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Chapter 1
General Introduction



1 General introduction

1.1 Proteomics: from genetic information to cellular function 

The rapid development of high-throughput technologies has contributed to our 
understanding of the cell biology and complex diseases from a perspective of the molecular 
level. Three types of biomolecules, i.e., DNA, RNA, and proteins, are indispensable 
components in understanding cell activity and signaling (1). In the past decades, efforts have 
been made to build whole-genome-sequencing databases for numerous organisms, including 
human (2, 3), or to seek traits-associated genetic variations, such as disease-associated 
single-nucleotide polymorphisms (SNPs) (4, 5). The study of the whole genome within an 
organism is termed genomics (Figure 1) and is focused on DNA molecules. On the other 
hand, transcriptomics (Figure 1), is seeking to study the total RNA transcripts in the cells or 
tissues. Transcriptomics has become increasingly popular (6). Because gene transcription 
and subsequent RNA translation give rise to functional proteins, studying DNA and RNA 
expression would be expected to provide a good estimate for protein regulation. However, an 
increasing number of reports on mRNA and protein abundances find only a weak correlation 
between the respective abundances of RNA and proteins (7). 

Figure 1. Biochemical context of genomics, transcriptomics, and proteomics. 
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Proteins are the executors of genetic information that is directly involved in signaling 
pathways, cellular growth, and maintenance. Moreover, the activity and function of proteins 
can be regulated by different expression levels, alternative splicing, and post-translational 
modifications (PTMs). Therefore, investigating the dynamics of proteins in cells and tissues, 
and unveiling the expression differences of proteins in complex diseases provide an intuitive 
reflection of cellular activities and disease pathologies. This brings the onset of proteomics 
(Figure 1), which is the study of identification and quantification of the proteins present in cells, 
or tissues (8). The following sections will give a brief overview of technologies in identifying 
and quantifying proteome, touching upon the subjects where bioinformatics methods play a 
role in the downstream data analysis and identification of protein complexes. 

1.2 Mass spectrometry techniques

Proteomics is an approach focusing on the analysis of proteins or protein populations 
isolated from cells or tissues (9). Over the last century, mass spectrometry (MS) has emerged 
as an indispensable analytical technique for the characterization and quantification of the 
proteome. The basic MS system consists of several components, ion source (designed for 
the ionization of the target analytes), fragmentation (collision cell), mass analyzer (used to 
separate the gas phase ions by mass-to-charge ratio m/z), detector (designed for detecting 
the signals of ions and measuring their abundances) (10). 

Generally, the high complexity of samples hinders the identification efficiency of the MS 
system, therefore, separation steps prior to admission into mass spectrometer are necessary. 
The introduction of pre-fractionation or separation into mass spectrometry using analytical 
techniques, including gas chromatography (GC) (11, 12), and liquid chromatography (LC) (13, 
14) has dramatically reduced the complexity of the samples.

To detect and analyze the sample components based on their mass to charge ratios, 
ionization of the peptides or molecules is necessary. Several techniques have advanced the 
ionization of biomolecules, such as electrospray ionization (ESI) (15) and matrix-assisted 
laser desorption/ionization (MALDI) (16). 

Fragmentation is a process of breaking the precursor ions retrieved from the ion sources 
into smaller product ions (fragment ions) (17). Different techniques are developed for the 
fragmentation of peptide molecules. The most widely used fragmentation technique for 
proteomics is collision-induced dissociation (CID) (18), where peptides are fragmented 
by energetic collisions with a neutral gas, often Helium, Nitrogen or Argon. Other recently 
developed fragmentation methods including electron transfer dissociation (ETD) (19), 
ultraviolet photodissociation (UVPD) fragmentation (20, 21), and dual fragmentation combining 
ETD and HCD (EThCD) (22) have improved the identification efficiency for the identification of 
post-translational modifications and intact proteins.

The mass analyzer is central to MS instrumentation. It performs the separation of ions 
based on their mass to charge ratio using electrical or magnetic fields. In the context of 
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proteomics, its key parameters are sensitivity, resolution, mass accuracy and the ability to 
generate information-rich ion mass spectra from peptide fragments (tandem mass or MS/
MS spectra) among the popular mass analyzers for proteomics research are the Orbitrap 
(23), ion trap (24) and time-of-flight (ToF) (25). These analyzers are designed with different 
performance, target molecules, resolution, and mass measurement accuracy, each with its 
own strengths and weaknesses. 

Methods for protein quantification

Although recent developments in mass spectrometry allow the identification of thousands 
of peptides, proteins, and post-translational modifications (PTMs) from limited amounts of 
biological material, the quantification of differences between two or more physiological states 
of a biological system is among the most important but also most challenging technical tasks 
in proteomics (26). Quantifying protein or PTM abundances enables us to get insight into 
the changes of cells in response to stimuli, such as pathogen invasion and drug treatment. 
The quantification strategies can be classified into relative quantification and absolute 
quantification. The absolute quantification approach utilizes ultrapure synthesized peptides 
with incorporated stable isotopes and precisely determined absolute concentration as 
ideal internal standards to mimic native peptides formed by proteolysis (27). Such internal 
standard peptides are then used to measure the absolute expression of proteins and post-
translationally modified proteins precisely and quantitatively after proteolysis by using a 
targeted MS analysis in a tandem mass spectrometer. The most used methods for relative 
quantification are: i) stable isotope labeling, either by metabolic or chemical labeling, and ii) 
label-free quantification (Figure 2) (26, 28, 29).
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Figure 2. Schematic overview of alternative workflows which can be used in quantitative MS-based 
proteomics. Boxes in blue and yellow represent two experimental conditions. Horizontal lines indicate 
when samples are combined. Dashed lines depict steps of samples are treated in parallel, where 
quantification error can occur. Figure adapted from Ong et al (26) and Bantscheff et al (28). 

Proteome quantification by stable isotope labeling

Stable isotope labeling was introduced into proteomics in 1999 (30, 31). This approach 
allows identification of equivalent peptides or proteins by utilizing the mass difference of 
the mass tags with stable isotopes. The common workflow is to tag protein or peptide with 
equivalent reagents, one of which includes a heavy mass tag and the other a light mass or no 
tag. The labeled samples can be recognized by a mass spectrometer and at the same time 
provide the basis for quantification. The basic assumption of isotope labeling approaches is 
that the labeling does not alter the physicochemical properties of a peptide or protein (32).

The stable isotopes can be introduced to proteomics samples via chemical labeling and 
metabolic labeling.  The chemical labeling is a cell-free approach, examples include the 

11

1



isotope-coded affinity tag (ICAT) (33), 18O-labeling during proteolysis (34, 35), tandem mass 
tags (TMT) (36) or isobaric tags for relative and absolute quantification (iTRAQ) (37). On 
the contrary, the metabolic labeling is a cell dependent approach, where cells are cultured 
under heavy stable isotope enriched growth media. After a certain number of cell divisions or 
passages, the specific heavy isotopes will be incorporated in the newly synthesized proteins. 
One of the most well-established metabolic labeling methods is stable isotope labelling by 
amino acids in cell culture (SILAC) (38). 

The differentially labeled samples are subsequently mixed in equal proportion for the mass 
spectrometry analysis. By utilizing the mass shift introduced by the isotopes with specific 
mass, the MS1 spectrum features (precursor ion signal) of the same peptide from different 
samples can be distinguished and quantified.

Label free quantification

Label-free quantification is a method in mass spectrometry that aims to determine the 
relative quantity of proteins in two or more biological samples. Unlike the isotope labeling 
methods for protein quantification, label-free quantification does not require additional 
chemistry or sample preparation steps. The label-free quantification can be achieved either 
by (a) measuring and comparing the signal intensity of peptide precursor ions or (b) counting 
and comparing the number of fragment spectra across different LC-MS/MS runs.

 In the peak intensity-based method, label-free quantification is performed by computing 
extracted ion chromatograms (XICs) for all peptides over the whole LC-MS/MS run (39). 
Several parameters should be taken into consideration for complicated peptide mixtures in 
this peak intensity-based method. (i) To minimize the interfering signals of ions with similar 
mass, a mass spectrometer with higher resolution and mass accuracy is required. (ii) Specific 
methods have been developed to reduce the number of missing values, such as match 
between runs (40, 41). (iii) More sample replicates are advisable to increase reproducibility 
for ease finding corresponding peptides between different experiments. (iv) The right balance 
between the acquisition of survey and fragment spectra must be found. The spectral counting 
approach (42, 43) is based on the observation that the more of a particular protein is present 
in a sample, the more tandem MS spectra are collected for peptides of that protein. Therefore, 
relative quantification can be achieved by comparing the number of MS/MS spectra between 
a set of experiments. Compared to the peptide ion intensities strategy, the spectral counting 
approach benefits from extensive MS/MS data acquisition across the chromatographic time 
scale both for identification and quantification, while suffers from the inability to quantify low-
abundant proteins with limited spectral counts.

1.3 Mass spectrometry data 

A major aim of proteomics is to reveal the changes in protein expression at a global level, 
ideally monitoring all proteins present in cells or tissues. The shotgun proteomics approach 
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is the most widely used method for the identification and quantification of proteins (14). With 
the recent advances in instrumentation, sample preparation, fractionation, and computational 
algorithms, it is quite routine to identify and quantify thousands of proteins in a single experiment 
(up to ten thousand). A classical bottom-up (shotgun) proteomics workflow is comprised of 4 
major steps (Figure 3), i.e., sample preparation and digestion, fractionation or enrichment, MS 
data acquisition, and data analysis.

Figure 3. Overview of a generalized bottom-up MS-based proteomics workflow. Adapted from Altelaar 
et.al. (14). This generalized workflow consists of four steps: Step 1, Sample preparation and digestion, 
where the extracted proteins are digested into peptides; Step2, Fractionation and enrichment, in which 
the peptide population is subjected to liquid chromatography (LC) separation. Alternatively, specific 
subsets of the sample can be targeted through enrichment of peptides containing modifications (such 
as phosphorylation (P)) using affinity-based resins or antibody-based immunoprecipitation (IP); Step 
3, MS data acquisition. The enriched samples are then introduced to the LC system for an additional 
separation, the eluted peptides from the LC are queried by the mass spectrometer to obtain their mass-
to-charge (m/z) ratio; Step 4, Data analysis. The precursor m/z and its fragment ions are then matched to 
known peptide sequences using a search engine to obtain protein abundance. Subsequently, the protein 
abundance is analyzed and interpreted using specific computational methods to uncover the biological 
significance.
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Sample preparation and digestion

Generally, the first step of sample preparation involves sample lysis and protein extraction 
from cells or tissues. The protein contents can be extracted either by physical disruption 
or reagent-based methods, where physical disruption methods uses lysis equipment such 
as a bead beater and a sonicator to disrupt tissues or cells, reagent-based methods utilize 
denaturants or detergents to lyse cells (44). In the digestion process, protease inhibitors 
and phosphatase inhibitors are often included to prevent nonspecific proteolysis and loss of 
phosphorylated peptides. 

The protein mixture is usually subjected to specific proteases to digest proteins into 
smaller peptide before MS measurement. Trypsin is the most used protease for digestion 
as it recognizes and digests the carboxy-terminal at lysine (K) or arginine (R) residue (45), 
generating peptides with a desirable charge and length of approximately 6 to 25 amino acids that 
are usually unique to the protein and suitable for LC-MS identification. However, trypsin is less 
efficient in cleaving K-P or R-P bonds (46) and repeated basic residues (e.g. KK, RK), resulting 
in missed cleavages. As a result, alternative proteases with other cleavage specificities, such 
as ArgC, AspN, GluC, LysC, and LysN were designed for more comprehensive analysis of the 
proteome and improve sequence coverage (47-49). Therefore, a multiple enzyme strategy is 
recommended for the comprehensive analysis of complex proteomes.

Fractionation and enrichment

The digestion of proteins in the bottom-up proteomics analysis, on the one hand, enables 
the mass of peptides to fall within the mass range of the mass spectrometer, on the other 
hand, leads to the high complexity of the peptide mixture. Thus, appropriate separation or 
enrichment methods are essential to reduce the complexity before introducing the peptides 
into the mass spectrometer. The combination with nanoscale reversed-phase LC prior to MS 
analysis is still the dominating analytical technology for this purpose. In the recent years, 
serval additional fractionation strategies have become popular. Techniques such as strong 
cation exchange (SCX) separation, which can additionally  enriching post-translation modified 
peptides in early fractions (50, 51), strong anion exchange (SAX) (52) and high-pH reversed 
phase chromatography (53) are increasingly used to boost the identification of peptides. 
Moreover, several technologies have been developed for the enrichment of phospho-
peptides, such as titanium dioxide chromatography (TiO2) (54) and immobilized metal ion 
affinity chromatography (IMAC) (55). 

MS data acquisition

Mass spectrometry is the crucial step for shotgun proteomics analysis. Ideally, all peptides 
eluted from the LC are identified by the mass spectrometer, however, many peptides elute 
simultaneously and compete for efficient ionization (i.e., high-abundant species can interfere 
with the identification of co-eluting less-abundant species, thus preventing the MS analysis of 
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less-abundant species). Modern mass spectrometers collect three pieces of information from 
each peptide: its mass, its ion intensity and a list of its fragments (56). Upon ionization, the 
mass spectrometer first records the mass-to-charge (m/z) ratio, which is referred to as either 
MS, MS1 or survey spectrum. Subsequently, single peptides are selected and subjected to 
the collision cell for fragmentation, generating ‘b’ and ‘y’ fragmented ions (b-ions are amino-
terminal fragment ions, y-ions are carboxy-terminal fragment ions) (14) and recorded in a 
second mass spectral scan that is referred to as MS2, MS/MS or tandem MS spectrum. The 
combination of precursor m/z and its fragment ions is then matched to peptide sequences from 
large protein databases using search algorithms, such as Mascot, SEQUEST, or MaxQuant. 

Data analysis 

Nowadays, advanced mass spectrometry allows rapidly, accurately, and sensitively 
identifying and quantifying thousands of proteins. Thus, proteomics technology has been 
successfully applied in biological research to depict protein-protein interactions, cellular 
signaling pathways to disease mechanisms, and identify biomarkers. In the meantime, this 
high-throughput method has also been applied to large-scale proteome and phosphoproteome 
profiling, generating a large amount of expression data from biological samples. Fortunately, 
the bioinformatics tools work as a crucial bridge connecting the identification generated from 
MS to the biological functions buried in the large-scale data. The following sections will detail 
the bioinformatics techniques in analyzing the MS data.

2 Proteomics data analysis

2.1 Analysis of quantitative proteomics data

Shotgun proteomics data are affected by a variety of known and unknown systematic 
biases as well as high proportions of missing values. Therefore, data normalization, is often 
the first step that needs to be taken and should be performed to remove systematic biases 
before statistical inference, sometimes followed by an imputation of missing values. 

Data normalization

Systematic bias, alternatively defined as variation caused by nonbiological sources, is 
introduced by small variations in the experimental conditions in the course of carrying out 
the MS analysis (57). Bias may occur due to many factors including sample processing 
and handling conditions, instrument calibrations, LC columns, changes in temperature in 
the process of an experiment, etc. Normalization is the process that aims to account for the 
bias and make samples more comparable. Before normalization, log2-transformation of the 
recorded intensity is needed to reduce the dynamic range of intensity values (58). Such a step 
also converts the distribution of abundances of protein into a more symmetrical, almost normal 
distribution. In addition to the log transformation, most normalization methodologies were 
carried out by plotting data in a ratio versus intensity plot, or also commonly called as M versus 
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A (minus versus average) plot. Such ratio versus intensity plot enables an easier observation 
of linear or nonlinear trends resulting from biases. Several normalization strategies imported 
from microarray analysis have been successfully applied on proteomics data normalization 
(57, 59), such as linear regression normalization, local regression normalization, median 
normalization, and quantile normalization.

Linear regression normalization assumes that systematical bias is linearly dependent on 
the magnitude of peptide abundances (60). This method was performed by applying least 
squares regression to calculate a predicted peptide ratio that represents the deviation from 
the abscissa to the regression line. Local regression normalization assumes that systematic 
bias is nonlinearly dependent on the magnitude of peptide abundances (61). To remove such 
non-linear bias, linear regression analysis was performed on localized subdivisions of the 
peptide populations using the LOESS algorithm. The median normalization assumes that the 
samples of a data set are separated by a constant. It scales the samples so that they have 
the same median. The quantile normalization is based on the premise that the distribution of 
peptide abundances in different samples is expected to be similar. This normalization method 
can be achieved by replacing each point of a sample with the mean of the corresponding 
quantile (59).

Imputation of missing values

The widespread occurrence of missing values in MS quantitative proteomics is 
another challenge. There are several reasons that can lead to missing values and which 
can be caused by experimental conditions such as mis-cleavages, dynamic range issues, 
ionization competition, ion suppression, or as a result of data processing such as peptide 
mis-identification, ambiguous matching of the precursors in the quantitation step, etc. (62). 
Moreover, missing values occur when, for instance, the concentration of a peptide falls 
below the instrument detection limit; or lower abundant peptides that failed to pick (57). The 
common solution is to impute the missing values with the lowest sample values based on the 
hypothesis of detection limit or to impute them with the median/average value of that peptide/
protein. Several other sophisticated statistical methods make use of an empirical distribution 
constructed from the quantified values to impute the missing values (58). For instance, a tail-
based imputation strategy described by Kim et al. (63) imputed the missing values from the tail 
of the empirical normal distribution constructed from the quantified values across all proteins 
PTMs in a sample. In some cases, a protein or PTM contains a high percentage of missing 
values and should be removed before further processing.   

Differential analysis 

Basically, proteomics research aims to study the interrelation between protein expression 
and certain sample groups (e.g., distinct disease classes). One of the most common questions 
of this type of experiment is the comparison of protein expression profiles in two or more 
different types of biological samples, such as healthy and diseased tissues. Traditionally, fold 
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change is commonly used in quantitative proteomic analysis where proteins differing by an 
arbitrary cut-off threshold in abundance are considered to be differentially expressed (64). 
Although it is a convenient and intuitive way to assess protein expression differences, fold 
change itself is not a statistical test that can indicate the level of confidence in differentially 
expressed proteins. Therefore, a statistical test is carried out on proteins or phosphorylation 
sites to assess a level of significance with specific p-values. 

A statistical test consists of a null hypothesis (e.g., the mean of a population is equal 
to zero or a specific value) and an alternative hypothesis (e.g., the mean of a population is 
different from zero or a specific value). Based on the given data and certain assumptions on 
the probability distribution of the data, one decides to accept either the null or the alternative 
hypothesis. For instance, a classical one-sample t-test could be used to determine whether the 
expression of a protein in a group is significantly changed or not within biological or technical 
replicates. In this case, the abundance of proteins quantified in experiments is supposed to 
follow a normal distribution, which centers around the mean value (here is zero) and exhibits 
a width that depends on the variability. Alternatively, a two-sample t-test could be applied 
to experiments when trying to compare treated to untreated cells, wild-types to mutants, or 
samples from diseased to non-diseased subjects. In this case, the t-test evaluates whether 
the means of the two groups are statistically different from each other. T-statistic can be 
calculated according to a one-sample t-test or two-sample t-test formula (65).  Given the 
t-statistic and degree of freedom for the test, the corresponding p-value can be mapped from 
the standard table of significance. 

However, sample sizes are often small in biological research, which results in uncertainty 
in the sample variability estimates. Since these estimates are used in the test statistics to 
assess the statistical significance of the observed fold change, proteins exhibiting large 
fold change are often declared non-significant because of a large sample variance, while 
proteins with small fold changes might be declared statistically significant. Therefore, the 
LIMMA (linear models for microarray data) was introduced as an empirical Bayes approach 
that specifically allowed for a realistic distribution of biological variances (66). The statistical 
approach in LIMMA is to use the full data to shrink the observed sample variances towards 
a pooled estimate. This results in a more stable and powerful inference as compared to 
ordinary t-tests, particularly when the number of samples is small. To identify differentially 
expressed proteins among three or more conditions simultaneously, one might consider using 
the one-way analysis of variance (ANOVA). The ANOVA method assesses the relative size of 
variance among group means (between group variance) compared to the average variance 
within groups (within group variance). However, ANOVA analysis cannot provide detailed 
information on differences among the study groups. Therefore, further “multiple comparison 
analysis” tests are necessary to fully understand group differences in an ANOVA, which are 
post hoc tests. 
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Multiple testing correction

In large-scale proteomics data analysis, the statistical test is carried out on each protein 
separately, which may increase the number of false positives. This is because the repetition 
of the multiple tests may repeatedly add multiple chances of error, which may result in a 
larger α error level than the pre-set α level (67). Nowadays, proteomics analysis can routinely 
quantify thousands of proteins. That means, if testing a group of 5,000 proteins at a level of α 
of 0.05, a total of 250 of these false positives can be expected to be significant just by chance. 
Therefore, it is important to correct p-values in proteomics analysis, even in high-throughput 
experiments, as it helps to select the most significant changed proteins or PTMs for follow-up 
assays and avoid poor decisions (68). 

The simplest and most widely used method of multiple testing correction is the Bonferroni 
adjustment (69). This method lowers the false discovery rate by dividing α by the number of 
tests. However, because of the conservativeness of the Bonferroni correction, this method 
could only be used in cases where the number of tests is relatively small (e.g, less than 5). An 
improved Bonferroni method called the Benjamini-Hochberg method (70) allows a fraction of 
the significant hits to be false although at the same time it helps to control the false discovery 
rate (FDR) for large-scale studies.

Functional annotation

Identification and quantification of proteins from a cellular proteome is most often not the 
purpose by itself. Actually, the interpretation of biological data and extraction of biological 
relevance from the vast amount of identified proteins are crucial to the understanding the 
complex mechanisms of biological systems. In the above sections, one can obtain the 
differentially expressed proteins within different groups (for example, healthy vs disease). 
The next step is to carry out the functional annotation, which seeks to uncover the biological 
relevance and to better understand the meaning of proteomics data. In order to interpret 
the proteomics data, many efforts have been devoted to developing biostatistics and 
bioinformatics tools (Table 1) (71). For instance, Ashburner et.al. developed a controlled 
vocabulary applicable to all eukaryotes, generating the Gene Ontology (GO) Consortium (72). 
Every gene or protein can thus be described by a finite number of vocabulary terms, which are 
classified into three GO categories or domains: biological process (BP), molecular function 
(MF), or cellular component (CC). This GO enrichment method employs a Fisher’s exact test 
to result in a ranked list of GO terms, each term associated with a p-value. 

The gene set enrichment analysis (GSEA) method is increasingly popular compared to 
GO analysis. GSEA defines a priori gene sets that have been grouped by their involvement 
in the same biological pathway, which can be found in the Molecular Signatures DataBase 
(MSigDB) (73). Instead of focusing on individual genes in a long list, GSEA is trying to identify 
classes of genes or proteins that are over-represented in a large set of genes or proteins 
and may have an association with disease phenotypes. With the application of the weighted 
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Kolmogorov–Smirnov-like statistic (74), the GSEA method calculates an enrichment score 
(ES) that reflects the degree to which a set S is overrepresented at the extremes (top or 
bottom) of the entire ranked list L (73).

Scientists around the world have different research questions, research backgrounds, and 
design assumptions. Therefore, researchers can choose one or more enrichment methods to 
execute the functional annotation, which allows the functional classification and the detection 
of the most represented biological terms of a gene/protein set. More enrichment methods and 
tools can be found in table 1.

Table 1. Computational tools for functional annotation (Adapted from Carnielli et.al. (75)).

URL Comments References

Gene ontology

GO http://geneontology.org/ Functional annotation for genes or 
proteins

(72)

Matascape https://metascape.org/gp/index.
html#/main/step1

An online platform for hallmark enrich-
ment analysis 

(76)

BiNGO http://www.psb.ugent.be/cbd/pa-
pers/BiNGO/Home.html

Tool for enrichment analysis on Cytos-
cape

(77)

DAVID https://david.ncifcrf.gov/ Meta-tool for functional analysis of large 
gene lists

(78)

GeneMANIA http://genemania.org/ Tool to identify the most related genes to 
a query gene

(79)

GSEA https://www.gsea-msigdb.org/gsea/
index.jsp

A method that determines whether a priori 
defined set of genes/proteins shows sta-
tistically significant

(73)

Pathway analysis

KEGG http://www.genome.jp/kegg/ Database resource for pathway analysis (80)

Reactome http://www.reactome.org/ Tool for pathway analysis (81)

Interaction networks

Cytoscape http://www.cytoscape.org/ Open-source software for integration, 
visualization and analysis of biological 
networks

(82)

IIS — Integrat-
ed Interactome 

system

http://bioinfo03.ibi.unicamp.br/
lnbio/IIS2/index.php

Integrative platform for the annotation, 
analysis and visualization of the interac-
tion profiles of proteins/genes, metabo-
lites and drugs of interest

(83)

STRING http://string.embl.de Database tool for direct or indirect protein 
interactions

(84)

Protein-protein interaction networks

Studying the biological systems from the network perspective is of great importance (85-
87).  A biomolecular network is a widely accepted form by which biomolecules interact with 
one another to perform and maintain their functions in cells, tissues, and organs (88). A typical 
network consists of two entities: nodes (also known as vertices) and edges (also known 
as links) (Figure 4A). According to the differences of edges, networks can be summarized 
into unweighted or weighted, and undirected or directed (Figure 4A). A directed network is 
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connected by edges pointing in a direction, such as transcription factor (TF)–target network 
(89), drug-targets network (90). However, in real biological systems, a network can have 
multiple characteristics at the same time, for example it can be an undirected and weighted 
network, or a directed and weighted network.

