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SUMMARY

Imaging is a field of mathematics and physics that aims to retrieve information about the
internal structure of an object that can only be accessed on its boundary. Many imag-
ing methods are based on the following principle: a source outside of the object emits a
wave. The wave propagates through the object. Wherever the physical structure of the
object changes, scattered waves are induced. These scattered waves are measured by re-
ceivers outside of the object, and these scattered data are used to invert for the interior
composition, e.g. the scattering potential, of the medium under investigation.
The Marchenko integral was originally introduced for one-dimensional inverse scatter-
ing problems in the context of quantum mechanics. It can be related to Green’s func-
tions and so-called focusing functions – fields that produce a focus when injected into
a medium from a single side. This quality of single-sided focusing is quite intriguing:
by using the Marchenko equation one can record scattered data on only one side of an
object and still retrieve a reliable image of its internal structure. About ten years ago, the
Marchenko integral was extended to two and three dimensions. This paved the way for
various new applications, particularly in geophysical imaging. Such applications involve
the elimination of imaging artefacts due to multiple scattering and Green’s function re-
trieval for virtual source locations, but a direct relation between the multidimensional
Marchenko equation and the scattering potential is yet to be discovered. Furthermore,
the extension to multiple dimensions is associated with limitations due to, e.g. wave-
field decomposition, a technique that separates waves based on their direction of prop-
agation. Hence, many questions about the full potential as well as the accuracy of the
Marchenko equation in two and three dimensions remain unanswered.
In this thesis we present a new derivation for the multidimensional Marchenko inte-
gral. Our derivation is based on a generalised framework for wavefield focusing and cir-
cumvents the limiting assumptions of the previous extension. As we use partial differ-
ential equations rather than integral equations to define focusing functions, it allows
for new physical insights. For instance, our approach indicates that it is possible to
model Marchenko-type focusing functions with a conventional wave equation. Being
able to model Marchenko-type focusing functions is crucial for understanding them.
Ultimately, this enables us to study Marchenko-type focusing in different 2D and 3D
media and learn about the accuracy of the concept. We develop different strategies
for modelling Marchenko-type focusing functions in this thesis, all of which are con-
sistent with our new focusing framework. We present a straightforward approach for
1D as well as a least-squares modelling approach for 2D and 3D. The latter suggests
that the Marchenko integral might be inherently approximative in multiple dimensions.
How good the approximation is, depends on the structure of the medium under inves-
tigation and the underlying acquisition surface. We also discuss Green’s function re-
trieval with our newly derived Marchenko integral, i.e. without wavefield decomposi-
tion. This method allows for estimating Green’s functions for virtual sources inside of
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SUMMARY

the medium. While it requires single-sided scattering data and an estimate of the first ar-
rival of the desired Green’s function there is no need to have an actual source or receiver
inside of the medium. Our results demonstrate that we can retrieve good estimates of
the full-spectrum Green’s functions, involving evanescent and refracted waves, which
were believed to not be retrievable with the previously derived Marchenko integral. The
degree to which these wave types can be retrieved, however, heavily depends on the
quality of the prior knowledge. Ultimately, we discuss imaging with these Marchenko-
based Green’s functions. Being able to include measurements for virtual sources inside
of the medium allows for a natural linearisation of the imaging problem. Thus we use
the Marchenko integral to linearise state-of-the-art imaging approaches, similar to full
waveform inversion or least-squares reverse time migration, and estimate the scatter-
ing potential. Conventionally, this imaging problem is linearised by ignoring multiple
scattering. Our Marchenko-based linearisation accounts for all orders of scattering and
performs slightly better than a single-scattering approximation.
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SAMENVATTING

Beeldvorming is een gebied van wis- en natuurkunde met als doel informatie te verkrij-
gen over de interne structuur van een object dat alleen op zijn randen kan worden on-
derzocht. Veel beeldvormende methoden zijn gebaseerd op het volgende principe: een
bron buiten het object zendt een golf uit. De golf plant zich voort door het object. Overal
waar de fysieke structuur van het object verandert, worden verstrooide golven geïndu-
ceerd. Deze verstrooide golven worden gemeten door ontvangers buiten het object, en
deze verstrooiïng gegevens worden gebruikt om te inverteren voor de interne samenstel-
ling, het verstrooiïngspotentieel, van het onderzochte medium.
De Marchenko-integraal werd oorspronkelijk geïntroduceerd in de context van de kwan-
tummechanica voor eendimensionale inverse verstrooiïngsproblemen. Het relateert de
Greense functies aan zogenoemde focusfuncties – golfvelden die een focus produceren
wanneer ze vanaf één kant in een medium worden uitgezonden. De eigenschap van
dit enkelzijdig focussen is behoorlijk intrigerend: door de Marchenko-vergelijking te ge-
bruiken, kan men verstrooiïngsgegevens vastleggen aan slechts één kant van een object
en toch een betrouwbaar beeld krijgen van de interne structuur. Ongeveer tien jaar ge-
leden werd de Marchenko-integraal uitgebreid naar twee en drie dimensies. Dit maakte
de weg vrij voor verschillende nieuwe toepassingen, met name in geofysische beeldvor-
ming. Dergelijke toepassingen omvatten het elimineren van beeldartefacten als gevolg
van meervoudige verstrooiïng en het verkrijgen van de Greense functie voor virtuele
bronlocaties. Een directe relatie tussen de multidimensionale Marchenko-vergelijking
en het verstrooiïngspotentieel moet echter nog worden ontdekt. Verder gaat de uit-
breiding naar meerdere dimensies gepaard met beperkingen als gevolg van bijvoorbeeld
golfvelddecompositie, een techniek die golven scheidt op basis van hun voortplantings-
richting. Daarom zijn veel vragen over het volledige potentieel en de nauwkeurigheid
van de Marchenko-vergelijking in twee en drie dimensies nog onbeantwoord.
In dit proefschrift presenteren we een nieuwe afleiding voor de multidimensionale Mar-
chenko-integraal. Onze afleiding is gebaseerd op een algemeen raamwerk voor golf-
veldfocussering en omzeilt de beperkende aannames van de vorige uitbreiding. Door in
plaats van integraalvergelijkingen partiële differentiaalvergelijkingen te gebruiken voor
het definiëren van focusfuncties, ontstaan er nieuwe fysische inzichten. Onze benade-
ring laat bijvoorbeeld zien dat het mogelijk is om Marchenko focusfuncties te modelle-
ren met een conventionele golfvergelijking. Dit modelleren is cruciaal voor het begrij-
pen van de Marchenko focusfuncties. Uiteindelijk stelt dit ons in staat om Marchenko
focussering te bestuderen in verschillende twee- en driedimensionale media en meer te
weten te komen over de nauwkeurigheid van het concept. In dit proefschrift ontwikke-
len we verschillende strategieën voor het modelleren van Marchenko focusfuncties die
allemaal consistent zijn met ons nieuwe focusraamwerk. We presenteren een eenvou-
dige aanpak voor één dimensie, evenals een kleinste-kwadratenbenadering voor twee en
drie dimensies. Dit laatste geeft aan dat de Marchenko-integraal inherent benaderend
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kan zijn in hogere dimensies. Hoe goed de benadering is, hangt af van de structuur van
het onderzochte medium en het onderliggende acquisitieoppervlak. We bespreken ook
het verkrijgen van de Greense functie met onze nieuw afgeleide Marchenko-integraal,
oftewel zonder golfvelddecompositie. Met deze methode kunnen de Greense functies
worden geschat voor virtuele bronnen binnen het medium. Hoewel deze methode en-
kelzijdige verstrooiïngsgegevens vereist en een schatting van de eerste aankomst van de
gewenste Greense functie, is het niet nodig om een werkelijke bron of ontvanger in het
medium te hebben. Onze resultaten tonen aan dat we goede schattingen kunnen ma-
ken van het volledige spectrum van Greense functies, inclusief uitdovende en gerefrac-
teerde golven, waarvan werd aangenomen dat ze niet konden worden bepaald met de
eerder afgeleide Marchenko-integraal. Als laatste bespreken we beeldvorming met deze
op Marchenko gebaseerde Greense functies. De mogelijkheid om metingen voor virtu-
ele bronnen in het medium op te nemen, zorgt voor een natuurlijke linearisering van
het beeldvormingsprobleem. Daarom gebruiken we de Marchenko-integraal om state-
of-the-art beeldvormingsbenaderingen te lineariseren, vergelijkbaar met volledige golf-
vorminversie of kleinste-kwadraten omgekeerde tijdmigratie, en schatten we het ver-
strooiïngspotentieel. Conventioneel wordt dit beeldvormingsprobleem gelineariseerd
door meervoudige verstrooiïng te negeren. Onze op Marchenko gebaseerde linearisatie
houdt rekening met alle ordes van verstrooiïng en presteert iets beter dan een enkele
verstrooiïngsbenadering.
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1
INTRODUCTION

1.1. THE INVERSE SCATTERING PROBLEM
When a moving particle or a wave hits an obstacle it is scattered. Such an obstacle could
be another particle or a variation of the physical parameters of the material through
which the wave is travelling. Understanding the nature of scattering was essential for
many fundamental discoveries in physics such as Lord Rayleigh’s explanation of the
colour of the sky (Rayleigh, 1871) or Ernest Rutherford’s finding of the atomic nucleus
(Rutherford, 1911). In fact scattering plays an important role in most fields of physics
where, e.g., the acoustic, elastic, electro-magnetic or Schrödinger wave equations are
studied.
The direct scattering problem refers to the question of how particles or waves are scat-
tered – knowing the exact physical characteristics of the obstacles in the medium under
investigation. These physical characteristics are often parametrised in terms of a scat-
tering potential, i.e. a representation of the unknown part of the model relative to a
given/known background, but can be described more generally as the physical medium
properties.
In contrast to the direct problem, the inverse scattering problem aims to characterise the
obstacles by measuring how they scatter particles or waves. The field that underpins all
strategies and solutions for retrieving the physical medium properties from measured
scattering data is called inverse scattering theory (Colton and Kress, 1998).
Apart from applications in quantum mechanics (Chadan and Sabatier, 2012), inverse
scattering theory is particularly important for imaging, a branch of mathematics and
physics that deals with resolving the interior properties of a medium that is only acces-
sible from its boundary. A conventional imaging setup can be described as follows: a
source outside of the medium of interest emits, e.g., an acoustic wave. This wave prop-
agates through space, penetrates the medium and is scattered. The scattered waves are
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incident
field

scattered
field

Figure 1.1: Sketch of an inverse scattering experiment. The source is red, the receivers are blue. The medium
of interest is cyan and characterised by the variable ξξξ(xxx). For an acoustic wave we would for instance have
ξξξ(xxx) = [ρ(xxx) , c(xxx)], i.e. spatially varying density and wave speed, respectively. Between the acquisition surface
(dashed magenta line) and the medium of interest, the volume is characterised by the variable ξ0ξ0ξ0(xxx) which
might be a function of space but is assumed to be known.

recorded by receivers outside of the medium. Imaging aims to retrieve the internal phys-
ical structure of the medium, i.e. the scattering-inducing obstacles, from these measure-
ments. This is illustrated in Figure 1.1. Note that multiple measurements with sources
and receivers at different locations along the acquisition surface are necessary to obtain
a reliable image.
Imaging can be based on different physical concepts, e.g., ultrasound or X-ray, and there
are various fields of applications. Medical imaging (Szabo, 2004) allows to look into hu-
mans and diagnose diseases. Non-destructive testing (Müller et al., 2012) can be used to
check the quality and evaluate the properties of materials without breaking them. Geo-
physical imaging allows for looking into planets, in particular the Earth, to localise re-
sources (Ratcliffe et al., 2011) like hydrocarbons, minerals or groundwater, determine
building sites (Soupios et al., 2007) for wind farms, tunnels or pipes, discover and mon-
itor subsurface structures for CO2 storage (Draganov et al., 2012), detect explosive ord-
nances (Sullivan et al., 2000) or discover buried archaeological structures (Hildebrand
et al., 2002).
In this thesis we discuss the scattering of acoustic waves. Most of our numerical studies
are related to geophysical imaging. Since nearly all chapters of this thesis are based on
publications and therefore self-contained, we do not aim to deliver an exhaustive review
of previous research and literature here – each relevant chapter will come with its own
introduction. Instead, we want to introduce some of the key concepts and terms and
provide further scientific context for this thesis.

1.2. THE INVERSE SCATTERING PROBLEM IN CONTROLLED-
SOURCE SEISMOLOGY

Controlled-source seismology uses seismic sources and receivers for imaging the interior
of the Earth. Conventionally, the extent of the target regions is in the order of several

2
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primary
multiple
surface-related multiple

Figure 1.2: Illustration of the inverse scattering experiment for acoustic waves in controlled-source seismology.
The source is red, the receivers are blue. The target medium is outlined by the solid cyan line and characterised
by densities ρ and wave speeds c. Note that the sharp, distinct layering here is a simplification and serves
illustrational purposes. The acquisition surface (dashed magenta line) is limited to the surface of the Earth.
The grey arrows denote different reflection paths (we use rays rather than waves for a clear demonstration).

kilometres. The propagation of seismic waves is usually described by the elastic wave
equation. Nonetheless, the simpler acoustic wave equation is a good approximation for
many applications (Morgan et al., 2013).

1.2.1. DATA
Probably the most crucial and limiting factor that distinguishes geophysical imaging
from, e.g., medical imaging is the inaccessibility of a large portion of the target medium’s
boundary. The regional subsurface of the Earth can only be probed by sources and re-
ceivers on its regional surface, such that targets in geophysical imaging can not usually
be surrounded by sources and receivers. Hence, one is generally lacking information on
how waves are scattered from the sides of the target medium as well as from below the
target medium. This is also sketched in Figure 1.2. While boreholes generally allow for a
slightly larger acquisition surface they are expensive. This limited accessibility is a chal-
lenge in geophysical imaging (Virieux and Operto, 2009).
Another common issue with seismic data is multiple scattering. This refers to waves
that are not only scattered once (like primaries) but multiple times before reaching the
receivers, see Figure 1.2. These multiply reflected arrivals are briefly referred to as multi-
ples and their presence in seismic data often leads to imaging artefacts as they increase
the non-linearity of the inverse scattering problem (Dragoset et al., 2010). Hence, one ei-
ther aims at removing them from the data or at accurately addressing them via advanced
inverse scattering techniques. The latter approach can actually improve the image qual-
ity rather than just suppressing artefacts (Malcolm et al., 2009). One often distinguishes
between two types of multiples: surface-related multiples and internal multiples. The
former are connected to waves that are scattered at the surface of the Earth. These re-
flections usually have high amplitudes due to the large reflection coefficient at the in-
terface between subsurface and air (Verschuur et al., 1992). Internal multiples on the
other hand are only scattered within the subsurface. Owing to the unknown subsurface
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structure, predicting and eliminating internal multiples in seismic data tends to be a dif-
ficult task (Zhang and Slob, 2019). Hence, in this thesis we focus on the investigation of
internal multiple scattering. In order to isolate the impact of internal multiples in our
numerical studies we suppress surface-related multiples by using a transparent surface
– implying that ρ0 = ρ1 and c0 = c1 in Figure 1.2.
Figure 1.3 shows an example of a numerical subsurface model (variable velocity, con-
stant density) and the according seismic data. These seismic data contain many re-
flections and it is difficult to assign individual reflections to particular interfaces in the
model. While the direct scattering problem can be solved by forward modelling with
the acoustic wave equation for the given model, the inverse scattering problem requires
elaborate inversion strategies.

1.2.2. MODEL BUILDING AND IMAGING

The inverse scattering problem in controlled-source seismology can be separated into
two main tasks: (i) obtaining the smooth, long-wavelength model variations, i.e. a ver-
sion of the model that accurately reproduces the travel times of the different events in the
data. This step is usually referred to as model building. (ii) Obtaining the sharp, short-
wavelength model variations that induce the scattered waves in the data. This process
requires a smooth background model and aims to find the missing perturbations. These
perturbations represent the structural image of the Earth – this second step is therefore
called imaging.
There are many different strategies for solving the two tasks. Tomography is a common
tool for model building (Rawlinson et al., 2010). It requires picked arrival times for par-
ticular wave modes, e.g. first arrivals. These picks are then matched by modelled travel
times, e.g. using an Eikonal solver. The final tomographic model delivers the best match
of modelled and picked travel times. Owing to modern computers, full waveform in-
version (Virieux and Operto, 2009) has become a feasible alternative for model building.
It does not require any picking but uses the wave equation to model data and directly
minimises the misfit between measured and modelled data. However, full waveform in-
version needs long-wavelength data including, e.g., diving waves to recover a reliable
model.
The image is conventionally obtained by migration (Gray et al., 2001). Migration uses
the smooth background model from model building to propagate the data, particu-
larly the high-wavelength content, into the subsurface and locate the scatterers. Simi-
lar to model building, migration has evolved with increasing computational powers and
shifted from Kirchhoff migration (based on travel times) to least-squares reverse time
migration (based on the wave equation).
The line between model building and imaging, however, is blurry: full waveform inver-
sion can retrieve highly resolved models and discover detailed subsurface structures and
migration algorithms can be used to refine model information.

1.3. THE MARCHENKO INTEGRAL
The Marchenko integral is an essential equation in inverse scattering theory (Marchenko,
1955). For scattering problems in one dimension it can be used directly to infer the
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direct
scattering
problem

inverse
scattering
problem

DATA

MODEL

Figure 1.3: Numerical examples of a seismic model (top) and seismic data (bottom). The model is the Mar-
mousi model. We use an acoustic wave equation with constant density and variable wave speed (often called
velocity in geophysics) here. The source is red and receivers are blue in the model. Their locations are con-
sistent with the displayed data. Getting the data from the model represents the direct scattering problem (or
forward problem), getting the model from the data is the inverse scattering problem (or inverse problem). In
order to reliably solve the inverse scattering problem one would require additional data for sources at other
locations.
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scattering potential from the single-sided measurement of the medium’s scattering re-
sponse. Single-sided implies that both the source and the receiver are at the same side
of the unknown model perturbation. For a medium with varying physical parameters in
the horizontal direction (1D) this means that the source and the receiver are, e.g., to the
left of the model perturbation and measuring the scattered data for this setup is enough
to image the interior structure of the unknown portion of the medium (Burridge, 1980).
We stress that this relies on a given background model such that the unknown medium
properties are spatially localised on one side of the source.
Rose (2001, 2002a,b) investigated the fields within the Marchenko integral and discov-
ered that they focus when injected from a single side of the medium’s boundary. This is
a rather intriguing observation; conventionally, it was assumed that a wavefield had to
be injected from the entire enclosing boundary (meaning both sides in 1D) to create a
perfect focus.
Ten years later, Broggini et al. (2012) recognised the relation between the Marchenko
integral and the homogeneous Green’s function. The homogeneous Green’s function
(Oristaglio, 1989) is a fundamental wavefield in time reversal acoustics and can be in-
terpreted as follows: the Green’s function, that is the medium’s response to an impulse
source, can not only be obtained by this impulse source but also by injecting the time-
reversed Green’s function from an enclosing boundary into the medium under investi-
gation – without having an actual source inside of the medium. Hence, the Marchenko
integral was found to relate focusing functions (wavefields for single-sided focusing) and
Green’s functions. Broggini et al. (2012) also indicated the similarity of the Marchenko
integral with seismic interferometry (Schuster, 2009). Interferometry also deploys inte-
grals to relate different wavefields, however only including Green’s functions, not focus-
ing functions.
Shortly after these new insights, Wapenaar et al. (2013) extended the Marchenko integral
to 2D and 3D. This new Marchenko-like integral was designed for a measurement setup
similar to that in Figure 1.2 (a single-sided experiment in 2D and 3D). Hence, it was a
significant step forward for multidimensional imaging problems in controlled-source
seismology and triggered many applications.
The most prominent application in this thesis is Marchenko-based Green’s function re-
trieval (Wapenaar et al., 2014b). It allows for estimating Green’s function measurements
at the receivers (on the surface of the Earth) for virtual source locations anywhere inside
of the medium (in the subsurface). They are called virtual source locations for there are
no actual sources inside the medium. Apart from the reflection data, this Marchenko-
based Green’s function retrieval only requires one additional ingredient: the first arrival
of the desired Green’s function. This first arrival is usually estimated by modelling in a
smooth background medium (obtained via model building). The final Marchenko-based
Green’s functions, however, include all orders of scattering. This is what makes the ap-
proach so powerful: knowing a smooth background medium allows for modelling the
first arrival, but due to the smoothness of the model one can not retrieve any scattering.
The Marchenko integral on the other hand, retrieves the full Green’s function with all
primaries and multiples. This paves the way for, e.g., artefact-free imaging (Wapenaar
et al., 2014b) by correctly addressing internal multiples in the data. Other applications
include multiple elimination (Zhang and Slob, 2019), target-oriented imaging (Ravasi
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et al., 2016; Cui et al., 2020) or monitoring (Brackenhoff et al., 2019a). This is also what
sets the Marchenko integral apart from conventional interferometric integrals: by in-
volving focusing functions rather than only Green’s functions, one can use it to estimate
Green’s functions for virtual sources and receivers, while conventional interferometric
integrals require actual, physical sources and receivers.

