and D is a diagonal matrix containing the
(distinct) eigenvalues of A.

For A2, it holds true that:

A2 ¼ ðVDV�1ÞðVDV�1Þ ¼ VðDÞ2V�1; (9)

By induction, this yields:

An ¼ VðDÞnV�1; (10)

for positive reals n and for all reals n when none of the
eigenvalues of A are zero. For the interested reader: in case
of complex eigenvalues, there does not exist a unique solu-
tion when n is not an integer.

Using Equations 8 and 10, it holds true that:

eAΔt ¼
X1
l¼0

ðΔtÞl A
l

l!

¼
X1
l¼0

ðΔtÞl VðDÞlV�1

l!

¼ V
X1
l¼0

ðΔtDÞl
l!

 !
V�1

¼ VeDΔtV�1:

(11)

Notably, there are multiple methods which can be used to calcu-
late the matrix exponential, a more detailed description on these
types of methods can be found in Moler and Van Loan (2013).

Note that the eigenvectors for A and eAΔt (= ΦðΔtÞ) are the
same and that their eigenvalues are related byD versus eDΔt (=
DΦðDtÞ), where the latter depends on the time-interval.
Consequently, it holds that D ¼ logðDΦðDtÞÞ=Δt, which is
independent of the time-interval.

APPENDIX B

Details on Relating DT and CT

There is only oneΦ belonging to one specific A, which can be
calculated in R, when using the expm package,6 by:
Phi <- expm(A * delta_t)

A DT effect matrix using a time-interval of d1 can be
transformed into one as if another time-interval, namely
d2, was used, by employing:

Φðd1Þ ¼ eAd1 ;

Φðd2Þ ¼ eAd2

¼ eAd1
d2
d1 ; which yields :

Φðd2Þ ¼ ðΦðd1ÞÞ
d2
d1

:

Thus, one needs to raise the effect to the power d2
d1
. In case

d2
d1

is an integer one can calculate this in R, when using the

expm package, by:

Phi_d2 <- Phi_d1
In case the ratio is not integer, one should use the eigenvalue
decomposition and take the power of the eigenvalues as
stated in Appendix A; R code is available upon request.

An alternative method of comparing DT effects is to convert
all of the relevant effects matrices to their underlying con-
tinuous-time drift matrix:

A ¼ logðΦðΔtÞÞ=Δt
¼ V ðlogðDΦðDtÞÞ=ΔtÞV�1

: (13)

In R, when using the expm package, this can established by:

A <- logm(Phi)/delta_t

Be aware that, also in case of complex eigenvalues, R will
give you only one solution, although there are then multiple;
more details are given in Appendix E. Therefore, one should
always check whether the eigenvalues (of Φ or A) are real-
valued or complex; for example, in R by:

eigen(A, sym = FALSE)$values

If one compares CT effect estimates (i.e., As), one should also
make an adjustment. Bear inmind that the DTmodel parameters
are time-interval dependent but time-scale independent, this
implies that the values of the time-interval invariant A are
time-scale dependent. For example, suppose a researcher uses
years as the time-scale and that he obtained
ΦðΔtyears ¼ 1Þ ¼ eAyears�1. When he would have set the time-
scale to months, he would have obta-ined ΦðΔtmonths ¼
12Þ ¼ eAmonths�12: Since ΦðΔtyears ¼ 1Þ ¼ ΦðΔtmonths ¼ 12Þ,
it holds that eAmonths�12 ¼ eAyears�1, yielding Ayears ¼ 12 � Amonths.
Thus, although the CTM parameter A is time-interval invariant
that makes comparisons of studies using different time-intervals
easy and straightforward, its values are dependent on the time-
scale. Hence, for good comparability of the values of multiple
drift matrices one should do this easy, but necessary,
transformation:

6 There are multiple methods which can be used to calculate the matrix
exponential, also when using the expm package. A more detailed descrip-
tion on these types of methods can be found in Moler and Van Loan (2013).
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Atimescale2 ¼ T� Atimescale1;

with T� ¼ time � scale 2 in terms of time � scale 1

time � scale 1
> 0;

with, in the example, T� ¼ 1 year
1month ¼ 12months

1month ¼ 12. Because
of this linear relationship with positive constant (T�), no
misleading conclusions are possible for all uni- and multi-
variate processes when comparing the results of multiple
CTMs (assuming the same underlying process). Stated
otherwise, the drift matrix obtained for using some time-
scale, Atimescale1, has no different order of magnitude and
sign than the one obtained for another one,
Atimescale2 ¼ T�Atimescale1, with T� > 0.

APPENDIX C

Examine the Drift Matrix A

Using the notation from the section starting on page 11 and
following Equation 4, we can write:

where logðλ1Þ=d1 ¼: η1 and logðλ2Þ=d1 ¼: η2 are the
eigenvalues of A. Notably, time-interval d1 appears in
the time-interval independent A and its eigenvalues,
since the eigenvalues of Φðd1Þ (i.e., λ1 and λ2) are
functions of this: λ1; λ2 ¼ eη1;2�d1 and
λn1; λ

n
2 ¼ eλ1;2�d1�n ¼ eη1;2�d2 .