Figure 4. (A) Network types according to the properties of edges. (B) Network biology paradigm, networks 
of interacting molecules are placed. Nodes (represented in blue) represent molecule of interest, such as 
a genes, proteins, or metabolites. Adapted from Bensimon et al (91).

At the global level, the biological network comprises all manner of interactions among 
biological entities (Figure 4B). In this type of network, each node represents a molecule of 
interest, such as a gene, a protein, or smaller molecules, such as cofactors, metabolites, 
and messenger molecules. The edge between two nodes represents a direct or indirect 
relationship, such as an enzymatic reaction, a physical interaction, or a functional connection 
(91). Such a network paradigm is concerned with the network nodes and edges, placing 
networks of interacting molecules between genotype and phenotype (Figure 4B). 

To simplify the analysis, biological networks are usually sub-categorized; the most common 
being protein-protein interaction (PPI) networks. The application of PPI networks translates 
expression maps into mathematical models for biomarker/drug-target discovery, phenotype 
correlation analysis (92), and complexes isolation and identification (93, 94). Over the past 
years, the number of reported protein-protein interactions has increased substantially and is 
still increasing. To provide researchers access to the PPI information, a number of publicly 
available databases have set out to collect and store protein-protein interaction data. Such 
as the Biological General Repository for Interaction Datasets (BioGRID) (95), the Molecular 
INTeraction database (MINT) (96), the Database of Interacting Proteins (DIP) (97), the IntAct 
molecular interaction database (IntAct) (98), the Human Protein Reference Database (HPRD) 
(99) and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (84, 100) 
(see Table 2). These PPI databases catalog experimentally determined interactions between 
proteins from original publications.
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Table 2. Public protein-protein interaction databases
Database URL Interactions Publications Organisms

BioGRID https://thebiogrid.org/ 1,677,595 77,459 71

MINT http://mint.bio.uniroma2.it/mint/ 235,000 4,750 30

DIP https://dip.doe-mbi.ucla.edu/dip/Main.
cgi 53,431 3,193 134

IntAct https://www.ebi.ac.uk/intact/ 1,139,018 22,368 131

HPRD http://hprd.org/index_html 41,327 453,521 1

STRING https://string-db.org/ 296,567,750
(score >= 0.9) NA 5,090

Among the above PPI databases, STRING is one of the most popular biological databases 
and web resources, which provides known and predicted protein-protein interaction (100-
103). The STRING database is freely accessible, user friendly, and regularly updated. The 
resource also serves to highlight PPI networks and functional enrichments in user-provided 
lists of proteins, using a number of functional classification systems such as GO, Pfam and 
KEGG. Moreover, it also features a number of additional data access points, such as access 
through a Cytoscape app (http://apps.cytoscape.org/apps/stringapp), as well as download 
pages covering user-interested PPI networks/pathways, individual species networks and 
associated data. The STRING database allows scientists to obtain an intuitive view of protein-
protein interactions and associated functions and pathways, which helps biologists understand 
cellular processes on the system level.

With the substantially increasing amount of the protein-protein interaction (PPI) data, 
more and more protein function prediction methods have been established. For instance, 
edge-betweenness clustering (104) method separates PPI into subgraphs of interconnected 
proteins, using the Girvan and Newman’s Edge-Betweenness algorithm to predict protein 
functions. The CFinder (105) performs a search for dense subgraphs (groups) of nodes in 
undirected networks, which allows users to predict the function of a single protein and to 
discover novel modules. Besides, the protein-protein interaction networks act as important 
role in identifying protein complexes (106). To this end, many successful methods have 
been developed based on different searching strategies, such as MCL (107) and RW (108) 
employed Flow Simulation, focusing on the imitation of ways in which information spreads 
through a network; ClusterONE (109) and SE-DMTG (110) employed the modularity, 
topological structure, and overlapping information to predict protein complexes. 

Although proteins are key functional entities in the cell, the activity of proteins is regulated 
by different post-translational modifications (PTMs). The PTMs, such as acetylation, 
glycosylation, ubiquitylation, and phosphorylation, involve in modulating critical biological 
processes such as protein signaling, localization, and degradation and have been implicated 
in a wide variety of pathologies. In the next section, we will discuss how to analyze the post-
translational modifications data (mostly phosphorylation data).
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2.2 Post-translational modifications (PTMs)

Protein post-translational modifications (PTMs) increase the functional diversity of the 
proteome by the covalent addition of functional groups or proteins. The PTM modifications 
include phosphorylation, glycosylation, ubiquitination, acetylation, lipidation and proteolysis 
that regulate almost all aspects of normal cell biology and pathogenesis. As a result, it is 
estimated that the human genome (~20,000 protein-coding genes) may potentially produce 
on the order of 1.8 million different protein species by post-translation modification (111, 112) 
called proteoforms. Nowadays, more than 400 different PTM types are listed in the Uniprot 
database (113) and many more are still being discovered. Considering the complexity and 
diversity of PTMs, the number of potentially modified residues, the dynamic characteristic, and 
the often-low stoichiometry of these modifications, one realizes that it is a challenge to identify 
and localize the sites of these modifications. Advancements in proteomics methodologies have 
greatly improved the analysis of mapping and quantifying the sites of these PTMs. Among 
those different PTM types (such as acetylation (114), glycosylation (115), and ubiquitylation 
(116)), phosphorylation is the best characterized PTMs. 

Nowadays, it is quite routine to identify and quantify tens of thousands of phosphorylation 
sites in a single experiment (117, 118). As the volume of “omics” data for phosphorylation 
continues to grow, exploring the biological functions and significance of such PTMs 
has become a major challenge. In the last decades, bioinformatics efforts have been 
intensively implemented to address these challenges. These can be roughly summarized 
into three categories: 1) gene-centric pathway analysis, 2) kinase activities inferring from 
phosphoproteomic data, and 3) site-centric signaling analysis.

Gene-centric pathway analysis

Gene-centric pathway analysis typically involves integrating phosphorylation changes 
of multiple sites on the same gene/protein by calculating the mean or median of the 
phosphorylation abundance (50, 119), or determine a specific deviation from the mean 
across a sample cohort (120), or rely on statistical testing based on replicate analyses to 
extract regulated phosphosites from a large-scale dataset (121). The resulting gene-centric 
expression matrix can then be queried against gene-centric pathway databases such as 
Reactome, KEGG, or MSigDB, in which each entry comprises a collection of genes in a 
biological pathway. However, this simple gene-centric pathway analysis method leaves out 
the multiplicity of phosphorylation sites on a single protein, different sites on protein isoforms, 
and most importantly the functional consequence of the phosphorylation event, which can be 
activating, inhibiting, leading to conformational changes, etc. This leads to the loss of critical 
information such as activating phosphorylation sites localized in the activation loop of kinases 
or inhibitory sites in close proximity.
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Kinase activities inferring from phosphoproteomic data

Reversible phosphorylation plays a key role in nearly every cellular process by regulating 
the activity, localization, and interaction of proteins (122). Therefore, it is crucial to identify 
the kinase-substrate interaction involved in cell signaling pathways. To date, the PTM site 
information, as well as corresponding kinases, were implemented into several databases, such 
as PhosphoSitePlus (123), PHOSIDA (124), and Phospho.ELM (125). Based on these kinase 
substrate interactions, several bioinformatic tools, such as Inference of Kinase Activities from 
Phosphoproteomics (IKAP) (126) and Kinase Set Enrichment Analysis (KSEA) (127), can be 
directly applied to site-centric datasets. Such tools exploit the kinase-substrate relations to 
derive the activity of a kinase from the phosphorylation state of its substrates. Recently, an 
R package called InKA (Integrative Inferred Kinase Activity) was developed to infer kinases 
activities by integrating kinase-centric (i.e., kinome and activation loop) and substrate-
centric (i.e., PhosphoSitePlus and NetworKIN) information (128). This approach achieves an 
optimized ranking of inferred kinase activities based on MS-derived phosphoproteomics data 
for single samples.

Site-centric signaling analysis

Recent integrative approaches have been developed to help get closer to extracting 
meaningful information rather than just providing long lists of PTM sites. The PHOTON tool 
(129) takes sets of differentially quantitated PTMs and protein-protein interaction network 
information as inputs, and through network-based statistical modeling, generates scores to 
identify significantly functional signaling proteins. Alternatively, Krug and colleagues (122) 
developed an approach that integrates modified versions of the single sample gene set 
enrichment analysis approach tailored to the PTM specific context (PTM-SEA making use of 
PTMsigDB database). 

Proteins do not work independently but interact with each other in stable or transient 
multi-protein complexes of distinct composition. These complexes have essential roles in 
the cell cycle, transcription and translation, signaling cascades and cellular functions. In 
the fourth chapter, we are trying to develop a deep learning framework to predict protein-
protein interaction probabilities, and protein complexes. Therefore, in the next section, we 
will introduce the basics of machine learning, which covers unsupervised machine learning, 
supervised machine learning, and basics in machine learning modeling.

2.3 Machine learning algorithms for proteomics data analysis 

The exponential growth of the amount of proteomics data raises a daunting problem: the 
extraction of useful information buried under data. This problem is one of the main challenges 
in bioinformatics and computational biology. Fortunately, machine learning (ML) algorithms 
provide new promising approaches, designed to facilitate pattern recognition, classification, 
group clustering, and prediction, based on models derived from existing data. Machine 
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learning algorithms can parse through voluminous data and pick up expression patterns or 
clusters that would otherwise go unrecognized to the human eyes. This approach has allowed 
biologists to uncover underlying biology of large-scale omics datasets.

Machine learning is increasingly applied to MS-derived proteomics data research 
problems. Recent increases in the amount and sensitivity of proteomics data collection have 
aggravated the requirement of machine learning models. Models have been applied to predict 
peptide properties (130) from only a primary sequence, including tandem mass spectra (131), 
ion mobility (132), and retention time (133). Furthermore, machine learning algorithms have 
been utilized in peptide identification and protein inference (134, 135). Apart from applications 
on pre-processing of the MS data, machine learning approaches have been widely used for 
downstream analysis of MS data. For example Deeb et al. (136) used protein expression 
profiles to perform classification for patients with diffuse large B-cell lymphoma. Dan et al. 
(137) used a support vector machine classifier to identify diagnostic markers for tuberculosis by 
proteomic fingerprinting of serum. Drew et al., (138) integrated over 9,000 mass spectrometry 
experiments and built a support vector machine classifier to predict protein-protein interaction 
probabilities. 

Depending on how an algorithm is being trained and on the basis of availability of the 
output while training, machine learning paradigms can be classified into unsupervised learning 
and supervised learning (139).
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Figure 5. Simplified overview of a machine learning workflow. It consists of two main parts: training and 
prediction. The training process is executed on input raw data gathered from text, documents, images, 
and protein-protein interactions et.al. Once an optimal machine learning model is obtained, it can be 
applied to make predictions for new input data.

Unsupervised learning

Unsupervised learning is a form of machine learning that requires no labelled data for 
the training process (140). The training dataset is used in training the machine learning 
model, whereas the testing dataset helps in predicting the correct values and improve model 
accuracy. The machine predicts the outcome based on past experiences and learns from the 
previously introduced features to predict the real-valued outcome. The classic example of 
unsupervised learning is clustering (K-means clustering, principal component analysis) (141), 
which is designed to create groups or clusters automatically. 

Supervised machine learning 

In contrast to unsupervised classification or clustering, the supervised machine learning 
involves training a model based on data inputs that have specific class labels associated with 
them (140). Specifically, the supervised machine learning is the process of learning a set of 
rules from instances, creating a classifier that can be used to generalize from new instances 
(142). A variety of supervised machine learning algorithms have been frequently carried 
out, including Random Forest (RF), Naïve Bayes (NB), Support Vector Machine (SVM), 
and Neural Networks (Perceptron) et.al. As we have employed the classification strategies 
Support Vector Machine (SVM) and Deep Learning (Neural Networks) in our thesis, we will 
introduce these two methods in the following sections.

Support vector machine is one of the most popular supervised machine learning 
algorithms proposed by Vapnik and co-workers (143-145). It differs from traditional methods 
which minimize the empirical training error, while the SVM algorithm aims at minimizing an 
upper bound of the generalization error through maximizing the margin between the separating 
hyperplane (line) and the data (Figure 6). This linear classifier tries to extend data into a high-
dimensional (possibly infinite-dimensional) feature space, by using of the kernel functions 
(146). The general training process consists of two steps: in the first step a primary kernel is 
used to obtain support vectors; in the second step the modified kernel is used to obtain the 
final optimal classifier.

The SVM algorithm has been successfully applied to MS data analysis. For example, 
Wang et.al constructed an SVM scorer for peptide identification (147, 148). Fernández and 
co-workers developed an SVM classifier to detect ovarian cancer from metabolomics liquid 
chromatography/mass spectrometry data (149). A majority of SVM-based PPI-prediction 
methods are based on protein-primary sequences as input features (150, 151), since sequence 
information is more accessible for most proteins. Although the wide application of SVM, more 
care should be taken when using this promising algorithm because of its overfitting, in which 
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the models showed high performance with internal testing datasets while behaving less in 
their prediction ability concerning new data.

Figure 6. An overview of a two-class support vector machine classifier. The SVM classifier tries to find a 
separating optimal hyperplane (line) that best splits the data into classes. The larger the margin between 
the data and the hyperplane the better the separation.

Deep learning also known as deep structured learning, is part of the machine learning 
methods based on artificial neural networks (Figure 7A), which is inspired by the human 
nervous system and the structure of the brain (152). In other words, deep learning focuses on 
training computers to mimic how people learn things.

Figure 7. Simplified deep learning. (A) An overview of the relationship between artificial intelligence, 
machine learning, and deep learning. (B) The simplified structure of the deep learning strategy that 
consists of an input layer, one or several hidden layers, and an output layer.

Traditionally, the performance of machine-learning models highly relied on the goodness 
of the representation of the input data (features). A good data representation is a necessary 
requirement for obtaining models with higher performance. Therefore, for an extended 
period, feature engineering and selection have been crucial steps in machine learning, 
which focuses on building features from raw data. Comparatively, deep learning algorithms 
could automatically perform feature extraction (153, 154). Deep learning consists of an input 
layer, hidden layers, and an output layer (Figure 7B). The nodes or units in each layer are 
neurons that are interconnected in adjacent layers. In neural networks, inputs and outputs 
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are connected to the neuron by weights, which are linear operators that multiply the previous 
value. Then, the units undergo a transformation with a specific activation function, which in 
most cases is a sigmoid function, tan hyperbolic, or rectified linear unit (ReLU).

Deep learning has already been applied to various fields of biological research, including 
the analyses of medical image data, gene expression data, DNA and protein sequence data, 
protein quantification data, etc. For instance, several deep learning-based tools have been 
developed for the prediction of retention time, including DeepRT (155), DeepMass (156), 
DeepDIA (157), and DeepLC (158); for the prediction of MS/MS spectra, such as pDeep 
(159), DeepMass:Prism (156), DeepDIA (157); for the prediction of Post-Translational 
Modifications (PTMs), such as the prediction of PTM sites for phosphorylation (160), 
ubiquitination, acetylation, and glycosylation; for the prediction of protein-protein interactions 
(161). Deep learning technology has great potential in many research tasks. With continuous 
improvements to the deep learning algorithms and the generation of high-quality proteomics 
data, we expect deep learning will have a profound impact on the application of proteomics 
data analysis. 

Machine learning modeling

Training and testing. When establishing a new machine learning model, it is standard 
practice to divide data into two sets: the ‘training set’ used to train the model, and the ‘test set’, 
used to evaluate the performance of the final model. In practice, it is prone to overestimating 
if we pull all of our data to train up a model, and then use the same set of data for testing. 
Thus, a general rule of data splitting is based on a ratio of 70/30 or 80/20 for producing training 
and testing datasets. In general, the size of the training set has an important impact on the 
prediction ability of the ML models. The more data seen by the training process the better the 
chance of the algorithm to detect characteristics for making predictions. Ideally, an abundance 
of both training and test data is available for the machine learning model prediction to be 
optimal. 

Cross validation. Cross-validation is similar to splitting training and test data but it 
contains more subsets. In practice, we split data into equal-sized subsets, termed folds. For 
each fold, we remove it from the training set, build a model on the other folds and then test on 
the withheld portion. If we have k folds, then this is called k-fold cross-validation. For instance, 
if we use 15 folds cross-validation, which means the dataset is divided into 15 equal-sized 
subsets, the first subset is taken as the test set, and the remaining 14 subsets are the training 
sets. Next, we put the first fold back into the training set but take out the second fold as a test 
set, and repeat these training and testing processes. Doing this ensures that each piece of the 
dataset is helpful for training and testing and therefore helps to shrink the bias.

Model performance evaluation. A crucial step in machine learning modeling is to 
evaluate the model performance. Most measures in use today focus on a classifier’s ability 
to identify classes correctly. These measures are built from a confusion matrix which records 
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correctly and incorrectly recognized examples for each class (162). Table 3 presents a 
confusion matrix for binary classification, where TP is true positive, FP is false positive, FN is 
false negative, and TN is true negative counts. Specifically, a true positive (TP) is an outcome 
where the model correctly predicts the positive class. Similarly, a true negative (TN) is an 
outcome where the model correctly predicts the negative class. A false positive (FP) is an 
outcome where the model incorrectly predicts the positive class; and a false negative (FN) is 
an outcome where the model incorrectly predicts the negative class.

Table 3. A confusion matrix for binary classification

Classes Positive Negative

Positive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)

The most commonly used measures now are accuracy, precision, recall, F-measure (or 
F-score), and ROC analysis (163). The accuracy is the proportion of true results, i.e., both 
true positives and true negatives, among the total number of cases examined. Accuracy can 
be determined using the equation:

Accuracy =
TP + TN

TP + FP + TN + FN (1)

The precision attempts to indicate the proportion of positive identifications was actually 
correct. It is calculated using the equation:

Precision =
TP

TP + FP
(2)

The recall attempts to answer what proportion of actual positives was identified correctly. 
It can be calculated using the equation: 

Recall =
TP

TP + FN (3)

Both the precision and recall focus only on the positive examples and predictions, although 
these measures capture some information about the rates of errors made. However, neither 
of them captures information about how well the model handles negative cases. Therefore, 
the F-measure or F-score was proposed, which is the geometric and harmonic means of the 
precision and recall. 

F −measure =
2 ∗ Precision ∗Recall

Precision+Recall
(4)

Another way to test the performance of classifier can be obtained by the ROC curve 
(receiver operating characteristic curve). 
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True positive rate =                 (5)

False positive rate                 (6)

This curve plots two parameters: true positive rate, and false positive rate, where X axis 
represents the false positive rate and the Y axis represents true positive rate. The area under 
the ROC Curve is called for AUC, which provides an aggregate measure of performance 
across all possible classification thresholds. 

These measures are commonly used to present results for binary decision problems in 
machine learning. However, when dealing with highly skewed datasets, Precision-Recall (PR) 
curves give a more informative picture of a model’s performance. Therefore, it’s important to 
choose a proper evaluation measure depending on the dataset.

3. The application of bioinformatics tools for (phospho)proteomics data 
analysis

Recent advances in mass spectrometry (MS)-based proteomics and phosphoproteomics 
have enabled tremendous progress in the uncovering cellular mechanisms, disease 
progression, and the relationship between genotype and phenotype. The general downstream 
workflow of bioinformatics analysis in mass spectrometry-based (phospho)proteomics 
experiments could be summarized into 6 steps: 1, Data cleaning, and normalization; 2, 
Differential analysis and heatmap for protein abundance with expression clustering, or 
volcano plot highlighting differentially expressed hits; 3, Clustering analysis to check the 
reproducibility for biological replicates; 4, Functional annotation to uncover the biological 
relevance of differentially expressed proteins; 5; Network inference to show the protein-protein 
interaction relationships and indicate the key regulators for the network/module; 6, Inferring 
of kinase activities or phosphosite-based signature enrichment for phosphoproteomics data 
interpretation. This general workflow could be adjusted according to one’s experimental 
design to answer specific research question.

3.1 Melanoma and treatment strategies

Melanoma is a type of skin cancer that develops from the pigment-producing cells 
known as melanocytes, which typically occur in the skin but may occur in eyes, inner ear, 
and leptomeninges. Although melanoma accounts for about 1% of all skin malignant cancer 
cases, the malignant melanoma occupies the most aggressive and the deadliest form of 
skin cancer (164). Studies have shown that melanoma is associated with a high variety of 
somatic mutations (165), most frequently involving BRAF (35–45%) and NRAS (15–25% of 
melanoma patients) genes, but also c-KIT and PTEN (166). Among these frequently mutated 
genes, BRAF is a serine-threonine kinase involved in the RAF-MEK-MAPK pathway, which 
plays a role in regulating MAP kinase/ERKs signaling pathway and affects cell division, 

Recall =
TP

TP + FN

=
FP

FP + TN
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differentiation, and secretion. Firstly, extracellular signals and stimulus bind to tyrosine kinase 
receptors, leading to the activation of RAS, and then activating BRAF. Then, the activated 
BRAF can phosphorylate and activate MEK1/2 kinases, which in turn phosphorylates and 
activates ERK1/2, leading to cellular proliferation and survival (167). However, oncogenic 
mutations (mostly V600E) of BRAF account for around 40 to 60% of melanomas, resulting in 
the constitutive activation of downstream MAPK signaling and unregulated cell growth (168).

 Small-molecule targeted therapies that works by blocking the mutant BRAF V600E 
involved pathways (169) showed major tumor responses compared to chemotherapy. 
Inhibitors such as vemurafenib and dabrafenib are the most effective, approved treatments 
for BRAF positive melanoma (170). Although, BRAF inhibitors showed a lot of potential in 
melanoma treatment, with remarkable response rates and overall survival, the majority of 
patients develop resistance rapidly (171). To increase the molecular understanding of this drug 
dependency, we applied a mass spectrometry-based proteomic approach on BRAFi-resistant 
melanoma cells (Chapter 2), in which ERK1, ERK2 and JUNB were silenced separately using 
CRISPR–Cas9. By applying the above bioinformatics methods for the downstream proteomics 
and phosphoproteomics data analysis, we depict how ERK1, ERK2 and JUNB influence the 
proteome response of drug addicted melanoma cells upon drug withdrawal.

More recently, immunotherapy shows promising clinical efficacy in the treatment of 
melanoma. Immunotherapy is aimed at stimulating the immune system against the tumor, via an 
enhanced ability to recognize and kill cancer cells (172). The most successful immunotherapy 
on melanoma is the immune checkpoint inhibiting, including the CTLA-4 inhibitors (ipilimumab 
and tremelimumab) and PD-1/PD-L1 inhibitors (pembrolizumab, pidilizumab, and nivolumab) 
(173). In Chapter 3, we focused our research on CD8+ T cells to increase our understanding 
of the T cell activation process. Moreover, to investigate the role of PD-1 in regulating T 
cell activation, we measured the proteomics and phosphoproteomics profiling on resting and 
activated CD8+ T cells, in which PD-1 was silenced using CRISPR–Cas9. With the application 
of bioinformatics tools, we find that silencing of PD-1 induced more phosphorylation events 
in regulating mTOR signaling and activated the epidermal growth factor and corresponding 
downstream MAPK pathway.

3.2 Identification of protein complexes 

Proteins do not work independently but interact with each other in stable or transient 
multi-protein complexes of distinct composition. Moreover, proteins can interact with other 
molecules, such as DNA (174), RNA (175) or metabolites (176), highlighting the importance of 
identifying protein interactions and protein complexes. A workflow for identification of protein 
complexes can be simplified into protein-protein interaction data acquisition, PPI scoring, and 
identification of complexes (Figure 8).
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Probing protein-protein interaction 

Different experimental techniques have been developed to measure protein-protein 
interactions; these methods vary considerably, not at the least in terms of the data they 
produce. The two most well-established methods are the yeast two-hybrid (Y2H) system 
(177) and affinity purification followed by mass spectrometry (AP-MS) (178). The Y2H system 
assays whether two proteins physically interact with each other by genetically modifying yeast 
strains to express a ‘bait’ and a ‘prey’ protein, which, if they interact, trigger the expression of 
a reporter gene. The high-throughput Y2H method can construct broad maps of binary PPIs, 
irrespective of protein abundances, including those that connect different complexes and those 
that are of a highly transient nature, which are difficult to target using alternative approaches. 
However, the quality of Y2H data sets has been controversial, since different Y2H systems 
have been shown to detect markedly different interactions in the same interactome, requiring 
tools to determine the confidence of the interactions (179). 

Figure 8. Workflow for identification of protein complexes. The workflow can be summarized into protein-
protein interaction data acquisition, PPI scoring, and identification of complexes. (A) Characterization of 
PPI in a single dataset, the bait proteins are used to capture the sets of prey proteins, followed by PPI 
scoring. (B) Characterization of PPI by integrating multiple datasets. The PPI scores are predicted by a 
machine learning model generated based on existing protein-protein interaction data. (C) A full connected 
PPI network constructed by connecting all PPI obtained from (A) or (B), followed by a clustering strategy 

to identify protein complexes.