1.4. MOTIVATION
There are several open questions regarding the Marchenko integral and its role in imag-
ing, in particular in multiple dimensions. The key ingredients to this integral are the
Marchenko-type focusing functions, i.e. wavefields that focus when injected from a
single side of the medium.

• Generalisation: Can we generalise the concept of Marchenko-type focusing?
The extension of the Marchenko integral to 2D and 3D comes with several limita-
tions (Wapenaar et al., 2014b). Evanescent and refracted waves are excluded from
the retrievable Green’s functions due to a so-called up-/down-decomposition of
wavefields and a truncated medium assumption in the derivation. The former
technique is related to separating wavefields according to their direction of propa-
gation, the latter to the concept of a medium that is reflection-free underneath the
location of the virtual source of the Green’s function. Furthermore, recent research
points towards Marchenko-type integrals for other acquisition surfaces, not just a
horizontal surface like that in Figure 1.2 (Meles et al., 2019b; Kiraz et al., 2020). And
the relation between conventional seismic interferometry and the Marchenko in-
tegral still has to be fully understood.
Hence, we want to develop a new framework for focusing functions that circum-
vents previous limitations, generalises earlier focusing concepts, e.g., to account
for arbitrary acquisition surfaces and relates the Marchenko integral with seismic
interferometry.

• Modelling: Can we model Marchenko-type focusing functions?
While the Marchenko integral appears to deliver good approximations of Green’s
functions in various media, its limitations are not quite understood. Complicated,
heterogeneous media are found to be a challenge (Vasconcelos and Sripanich,
2019), but precisely why the Marchenko integral would fail in 2D and 3D or to
what extent it is a good approximation is unclear.
Consequently, we aim to investigate ways for modelling Marchenko-type focusing
functions. Modelling Marchenko-type focusing functions and studying their be-
haviour in different heterogeneous media can help to understand the validity of
the Marchenko integral in multiple dimensions.

• Imaging: Can we use the Marchenko integral for imaging?
We explained above that the Marchenko integral can be used directly for estimat-
ing the scattering potential in 1D. In multiple dimensions, however, this does not
yet seem possible. Nonetheless, combining state-of-the-art algorithms like full
waveform inversion or least-squares reverse time migration with the Marchenko
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integral could be a powerful imaging tool. Correctly addressing multiple scatter-
ing might suppress artefacts and increase image resolution.
We propose to use Marchenko-based Green’s functions for imaging. Including the
estimated data for these virtual sources that are inside of the medium could help
to linearise the inverse problem.

These main research items are also reflected in the title: We aim to generalise Mar-
chenko-type focusing functions, model them and use them for imaging.

1.5. OUTLINE
In Chapter 2 we present the basic equations that underlie all of the following chapters.
These fundamental equations are consistently used throughout the thesis. In particular
we introduce Rayleigh’s reciprocity integral which plays an essential role in seismic in-
terferometry.
We introduce a new derivation for the Marchenko integral in multiple dimensions in
Chapter 3. Our new derivation is based on seismic interferometry and partial differen-
tial equations for focusing functions and Green’s functions rather than directly relying
on integral equations. This generalises the concept of focusing and allows for a new
understanding of the Marchenko equation and an improved physical intuition. Fur-
thermore, this new derivation circumvents up-/down-decomposition of the wavefields
in the Marchenko integral, a limitation that previous derivations were built upon. Us-
ing partial differential equations also indicates that modelling Marchenko-type focusing
functions should in principle be possible. We illustrate this with 1D examples in this
chapter. The chapter was published as Diekmann et al. (2023c).
Chapter 4 presents a straightforward, one-step approach for modelling Marchenko-type
focusing functions in 1D. The approach is based on our partial differential equations for
focusing functions. This new modelling scheme is significantly simpler than previous
methods as it does not require any recursive or sequential computations. The content of
this chapter was published as Diekmann and Vasconcelos (2023).
Building on these findings, we discuss a method for modelling Marchenko-type focus-
ing functions in 2D and 3D in Chapter 5. This technique is based on a least-squares
approach for designing sources such that the related wavefields have particular, desired
properties. We refer to this as inverse source design. While this technique is potentially
interesting for other applications as well, we discuss using it for modelling Marchenko-
type focusing functions. We focus on investigating modelling in homogeneous media
but also discuss modelling in arbitrarily heterogeneous media. Owing to this new mod-
elling strategy we are able to evaluate the accuracy of assumptions/approximations that
form the basis for the Marchenko integral in multiple dimensions. The chapter is under
review as Diekmann et al. (2023a).
Chapter 6 discusses the derivation of the Marchenko integral based on our new partial-
differential-equation framework and a method for retrieving Green’s functions from this
Marchenko integral without up-/down-decomposition. This Green’s function retrieval
method requires some knowledge on the first arrival of the Green’s function that can
be obtained from, e.g., modelling in a smooth background medium. It allows for esti-
mating Green’s functions for virtual sources inside of an inaccessible half-space when
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measuring the reflection response on the boundary of the half-space. We discuss and
illustrate the effect of the quality of the background model on the retrieved Green’s func-
tions. Additionally, we show how these Green’s functions contain all types of waves that
were assumed to not be retrievable from the previously derived Marchenko integral, i.e.
refracted and evanescent waves. The chapter was published as Diekmann and Vascon-
celos (2021b).
Finally, in Chapter 7 we propose a way for linearised imaging by full waveform inver-
sion. The linearisation of this generally non-linear inverse problem is achieved by us-
ing Marchenko-derived Green’s functions in the kernel of the Lippmann-Schwinger in-
tegral. In this context, we discuss the Lippmann-Schwinger and the Marchenko inte-
gral. We demonstrate how different a priori information on the desired models affects
the inverted images. Furthermore, we compare our Marchenko-based linearisation with
a conventional single-scattering approximation. The content of this chapter was pub-
lished as Diekmann et al. (2023b).
Chapter 8 concludes this thesis by summarising its key insights and discussing possible
directions for future research.
Most of the chapters in this thesis are published or under review for publication in peer-
reviewed journals. Being stand-alone publications, these chapters contain partially re-
dundant descriptions of previous research or explanations of theory. I, as the first author
of all of these chapters, did the derivations, the coding, the analysis and the writing of the
original chapters. Co-authors that contributed to this thesis are Ivan Vasconcelos, Kees
Wapenaar, Roel Snieder, Evert Slob and Tristan van Leeuwen. These co-authors helped
by initiating important discussions, providing feedback and input on writing and super-
vising me.

9





2
PRELIMINARIES

In this chapter we introduce fundamental theory that underlies all of the following
chapters. In particular we aim to derive the wave equation and Rayleigh’s reciprocity
integral. As we will switch between time- and frequency-domain notations throughout
this manuscript, we start by establishing a common Fourier convention.

2.1. FOURIER TRANSFORM
The Fourier transform of a time-domain function u(xxx, t ) is given by

u(xxx,ω) =F
(
u(xxx, t )

)= ∫ ∞

−∞
u(xxx, t )exp(iωt )d t , (2.1)

where xxx = [
x1 x2 x3

]T
is space and the exponent T denotes the transpose, t is time

andω is angular frequency. Furthermore, we have the imaginary unit i =p−1. Similarly,
we have the inverse Fourier transform

u(xxx, t ) =F−1(u(xxx,ω)
)= 1

2π

∫ ∞

−∞
u(xxx,ω)exp(−iωt )dω . (2.2)

Regarding the Fourier transform of a time derivative of the function u(xxx, t ), above Fourier
convention leads to

F

(
∂

∂t
u(xxx, t )

)
=

∫ ∞

−∞

(
∂

∂t
u(xxx, t )

)
exp(iωt )d t (2.3)

= [
u(xxx, t )exp(iωt )

]∞
−∞− iω

∫ ∞

−∞
u(xxx, t )exp(iωt )d t (2.4)

=−iωu(xxx,ω) , (2.5)

where we use integration by parts and assume that limt→±∞ u(xxx, t ) = 0. Analogously, we
obtain

F

(
∂2

∂t 2 u(xxx, t )

)
=−ω2u(xxx,ω) . (2.6)

Equations 2.5 and 2.6 are important identities that will be used repeatedly in this manu-
script to investigate partial differential equations in both the time and the frequency
domain.
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2.2. THE WAVE EQUATION
We start with the equation of motion

∇p(xxx, t )+ρ(xxx)
∂vvv(xxx, t )

∂t
= fff (xxx, t ) (2.7)

and the deformation equation

∇·vvv(xxx, t )+κ(xxx)
∂p(xxx, t )

∂t
= q(xxx, t ) , (2.8)

where we used the low-velocity approximations of the constitutive relations (Fokkema
and van den Berg, 1993; Shearer, 2009). We have the Nabla operator

∇=
[

∂
∂x1

∂
∂x2

∂
∂x3

]T
, (2.9)

the pressure field p(xxx, t ), density ρ(xxx), particle velocity field

vvv(xxx, t ) = [
v1(xxx, t ) v2(xxx, t ) v3(xxx, t )

]T
(2.10)

and compressibility κ(xxx) = 1/
(
ρ(xxx)c2(xxx)

)
, where c(xxx) is wave speed. The terms fff (xxx, t ) =[

f1(xxx, t ) f2(xxx, t ) f3(xxx, t )
]T

and q(xxx, t ) are sources of volume force density and volume
injection rate density, respectively.
In the frequency domain, above equations for motion and deformation become

∇p(xxx,ω)− iωρ(xxx)vvv(xxx,ω) = fff (xxx,ω) (2.11)

and

∇·vvv(xxx,ω)− iωκ(xxx)p(xxx,ω) = q(xxx,ω) , (2.12)

where we make use of Equation 2.5.
Dividing Equation 2.7 by density and applying an additional Nabla operator gives

∇·
(

1

ρ(xxx)
∇p(xxx, t )

)
+∇· ∂vvv(xxx, t )

∂t
=∇·

(
1

ρ(xxx)
fff (xxx, t )

)
. (2.13)

Applying a time derivative to Equation 2.8 leads to

∇· ∂vvv(xxx, t )

∂t
= ∂q(xxx, t )

∂t
−κ(xxx)

∂2p(xxx, t )

∂t 2 . (2.14)

Plugging this into Equation 2.13 we get the following wave equation

ρ(xxx)∇·
(

1

ρ(xxx)
∇p(xxx, t )

)
− 1

c2(xxx)

∂2p(xxx, t )

∂t 2 = ρ(xxx)∇·
(

1

ρ(xxx)
fff (xxx, t )

)
−ρ(xxx)

∂q(xxx, t )

∂t
. (2.15)

If there are no force sources the equation simplifies to

ρ(xxx)∇·
(

1

ρ(xxx)
∇p(xxx, t )

)
− 1

c2(xxx)

∂2p(xxx, t )

∂t 2 =−ρ(xxx)
∂q(xxx, t )

∂t
. (2.16)

In the frequency domain this is

ρ(xxx)∇·
(

1

ρ(xxx)
∇p(xxx,ω)

)
+ ω2

c2(xxx)
p(xxx,ω) = ρ(xxx)iωq(xxx,ω) . (2.17)
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2.3. RAYLEIGH’S RECIPROCITY INTEGRAL
Let us consider two different wave states. These wave states can differ in terms of fields,
sources and medium parameters. We will use frequency domain representations in the
following for the derivation of Rayleigh’s reciprocity theorem can be written more com-
pactly in the frequency than in the time domain. The first wave state is denoted by

p A(xxx,ω) , v Av Av A(xxx,ω) , q A(xxx,ω) , f Af Af A(xxx,ω) , ρA(xxx) and κA(xxx) . (2.18)

For the second state we use

pB (xxx,ω) , vBvBvB (xxx,ω) , qB (xxx,ω) , f Bf Bf B (xxx,ω) , ρB (xxx) and κB (xxx) . (2.19)

Considering the frequency-domain equations for motion, Equation 2.11, and deforma-
tion, Equation 2.12, this leads a total of four equations for the two different wave states.
Multiplication with vBvBvB (xxx,ω), pB (xxx,ω), v Av Av A(xxx,ω) and p A(xxx,ω), respectively, leads to

vBvBvB (xxx,ω) ·∇p A(xxx,ω)− iωρA(xxx)vBvBvB (xxx,ω) ·v Av Av A(xxx,ω) = vBvBvB (xxx,ω) · f Af Af A(xxx,ω) (2.20)

pB (xxx,ω)∇·v Av Av A(xxx,ω)− iωκA(xxx)pB (xxx,ω)p A(xxx,ω) = pB (xxx,ω)q A(xxx,ω) (2.21)

v Av Av A(xxx,ω) ·∇pB (xxx,ω)− iωρB (xxx)v Av Av A(xxx,ω) ·vBvBvB (xxx,ω) = v Av Av A(xxx,ω) · f Bf Bf B (xxx,ω) (2.22)

p A(xxx,ω)∇·vBvBvB (xxx,ω)− iωκB (xxx)p A(xxx,ω)pB (xxx,ω) = p A(xxx,ω)qB (xxx,ω) . (2.23)

Next, we add Equations 2.20 and 2.23 and subtract Equations 2.21 and 2.22. Making use
of

vBvBvB (xxx,ω) ·∇p A(xxx,ω)+p A(xxx,ω)∇·vBvBvB (xxx,ω)−v Av Av A(xxx,ω) ·∇pB (xxx,ω)−pB (xxx,ω)∇·v Av Av A(xxx,ω) =
∇·

(
p A(xxx,ω)vBvBvB (xxx,ω)−pB (xxx,ω)v Av Av A(xxx,ω)

)
, (2.24)

this leads

∇·
(
p A(xxx,ω)vBvBvB (xxx,ω)−pB (xxx,ω)v Av Av A(xxx,ω)

)
=

vBvBvB (xxx,ω) · f Af Af A(xxx,ω)+p A(xxx,ω)qB (xxx,ω)−pB (xxx,ω)q A(xxx,ω)−v Av Av A(xxx,ω) · f Bf Bf B (xxx,ω)

+ iωp A(xxx,ω)pB (xxx,ω)
(
κB (xxx)−κA(xxx)

)− iωv Av Av A(xxx,ω) ·vBvBvB (xxx,ω)
(
ρB (xxx)−ρA(xxx)

)
.

(2.25)

Finally, we integrate over a volume V bounded by ∂V and use Gauss’s theorem to obtain∫
x̃̃x̃x∈∂V

(
p A(x̃̃x̃x,ω)vBvBvB (x̃̃x̃x,ω)−pB (x̃̃x̃x,ω)v Av Av A(x̃̃x̃x,ω)

)
·dSSS =∫

xxx∈V

(
vBvBvB (xxx,ω) · f Af Af A(xxx,ω)+p A(xxx,ω)qB (xxx,ω)−pB (xxx,ω)q A(xxx,ω)−v Av Av A(xxx,ω) · f Bf Bf B (xxx,ω)

)
dV

+
∫

xxx∈V

(
iωp A(xxx,ω)pB (xxx,ω)

(
κB (xxx)−κA(xxx)

)− iωv Av Av A(xxx,ω) ·vBvBvB (xxx,ω)
(
ρB (xxx)−ρA(xxx)

))
dV ,

(2.26)

where x̃̃x̃x is on the boundary ∂V . This is Rayleigh’s reciprocity theorem for acoustic waves
(Rayleigh, 1894; Fokkema and van den Berg, 1993). It forms the basis for many applica-
tions in seismic interferometry (Wapenaar et al., 2010a,b). When transforming it to the
time domain, multiplications of frequency-domain functions become convolutions.
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3
WAVEFIELD FOCUSING USING A

GENERALISED, POTENTIALLY ASYMMETRIC

HOMOGENEOUS GREEN’S FUNCTION

Marchenko-type integrals typically relate so-called focusing functions and Green’s
functions via the reflection response measured on the open surface of a volume of in-
terest. Originating from one dimensional inverse scattering theory, the extension to two
and three dimensions set in motion various new developments regarding imaging in
complex materials. This extension, however, is based on wavefield decomposition inside
the volume and a truncated medium state, i.e. a version of the medium that is reflection-
free underneath the focusing location, suggesting that evanescent, refracted and diving
waves can not be included in the representation. We elaborate on a new derivation for
Marchenko-like integrals that (i) extends the concept of wavefield focusing by using a
generalised homogeneous Green’s function, (ii) is based on partial differential equations
and thereby allows for additional insights and a new physical intuition for Marchenko
equations, (iii) unifies wavefield focusing for open and closed boundary systems, (iv)
does not require wavefield decomposition or a truncated medium state, thus including
the full wavefield Green’s function, (v) enables using forward modelling to obtain, e.g.,
Marchenko-type, time-compact focusing functions. We place a particular focus on the
latter point, illustrating and investigating how to solve the underlying partial differential
equations for various types of focusing functions. This paves the way for a deeper under-
standing of focusing functions as well as advanced full wavefield Marchenko schemes.
While the derivations are generally presented for the 3D case, we show numerical exam-
ples in 1D.