One can deduce, by looking at the elements ðp; sÞ of both A
and Φðd1Þ, that all three types of misleading results are
obtained when the sign of ðλ1 � λ2Þ differs from that of

ðη1 � η2Þ ¼ ðlogðλ1Þ � logðλ2ÞÞ=d1 or better,
ðlogðλ1Þ � logðλ2ÞÞ, since d1 > 0. Thus, to assess whether
the three types of misleading conclusions can occur in
bivariate, first-order systems based on the use of a different
models (DT vs. CT), it suffices to assess whether there
exists an λ1, λ2 such that, say, λ1 > λ2 and
logðλ1Þ < logðλ2Þ. Recall that λ1 and λ2 are the eigenvalues
of Φðd1Þ. In case of stable, ‘positive autoregression’, first-
order systems with real eigenvalues, these lie between 0 and
1. In that case, the sign of ðλ1 � λ2Þ never differs from that
of ðlogðλ1Þ � logðλ2ÞÞ. Therefore, misleading conclusions I
to III cannot occur in bivariate, stable, first-order systems
with real eigenvalues due to the use of a different model
(i.e., DT vs. CT). Additionally, this is also true for some
bivariate, stable, first-order systems with complex eigenva-
lues, as is shown in Appendix D.

APPENDIX D

SYMMETRIC RELATIONSHIPS

THE SYMMETRICCASEREFERS TOTHECASEWHERE
RECIPROCAL/CROSS-LAGGED EFFECTS ARE

CONSTRAINED TO BE EQUAL, THAT IS, WHEN THE
UPPER-DIAGONAL PART OF THE EFFECT MATRIX
‘EQUALS’ THE LOWER-DIAGONAL PART OF THE
EFFECT MATRIX, THAT IS, WHEN ϕij ¼ ϕji FOR ALL
i; j ¼ 1; . . . ; q. FOR INSTANCE, FIGURE 1 DEPICTS A
SYMMETRIC BIVARIATE RELATIONSHIP IF ϕ12 ¼ ϕ21.

WHEN A MATRIX M IS SYMMETRIC, IT HOLDS
THAT M 0 ¼ M AND THUS THAT V�1 ¼ V 0 (WHICH

MEANS THAT V IS ORTHOGONAL):

M 0 ¼ ðVDMV�1Þ0
¼ ðVDMV 0Þ0
¼ ðV 0Þ0DM

0V 0

¼ VDMV 0

¼ VDMV�1

¼ M ;

(14)

using the properties ðM1M2M3Þ0 ¼ M 0
3M

0
2M

0
1, andD

0 ¼ D for
symmetric or better diagonal matrices D. Since Φðd1Þ,
ðΦðd1ÞÞn, and A share the same eigenvectors (and only differ
in eigenvalues: DΦðd1Þ, ðDΦðd1ÞÞn, and D ¼ logðDΦðd1ÞÞ=d1,
respectively), if one of these is symmetric the other two will
be as well.

Thus, in case of a symmetric relationship, one will find equal
cross-lagged counterparts (i.e., ϕij ¼ ϕji or αij ¼ αji for all
i; j ¼ 1; . . . ; q) irrespective of the chosen time-interval and
model. Consequently, misleading conclusion IIa (i.e., the one
in terms of cross-lagged counterparts) does not occur. Note that
cross-lagged effects that are not each others’ counterparts can
cross each other, that is, misleading conclusion IIb can occur.
Moreover, misleading conclusions I and III can still occur.

APPENDIX E

Complex Eigenvalues

In case of a 2� 2 matrix, complex eigenvalues can be
written as:

A ¼ 1=d1
jV j

v11 � logðλ1Þ � v22 � v12 � v21 � logðλ2Þ

ðlogðλ1Þ � logðλ2ÞÞ � v21 � v22

�ðlogðλ1Þ � logðλ2ÞÞ � v11 � v12

�v12 � v21 � logðλ1Þ þ v11 � v22 � logðλ2Þ

0
@

1
A;
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η1 ¼ 1=2 trðAÞ þ � 1=2
ffiffi
ð

p
4 detðAÞ � ðtrðAÞÞ2Þ ¼: τ þ �ω;

η2 ¼ τ � �ω
;

with trðAÞ ¼ α11 þ α22, detðAÞ ¼ α11 α22 � α12 α21, �2 ¼ �1

and, by definition, ω � 0 (i.e., ðtrðAÞÞ2 � 4 detðAÞ < 0).
When the eigenvalues are complex and the real part is negative,
then the system is oscillating but stable, that is, the system will
spiral around the equilibrium along some axes to the equili-
brium. Notably, since complex eigenvalues always come in
conjugate pairs, a one-variable first-order continuous-time
model never shows oscillations. In case of oscillating processes,
one may also wish to estimate a second-order rather than a first-
order differential equation model.