In an AP-MS experiment, a protein of interest (bait protein) is fused to a protein fragment 
(the ‘tag’). This modified or tagged protein is expressed and purified from the cell extract, 
while proteins that bind to the tagged protein (prey proteins) are co-purified and subsequently 
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identified by mass spectrometry. The AP-MS technique can delineate the dynamics of 
interactions at almost physiological conditions, thus explaining its success for the determination 
of protein complex compositions and has been performed for yeast and human proteins (94, 
180, 181). Therefore, AP of tagged proteins of interest and identification of the co-purified 
protein components by MS (AP-MS) has become a preferred method for the analysis of PPIs 
because the data it produces reflect more closely the actual multidirectional complexity of a 
network in the cell. The following section focuses on introducing the identification of protein 
complexes by employing the AP-MS technology. 

A concern in the protein complex analysis is the identification of true and specific PPIs 
as opposed to nonspecifically co-purified proteins. An effective strategy to address possible 
contaminants or nonspecific interactors is by using quantitative interaction proteomics to 
assign a bait-prey pair a interacting score to identify “true” interactors. To this end, several 
bioinformatics computational methods have been developed, including scoring strategies on 
the single AP-MS dataset and integrative large-scale AP-MS datasets. 

Scoring on single AP-MS dataset. The Comparative Proteomics Analysis Software Suite 
(CompPASS) (182) was developed to identify high confidence interacting proteins in AP-
MS experiments using spectral counts. A composite interacting score is calculated based on 
the bait-prey spectral count, reproducibility of interactions, and the frequency of appearance 
of the prey.  Another scoring method, the Significance Analysis of INTeractome (SAINT) 
(183), uses quantitative data and generates separate Poisson distributions for true and false 
interactions to derive the interaction probability. The final PPI score reflects the probability of 
the observed spectral count belonging to the true interaction distribution. In another empirical 
method, Sardiu et al. (184) converts the normalized spectral abundance factor (NSAF) into 
the posterior probability of true interaction between a bait-prey pair using simple heuristics. To 
improve the accuracy of the true interacting protein pairs from those of nonspecific interacting 
protein pairs, the integrative modeling approach is being increasingly popular for AP-MS data 
analysis. For instance, the CRAPome (185) project built a contaminant repository collected 
from public AP-MS studies and combined these with existing scoring methods such as 
SAINT. Such an approach overcomes the drawback that most AP-MS studies do not capture 
a complete background protein set.

The performance of the above introduced algorithms is determined by the nature of the 
AP-MS data. For instance, scoring methods are affected by the topology of the protein-
protein interaction network, the number and scale of baits library, the level of bait expression, 
replicates and control experiments, etc. Therefore, in practice, multiple scoring algorithms 
strategies are suggested to be applied to a given AP-MS dataset and then assessed on a 
case-by-case basis in the testing stage.

Scoring on integrative AP-MS datasets by machine learning modeling. Despite large 
efforts have been devoted to characterize the interactome, the existing methods for PPIs are 
limited by the fact that protein interaction datasets are usually incomplete. Besides, prior high-
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throughput protein interaction assays in yeast and humans have generally tended to show 
limited overlap (94, 186-188), suggesting that interactions from different studies tend to be bait-
dependent and tissue-bias. Therefore, Drew et al., (138) constructed a comprehensive map of 
protein complexes by integrating large-scale mass spectrometry experimental datasets and 
employing a support vector machine (SVM) classifier to predict the interaction score. In that 
study, over 9000 MS-based protein interaction datasets from a variety of human and animal 
cells and tissues were integrated into the analysis. Interestingly, the combined map revealed 
thousands of PPIs that were not identified by any individual mass spectrometry experiment 
and increased the overlap of PPIs between different experiments. 

The interactome is data-intensive, which turns researchers to looking for a higher efficient 
computational tool. Fortunately, deep learning has demonstrated breakthrough gains over 
existing best-in-class machine learning algorithms in the application of even big datasets 
(189, 190). A neural network consists of layers (i.e., input layer, hidden layers, and output 
layer) of interconnected compute units (neurons) (191). Easy-to-use software packages, 
such as Keras (192), have brought the neural network out of the specialist’s toolkit to a 
broad research area. Successful application of deep learning in research domains include 
regulatory genomics (193), drug discovery (194), and biomedicine (195). Inspired by the high 
performance and accuracy of this algorithm, in Chapter 4, we developed a deep learning 
framework that incorporates multiple sources of data (including interacting and non-interacting 
data) to predict protein-protein interaction probabilities, ultimately generate a comprehensive 
map of complexes. Our deep learning technique-based classifier significantly outperformed 
recently published SVM prediction models.
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Abstract

Acquired resistance to MAPK inhibitors limits the clinical efficacy in melanoma treatment. 
We and others have recently shown that BRAF inhibitors (BRAFi)-resistant melanoma cells 
can develop a dependency on the therapeutic drugs to which they have acquired resistance, 
creating a vulnerability for these cells that can potentially be exploited in cancer treatment. In 
drug addicted melanoma cells, it was shown that this induction of cell death was preceded by a 
specific ERK2-dependent phenotype switch, however, the underlying molecular mechanisms 
are largely lacking. To increase the molecular understanding of this drug dependency, we 
applied a mass spectrometry-based proteomic approach on BRAFi-resistant BRAFMUT 
451Lu cells, in which ERK1, ERK2 and JUNB were silenced separately using CRISPR–Cas9. 
Inactivation of ERK2 and, to a lesser extent, JUNB prevents drug addiction in these melanoma 
cell while, conversely, knock out of ERK1 fails to reverse this phenotype, showing a response 
similar to control cells. Our analysis reveals that ERK2 and JUNB share comparable proteome 
responses dominated by reactivation of cell division. Importantly, we find that EMT activation 
in drug addicted melanoma cells upon drug withdrawal is affected by silencing ERK2 but 
not ERK1. Moreover, transcription factor (regulator) enrichment shows that PIR acts as an 
effector of ERK2 and phosphoproteome analysis reveals that silencing of ERK2 but not ERK1 
leads to amplification of GSK3 kinase activity. Our results depict possible mechanisms of drug 
addiction in melanoma, which may provide a guide for strategies in drug-resistant melanoma.

Introduction

Oncogenic mutations that cause activation of BRAF occur regularly in melanoma, with 
approximately 40 to 60% of cutaneous melanomas carrying mutations in BRAF (e.g. BRAF-
V600E). Such mutations lead to constitutive activation of downstream signaling through the 
RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway (1), making BRAF an 
attractive target for anti-melanoma therapy. Thus, small molecules (inhibitors) were designed 
to target the MAPK pathway, such as vemurafenib and dabrafenib, which are selective BRAF 
mutant inhibitors (2). Although these BRAF inhibitors (BRAFi) showed a lot of potential in 
melanoma treatment, with remarkable response rates and overall survival (3), the clinical 
benefit is hindered by the rapid development of acquired resistance. 

Many routes to the acquisition of BRAFi resistance are described, such as BRAF allele 
amplification or splice variants (4), re-activation of the MAPK pathway and substitutive pathways 
(5, 6). The main mechanisms leading to MAPK reactivation and sustained ERK signaling 
involve alterations in BRAF, NRAS, MEK, and neurofibromin1 (NF1) (7, 8). The compensatory 
PI3K-mTOR cascade is the most commonly activated in drug resistant melanoma, via gene 
mutation or deletion of PTEN, or the activation of receptor tyrosine kinases (RTKs) (9-11). 
Interestingly, several studies have shown that discontinued drug treatment in the resistant 
melanoma cells causes massive cell mortality, in other words, these resistant cells become 
addicted to the very drugs that initially served to eliminate them (12-14). 
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Typically, the BRAFi-addicted melanoma cells experience a transient cell-cycle slowdown 
followed by cell-death upon drug withdrawal. This specific phenotype induces pERK 
reactivation that up-regulates p38–FRA1–JUNB–CDKN1A expression and slows down 
proliferation, and a robust pERK reactivation can result in DNA damage and parthanatos-
related cell death (14). Moreover, ERK2, but not ERK1, was shown to be a “switch” in cancer 
drug addiction, since drug withdrawal induced cell death in melanoma could be reversed by 
genetic inactivation of ERK2 (12). Transcription factors JUNB, FRA1 and MITF, were found 
to play key roles in such Erk2-dependent drug addiction switch, by reprogramming the ERK2-
JUNB-FRA1-MITF pathway (12). 

To systematically depict the alteration of the proteome and phosphoproteome involved 
in drug addicted melanoma, we present a proteomic and phosphoproteomic study of BRAFi 
addicted melanoma cells (i.e. 451Lu cell line) in response to BRAFi withdrawal. To shed light 
on the role of ERK1, ERK2, and JUNB in response to drug withdrawal, we genetically silenced 
these genes separately by CRISPR–Cas9, in these BRAFi addicted melanoma cells, followed 
by systematic proteomic and phosphoproteomic profiling. 

Materials and methods

Cell culture and colony formation

The BRAF inhibitor dabrafenib, the MEK inhibitor trametinib, and the ERK inhibitor 
SCH772984 were purchased from Selleck Chemicals. 451Lu cells were obtained from J. 
Villanueva (The Wistar Institute). The A375, Mel888, and A101D cells were from the Peeper 
laboratory cell line stock. Cells were routinely tested for mycoplasma contamination and 
authenticated by STR profiling (Promega). Next cells were cultured in DMEM supplemented with 
9% fetal bovine serum (Sigma), plus 100 units per ml penicillin and 0.1 mg ml−1 streptomycin 
(Gibco). To generate BRAFi or BRAFi + MEKi-resistant cells, parental drug-sensitive cells 
were exposed to increasing concentrations of BRAFi dabrafenib (from 0.01 μM to 5 μM) or 
BRAFi dabrafenib + MEKi trametinib (from 0.01 μM + 0.001 μM to 0.5 μM + 0.05 μM) for 3–5 
months. The drug resistance phenotype of cells was verified by colony formation assay. The 
generation ERK2, ERK1 or JUNB knockout pools, colony formation assay to determine cell 
viability in the presence or absence of BRAFi were performed as previously described (12). 
Resistant cells were stained with crystal violet (1% in 50% methanol) and photographed at 
day0 with drug and day3 without drug. The relative colony area was calculated using the 
plugin “ColonyArea” in ImageJ (15). Samples were collected at day0 with drug, day1 and day3 
without drug for further mass spectrometry analysis.

Immunoblotting

Immunoblotting was performed as previously described (16). The BRAFi + MEKi-resistant 
(Mel888 BMR, A101 BMR and A375 BMR) or BRAFi-resistant (451Lu BR) cells were treated 
with corresponding inhibitors (BRAFi + MEKi for BMR cells, BRAFi for BR cells), with an ERK 
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inhibitor, or drug was withdrawn, all for 24 hours. Cells were harvested and total cell lysates 
were prepared and submitted for immunoblotting. The antibody for Pirin was obtained from 
BD Bioscience.

Protein digestion

Cells were lysed, reduced and alkylated in lysis buffer (1% sodium deoxycholate (SDC), 
10 mM tris(2-carboxyethyl)-phosphinehydroxchloride (TCEP), 40 mM chloroacetamide, 100 
mM TRIS, pH 8.0 supplemented with protease inhibitor (cOmplete mini EDTA-free, Roche) 
and  phosphatase inhibitor (PhosSTOP, Merck) and heated for 5 min at 95°C followed by 
sonication with a Bioruptor Plus (Diagenode) for 15 cycles of 30 s. Samples were diluted 1:10 
with 50mM ammoniumbicarbonate (AMBIC), pH 8.0 and digested with Lys-C (1:200 ratio 
w/w, Wako) and trypsin (1:50 ratio w/w, Merck) at 37°C, overnight. Digestion was quenched 
by acidification to 2% formic acid and followed by desalting using 1cc Sep-Pak C18 cartridges 
(Waters Corporation).

Phosphopeptide enrichment

Phosphorylated peptides were enriched using Fe(III)-NTA cartridges (Agilent technologies) 
in an automated fashion with the AssayMAP Bravo Platform (Agilent Technologies) as 
described (16). Briefly, Fe(III)-NTA cartridges were primed using 0.1% TFA in ACN and 
equilibrated with loading buffer (80% ACN/0.1% TFA). Samples were dissolved in loading 
buffer and loaded onto the cartridge, washed with loading buffer, and the phosphorylated 
peptides were eluted with 1% ammonia directly into 10% formic acid and dried down.

Mass spectrometry: RP-nanoLC-MS/MS

Re-suspended peptides were subjected to LC-LC MS/MS using an Agilent 1290 Infinity 
coupled to an Orbitrap Q Exactive HF mass spectrometer (Thermo Scientific, Bremen, 
Germany) using a 160 min gradient for the full proteome samples and a 100 min gradient for 
the phospho enriched samples. Peptides were first trapped (Dr Maisch Reprosil C18, 3 μm, 
2 cm × 100 μm) before being separated on an analytical column (Agilent Poroshell EC-C18, 
2.7 μm, 50 cm × 75 μm). Trapping was performed for 5 min in solvent A (0.1 M acetic acid 
in water) at 5 µl min-1. The LC flow during the gradient was passively split to 300 nL min−1. 
The 160 min gradient was as follows: 13−44% solvent B (0.1 M acetic acid in 80% ACN) in 
152 min, 44−100% in 3 min and 100% for 4 min. The 100 min gradient was as follows: 9−36% 
solvent B (0.1 M acetic acid in 80% ACN) in 93 min, 36−100% in 3 min and 100% for 4 min. 
The mass spectrometer was operated in data-dependent mode. Full-scan MS spectra from 
m/z 375−1600 were acquired at a resolution of 60 000 at m/z 200 after accumulation to a 
target value of 3 × 106. Up to 15 most intense precursor ions were selected for fragmentation 
for the full proteome samples and up to 12 most intense precursor ions were selected for 
the phosphopeptide enriched samples. HCD fragmentation was performed at a normalized 
collision energy of 27.
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Data processing

All raw MS files were searched using MaxQuant software (version 1.5.8.3) (17). MS/MS 
spectra were searched by Andromeda against a reviewed Homo sapiens database (20,197 
entries, August, 2016) using the following parameters: trypsin digestion; maximum of two 
missed cleavages; cysteine carbamidomethylation as fixed modification; oxidized methionine, 
protein N-terminal acetylation, and serine/threonine/tyrosine phosphorylation (for the 
phosphoproteome data analysis only) as variable modifications. Mass tolerance was set to 
4.5 and 20 ppm for the MS1 and MS2, respectively. The protein and PSM False Discovery 
Rate (FDR) were set to 1%. Peptide identifications by MS/MS were transferred between 
runs to replace missing values for quantification, with a 0.7-min window after retention time 
alignment.

Data analysis and statistics 

All data were analyzed under the R-3.5.1 environment (18) and Microsoft Excel. Raw 
intensities extracted from MaxQuant were first log2 transformed and then normalized 
by the median of replicates for label-free quantification. We assumed that missing values 
were below detectability, thus sample minimums were used to replace missing values. 
Furtherly, t-Distributed Stochastic Neighbor Embedding (t-SNE) (19) was employed to 
assess the reproducibility of the experiments within biological replicates (n = 4). To obtain the 
differentially expressed (DE) proteins between ERK1-silenced cells and non-silenced cells, 
we fitted two linear regression models, where the first linear regression model indicates the 
observed differences between conditions that associate with gene silencing, which was fitted 
for each protein using the “lm” function in R. The second linear regression model, indicates no 
difference between the conditions. Next, the likelihood ratio test (LRT) was used to compare 
these two models to get the differential p-value for each protein using the “anova” function with 
the parameter “test = ‘LRT’” in R. The log2 fold change of the intensity for each protein was 
calculated by log2(As/An), where “As” is the mean protein abundance in the Erk1-silenced 
cells, and the “An” is the mean abundance in the control cells. The same analyses were 
performed to obtain the DE proteins between ERK2-silenced cells and non-silenced cells, 
and JUNB-silenced cells and non-silenced cells. Next, the DE proteins with FDR-corrected 
p-value < 0.05 and log2 fold change > 1 were further used for unsupervised clustering using 
Euclidean as distance measurement and then cut into four clusters based on expression 
patterns over time. Subsequently, DE proteins in each cluster was used for the hallmark 
enrichment analysis in Metascape (a gene annotation & analysis resource) online platform 
(20). Following, the top 10 enriched (min overlap: 3; p-value cutoff: 0.01; min enrichment: 1.5) 
hallmarks for each cluster were used to show the enrichment difference. 

Transcription factors (regulators) enrichment 

The RegEnrich R package that integrates proteome expression profiling, transcription 
factors (regulators) and WGCNA co-expression networks, was performed to define the key 
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transcription factors (21, 22). Briefly, it involves three steps: 1) construction of data-driven co-
expression networks using proteome profiles in control and each sgRNA cells; 2) deducing 
genes of interest (i.e., using differential changed protein lists to obtain a TF connected sub-
network); and 3) referring importance to TFs by Fisher’s exact test. An enrichment score for 
TFs was given by incorporating the exhibited significance of differential expression ( PD < 0.05)  
and significance of enrichment (PE < 0.05). The overall scores of TFs were calculated by the 
following fomular.

score = norm(−log(pE)) + norm(−log(pD)), norm(x) =
x−min(x)

max(x)−min(x)

Kinase activity

In our phosphoproteome profiling, we quantified 22,117 phosphosites, of which 15,124 
had a localization probability over 0.75, mapping to 4,070 proteins. A single sample-based 
public R package InKA (Integrative Inferred Kinase Activity) that integrates kinase-centric 
(e.g. kinome and activation loop) and substrate-centric (e.g. PhosphoSitePlus and NetworKIN) 
information was applied to infer active kinases (23).  Following, the top 20 activated kinases 
in each sample was used to show the activity difference.

Data availability 

All mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE (24) partner repository with the dataset identifier PXD026557.

Results and Discussion

Drug addiction phenotype switching

In this study, we sought to increase our knowledge on the dynamic response of the 
proteome and associated signaling networks of drug addicted melanoma cells in the presence 
and absence of drug, using a (phospho)proteomics approach. ERK1, ERK2, and JUNB genes 
were separately silenced by CRISPR–Cas9 in dabrafenib (BRAF inhibitor)-addicted 451Lu 
cells (Fig. 1A). These cells carry a BRAF V600E mutation as well as a MEK1 K57N-activating 
mutation (25). Interestingly, ceasing drug administration in drug-addicted melanoma cells 
triggered massive cell death in the control condition (Fig. 1B). As observed before (12), KO 
of ERK2 can drastically reverse this phenotype, i.e., ERK2 knockout prevents drug addiction 
and cell death upon drug withdrawal. Conversely, inactivation of ERK1 failed to prevent drug 
addiction and resulted in severe cell death upon drug withdrawal, comparable to the control 
situation (Fig. 1B). Loss of JUNB showed comparable results to ERK2 KO, but to a lesser 
extent. These results suggest that loss of ERK2 or JUNB in BRAFi addicted melanoma cells 
could prevent the drug addiction phenotype.
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Figure 1. Phenotype and proteomic trajectory. A, Separate knockout of ERK1, ERK2, and JUNB in BRAF 
inhibitor (dabrafenib) addicted 451Lu cells, with drug on (day 0) and drug off (days 1 & 3). B top, control 
and 3 CRISPR–Cas9 knockout cells were cultured with or without BRAF inhibitor dabrafenib, followed 
by staining for the live cells. B bottom, the relative colony area was calculated using ImageJ. Statistical 
differences were analyzed by one-way ANOVA with Tukey post-hoc testing (****, P < 0.0001, error bars 
denote ±SD). C, Box plot illustrating protein abundance of each knockout gene. The points are not shown 
when the abundance below detectability. D t-SNE plot, based on proteome profiling, shows the trajectory 
of how different cells proceeded upon drug withdrawal.

To gain insight into resistance mechanisms to BRAFi addicted melanoma, we employed 
a label-free quantitative (phospho)proteomics approach. Briefly, cells were collected at day0 
(with drug), day1 and day3 (without drug), lysed and subsequently the protein extracts were 
in-solution digested by LysC/trypsin and analyzed by liquid chromatography-tandem mass 
spectrometry (nanoLC-MS/MS) on a high-resolution mass spectrometer (Q-Exactive HF). 
The quantified protein abundances show depletion of ERK1, JUNB and ERK2, compared to 
control (Fig. 1C). Interestingly, sgCtrl, sgERK1 and sgERK2 cells show JUNB activation upon 
drug withdrawal, which is consistent with previous results (12). 
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In total, 5,720 proteins with at least two unique peptides were quantified (Table S1A), on 
which we performed t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis. Here, 
we found that cells within biological replicates cluster tightly together, while cells that carry 
different gene KOs followed distinct trajectories over time (Fig. 1D). Of note, the cells in 
which ERK2 was depleted followed an opposite trajectory to the other cells over time. These 
results together suggest that ERK2-knockout considerably influences the proteome profiles of 
BRAFi-addicted melanoma cells.

Proteome response in drug addicted cells upon drug withdrawal 

To compare proteome changes between sgERK2 and sgCtrl upon drug exposure and 
withdrawal, 2,502 significantly changed proteins between sgERK2 and sgCtrl were identified 
using ANOVA with 5% FDR and > 2-fold change. Next, an unsupervised hierarchical clustering 
method was applied to identify protein clusters with similar expression trends (Fig. 2A). A total 
of four expression patterns were identified, with C2 (cluster 2) and C3 (cluster 3) displaying 
upregulated and C1 (cluster 1) and C4 (cluster 4) downregulated patterns (Fig. 2A and 2B) 
upon drug removal. Pearson correlation using 2,502 differential expressed proteins revealed 
samples upon drug withdrawal showed higher correlation (Fig. S1A). 

Clusters C2 and C3 contain upregulated proteins, where C2 contains 726 proteins that 
increase in expression immediately after drug removal and are stable afterward, C3 contains 
512 proteins, showing proteins that continuously increase in expression upon drug withdrawal. 
Proteins in these clusters show strongest enrichment related to mTORC1 signaling, cytokine 
(IL-2 and TNF-alpha) signaling, cell division and DNA repair processes (Fig. 2D). Together, 
these results highlight that drug withdrawal in melanoma cells with inactivated ERK2 leads 
to reactivation of cell division, dominating the molecular processes observed. Among 
the downregulated clusters (Fig. 2B), C1 showed continuous down regulation upon drug 
withdrawal and C4 includes proteins downregulated at day 1 and remaining stable afterwards. 
Hallmark analysis showed oxidative phosphorylation as the most predominant pathways in 
both clusters (Fig. 2D).

To understand the different molecular mechanisms involved between sgERK2 and 
sgERK1 cells, we next analyzed significantly changing proteins of ERK1 depleted cells upon 
drug withdrawal compared to sgCtrl. This analysis identified 4 clusters with similar expression 
patterns, with more than half of the proteins showing down-regulation after drug withdrawal 
(Fig. 2A right panel and 2C). Pearson correlation with 1465 differential proteins showed higher 
correlation within bio-replicates, where the correlation between biological replicates generally 
exceeded 0.9 (Fig. S1B). Upregulated proteins upon drug removal in C1 and C4 enriched in 
EMT, cytokine and mTORC1 signaling (Fig. 2E). Cluster C2 and C3, showing down-regulation 
of proteins, significantly enriched in cell cycle (E2F targets and G2M checkpoint), followed by 
energy metabolism and apoptosis (Fig. 2E). 
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Figure 2. Proteome response in drug addicted cells upon drug withdrawal. A, Heatmap of differential 
expression proteins in ERK2 knockout (left) and ERK1 knockout (right), constructed using unsupervised 
hierarchical clustering upon drug on (day0 a, b, c, and d) and drug off (day 1 & day3 a, b, c, and d), which 
shows four distinct expression patterns. B & C, Average abundance trends for clusters in sgERK2 and 
sgERK1, shading denotes ±1 SD. D & E, Hallmark enrichment according to proteins in the corresponding 
cluster.

EMT is characterized by loss of typical epithelial histologic features and gain mesenchymal 
characteristics (26). These changes enhance cell migratory capacity and increase invasiveness, 
which enable the transition from melanoma in situ to aggressive, invasive melanoma (27). Our 
previous work showed that cells lacking ERK2, but not ERK1, failed to undergo the EMT-
like changes following drug withdrawal. Consistently, we found here that silencing of ERK2 
maintains EMT-related proteins at a low expression level upon drug withdrawal (Fig. 3A). 
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However, an opposite phenomenon was observed in sgCtrl, sgERK1 and sgJUNB cells, 
i.e., the EMT-related proteins were upregulated upon drug removal (Fig. 3A). These include 
important EMT proteins, such as fibronectin (FN1), integrin beta-1 (ITGB1), and integrin 
alpha-5 (ITGA5) (Fig. 3B) (28). Fibronectin is an established marker for (EMT), and has been 
linked to promote cancer growth, including in melanoma (29). ITGB1 was reported to enhance 
EMT via FAK-AKT signaling pathway (30), and an increased expression of ITGB1 has been 
associated with breast tumor progression (31). Further, ITGA5 has been shown to induce 
EMT transition and invasion in human cancer cells, after being cooperatively upregulated by 
twist1 and AP-1 (32). Taking these data together shows that silencing of ERK2 results in no 
change or slight downregulation of proteins involved in EMT, yet ERK1 KO shows a strong 
increase in EMT related proteins upon drug withdrawal, similar to the control and JUNB KO 
condition but slightly enhanced. These results suggest that EMT activation in drug addicted 
melanoma cells upon drug withdrawal is affected by silencing ERK2 but not ERK1 or JUNB.