3.1. INTRODUCTION
Inverse scattering theory (Chadan and Sabatier, 2012; Colton and Kress, 1998) is a field of
mathematical physics that aims to retrieve the physical properties of a medium based on
its remotely observed scattering response to, e.g., acoustic, seismic or electro-magnetic

The content of this chapter was published as Diekmann et al. (2023c).
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waves. It is relevant to, for instance, quantum mechanics (Deift and Trubowitz, 1979),
optics (Jost, 2012), geophysics (Weglein et al., 1997; Zuberi and Alkhalifah, 2014; Alkhal-
ifah and Guo, 2019), medical imaging (Shea et al., 2010) and non-destructive testing
(Rose, 1989). The Marchenko integral is an essential equation in inverse scattering the-
ory (Marchenko, 1955; Burridge, 1980; Newton, 1980). It is well defined in one dimen-
sion, where it can be used to directly infer the medium’s scattering potential.
Following investigations of the focusing properties (Rose, 2001, 2002a) of the Marchenko
integral and its relation to the homogeneous Green’s function (Broggini et al., 2012; Brog-
gini and Snieder, 2012), Wapenaar et al. (Wapenaar et al., 2014a,b) extended the con-
cept to two and three dimensions. While the Marchenko scheme bears similarities with
Green’s function retrieval via conventional seismic interferometry
(Schuster, 2009; Bakulin and Calvert, 2006; Curtis et al., 2006), there are several, signif-
icant differences: (i) conventional interferometry allows to retrieve the response to a
virtual source at the location of a physical receiver inside of a medium. The Marchenko
scheme can be used to obtain the response to a virtual source anywhere in the medium
without the need to have an actual, physical receiver at the target location (Broggini
et al., 2012). (ii) Conventional interferometric relations involve solely Green’s functions,
whereas the Marchenko-type representations involve Green’s and focusing functions.
(iii) Conventional interferometry usually produces artefacts for open boundary (single-
sided) representations because the underlying integral equation becomes approximate
(Löer et al., 2014; Wapenaar and Thorbecke, 2017). The Marchenko method on the other
hand remains accurate even for open boundary integrals (Wapenaar et al., 2017). Hence,
the extension of the Marchenko method to two and three dimensions paved the way
for various new methodologies and applications, like Marchenko imaging (Wapenaar
et al., 2014b), target-oriented imaging (Ravasi et al., 2016), multiple elimination (Zhang
and Slob, 2019; Staring and Wapenaar, 2020) and monitoring (Brackenhoff et al., 2019a;
van IJsseldijk and Wapenaar, 2021). While most of these applications are for acous-
tic waves, the Marchenko scheme was recently also extended to elastodynamic waves
(da Costa Filho et al., 2014; Reinicke and Wapenaar, 2019; Reinicke et al., 2020; van der
Neut et al., 2022).
The extension of the Marchenko method to two and three dimensions also has some
drawbacks. For complex, laterally varying media, i.e. inducing complicated wave scat-
tering, the method tends to become unstable and may require further knowledge of the
medium properties (Vasconcelos and Sripanich, 2019; Vargas et al., 2021). Furthermore,
when using the method for Green’s function retrieval one requires an estimate of the first
arrival of the Green’s function, e.g. from a smooth estimate of the actual medium (Wape-
naar et al., 2014a). In addition to these intrinsic limitations, it was until recently assumed
that the representation would not include evanescent, refracted and diving waves in
the Green’s function. This was a consequence of the derivation relying on up-/down-
decomposition of the wavefields inside the medium as well as a truncated medium state
(Wapenaar et al., 2014b). A first step towards including evanescent waves was made by
Wapenaar (Wapenaar, 2020a). Additionally, evanescent and refracted waves were stud-
ied in more detail (Reinicke and Wapenaar, 2019; Kiraz et al., 2021a). Recently, a new
derivation for a Marchenko-type equation was presented that circumvents these wave-
field decomposition assumptions altogether, thus arguing that the Marchenko integral
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includes the full wavefield Green’s function (Chapter 6). This derivation is different from
previous approaches as it is based on a partial differential equation definition for focus-
ing functions. Similar conclusions were presented by Wapenaar et al. (Wapenaar et al.,
2021), using a different derivation that is overall closer to previous strategies. Studies
for closed boundary Marchenko-like schemes (Meles et al., 2019b) also made the obser-
vation that up-/down-decomposition inside the medium is not a necessity (Kiraz et al.,
2021b).
In this paper we further extend, discuss and illustrate the novel approach to focusing
functions, see Chapter 6 and Diekmann and Vasconcelos (2021b). We follow the origi-
nal derivation in defining focusing functions by means of a partial differential equation
and study the respective source terms in more detail. These source terms were only
poorly understood before but play an essential role as they connect the focusing wave-
fields with the physical medium parameters. Being able to make this connection paves
the way for, e.g., modelling reference focusing functions or setting up inversion methods
to retrieve medium properties from given focusing functions. Above all, their investiga-
tion leads to a deeper understanding of focusing functions within this new framework,
going beyond classical, Marchenko-type focusing functions. Based on this definition of
focusing functions, we generalise the homogeneous Green’s function (Oristaglio, 1989),
which represents a fundamental relation between anti-causal and causal field solutions,
by presenting the so-called homogeneous Green’s function of the second kind (Chapter
6). We illustrate and discuss these homogeneous Green’s functions of the second kind,
in particular their focusing properties and their relation to the conventional homoge-
neous Green’s function. In this context we compare different classes of focusing func-
tions, illustrated by numerical 1D examples. In particular, we investigate time-compact
focusing functions for both double- and single-sided configurations. We use reciprocity
theorems to derive Marchenko-like representations for both closed and open boundary
integrals based on the underlying homogeneous Green’s function of the second kind.
These representations do not require any wavefield decomposition inside the medium,
i.e. they deliver the full wavefield Green’s function. While the numerical examples are in
1D, most of the theory is given for the general three dimensional case.

3.2. FOCUSING TERMINOLOGY

In this section we briefly discuss common terminology in the field of wave focusing. We
consider this clarification important as we aim to connect different fields of research
(that do not typically use the same terminology) in this paper. Conventionally, the term
focus is used to describe a wavefield, e.g. pressure or particle velocity, that is concen-
trated around a certain point in space at a certain point in time (Rose, 2002b). In other
words, if you take a snapshot of such a wavefield at the specific focusing time it will show
a field that is collapsed to the area around the specific focusing point in space. The size
of this focal area depends on the bandwidth of the wavefield – in the ideal case of infi-
nite bandwidth it reduces to a point. We will refer to this as a focus in space. In time
reversal acoustics, the process of injecting a wavefield into a medium in order to obtain
such a focus in space is often referred to as time reversal focusing (Fink, 2008). The in-
cident wavefield that yields the focus is sometimes referred to as a focusing field, i.e. a
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field that focuses. When the Marchenko scheme was extended to 2D and 3D, the higher
dimensional equivalents to solutions in classical 1D derivations (Lamb Jr, 1980) were
named focusing functions (Wapenaar et al., 2014a). By definition, these focusing func-
tions are wavefields that collapse to a certain point in time at a certain point in space
when injected into a truncated version of the actual medium from an open boundary
(Wapenaar et al., 2017). Hence, if you pick the particular focusing point in space and
look at the entire wavefield at this location over time it will exhibit what we will call a
focus in time. We will illustrate the differences between focusing in space and time in
Section 3.4. Furthermore, we want to stress that our definition of focusing functions in
this paper as well as our reasoning for calling them such differs from previous work in
the context of 2D and 3D Marchenko (Wapenaar et al., 2014a) but is consistent with time
reversal acoustics. We will come back to these differences and explain their implications
in Sections 3.3 and 3.4.

3.3. THE HOMOGENEOUS GREEN’S FUNCTION OF THE SECOND

KIND
In this paper, we investigate acoustic waves in a lossless medium. Most of the concepts,
however, in principle generalise to other partial differential equations, e.g. to the case
of non-dissipative elastic media (Snieder et al., 2007; Wapenaar and Douma, 2012). The
acoustic wave equation is given by

L (xxx)u(xxx, t ) =−ρ(xxx)
∂

∂t
s(xxx, t ) , (3.1)

with the acoustic wave operator

L (xxx) = ρ(xxx)∇·
(

1

ρ(xxx)
∇

)
− 1

c2(xxx)

∂2

∂t 2 , (3.2)

where u(xxx, t ) is the pressure wavefield (in N/m2) at location xxx = (x, y, z) and time t , ρ(xxx)
denotes mass density (in kg/m3), s(xxx, t ) is a source term of volume injection rate density
(in 1/s) and c(xxx) is wave speed (in m/s). We define the Green’s function g (xxx, t ;x fx fx f ) as the
causal medium response in terms of acoustic pressure to an impulsive point source at
location x fx fx f and time zero (de Hoop, 1995), i.e.

L (xxx)g (xxx, t ;x fx fx f ) =−ρ(xxx)δ(xxx −x fx fx f )
∂

∂t
δ(t ) . (3.3)

Thus, the time-reversed Green’s function g (xxx,−t ;x fx fx f ) obeys

L (xxx)g (xxx,−t ;x fx fx f ) = ρ(xxx)δ(xxx −x fx fx f )
∂

∂t
δ(t ) . (3.4)

Since we defined g (xxx, t ;x fx fx f ) as a causal field response, g (xxx,−t ;x fx fx f ) has to be anti-causal,
i.e. it propagates prior to the associated source pulse at t = 0. The homogeneous Green’s
function (Oristaglio, 1989) is the superposition of the Green’s function and the time-
reversed Green’s function, thus obeying

L (xxx)
(
g (xxx, t ;x fx fx f )+ g (xxx,−t ;x fx fx f )

)= 0 . (3.5)
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The homogeneous Green’s function is thus a source-free wavefield. Let us consider a
bounded volume that contains x fx fx f in a medium that is scattering-free outside the vol-
ume. The time-reversed, anti-causal Green’s function is then purely in-coming with re-
spect to that volume. It injects energy into the volume. The wavefield focuses at x fx fx f and
t = 0 before propagating onwards as the out-going, causal Green’s function.
We now establish the auxiliary focal solution f

(
xxx, t ;x fx fx f , q(xxx, t )

)
as the causal wavefield

that obeys

L (xxx) f
(
xxx, t ;x fx fx f , q(xxx, t )

)= ρ(xxx)δ(xxx −x fx fx f )

2

∂

∂t
δ(t )+q(xxx, t ) , (3.6)

where the source function q(xxx, t ) is in principle arbitrary but is constrained to be sym-
metric in time, such that q(xxx, t ) = q(xxx,−t ), see Chapter 6 and Diekmann and Vasconcelos
(2021b). In that sense, we can write any choice of a discrete source distribution q(xxx, t ) as
a superposition of individual sources qi (xxx, t ) according to

q(xxx, t ) =
n∑

i=1
qi (xxx, t ) =

n∑
i=1

wiρ(xxx)
(
δ(t − ti )?si (t )+δ(t + ti )?si (−t )

)
δ(xxx −xxxi ) , (3.7)

where n is the total number of terms that make up q(xxx, t ), wi is a weighting factor, xxxi

and ti are particular locations and times, respectively, si (t ) is an arbitrary wavelet and
the ? denotes convolution. The auxiliary focal solutions being causal means that for
each source the energy emittance precedes the energy propagation through the volume –
analogously to the definition of the Green’s function. Hence, there might be propagating
energy before t = 0 due to sources in q(xxx, t ) at negative times. Note that the auxiliary
focal solution can be expressed as

f
(
xxx, t ;x fx fx f , q(xxx, t )

)=−1

2
g (xxx, t ;x fx fx f )+ fq

(
xxx, t ; q(xxx, t )

)
, (3.8)

where fq
(
xxx, t ; q(xxx, t )

)
is the causal medium response to the source distribution q(xxx, t ).

The time-reversed auxiliary focal solution satisfies

L (xxx) f
(
xxx,−t ;x fx fx f , q(xxx, t )

)=−ρ(xxx)δ(xxx −x fx fx f )

2

∂

∂t
δ(t )+q(xxx, t ) . (3.9)

As f
(
xxx, t ;x fx fx f , q(xxx, t )

)
is purely causal, f

(
xxx,−t ;x fx fx f , q(xxx, t )

)
is an anti-causal field. By sub-

tracting Equation 3.9 from Equation 3.6 we get

L (xxx)
(

f
(
xxx, t ;x fx fx f , q(xxx, t )

)− f
(
xxx,−t ;x fx fx f , q(xxx, t )

))= ρ(xxx)δ(xxx −x fx fx f )
∂

∂t
δ(t ) . (3.10)

Using Equation 3.8 this can be written as

L (xxx)
(
− 1

2
g (xxx, t ;x fx fx f )+ 1

2
g (xxx,−t ;x fx fx f )+ fq

(
xxx, t ; q(xxx, t )

)− fq
(
xxx,−t ; q(xxx, t )

))=
ρ(xxx)δ(xxx −x fx fx f )

∂

∂t
δ(t ) . (3.11)
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g*g time
t = 0

f f*

f – f*

f – f* + g

g + g*

Figure 3.1: Illustration of different wavefield causalities. Cones that open to the right are causal, cones that
open to the left are anti-causal. The ∗ denotes time-reversed wavefields. Axis are labelled only in the top left
sketch for the sake of a cleaner figure. Wavefields with sources are shown to the left of the dotted vertical line,
source-free wavefields are shown to the right of the line. The red and blue explosions denote the source terms
related to the Green’s function and the time-reversed – opposite sign – Green’s function, respectively, where
the size of the symbol correlates with the source magnitude. The pink explosions mark the source distribu-
tion q(xxx, t ). Dark grey cones are related to Green’s functions, light grey cones to auxiliary focal solutions. The
medium grey color indicates interference of either forward and time-reversed auxiliary focal solutions or aux-
iliary focal solutions and Green’s functions. Note that the vertical shift of the pink sources compared to the
sources of the Green’s functions is arbitrary, solely indicating a potentially different location in space.

Note that Equations 3.10 and 3.11 involve the same wavefield – only the representation
of the wavefield is different. The solution of this wave equation obeys the same source
term as the time-reversed Green’s function, Equation 3.4. However, it is a fundamentally
different wavefield. Firstly, it has both causal and anti-causal contributions. Secondly,
it is non-unique, i.e. different choices of q(xxx, t ) lead to different wavefields. Take for
instance the trivial case q(xxx, t ) = 0, such that only the Green’s functions remain. Equa-
tion 3.11 can then be interpreted as describing a source that emits its energy in both
time directions, backwards and forwards in time, governing both an anti-causal and a
causal Green’s function. As the wavefield propagates both forwards and backwards in
time, each Green’s function comes with a factor of 1/2. Alternatively, we can interpret
the wavefields in the sense of purely increasing time as follows: consider a bounded vol-
ume that contains x fx fx f in a medium that is scattering-free outside the volume. The time-
reversed, half-amplitude Green’s function is then purely in-coming with respect to that
volume. The source acts as a sink and absorbs all of the in-coming energy. Furthermore,
it emits additional energy into the medium, which then propagates forwards as the out-
going, negative, half-amplitude Green’s function. In the general case of q(xxx, t ) 6= 0 we
additionally get the field contribution fq

(
xxx, t ; q(xxx, t )

)− fq
(
xxx,−t ; q(xxx, t )

)
, which is source-

free since the source distributions q(xxx, t ) cancel each other – analogously to the homo-
geneous Green’s function.
Because Equation 3.10 has the same source term as the time-reversed Green’s function,
we can obtain a source-free field by adding the Green’s function, i.e. we add Equation 3.3

20



3

3. WAVEFIELD FOCUSING USING A GENERALISED HOMOGENEOUS GREEN’S FUNCTION

to get

L (xxx)
(

f
(
xxx, t ;x fx fx f , q(xxx, t )

)− f
(
xxx,−t ;x fx fx f , q(xxx, t )

)+ g (xxx, t ;x fx fx f )
)
= 0 . (3.12)

We call the wavefield obeying Equation 3.12 the homogeneous Green’s function of the
second kind. Just like the homogeneous Green’s function in Equation 3.5, the homoge-
neous Green’s function of the second kind is a source-free wavefield that contains the
causal Green’s function. Note that adding the time-reversed of Equation 3.12 to Equa-
tion 3.12 gives the equation for the conventional homogeneous Green’s function, Equa-
tion 3.5. Consider a bounded volume that contains x fx fx f in a medium that is scattering-
free outside the volume. Furthermore, let q(xxx, t ) = 0 for all xxx outside the volume. The
negative, time-reversed auxiliary focal solution − f

(
xxx,−t ;x fx fx f , q(xxx, t )

)
in Equation 3.12 is

then purely in-coming and injects energy into the volume. The resulting wavefield, af-
ter focusing or scattering, keeps on propagating as the out-going, causal auxiliary fo-
cal solution f

(
xxx, t ;x fx fx f , q(xxx, t )

)
and the out-going, causal Green’s function. The homo-

geneous Green’s function of the second kind always has a focus in space at x fx fx f and t =
0 – because the only non-zero contribution to the wavefield at zero time stems from
the Green’s function. In that sense the negative, time-reversed auxiliary focal solution
− f

(
xxx,−t ;x fx fx f , q(xxx, t )

)
is a focusing field. Just like the time-reversed Green’s function in

time reversal acoustics it can be injected into a source-free volume to create a focus
in space, compare Section 3.2. The name auxiliary focal solution refers to the relation
of these wavefields to focusing in space. From now on we will call φ

(
xxx, t ;x fx fx f , q(xxx, t )

) =
− f

(
xxx,−t ;x fx fx f , q(xxx, t )

)
a focusing function and f

(
xxx, t ;x fx fx f , q(xxx, t )

)
a negative, time-reversed

focusing function. Note that the focusing function is an anti-causal field that focuses,
whereas the negative, time-reversed focusing function is a causal field that expands.
As we already stated, our nomenclature – referring to the general fact that focusing func-
tions are related to focusing in space – differs from the conventional reasoning, where
the name was used for a specific type of function that is related to focusing in time
(Wapenaar et al., 2014a). We will later on find these previously introduced functions
that focus in time to form a specific subset of our focusing functions.
We can use Equation 3.8 to rewrite the homogeneous Green’s function of the second kind
as

L (xxx)
(1

2
g (xxx, t ;x fx fx f )+ 1

2
g (xxx,−t ;x fx fx f )+ fq

(
xxx, t ; q(xxx, t )

)− fq
(
xxx,−t ; q(xxx, t )

))= 0 , (3.13)

highlighting the similarity with the conventional homogeneous Green’s function. This
representation shows that the homogeneous Green’s function of the second kind can in
fact be written as a superposition of symmetric and anti-symmetric wavefields in time.
The representation in Equation 3.12 on the other hand underlines the potentially asym-
metric appearance in time of the homogeneous Green’s function of the second kind.
Of course one can also construct other homogeneous wavefields in a similar fashion, e.g.

L (xxx)
(

f
(
xxx, t ;x fx fx f , q(xxx, t )

)− f
(
xxx,−t ;x fx fx f , q(xxx, t )

)− g (xxx,−t ;x fx fx f )
)
= 0 , (3.14)

i.e. by combining focusing and Green’s functions. We will, however, focus our discussion
in this paper on the homogeneous Green’s function of the second kind in Equation 3.12.
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In this section we introduced focusing functions. Such focusing functions allow for the
construction of the homogeneous Green’s function of the second kind, Equation 3.12.
All important wavefields are also sketched in Figure 3.1. In the next section we discuss
and illustrate different focusing functions.