The eigenvalues for a bivariateΦðΔtÞ ¼ eAΔt, that is, the eigen-
values for a bivariate, ‘positive autoregression’, first-order sys-
tem are:

λ1 ¼ eη1Δt ¼ eðτþ�ωÞΔt

¼ eτΔte�ωΔt

¼ eτΔt ðcosðωΔtÞ þ � sinðωΔtÞÞ
¼ eτΔt cosðωΔtÞ þ � eτΔt sinðωΔtÞ
:¼ γðΔtÞ þ � θðΔtÞ;
λ2 ¼ eη2Δt :¼ γðΔtÞ � � θðΔtÞ

:

Hence, if A has complex eigenvalues and thus eigenvectors
(i.e., ω � 0), the eigenvectors and thus eigenvalues of
ΦðΔtÞ are complex as well (i.e, θðΔtÞ � 0). Since e2π�n ¼
1 for n ¼ 0;�1;�2; . . . , a specific A leads to only one
ΦðΔtÞ. On the other hand, since the cosine and sine func-
tions are periodic with 2π=Δt, multiple As, namely ones
with complex eigenvalues and their periodic equivalents, the
so-called aliasing matrices (for more details see Hamerle
et al., 1991), can lead to the same ΦðΔtÞ. Stated otherwise,
in case of complex eigenvalues, there is no one-to-one
correspondence between ΦðΔtÞ and A if you do not specify
additional conditions. Yue et al. (2016) state that there is a
one-to-one correspondence between Φ and A in case the
imaginary parts of all the eigenvalues of A (i.e., ω) lie into
ð�π=Δt; π=ΔtÞ. If the used sampling frequency is higher
than the maximum sampling frequency, other a-priori infor-
mation about A is required to reduce the number of multiple
solutions and/or one needs to search over a collection of
matrix logarithms to find the sparsest one, see Yue et al.
(2016).

For a DT process to be stable, we need the modulus (i.e., the
absolute value) of the eigenvalues ofΦðΔtÞ to be smaller than 1:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γðΔtÞ2 þ θðΔtÞ2
q

< 1. Note that if θðΔtÞ ¼ 0 and thus if the

eigenvalue is real and not complex, this reduces toffiffiffiffiffiffiffiffiffiffiffiffi
γðΔtÞ2

q
¼ γðΔtÞj j < 1, which implies real eigenvalues

between −1 and 1. From the equations above, we can deduce
that:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðΔtÞ2 þ θðΔtÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeτΔtcosðωΔtÞÞ2 þ ðeτΔtsinðωΔtÞÞ2

q

Consequently, if the modulus of an eigenvalue of ΦðΔtÞ
(belonging to a ‘positive autoregression’, first-order system)
is smaller than 1, the real part of the corresponding eigen-
value of A (i.e., τ) is negative, and vice versa. Note that
there exist first-order DT processes for which the modulus
of the eigenvalues is smaller than one, but for which there is
no first-order CT equivalent as specified in Equation 2;
namely, stable DT processes that do not exhibit ‘positive
autoregression’.

When comparing the order of the complex eigenvalues of
ΦðΔtÞ versus A, we have to satisfy twice two conditions,
depending on the ordering of the imaginary parts of the two
eigenvalues. The first set of two conditions is:

1. τ þ �ω > τ � �ω if ω > � ω;
2. γðΔtÞ þ �θðΔtÞ > γðΔtÞ � �θðΔtÞ $ sinðωΔtÞ >

sinðωΔtÞ > if θðΔtÞ > � θðΔtÞ.

These two conditions coincide if ωΔt lies between 0 and π
(with a period of 2π), that is, ifω lies between 0 and π=Δt (with a
period of 2π=Δt). The second set of two conditions is:

1. τ þ �ω < τ � �ω if ω < � ω;
2. γðΔtÞ þ �θðΔtÞ < γðΔtÞ � �θðΔtÞ $ sinðωΔtÞ < �

sinðωΔtÞ if θðΔtÞ < � θðΔtÞ.

These two conditions coincide if ω lies between � π=Δt
and 0 (with a period of 2π=Δt). Combined, this leads to the
restriction that ω lies between � π Δt and π=Δt (with a
period of 2π=Δt), which is actually also the condition for
which there is a unique correspondence between ΦðΔtÞ and
A. Stated otherwise, for ranges of time-intervals Δt for
which ω lies between � π=Δt and π=Δt (with a period of
2π=Δt), conclusions I to III based on ΦðΔtÞ resemble that of
A; however, for the ranges between those, conclusions I to
III are misleading.

When comparing the order of the complex eigenvalues of
Φðd1Þ versus Φðd2Þ, the conditions for obtaining the same
conclusions (of types I to III) are less straightforward.
Hence, in some systems with complex eigenvalues, you
will not find misleading conclusions I to III and in some
you will. However, we do already know from the previous
result that if for both Δt ¼ d1 and Δt ¼ d2 it holds that ω
lies between � π=Δt and π=Δt (with a period of 2π=Δt),
that there are no misleading conclusions I to III based on
Φðd1Þ versus Φðd2Þ. Importantly, the substantive conclu-
sions I to III then also resemble that based on the underlying
A. An example is given in the Misleading Results section in
the main text. Notable, there, ω ¼ 0:5π lies between �
π=Δt and π=Δt for Δt between 0 and 2 with a period of 2.
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