  

Figure 3. A, Proteins enriched in epithelial mesenchymal transition (EMT), missing values are represented 
in grey. B, Box plots presenting three important EMT-related proteins FN1, ITGA5, and ITGB1 in control 
(red), sgERK1 (green), sgERK2 (blue) and sgJUNB (purple) cells.

Depletion of JUNB shows similar behavior as sgERK2

Consistent with the t-SNE plot in figure 1D, unsupervised hierarchical clustering of the 
Pearson correlations (1673 differentially expressed proteins) showed sgJUNB samples 
clustered together over time (i.e. d0, d1 and d3), where the correlation between biological 
replicates generally exceeded 0.9 (Fig. S2A). More than half (937/1673) of these proteins 
were up-regulated upon drug withdrawal (Fig. S2B and S2C). Among the up-regulated 
clusters, C3 shows continuously up-regulation after drug withdrawal, while C4 shows first 
down-regulation of expression at day 1 and then amplification at day 3 (Fig. S2B). Biological 
enrichment reveals proteins in C3 to be involved in the regulation of cytokine (interferon-alpha 
and TNF-alpha) signaling, cell cycle (E2F targets and mitotic spindle) pathways and mTORC1 
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signaling. Proteins in C4 are involved in cell division and interferon-gamma signaling (Fig. 
S2D). Consistent with ERK2 knockout cells, the continuously downregulated proteins in 
cluster C2 regulate oxidative phosphorylation, apoptosis and adipogenesis (Fig. S2C and 
S2D). 

Loss of JUNB in drug addicted melanoma cells results in largely the same proteome 
response upon drug withdrawal as in the ERK2 depleted cells, showing amplification of the cell 
cycle and activation of the mTORC1 and cytokine pathway upon drug withdrawal, meanwhile, 
suppressing energy metabolism. As shown in Fig. S2E, silencing of ERK2 shows more unique 
differential expressed proteins, and this number increases upon drug withdrawal. Moreover, 
more common proteins between sgERK2 and sgJUNB cells were detected, which is more 
obvious over time upon drug withdrawal. In total, 528 differential proteins were in common 
between sgERK2 and sgJUNB upon drug withdrawal day 3, showing enrichment in, amongst 
others, cell cycle signaling (E2F targets and mitotic spindle), oxidative phosphorylation 
(Fig. S2F), suggesting a common phenotype where cells survive after drug withdrawal in 
combination with depletion of JUNB and ERK2 in melanoma cell. 

WGCNA module-based transcription factor (regulators) enrichment 

The RAS-RAF-MEK-ERK signaling pathway, directly and indirectly, interacts with 
transcription factors and their regulators, thereby controlling cell survival and proliferation 
(33). To systematically depict the underlying inter-connectivity (e.g., interactions between 
proteins and transcription factors) in BRAFi-resistant melanoma cells, a module based 
weighted protein (gene) co-expression network analysis (WGCNA) was carried out to explore 
correlations between differentially expressed proteins and regulators (21). Next, a one-
tailed hypergeometric test was used to determine the importance of highlighted transcription 
factors and regulators (34-36). An enrichment score for TFs was given by incorporating the 
exhibited significant differential expression (p < 0.05) and significant enrichment (p < 0.05) 
(see Methods).

Figure 4A shows the top-scored transcription factors and regulators in ERK2 KO at 
d0 (with drug present). NR2F2, also known as COUP-TFII (chicken ovalbumin upstream 
promoter-transcription factor II), which acts as a major angiogenesis regulator in the tumor 
microenvironment by regulating the transcription of Angiopoietin-1 (37), and promotes 
metastasis by loss of miR-101 and miR-27a, thereby inducing FOXM1 and CENPF in prostate 
cancer (38). Furthermore, the top enriched regulators include tumor suppressor genes PML, 
APC and GATA4 (39-41), which are upregulated when drug was present. For instance, the 
tumor suppressor PML is involved in regulating the p53 response to oncogenic signals and 
overexpression of PML induces senescence in a p53-dependent manner (42). Knocking out 
PML impaired the p53-regulatory pathway for apoptosis and the induction of p53 target genes 
such as Bax and p21 upon γ-irradiation (43).
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Figure 4. Transcription factors (regulators) enrichment. A-C, (left) Top 15 significant transcription regulators 
enriched in sgERK2 on day0, day1, and day3 separately, shades by log2 fold change of expression 
intensity, and TF enrich –log P-value donates dots size; (right) Abundance of 3 TFs (highlighted in yellow 
line) with co-expression proteins (black lines). D, Top significant TFs with pooled of differential changed 
proteins in sgERK2. E, PIR (encode of Pirin) expression intensity in sgCtrl (red) and sgERK2 (blue), error 
bar presents ±1 SE. F, Four drug-addicted melanoma cell line panels (BR, for cells resistant to BRAFi, 
and BMR for cells resistant to the combined BRAFi and MEKi) were cultured 1) with or without MAPK 
inhibitors, 2) with or without ERK inhibitor, and then immunoblotted.

Next, we looked at the top fifteen transcription factors showing high correlation with 
the differentially expressed proteins at d1 and d3 after drug removal (Fig. 4B and 4C). 
Consistent with the results from Kong et al. (12), the FOSL1 (encodes FRA1) induction after 
drug withdrawal was diminished in sgERK2 cells. Previous research showed that FOSL1 
can act oncogenic to transform melanocytes, enabling subcutaneous tumor growth, through 
downregulation of MITF in a HMGA1-dependent manner (42). Interestingly, we observed 
a strong decrease of MITF abundance in sgCtrl and sgERK1 cells upon drug withdrawal, 
whereas a high expression level was maintained in sgERK2 and sgJUNB cells upon drug 
withdrawal (Fig. S3). Conversely, HMGA1 (one of the co-expression proteins for MITF in our 
prediction result) showed an opposite trend compared to MITF, i.e., upregulation in sgCtrl 
and sgERK1 cells, while maintaining a low abundance level in sgERK2 and sgJUNB cells. 
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Furthermore, the transcription factor MITF was reported to be co-regulated by SOX10, both 
of these two TFs show enrichment at d3. It has been shown that downregulation of SOX10 
results in a simultaneous reduction of MITF and increased SOX9 expression (44), and a 
low level of MITF was detected in ‘invasive’ type of melanoma (45). The most significantly 
enriched transcription factors at d1 and d3 were SMARCA5 (also known as SNF2H) (Fig. 
4B) and TRIP13 (a key mitosis regulator) (Fig. 4C), respectively. SMARCA5, involved 
in preventing genomic instability (46) and interacts with the miR-99 family to regulate the 
DNA damage response (47), shows lower expression in sgERK2 upon drug withdrawal at 
d1. TRIP13 is reported to promote colorectal cancer progression by modulating EMT related 
protein YWHAZ (14-3-3 protein zeta/delta) (48). 

Compared to sgERK2, sgERK1 alters a completely different set of transcription factors and 
regulators (Fig. S4A and 4B), mainly showing down regulation at d1-d3. The observed down 
regulation of many of these factors can be explained by the decreased cell viability at drug 
withdrawal. This can be illustrated by the down regulation of MCM proteins (MCM2, MCM3 
and MCM5), which are involved in governing DNA replication and the cell cycle process (49). 
At d2, the strongest upregulation is observed for NAB2, a suppressor of the inducible zinc 
finger transcription factors EGR1 and EGR2, which regulate the expression of genes involved 
in differentiation, growth, and response to extracellular signals (50).

Interestingly, silencing of JUNB and ERK2 display a more common profile of significant 
transcription factors (regulators) (Fig. S4C and Fig.4). For example, the transcriptional 
repressor TSC22D1 (TSC22 domain family protein 1) (51), which acts as a negative feedback 
regulator of Ras / Raf signaling (51), shows reduced expression in in the presence of drug 
in both sgERK2 and sgJUNB. In addition, changed expression of the chromatin remodeling 
factor-HMGA1 was observed upon drug withdrawal. HMGA1 has been reported to function in 
melanocyte progression to melanoma and involved in EMT. Maurus et.al showed that siRNA-
mediated reduction of HMGA1 partially prevented the FOSL1-mediated reduction of MITF 
on RNA and protein level (52). Pegoraro et.al demonstrated that knock-down of HMGA1 
induces the mesenchymal to epithelial transition and dramatically decreases stemness and 
self-renewal in basal-like breast cancer (53). 

Next, we pooled our data over all three days, which results in PIR, which encodes pirin, 
a transcriptional co-regulator of nuclear factor (NF)κB, to be most significantly enriched in 
sgERK2 (Fig. 4D). Pirin has been described to inhibit melanocytic cell senescence (54) and 
regulate migration of melanoma cells (55). Previous research revealed that pirin can bind 
to Bcl3 that interacts with NFκB, thereby enhancing cell survival, proliferation and tumor 
malignancy (56-58). Pirin expresses stably upon drug withdrawal in sgERK2 cells, while it is 
strongly downregulated in sgCTRL cells (Fig. 4E). Moreover, Pirin expression is high in four 
different melanoma cells (e.g. Mel888BMR, 451LuBR, A101DBMR and A375BMR) treated 
with either a combination of BRAFi and MEKi or ERKi (Fig. 4F). However, pharmacological 
inhibition of PIR failed to prevent lethality caused by drug removal in these BRAFi-resistant 
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cells. Next, we wondered whether restoring expression of pirin in control cells could reverse 
the observed cell death upon drug withdrawal. For this we overexpressed PIR in BRAFi-
resistant 451Lu as well as BRAFi + MEKi-resistant Mel888 cells (Fig. S5). However, we did not 
observe such a rescue effect, suggesting PIR acts downstream of ERK2 (being a biomarker 
rather than a functional mediator) and ERK2 KO prevents its degradation.

Phosphoproteome profiling inferred kinases activity

To further investigate the cellular signaling dynamics in these different melanoma cells 
we performed phosphoproteome profiling, quantifying 22,117 phosphosites, 15,124 with a 
localization probability over 0.75, which mapped to 4,070 proteins (Table S2A). Similar to 
our proteome profile, the tSNE plot shows that the different genetic clones followed distinct 
trajectories over time, while biological replicates group tightly together (Fig. 5A). In our data 
we observed the activating close-proximity phosphosites T202/Y204 on ERK1 and T185/
Y187 on ERK2 (59), showing significant upregulation upon drug withdrawal in all conditions 
except in the conditions where either of these genes were silenced (Fig. S7).  

Figure 5. Phospho-proteome inferred kinases activity. A, phosphoproteomic profiling based t-SNE plot, 
shows the trajectory of how different cells proceeded upon drug removal. B, Top 20 activated kinases in 
sgERK2. C, Kinase activities in control (red), sgERK2 (blue), sgERK1 (green), and sgJUNB (purple), error 
bar presents ±1 SE.
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To further unveil the role of the observed phosphorylation dynamics in these cells, an R 
pipeline ‘InKA’, which integrates kinome, activation loop, phosphoSitePlus and NetworKIN 
evidences, was applied to infer kinase activity (23). Based on this substrate-centric kinase 
activity prediction model, a total of 131 kinases were predicted with a relative activity score 
(Table S2B). We observed that ERK1, ERK2 and CDK1 are the most activated kinases, which 
is more obvious over time upon drug withdrawal in control, sgERK1 and sgJUNB, indicating 
their dominant roles in drug resistant melanoma. To obtain a high confident kinases activity, 
only those top 20 scoring kinases with an average score around 50 in each condition are 
presented (Fig. S7A). Of the top 20 kinases, silencing of ERK2 results in the highest number 
of activated kinases upon drug removal, followed by silencing of JUNB. Moreover, several 
kinases were predicted to be activated upon drug withdrawal both in sgERK2 and sgJUNB cells 
(Fig. 5B and Fig. S7C), including MAPK pathway members such as MAP2K2 (MEK2), AKT1 
and MAPK3 (Fig. S7B), and cell cycle kinases CDK1/2. Notably, no changes were detected 
in protein levels of MAP2K2 (MEK2), while in our phosphoproteome data, we observed a 
significant amplification in activity upon drug withdrawal. Conversely, most of those kinases 
show decreasing activity in sgERK1 and control cells when ceasing drug administration. These 
results suggest that silencing of ERK2 and JUNB share more similarities in phosphorylation 
profiles, activating key members in MAPK and cell cycle signaling.

An interesting observation is the kinase PRKCD which has been reported to have 
contradicting roles in cell survival and death (60). The kinase is enriched in all conditions, 
however, shows maximum enrichment on day1 of drug withdrawal in Erk2 and JunB KO cells, 
while its maximum is reached on day3 in Erk1 KO cells (Fig. 5C). However, the most striking 
difference observed in kinase activation is that of glycogen synthase kinase-3 (GSK3). We 
found GSK3A and GSK3B hyper-activated in ERK2 KO melanoma cells, while their activity 
decreased in the other three conditions upon drug withdrawal (Fig. 5C and Fig. S7C). Previous 
research reveals that inhibition of ERK1/2 restores GSK3B activity and protein synthesis levels 
in a tuberous sclerosis model (61). Our data indicates that control of GSK3B in drug resistant 
melanoma cells is indeed controlled by ERK2 but not ERK1. It has been shown that the level 
of glycogen synthase kinase-3 (GSK3) in its active form is higher in tumor cells compared to 
normal tissue (62). Furthermore, GSK3 is active downstream both PI3K and Wnt pathways, 
and converges MAPK signaling to control MITF nuclear export (63) and promote cell survival 
and growth in human melanoma cells (64). 

Conclusion

Here, we present a proteomics and phosphoproteomics profiling of BRAFi addicted 
melanoma cells (i.e. 451Lu cell line carries BRAFMUT) in response to BRAFi withdrawal. 
Silencing of ERK2 and JUNB could prevent drug addiction and reverse drug withdrawal induced 
cell death, in contrast, inactivation of ERK1 failed to do so. Depletion of ERK2 and JUNB 
share more similar proteome profiles upon drug withdrawal, while the proteome response 
in ERK1 depleted cells resembles that in control cells. Notably, we find a strong increase in 
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EMT related proteins upon drug withdrawal in both control and ERK1 depleted cells, which is 
abrogated by silencing of ERK2. These results suggest that EMT activation in drug addicted 
melanoma cells upon drug withdrawal is affected by silencing ERK2 but not ERK1. Moreover, 
we identify PIR as an effector of ERK2 and show amplification of GSK3 kinase activity upon 
silencing of ERK2 but not ERK1. Our results depict how ERK1, ERK2 and JUNB influence the 
proteome response of drug addicted melanoma cells upon drug withdrawal, which may help 
future strategies fighting drug-resistance.
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Supplementary Material

Supplementary Figures

Supplementary Figure 1. Heatmap of sample Pearson correlation in sgERK2 and sgERK1 cells.
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Supplementary Figure 2. Differential proteins in sgJUNB. A, Hierarchical clustering of sample Pearson 
correlation. B, Mean abundance of proteins in each cluster over time; shading denotes ±1 SD. C, Heatmap 
with differential changed proteins in sgJUNB compared to sgCtrl upon drug on (day0 a, b, c and d) and 
drug withdrawal (day 1 & 3 a, b, c and d). D, Hallmark enrichment using proteins in each cluster, dots size 
shows gene count in specific hallmark term, color presents enrichment p-value. E, Venn diagram with 
significantly changed proteins in three sgRNA cells, drug on day 0; drug withdrawal day 1 and day 3. F, 
Hallmark enrichment using differential proteins in sgERK2 and sgJUNB upon drug removal day 3.
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Supplementary Figure 3. Box plot representing the intensity of three proteins FOSL1, MITF, and HMGA1 
in control (red), sgERK1 (green), sgERK2 (blue) and sgJUNB (purple) cells.
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Supplementary Figure 4. Transcription factors (regulators) enrichment. A and C, Top 15 significant 
transcription factors (regulators) enriched in sgERK1 and sgJUNB in three time point, shades by log2 
fold change of protein abundance, and size by enriched –log P-value. B and D, Express abundance of 
transcription factors (yellow highlighted line) with co-expression proteins (black lines).
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Supplementary Figure 5. Pirin overexpression in drug resistant melanoma cells. A) PIR was overexpressed 
in 451LuBR, Mel888BMR cells, respectively. (BR, BRAFi-resistant, BMR, BRAFi + MEKi-resistant). B) PIR 
overexpression does not lead to reversal of the drug addiction phenotype.
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Supplementary Figure 6. Phosphorylation of MAPK1 (ERK2) and MAPK3 (ERK1) in control (red), sgERK2 
(blue), sgERK1 (green), and sgJUNB (purple) cells.
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Supplementary Figure 7. Kinase activity inferred from the phosphoproteome. A, Barplot shows the 
average activities for the top 20 activated kinases in each sample. B, MAPK1 and MAPK3 activity over 
time, error bar presents ±1 SE, control (red), sgERK2 (blue), sgERK1 (green), and sgJUNB (purple) C, 
Top activated kinases in control, sgERK1, and sgJUNB cells.
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Abstract

CD8+ T cells play crucial roles in the adaptive immune response to clear pathogens. PD-1 
(programmed cell death-1) is one of the central inhibitory receptors regulating CD8+ T cell 
activation. Interestingly, it has recently shown that PD-1 was expressed by activated CD8+ 
T cells during T cell receptor (TCR) stimulation and acute viral infection, but the role of PD-1 
in regulating T cell activation is not well defined. To increase the knowledge of the role of 
PD-1 in T cell activation, we applied a mass spectrometry-based proteomic approach on 
resting and anti-CD3 stimulated CD8+ T cells, in which PD-1 was silenced using CRISPR–
Cas9. PD-1 was upregulated upon activation in wild type CD8+ T cells while, conversely, 
low to almost none PD-1 was detected in PD-1 knockout CD8+ T cells. Our quantitative 
mass spectrometry profile reveals that T cell receptors activated T cells reconstructed their 
proteome and phosphoproteome marked by activating of mTORC1 pathway. Importantly, we 
find that silencing of PD-1 altered the E3 ubiquitin-protein ligases, and increased glucose and 
lactate transporters. Moreover, the phosphorylation peptides-centric signaling analysis shows 
that knocking out of PD-1 evokes more phosphorylation events on mTORC1 pathway, and 
activates epidermal growth factor and its downstream MAPK pathway in regulating CD8+ T cell 
activation. Our results depict possible mechanisms of PD-1 in response to TCR stimulation 
in CD8+ T cells, which may provide a guide in immune homeostasis and immune checkpoint 
therapy. 

Introduction

CD8+ T cells play a critical role in controlling viral, intracellular bacterial and parasitic 
infections. Precise regulation of antigen specific CD8+ T cell activation and proliferation is 
crucial for acquiring effector function, enabling them to specifically lyse target cells. Upon 
stimulation of antigens, the naive CD8+ T cells trigger a signaling cascade to initiate T-cell 
surface receptors (TCRs), and modulate costimulatory and inhibitory receptors and signals, to 
ultimately become activated T cells (1). Receptors such as CD3 and CD28 transduce signals 
necessary to activate T cells. In contrast, receptors like programmed cell death protein 1 
(PD-1) transduce signals that are inhibitory to lymphocyte activation (2). The intricate balance 
between positive and negative costimulatory signals is thought to enable effective immune 
response while preventing unnecessary T cell activation and maintaining immunological 
homeostasis (3, 4). 

PD-1 is the most investigated inhibitory receptor in cell types such as T- and B-lymphocytes 
(5), showing its importance in immune regulation. The C57BL/6 mice that lack PD-1 were 
reported to develop lupus-like arthritis and glomerulonephritis (6) and BALB/c PD-1-deficient 
mice develop fatal dilated cardiomyopathy with IgG deposition (7). Recent studies have 
highlighted the importance of PD-1 in cancer and immunotherapy (2). Therapeutic blockade 
of the PD-1 or PD-L1 inhibitory receptors by antibodies has been approved in clinical cancer 
treatment, including patients with melanoma and non–small cell lung cancer (NSCLC) (8-10). 
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Considering the importance of PD-1 in regulating immune tolerance and cancer treatment, 
studies deciphering the characteristics of PD-1 in T cell activation are urgently needed.

PD-1 conveys its negative signals through two tyrosine-based structural motifs; one is the 
immunoreceptor tyrosine-based inhibitory motif (ITIM), the other one is the immunoreceptor 
tyrosine-based switch motif (ITSM) (11). When engaged with a ligand, PD-1 becomes 
phosphorylated at these motifs, leading to the recruitment of protein tyrosine phosphatases, 
such as SHP-2  (12). These tyrosine phosphatases affect downstream signaling pathways 
through the dephosphorylation of kinases and other signaling molecules , including 
phosphoinositide 3-kinase (PI3K)–AKT and the mitogen activated protein kinase pathway 
(MAPK) RAS-MEK-ERK (13-15), resulting in a decrease in T cell activation, proliferation, 
and survival as well as altered metabolism. Naïve T cells manifest a metabolically quiescent 
phenotype and acquire energy via oxidative phosphorylation (OXPHOS) by breaking down 
glucose, fatty acids, and amino acids (16). During activation via T cell receptor stimulation, T 
cells undergo a metabolic reprogramming to aerobic glycolysis, enabling T cells to meet their 
energy requirements for differentiation and proliferation (17). Interestingly, there is increasing 
evidence for a connection between the PD-1 pathway and metabolic reprogramming in T 
cell activation. PD-1 was reported to modulate metabolic reprogramming during naive T 
cell activation by inhibiting the upregulation of glucose and glutamine metabolism (14, 18). 
Besides, the PD-1 pathway can also promote lipolysis and fatty acid oxidation in activated 
CD4+ T cells (18). 

Therefore, we reasoned that depicting how proteome and phosphorylation events 
modulating T cell activation are affected by PD-1 is of major interest to better understand 
immune responses and immune checkpoint therapy. In the present study, high-resolution 
mass spectrometry was used to analyze the proteome and phosphoproteome of naïve and 
TCR-stimulated CD8+ T cells. To shed light on the role of PD-1, a CRISPR–Cas9 approach 
was employed to genetically knockout PD-1. We quantified >5,000 proteins and >16,800 
phosphorylation sites, providing a valuable resource that shows how immune activation and 
PD-1 reshape the proteomics and phosphoproteomics landscape of naïve and activated CD8+ 
T cells.

Materials and methods

Cell culture and PD-1 knockout

Murine T cells were handled as described elsewhere (Vredevoogd et al., 2022; man. 
in rev.). Briefly, murine CD8+ T cells were isolated from the spleens of OT-I/Cas9 mice 
and maintained in RPMI with 9% fetal bovine serum, penicillin (100U/mL), streptomycin 
(100μg/mL), 2-Mercaptoethanol (50μM, Merck), murine IL-2 (10ng/mL, ImmunoTools), 
murine IL-7 (0.5ng/mL, ImmunoTools) and murine IL-15 (1ng/mL, ImmunoTools). CD8+ 
T cells were isolated from spleens by using the Dynabeads Untouched Mouse CD8 Cells 
kit (Thermo Fisher Scientific) following manufacturer’s instructions and activated on non-
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tissue culture treated 24-well plates (Corning) coated with anti-CD3 (0.25μg per well, 
Thermo Fisher Scientific) and anti-CD28 antibodies (2.5μg per well, Thermo Fisher 
Scientific). Two days after isolation, cells were transduced with a retrovirus encoding 
sgRNAs targeting Pdcd1 (5’-GCTCAAACCATTACAGAAGG-3’) or a non-targeting control 
(5’-GTATTACTGATATTGGTGGG-3’) and, after a further two days, selected with puromycin 
(4μg/mL, Sigma). Ten days after transduction, cells were reactivated, or not, with plate-bound 
anti-CD3 (2.5μg per well in a 12-well plate) and analyzed by mass spectrometry or flow 
cytometry. For flow cytometric analysis, cells were stained in 50μL of a 0.1% BSA in PBS 
solution, with a 1:50 dilution of PD-1-PE antibody, a 1:100 dilution of CD137-APC antibody 
and a 1:100 dilution of CD8-FITC antibody (all Miltenyi). Dead cells were marked with DAPI 
(BD). Samples were analyzed on an LSRFortessa Flow Cytometer (BD).

Protein digestion

T-cell pellets were lysed, reduced and alkylated in heated Guanidine-HCl buffer as 
described previously (19). After dilution to <2mM Guanidine-HCl, aliquots containing equal 
protein amounts (as determined with Pierce Coomassie (Bradford) Protein Assay Kit) were 
digested twice (o/n and 4h) with trypsin (Sigma-Aldrich; enzyme/substrate ratio 1:75) at 37°C. 
Digestion was quenched with formic acid (5% final concentration), after which peptides were 
desalted on Sep-Pak C18 cartridges (Waters, MA, USA). After desalting, eluate aliquots (5%) 
were taken from each sample for proteome analysis, the remaining digest (900 µg) intended 
for phosphopeptide enrichment. All eluate fractions were vacuum dried in a SpeedVac and 
stored at -80°C until LC-MS/MS analysis or phosphopeptide enrichment. Phosphopeptides 
were enriched using the High-Select Fe-NTA Phosphopeptide Enrichment Kit (Thermo 
Scientific) according to the manufacturer’s instructions. Phosphopeptide eluates were vacuum 
dried and stored at -80°C until LC-MS/MS analysis. Prior to mass spectrometry, digests were 
reconstituted in 2% formic acid. 