3.4. EXAMPLES OF FOCUSING FUNCTIONS

In this section we discuss different focusing functions – with the objective of illustrating
how our partial differential equation scheme represents physical focusing wave-states
including (but not limited to) those obtainable by previous approaches. In that sense,
some of the upcoming examples represent entirely new focusing wave states that can
only now be investigated by studying source terms q(xxx, t ) in our new framework. All fo-
cusing functions have a fundamental, unifying property: when superimposing the cor-
responding homogeneous Green’s functions of the second kind and their time-reversed
counterparts one always obtains the conventional homogeneous Green’s functions. This
implies that the homogeneous Green’s functions of the second kind always have a single
delta pulse at the focusing location x fx fx f and are zero elsewhere at zero time, i.e. the wave-
fields focus in space. This will also become evident in the examples below.
Despite this property, focusing functions vary significantly in appearance. We discuss
four groups in the following: focusing functions for the trivial choice q(xxx, t ) = 0, func-
tions with a simple monopole source, with a simple dipole source, and time-compact
focusing functions. The initial, simple examples are used to illustrate fundamental prop-
erties of focusing functions and explain how we can enforce interesting interference pat-
terns within the fields. Based on these concepts we can then construct more complex,
time-compact focusing functions. The numerical examples are in 1D to allow for opti-
mum illustrations. The concepts that we discuss, however, are not necessarily limited to
1D, although more elaborate schemes might be necessary for higher dimensional inves-
tigations, incorporating, e.g., angle-dependent reflectivity and geometrical spreading. In
1D the spatial coordinate xxx becomes the scalar x, e.g. the focusing location reads x f .
The numerical examples are based on the velocity and density model in Figure 3.2(a)
and consider the point x f = 1.15 km. As a reference for later results, Figure 3.2(b) shows
the Green’s function for x f = 1.15 km, obtained via finite difference modelling according
to Equation 3.3. Note that all wavefields that we show in this paper are convolved with
a 20 Hz Ricker wavelet (Ricker, 1953) for improved visualisation. Furthermore, all wave-
fields are clipped at the same amplitudes as Figure 3.2(b) to allow for a good comparison.
Owing to the orientation of the spatial axis in this plot we will refer to leftwards and right-
wards travelling events in space. Note, however, that in multiple dimensions it is also
common to differentiate between up- and down-going waves in space, corresponding
to left- and right-going waves, respectively, in our 1D figures. Figure 3.2(c) gives the re-
spective homogeneous Green’s function, obtained by superimposing the field in Figure
3.2(b) and its time-reversed version. Alternatively, the homogeneous Green’s function
could be obtained by injecting the time-reversed Green’s function from the boundary
∂V , i.e. from x = 0 km and x = 2 km, into the source-free medium. This process is re-
ferred to as time reversal acoustics (Fink, 1992, 2008). Using reciprocity and a radiation
condition (Schuster, 2009) to get the respective equivalent sources, the homogeneous
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Green’s function then follows for xxx in V by modelling according to

L (xxx)
(
g (xxx, t ;x fx fx f )+ g (xxx,−t ;x fx fx f )

)=−
∫

xrxrxr ∈∂V

2

c(xrxrxr )
δ(xxx −xrxrxr )

∂

∂t
g (xrxrxr ,−t ;x fx fx f )dSSS , (3.15)

where we assume that V contains x fx fx f and that the medium is reflection-free outside V
(Fokkema and van den Berg, 1993; Snieder and Van Wijk, 2015). However, this modelled
homogeneous Green’s function might be numerically less accurate than the one we ob-
tain from superimposing the Green’s function and its time-reversed version. This is due
to the fact that the Green’s function generally is a time-infinite field response, i.e. even
at very large recording times one might still record multiple scattered events. Conse-
quently, we would have to record the Green’s function until the amplitudes of these late
arrivals become negligible – otherwise the Green’s function is missing energy and inject-
ing its time-reversed version into the medium will not accurately reproduce the homo-
geneous Green’s function. In our numerical example we still have considerable events
at 1.5 s, i.e. at the end of the recorded data. Therefore, we choose not to use modelling
with Equation 3.15 in order to obtain the best quality reference homogeneous Green’s
function. Figure 3.2(c) shows the focus in space of the homogeneous Green’s function
at t = 0. Note that owing to the symmetry of the wavefield, the time derivative of the
displayed pressure field is zero.
For the homogeneous Green’s functions of the second kind on the other hand, we do
use time reversal modelling with the goal of actually illustrating the wave propagation
through the source-free medium. Similar to Equation 3.15 we then obtain for xxx in V

L (xxx)
(

f
(
xxx, t ;x fx fx f , q(xxx, t )

)− f
(
xxx,−t ;x fx fx f , q(xxx, t )

)+ g (xxx, t ;x fx fx f )
)
=∫

xrxrxr ∈∂V

2

c(xrxrxr )
δ(xxx −xrxrxr )

∂

∂t
f
(
xrxrxr ,−t ;x fx fx f , q(xxx, t )

)
dSSS , (3.16)

Figure 3.2: (a) Velocity and density model in blue and red, respectively. The black dotted line marks the fo-
cusing location x f = 1.15 km. (b) Green’s function. The black dot denotes the focusing location, i.e. source
location, at x f = 1.15 km and t = 0 s. (c) Homogeneous Green’s function. The colour bars in (b) and (c) are
clipped at about 14 % of the maximum absolute value of the Green’s function.
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Figure 3.3: Left column: negative, time-reversed focusing functions (abbreviated with − f ∗ in the title) ob-
tained from finite difference modelling with Equation 3.6. Black dots mark the locations of the Green’s function
source at x f , grey dots the locations of the source distributions q(x, t ) and q(x, t ; x f ), respectively. Central col-
umn: homogeneous Green’s functions of the second kind (HGF 2 in the title), obtained via modelling according
to Equation 3.16. Right column: homogeneous Green’s functions (HGF in the title) obtained by superimpos-
ing the homogeneous Green’s functions of the second kind and their time-reversed versions. The coloured
squares in the bottom right corners refer to Figure 3.7. (a), (b) and (c) are for q(x, t ) = 0. (d), (e) and (f) are for a
monopole q(x, t ) without time derivative. (g), (h) and (i) are for a monopole q(x, t ; x f ) with a time derivative.
Zoomed regions are denoted by cyan windows. The trace in the green window shows the wavefield in (e) at
time zero.
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where we assume that the medium is reflection-free outside the bounded volume as
well as that V contains x fx fx f . While the source distribution is arbitrary within V , we as-
sume q(xxx, t ) = 0 for all xxx outside V , such that − f

(
xrxrxr ,−t ;x fx fx f , q(xxx, t )

)
is the only in-coming

wavefield.

3.4.1. TRIVIAL FOCUSING FUNCTIONS

First, we consider the trivial, negative, time-reversed focusing function f (x, t ; x f ) =
−1/2 g (x, t ; x f ) for q(x, t ) = 0, as shown in Figure 3.3(a). Compared to the Green’s func-
tion in Figure 3.2(b) the polarity is reversed and the amplitudes are divided by two. Ac-
cording to Equation 3.13 the homogeneous Green’s function of the second kind equals
the conventional homogeneous Green’s function divided by two in this case. In a way,
the conventional homogeneous Green’s function can therefore be considered a special
case of the homogeneous Green’s function of the second kind. For q(x, t ) = 0 Equation
3.16 gives Equation 3.15. Modelling the homogeneous Green’s function of the second
kind accordingly, i.e. emitting the focusing function from the boundaries x = 0 km and
x = 2 km into the medium, delivers the wavefield in Figure 3.3(b). It is similar to the ho-
mogeneous Green’s function in Figure 3.2(c), but the amplitudes differ by a factor of two.
The grey polygon in Figure 3.3(b) on the top, i.e. above −1 s, denotes the area of the data
that is unaffected by the injected wavefield – this is a consequence of causality, as it takes
time for the injected wavefield to travel from the injection boundaries to the interior of
the volume. The lower grey polygon is its time-reversed version. As we know that the
wavefield in Figure 3.3(b) should be symmetric in time (being the half amplitude homo-
geneous Green’s function), we should have the same solution in both polygons, suggest-
ing that the wavefield should be zero within the lower grey polygon – which is not quite
the case in this example. This is why, as mentioned before, time reversal modelling tends
to be inaccurate for short recording times. Finally, Figure 3.3(c) shows the homogeneous
Green’s function, obtained by superimposing the wavefield in Figure 3.3(b) and its time-
reversed version. This wavefield is indeed a reasonable estimate of the homogeneous
Green’s function in Figure 3.2(c).

3.4.2. FOCUSING FUNCTIONS WITH A MONOPOLE SOURCE

Let us consider q(x, t ) with a single term, i.e. n = 1 in Equation 3.7. We discuss two dif-
ferent choices for s1(t ) in the following.
First, we consider the simple case s1(t ) = −δ(t ). Furthermore, we use x1 = 1 km and
t1 = 0.17 s for this example. The weighting term w1 is chosen such that the amplitude of
the resulting signal is a quarter of that of the Green’s function. Figure 3.3(d) shows the
negative, time-reversed focusing function, obtained by forward modelling via Equation
3.6. Since the additional source term q(x, t ) does not contain a time derivative, the re-
sulting signal appears to be convolved with a 20 Hz Ricker wavelet that was integrated
over time, i.e. its wavelet does not match the wavelet of the Green’s function. When
injecting the focusing function into the medium via Equation 3.16 we get the homoge-
neous Green’s function of the second kind in Figure 3.3(e). This wavefield differs from
the conventional homogeneous Green’s function. At t = 0, the wavefield is only non-
zero at the focusing location x f – there are, however, various other events in space right
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before and after t = 0. These events are related to the portion of the wavefield that is
anti-symmetric in time. In the zoomed area (cyan box), one can see that these events
change polarity when comparing negative and positive times and are zero at zero time.
The only actual event at zero time is the focus at x f = 1.15 km, i.e. the field exhibits a fo-
cus in space. This focus can also be seen in the green box, showing the wavefield at time
zero. Note, however, that the derivative of the wavefield in Figure 3.3(e) is different from
zero, leading to a significantly different appearance of the focusing compared to Figure
3.2(c). When adding the homogeneous Green’s function of the second kind and its time-
reversed version we obtain the conventional homogeneous Green’s function, see Figure
3.3(f). The Green’s function that was previously polluted by the signal of the source dis-
tribution q(x, t ), see Figure 3.3(d), is now isolated. This is a result of the fact that the
Green’s functions in Equation 3.13 are symmetric in time, while the fields fq

(
x, t ; q(x, t )

)
are anti-symmetric in time.
The second option we present is s1 =−∂δ(t )/∂t , leading to

q(x, t ; x f ) = w1ρ(x)

(
− ∂

∂t
δ(t − t1)+ ∂

∂t
δ(t + t1)

)
δ(x −x1) . (3.17)

This produces a wavelet similar to that of the Green’s function, enabling a potentially
interesting interference of the two terms −1/2 g (x, t ; x f ) and fq

(
x, t ; q(x, t )

)
within the

negative, time-reversed focusing function, see Equation 3.8. Note that this interference
is only possible for t1 6= 0, because for t1 = 0 we get q(x, t ) = 0, leading to the trivial focus-
ing function. Since this source distribution is supposed to interfere with the source at x f ,
we write q(x, t ; x f ) here rather than q(x, t ). Note that the source distribution then gener-
ally also depends on the physical properties of the medium. We choose x1 = 1 km, such
that x1 is in the same layer as x f . Then we use t1 = (x f − x1)/c3, where c3 is the velocity
in this, i.e. the third, layer. On choosing w1 =−1/2 we get a source at t =−t1 that leads
to destructive interference with the rightwards travelling portion of the negative, half-
amplitude Green’s function, see Figure 3.3(g). As a consequence, it seems as if the source
at x f was only radiating energy to the left. The respective homogeneous Green’s function
of the second kind is shown in Figure 3.3(h). While the previous homogeneous Green’s
functions of the second kind clearly revealed a superposition of perfectly symmetric and
anti-symmetric fields in time, Figure 3.3(h) is asymmetric in time. The grey arrows point
to an event in the left part of the model that is present at negative but missing at posi-
tive times. This asymmetry is a consequence of the interference of −1/2 g (x, t ; x f ) and
fq

(
x, t ; q(x, t ; x f )

)
within the negative, time-reversed focusing function. Such an inter-

ference would also be possible if x1 was not in the same layer as the source of the Green’s
function, however, it would require an adjusted scaling value w1. The respective con-
ventional homogeneous Green’s function, obtained by summing the wavefield in Figure
3.3(h) and its time-reversed, can be seen in Figure 3.3(i).
While the first example illustrated the effect of a simple, random source term, the sec-
ond example nicely showed that we can produce interesting, destructive interference by
applying particularly designed sources.
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Figure 3.4: Left column: negative, time-reversed focusing functions. Black dots mark the locations of the
Green’s function source at x f , grey dots the locations of the q(x, t ; x f ) sources. Central column: homogeneous
Green’s functions of the second kind. Right column: homogeneous Green’s functions obtained from the ho-
mogeneous Green’s functions of the second kind. (a), (b) and (c) are for the dipole q(x, t ; x f ) related to t1 6= 0.
(d), (e) and (f) are for the dipole q(x, t ; x f ) related to t1 = 0. Zoomed regions are denoted by cyan windows.

3.4.3. FOCUSING FUNCTIONS WITH A DIPOLE SOURCE
In the previous subsection, we argued that a monopole source q(x, t ; x f ) with a time
derivative at x1 and t1 = 0 can not interfere with the signal of the negative half-amplitude
Green’s function, but only delivers the trivial focusing function. Dipole sources on the
other hand do not have such a limitation. Regarding the 1D version of Equation 3.7 we
use n = 1 and s1(t ) =−c(x1)δ(t )∂/∂x – note that s1(t ) is a function of only the variable t
but includes a spatial derivative. The source term therefore becomes

q(x, t ; x f ) =−w1ρ(x)c(x1)
(
δ(t − t1)+δ(t + t1)

) ∂
∂x

δ(x −x1) . (3.18)

We stress that the velocity c(x1) represents scaling with a particular velocity, i.e. at x1,
whereas the density ρ(x) is a function under the action of the spatial Dirac delta. This
becomes important later on when considering dipole sources at interfaces. This source
produces a wavelet similar to that of the Green’s function, but without delivering a triv-
ial homogeneous Green’s function of the second kind for t1 = 0. In our finite difference
code, we mimic the dipole source by two monopole sources with opposite polarity. We
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illustrate two different choices for the source time t1 in the following, i.e. t1 6= 0 and
t1 = 0.
For the first numerical example we use the values from the preceding experiment, that is
x1 = 1 km, t1 = (x f −x1)/c3 and w1 =−1/2, see Figure 3.4(a). The resulting negative, time-
reversed focusing function is similar to that in Figure 3.3(g), only the polarities of some
events appear reversed. Note that the two monopole sources in Figure 3.3(g) that are
associated with q(x, t ; x f ) have different polarities, while the two dipole sources in Fig-
ure 3.4(a) exhibit the same polarity. The character of the homogeneous Green’s function
of the second kind follows our previous observations, i.e. Figure 3.4(b) is slightly asym-
metric, see grey arrows. Summing this wavefield and its time-reversed version gives the
conventional homogeneous Green’s function in Figure 3.4(c).
Next, let us consider the case t1 = 0. In order for −1/2 g (x, t ; x f ) and fq

(
x, t ; q(x, t ; x f )

)
to interfere destructively, we choose x1 = x f and w1 = 1/4 (note that the source is fired
twice in Equation 3.18). The negative, time-reversed focusing function is shown in Fig-
ure 3.4(d). It appears the source at x f now only emits energy to the right. There are
no additional, polluting signals from the q(x, t ; x f ) source – instead, its wavefield masks
the left-going Green’s function. Thus, the remaining wavefield represents the negative,
right-going part of the Green’s function, i.e. all its contributions that travel into greater
depth first. The homogeneous Green’s function of the second kind, Figure 3.4(e), thus
shows the time-reversed, positive, right-going part of the Green’s function first, i.e. at
negative times, followed by the positive, left-going part. Note that the scaling matches
that of the actual Green’s function. By adding left- and right-going parts, i.e. adding the
homogeneous Green’s function of the second kind and its time-reversed version, we ob-
tain the conventional homogeneous Green’s function, Figure 3.4(f).
The first dipole experiment demonstrated how to achieve destructive interference simi-
lar to that in the previous subsection, however, the source signatures are now obviously
different. The second example illustrated destructive interference generated by a source
at zero time, an effect that can only be produced with dipole sources.

3.4.4. TIME-COMPACT FOCUSING FUNCTIONS
In the preceding subsections we introduced source distributions q(x, t ; x f ) that excite
wavefields that interfere with the Green’s function. Since dipole sources appear to be
slightly more flexible than monopole sources, i.e. choosing ti = 0 does not deliver a triv-
ial focusing function, we use solely si (t ) =−c(xi )δ(t )∂/∂x in this subsection. Building on
the findings described above, we illustrate and discuss particularly interesting wavefields
in the following, i.e. so-called time-compact focusing functions. As the name suggests,
these focusing functions occupy only a limited window in time, meaning that the wave-
fields are zero outside a certain time range. In contrast, Green’s functions are generally
time-infinite wavefields that keep on propagating for arbitrarily long time and it is only
owing to their decreasing amplitude with each scattering interaction that we can usually
neglect late arrivals. The time-compact focusing functions in this section relate to aux-
iliary focal solutions in classical 1D inverse scattering theory (Burridge, 1980) and to the
previously introduced subset of focusing functions in 2D and 3D Marchenko (Wapenaar
et al., 2014b).
We propose a simple scheme for designing these time-compact focusing functions, con-
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sisting of two main steps: (i) get all space and time coordinates xi and ti , (ii) set up a
linear system of equations to describe the scattering and obtain the weights wi . Then,
we can model the negative, time-reversed focusing functions via Equations 3.6 and 3.7.
We present three different time-compact focusing functions below.

DOUBLE-SIDED SOURCES AT ZERO TIME

In order to design a time-compact focusing function, we first have to specify either the
time or the space coordinates of the sources. The easiest approach is to assume that
all sources in the distribution q(x, t ; x f ) are at ti = 0 (implying a necessity for dipole
sources). Furthermore, we assume that the sources may be anywhere in space, i.e. above
and below x f , thus we refer to this example as double-sided. For the negative, time-
reversed focusing function (and consequently the focusing function) to be time-compact,
each reflection of −1/2 g (x, t ; x f ) in Equation 3.8 has to be cancelled by a source in
q(x, t ; x f ), compare Figure 3.5. Thus, when choosing ti = 0 for all n = 6 sources in
q(x, t ; x f ), we can compute the coordinates xi that allow for a possible interference via
ray tracing or, in the example on hand, simple travel time considerations. The source
q1(x, t ; x f ) for instance has to cancel the first reflection of the negative, half-amplitude
Green’s function at the first interface. Hence, the wave emitted from q1(x, t ; x f ) should
reach the first interface at the same time as the first arrival of the Green’s function. The
source q3(x, t ; x f ) is supposed to cancel the first reflection of the negative, half-amplitude
Green’s function at the second interface. The wave emitted from q3(x, t ; x f ) should there-
fore reach the second interface at the same time as the first arrival of the Green’s function.
The source q2(x, t ; x f ) on the other hand has to eliminate the reflection at the first inter-
face that is induced by the wavefield from q3(x, t ; x f ). The wave emitted from q2(x, t ; x f )
should consequently reach the first interface at the same time as the first arrival of the
wave coming from q3(x, t ; x f ). Similar considerations hold for the remaining sources.
Overall, this gives the following space coordinates:

x1 = ξ1 −
( x f −ξ2

c3
+ ξ2 −ξ1

c2

)
c1 (3.19)

x2 = ξ1 − x3 −ξ1

c2
c1 (3.20)

x3 = ξ2 −
x f −ξ2

c3
c2 (3.21)

x4 = ξ3 +
ξ3 −x f

c3
c4 (3.22)

x5 = ξ4 + ξ4 −x4

c4
c5 (3.23)

x6 = ξ4 +
(ξ3 −x f

c3
+ ξ4 −ξ3

c4

)
c5 , (3.24)

where ξ j with j = 1,2,3,4 is the location of the j -th interface of our five layer model and
ck with k = 1,2,3,4,5 is the velocity in the k-th layer. Note that we assume that x3 > ξ1

and x4 < ξ4 in our considerations. In other words we assume that q3(x, t ; x f ) is located
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time
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1 r

0
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Figure 3.5: Sketch of the time-compact, time-reversed focusing function using double-sided sources at zero
time in a five layer medium. The reflection coefficient r1 marks the first, r2 the second, r3 the third and r4
the fourth interface. The blue explosion refers to the source of the negative, half-amplitude Green’s function
at x f . The pink explosions denote the source distribution q(x, t ; x f ). Note that each qi (x, t ; x f ) in this sketch
actually represents two overlapping sources, compare Equation 3.7. The black arrows represent propagating
events, the grey lines imply reflections which are suppressed in the time-compact focusing function. The red
square marks a region of interest which is studied in detail in the text. Note that the arrows in this sketch are
straight for the sake of simplicity, but the wave speed in the different layers might actually vary.

in the second layer and q4(x, t ; x f ) in the fourth layer. Depending on the medium ve-
locities, q3(x, t ; x f ) could also fall within the first layer and q4(x, t ; x f ) within the last,
meaning that the sources q2(x, t ; x f ) and q5(x, t ; x f ) would become unnecessary and the
coordinate calculations for x3 and x4 would change. The overall concept, however, re-
mains the same. In addition, we assume that the sources lie within the layers, not at
interfaces.
Now we know the space and time coordinates of the sources, but we still need to find
out the six weights wi . Note that we also have six equations, i.e. one for each grey line in
Figure 3.5 where a reflected wave is supposed to be cancelled. Let us consider the point
marked by the red square in Figure 3.5. There are three different events that reach this
point: the negative, half-amplitude Green’s function is transmitted at the second and re-
flected at the first interface, its amplitude is proportional to ρ(x f )c(x f )r1(1−r2)/2, where
r j = (ρ j+1c j+1 −ρ j c j )/(ρ j+1c j+1 +ρ j c j ) is the reflection coefficient of the j -th interface.
Note that its actual amplitude corresponds to ρ(x f )c(x f )r1(1−r2)/4 – the additional fac-
tor of 1/2, however, turns up for all sources and is thus contained in the proportionality
factor here. The wave from q3(x, t ; x f ) is reflected at both the second and the first in-
terface, its amplitude is therefore proportional to r1r22ρ(x3)c(x3)w3. Note that we use
dipole sources qi (x, t ; x f ) that emit leftwards with positive and rightwards with negative
amplitude for positive weights wi . Furthermore, it is important to remember that there
are two sources in each qi (x, t ; x f ) in Equation 3.7, one at positive and one at negative
time – hence, we get the factor of two. The wave from q1(x, t ; x f ) is transmitted at the
first interface and has an amplitude proportional to −(1+r1)2ρ(x1)c(x1)w1. Thus we get
the equation