Mass spectrometry

For single-shot proteome analysis, peptide mixtures (1 µg aliquots) were analyzed by 
nanoLC-MS/MS on a Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer 
equipped with an EASY-NLC 1200 system (Thermo Scientific). Samples were directly loaded 
onto the analytical column (ReproSil-Pur 120 C18-AQ, 2.4μm, 75 μm × 500 mm, packed 
in-house). Solvent A was 0.1% formic acid/water and solvent B was 0.1% formic acid/80% 
acetonitrile. Peptides were eluted from the analytical column at a constant flow of 250 nl/min 
in a non-linear 210-min gradient containing a 5-min increase from 2% to 10% solvent B, a 
125-minute increase to 24% B, followed by a 40-min increase to 35% B, a 20-min increase to 
60% B and a 5-min ramp to 100% solvent B, ending with a 15-min wash. Mass spec settings 
were as follows: full MS scans (375-1,500 m/z) were acquired at 60,000 resolution with an 
AGC target of 3 × 106 charges and max injection time of 45 ms. Loop count was set to 20 and 
only precursors with charge state 2-7 were sampled for MS2 using 15,000 resolution, an MS2 
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isolation window of 1.4 m/z, 1 × 105 AGC target, a maximum injection time of 22 ms and a 
normalized collision energy of 26. 

For phosphoproteome analysis, peptides were analyzed on an Orbitrap Fusion Tribrid 
mass spectrometer (Thermo Scientific) equipped with the same LC setup as described for 
proteomes. Phosphopeptides were eluted from the analytical column at a constant flow of 250 
nl/min in a linear 210-min gradient containing a 180-min increase from 7% to 28% solvent B. 
Mass spec settings were as follows: full MS scans (375-1,500 m/z) were acquired at 60,000 
resolution with an AGC target of 1 × 106 charges and max injection time of 120 ms. The 
machine was operated in top-speed mode with 3s cycle time. Only precursors with charge 
state 2-6 were sampled for MS2 using 60,000 resolution, an MS2 isolation window of 1.6 m/z, 
1 × 105 AGC target, a maximum injection time of 180 ms, and normalized collision energy of 
35.

Data processing

The proteome RAW files were analyzed by Proteome Discoverer (version 2.3.0.523) using 
standard settings for feature detection and precursor ion quantification. Spectra were searched 
against the Swissprot M. musculus database (2019_02, 17,005 entries) using SequestHT with 
50 ppm and 0.06 Da as precursor and fragment mass tolerances, respectively. Results were 
filtered using Percolator to achieve 1%FDR at protein and peptide level and SequestHT PSM 
score Xcorr>1 was applied as additional filter. Trypsin/P was specified as cleavage specificity; 
carbamidomethylation (C) was used as fixed modification and oxidation (M), protein N-terminal 
acetylation and deamidation (N, Q) were specified as variable modifications.

The phosphoproteome RAW files were analyzed with label-free quantitation (LFQ) in 
MaxQuant (version 1.6.5.0) (20) using standard settings and ‘match between runs’. FDR 0.01 
was used as cutoff at protein and peptide level. Trypsin/P was selected as enzyme; spectra 
were searched against the same database as described for proteomes and the same fixed 
and variable modifcations were specified in the searches, with the exception that phospho(S, 
T, Y) was included among the variable modifications. 

Data analysis and statistics

All data analysis were conducted under R-3.5.1 environment (21) and Microsoft 
Excel. Raw intensities extracted from proteome discover (PD, proteome) and MaxQuant 
(phosphoproteome) were first log2 transformed and then normalized by the median of 
replicates. Furtherly, t-Distributed Stochastic Neighbor Embedding (t-SNE) (22) was carried 
out to assess the reproducibility of the experiments. Next, the Empirical Bayes Statistics for 
Differential Expression (eBayes) function in the limma R package (23) was carried out to 
analyze the differential expression (DE) proteins and phosphosites, followed by a Benjamini-
Hochberg multiple testing correction with 5% FDR. The DE proteins and phosphosites with 
adjusted p-value < 0.05 and odds ratio > 1.5 were used for further analysis and functional 
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annotation by Gene Ontology (GO), KEGG, and Hallmark databases (FDR < 0.05) (24).

Transcription factors (regulators) enrichment 

Next, to depict the critical transcription factors/regulators in regulating T cell activation, we 
employed the RegEnrich R package on the proteome profile (25, 26). The RegEnrich integrity 
of proteome expression profiling, transcription factors (regulators) to construct a WGCNA 
co-expression network and define the importance of the regulators. Specifically, it can be 
simplified into the following steps: a) construction a data-driven co-expression network using 
proteome profiles b) deducing subnetwork of interest (i.e., using differential changed protein 
list to obtain a TFs connected sub-network); and c)referring importance of TFs by Fisher’s 
exact test based on subnetwork. An enrichment score for TFs was given by incorporating the 
exhibited significance of differential expression (PD < 0.05) and significance of enrichment (PE 

< 0.05). The overall scores of TFs were calculated by:

Phosphorylation-driven signature analysis

To identify phosphorylation-driven pathways across T cell activation, we performed the 
phosphosite-specific signature enrichment analysis (PTM-SEA) (27). The implementation of 
PTM-SEA available on GitHub (https://github.com/broadinstitute/ssGSEA2.0) was used on 
our phosphoproteome profiling. The following parameters were used to run PTM-SEA: weight: 
0.75, statistic: “area.under.RES”, output.score.type: “NES”, nperm: 1,000, min.overlap: 5, 
correl.type: “z.score”, ptmsigdb: “ptm.sig.db.all.flanking.mouse.v1.9.0.gmt”. Signatures with 
FDR-corrected p-values < 0.1 in three out of six samples were considered to be differential 
between resting and activated T cells.

Results and Discussion

Quantitative proteomics and phosphoproteomics upon TCR Stimulation

To gain insight into the activation process of CD8+ T lymphocytes (CTLs) and examine the 
role of programmed cell death-1 (PD-1, encoded by the Pdcd1 gene) receptor, in response 
to TCR stimulation, we employed a label-free quantitative (phospho)proteomics approach. 
Specifically, the naive CD8+ T cells were purified from the OT-1 murine spleen and divided into 
two subpopulations. The WT subpopulation was subjected to vehicle sgRNA (i.e., WT, Fig. 
1A), and the other subpopulation was subjected to Pdcd1 sgRNA (i.e., PD-1 KO, Fig. 1A). To 
improve reproducibility and knockout efficiency, we applied two different sgRNAs on both WT 
and PD-1 KO groups. Subsequently, stimulation of the T cell receptor (TCR) with anti-CD3 (a-
CD3) was carried out for 24 hours. Samples were collected before and after TCR stimulation, 
lysed and in-solution digested by LysC/trypsin, followed by liquid chromatography-tandem 
mass spectrometry (nanoLC-MS/MS) on a high-resolution mass spectrometer (Q-Exactive 

score = norm(−log(pE)) + norm(−log(pD)), norm(x) =
x−min(x)

max(x)−min(x)
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HFx) (Fig. 1A). 5% of the pool was used for whole proteome analysis, and the remaining 95% 
for phosphopeptide enrichment and analysis. 

Figure 1. Experimental design and expression of PD-1 and CD137. A, CD8 T cells were isolated from the 
OT-1 murine spleen and divided into two subpopulations. Next, the WT cells were subjected to two vehicle 
single guide RNAs (sgRNA), each with 3 bio-replicates, respectively; the PD-1 KO cells were subjected to 
two Pdcd1 specific sgRNAs, each with 3 bio-replicates, respectively. Both WT and PD-1 KO group were 
stimulated with anti-CD3 for 24-h (24 hours) and followed by mass spectrometry analysis for (phospho)
proteome. B, Cells were analyzed by flow cytometry. The representative FACS plots for gating strategy to 
define frequencies of CD137+ CD8+ T cells and PD-1+ CD8+ T cells were shown, left were WT cells and 
right were Pdcd1 KO cells. C, Statistical differences of median fluorescence intensity (MFI) in frequencies 
of PD1-expressing CD8+ T cells between resting and activated by one-way ANOVA with Tukey post-hoc 
testing (****, P < 0.0001, error bars denote ±SD). D, Statistical bar plots showing the percentage of PD-1+ 
CD8+ T cells and CD137+ CD8+ T cells (****, P < 0.0001, one-way ANOVA, error bars denote ±SD). E, 
Venn plot compares the total number of quantified proteins and phosphorylation sites in WT and PD-1 KO 
cells. Total number of class I and class II phosphosites quantified. Distribution of Ser/Thr/Tyr phosphosites 
identified.
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PD-1 plays a crucial role in CD8+ T cell function and has been shown to function as an 
inhibitory receptor during the early stage of T cell activation (28). To further investigate PD-1 
function in CD8+ T cell activation upon TCR stimulation, we first assessed the expression 
of PD-1 using flow cytometry. We observed a significant upregulation of PD-1 expression 
upon TCR stimulation in WT CD8+ T cells (from 41.1% to 93.1%), which was absent in PD-1 
knockout CD8+ T cells (Fig. 1B). Quantification of the FACS results in three biological replicates 
(Fig. 1C) shows significant upregulation (FDR < 0.0001) of PD-1 expression between resting 
and activated T cells in wild type, yet no difference is observed in PD-1 KO cells (Fig. 1C, left 
panel). The observation of PD-1+ CD8+ T cells further verifies the upregulation of PD-1 during 
T cell activation (Fig. 1D, left panel). 

CD137 (also known as 4-1BB, encoded by the Tnfrsf9 gene) is a member of the tumor 
necrosis factor receptor (TNFR) family that is expressed on activated T cells (29), and can co-
stimulate T cell activation and proliferation (30). Here, we evaluated T cell activation efficiency 
by monitoring the expression of CD137. Notably, we observed a significant increase of CD137 
in both WT and PD-1 KO CD8+ T cells after 24 hours of TCR stimulation (Fig. 1B and 1C, right 
panel). Moreover, also the percentage of live CD137+ CD8+ cells showed a significant increase 
in both conditions (Fig. 1D, right panel). Consistently, the expression of CD137 observed in 
our proteomics experiment showed an increase upon TCR stimulation in both WT and PD-1 
KO T cells (Fig. S1). In conjunction with CD137, several other activation markers including 
CD30, Lag3, Irf8, Atp2a2, Pdcd4, and Txnip identified in our proteomics experiment, showed 
expression behavior in agreement with previously published results (Fig. S1) (1).

Next, having confirmed activation of our CD8+ T cells and efficient KO of PD-1, we started 
mining our proteomics and phosphoproteomics datasets. In total, we quantified 5,134 and 
5,131 proteins with at least two unique peptides in WT and PD-1 KO CD8+ T cells, respectively 
(Fig. 1E and Table S1A). Around 99% of proteins were identified in both control and PD-1 KO 
cells. For the phosphoproteome analysis, we identified 16,884 phosphosites, of which 11,569 
with a localization probability over 0.75. Stringently filtering of phosphosites (with quantitative 
values in at least four out of six replicates) resulted in 7,167 and 7,069 phosphosites in WT 
and PD-1 KO CD8+ T cells, respectively (Fig. 1E and Table S2A). The t-Distributed Stochastic 
Neighbor Embedding (t-SNE) analysis using the whole proteome and phosphoproteome 
datasets shows a clear clustering of biological replicates withing the same treatment group, 
where cells within WT and PD-1 KO clustered tightly together, and a strong segregation 
between resting and activated populations (Fig. S2A). In agreement with these t-SNE results, 
unsupervised hierarchical clustering of the Pearson correlations within the proteome and 
phosphoproteome showed high correlation of the replicates within the same treatment group 
(Fig. S2B). These results together demonstrate the high reproducibility of the proteome and 
phosphoproteome datasets. 

81

3



Proteome response upon T cell activation

To compare proteome changes between naive and activated CD8+ CTLs upon antigen 
activation, the Empirical Bayes Statistics for Differential Expression (eBayes) function in the 
limma R package (23) was separately carried out for WT and PD-1 KO cells. 639 significantly 
changed proteins (Table S1B) during WT CD8+ T cell activation were quantified with 5% 
FDR and > 1.5-fold change, where 333 proteins showed significant upregulation upon TCR 
stimulation (Fig. 2A, left). In PD-1 KO cells, 706 differential changed proteins (Table S1C) 
were quantified (5% FDR and > 1.5-fold change), where 385 proteins significantly increased 
in expression during activation (Fig. 2A, right). 

Next, we compared the significantly changed proteins in WT and PD-1 KO T cells, which 
we functionally annotated using downregulated (DN) and upregulated (UP) protein subsets. 
We observed that around 1/3 of the proteins showing a change in expression were in common 
between WT and PD-1 KO CD8+ T cells upon activation (Fig. 2B). Interesting enrichments 
observed for the downregulated proteins were, in the case of the overlapping proteins (DN 
overlap); IFNγ and IFNα responses. (Fig. 2C, left panel), while proteins with decreased 
expression specific to WT CD8+ T cells were enriched in TCR signaling, cancer and cell cycle 
pathways and PD-1 KO CD8+ T cells specific proteins enriched for MAPK and IL2 STAT5 
signaling (Fig. 2C, left). 

Hallmark analysis of the upregulated proteins in common between the two conditions (UP 
overlap) shows MYC targets (V1 and V2) and mTORC1 signaling as two of the most dominant 
pathways, in line with the reported metabolic reprogramming in the process of T cell activation 
(17). Moreover, cytokine signaling (IL-2 and TNFA signaling), and the unfolded protein 
response are strongly enriched (Fig. 2C, right). Interestingly, WT and PD-1 KO cells also 
show slight differences in the MYC targets (V1 and V2) and mTORC1 signaling enrichment 
terms, together with other relevant hallmarks such as ‘glycolysis’ and ‘complement’, indicating 
these processes are affected upon PD-1 KO. Thus, TCR stimulation for 24 hours resulted in 
profound reprogramming of the metabolic machineries, associated with activation of mTORC1 
and MYC pathways, showing slight difference between cell lines.
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Figure 2. Differential expression proteins upon TCR stimulation and functional annotation. A, Volcano 
plots showing relative protein expression values (Log2-transformed and median normalized protein 
intensities) in WT (left) and PD-1 KO (right) cells. Red dots highlighted upregulation proteins (UP, FDR < 
0.05, and >1.5 fold change) in activated T cells, blue dots highlighted downregulation proteins (DN, FDR 
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< 0.05, and <-1.5 fold change) in activated T cells, and grey dots are not significant proteins. B, Venn 
plots compares upregulated and downregulated proteins. DN indicates downregulation proteins and UP 
indicates upregulation proteins. C, KEGG pathway and Hallmark signaling enrichment with significantly 
downregulated proteins (left) and upregulated proteins (right).

PD-1 KO affects expression of E3 ubiquitin-protein ligases and metabolic 
transporters

To further investigate the role of PD-1 in TCR stimulated activation of CD8+ T cells, we 
compared the dynamic changes of the proteome under WT and PD-1 KO conditions using 
the “interaction models” comparison in the limma R package (23). A total of 595 proteins 
showed a significantly different protein expression change upon TCR activation (Table 
S1D) with a p-value smaller than 0.05 in WT versus PD-1 knockout cells. Unsupervised 
hierarchical clustering of these significant proteins identified four protein clusters with similar 
trends (Fig. 3A), showing opposite expression patterns between WT and PD-1 KO cells. 
Function annotation analysis using proteins in cluster 1 and 3 shows, amongst others, strong 
enrichment of ubiquitin mediated proteolysis, the cell cycle (E2F targets and G2M checkpoint), 
and metabolism (mTORC1 signaling, amino and nucleotide sugar metabolism, and pyrimidine 
metabolism) (Fig. 3B and 3C). 
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Figure 3. Proteome response to TCR stimulation and PD-1 KO. A, Heatmap showing significant proteins 
that evoked by TCR stimulation and PD-1 knockout, which colored by the relative protein expression 
values (z-scored proteins intensities) and clustered by unsupervised hierarchical clustering. B & C, 
Functional annotation with proteins in cluster 1 and cluster 3. D, Protein-protein interaction network of 
proteins enriched in protein ligases. E, Line plot for glucose and lactate transporters with relative protein 
intensities (log2 transformed and median normalized intensities) in WT (red) and PD-1 KO (blue), error 
bar presents ±1 SE.

Ubiquitin mediated proteolysis is the most significant pathway enriched in cluster 3 and 
also dominant in cluster 1, suggesting ubiquitin protein ligases may be affected by PD-1 KO 
in CD8+ T cells. Therefore, we further investigated the quantitative expression of proteins 
involved in this pathway. We quantified 11 protein ligases of which eight are E3 ubiquitin-
protein ligases, one E3 SUMO ligase, and two are SUMO-activating E1 ligases (Fig. 3D and 
S3). We found that PD-1 KO increases the expression of ubiquitination ligases including Cblb, 
Birc2, Uba2, and Cdc23 in resting CD8+ T cells and returns to a level comparable to that of 
the WT T cells upon activation (Fig. S3). Conversely, ubiquitin ligases, such as Cul1, Cul4b, 
Cbl, and Traf6, were up-regulated in activated PD-1 KO cells (Fig. S3). Notably, several E3 
ubiquitin ligases, such as Cbl and Cbl-b, have been demonstrated to be involved in regulating 
immune response during infection by targeting specific inhibitory molecules for proteolytic 
destruction (31). The Cbl-b (encoded by Cblb gene) and Traf6 were reported as negative 
regulators for maintaining immune homeostasis (32, 33).  

Nutrient transporters are essential components of T cell environment-sensing machinery 
as they act as ‘gatekeepers’ to control the activity of nutrient-sensing kinases (34). PD-1 
signaling was reported to modulate metabolic reprogramming during T cell activation by 
inhibiting the upregulation of glucose and glutamine metabolism (14, 18). The present data 
show that silencing of PD-1 could reverse the inhibitory effect by increasing the expression 
of one glucose transporter (Slc2a3) and two lactate transporters (Slc16a1 and Slc16a3) in 
resting CD8+ T cells (Fig. 3E). 

Collectively, these findings show that silencing of the PD-1 receptor in CD8+ T cells altered 
the expression of several key players in the E3 ubiquitin-protein degradation system and 
affected metabolic pathways by regulating glucose and lactate transporters. 

Transcription factor (regulators) analysis

Transcription factors and their regulators play a crucial role in controlling cell growth, cell 
differentiation, and proliferation. T cell differentiation has been reported to remodel the pattern 
of expression of transcription factors and regulators (34). Therefore, to depict transcription 
factors/regulators involved in T cell activation, a module based weighted protein (gene) co-
expression network analysis (WGCNA) was carried out to explore correlations between 
differentially expressed proteins and transcription factors (Fig. 4A) (25, 35). Next, a one-tailed 
hypergeometric test was used to determine the importance of highlighted transcription factors 
and their regulators (36, 37). An enrichment score for TFs was given by incorporating the 
exhibited significant differential expression (p < 0.05) and significant enrichment (p < 0.05) 
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(detailed in Methods).

It was notable that there were more similarities than differences between WT and PD-1 
KO CD8+ T cells, as most of the key transcription factors, including Irf4, JunB, Nfkb2, and 
Rel, are significant in both cell types (Fig. S4B and S4C). The transcriptional activator Irf4, 
which was significantly up-regulated in both WT and PD-1 KO T cells, has been demonstrated 
to regulate TCR affinity-mediated metabolic programming and clonal expansion of CD8+ T 
cells (38). The transcription factor Jun-B (one of the AP-1 family members), can dimerize 
with Batf in CD8+ T cells and enable the BATF–JUN heterodimer to interact with Irf4 and Irf8 
(39). Furthermore, the Nfkb transcription factors can dimerize with proto-oncogenes, including 
RelA, RelB, or c-Rel (encoded by Rel gene), in regulation of T-lymphocyte differentiation and 
effector functions (40).

Figure 4. Transcription factors (regulators) enrichment. A, Overview of the WGCNA co-expression network-
based transcription factors and regulators enrichment. B, (left) Expression of Hnrnpa2b1 in WT (red) and 
PD-1 KO (blue), error bar presents ±1 SE. (right) Hnrnpa2b1 (highlighted in red) and corresponding 
co-expression proteins (grey lines). C, Gene ontology enrichment of Hnrnpa2b1 co-expressing proteins. 
D, (left) Expression of Pin1 in WT (red) and PD-1 KO (blue) cells, error bar presents ±1 SE. (right) Pin1 
(highlighted in red) and corresponding co-expression proteins (grey lines).

Next, we generated a co-expression network using the proteome from both WT and 
PD-1 KO cells and looked for enrichment of proteins that significantly differ in expression 
upon antigen stimulation in PD-1 KO cells. This step resulted in heterogeneous nuclear 
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ribonucleoproteins A2/B1 (Hnrnpa2b1) as the most significant regulator (Fig. 4B). Notably, 
we observed that Hnrnpa2b1 and proteins showing co-expression portray differences 
in expression in resting PD-1 KO T cells versus WT T cells, which is reversed upon TCR 
stimulation (Fig. 4B). Functional annotation analysis revealed the Hnrnpa2b1 co-expressing 
proteins are involved in signal transduction, cytokine mediated signaling and T cell activation 
(Fig. 4C). Hnrnpa2b1 was reported to play a role as an anti-inflammatory regulator in patients 
with autoimmune endocrine disorders (41). Moreover, it was reported that heterogeneous 
nuclear ribonucleoprotein A2/B1 (Hnrnpa2b1) could interact with vol hippel lindau (Vhlα), 
and consequently modulate pyruvate kinase (Pkm) transcript splicing and reprogram cellular 
glucose metabolism (42, 43). Besides, we observed a significant increase of expression of Pin1 
(Peptidyl-prolyl cis-trans isomerase 1) and co-expressing proteins upon TCR stimulation in 
PD-1 KO cells (Fig. 4D). Importantly, Pin1 has been described to regulate cells that participate 
in immune system (44, 45). Pin1 also involved in the activation of T cells by modulating the 
activity of the transcription factor NFAT and regulating activation-induced cytokine production 
(46, 47). A recently study has revealed that Pin1 induces lysosomal degradation of PD-L1 in 
pancreatic ductal adenocarcinoma (48).

Phosphoproteome profiling across T cell activation

T lymphocyte activation is a complex process involving a variety of associated receptors 
and kinases, which initiates multiple signal transduction pathways. To investigate the cellular 
signaling cascade and to understand the initial activation steps in CD8+ T cells, we performed 
phosphoproteome profiling. The Empirical Bayes Statistics for Differential Expression 
(eBayes) function in the limma R package (23) was separately carried out for the WT and 
PD-1 KO cells phosphoproteome to analyze differential regulated phosphosites during CD8+ 

Figure 5. Phosphoproteome response in activated CD8+ T cells. A, Volcano plot indicates significant 
phosphosites in activated CD8+ T cells (PD-1 KO versus WT in activated T cells). Red dots highlighted 
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upregulation phosphosites (UP), blue dots highlighted downregulation phosphosites (DN). FDR < 0.05, 
and 1.5 fold change. B, Functional enrichment with differential expression phosphosites located proteins 
(FDR < 0.05).

T cell activation. As shown in Figure S5A, we identified 1067 significantly changed (5% FDR 
and > 1.5-fold change) phosphosites (Table S2B) during WT CD8+ T cell activation. These 
phosphorylation events are dominated by cell cycle activity (G2M checkpoint, E2F targets, 
and mitotic spindle), metabolism (MYC target V1 and V2), cytokine signaling (TNFα signaling 
via NFκB, and IL2 STAT5 signaling) and TCR signaling (Fig. S5B). Silencing of PD-1 resulted 
in 1392 significantly regulated phosphosites (Table S2C) upon antigen stimulation, which 
mapped to 884 unique proteins (Fig. S5C). The functional enrichment of these phosphorylated 
proteins revealed similar pathways as in the WT condition (Fig. S5D). 

To get insight into the phosphoproteome response to PD-1 knockout in CD8+ T cells, we 
performed a differential expression comparison between WT and PD-1 KO in resting and 
activated, separately. Unexpectedly, we observed 134 up-regulated and 164 down-regulated 
phosphosites (Table S2D) upon T cell activation, while almost no significant phosphosites 
were identified between these conditions in resting CD8+ T cells (Fig. 5A and S5E). These 
results show, that in contrast to expression changes at the proteome level (Fig. S4A), the effect 
of PD-1 KO is more clearly present at the phosphoproteome level. The observed changes in 
phosphorylation reveled, besides involvement in the processes described above, enrichment 
in the ERBB signaling pathway (Fig. 5B). 