−(1+ r1)ρ(x1)c(x1)w1 + r1r2ρ(x3)c(x3)w3 =−ρ(x f )c(x f )

2

r1(1− r2)

2
, (3.25)
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Figure 3.6: Left column: negative, time-reversed time-compact focusing functions. Black dots mark the loca-
tions of the Green’s function source at x f , grey dots the locations of the source distributions q(x, t ; x f ). Central
column: homogeneous Green’s functions of the second kind. Right column: homogeneous Green’s functions
obtained from the homogeneous Green’s functions of the second kind. (a), (b) and (c) are for double-sided
q(x, t ; x f ) sources at zero time. (d), (e) and (f) are for double-sided q(x, t ; x f ) sources at the interfaces. (g), (h)
and (i) are for single-sided q(x, t ; x f ) sources at the interfaces.
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Figure 3.7: Misfit between the actual homogeneous Green’s function in Figure 3.2(c) and the estimated homo-
geneous Green’s functions obtained via the focusing functions. The colour encoding matches the rectangles in
the bottom right corners of each of the estimated homogeneous Green’s functions, i.e. experiment number 1 is
for Figure 3.3(c), 2 for Figure 3.3(f), 3 for Figure 3.3(i), 4 for Figure 3.4(c), 5 for Figure 3.4(f), 6 for Figure 3.6(c),
7 for Figure 3.6(f) and 8 for Figure 3.6(i).

which states that the events should cancel each other out. Repeating this procedure for
the areas denoted by the five other grey lines in Figure 3.5 we get the following linear
system

−(1+ r1) 0 r1r2 0 0 0
0 −(1+ r1) −r1 0 0 0
0 0 −(1+ r2) 0 0 0
0 0 0 1− r3 0 0
0 0 0 −r4 1− r4 0
0 0 0 −r3r4 0 1− r4





ρ(x1)c(x1)
ρ(x2)c(x2)
ρ(x3)c(x3)
ρ(x4)c(x4)
ρ(x5)c(x5)
ρ(x6)c(x6)

◦



w1

w2

w3

w4

w5

w6

=

ρ(x f )c(x f )

2



−r1(1− r2)/2
0

−r2/2
r3/2

0
(1+ r3)r4/2

 , (3.26)

where ◦ is the Hadamard product. The determinant of the matrix is (r1 +1)2(r2 +1)(r3 −
1)(r4 − 1)2 which is different from zero for all reflection coefficients |r j | < 1 with j =
1,2,3,4, thus its inverse exists for all physically reasonable scenarios. We can solve the
above system of equations to obtain the weights wi and then model the negative, time-
reversed focusing function via Equation 3.6, where each of the n = 6 sources in Equation
3.7 is given by

qi (x, t ; x f ) =−2wiρ(x)c(xi )δ(t )
∂

∂x
δ(x −xi ) . (3.27)

The accordingly modelled negative, time-reversed focusing function is shown in Figure
3.6(a). This wavefield is indeed only propagating between t = 0 s and about t = 0.4 s.
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Afterwards, there is no more energy travelling within the bounded volume between x =
0 km and x = 2 km. Note that this negative, time-reversed focusing function (and con-
sequently the focusing function) is focused in time, i.e. at x = x f the field is only non-
zero at t = 0. This is the eponymous focusing property of focusing functions in previous
Marchenko literature (Wapenaar et al., 2014a). In the context of our theory, however,
only particular focusing functions, i.e. those which are compact in time, have such a fo-
cus in time – all focusing functions, however, can be related to a focus in space via the
homogeneous Green’s function of the second kind. Thus, these previously introduced
functions form a subgroup of focusing functions in our framework.
The homogeneous Green’s function of the second kind is given in Figure 3.6(b). The
asymmetry of the field is much more pronounced than before, as the wavefield is in
fact zero before about −0.4 s but it keeps on propagating for infinitely long at positive
times. This suggests that time reversal modelling is more accurate when using such a
time-compact focusing function instead of, e.g., a time-reversed Green’s function, be-
cause we do not need long recording times of the injected wavefield to achieve high
accuracy. In contrast, we only need about 0.4 s of data. Let us define the data misfit

as
∫ ∫ (

d(x, t ; x f )−dest (x, t ; x f )
)2 d t d x, where d(x, t ; x f ) = g (x, t ; x f )+ g (x,−t ; x f ) is the

ground truth in Figure 3.2(c) and dest (x, t ; x f ) its estimate from the respective focusing
function. Indeed, we find this data misfit to be significantly smaller for the new homo-
geneous Green’s function, Figure 3.6(c), than that for Figure 3.3(c). This can also be seen
in Figure 3.7. While there is a significant misfit for all of the five preceding experiments,
it is nearly zero for the time-compact focusing function. Note that if we had used larger
recording times (greater than 1.5 s) for the previous experiments, the misfits would have
appeared smaller in Figure 3.7 – however, it would have been a subjective task to decide
where to stop the recording in these scenarios whereas it is immediately clear with the
time-compact focusing function that only requires a finite recording time of about 0.4 s
in this example.
While this source setup works fairly well and is relatively straightforward, there is only
one issue: in order for q(x ∉V , t ; x f ) = 0 to hold, the respective volume V has to be rela-
tively large. This can be seen in Figure 3.5, where q1(x, t ; x f ), q2(x, t ; x f ), q5(x, t ; x f ) and
q6(x, t ; x f ) are beyond the actual scattering region, i.e. the area bounded by the first in-
terface r1 on the left and the last interface r4 on the right. For many experimental setups,
however, it is desirable to consider only a smaller volume, limited to the actual scattering
region, such that the volume does not have to be homogeneously extended beyond the
first and last interface. Thus, it might make sense to think about other configurations.

DOUBLE-SIDED SOURCES AT THE INTERFACES

Rather than picking times ti for the source coordinates first, we can also pick locations
xi instead. In this context it might make sense to refer to the model features, i.e. we can
put the sources at the interfaces between the five layers. We still keep the setup such that
sources can be both above and below x f . Hence, we now discuss double-sided sources
at the interfaces. As before, each reflection of −1/2 g (x, t ; x f ) in Equation 3.8 has to be
cancelled by a source in q(x, t ; x f ), see Figure 3.8(a). Thus, we have x1 = ξ1, x2 = ξ1,
x3 = ξ2, x4 = ξ3, x5 = ξ4 and x6 = ξ4. The time coordinates ti that enable the desired
interference can be computed by similar travel time considerations as before, compare
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Equations 3.19 to 3.24. The source q1(x, t ; x f ) for instance has to emit energy when the
negative, half-amplitude Green’s function first arrives at the first interface. Since this is
happening at a time different from zero, the two sources of q1(x, t ; x f ) in Equation 3.7
now appear distinctly separated in the sketch, one at −t1 and one at t1. Overall, we get
the following time coordinates:

t1 = t3 + ξ2 −ξ1

c2
(3.28)

t2 = t3 − ξ2 −ξ1

c2
(3.29)

t3 =
x f −ξ2

c3
(3.30)

t4 =
ξ3 −x f

c3
(3.31)

t5 = t4 − ξ4 −ξ3

c4
(3.32)

t6 = t4 + ξ4 −ξ3

c4
, (3.33)

where in contrast to the preceding source setup, all six sources always exist.
Similar to before, we can set up a linear system of equations for the weights. However,
the amplitude considerations are more complex in this case because the dipole sources
are located at interfaces, implying slightly modified radiation characteristics. In the pre-
ceding example, the dipoles were within the layers such that each source would emit a
wave with same amplitude but reversed polarity into the two directions (leftwards and
rightwards). For a dipole source at an interface, the leftwards propagating wave has an
initial, unweighted amplitude (before any further transmission/reflection losses occur
and without applying the individual weight wi ) proportional to

µ j =
(ρ j +ρ j+1)c(ξ j )

1−γ j
, (3.34)

where c(ξ j ) is the velocity at the j -th interface. While this velocity might be ill-defined, it
is purely a constant scaling factor, making the assigned value irrelevant – we use c(ξ j ) =
(c j + c j+1)/2 for instance. Note that we only define four different amplitudes µ j for the
six sources since the initial, unweighted source amplitude only depends on the interface
at which the source is located. Furthermore, we use γ j = −(1+ r j )/(1− r j ). The right-
wards propagating wave has an initial, unweighted amplitude proportional to γ jµ j . See
Appendix I for details on the derivation of these amplitudes. Including the adjusted am-
plitudes we can follow the same recipe as before, i.e. for each area marked by a grey line
in Figure 3.8(a) we can sum up all the contributions from the different sources and set
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the result to zero. The linear system for the weights then reads

γ1 −r1r2γ1 −r1 −r1(1− r2) 0 −r1(1− r2)(1− r3)
−r1r2γ1 γ1 −r1 0 0 0

0 (1+ r2)γ1 γ2 −r2 0 −r2(1− r3)
(1+ r2)r3γ1 0 r3γ2 1 1− r3 0

0 0 0 r4γ3 1 −r3r4

(1+ r2)(1+ r3)r4γ1 0 (1+ r3)r4γ2 r4γ3 −r3r4 1




µ1

µ1

µ2

µ3

µ4

µ4

◦



w1

w2

w3

w4

w5

w6

= ρ(x f )c(x f )



−r1(1− r2)/2
0

−r2/2
r3/2

0
(1+ r3)r4/2

 ,

(3.35)

where we have nearly the same right hand side as before, but the matrix on the left hand
side appears to be more complex due to the fact that the two sources in each qi (x, t ; x f )
do not overlap in time any more. The inverse of this matrix exists for all physically rea-
sonable cases, see Appendix II. After solving the above system for wi we can model the
negative, time-reversed focusing function using Equation 3.6 where for the sources in
Equation 3.7 we have

qi (x, t ; x f ) =−wiρ(x)c(xi )
(
δ(t − ti )+δ(t + ti )

) ∂
∂x

δ(x −xi ) . (3.36)

Again, note that the velocity c(xi ) is only a constant scaling factor and not a function of
x, whereas the density ρ(x), which is different in the limits from above and below the
interface, is under the action of the Dirac delta. The resulting negative, time-reversed
focusing function for double-sided sources at the interfaces is shown in Figure 3.6(d).
Since there are sources at positive and negative times now, i.e. at −ti and ti , this focus-
ing function lives in a larger time window than the previous one. Note that the focusing
functions on the boundaries of the volume, that is at x = 0 km and at x = 2 km, are exactly
the same in both Figures 3.6(a) and 3.6(d). In that sense the combined focusing func-
tions f

(
x, t ; x f , q(x, t ; x f )

)− f
(
x,−t ; x f , q(x, t ; x f )

)
, i.e. the wavefields in Equation 3.10,

are exactly the same. This illustrates the ambiguity of the source distribution q(x, t ; x f ).
The source distribution of the new focusing function, see Figure 3.6(d) for its negative,
time-reversed version, however, is spatially more compact, i.e. there are no sources out-
side the scattering region of the volume. In other words, all sources are within the region
between the first and the last interface, such that q(x ∉V , t ; x f ) = 0 holds true for any vol-
ume that contains the scattering interfaces. When injecting the focusing function from
the boundary, we get – as expected – the same homogeneous Green’s function of the
second kind as before, see Figure 3.6(e). Figure 3.6(f) gives the resulting homogeneous
Green’s function. As observed before, the accuracy of this homogeneous Green’s func-
tion is higher than that of those retrieved via non-time-compact focusing functions, see
Figure 3.7.
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Figure 3.8: Sketch of the time-reversed, time-compact focusing functions using (a) double-sided and (b) single-
sided sources at the interfaces. The reflection coefficients r1 mark the first interface, r2 the second and so on.
The blue explosions refer to the sources of the negative, half-amplitude Green’s functions at x f . The pink
explosions denote the source distribution q(x, t ; x f ). Note that each qi appears twice in this sketch, once at
positive and once at negative time, and both together make up the actual source qi (x, t ; x f ). The only excep-
tion is q4 in (b), which is at zero time and thus denotes two overlapping sources. Furthermore, it overlaps with
the source of the negative, half-amplitude Green’s function – its blue explosion symbol is therefore increased
in size to allow for a proper visualisation. The black arrows represent propagating events, the grey lines imply
reflections which are suppressed in the time-compact focusing functions.

Thus far, we illustrated how different sources q(x, t ; x f ) may deliver the same homoge-
neous Green’s function of the second kind. For a focusing point in the third layer of a
five layer medium, we have proven that one can always obtain a time-compact focusing
function from double-side sources at the interfaces, such that q(x, t ; x f ) = 0 everywhere
beyond the scattering portion of the volume.

SINGLE-SIDED SOURCES AT THE INTERFACES

This final example is similar to the preceding one, but for the case of having sources
only at locations xi ≤ x f – thus, we refer to this setup as single-sided (analogously, one
could of course use sources only at locations xi ≥ x f ). Since we want to obtain the most
time-compact focusing function, it follows that the focusing function should not pen-
etrate any deeper than x f . If there was energy propagating beyond this point it would
induce scattering at the third and fourth interface and suppressing this scattering with
sources at xi ≤ x f (if at all possible) would require a significantly larger time window
for the focusing function. Hence, the most time-compact focusing functions for single-
sided sources only propagate in a half-space, bounded by x f . The source configuration is
sketched in Figure 3.8(b). While the time and space coordinates of q1(x, t ; x f ), q2(x, t ; x f )
and q3(x, t ; x f ) remain unchanged compared to the preceding example sketched in Fig-
ure 3.8(a), q4(x, t ; x f ) is now at x4 = x f and t4 = 0. Note that this is the only source which
is not at an interface. Sources q5(x, t ; x f ) and q6(x, t ; x f ) become unnecessary in this
setup, i.e. n = 4 in Equation 3.7.
As depicted by the grey lines in Figure 3.8(b) we have four equations that describe the
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annihilating wavefields of the four sources related to q(x, t ; x f ). The linear system reads
γ1 −r1r2γ1 −r1 −r1(1− r2)

−r1r2γ1 γ1 −r1 0
0 (1+ r2)γ1 γ2 −r2

(1+ r2)γ1 0 γ2 −1




µ1

µ1

µ2

2ρ(x f )c(x f )

◦


w1

w2

w3

w4

=

ρ(x f )c(x f )


−r1(1− r2)/2

0
−r2/2

1/2

 . (3.37)

The determinant of this matrix is (r1+1)2(r2+1) which is different from zero for all |r1| < 1
and |r2| < 1, i.e. the inverse matrix exists for all physically reasonable scenarios. Using
the time and space coordinates ti and xi as well as the weights we obtain from solving
above system of equations for wi , we can model the negative, time-reversed focusing
function via Equation 3.6, where for each of the n = 4 sources in Equation 3.7 we use the
relation given in Equation 3.36.
The retrieved negative, time-reversed focusing function is shown in Figure 3.6(g). It is
similar to the previous result in Figure 3.6(d), however, the wavefield now only prop-
agates between x = 0 and x = x f . Furthermore, the amplitudes are slightly different.
The energy that is necessary to cancel the negative, half-amplitude Green’s function in
Equation 3.8 comes solely from the left in this single-sided example – implying generally
higher amplitudes for this focusing function. Note that this wavefield has quite an un-
usual appearance, being not only time-compact but also spatially bounded to the region
to the left of x f . This shows that we can inject energy into a medium such that it only
propagates to one side. Measuring the wavefield at the other side will not show any arriv-
ing energy. But this is not due to attenuation, it is merely a consequence of choosing the
correct sources for the medium under investigation, such that all rightwards travelling
wavefields interfere destructively. As a consequence of the vanishing focusing function
at the right boundary, we may choose to inject the focusing function from only the left
boundary in Equation 3.16. The homogeneous Green’s function of the second kind is
shown in Figure 3.6(h). As before this wavefield is asymmetric in time. Furthermore, the
spatial asymmetry is significantly more pronounced due to the single-sided source con-
figuration, i.e. the entire top right corner (to the right of x = x f and above t = 0) is zero.
The conventional homogeneous Green’s function obtained from this result is given in
Figure 3.6(i). Note that this homogeneous Green’s function is obtained from drastically
reduced boundary data, i.e. we use a focusing function that is only different from zero on
the left boundary and within a limited time window. Again, this homogeneous Green’s
function is a significantly better estimate than those obtained from non-time-compact
focusing functions. However, due to an increased impact of numerical inaccuracies, the
misfit is marginally higher than that of the previous two, double-sided experiments, see
Figure 3.7.
In summary, we presented and discussed different focusing functions in this section –
going beyond those achievable by previous descriptions. In particular, we showed how
to obtain time-compact focusing functions. While we did neither strictly prove that these
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time-compact focusing functions always exist for arbitrary 1D media nor describe how
to obtain them in 2D and 3D, these examples clearly illustrate the concept of the source
distribution q(x, t ; x f ) and how it can lead to perfect destructive interference and thereby
time-compact wavefields. In that sense, our chosen benchmark examples demonstrate
the applicability of the general equations in Section 3.3. Our main intention was to show
how our new framework can be used to forward model focusing functions, i.e. how to
obtain different types of focusing functions when given the physical properties of the
medium. This is an important step in understanding focusing functions and might po-
tentially lead to further progress, e.g., in inversion schemes based on focusing functions
(Diekmann et al., 2021). Furthermore this might be helpful in understanding the extent
to which, e.g., single-sided focusing works in complex 2D and 3D media. The next sec-
tion will discuss an approach to obtaining focusing functions without knowledge of the
medium parameters.

3.5. INTERFEROMETRY AND MARCHENKO-LIKE INTEGRALS
In the preceding sections we introduced and illustrated focusing functions and homo-
geneous Green’s functions of the second kind. In this section we want to establish the
connection of our work with the Marchenko integral by means of seismic interferometry
(Curtis et al., 2006; Schuster, 2009; Wapenaar et al., 2010a,b). In addition, we discuss the
role of time-compact focusing functions.
Similar to time reversal modelling we can use reciprocity to obtain the interferometric
relation

∂

∂t
u(xsxsxs , t ) =−

∫
xrxrxr ∈∂V

∫ ∞

−∞
2

ρ(xrxrxr )
∇g (xrxrxr , t −τ;xsxsxs )ui n(xrxrxr ,τ)dτ ·dSSS , (3.38)

where ∂V is the closed boundary of a volume V that contains xsxsxs and the wavefield u(xxx, t )
has no sources in V (Wapenaar, 2007; Fokkema and van den Berg, 1993). Furthermore,
the medium is supposed to be scattering-free outside the volume V such that the Green’s
function is a purely out-going wavefield. The wavefield ui n(xxx, t ) is the part of the total
field u(xxx, t ) that is in-coming with respect to the bounded volume V . The gradient op-
erator ∇ acts on the coordinate xrxrxr . Note that the equation involves a convolution of the
Green’s function and the in-coming wavefield ui n(xxx, t ). This general relation allows for
retrieving the full wavefield u(xsxsxs , t ) at xsxsxs within the volume when knowing the in-coming
field ui n(xrxrxr , t ) at xrxrxr along the boundary as well as the Green’s function g (xrxrxr , t ;xsxsxs ). Thus,
it is necessary to have a source for the Green’s function at xsxsxs within the volume. For
some applications this might be unrealistic because the interior of the volume V is in-
accessible. In this case, we might have xsxsxs to be just within the volume but very close to
the boundary (in practice meaning that sources xsxsxs and receivers xrxrxr of the Green’s func-
tion are distributed along the surface of the volume of interest). This is the setup we will
assume for the remaining part of this paper. Then, we can write Equation 3.38 as

∂

∂t
uout (xsxsxs , t ) =−

∫
xrxrxr ∈∂V

∫ ∞

−∞
2

ρ(xrxrxr )
∇g (xrxrxr , t −τ;xsxsxs )ui n(xrxrxr ,τ)dτ ·dSSS , (3.39)

where using the spatial derivative of the Green’s function only reconstructs the out-going
part of the wavefield u(xsxsxs , t ).
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Let us take the homogeneous Green’s function, Equation 3.5, as a first example for a
wavefield u(xxx, t ). This is indeed a source-free wavefield. Assuming that V contains x fx fx f ,
the in-coming part at ∂V is given by g (xxx,−t ;x fx fx f ) and the out-going part by g (xxx, t ;x fx fx f ).
Thus, we obtain

∂

∂t
g (xsxsxs , t ;x fx fx f ) =−

∫
xrxrxr ∈∂V

∫ ∞

−∞
2

ρ(xrxrxr )
∇g (xrxrxr , t +τ;xsxsxs )g (xrxrxr ,τ;x fx fx f )dτ ·dSSS , (3.40)

where we now have a correlation between the two Green’s functions. Note that this rep-
resentation excludes evanescent waves on the boundary, but contains the full wavefield
inside the volume. This equation, however, is – for the same reasoning as before – not
very useful since we are not necessarily able to have a source at x fx fx f inside the volume.
For the homogeneous Green’s function of the second kind on the other hand, we obtain
the following equation:

∂

∂t

(
g (xsxsxs , t ;x fx fx f )+ f

(
xsxsxs , t ;x fx fx f , q(xxx, t )

))=∫
xrxrxr ∈∂V

∫ ∞

−∞
2

ρ(xrxrxr )
∇g (xrxrxr , t +τ;xsxsxs ) f

(
xrxrxr ,τ;x fx fx f , q(xxx, t )

)
dτ ·dSSS , (3.41)

where we assume that V contains x fx fx f and q(xxx ∉ V , t ;x fx fx f ) = 0 such that the wavefield
− f

(
xrxrxr ,−t ;x fx fx f , q(xxx, t )

)
is the only in-coming field. This is the closed boundary represen-

tation that relates Green’s and focusing functions for xsxsxs near the boundary. As in the
previous case, evanescent waves are only neglected on the boundary but accounted for
inside the volume. Kiraz et al. (Kiraz et al., 2021b) present another approach to obtain
a similar closed boundary representation. Let us consider a special configuration where
the volume is bounded by a horizontal plane ∂V0 at z = 0 and the surface of a half-sphere
∂V1 below. Since we know that there are many different focusing functions, we are free
to consider only the subset of focusing functions − f

(
xsxsxs ,−t ;x fx fx f , q(xxx, t ;x fx fx f )

)
that vanish at

∂V1 – note that we use the source distribution q(xxx, t ;x fx fx f ) to emphasise that this is a subset
of focusing functions only. Furthermore, this source distribution generally depends on
the focal location x fx fx f . We have already introduced an example of such a focusing func-
tion in Figure 3.6(g). We do not actually prove the general existence of these focusing
functions here – for complex media in two and three dimensions they might in fact not
exist and investigating this remains a topic of ongoing research. Assuming that there are
such focusing functions, Equation 3.41 becomes

g (xsxsxs , t ;x fx fx f )+ f
(
xsxsxs , t ;x fx fx f , q(xxx, t ;x fx fx f )

)=
−

∫
xrxrxr ∈∂V0

∫ ∞

−∞
r (xrxrxr , t +τ;xsxsxs ) f

(
xrxrxr ,τ;x fx fx f , q(xxx, t ;x fx fx f )

)
dτdSSS , (3.42)

with

∂

∂t
r (xrxrxr , t ;xsxsxs ) = 2

ρ(xrxrxr )

∂

∂zr
g (xrxrxr , t ;xsxsxs ) . (3.43)

This is the single-sided or open boundary representation. Note that this equation only
holds for focusing functions that vanish on ∂V1. It would not be sufficient to consider
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a focusing function that was purely out-going on ∂V1: this would imply that the time-
reversed focusing function was in-coming on ∂V1 such that the integral over ∂V1 would
not vanish. The very same equation was derived in previous publications (Wapenaar
et al., 2013, 2014b), however, involving several limitations regarding the Green’s function.
In particular, these derivations required up-/down-decomposition of the wavefields in-
side the volume as well as a truncated medium state, leading to a neglect of evanes-
cent, refracted and diving waves. Our derivation does not involve any such assump-
tions, i.e. Equation 3.42 contains the full wavefield Green’s function inside the volume.
Similar conclusions were recently presented by Wapenaar et al. (Wapenaar et al., 2021),
however, using a derivation built on a different definition of the focusing function. In
particular, their focusing functions are source-free and focus on the surface ∂V0 rather
than inside the volume. Our scheme follows the concept introduced in (Diekmann and
Vasconcelos, 2021b), where focusing functions are related to a source term q(xxx, t ) and
focus in space at x fx fx f when injected into a source-free volume. This approach explains
both closed and open boundary integral representations. Note that our Equation 3.42
is slightly different from the conventional representation (Wapenaar et al., 2014b) be-
cause we define the negative, time-reversed auxiliary focal solution as the in-coming
focusing function. Substituting φ

(
xsxsxs , t ;x fx fx f , q(xxx, t ;x fx fx f )

) = − f
(
xsxsxs ,−t ;x fx fx f , q(xxx, t ;x fx fx f )

)
yields

the traditional form. This single-sided representation is interesting for several reasons,
mainly: (i) it allows us to retrieve a Green’s function by injecting a wavefield from only
one side. This is rather unusual since interferometry (just like time reversal acoustics)
for open boundaries is conventionally prone to artefacts, compare Equation 3.40 where
the time-reversed Green’s function needs to be injected from the entire, closed bound-
ary for accurate Green’s function retrieval. (ii) Equation 3.42 can (under circumstances)
be solved for the focusing and Green’s function when an estimate of the first arrival of
the Green’s function is available. The underlying assumption is that there is a focusing
function − f

(
xsxsxs ,−t ;x fx fx f , q̂(xxx, t ;x fx fx f )

)
that is separated in time from the Green’s function. We

denote this additional constraint by the source q̂(xxx, t ;x fx fx f ). This is where the previously
introduced time-compact focusing functions come into play again, see Figures 3.6(a),
3.6(d) and 3.6(g). Such a time-compact focusing function only overlaps with the Green’s
function in the vicinity of the first arrival of the Green’s function. Hence, we can de-
fine a window function θ(xsxsxs , t ;x fx fx f ) that removes all arrivals before −t f i r st (xsxsxs ;x fx fx f ) and af-
ter t f i r st (xsxsxs ;x fx fx f ), where t f i r st (xsxsxs ;x fx fx f ) is the time of the first arrival of the wavefield for a
source at x fx fx f and a receiver at xsxsxs (Wapenaar et al., 2012, 2014b; van der Neut et al., 2015b;
Zhang et al., 2018). In other words, we have θ(xsxsxs , t ;x fx fx f ) = 0 for all |t | > t f i r st (xsxsxs ;x fx fx f ) and
θ(xsxsxs , t ;x fx fx f ) = 1 otherwise. Applying the window operator to Equation 3.42 we get:

g f i r st (xsxsxs , t ;x fx fx f )+ f
(
xsxsxs , t ;x fx fx f , q̂(xxx, t ;x fx fx f )

)=
−θ(xsxsxs , t ;x fx fx f )

∫
xrxrxr ∈∂V0

∫ ∞

−∞
r (xrxrxr , t +τ;xsxsxs ) f

(
xrxrxr ,τ;x fx fx f , q̂(xxx, t ;x fx fx f )

)
dτdSSS . (3.44)

This expression is a Marchenko-like integral (Burridge, 1980; Newton, 1980; Rose, 2001,
2002a; Broggini et al., 2012; Wu and You, 2021). Assuming that the first arrival of the
Green’s function g f i r st (xsxsxs , t ;x fx fx f ) is known (e.g. from modelling in a smooth estimate of
the medium), the equation contains only one unknown quantity, i.e. the focusing func-
tion. Thus, we can solve for the focusing function and, subsequently, via Equation 3.42
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for the Green’s function. Since the focus of this paper is on the derivation of the repre-
sentations and not on their solutions, we refer the interested reader to other papers for
the traditional approach (Wapenaar et al., 2014b; van der Neut et al., 2015b) or for a so-
lution without up-/down-decomposed fields (Chapter 6). This equation forms the basis
for many applications in geophysics, e.g. Green’s function retrieval, multiple elimination
and Marchenko imaging.
In this section we connected the insights from the previous sections with the concept of
single-sided Green’s function retrieval, i.e. we derived a Marchenko-like equation with-
out up-/down-decomposition of the wavefields based on a partial differential equation
framework for focusing functions. Note that we did not imply that solutions
f
(
xsxsxs , t ;x fx fx f , q̂(xxx, t ;x fx fx f )

)
always exist for arbitrary media and conditions. However, we may

say that if we find a focusing function using such an approach it obviously exists and
obeys our constraints, i.e. it vanishes at ∂V1 and is separated from the Green’s function
in time. So far, our experience with numerical examples confirms solutions do often ex-
ist and can be retrieved from boundary data, but to what extent that is the case in general
is the subject of ongoing research. Our derivation does not include any approximations
regarding the Green’s function, i.e. if the focusing function exists under our constraints
the reconstructed Green’s function will contain the full-spectrum.

3.6. DISCUSSION

In this paper, we discuss and illustrate a new, generalised framework for wavefield fo-
cusing. Building on the concept introduced in Chapter 6 we add explanations to the
definition of the focusing function as well as its relation to the Green’s function. The
underlying partial differential equation allows us to obtain the homogeneous Green’s
function of the second kind, a source-free, potentially asymmetric wavefield that con-
tains the causal Green’s function. This potential asymmetry stems from the fact that the
homogeneous Green’s function of the second kind comprises one in-coming field, i.e.
the focusing function, and two out-going fields, i.e. the negative, time-reversed focus-
ing function and the Green’s function. When adding the homogeneous Green’s function
of the second kind and its time-reversed version, one always obtains the conventional
homogeneous Green’s function. This unifying property of focusing functions, or more
precisely of their respective homogeneous Green’s functions of the second kind, also im-
plies a focus in space of the homogeneous Green’s functions of the second kind at x fx fx f and
zero time. It is due to this focus that we call the underlying fields focusing functions. Fo-
cusing functions have already been studied in the context of Marchenko-based schemes
in geophysics (Wapenaar et al., 2014b; van der Neut et al., 2015b), however, our new def-
inition generalises the concept of focusing and establishes a source term that enables
modelling of focusing functions.
The numerical examples illustrate the concept of focusing and show how focusing func-
tions can be built to destructively interfere with the local Green’s function. Ultimately,
we can construct focusing functions which are compact in time and, if desired, vanish
on particular parts of the boundary. Using such time-compact focusing functions rather
than Green’s functions for time reversal modelling actually enables a superior accuracy
of the retrieved homogeneous Green’s functions. We find that the source distribution
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q(xxx, t ) that governs the focusing function might be ambiguous, i.e. different sources
deliver the same combined focusing functions f

(
xsxsxs , t ;x fx fx f , q(xxx, t )

)− f
(
xsxsxs ,−t ;x fx fx f , q(xxx, t )

)
.

Although the numerical examples are in 1D, we think that similar approaches exist for
2D and 3D. These approaches will have to be more elaborate though, including, e.g. ge-
ometrical spreading and angle-dependent reflection coefficients. The results presented
in this paper illustrate how we can use the full (two-way) wave equation to model time-
compact focusing wavefields. Using a different approach, Elison et al. (Elison et al., 2021)
recently presented modelled focusing functions in 2D. The way that we constructed the
time-compact focusing fields is very example-specific and a generalisation to arbitrary
media (as well as to 2D and 3D) is a topic for future research. The main goal of the nu-
merical examples in this paper is simply the illustration of focusing functions in the light
of our new definition.
The implications of our approach go beyond the ability to model focusing functions and
increase the accuracy of time reversal acoustics. We also derived representations for
Green’s and focusing functions without up-/down-decomposed wavefields or a trun-
cated medium assumption, suggesting that our derivation includes the full wavefield
Green’s function, involving diving, refracted and evanescent waves. Since we present a
unified approach to wavefield focusing, we can derive such integrals for both closed and
open boundary systems as both follow in a straightforward fashion from our underlying
theory. The closed boundary representation is entirely general, i.e. valid for any focusing
function. The open boundary representation on the other hand requires that the associ-
ated focusing function vanishes on the remaining boundary, i.e. this integral is only valid
for a subset of focusing functions. In fact, it might even be that the open boundary repre-
sentation is only valid for one unique focusing function (or none at all in complex media)
since Equation 3.42 can often be directly inverted for − f

(
xsxsxs ,−t ;x fx fx f , q(xxx, t ;x fx fx f )

)
when the

Green’s function is given (Vargas et al., 2021). If we want to solve the integral for the fo-
cusing and Green’s functions based on an estimate of the first arrival Green’s function
we additionally need to assume that focusing and Green’s functions can be separated in
time. Using this separability assumption we obtain a Marchenko-like equation. It re-
mains to be investigated, when exactly Equations 3.42 and 3.44 break, i.e. when and to
what extent single-sided focusing in 2D and 3D becomes implausible. The separability
assumption used in Equation 3.44 to solve the representation for focusing and Green’s
functions is known to fail for complex velocity and density models in 2D and 3D due to
the related scattering patterns, including, e.g., diffractions (Schwarz, 2019; Vargas et al.,
2021; van der Neut et al., 2021). Hence, even if there is a unique, single-sided focus-
ing function − f

(
xsxsxs ,−t ;x fx fx f , q(xxx, t ;x fx fx f )

)
for Equation 3.42 it might not necessarily obey the

time-separability constraint (Vargas et al., 2021).
We suspect that our new partial differential equation approach might help to investi-
gate these questions further. The underlying partial differential equations might also
prove useful when it comes to combining Marchenko-like approaches with full wave-
form inversion (Virieux and Operto, 2009; Cui et al., 2020; Diekmann and Vasconcelos,
2020; Shoja et al., 2020; Diekmann et al., 2021). In 1D it is known how to extract the scat-
tering potential from the focusing functions directly (Agranovich and Marchenko, 1963;
Ware and Aki, 1969; Lamb Jr, 1980; Slob et al., 2020). For higher dimensions we might
gain further understanding of the relation between the focusing function and the scat-
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tering potential by studying our scheme more explicitly in 2D and 3D. Last but not least,
our derivation shows that the representations, e.g., Equation 3.42 include the full wave
Green’s function. This might allow for more advanced data applications and experiments
in the future, including evanescent, refracted and diving waves.

3.7. CONCLUSION
We present a partial differential equation framework for generalised wavefield focusing.
In particular we define focusing functions that govern the homogeneous Green’s func-
tion of the second kind. These homogeneous Green’s functions of the second kind can
be quite asymmetric both in time and space, but they always have a focus in space at x fx fx f

and zero time. Furthermore, they deliver the conventional homogeneous Green’s func-
tion when adding their time-reversed version. While our definition generalises the idea
of focusing functions that were previously introduced in the context of Marchenko-like
schemes, it also represents an entirely new way to describe these functions, paving the
way for new insights and improved understanding. We discuss and illustrate different
families of focusing functions with numerical examples, where our partial differential
equation framework allows us to go beyond focusing functions described in previous ap-
proaches. In particular, we demonstrate how our equations allow for constructing time-
compact focusing functions for closed and open boundary systems. Last but not least,
we use reciprocity to obtain Marchenko-like integrals that relate focusing and Green’s
functions based on the homogeneous Green’s function of the second kind. Owing to the
unifying character of our wavefield focusing approach, we obtain these Marchenko-like
integral representations for both closed and open boundaries. This derivation does not
require up-/down-decomposed wavefields inside the medium and thus circumvents the
limitations of most previous approaches.
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APPENDIX I: DIPOLE SOURCE AMPLITUDES AT INTERFACES
In order to compute the amplitudes for a dipole source at an interface we have to ex-
ploit two relations: (i) the direct wavefield at the interface itself should have zero ampli-
tude and (ii) the total emitted energy should be proportional to the physical properties
of the medium around the interface. As stated in the text, we mimic the dipole by two
monopoles with opposite polarity. Thus, one monopole is above the interface and the
other below, see also Figure 3.9. Considering the point denoted by the triangle in this
sketch, which is supposed to be infinitesimally far away from the interface, the first re-
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j r
μ j λ j

Figure 3.9: Sketch of a dipole source at an interface. Left: apparent source. Right: actual source used for
modelling, consisting of two monopole sources. The reflectivity is denoted by r j , µ j and λ j are proportional
to the amplitudes of the apparent dipole source.

lation (i) means that the three direct field contributions indicated by the blue, magenta
and red arrows cancel each other. This gives

µ j (1+ r j )+λ j (1− r j ) = 0 , (3.45)

where µ j and λ j are proportional to the amplitudes of the dipole source as sketched in
Figure 3.9, µ j is positive and λ j is negative. The second relation (ii) can be described by

|µ j |+ |λ j | =µ j −λ j = (ρ j +ρ j+1)c(ξ j ) , (3.46)

i.e. the amplitudes are proportional to the densities of the layers above and below the
interface, scaled by an arbitrary velocity. From Equation 3.45 we obtain λ j /µ j = −(1+
r j )/(1− r j ) which equals the previously defined γ j . Thus, the rightwards propagating
wave has an initial, unweighted amplitude proportional to λ j = γ jµ j . Dividing Equation
3.46 by µ j and using λ j /µ j = γ j we obtain Equation 3.34.

APPENDIX II: EXISTENCE OF INVERSE MATRIX IN EQUATION

3.35
The determinant of the matrix in Equation 3.35 is

−(r1 +1)2(r4 +1)(r2 +1)(r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 + r1r2r3r4 +1)

(r1 −1)−1(r2 −1)−1 , (3.47)

where for all terms except for the fourth one it is straightforward to see that they are
always different from zero for |r j | < 1 with j = 1,2,3,4. The fourth term is zero for

r1 =− r2r3 + r2r4 + r3r4 +1

r2 + r3 + r4 + r2r3r4
, (3.48)
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or regarding the absolute value

|r1| =
∣∣∣∣ r2r3 + r2r4 + r3r4 +1

r2 + r3 + r4 + r2r3r4

∣∣∣∣= ∣∣∣∣ p+ r4

1+pr4

∣∣∣∣≥ 1 , (3.49)

with p= (1+ r2r3)/(r2 + r3). By showing that the right-most inequality above holds true,
we prove that the determinant can never be zero for the ranges of physically reasonable
reflection coefficients that we consider. The inequality can be rewritten according to

(p+ r4)2 ≥ (1+pr4)2 ⇔ p2 −1 ≥ r 2
4 (p2 −1) ⇔ 1 ≥ |r4| , (3.50)

where the last inequality follows if |p| > 1 and then is true because we have |r4| < 1. Thus,
we have to show that

|p| > 1 ⇔ (1+ r2r3)2 > (r2 + r3)2 ⇔ r 2
2 (r 2

3 −1) > r 2
3 −1 ⇔|r2| < 1 , (3.51)

where we use r 2
3 −1 < 0 for |r3| < 1 to obtain the last inequality. This last inequality is true

such that the determinant is always different from zero for |r j | < 1 with j = 1,2,3,4.
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4
DIRECT, WAVE-EQUATION-BASED

MODELLING OF MARCHENKO-TYPE

FOCUSING FUNCTIONS

Focusing functions are wavefields that focus at a single point when injected into a
source-free volume from its boundary. Focusing functions that are related to the Mar-
chenko equation can be injected from an open part of the boundary only, while vanish-
ing on the remaining boundary. Building on this property, a method for direct, wave-
equation-based modelling of Marchenko-type focusing functions in arbitrarily complex
media is presented. The method naturally extends on conventional frequency-domain
modelling. While the numerical examples are for 1D, a similar concept should in princi-
ple be applicable to the general 3D case.