Phosphopeptide based enrichment signature

To further assess the regulation of signaling involved in T cell activation, a site-centric PTM 
signature enrichment analysis (PTM-SEA) approach was applied to the phosphoproteome 
data (49). The PTM-SEA predicted that 7 and 12 signatures were significantly modified upon 
activation in WT and PD-1 KO CD8+ T cells, respectively (Fig. 6A). Notably, in both WT and 
PD-1 KO cell populations, we observed a significant increase of activity of the mTOR, CDK1 
and CDK5 signature and a dramatic decrease of activity of rapamycin signaling. Where, the 
mTOR pathway is known to regulate glucose metabolism and glycolysis (50), and modulate 
the differentiation, and migratory ability of CD8+ cytotoxic T cells (51), rapamycin has been 
shown to inhibit activation of T cells and B cells by reducing their sensitivity to interleukin-2 
(IL-2) through mTOR inhibition (52).

Activation of mTOR signaling leads to phosphorylation of the ribosomal protein S6 (Rps6 
or Rs6) at phospho-sites Ser235/236 and Ser240/244 by the S6-kinase (S6K) (53), ultimately 
promoting cell growth (54). Indeed, we observed a significant increase of ribosomal protein S6 
phosphorylation at sites Ser240/244 in WT CD8+ T cells, and at sites Ser236, Ser240/244 in 
PD-1 KO CD8+ T cells (Fig. 6B). Simultaneously, no change was detected in phosphorylation 
of the translational repressor 4EBP1 (eukaryotic initiation factor 4E binding protein-1) (Fig. 
6B), thereby relieving its translational inhibition. Furthermore, the mammalian autophagy-
initiating kinase Ulk1, a key regulator of autophagy whose activity is determined by mTOR 

88



(55), showed increase of phosphorylation at site Ser 622 and Ser 555 in PD-1 KO cells in our 
data (Fig. 6B). Taking these data together shows that metabolic reprogramming plays a key 
role in governing T cell activation, and PD-1 KO evokes increased phosphorylation in this 
program.
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Figure 6. Phosphorylation sites centric signature enrichment. A, Heat-map indicated the significantly 
enriched signatures in WT and PD-1 KO T cells, colored by the normalized enrichment score (NES). The 
asterisk highlighted the significance of enrichment (*, 0.01 < FDR < 0.1; **, FDR < 0.01).  B-D, Line plots 
showing phosphosites that enriched in mTOR and Rapamycin, EGF, and MAPK signaling, respectively. 
Lines colored in red are significant expression phosphosites in WT cells, while lines colored in blue are 
significant expression phosphosites in PD-1 KO cells, error bar presents ±1 SE.

The epidermal growth factor (EGF) is a protein that stimulates cell growth and 
differentiation by binding to its receptor, EGFR (56). Our data showed enrichment of the 
ERBB2 pathway (Fig 5B) and the EGF signature (Fig. 6A and 6C) in PD-1 KO cells upon 
TCR stimulation. Several key phosphorylation sites were enriched in EGF signaling, including 
upregulation of Jun Ser63 and Mk14 Tyr182 phosphosites, and downregulation of the Bad 
Ser155 phosphosite (Fig. 6C). Moreover, we observed strong activation of MAPK pathways, 
especially in PD-1 KO CD8+ T cells (Fig. 6A and 6C), downstream of EGFR signaling (57, 58). 
MAPK is demonstrated to coordinately regulate glutamine uptake and metabolism for T cell 
activation (59). These results indicate that strong activation of MAPK signaling may involve 
regulating T cell survival, glutamine uptake and metabolism. Silencing of PD-1 activates 
the epidermal growth factor and corresponding downstream cascade including MAPK1/2 
signaling, amplifying the cascade reaction in modulating CD8+ T cell activation.

Conclusion 

In this study, we present a proteomics and phosphoproteomics study in wild type and PD-1 
knockout CD8+ T cells upon T cell receptor stimulation by anti-CD3. PD-1 was observed to 
significantly upregulate in CD8+ T cells upon activation. Our quantitative mass spectrometry 
reveals that T cell receptors stimulated CD8+ T cells reprogram their phospho(proteome) and 
activated the mTORC1 pathway. Depletion of PD-1 altered the E3 ubiquitin-protein ligases, 
increased glucose, and lactate transporters. Interestingly, there were more similarities than 
differences between WT and PD-1 KO CD8+ T cells on proteome level, however, an opposite 
result was observed on phosphoproteome level. We find that silencing of PD-1 induced more 
significant phosphorylation sites in regulating mTOR signaling, and activated the epidermal 
growth factor and corresponding downstream MAPK pathway. Our result reveal how PD-1 
influence the proteome and phosphoproteome in CD8+ T cells upon TCR activation, which 
may contribute to future strategies for checkpoint blockage therapy. 
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Supporting information for chapter 3

Supplementary Figure 1. Abundance of T-cell activation markers. Line plots for activation markers and 
important proteins in WT (red) and PD-1 KO (blue), error bar donates ±1 SE.
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Supplementary Figure 2. Assessments of the experimental reproducibility. A, t-SNE plot based on 
proteome profile (left) and phosphoproteome profile (right), showing the trajectory of how WT and PD-1 
KO CD8+ T cells respond upon TCR stimulation. B, Heatmap of sample Pearson correlation with proteome 
profile (left) and phosphoproteome profile (right).
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Supplementary Figure 3. Expression of proteins in the ubiquitin mediated proteolysis. Line plots showing 
the expression of protein ligases in WT (red) and PD-1 KO (blue) cells, error bar donates ±1 SE.
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Supplementary Figure 4. Proteome response to PD-1 KO and significant transcription factors (regulators). 

A, Volcano plot indicates significant proteins (FDR < 0.05) in resting and activated CD8+ T cells, 
respectively. Red dots highlighted upregulation proteins, blue dots highlighted downregulation proteins. B 
& C, (left) Expression (z-scored intensity) of significant transcription factors and regulators enriched in WT 
and PD-1 KO T cells upon activation, respectively; (right) Enrichment score of transcription factors that 
shade by log2 fold change of expression intensity, and –log10(FDR) (significance in TF enrich) donates 
dots size.
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Supplementary Figure 5. Phosphoproteome response upon TCR stimulation. A, Volcano plot indicates 
significant phosphosites in WT CD8+ T cells upon activation. Red dots highlighted upregulation phosphosites 
(UP), blue dots highlighted downregulation phosphosites (DN). FDR < 0.05, and >1.5 fold change. B, 
Functional enrichment with differential expression phosphosites located proteins in WT CD8+ T cells (FDR 
< 0.05). C, Volcano plot shows significant phosphosites in PD-1 KO CD8+ T cells upon activation. Red 
dots represent upregulation phosphosites (UP), blue dots represent downregulation phosphosites (DN). 
FDR < 0.05, and >1.5 fold change. D, Functional enrichment with differential expression phosphosites 
located proteins in PD-1 KO CD8+ T cells (FDR < 0.05). E, Volcano plot for significant phosphosites in 
resting CD8+ T cells (PD-1 KO versus WT in resting T cells).
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Abstract

Motivation

Many essential cellular functions are carried out by multi-protein complexes that can be 
characterized by their protein-protein interactions. The interactions between protein subunits 
are critically dependent on the strengths of their interactions and their cellular abundances, 
both of which span orders of magnitude. Despite many efforts devoted to the global 
discovery of protein complexes, by integrating large-scale protein abundance and interaction 
stoichiometries, there is still room for improvement. 

Results 

Here, we integrated >7,000 quantitative proteomic profiles with 3 published affinity 
purification/co-fractionation mass spectrometry datasets into a deep learning framework to 
predict protein-protein interactions (PPIs), followed by the identification of protein complexes 
using a two-stage clustering strategy. Our deep learning technique-based classifier significantly 
outperformed recently published machine learning prediction models and captured in the 
process 5,010 complexes containing over 9,000 unique proteins. The vast majority of proteins 
in our predicted complexes exhibit low or no tissue specificity, which is an indication that 
the observed complexes tend to be ubiquitously expressed throughout all cell types and 
tissues. Interestingly, our combined approach has increased the model sensitivity for low 
abundant proteins, which amongst others allowed us to detect the interaction of MCM10 that 
connects to the replicative helicase complex via the MCM6 protein. The integration of protein 
abundances and their interaction stoichiometries using a deep learning approach provided 
a comprehensive map of protein-protein interactions and a unique perspective on possible 
novel protein complexes.

Availability

The source code is available at: https://github.com/Bohui2447/ProteinComplex1. 

1 Introduction

Protein complexes are multi-protein assemblies that play a crucial role in diverse biological 
processes, including the control of cellular homeostasis, growth, and proliferation (1). For 
example, the 26S proteasome, which consists of 31 different subunits, is essential in controlling 
the cell cycle, cell growth, and apoptosis by degrading obsolete or damaged proteins (2). 
Elucidating the components and functions of multi-protein complexes is fundamental to 
understanding cellular processes. Despite tremendous efforts (3-5), it remains a daunting 
task to identify exactly which human proteins are present in protein complexes on a proteome-
wide scale. 

To identify protein complexes from protein-protein interactions, several experimental 
technologies are employed. For instance, yeast two-hybrid assays, which depend on bringing 
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the DNA-binding domain (BD) and transcription activation domain (AD) of a eukaryotic 
transcription factor in close proximity by a bait-BD fusion protein and a pray-AD fusion protein 
thereby, enabling identification of protein interactions and protein complexes (6, 7). High-
throughput experimental techniques, such as affinity purification-mass spectrometry (AP-
MS) (8, 9) and co-fractionation mass spectrometry (CF-MS) (1, 8) have enabled large-scale 
characterization of protein interactions. The AP-MS approach depends on the expression of a 
bait protein that is coupled to a matrix, allowing purification of the target proteins (preys) that 
interact with the bait from a lysate (10). In the CF-MS approach, cellular lysates are extensively 
fractionated by multiple, non-denaturing biochemical methods which allow for the identification 
of protein complexes that co-elute (1). Subsequently, a PPI network is represented by the co-
elution network, and protein complexes are inferred using correlations of the protein elution 
profiles (1, 11). These high-throughput techniques have established the identification of 
large-scale protein interaction networks in humans and other model organisms, dramatically 
increasing the coverage of the PPI network.

 In the past few years, two large-scale studies (BioPlex (5) and Hein et al. (8)) using 
the AP-MS approach, and one large-scale study by (Wan et al. (12)) using CF-MS have 
significantly improved the understanding of human PPI networks. However, the interactions 
identified by these different studies show only limited overlap (13). One possible explanation 
may be that different experimental methods detect different types of interactions, thereby 
reporting different subsets of the actual PPI network (14). Thus, Drew et al. integrated these 
datasets using a support vector machine (SVM) classifier to build a PPI network and ultimately 
obtained a global map of human protein complexes (13). Besides these largescale studies, 
many more protein-protein interaction datasets have been deposited into public repositories, 
such as BioGRID (15), BioPlex (16), and STRING (17). This allows researchers to combine 
and integrate public datasets using in sillico, e.g. computational approaches. 

Proteins in a complex are typically expressed and localized in a spatiotemporal-similar 
manner, meaning that these proteins are often found in near cellular vicinity simultaneously, 
and possess similar biological functions (18). Another predictor for protein interactions is to 
look at co-translation (2). For instance, Shieh et al. showed that proteins LuxA and LuxB are 
co-translated and assembled into the luciferase enzyme complex in Escherichia coli (19). 
In addition, studies employing gene co-expression analyses have revealed that the network 
modules in a co-expression network are related to protein complexes. Examples of these 
complexes are the spliceosome, ribosome, and RNA polymerase II (20, 21). Besides, Bork 
and colleagues have constructed the STRING database (17), which incorporates data from 
multiple sources, including information on protein co-expression, text-mining, and experimental 
data. This multi-level approach provides a system-wide view of protein-protein interactions 
(17, 22, 23), thereby showing the strength of data integration in the prediction of PPIs. 

Despite many efforts have been devoted to quantifying and classifying the protein 
complexes, approaches by integrating large-scale protein abundance and interaction features 
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are needed to improve. In this study, the integration of large-scale protein quantification data 
from multiple human cell samples was combined with AP-MS and CF-MS data to improve the 
construction of the human PPI network. We have constructed a comprehensive map of human 
protein complexes via integrating protein interaction and protein abundance stoichiometry 
features. Briefly, the protein interaction stoichiometry features were obtained from three 
high-throughput AP-MS/CF-MS datasets (5, 8, 12), comprising 258 parameters describing 
different protein-protein interaction properties. The protein abundance stoichiometry features 
were derived from >7000 label-free human protein quantification profiles from the PRoteomics 
IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/). Subsequently, a deep 
learning (DL) model was built by using these features as input, and ultimately to infer an 
integrated protein interaction network. Next, a two-step unsupervised clustering procedure 
was performed to obtain a comprehensive map of human protein complexes. Our approach 
resulted in a comprehensive overview of protein complexes that also contain low-abundant 
and poorly characterized proteins, thereby providing a unique perspective on the human 
interactome.

2 Materials and Methods

2.1 Gold-standard reference set and the training and test protein pairs

A fundamental step in predicting protein complexes is the prediction of protein-protein 
interactions which is considered a classification task in machine learning and requires a gold-
standard reference set comprising a positive and a negative subset. The positive subset is 
defined by the set of protein pairs that are within the same complex. In contrast, the negative 
subset is defined by the set of protein pairs within the entire set of protein complexes but that 
are not in the same complex.

The human protein complexes in the CORUM database (24) form a high confidence set 
of manually curated protein complexes and therefore can be considered as a gold standard 
reference set in this study. The training and test sets that contain the gene names of protein 
pairs were downloaded from the hu.MAP database (13). These training and test protein 
pairs were generated as described by Drew et al. (13) and were derived from the CORUM 
database. Briefly, a set of non-redundant complexes were retained by merging the complexes 
with a large overlap (i.e., Jaccard coefficient >0.6) within the entire CORUM database. This 
non-redundant dataset was randomly divided into two sets, i.e., a training set and a test set. 
To not skew the measurements of the performance of our model in subsequent classification 
steps, complexes with larger than 30 subunits in the test set were removed. The positive 
and negative subsets of protein interactions were generated for both training and test sets, 
followed by removing the interactions from the training set that overlapped with those in the 
test set. The final training set contained 14,186 and 95,802 protein-protein pairs in the positive 
and negative subsets, respectively. The test set contained 5,781 and 111,055 protein-protein 
pairs in the positive and negative subsets, respectively.
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2.2 Featurization of protein-protein interaction pairs

2.2.1 Protein abundance features 

We retrieved 246 independent projects from the PRIDE repository (Table S1), containing 
a total of 7,330 MS/MS-based proteomics quantification profiles, as MaxQuant outputs, which 
is the protein abundance stoichiometry data in this study (25). For each protein abundance 
dataset, reliable proteins were retained by removing potential contaminants and removing 
proteins that were identified with less than 2 peptides. In addition, the raw intensity of each 
protein as reported by MaxQuant was maintained, and the raw intensities of each protein were 
averaged if a protein was reported multiple times. Subsequently, the intensities of proteins 
were Log10-transformed, resulting in a matrix (M) containing expression data of 17,951 
proteins originating from 7,330 different protein abundance stoichiometry profiles.

The protein abundance stoichiometry features (Di,j) of a protein pair (proteins i and j) were 
calculated by 

Di,j = |Mi,. −Mj,.| (1)

where Mi,. and Mj,. are the rows of matrix M, which correspond to the abundance of protein 
i and protein j across all profiles, respectively. The protein abundance feature matrix was 
calculated for all protein pairs in the training and test sets, generating a 109,988 (protein pairs) 
x 7,330 protein abundance feature matrix for the training set and a 116,836 (protein pairs) x 
7,330 protein abundance feature matrix for the test sets.

2.2.2 Protein interaction features

For each protein pair in the training and test sets, the AP-MS/CF-MS features comprised 
258 features (Table S1) that were generated by integrating over 9,000 mass spectrometry 
experiments from three published papers (Wan et al (12), BioPlex (5, 26), and Hein et al 
(8)) (13), which were downloaded from the hu.MAP database (termed protein interaction 
stoichiometry data in this study) (27). More specifically, these features were collected from 
the following 6 resources: (1) 220 co-fractionation features, i.e., 4 types of co-fractionation 
measures (Poisson noise Pearson correlation coefficient, a weighted cross-correlation, a co-
apex score, and a MS1 ion intensity distance metric) for each of the 55 fractions in Wan et al 
(12); (2) nineteen genomic/proteomic/literature features of worm, fly, human, and yeast from 
HumanNet (28), such as genetic interactions, results of high-throughput yeast 2-hybrid assays, 
co-citation of genes, et al; (3) two features that describe protein interactions obtained from AP-
MS experiments in fruit fly (“ext_Dm_guru”, (29)) and human (“ext_Hs_malo” (30)); (4) Nine 
features from the BioPlex database, being NWD score, Z score, plate Z score, entropy, unique 
peptide bins, ratio, total PSMs, ratio total PSMs, and unique to total peptide ratio; (5) Four 
features from Hein et al, being the Pearson’s correlation coefficient of the intensity profiles of 
the prey and bait proteins (“prey.bait.correlation”), the number of available quantitative data 
of the prey (“valid.values”), the log10-transformed stoichiometry of prey to bait protein in the 
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pulldown samples (“log10.prey.bait.ratio”), and the log10-transformed stoichiometry of prey 
to bait protein in the HeLa proteome samples (“log10.prey.bait.expression.ratio”) (31); and 
(6) four features (i.e., “neg_ln_pval”, “pair_count”, “hein_neg_ln_pval”, and “hein_pair_count”) 
generated based on Drew et al’s weighted matrix model interpretation (13) of the AP-MS 
datasets in BioPlex (5) and Hein et al (31). This results in a 109,988 (14,186 + 95,802) × 258 
protein interaction feature matrix and a 116,836 (5,781 + 111,055) × 258 protein interaction 
feature matrix for training and test sets, respectively. (More details of protein interaction 
features are in the supplementary materials)

2.3 Deep learning neural network implementation 

The neural network model was implemented by using the R interface to Keras (version 
number: 2.2.5.0), which is a high-level neural network API (32). Our model consists of three 
densely connected hidden layers with different numbers of neurons and the output layer is 
aimed at predicting PPIs (Fig. 1). The rectified linear unit (ReLU) activation functions were used 
for all hidden layers. The sigmoid activation function was applied to the output layer. For each 
of the hidden layers, a dropout layer was appended to avoid overfitting. The training process 
was performed for 10 epochs using the ‘RMSProp’ (33) optimizer with binary cross-entropy as 
the loss function. The optimal combination of 6 hyper-parameters (the number of neurons in 
each hidden layer and dropout rate in each dropout layer) were tuned by random searching. 
Briefly, the number of neurons for each hidden layer was generated randomly, ranging from 
10 to 750, and the probabilities for the dropout layers followed a uniform distribution over the 
interval of 0 to 0.5 (Table S2). We have applied this training process on three different feature 
matrices; i) protein pairs containing only the protein abundance stoichiometry features, ii) 
protein pairs with only the protein interaction stoichiometry features, and iii) protein pairs 
that have integrated both abundance and interaction stoichiometry features. Subsequently, 
the F1-measure (F1-measure = 2*(precision * recall)/(precision + recall)) that represents 
the harmonic means of precision and recall of the prediction by these models, was used 
to compare the model performance and select the best model. Finally, the best model was 
applied to all protein pairs with protein abundance and interaction stoichiometry features to 
generate the weighted PPI network, in which nodes were proteins, and the weight of the edge 
was the protein-protein interaction probability predicted by the best model.

To further evaluate the performance of our model, we used the interaction stoichiometry 
feature matrix as input to train the SVM classifiers. The SVM implementation of the R package 
‘e1071’ (version 1.7.2) (34), which is based on the LIBSVM library (35), was applied with 
function tune.svm. To seek an optimal model, we performed a parameter tuning of the 
hyperparameters (C and gamma) for the SVM model training using 10-fold cross-validation 
by tune.control function (parameters were detailed in Table S2). The performance of the SVM 
models was subsequently evaluated by comparing the F1-measure.

2.4 Evaluation of feature importance
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After training the deep learning model, the importance of features in the model is 
evaluated by the decrease of model performance when randomly shuffling the values of each 
feature. Firstly, the best deep learning model was applied to the test dataset (T0) to make the 
prediction and to calculate F1-measure (F10). Secondly, only the values of the ith feature in the 
test dataset were randomly shuffled generating a sudo-test dataset (Ti), which was fed to the 
model to make prediction and to calculate F1-measure (F1i). Thirdly, repeat the second step 
N (N = 50) times, and calculate the mean value of F1-measure for the ith feature 

  . Lastly, the importance of ith feature (Ii) is evaluated by 

Ii = F10 −
1

N

N∑

j

F1i,j (2)

2.5 Two-stage clustering to predict protein complexes 

The weighted protein interaction network as generated by the final deep learning model 
using both protein abundance and interaction stoichiometry features was used to derive protein 
complexes through a two-stage clustering approach. The first clustering method, ClusterONE 
(Clustering with Overlapping Neighborhood Expansion), is a graph clustering algorithm (36), 
which starts from a single seed vertex and exploits a greedy procedure that adds or removes 
vertices to find clusters with high cohesiveness. The parameter “density” was set to determine 
the complex density. The “overlap” specifies the maximum allowed overlap between two 
clusters, which determines whether to merge or not merge highly overlapping complexes. 
The second clustering method is MCL (Markov Cluster Algorithm) (37). This unsupervised 
cluster algorithm is based on stochastic simulation of flow in networks/graphs and is controlled 
by the inflation (-I) parameter. Inflation affects the granularity or resolution of the clustering 
outcome, where low values lead to fewer and larger clusters, and high values lead to more 
and smaller clusters.

We first sorted the edges in descending order by their weights that were predicted by 
the deep learning model, resulting in a subnetwork with the top r percent of edges. Here, r 
(ranging from 1 to 20) is a tuning parameter that needed to be optimized to obtain the best set 
of complexes in the following steps. In the ClusterOne clustering step (36), a seed method of 
“nodes” and a minimum size of 2 were applied to each subnetwork (r = ri) to generate a set of 
intermediate clusters. Here the parameters for the ClusterOne algorithm “density” were tuned 
in the range of [0.2, 0.25, 0.3, 0.35, 0.4], and “overlap” was tuned in the range of [0.6, 0.7, 
0.8]. Since we allowed merging high-overlapping clusters in the ClusterOne process, this may 
lead to large clusters that are over-merged, i.e., biologically unrelated complexes merged into 
a single large cluster (12). Therefore, a second clustering stage, based on the Markov Cluster 
(MCL) algorithm was performed on each cluster generated by ClusterOne to split the over-
merged clusters. Here, the parameter inflation (-I) of the MCL algorithm (37) was tuned in the 
range of [1.2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15]. Proteins that did not share any edge with the 

1

N

N∑

j

F1i,j
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remaining proteins in the final clusters were removed. This two-stage clustering process was 
carried out for each combination of parameters, i.e., r, density, overlap, and inflation, followed 
by a k-clique evaluation (the parameter combinations were detailed in Table S3). 

2.6 K-clique method-based accuracy evaluation

To measure the accuracy of the reconstructed complexes, we used the k-clique algorithm 
for each of the two-stage-clustering results. As described above (13), this approach is based on 
the matching of cliques within the set of all possible cliques between reconstructed or predicted 
complexes and benchmark (golden dataset) complexes (here the CORUM complexes). 
Specifically, the predicted complexes and CORUM complexes were first divided into different 
subsets according to their clique size k (e.g., k = 2, all pairwise combinations; k = 3, all 
triplet combinations; etc.). Secondly, we removed the predicted complexes in which all protein 
members are not in the gold standard set. In other words, we only evaluate the complexes 
containing proteins that form known complexes to not penalize novel predicted complexes 
as false positives. Thirdly, for each clique size k, the true positive (TPk) was defined by the 
number of common complexes between predicted complex set and gold standard complex 
set; the false positive (FPk) was the number of complexes in the predicted complex set but not 
in the gold standard complex set; the false negative (FNk) was the number of complexes in the 
gold standard complex set but not in the predicted complex set.  Subsequently, the precision 
(Pk), recall (Rk) and F-measure (Fk) were defined as follow:

Pk =
TPk

TPk + FPk

(3)

Rk =
TPk

TPk + FNk

(4)

Fk =
2 ∗ Pk ∗Rk

Pk +Rk

(5)

Finally, a global F-measure (F-Grand, equation 4) was defined as the mean of Fk, iterating 
over clique sizes of k from 2 to K, where K is the largest cluster size of the predicted complexes 
set.

Fgrand =

∑K
K=2

Fk

K − 1
(6)

2.7 Enrichment analysis and tissue specificity

We used the g:Profiler web tool (38) to perform protein and pathway enrichment analysis 
for each predicted complex, with significantly enriched terms (Benjamini-Hochberg FDR < 
0.05). For comparing tissue specificity, we mapped our predicted complexes to the tissue-
based map of the human proteome from the Human Protein Atlas (39, 40). 
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3 Results  

3.1 Feature matrices constructed by incorporating protein abundance and 
interaction stoichiometries datasets

In this study, we integrated two recently published AP-MS protein interaction datasets from 
BioPlex and Hein et al., and one CF-MS protein interaction dataset [5, 8, 12). As shown in Fig. 
1, we obtained 241 features from Wan et al.’ (12) CF-MS (co-fractionation mass spectrometry)  

Figure 1. Flowchart for protein complex discovery. Schematic workflow for the discovery of protein 
complexes by employing feature selection and deep learning algorithms. 7,330 protein abundance 
samples (MS/MS profiles) and three protein interaction datasets (Wan et al, BioPlex, and Hein et al that 
contains 258 interaction features) were used as input to train the deep learning (DL) models, the optimal 
DL model was applied to infer protein-protein interaction scores and ultimately generated a weighted 
protein interaction network. Two unsupervised clustering algorithms, i.e., ClusterOne and MCL, were 
subsequently applied to obtain the final protein complexes dataset.

analysis of human proteins and their orthologues, comprising 6,387 fractional MS experiments. 
Nine affinity purification mass spectrometry (AP-MS) features and two features generated by 
Drew and collaborators (13) were collected from BioPlex (Version 1) (5), which encompasses 
2,594 AP-MS experiments containing over 50,000 interactions from HEK239T cells. Four AP-
MS features describing 28,504 interactions were obtained from Hein and colleagues (8). 