4.1. INTRODUCTION
Time reversal acoustics (Fink, 1992, 1997) largely builds on the concept of homogeneous
Green’s functions (Oristaglio, 1989): when injecting a time-reversed Green’s function into
a source-free volume from its boundary, it contracts and focuses; then, it expands again
and propagates out of the volume, delivering the (non-time-reversed) Green’s function.
This concept was recently generalised to the homogeneous Green’s function of the sec-
ond kind (Chapter 6), going beyond the time-symmetry of conventional time reversal
acoustics. In this framework a so-called focusing function is injected into a source-free
medium from its boundary. It produces a focus but also two expanding wavefields that
propagate out of the volume: a negative, time-reversed focusing function and a Green’s
function. This homogeneous Green’s function of the second kind is intimately linked
to the Marchenko equation (Burridge, 1980; Broggini and Snieder, 2012; Tataris and van
Leeuwen, 2022), a fundamental equation in inverse scattering theory (Colton and Kress,
1998). Marchenko-type focusing functions, the key ingredient of the Marchenko equa-
tion, can be injected into a volume from only an open part of its boundary to produce
a focus (Chapter 3). Initially derived for 1D, the extension of the Marchenko integral

The content of this chapter was published as Diekmann and Vasconcelos (2023).
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to 2D and 3D (Wapenaar et al., 2014a,b) paved the way for various applications like
target-oriented imaging (Ravasi et al., 2016), multiple elimination (Zhang and Slob, 2019)
and seismic monitoring (Brackenhoff et al., 2019a). While the original extension came
with some limitations due to wavefield decomposition assumptions, recent approaches
present less restrictive derivations, see Chapter 6 and Wapenaar et al. (2021).
Owing to these applications, modelling Marchenko-type focusing functions is a topic of
great interest (Kiraz et al., 2021b). It enables a comparison of Marchenko-type focus-
ing functions obtained from boundary data via data-driven schemes (Wapenaar et al.,
2014b) with modelled reference results and generally allows to investigate and under-
stand the physical properties of these wavefields better. There are different approaches
to modelling focusing functions for a given medium: (i) They can be obtained by mod-
elling a transmission response and inverting it (Wapenaar et al., 2017). (ii) They can
be obtained using a recursive wavefield extrapolation scheme (Wapenaar, 1993; Elison
et al., 2020; Wapenaar and de Ridder, 2022; Wapenaar, 2022). (iii) They can be obtained
by computing a source term and then modelling a wave equation with this source (Chap-
ter 3). All of these approaches, however, rely on a series of steps, i.e. there is no one-step
strategy for modelling focusing functions – particularly not involving direct use of well-
known wave-equation operators.
We present a novel method in this paper that allows for a direct, i.e. one-step, computa-
tion of Marchenko-type focusing functions. We rely on numerical representations of the
wave-equation operator commonly used in modelling, e.g., via Helmholtz solvers. Our
method is similar to (iii) in that it is based on the recent partial-differential-equation
framework for focusing functions (Chapter 3). However, we seek to jointly model the
Marchenko-type focusing function and its negative, time-reversed version. This is based
on previous findings, suggesting a non-uniqueness of Marchenko-type focusing func-
tions within a wave-equation framework, i.e. different source terms can give the same
wavefield on the boundary of the volume (Chapter 3). Similar to (ii) it is crucial for our
approach to model in the frequency domain. Our method, however, is based on solving
a simple wave equation with an extra term. Ultimately, our scheme allows for modelling
Marchenko-type focusing functions by solving a single linear inverse problem – similar
to modelling Green’s functions in the frequency domain. We show numerical examples
in 1D.

4.2. FOCUSING FUNCTIONS
We define the Green’s function g (xxx,ω;x fx fx f ) in the frequency domain as the solution to the
following wave equation:

L(xxx,ω)g (xxx,ω;x fx fx f ) = ρiωδ(xxx −x fx fx f ) , (4.1)

where the constant-density acoustic wave operator is

L(xxx,ω) =∇2 + ω2

c2(xxx)
(4.2)

and g (xxx,ω;x fx fx f ) is causal, i.e. it obeys radiation conditions for out-going waves at infinity
(e.g., Oristaglio, 1989). The vector xxx denotes space, ω represents frequency, x fx fx f is the
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source location (which will be referred to as focusing location below), ρ mass density and
c(xxx) wave speed. Furthermore, we use the imaginary unit i and the Dirac delta δ(xxx−x fx fx f ).
While we illustrate our approach with the constant-density acoustic wave equation, it
should generally be applicable to other, lossless partial differential equations as well,
e.g., the elastic wave equation. The complex-conjugate (or, in the time domain, time-
reversed) Green’s function g∗(xxx,ω;x fx fx f ) consequently obeys

L(xxx,ω)g∗(xxx,ω;x fx fx f ) =−ρiωδ(xxx −x fx fx f ) (4.3)

with an in-coming radiation condition, i.e. it is an anti-causal wavefield. We note that
Equation 4.3 implies a lossless medium so that L(xxx,ω) is indeed real-valued.
Similarly, we define the focusing function − f ∗(

xxx,ω;x fx fx f , q(xxx,ω)
)

by

L(xxx,ω)
(
− f ∗(

xxx,ω;x fx fx f , q(xxx,ω)
))=−ρiωδ(xxx −x fx fx f )

2
−q(xxx,ω) , (4.4)

where q(xxx,ω) ∈R and the focusing function is an anti-causal wavefield (Chapter 6). Anti-
causal implies that for all sources the wave propagation precedes the energy emission
at the respective source. Consequently, there can be propagating waves at both posi-
tive and negative times due to sources at positive and negative times in q(xxx,ω). Note
that while the source term q(xxx,ω) has to be real-valued, it is otherwise arbitrary. Thus,
Equation 4.4 defines a class of solutions. We will explain the focusing function termi-
nology in the last paragraph of this section. The negative, conjugate focusing function
f
(
xxx,ω;x fx fx f , q(xxx,ω)

)
follows according to

L(xxx,ω) f
(
xxx,ω;x fx fx f , q(xxx,ω)

)=−ρiωδ(xxx −x fx fx f )

2
+q(xxx,ω) (4.5)

and is a causal wavefield – this might appear confusing at first sight, given the name
negative, conjugate focusing function. Here, we stress that the attribute conjugate in
the name refers to the focusing function which is per definition a complex-conjugate
field itself. By adding Equations 4.4 and 4.5 we get the time-isotropic focal response
f
(
xxx,ω;x fx fx f , q(xxx,ω)

)− f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

)
as the wavefield that obeys

L(xxx,ω)
(

f
(
xxx,ω;x fx fx f , q(xxx,ω)

)− f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

))=−ρiωδ(xxx −x fx fx f ) . (4.6)

The name time-isotropic focal response refers to the fact that the source term is related
to a single impulse at the focal point x fx fx f , equivalent to the source of the Green’s function,
that emits energy isotropically in both time directions (Chapter 3). Note that Equation
4.6 is non-unique with respect to the wavefield solution. Different sources q(xxx,ω) in
Equation 4.4 lead to different time-isotropic focal responses even though q(xxx,ω) does
not appear explicitly in Equation 4.6. Adding Equations 4.1 and 4.3 gives the equation for
the homogeneous Green’s function, adding Equations 4.1 and 4.6 delivers the equation
for the homogeneous Green’s function of the second kind (Chapter 6):

L(xxx,ω)
(
g (xxx,ω;x fx fx f )+ f

(
xxx,ω;x fx fx f , q(xxx,ω)

)− f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

))= 0 . (4.7)
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Figure 4.1: (a) Sketch illustrating the condition for separating the focusing function and its negative, conju-
gate version on the boundary ∂V0. The dashed line represents the boundary, vertical solid lines are interfaces
where physical properties, e.g. wave speed, change. The black explosion marks the source location. The dark
and light grey lines represent the space-time paths of a wave travelling from xlb to ξ1 and from x f to ξ1, respec-
tively. Note that we use straight lines for simplicity even though the wave speed might vary for the light grey
path. The pink cone is analogous to that in (b). (b) Cones (or triangles) illustrating the propagation through
space-time for the four discussed wavefield solutions, i.e. the Green’s function (g , blue), the left-directed focal
response ( fl − f ∗l , magenta), the conjugate Green’s function (g∗, cyan) and the right-directed focal response

( fr − f ∗r , red). The black explosion marks the source location.

This wavefield is source-free and can be described in the following way: the focusing
function− f ∗(

xxx,ω;x fx fx f , q(xxx,ω)
)

is an in-coming wavefield (with respect to a sphere around
x fx fx f of infinite radius) that propagates towards the focal spot x fx fx f . After scattering and
focusing, two out-going wavefields emerge: the negative, conjugate focusing function
f
(
xxx,ω;x fx fx f , q(xxx,ω)

)
and the Green’s function. As the homogeneous Green’s function of the

second kind has a focus at zero time at x fx fx f , the in-coming wavefield − f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

)
is referred to as a focusing function, i.e. a wavefield that generates a focus when in-
jected into a source-free medium. This homogeneous Green’s function of the second
kind is a useful concept for inverse scattering problems, as it is closely related to the
Marchenko integral, see Burridge (1980), Wapenaar et al. (2014b) and Chapter 3. For
further information on the use of focusing functions we refer the interested reader to
the afore-mentioned literature, for in this paper we focus on a novel approach for direct,
wave-equation-based modelling of Marchenko-type focusing functions.

4.3. MARCHENKO-TYPE FOCUSING FUNCTIONS
Marchenko-type focusing functions form a particularly interesting subset of focusing
functions. Consider a volume V bounded by ∂V such that x fx fx f ∈ V and q(xxx ∉ V ,ω) = 0.
Furthermore, we assume that the medium is reflection-free outside of V . We can then
use

L(xxx,ω)
(

f
(
xxx,ω;x fx fx f , q(xxx,ω)

)− f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

))=−ρiωδ(xxx −x fx fx f )

−
∫

xrxrxr ∈∂V

2iω

c(xrxrxr )
δ(xxx −xrxrxr ) f ∗(

xrxrxr ,ω;x fx fx f , q(xxx,ω)
)
dSSS

(4.8)
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to model the wavefield within the volume, i.e. for xxx ∈ V (Schuster, 2009; Fokkema and
van den Berg, 1993) – see also Appendix for details on derivation. We stress that Equa-
tion 4.8 is only valid within V , while Equation 4.6 is valid for all xxx. Next, we split the
boundary in two parts, namely ∂V0 and ∂V1. Owing to the arbitrary source term q(xxx,ω)
in Equation 4.5 there are infinitely many focusing functions and we can constrain so-
lutions by adding extra conditions. For instance we can choose focusing functions that
vanish on ∂V1. This requires a particular source configuration q(xxx,ω) that depends on
the location x fx fx f as well as the medium properties and the appearance of the boundary
∂V0. For complex 2D and 3D media it is not clear yet whether these sort of focusing
functions always exist – we hope that the method presented in this paper might help
to further investigate this in future research. In 1D, however, focusing functions that
vanish on the left or right part of the boundary exist, see Burridge (1980) and Chapter
3 – note that the boundary of a 1D domain consists of only two points and we assume
a horizontal space direction here. Assuming that a focusing function exists such that
− f ∗(

xrxrxr ,ω;x fx fx f , q(xxx,ω)
)= 0 ∀ xrxrxr ∈ ∂V1, Equation 4.8 simplifies to:

L(xxx,ω)
(

f
(
xxx,ω;x fx fx f , q(xxx,ω)

)− f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

))=−ρiωδ(xxx −x fx fx f )

−
∫

xrxrxr ∈∂V0

2iω

c(xrxrxr )
δ(xxx −xrxrxr ) f ∗(

xrxrxr ,ω;x fx fx f , q(xxx,ω)
)
dSSS ,

(4.9)

where − f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

)
is a Marchenko-type focusing function, i.e. a focusing func-

tion that vanishes on an open part of the boundary.

4.4. DIRECT, WAVE-EQUATION-BASED MODELLING
A discrete version of Equation 4.1 can be written as

Lg = d , (4.10)

where L is a square matrix replacing the operator in Equation 4.2, d is the vectorial form
of the right-hand side of Equation 4.1 and g is the Green’s function vector in the fre-
quency domain. For Equation 4.9 we get

L(f− f∗) =−d−RTΛRf∗ , (4.11)

where −f∗ is the focusing function vector in the frequency domain, R is a restriction ma-
trix that only keeps the elements on the boundary ∂V0 of the vector on which it is acting
and Λ is a scaling matrix that accounts for λ2iω/c(xrxrxr ) with the factor λ being related to
the integration. The product RTR gives a matrix of the same size as L which mutes all
elements of the volume that are not on the boundary. Note that the same assumptions
as before, see Equations 4.8 and 4.9, apply: Equation 4.11 gives the wavefield within a
bounded volume V for a medium that is reflection-free outside V . In practice this re-
quires to include, e.g., absorbing boundaries within the matrix L (Engquist and Majda,
1977).
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Figure 4.2: Wave speed model, where the black dotted line marks the focal location (model, left), Green’s func-
tion (g , top center), conjugate Green’s function (g∗, bottom center), left-directed focal response ( fl − f ∗l , top

right), right-directed focal response ( fr − f ∗r , bottom right). The black dots denote the source location. All
wavefields are plotted with the same amplitude scaling for direct comparison.

Our aim is to rewrite Equation 4.11 such that it only contains a single unknown wave-
field, i.e. the time-isotropic focal response f− f∗. In this regard, we note that the in-
coming focusing function and the out-going negative, conjugate focusing function ap-
pear separated from each other in time on the boundary ∂V0 under the following condi-
tion in 1D: the time it takes for a wave to travel from the, e.g., left boundary ∂V0 at xlb to
the first reflecting interface at ξ1 has to be greater than the time it takes from the source
at x f to ξ1. This is also illustrated in Figure 4.1(a). More precisely, this can be formulated
as

ξ1 −xl b

c1
>

n∑
i=2

ξi −ξi−1

ci
+ x f −ξn

cn+1
, (4.12)

where ci with i = 1,2, . . . ,n+1 is the wave speed in the i -th layer and ξi with i = 1,2, . . . ,n
is the location of the i -th interface. This condition is related to the fact that multiple scat-
tering at the first interface has to be suppressed by the last event in the focusing function.
Note that this separability condition is fundamentally different from time-separating
Green’s and focusing functions in Marchenko schemes (Wapenaar et al., 2014b). The lat-
ter process relies on potentially restrictive assumptions about medium properties (par-
ticularly in 2D and 3D). We stress here that time-separating the focusing function and its
negative, conjugate version (within a given bandwidth) on ∂V0 should always be possible
when extending the homogeneous space between ∂V0 and ξ1 sufficiently far. A similar
condition likely applies to 2D and 3D, though this is a subject of ongoing research. As-
suming that Equation 4.12 holds, we can replace the in-coming focusing function on the
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Figure 4.3: Wave speed model, where the black dotted line marks the focal location (model, left), Green’s func-
tion (g , top center), conjugate Green’s function (g∗, bottom center), left-directed focal response ( fl − f ∗l , top

right), right-directed focal response ( fr − f ∗r , bottom right). The black dots denote the source location. All
wavefields are plotted with the same amplitude scaling for direct comparison.

boundary ∂V0 in Equation 4.11, i.e. −Rf∗, by an expression in terms of f− f∗ according to

−Rf∗ =−FTMFTR(f− f∗) , (4.13)

where F and FT are the forward and inverse Fourier transform matrices, respectively, M is
a matrix that mutes everything at negative times and T is a time reversal matrix. Hence,
we separate f from f− f∗ on the boundary by muting (as justified by Equation 4.12) and
time-reverse the result to get f∗. Using a different muting matrix, that mutes all data at
positive times, and no time reversal matrix would not work because this would allow for
the Green’s function to be a solution. Instead, it is important to link the out-going field
to the in-coming field and thus enforce the anti-symmetry in time of the time-isotropic
focal response by means of the time reversal operator. Note that Equation 4.13 requires
the vector f− f∗ to contain the entire wavefield at all frequencies of interest. In practice,
the discrete frequency support, in other words the amount and rate of frequency sam-
ples, depends on the desired time-domain wavelet used to describe the impulse source
d.
Combining Equations 4.11 and 4.13 gives

(L+RTΛFTMFTR)(f− f∗) = K(f− f∗) =−d , (4.14)

i.e. a linear system for the time-isotropic focal response f− f∗. While L can be chosen
to be an nx ×nx matrix for a single frequency in Equations 4.10 and 4.11, it must be
an nx nω×nx nω matrix here, where nx is the number of volume samples and nω is the
number of frequency samples. This system can be solved by various methods. In partic-
ular, any, e.g. Helmholtz, solver can be used for building the matrix L and inverting the
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equation for the wavefield. In 2D and 3D the matrix K becomes very large, albeit sparse,
and linear operator toolboxes might be helpful (Ravasi and Vasconcelos, 2020). Note the
similarity between Equations 4.10 and 4.14; however, Equation 4.10 can be solved for the
Green’s function per frequency, while Equation 4.14 has to be solved for all frequencies
simultaneously. We know that Marchenko-type focusing functions exist in some cases
(Chapters 3 and 6) but investigating the full space of solutions is ongoing research. Note
that this has implications for the physical meaning of numerical solutions for the in-
verse of K. In 1D, however, it is well established that Marchenko-type focusing functions
generally exist (Burridge, 1980). Note that the source term q(xxx,ω) in Equation 4.4 is not
needed to compute f− f∗. The individual fields f and −f∗, however, obey wave equations
with non-zero q(xxx,ω) sources (Chapter 3).

4.5. NUMERICAL EXAMPLES

In this section we show numerical examples in 1D to demonstrate the applicability of
the modelling scheme. We consider constant density acoustics, but the approach could
generally be used for variable density and even non-dissipative elastic media as well.
The first example we consider is a five layer medium as depicted in Figure 4.2. The
Green’s function and the conjugate Green’s function are computed by solving Equation
4.10 and L∗g∗ = −d for a bounded volume. Note that the matrix L is not usually real-
valued for a bounded volume (due to absorbing boundaries) and d∗ = −d. The wave-
fields are convolved with a 20 Hz Ricker wavelet and plotted in the time domain for a
better interpretation. As explained before, the Green’s function in Figure 4.2 propagates
forward in time, i.e. it is an out-going (with respect to the volume bounded by 0 km and
4.5 km in this example), causal field. Causality means that the wave propagation follows
after the source emits energy.
The conjugate Green’s function is the time-reversed Green’s function in the time domain
(see Figure 4.2). It is an in-coming, anti-causal wavefield, i.e. it induces energy into the
medium and contracts until it focuses at the source, where the energy is absorbed.
Next, we model the time-isotropic focal response via Equation 4.14. Note that there are
two options in 1D: we can either have a focusing function that vanishes on the right
boundary, meaning that the injection boundary ∂V0 is on the left, or a focusing function
that vanishes on the left, such that ∂V0 is on the right. We will refer to these options as a
left-directed focal response fl − fl

∗ and a right-directed focal response fr − fr
∗. Left- and

right-directed refer to the fact that these wavefields are per definition only propagating
towards one side. Note that left- and right-directed focal responses will have different
matrices Kl and Kr in Equation 4.14 (due to different restriction operators Rl and Rr for
the left and right boundary, respectively), but the same source. We omit the attribute
time-isotropic in the name here because such a left-/right-directed field is generally only
possible for time-isotropic functions. The left-directed focal response is shown in Figure
4.2 (top-right). It contains an in-coming, anti-causal field, i.e. the focusing function, as
well as an out-going, causal field, i.e. the negative, conjugate focusing function. The
only source within the bounded volume, however, is the impulse source at x fx fx f which is
the same source as that of the conjugate Green’s function. In accordance with our sepa-
rability condition, see Equation 4.12, all events at ∂V0, i.e. the left boundary in this case,
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recorded at negative times belong to the focusing function, while the events at positive
times belong to the negative, conjugate focusing function. The left-directed focal re-
sponse is an intriguing wavefield: it is purely propagating between the left boundary and
the source location at x fx fx f and it is compact in time, meaning that for every point in space
the wavefield has a distinct, finite duration. Within our bounded volume for instance,
there are no waves before −0.7 s and after 0.7 s. In fact, the left-directed focal response
propagates in a region of space-time that the Green’s functions (both forward and time-
reversed) can not reach – except for a small overlap of the first arrival of the Green’s func-
tion and the last arrival of the negative, conjugate focusing function (and equivalently
at negative times). This is also illustrated in Figure 4.1(b). Note that this separability of
the left-directed focal response and the Green’s function was not used as a constraint for
modelling but is instead an inherent feature of one-dimensional Marchenko-type focus-
ing functions (Burridge, 1980; Wapenaar et al., 2014b).
The right-directed focal response is also shown in Figure 4.2. It behaves similarly to the
left-directed focal response but covers a different portion of space-time, see also Figure
4.1(b). Ultimately, the four solutions, i.e. the Green’s function, the conjugate Green’s
function, the left-directed focal response and the right-directed focal response, are all
separated from each other in space-time, but together they span the entire space-time.
In this context, one can think of the Green’s function as a future-directed focal response
(a response to a single impulse source that is expanding away from t = 0 s towards in-
creasing time) and the conjugate Green’s function as a past-directed focal response (con-
tracting towards increasing time until t = 0 s).
Finally, in Figure 4.3 we show an example of a randomly-layered medium. Our modelling
scheme does not require computing specific scattering interactions between the differ-
ent layers, instead we just solve Equation 4.14 like in the previous example. Owing to the
multitude of reflectors in the model, the Green’s functions (forward and time-reversed)
now show numerous scattering events and, therefore, substantially more complex in-
terference patterns within their respective propagation cones. Similarly, the left- and
right-directed focal responses are much more complicated than in the preceding exam-
ple. Nonetheless, the focusing functions and their negative, conjugate versions can still
be separated on ∂V0. In fact, one can observe how the complex interference patterns of
the left-directed focal response in Figure 4.3 fade out while the waves propagate through
the first layer (between xl b and ξ1, compare Figure 4.1(a)) towards the left boundary –
and equivalently for the right-directed focal response. Just as before, the left- and right-
directed focal responses propagate purely between ∂V0 and x fx fx f and are compact in time
for a fixed point in space.