In PPI studies, researchers expect to retrieve subunits of complexes in equimolar amounts 
after immunoprecipitation (IP) from biological experiments. However, in practice, the range 
of detected interacting protein abundances spans several orders of magnitude (41). This is 
caused by the possible involvement of some protein subunits in multiple different complexes 
with fractions of their total cellular pools, and subunits may behave differently under different 
states (different tissue or disease states). To reduce the bias caused by the huge span 
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of protein abundances in protein complex identification, we incorporate >7,000 protein 
abundance profiles from the PRIDE-archive (42). Precisely, the protein abundance dataset 
consists of 246 quantitative proteomics projects, consisting of 7,330 profiles (Fig. 1). The 
number of unique proteins detected in each profile ranges from 500 to over 8,500 (Fig. 2A). 
In total, we incorporated 17,951 proteins from protein abundance profiles, which covers more 
than 98% of the proteins quantified in interaction datasets (Fig. 2B). Moreover, the protein 
abundance samples were distributed over 25 different human tissues and organs, indicating 
a large sample diversity in our dataset (Fig. 2C). 

Figure 2. The Integration of protein abundance and interaction stoichiometry substantially improves 
model performance. A, Histogram plot showing the distribution of the number of proteins in the 374 
proteomics datasets. The largest datasets contained over 8500 proteins whereas the smallest datasets 
only contained about 500 proteins. B, A total of 17,951 and 10,245 proteins were collected from protein 
abundance profiles and the protein interaction datasets separately, in which over 98% of proteins (10,076 
proteins) were observed in both datasets. The pink area represents the number of proteins only in protein 
abundance datasets, the light blue area represents the number of proteins only in protein interaction 
datasets, and the dark blue area represents the number of proteins in both datasets. C, A pie chart 
showing the distribution of sample tissue specificities for the protein abundance profiles. This plot shows 
that the protein abundance profiles were distributed over more than 25 different tissues or organs, 
indicating a large sample diversity which in turn improves the robustness of the deep learning model. 
Different colors indicate the organs, the numbers in the pie chart are the numbers of datasets that are 
collected in the organs. For those datasets that do not show organ information in the PRIDE database are 
labeled “unknown.” D, A comparison of Model performance for the deep learning and SVM models based 
on different data sources. The precision is calculated by true positive / (true positive + false positive), and 
the recall is calculated by true positive / (true positive + false negative). The harmonic mean of precision 
and recall, namely F1-measure or F1-score was further used to determine the model performance. The 
integration of both abundance and interaction features (blue line) outperforms all other single feature 
based models (dashed lines). E, A scatterplot showing the top 5% of protein interactions. From this plot it 
can be observed that the predicted protein-protein interactions were greatly overlapping with the Hein et 
al.’ interaction network and exhibiting similar stoichiometry distributions.
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3.2 Model performance comparison

Having established the feature matrices, we next generated the training set and test set 
by labeling protein pairs based on a gold-standard literature-curated set of human protein 
complexes: CORUM (43). The positively labeled protein-protein interactions (PPIs) are 
proteins within the same complex in the CORUM database. The negative protein pairs are 
those that are observed in the gold standard set but which do not interact with subunits in 
the CORUM complexes. Protein pairs which were not included in the training process were 
labeled as ‘unknown’. Next, we implemented a deep learning neuronal network to train three 
types of models: i) protein abundance feature matrix only, ii) protein interaction feature matrix 
only, iii) an integrated protein abundance and protein interaction feature matrix (Fig. 2D). 
Moreover, to compare the performance of our models, we also build an SVM model using the 
protein interaction feature matrix (44, 45). 

To obtain an optimal classifier, we trained our DL models by varying the number of neurons 
in three densely connected layers and the probabilities in dropout layers (details in Table S2). 
This training process resulted in 1995 protein interaction feature-based models, where 63 
models’ F1-measure > 0.59 (Fig. S1A and Table S2A); 1921 protein abundance feature-based 
models, where 87 models’ F1-measure > 0.49 (Fig. S1B and Table S2B); and 2338 integrated 
models (integrated protein abundance and interaction features), with 109 models’ F1-measure 
> 0.66 (Fig. S1C and Table S2C) (see methods for details on the F1 measure). Moreover, 
28 SVM classification models, based on protein interaction features, were obtained using a 
grid search algorithm (See methods). The precision-recall curve for the best models using the 
different feature matrices shows that the integrated deep learning model (F1-measure = 0.68) 
outperformed all other models (F1-measure of protein abundance-DL, protein interaction-DL, 
and protein interaction-SVM models are 0.51, 0.61, and 0.64, respectively) (Fig. 2D). 

The optimal deep learning model contains 350, 140, and 25 neurons in three hidden layers, 
where dropout rates are 0.438, 0.214, and 0.037, respectively. It takes around 1.8 hours to train 
the model. This model was further applied to predict the interaction score for all protein pairs 
characterized in the feature matrix. The optimal model takes ~ 80 seconds to make prediction 
for 10,000 protein pairs. The interaction score of a protein pair indicates the likelihood of that 
pair of proteins participating in the same complex. Subsequently, a weighted PPI network was 
generated, where the weights of edges were defined by the predicted interaction score (Fig. 
1). To assess the predicted PPI network, we further compared it with the network generated 
by Hein et al. (Fig. 2E and Fig. S2A-S2C). Notably, the network formed by the top 5% of 
predicted interactions showed similar stoichiometries to the Hein et al. network (Fig. 2E) (8). 
In addition, a weaker interaction stoichiometry was observed when the network was filtered 
by decreasing the protein interaction confidence, suggesting that an interaction filtering step is 
required to obtain an optimal PPI network to infer protein complexes (Fig. S2A-S2C). 

3. 3 Protein complexes identified by two-stage clustering method
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To elucidate the relationships among densely connected regions of the interaction network, 
a two-stage clustering was employed (13). At the first stage of clustering, the ClusterOne 
algorithm (36) was employed to derive the intermediate clusters. Due to the appearance of 
over-merged clusters (merging high-overlapping clusters may lead to biologically unrelated 
complexes being merged) (12), we applied a second stage of clustering that is based on MCL 
(37) (see methods) to further break over-merged clusters produced by ClusterOne. To optimize 
the clustering performance, as described in the methods, we tuned the parameters including 
the top percentage of interaction edges r, density and overlap parameters in ClusterOne, and 
inflation in MCL. A set of protein complexes resulting from each combination of parameters 
was compared to the gold standard CORUM complex set by the k-clique algorithm (13), 
enabling the evaluation of their similarity and overlap to a benchmark complex set (here 
the CORUM complexes) on a global level. This two-stage clustering step generated 7605 
datasets containing complexes, with their corresponding similarity measurements (F-grand 
values) as defined by the k-clique algorithm (Fig. 3A). The best parameter combination was 
edges r: 119,560; density: 0.2; overlap: 0.8; inflation (-I): 5, which resulted an F-grand at 0.46. 
The optimal set contains 5,010 complexes with 101,818 interactions (5% interaction edges of 
the full network) among 9,129 human proteins (Table S4). Additionally, in line with the finding 
by Huttlin et al. (5), a vast majority of complexes contain a limited number of protein members 
(Fig. 3B).

If a group of proteins can form a protein complex, we assumed that their expression 
may show a concordance, which can be evaluated by the Manhattan distance of their 
stoichiometry abundances. To further evaluate the quality of the final predicted complexes, we 
first evaluated the expression concordance of protein members in complexes by calculating 
the pair wise Manhattandistance of the proteins using the abundance stoichiometry (label-free 
quantification) data. Subsequently, we randomly shuffled the protein members amongst the 
other complexes while maintaining the same complex size, and then calculated the Manhattan 
distance of proteins within these randomly generated complexes. This shuffling process 
was repeated 100 times. As indicated in Fig. 3C, our final set displays a shorter Manhattan 
distance within the complex than the shuffled complex set. Additionally, we annotated proteins 
with information on their expression in different tissues using the Human Protein Atlas (39). 
We observed that a considerably high percentage of proteins in our complexes showed a low 
tissue specificity. For instance, the protein complex 76 (Table S4 line 76) that we predicted 
was reported as the proteasome (46), the predicted complex 55 (Table S4 line 55) is known 
as the mediator complex (47), indicating that our complex set can capture many common 
fundamental processes in human cells (Fig. 3D) (8).
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Figure 3. Biological features of predicted human protein complexes. A, Parameter optimization for two-
stage clustering (ClusterOne followed MCL) procedures. Each data point indicates one F-Grand measure 
generated in the clustering step. This two-stage clustering step generates 7605 results with 3187 F-grand 
(points) over 0.45, indicating the high stability of the protein-protein interaction network. B, Distribution 
of protein complex sizes in the final interaction map, the vast majority of protein complexes contain a 
small number of protein members. C, Boxplots showing the average, minimum, maximum and median 
of the protein complexes’ Manhattan distance as calculated based on the abundance stoichiometry of 
the protein complex subunits. The shuffled protein complex distance (blue) was evaluated by permuting 
protein members while maintaining the sizes of the protein complexes. It can be seen that the predicted 
complexes display a shorter Manhattan distance than the shuffled complexes, indicating the credibility of 
predicted protein-protein interactions. D, Pie charts showing the proportions of proteins with varying tissue 
expression patterns from the Human Protein Atlas. From this plot 60.7% of proteins in our complexes 
showed a low tissue specificity, indicating the ubiquitous expression property of the proteins. E, The 
distribution of number of protein complexes with significantly enriched annotation terms using g:Profiler 
web tool. Most complexes could be enriched in one or more categories with significant terms, indicating 
the biological significance of complexes.
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Moreover, the functional annotation analyses of the protein complexes showed that a 
large proportion of predicted complexes could be enriched in functional terms (Fig. 3E). For 
example, around 36% of the predicted complexes were significantly enriched in GO molecular 
functions and GO biological processes.

3.4 Protein abundance stoichiometry contributes to capturing novel subunits 

Our final dataset achieved a high model performance based on the F1-measure (0.68) 
and k-clique evaluation (F-grand = 0.46). In addition, approximately 15% (737 of 5,010) of  
our complexes exhibited a complete or partial overlap with 42% (1,100 of 2,597) of the gold-
standard complexes from the CORUM database (Fig. 4A) (8). This high confidence allows 
us to predict novel interactions on top of known PPIs. For instance, we predict MCM10 as 
a novel member of the MCM2-7 complex via interacting with MCM6 (Fig. 4B). Furthermore, 
the protein abundance stoichiometry shows that the core subunits of MCM2-7 complex 
exhibit a considerably high expression concordance in most of the 7,330 profiles we obtained 
from Pride (Fig. 4C). Interestingly, MCM10 is detected in less samples, indicating its lower 
abundance or poor characterization potential by MS-based techniques. Based on these 
observations, we asked whether the MCM6-MCM10 interaction is detectable in AP-MS 
experiments. Indeed, the interaction stoichiometry data from Hein et al. (8) (Fig. 4B, bottom) 
showed that the MCM6-MCM10 interaction was detectable however with a relatively low 
stoichiometry, suggesting that MCM10 may be a non-obligatory or transient member of the 
MCM2-7 complex. In addition, Homesley et al. (48) and Douglas et al. (49) reported that 
MCM10 was required for the initiation of eukaryotic DNA replication and physically interacts 
with MCM2-7 via subunit MCM6. 

3.5 Members of protein complexes exhibit co-expression characteristic 

Co-expression characteristics are of biological interest since co-expressed genes usually 
are controlled by the same transcriptional regulatory program, functionally related, or members 
of the same protein complex (50). Proteins that are part of the same protein complex often 
show co-expression properties and clusters of proteins with related functions often exhibit 
expression patterns that correlate under diverse conditions. For instance, importin-7 (IPO7) 
and importin beta-1 (KPNB1) are two important proteins for nuclear protein import (51). These   
two proteins are highly co-expressed in a majority (~ 5,800) of the abundance stoichiometry 
profiles (Fig. 4E). Moreover, the interaction between these two proteins was also detected in 
Hein et al.’s interaction network as a stable interaction (Fig. 4D). Jakel et al. (52) reported that 
importin-7 (IPO7) and importin beta-1 (KPNB1) work as a heterodimer that binds to histone H1. 
(More examples showing co-expression properties are shown in the supplementary materials)
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Figure 4. Selected complexes in the map contain novel subunits. A, Venn plot indicating the overlap 
between the protein complexes predicted by our model (pink circle) and the complexes in CORUM 
database (blue circle). 1,100 out of 5,010 predicted complexes exhibited a complete or partial overlap 
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with the gold-standard protein complexes from the CORUM database, showing the potential to predict 
novel protein-protein interactions. B, top panel; Interaction network of replicative helicase; blue rectangles 
are known members of the MCM complex; the purple rectangles are novel subunits as predicted by our 
deep learning model. B bottom panel; Scatter plot with interaction and abundance stoichiometry for the 
MCM complex from Hein et al’ AP-MS experiments. Blue dots are known interactions, the purple dots 
are novel interactions. Labels for the dots are represented by Bait Prey proteins. It can be observed from 
the scatterplot that the MCM6-MCM10 interaction follows a similar trend as the other known interactors, 
indicating that MCM10 could be a transient member of the MCM complex. C, The expression pattern of 
each subunit within the MCM protein complex. On each row, the X-axis indicates 7,330 profiles collected 
from PRIDE repository, the Y-axis indicates the log10 transformed intensity of the protein, where missing 
values are in blanks. It can be observed that MCM10 is detected in fewer samples as compared to the other 
subunits of the MCM complex, indicating a lower abundance or poor characterization potential by MS-
based techniques. D, Top panel; Interaction network of the new complex IPO7-KPNB1. D bottom panel; 
Interaction-abundance stoichiometry for IPO7-KPNB1complex using Hein et al’ AP-MS interaction data. 
This novel interaction was not observed in the Hein et al’ AP-MS interaction network data, demonstrating 
the sensitivity of our deep learning model. E, The expression pattern of each subunit within the IPO7-
KPNB1protein complex. The X-axis indicates 7,330 samples collected from PRIDE repository. The Y-axis 
indicates the log10 transformed intensity of protein, missing values are in blanks. IPO7 and KPNB1 show 
significant co-expression in a majority (~ 5,800) of the abundance stoichiometry profiles, indicating a 
possible protein-protein interaction between IPO7 and KPNB1

4 Discussion 

Many vital cellular functions, including DNA replication, RNA transcription, and protein 
translation and regulation, require the coordination of proteins assembled into complexes. 
Thus, the analysis of protein complexes and PPI networks are of central importance in 
biological research. In the past decades, the combination of affinity purification/co-fractionation 
and mass spectrometry has advanced our understanding of protein complex composition. 
Increasing efforts have been devoted to generating larger-scale human protein interactions 
by integrating different AP-MS and CF-MS studies and have established more comprehensive 
maps of protein complexes (13). Although these protein-protein interaction experiments 
are very well controlled studies, they are typically performed on certain cell lines/types and 
may overlook the proteomic abundance differences in human tissues. Here, we present a 
data integration method, using machine learning and classification algorithms to create a 
comprehensive map of protein complexes, by integrating protein interaction stoichiometries 
and large-scale protein abundance stoichiometry profiles.

In this work we developed a deep learning framework that incorporates multiple sources 
of data to establish a comprehensive human protein complex map. Our results show that a 
deep learning-based approach, by incorporating multiple sources of features (AP-MS/CF-MS 
interaction features and MS/MS protein abundance features), outperformed models using 
either interaction features, or abundance features alone. Besides, these integrated deep 
learning models exhibit high robustness, not only on the F1-measure but also on the number 
of outperformed models (section 3.2). We also showed that many complexes, including gold 
standard and novel complexes, feature a unique characteristic of co-expression patterns in 
a majority of quantitative proteomics samples. This characteristic enabled us to recapitulate 
several well-known complexes, for instance the multi-synthetase complex (53) and eukaryotic 
initiation factor 2B complex (24) (Fig. S4). Moreover, this characteristic also led us to discover 
highly co-expressed complexes, such as the IPO7-KPNB1 heterodimer complex (Fig. 4D) and 
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the VCP-HSPB90B1 complex (Fig. S3E). These examples indicate that the expression levels 
of protein complex subunits are generally co-varying (18). Thus, such co-varying characteristic 
can be used as one of the features for identifying protein-protein interactions and protein 
complexes. In contrast to other published methods, we did not summarize the concordance 
of protein expression between proteins as the correlation coefficient, as this may over-simplify 
the complexity within a large dataset. Instead, we first calculated the expression difference 
within each protein pair among all 7,330 protein abundance profiles and subsequently used 
a deep learning algorithm to achieve a high-level featurization after training our model. Here, 
the state-of-art deep learning algorithm addresses this featurization by computing increasingly 
more complex features and then taking the results of preceding operations as input (54). 
Therefore, our model makes full use of not only the protein interaction stoichiometries but also 
the protein abundance stoichiometry with tissue/sample-level details. 

In addition to model performance, the contribution of features is an important aspect 
of deep learning. Thus, we performed feature importance evaluation by the decrease of 
model performance using randomly shuffling the values of each feature (see Methods). As 
expected, the top-ranked features are the interaction features. For example, all of the top 
15 features are interaction features, including “hein_neg_ln_pval”, “neg_ln_pval”, “hein_
pair_count”, and “prey-bait correlation” (Fig. S5B), which are the most important outcomes in 
AM-MS experiments. We also found that, within the protein abundance features, the feature 
importance is positively correlated with the number of proteins (Fig. S5B). In other words, if 
more proteins are identified in a protein abundance profile, a higher importance that feature 
(i.e., protein abundance profile) shows. This suggests that the number of proteins in a protein 
abundance profile could be one of the criteria to improve the quality of the data in future works. 

The weak interactions have frequently been overlooked or remained undetected and 
they have been thought to be less important in large-scale interaction research, even though 
they are crucial features of networks in general (55, 56). In addition, weaker interactions with 
low abundant proteins are challenging to detect in AP-MS experiments (8). To detect low-
abundant proteins and characterize weak interactions, one possible strategy is to improve 
the sensitivity and resolution of the mass spectrometer or to remove high-abundant proteins 
from proteomic samples (57). Another strategy is to increase data diversity via incorporating 
multiple sources of quantification profiles, as we have taken in this study. The integration of 
the protein abundance profiles and large-scale AP-MS experimental interaction networks, 
enable us to fill in the missing features caused by a single AP-MS experiment. For instance, 
we have observed that the protein MCM10 binds to the MCM2-7 complex via MCM6 in a 
potential transient manner. 

Overall, we observe a good performance of our model, however there is still room for 
future improvements. Firstly, we included only the protein pairs with both interaction and 
abundance features to predict the PPI network. Ideally, the number of detected proteins 
accumulate and would ultimately reflect the total number of proteins in human proteome, when 
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enough proteomic quantification profiles are collected. However, due to technical challenges, 
there is no such set of protein interaction studies that contain a comprehensive list of the 
whole proteomic-level baits. The lack of complete datasets limits the comprehensiveness of 
interaction features of protein pairs. The model based on these incomplete features therefore 
predicts an incomplete PPI network, which probably results in an incomplete protein complex 
map. Due to a lower performance of the deep learning model, using only the protein abundance 
features, an expediency can be as follows: the core PPI network can be predicted using the 
integrated model, while the peripheral network is populated only using the protein abundance 
features model. Then the inference of the protein complex map based on this integrated 
core-peripheral network needs to be further explored. Secondly, wet-lab experiments such 
as co-immunoprecipitations and more targeted approaches such as knockout studies, need 
to be performed to further validate and confirm the complexes. However, according to the 
evaluation metrics of the deep-learning model and protein complex map, we are convinced 
that the integration of the protein interaction features and the protein abundance features can 
improve the model's performance, compared to using either type of these features alone. 
Thus, our work provides a new methodology to improve the reconstruction of PPI interaction 
and the understanding of protein complexes.

In conclusion, by incorporating interaction stoichiometry and large-scale protein abundance 
stoichiometry, our deep learning framework serves as a pioneering protein complexes 
discovery analysis. 
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Supporting information for chapter 4

Supplementary to “Identification of protein complexes by integrating protein abundance and 
interaction stoichiometries using a deep learning strategy”

Protein abundance stoichiometry contributes to capturing novel subunits: We predicted 
that MTF2 (also known as PCL2) is a subunit of the polycomb repressive complex 2 (PRC2) 
(Fig. S3A, B). The PRC2 core complex, consisting of SUZ12, EED, and EZH2 (1, 2), is 
important in chromatin compaction and catalyzes the methylation of histone H3 at lysine 27 
(3, 4). We found that the novel member MTF2 showed a high concordance of abundance 
stoichiometry with the PRC2 core in a comparable set of profiles (Fig. S3B). It is reported that 
PCL proteins, including PCL1, PCL2 (MTF2) and PCL3, interact with PRC2 through EZH2, 
and to some extent through SUZ12 (5). Interestingly, we captured this novel interaction, i.e., 
MTF2-EED, through the interaction of MTF2 with the PRC2 complex, which is also supported 
by the interaction stoichiometry, albeit relatively weak, in the study by Hein et al. (Fig. S3A 
right).

Another example is the complex centralspindlin, reported as a heterotetramer consisting 
of a dimer of the kinesin KIF23 (also known as MKLP1) and a dimer of the accessory 
protein RACGAP1 (also known as Cyk4 or MgcRacGAP) (6). The SHC SH2-domain binding 
protein 1 (SHCBP1) was predicted by our method as a novel subunit that interacts with the 
centralspindlin complex through RACGAP1 (Fig.S3C, D). These proteins were detected 
in 30% (~ 2,200) of total abundance stoichiometry profiles (Fig. S3D), indicating their co-
expression and co-occurring characteristics. Interestingly, interactions between SHCBP1 and 
RACGAP1 were detected multiple times in the AP-MS interaction map by Hein et al. (Fig. S3C 
right). These results suggest that incorporating protein abundance stoichiometry from diverse 
datasets could improve the prediction of protein complexes and enable the identification of 
novel interactions with high confidence. 

The co-expression feature assists the identification of protein complexes: In addition to the 
IPO7- KPNB1 complex, we observed that two chaperone proteins VCP (also known as p97) 
and HSP90B1 (also known as gp96 or GRP94) displayed a high concordance in expression 
across a great number of the protein abundance stoichiometry profiles (Fig. S3E). It has 
been reported that VCP cooperates with diverse partner proteins to help process ubiquitin-
labelled proteins for recycling or degradation by the proteasome in many cellular contexts 
(7). Interestingly, the gp96 was also demonstrated governing protein ubiquitination and 
degradation (8). Thus, we deduce that p97 and gp96 may interact in their regulation of protein 
ubiquitination and degradation in the endoplasmic reticulum. 
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Supplementary figures

Supplementary Figure 1. Comparison of model performance. The precision is calculated by true positive / 
(true positive + false positive), and the recall is calculated by true positive / (true positive + false negative). 
A harmonic mean of precision and recall, namely F1-measure or F1-score was furtherly used to decide 
the model performance. 

A, Precision-recall curve of the 63 protein interaction feature matrix based deep learning models, the curve 
highlighted in red is the best model with F1-measure at 0.61. B, The training of 87 deep learning models 
with protein abundance features and an F1-measure > 0.49 were used to represent in the precision-recall 
plot, the curve highlighted in red is the best model with F1-measure at 0.51. C, Precision-recall curve 
indicating 109 integrated deep learning models with an F1-measure > 0.66, the outperforming model is 
shown in red with F1-score at 0.68. D, A total of 28 SVM models were trained with the protein interaction 
features, the red line shows the best SVM classifier with F1-measure at 0.64.
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Supplementary Figure 2. Evaluation of predicted protein-protein interactions

A-C, Scatterplot showing the abundance and interaction stoichiometries as obtained from Hein et al. 
experiment with different percentage of interaction from our predicted PPI network. A weaker interaction 
stoichiometry was observed when decreasing the protein interaction confidence, suggesting the 
importance of this filtering step in obtaining an optimal PPI network. 
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Supplementary Figure 3. Protein Complexes with novel subunits as well as newly predicted highly co-
expressed protein complexes that are predicted by our model

A left panel; Interaction network of the core Polycomb repressive complex 2 (PRC2, highlighted in blue) 
with a potential novel subunit MTF2 (purple) as predicted by our model, A right panel; Scatter plot with 
interaction and abundance stoichiometry for the PRC2 complex from Hein et al’ AP-MS experiments. Blue 
dots are known interactions, the purple dots are novel interactions. Labels for the dots are represented 
by Bait Prey proteins. The predicted EED-MTF2 interaction shows a correlation with the other proteins 
from the PRC2 complex albeit with lower protein abundance and interaction stoichiometry. Suggesting 
an interaction between EED-MTF2 albeit a somewhat weaker. B, The expression pattern of each subunit 
within the PRC2 protein complex. On each row, the X-axis indicates 7,330 samples collected from PRIDE 
repository and the Y-axis indicates the log10 transformed intensity of corresponding protein, where missing 
values are in blanks. This plot shows that the expression pattern of MTF2 shares a high concordance with 
the subunits of the PRC2 complex, suggesting the abundance stoichiometry of proteins could improve 
the model sensitivity. C left panel; Interaction network of the Centralspindlin complex (core members are 
in blue and new predicted protein is in purple). C right panel; Interaction-abundance stoichiometries for 
Centralspindlin complex from Hein et al’ AP-MS experiments. Blue dots are known interactions, purple 
dots are novel interactions. Labels for the dots are represented by Bait_Prey proteins. D, The expression 
pattern of each subunit within the Centralspindlin protein complex. On each row, the X-axis indicates 7,330 
samples collected from the PRIDE repository and the Y-axis indicates the log10 transformed intensity, 
missing values are in blanks. It can be seen that the novel subunit SHCBP1 shows a high similarity of 
expression pattern with the subunits of the Centralspindlin complex, suggesting a high possibility of co-
occurrance for these proteins. E, Interaction network and protein expression pattern plot for the predicted 
complex VCP-HSP90B1. These two proteins displayed a high concordance in expression across around 
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5,700 of the protein abundance stoichiometry profiles, however, it has not been detected in Hein et al’ AP-
MS experiment also showing the sensitivity of our deep learning model and the importance of integrating 
the protein abundance stoichiometries in protein complex predictions.
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Supplementary Figure 4. Protein complex members show a significant co-expression.

A, Our model predicts the interaction network of the 11 subunits multi-synthetase protein complex, which 
is also a well-defined protein complex found in the CORUM database. This indicates our deep learning 
model possesses a high accuracy and robustness. B, The expression pattern of the multi-synthetase 
protein complex. The X-axis indicates 7,330 samples collected from PRIDE repository. The Y-axis 
indicates the log10 transformed intensity of protein, missing values are in blanks. This multi-protein 
complex contains 11 subunits, which are all co-expressed in most of the profiles. C, Interaction network 
of eukaryotic initiation factor complex with 3 protein subunits. D, The expression pattern of the eukaryotic 
initiation factor complex. This protein complex contains 3 subunits that are co-expressed in across around 
2800 profiles, indicating the importance of the co-expression property in predicting protein complexes.
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Supplementary Figure 5. Evaluation of feature importance

A, Bar plot shows the importance of features. The importance is indicated by the decrease of F1 measure 
using the randomly shuffling the values of each feature (see Methods). Red bars represent the protein 
interaction features and blue the protein abundance features. B, Bar plot shows the average number of 
proteins in the protein abundance profiles with different intervals of importance ranking.
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Chapter 5
Summary and future outlook



Summary and future outlook

1 summary

In this thesis, I describe the work I did during my PhD using bioinformatics tools and 
machine learning algorithms to address the increasing scale and complexity of proteomics 
endeavors, covering the facets of drug resistant mechanisms in melanoma, the role of the 
PD1 in T-cell activation, and protein-protein interactions and protein complexes prediction.

In chapter one, a general introduction to the basic principles and techniques of MS-
based proteomics, quantification strategies, and a generalized shotgun proteomics workflow 
are given. Moreover, I also outline how to analyze proteomics data from a bioinformatics 
perspective including normalization, dealing with missing values, differential analysis, functional 
annotation, as well as how to reveal the biology from post-translational modification data. 
Furthermore, I generalized the basics of machine learning algorithms from the perspective 
of supervised and unsupervised machine learning, along with that the application of machine 
learning algorithms to the identification of protein complexes.

In chapter two, we are seeking to explore the drug addiction mechanism in melanoma 
cells that carry BRAF mutation. We present a proteomics and phosphoproteomics study of 
BRAFi-addicted melanoma cells (i.e., 451Lu cell line) in response to BRAFi withdrawal, in 
which ERK1, ERK2, and JUNB were genetically silenced separately using CRISPR-Cas9. We 
show that inactivation of ERK2 and, to a lesser extent, JUNB prevents drug addiction in these 
melanoma cells, while, conversely, knockout of ERK1 fails to reverse this phenotype, showing 
a response similar to that of control cells. Our data indicate that ERK2 and JUNB share 
comparable proteome responses dominated by the reactivation of cell division. Importantly, 
we find that EMT activation in drug-addicted melanoma cells upon drug withdrawal is 
affected by silencing ERK2 but not ERK1. Moreover, we reveal that PIR acts as an effector 
of ERK2 and phosphoproteome analysis reveals that silencing of ERK2 but not ERK1 leads 
to the amplification of GSK3 kinase activity. Our results depict possible mechanisms of drug 
addiction in melanoma, which may provide a guide for therapeutic strategies in drug-resistant 
melanoma.

More recently, immunotherapy shows promising clinical efficacy in the treatment of 
melanoma. The most successful immunotherapy for melanoma is immune checkpoint 
inhibiting, including the PD-1/PD-L1 inhibitors (pembrolizumab, pidilizumab, and nivolumab). 
Thus, in chapter three, we are dedicated to exploring the role of PD-1 in T cell activation 
by comparing the proteome and phosphoproteome profiles in resting and activated CD8+ T 
cells, in which PD-1 was silenced using CRISPR–Cas9. Our data reveal that the activated T 
cells reprogrammed their proteome and phosphoproteome marked by activating of mTORC1 
pathway. Moreover, we find that silencing of PD-1 altered the expression of E3 ubiquitin--
protein ligases, and increased glucose and lactate transporters. On the phosphoproteomics 
level, it evokes phosphorylation events in the mTORC1 pathway and activates the epidermal 
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growth factor and its downstream MAPK pathway. Therefore, the data presented in this 
chapter depicts mechanisms of PD-1 in response to TCR stimulation in CD8+ T cells, which 
may provide a guide in immune homeostasis and immune checkpoint therapy.

In chapter four, we construct a comprehensive map of human protein complexes through 
integration of protein-protein interactions (from 3 published affinity purification/co-fractionation 
mass spectrometry datasets) and protein abundance (from >7000 quantitative proteomic 
profiles) features. A deep learning framework was built to predict protein-protein interactions 
(PPIs), followed by a two-stage clustering to identify protein complexes. Our deep learning 
technique-based classifier significantly outperformed recently published machine learning 
prediction models with an F1-measure of 0.68 and captured in the process 5,010 complexes 
containing over 9,000 unique proteins. Moreover, this deep learning model enables us to 
capture poorly characterized interactions and the co-expressed protein involved interactions. 
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2 Nederlandse Samenvatting

In dit proefschrift beschrijf ik de toepassing van bioinformatica en kunstmatige intelligentie 
om inzichten te verkrijgen in complexe proteomics data. De biologische focus lag hierbij 
op geneesmiddel resistentie in melanoma, de rol van PD1 in T-cell activering, eiwit-eiwit 
interacties en het voorspellen van eiwitcomplexen. 

Hoofdstuk 1 bevat een algemene introductie over de basisprincipes van massaspectrometrie 
en proteomics, beschrijft verschillende kwantitatieve proteomics methoden en er wordt een 
algemene shotgun proteomics workflow beschreven. Daarnaast vermeld ik in dit hoofdstuk 
hoe proteomics data geanalyseerd dient te worden vanuit een bioinformatica perspectief, 
waarbij data normalisatie, de werkwijze betreffende ontbrekende data, differentiële analyse, 
functionele annotatie en de biologische interpretatie van post translationele modificatie data, 
de revue passeren. Als laatste beschrijf ik de basisprincipes van kunstmatige intelligentie, 
inclusief gecontroleerde en ongecontroleerde methoden en de toepassing van kunstmatige 
intelligentie algoritmen voor de identificatie van eiwitcomplexen. 

In Hoofdstuk 2 worden de mechanismen van geneesmiddel verslaving in melanoma cellen 
met een BRAF-mutatie onderzocht. Ik beschrijf hier een proteomics en phosphoproteomics 
studie naar BRAFi-verslaafde melanoma cellen (451Lu cellijn) na BRAFi onthouding, waarbij 
ERK1, ERK2 en JUNB individueel genetisch werden stilgelegd door middel van CRISPR-Cas9. 
Inactiviteit van ERK2 en in mindere mate van JUNB, voorkomt geneesmiddel verslaving in 
deze melanoma cellijn, terwijl de inactiviteit van ERK1 dit effect niet heeft. Onze data latenzien 
dat ERK2 en JUNB vergelijkbare effecten hebben op het eiwitpatroon in de cel, dat wordt 
gedomineerd door heractivering van de celdeling. Een belangrijke bevinding in dit hoofdstuk is 
dat ERK2 inactiviteit invloed heeft op de EMT activatie in geneesmiddel verslaafde melanoma 
cellen na geneesmiddel onthouding, terwijl ERK1 dit effect niet heeft. Verder laten we zien dat 
PIR een effector eiwit is van ERK2 en dat het stilleggen van ERK2 (maar niet van ERK1) leidt 
tot amplificatie van GSK3 kinase activiteit. De resultaten gepresenteerd in dit hoofdtuk geven 
inzicht in mogelijke mechanismen van geneesmiddel verslaving in melanoma cellen, wat een 
richtlijn kan verschaffen voor de therapeutische behandeling van geneesmiddel resistentie in 
melanoma. 

Immunotherapie heeft recentelijk veelbelovende resultaten laten zien in de behandeling 
van melanoma. De meest succesvolle behandelstrategie in melanoma is het gebruik van 
checkpointremmers, zoals PD-1/PD-L1 remmers (pembrolizumab, pidilizumab en nivolumab). 
In Hoofdstuk 3 leggen wij ons toe op het onderzoeken van de rol van PD-1 in T-cel activering 
door de (phospho)proteome profielen van rustende en geactiveerde CD8+ T-cellen met een 
PD-1 silencing-mutatie te vergelijken. Onze data laten zien dat de mTORC1 signaalroute 
geactiveerd wordt in geactiveerde T-cellen en dat het stilleggen van PD-1 de expressie van 
E3 ubiquitin-eiwit ligases beïnvloedt en leidt tot een toename van het aantal glucose en 
lactaat transporters. Daarnaast verhoogt PD-1 de mate van fosforylatie van de mTORC1 
signaalroute en activeert het de epidermale groeifactor receptor en de bijbehorende MAPK 
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signaalroute. De data die worden gepresenteerd in dit hoofdstuk geven inzicht in de rol van 
PD-1 na TCR stimulatie in CD8+ T-cellen en dragen daarmee bij aan ons begrip van immuun 
homeostase en immuun checkpoint therapie. 

Veel essentiële cellulaire functies worden uitgevoerd door eiwitcomplexen die bestaan uit 
meerdere eiwitten die bijeen worden gehouden door eiwit-eiwit interacties. Deze interacties 
zijn afhankelijk van de sterkte van de individuele eiwitinteracties en de abundantie van 
de betreffende eiwitten, die beide sterk van grootte kunnen verschillen. Hoofdstuk 4 geeft 
een uitgebreide beschrijving van humane eiwitcomplexen door de integratie van informatie 
over eiwitinteracties (van 3 gepubliceerde datasets) en informatie over eiwitabundantie 
(van >7000 kwantitatieve proteomics profielen). We hebben een deep learning framework 
opgezet om eiwit-eiwit interacties te voorspellen, gevolgd door een two-stage clustering om 
eiwitcomplexen te identificeren. Deze methode gaf een significante verbetering ten opzichte 
van recent gepubliceerde machine learning modellen, had een F1 van 0,68 en identificeerde 
5.010 complexen met meer dan 9.000 unieke eiwitten. Dit model stelt ons verder in staat om 
slecht gekarakteriseerde interacties te identificeren en verschaft inzicht in co-expressie van 
eiwitten die betrokken zijn bij interacties. 
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3 Future outlook

Mass spectrometry (MS)-based proteomics has matured into an attractive technology 
for global analysis of protein expression, composition, modifications, and dynamics. It is 
an indispensable tool for cellular biology and clinical research and is now being routinely 
applied for high-throughput identification and quantification of proteins, post-translational 
modifications, as well as protein-protein interactions (1, 2). However, still plenty of challenges 
remain, from the need to extract biological function from proteomics data, to reaching a higher 
accuracy of predicting protein-protein interactions. 

3.1 Revealing biological functions from proteomics data

Advances in mass spectrometry (MS)-based proteomics have been enabled the fast 
growth of proteomics data, which in turn resulted in the development of bioinformatics tools 
and infrastructures for processing, storing, and analyzing proteomics data. First of all, a lot 
of open-source or commercial software has been developed for proteomic data processing, 
such as Maxquant (3), Proteome Discoverer (4), and OpenMS (5). Moreover, to store the 
increasing amount of proteomics data, several public repositories are available, such as the 
PRIDE (6), ProteomeXchage (7), and peptide atlas (8). The PTM site information, as well as 
corresponding kinases, were implemented into several databases, such as PhosphoSitePlus 
(9), Phospho.ELM(10), and PHOSIDA (11). These public databases have provided access 
for statisticians to compare their results to the published studies, which will help researchers 
generalize a more reliable biological conclusion. Moreover, when there is a limited number 
of samples, especially the patient tissue samples, one can integrate datasets from public 
databases to make a better analysis of MS data. 

To reveal the biological functions, the bioinformatics analysis typically involves the 
integration of proteome data with annotation databases, such as Metascap (12), Gene 
Ontology (13), pathway database (KEGG) (14), gene set enrichment analysis GSEA(15), 
and protein domains (InterPro, PFAM) (16). This type of analysis can directly reflect the 
functional insights into the data set and is easily achieved using public tools. Besides, 
software and R packages, such as Limma (17), and WGCNA (18), have been designed to 
compare differentially expressed proteins between groups (e.g., healthy and disease) and/or 
obtain co-expression patterns, which offer broader capabilities and flexibility in analysis but 
require some more programming experience. Moreover, several data visualization tools like 
Cytoscape (19), and ggplot2 (20) also require users to master basic programming principles. 
Therefore, there is a urgent need to develop a user-friendly graphical user interface (GUI), 
which ideally can integrate data mining, functional annotation, and data visualization into an 
online platform. At the same time, MS-based proteomics data-sets are currently analyzed with 
algorithms designed for genomics and transcriptomics datasets or other statistical methods. 
Although those algorithms have been proven to be robust and useful, they have limitations. 
Thus, an improvement of existing algorithms and/or the development of novel sophisticated 
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data-mining methods for analysis and interpretation can be expected.

3.2 Protein-protein interactions and protein complexes

 Proteins do not work independently, many essential cellular functions are carried out 
by multi-protein complexes that can be characterized by their protein-protein interactions. 
Investigating protein-protein interactions and protein complexes allows one to place a protein 
with completely unknown functions into a context given by their interacting partners with 
already known functions. Thus, one can deduce the novel function for the nearly unknown 
proteins, or design a reasonable experiment to test its biological function based on interacting 
partners. Moreover, one protein can have a completely different function when interacting 
with different partners or in a different biological process. Therefore, an increasing number of 
large-scale proteomics projects have been conducted in many research institutions to build 
comprehensive interactome maps. 

Recent advances in technologies lead to an increase in protein interaction data and 
resulting interaction networks and databases (21). The two most frequently used methods 
in the identification of protein interactions are yeast two-hybrid (Y2H) screening, a well-
established genetic in vivo approach, and affinity purification followed by mass spectrometry 
analysis (AP-MS), an emerging biochemical in vitro technique. So far, a majority of published 
interactions have been detected using a Y2H screen. For instance, comprehensive protein 
interaction maps have been established using Y2H in Saccharomyces cerevisiae (22, 
23), Drosophila melanogaster (24), and humans (25, 26). Although the Y2H approach is a 
powerful tool in the characterization of protein-protein interactions, some limitations have 
become apparent. False negatives (protein-protein interactions which cannot be detected) 
and false positives (physical interactions detected in the screening which are not reproducible 
in an independent system) are the most two considerations in the application of Y2H. More 
recently, affinity purification followed by mass spectrometry (AP-MS) analysis becomes more 
and more popular in the characterization of comprehensive interactomes in humans and other 
organisms. For instance, Havugimana (27) and collogues have identified a network of 13,993 
high-confidence physical interactions among 3,006 stably associated soluble human proteins, 
which markedly increases the coverage of protein-protein interactions. Moreover, Huttlin (28, 
29) and collogues have established the BioPlex interaction network, which contains 56 553 
interactions from 5891 AP-MS experiments. 

A prominent concern in the AP-MS protein-protein interaction studies is the identification of 
true and specific PPIs as opposed to nonspecifically co-purified proteins. These non-specifically 
interacted proteins are from (i) non-specific interacting proteins that binding to the tag, (ii) the 
carryover of overexpressed proteins. Several methods have aimed to develop bioinformatics 
computational tools to classify the true interactions from the vast number of potential 
interactions. For instance, the Comparative Proteomics Analysis Software Suite (CompPASS) 
(30) was developed to identify high confidence interactions in AP-MS experiments using mass 
spectrometry spectral counts. Another computational method, the Significance Analysis of 
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INTeractome (SAINT) (31), uses the MS quantitative data and generates separate Poisson 
distributions for true and false interactions to derive the interaction probability. However, these 
computational pipelines only are suitable for a single AP-MS experimental system. Another 
possible strategy is to integrate several large-scale protein-protein interaction studies as the 
data source to generate machine learning models, thus improving the interaction accuracy, at 
the same time to reduce the non-specific interactions. For instance, Drew and colleagues (32) 
have constructed a comprehensive map of protein complexes by integrating large-scale mass 
spectrometry experimental datasets and employing a support vector machine (SVM) classifier 
to assign the interaction score. In this study, over 9000 mass spectrometry protein interaction 
datasets from a variety of human and animal cells and tissues were integrated into the analysis. 
Integrating large-scale protein-protein interaction data is a wise attempt since a protein can 
be highly dynamic and depend on the growth condition of the cell. Besides, the composition 
of protein interaction modules or protein complexes changes depending on the cell state and 
environment. However, at this moment, analyzing protein complexes by integrating different 
large-scale datasets is only limited to the AP-MS experimental data or the Y2H experimental 
data. Therefore, in the future, more studies should be carried out to combine information 
from Y2H and AP-MS experiments to increase the coverage and accuracy of protein-protein 
interaction and protein complex analysis.

3.3 Machine learning meets proteomics

The continuous improvement of mass spectrometry (MS)-based proteomics technologies 
has accumulated proteomics data at an astonishing speed and scope. Mining for biological 
functions and protein-protein interactions in proteomics data has been expanded to the 
statistical analysis and computational modeling. Fortunately, artificial intelligence (AI) more 
and more plays critical roles in mining the ‘big data’ including those from biological and 
medical contexts. As a branch of artificial intelligence, machine learning is to learn rules from 
data through computational models and algorithms. It is devoted to exploring how to improve 
the performance of the system itself through computing and using experiences.

Machine learning has already been applied to almost all steps of MS-based proteomics. 
This ranges from protein digestion, liquid chromatography separation, ionization, ion mobility 
separation, MS detection, peptide fragmentation, protein identification and quantification, 
to downstream data analysis and biomarker prediction. For instance, Zhang introduced a 
mathematical model based on classical kinetics and the mobile proton model of peptide 
fragmentation, for predicting the low-energy CID spectrum of singly or doubly charged 
peptides acquired on a quadrupole ion trap mass spectrometer (33). Furthermore, Michael and 
colleagues developed the Percolator algorithm (34), which employs semi-supervised learning 
as a postprocessor rather than a fixed discriminant function, to learn a function that consistently 
ranks the decoy peptide-spectrum matches (PSMs) below a subset of high-confidence target 
PSMs. Percolator uses an iterative, SVM-based algorithm, initially identifying a small set of 
high-scoring target PSMs, and then learning to separate these from the decoy PSMs. The 
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educated classifier is applied to the entire set, and if new high-confidence PSMs are identified, 
then the procedure is repeated. Machine learning-based algorithms can efficiently process 
large amounts of peptide sequences. However, it is largely affected by feature extraction. 

Deep learning (DL), a subset of machine learning (ML), can automatically learn data 
patterns and abstract features without handcrafted feature engineering. Deep learning is 
increasingly applied to a variety of proteomics research problems, such as predicting peptide 
properties (tandem mass spectra, ion mobility, and retention time) (35) from only a primary 
sequence. Furthermore, deep learning has been applied to improve peptide identification, 
protein inference, peak detection (36-38), protein structure modeling (39), protein-protein 
interaction prediction (40, 41), and neoantigen identification and patient classification (42, 43). 
One limitation of deep learning is that usually tens of thousands of example data points are 
required to effectively train a neural network. Interpretation of data by deep learning will require 
the production of thousands of proteome examples, which represents a major barrier given the 
average throughput of most experiments. Nonetheless, there are still options available to take 
on this challenge. One potential solution is to obtain proteomics data from public repositories, 
such as the PRIDE archive and BioPlex Interactome, which store detailed metadata about the 
sample preparation, individual treatments, and data acquisition. Alternatively, the combination 
of multiple omics will enlarge the volume of data types if not the data size. 

3.4 Integration of multi-omics datasets

The biological networks in cells or tissues involve a highly dynamic and interactive system 
and are influenced by many environmental factors. Recent technological advancements in 
high throughput have enabled the measurement of genome, transcriptome, proteome, and 
metabolome in humans and other organisms (44-46). However, a single layer of “omics” can 
only provide limited insights into the biological mechanisms. The upcoming trend in "omics" 
studies is to integrate proteomics data with other layers of biological macromolecules, i.e., 
genomics, transcriptomics, and metabolomics. Several studies have been conducted to 
integrate different layers of “omics” data to achieve a more comprehensive understanding of 
cellular dynamics in biological systems (47-50). For instance, recently one jointly analyzed 
proteome-transcriptome data of mouse liver samples, which observed a lower level of protein-
mRNA correlation (51). Interestingly, only about half of the tested genes show a significant 
correlation, and little overlap was found between the protein- and transcript-associated loci. 
Another study integrated metabolomics and genomics data to define prognosis characteristics 
in human neuroendocrine cancers (52). Researchers used genomics signatures to identify 
activated portions of the metabolic network, then to guide in silico metabolic reconstructions 
of neuroendocrine cell metabolism to detect specific metabolic changes, and ultimately 
identify a molecular signature that is associated with poor-prognosis human neuroendocrine 
cancers. In addition, one study integrated proteome and transcriptome data in the mouse 
lens epithelium and fibers and revealed that crystallins showed a high correlation between 
their mRNA and protein levels (53). However, most integrative transcriptomic and proteomic 
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research have so far either failed to detect a correlation or only a weak correlation. Therefore, 
the consensus nowadays is that the correlation between transcriptomes and proteomes 
across large datasets was typically modest, and that mRNA levels could not be consistently 
relied upon to predict protein abundance (54-56). Given these examples of integrative omics 
research, we can expect that in the near future, more and more efforts would be devoted to 
developing sophisticated bioinformatics tools and statistical methods to improve the chances 
of better integrating multi-omics datasets and thereby reveal new biological insights that are 
not accessible through one-dimensional datasets.

As technologies continue to rapidly advance concerning throughput and sensitivity, 
bioinformatics tools must keep pace with large-scale experiments. In the come years, 
more general bioinformatics pipelines/platforms and user-friendly graphical user interface 
(GUI), which integrates data quality control, data mining, statistical analysis, functional 
annotation, pathway enrichment, and data visualization will be designed to help researchers. 
Such platforms should be free, open-source, and easy to access, which are capable of 
non-programming scientists and researchers with little bioinformatics knowledge. The 
generalization and application of more clear bioinformatics platforms will have a profound 
impact on extracting biological function from mass spectrometry-based proteomics data 
and further understanding biological and clinical research questions, such as elucidating 
underlying biological mechanisms in diseases or identifying promising biomarkers and novel 
drug targets. Moreover, given the high dimensionality and throughput of proteomics datasets, 
there is a great need for machine learning that will enable us to automatically find expression 
patterns, clusters, and protein-protein interactions underlying big-data matrix. Furthermore, 
the application of machine learning methods such as support vector machine and deep 
learning, can automatically classify disease, classify response types during treatment, and 
implement real-time diagnosis that will advance precision medicine, personalized treatment, 
and health management. Finally, to study complex biological processes, it is imperative to 
take an integrative approach that combines multi-omics data (genomics, transcriptomics, 
proteomics, phosphorproteomics, and metabolomics) to highlight the interrelationships of the 
involved biomolecules and their functions. Integration of multi-omics data providing information 
on biomolecules from different layers will be a promising method to understand the molecular 
mechanisms, processes, and pathways underlying complex biology and disease. Although 
the underlying heterogeneity in individual omics data and the large size of datasets make 
multi-omics data integration a challenging task, we believe that a uniform framework that can 
effectively process and analyze multi-omics data in an end-to-end manner along with easy 
and biologist-friendly visualization and interpretation will be developed.
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