4.6. DISCUSSION

We present a method for direct, wave-equation-based modelling of time-isotropic fo-
cal responses. The method is based on a simple linear system, Equation 4.14, similar to
frequency-domain Green’s function modelling. Hence, any solver for frequency-domain
wave equations can be deployed. The key difference to modelling Green’s functions is
that Equation 4.14 has to be solved for all frequencies simultaneously.
In our approach we separate the in-coming focusing function and the out-going neg-
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ative, conjugate focusing function on the boundary ∂V0 in time. This requires a suf-
ficiently thick, homogeneous boundary layer (compare Equation 4.12). Nonetheless,
this is a straightforward assumption for modelling, where such a thick, homogeneous
boundary layer can easily be added for any numerical experiment. Such numerical
studies help to gain further and deeper understanding of focusing functions. Alterna-
tively, one might investigate other methods for separating f and −f∗ on ∂V0, e.g., based
on wavefield decomposition (Slob et al., 2014).
We stress that our approach allows for modelling f− f∗ but not, e.g., only the focusing
function −f∗. This is due to the ambiguity of the source term, i.e. the same left/right-
directed focal response can be retrieved from different source configurations q(xxx, t )
(Chapter 3). Note, however, that the focusing function on the boundary can be extracted
from f− f∗ by taking the wavefield at negative times. Similarly, it is not immediately pos-
sible to model a closed-boundary time-isotropic focal response, i.e. a response that can
propagate to both boundaries in 1D, by using Equation 4.8 rather than Equation 4.9.
The reason for this is that any focusing function obeys this closed-boundary integral.
For instance, (−g+g∗)/2 would be such a time-isotropic focal response – but there are
also time-compact solutions like (fl − fl

∗ + fr − fr
∗)/2. Even when adding a constraint

for time-compactness, however, it is unclear how to split the energy left and right, e.g.
(fl − fl

∗)/4+ (fr − fr
∗)(3/4) or fl − fl

∗ are both valid solutions.
As we showed in the examples, Marchenko-type focusing functions vanish on one side
of the boundary in 1D. Furthermore, the related left/right-directed focal responses are
compact in time. This compactness is an important feature in Marchenko schemes
(Wapenaar et al., 2014b), however, it is violated in complex 2D and 3D media (Vargas
et al., 2021). Therefore, the existence and uniqueness of solutions to Equation 4.14 in 2D
and 3D media and for finite, open acquisition surfaces remain to be investigated. If there
are in fact no perfect solutions, a least squares approach might be useful.
An extension of our scheme to 2D and 3D is crucial, since Marchenko-type focusing in
these higher dimensions remains a challenging and intriguing topic. Although such an
extension can be based on the same theoretical framework, the solution strategy might
have to involve regularised least squares and potentially more advanced solvers (En-
gquist and Ying, 2011). Furthermore, the problem, i.e. the matrix K in Equation 4.14,
becomes significantly larger requiring an elaborate implementation. In general, having
such a straightforward, direct modelling scheme for Marchenko-type focusing functions
is an extremely helpful tool for investigating and understanding focusing.
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APPENDIX

In this section we discuss the derivation of Equation 8 in the paper. We start from Ray-
leigh’s reciprocity theorem for acoustic waves (Fokkema and van den Berg, 1993):

∫
xrxrxr ∈∂V

(
p A(xrxrxr ,ω)vBvBvB (xrxrxr ,ω)−pB (xrxrxr ,ω)v Av Av A(xrxrxr ,ω)

)
·dSSS =∫

xxx∈V
vBvBvB (xxx,ω) · f Af Af A(xxx,ω)+p A(xxx,ω)sB (xxx,ω)−pB (xxx,ω)s A(xxx,ω)−v Av Av A(xxx,ω) · f Bf Bf B (xxx,ω)dV

+
∫

xxx∈V
iωp A(xxx,ω)pB (xxx,ω)

(
κB (xxx)−κA(xxx)

)− iωv Av Av A(xxx,ω) ·vBvBvB (xxx,ω)
(
ρB (xxx)−ρA(xxx)

)
dV ,

(I)

where we have two wave states denoted by the superscripts A and B in a volume V

bounded by ∂V . The variables p(xxx,ω) and vvv(xxx,ω) = [
v1(xxx,ω) v2(xxx,ω) v3(xxx,ω)

]T
rep-

resent the pressure field and the particle velocity field. The sources fff (xxx,ω) =[
f1(xxx,ω) f2(xxx,ω) f3(xxx,ω)

]T
and s(xxx,ω) are sources of volume force density and vol-

ume injection rate density. The medium is characterised by compressibility κ(xxx) =
1/

(
ρ(xxx)c2(xxx)

)
and mass density ρ(xxx). In our paper we study a setup with zero force

sources such that f Af Af A(xxx,ω) = f Bf Bf B (xxx,ω) = 000. This leads to vvv(xxx,ω) = (ρ(xxx)iω)−1∇p(xxx,ω).
Furthermore, we consider two wave states with identical medium parameters and con-
stant density such that κA(xxx) = κB (xxx). Consequently, the last integral in above equation
is zero. This delivers∫

xrxrxr ∈∂V

1

ρiω

(
p A(xrxrxr ,ω)∇pB (xrxrxr ,ω)−pB (xrxrxr ,ω)∇p A(xrxrxr ,ω)

) ·dSSS =∫
xxx∈V

p A(xxx,ω)sB (xxx,ω)−pB (xxx,ω)s A(xxx,ω)dV . (II)

In order to get Equation 8 in the paper we consider the following two wave states:

L(xxx,ω)

p A (xxx,ω)︷ ︸︸ ︷(
f
(
xxx,ω;x fx fx f , q(xxx,ω)

)− f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

))= ρiω

s A (xxx)︷ ︸︸ ︷(−δ(xxx −x fx fx f )
)

for state A,

(III)

L(xxx,ω) g (xxx,ω;xsxsxs )︸ ︷︷ ︸
pB (xxx,ω)

= ρiωδ(xxx −xsxsxs )︸ ︷︷ ︸
sB (xxx)

for state B.

(IV)

Hence for a volume V that contains xsxsxs and x fx fx f and q(xxx ∉ V ,ω) = 0, p A(xxx,ω) contains
both in-coming waves p A

in(xxx,ω) =− f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

)
and out-going waves p A

out(xxx,ω) =
f
(
xxx,ω;x fx fx f , q(xxx,ω)

)
, whereas pB (xxx,ω) is entirely out-going. Using, e.g., far-field (Sommer-
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feld) radiation conditions (Schuster, 2009) we find that Equation II becomes∫
xrxrxr ∈∂V

1

ρiω

(
p A(xrxrxr ,ω)

iω

c(xrxrxr )
pB (xrxrxr ,ω)−pB (xrxrxr ,ω)

iω

c(xrxrxr )
p A

out(xrxrxr ,ω)+

pB (xrxrxr ,ω)
iω

c(xrxrxr )
p A

in(xrxrxr ,ω)
)

dSSS =
∫

xxx∈V
p A(xxx,ω)sB (xxx,ω)−pB (xxx,ω)s A(xxx,ω)dV , (V)

which can be simplified to obtain∫
xrxrxr ∈∂V

2

ρc(xrxrxr )
p A

in(xrxrxr ,ω)pB (xrxrxr ,ω)dSSS =
∫

xxx∈V
p A(xxx,ω)sB (xxx,ω)−pB (xxx,ω)s A(xxx,ω)dV .

(VI)

Plugging Equations III and IV into this delivers

−
∫

xrxrxr ∈∂V

2

ρc(xrxrxr )
f ∗(

xrxrxr ,ω;x fx fx f , q(xxx,ω)
)
g (xrxrxr ,ω;xsxsxs )dSSS =

f
(
xsxsxs ,ω;x fx fx f , q(xxx,ω)

)− f ∗(
xsxsxs ,ω;x fx fx f , q(xxx,ω)

)+ g (x fx fx f ,ω;xsxsxs ) . (VII)

Next, we substitute xsxsxs with xxx and multiply both sides with the wave operator L(xxx,ω):

−
∫

xrxrxr ∈∂V

2iω

c(xrxrxr )
f ∗(

xrxrxr ,ω;x fx fx f , q(xxx,ω)
)
δ(xxx −xrxrxr )dSSS =

L(xxx,ω)
(

f
(
xxx,ω;x fx fx f , q(xxx,ω)

)− f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

))+ρiωδ(xxx −x fx fx f ) , (VIII)

where we use Equation 1 from the paper and invoke source-receiver reciprocity. Equa-
tion VIII is identical to Equation 8 in the paper. We stress that Equation VIII is only valid
for xxx in V . However, if one aims to solve the equation for the wavefield by modelling, it is
necessary to solve for a domain D that expands beyond V to include the sources on the
boundary ∂V . The resulting wavefield modelling is unphysical for xxx ∉V but accurate for
xxx ∈ V . Furthermore, we note that an absorbing boundary condition should be applied
outside of the volume V and its boundary ∂V to ensure that all sources of Equation VIII
are modelled correctly.
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INVERSE DESIGN FOR DIRECTIONAL

SOURCE MULTIPOLES AND WAVEFIELD

FOCUSING

We present a method for designing sources such that their related acoustic wave-
fields have specific, desired radiation properties. In particular, we use this source de-
sign strategy to study directional wavefield focusing: we seek to find a wavefield that
is incident from only one half of a volume and focuses at a single point. Such focusing
wavefields are relatively well understood in one dimension and play an important role in
inverse scattering and imaging problems. The extent to which these fields are approxi-
mative in two and three dimensions, however, is yet to be understood. We approach this
question by investigating the related problem of finding directional source multipoles
that emit energy in a preferred direction only. Hence these sources produce wavefields
that vanish in one half of the volume. While we focus on investigating directional sources
and wavefield focusing in homogeneous media, we also discuss the underlying proce-
dure in the context of arbitrarily heterogeneous media. For our numerical examples,
we find that directional focusing wavefields are inherently approximative in 2D, mean-
ing that the wavefields from the directional sources do not actually vanish completely
in one half-space. They are, however, so close to zero within the desired region that the
approximation seems justifiable.

5.1. INTRODUCTION
The ability to control wavefield radiation is of great interest in physics, geoscience, en-
gineering and material science. For example, photonic crystals are materials that have a
particular effect on electromagnetic waves by having a specifically arranged sub-wave-
length structure (Joannopoulos et al., 1997). As a result, these structures might absorb
(Park et al., 2009) or focus waves (Kurt et al., 2008). Similarly, phononic crystals affect
elastic waves (Håkansson et al., 2007). In this context, inverse design – i.e. optimising
crystal structures to yield a desired wavefield outcome – has proven to be a very power-

The content of this chapter is under review as Diekmann et al. (2023a).
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ful technique (Sanchis et al., 2004).
Inspired by such inverse design strategies, we present a method that we refer to as in-
verse source design. Hence, we want to obtain a wavefield with certain qualities for a
given material/model and design the source accordingly. Such a wavefield quality could
be a preferred directionality for instance. The resulting source is a multipole. Our inverse
source design approach allows to go beyond classical, analytically tractable multipoles
like dipole or quadrupole sources (Bilbao and Hamilton, 2018).
The main question we seek to investigate with inverse source design in this paper is
the following: Can we create a wavefield that is incident from only one half of a two-
dimensional homogeneous volume and focuses at a single point? In that context we also
discuss the related question: Can we create a source multipole in two dimensions that
emits a wavefield in one direction only? In one dimension, these sources and wavefields
are known to exist for arbitrarily heterogeneous media (Burridge, 1980). Such a wave-
field, for instance, can be injected into a volume from one side and delivers a perfect
focus, meaning that the wavefield collapses to a single point in the volume at a par-
ticular time (Chapter 3). In multiple dimensions, however, these wavefields, so-called
Marchenko-type focusing functions, are not yet fully understood.
Hence, we propose inverse source design as a method for constructing Marchenko-type
focusing functions in 2D and 3D (Chapters 3 and 6). These wavefields are related to
the Marchenko integral (Burridge, 1980; Newton, 1980), a fundamental equation in one
dimensional inverse scattering theory (Colton and Kress, 1998). While conventional fo-
cusing functions are wavefields that focus when injected into a source-free medium from
its closed boundary, Marchenko-type focusing functions can be injected from a limited
portion of the boundary only and still deliver a precise focus (Chapter 3). This is pos-
sible because Marchenko-type focusing functions are zero on the remaining boundary.
The original Marchenko integral (Burridge, 1980; Broggini and Snieder, 2012) was ex-
tended to 2D and 3D about ten years ago (Wapenaar et al., 2014b, 2013). Recent research
has overcome initial limitations about wavefield decomposition, see Chapter 6 and Kiraz
et al. (2021b) ,Wapenaar et al. (2021), and generalised the concept by using a framework
based on partial differential equations rather than integral equations (Chapter 3). As
indicated before, Marchenko-type focusing functions are relatively well understood in
1D, see Burridge (1980) and Chapters 3 and 4, their limitations in multiple dimensions,
however, are subject to ongoing research (Wapenaar, 2020a). Marchenko-type focus-
ing functions are used for predicting and suppressing the effects of multiple scattering
(Zhang and Slob, 2019), target-oriented imaging (Cui et al., 2020; Shoja et al., 2023) and
limited-aperture artefact-free imaging (Wapenaar et al., 2014b; Diekmann et al., 2021).
In this paper we present a method for modelling Marchenko-type focusing functions in
2D. While we primarily investigate homogeneous media, the method appears to be ex-
tendable to modelling in heterogeneous media. Being able to model these wavefields
is a crucial step in understanding them. It allows for investigating the fields in differ-
ent media and evaluating the accuracy of underlying theoretical assumptions. Differ-
ent strategies for modelling Marchenko-type focusing functions have been proposed:
one can model Green’s functions and invert the Marchenko integral (Wapenaar et al.,
2017) or use recursive wavefield extrapolation schemes (Elison et al., 2020; Wapenaar
and de Ridder, 2022). Alternatively, one can formulate the task as a wavefield reconstruc-
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tion problem (Hajjaj et al., 2022). All of these approaches, however, rely on the fact that
the Marchenko-type focusing function is only non-zero on a horizontal boundary above
(or, equivalently, below) the model – an assumption that does not necessarily hold for
arbitrarily heterogeneous media in 2D and 3D. Direct wave-equation-based modelling
is successful in 1D, where the Marchenko-type focusing function does in fact vanish on
a portion of the boundary (Chapter 4). Alternatively, one can compute a source term
for the Marchenko-type focusing function first and then insert it into the wave equation
(Chapter 3). Constructing such source terms is relatively straightforward in 1D, but in
more dimensions it is a difficult task. Hence, we propose inverse source design. This
allows us to model Marchenko-type focusing functions that obey the wave equation and
approximately (in a least-squares sense) vanish on a portion of the boundary. In that
sense this approach is consistent with the physics of focusing functions, i.e. our result-
ing Marchenko-type focusing functions will produce perfect foci but the radiation con-
dition, meaning that the functions vanish in a particular direction, is only fulfilled to the
extent that is possible.
We present a numerical example of a Marchenko-type focusing function in a 2D homo-
geneous medium and discuss its implications. In particular, we illustrate how a Mar-
chenko-type focusing function can vanish on a portion of the boundary. We also discuss
how to apply our inverse design approach to other, arbitrarily heterogeneous media.
While our research is strongly connected to the Marchenko integral it has implications
beyond this context. Directional sources might be useful for various experiments in
acoustics and Marchenko-type focusing functions can generally be employed for pro-
ducing a focus inside of a medium that is only accessible from an open portion of its
boundary.

5.2. GREEN’S FUNCTIONS AND FOCUSING FUNCTIONS
In this paper we investigate acoustic waves u(xxx, t ) in a two dimensional medium with
constant density ρ and velocity c, obeying the following wave equation:(

∇2 − 1

c2

∂2

∂t 2

)
u(xxx, t ) =−ρ ∂s(xxx, t )

∂t
, (5.1)

where t is time, xxx = [
x z

]T
denotes space and s(xxx, t ) is a source of volume injection rate

density. Using the Fourier transform

u(xxx,ω) =
∫ ∞

−∞
u(xxx, t )exp(iωt )d t , (5.2)

Equation 5.1 becomes the Helmholtz equation(
∇2 + ω2

c2

)
u(xxx,ω) = ρiωs(xxx,ω) , (5.3)

where we use the frequency ω, the imaginary unit i = p−1 and s(xxx,ω) is the frequency
domain source term.
A Green’s function g (xxx,ω;x fx fx f ) obeys Equation 5.3 for s(xxx,ω) = δ(xxx − x fx fx f ), i.e. it is the
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medium’s impulse response for a source at x fx fx f . It is a causal, out-going (with respect to
a volume V bounded by ∂V that contains the source location x fx fx f ) wavefield (Oristaglio,
1989). While the Green’s function of a homogeneous medium in 2D can be accurately
described by a weighted Hankel function of the first kind of zeroth order, it can be ap-
proximated more compactly for k(ω)r (xxx;x fx fx f ) À 1 (in the far field) by (Groenenboom and
Snieder, 1995)

g (xxx,ω;x fx fx f ) = ρiω

4
p
π/2

exp
(
i
(
k(ω)r (xxx;x fx fx f )−3π/4

))√
k(ω)r (xxx;x fx fx f )

, (5.4)

where we use the wavenumber k(ω) = ω/c and the distance of propagation r (xxx;x fx fx f ) =√
(xxx −x fx fx f )T (xxx −x fx fx f ).

A focusing function − f ∗(
xxx,ω;x fx fx f , q(xxx,ω)

)
represents a field solution of(

∇2 + ω2

c2

)(
− f ∗(

xxx,ω;x fx fx f , q(xxx,ω)
))=

− ρiωδ(xxx −x fx fx f )

2
−q(xxx,ω) , (5.5)

where q(xxx,ω) is real-valued but otherwise an arbitrary source term (Chapter 3). The
symbol ∗ marks complex conjugation, which corresponds to time reversal in the time
domain. The focusing function is an anti-causal, in-coming wavefield for a volume V
with x fx fx f ∈V and q(xxx ∉V ,ω) = 0. Anti-causal means that for each source the energy prop-
agates prior to being absorbed at the respective source. The condition that q(xxx,ω) is
real-valued implies a time-symmetric source q(xxx, t ) in the time domain.
Combining Green’s functions and focusing functions we can build the homogeneous
Green’s function of the second kind (Chapter 3) as the solution of(

∇2 + ω2

c2

)(
g (xxx,ω;x fx fx f )+ f

(
xxx,ω;x fx fx f , q(xxx,ω)

)−
f ∗(

xxx,ω;x fx fx f , q(xxx,ω)
))= 0 . (5.6)

Here, the focusing function is the only in-coming wavefield while both the Green’s func-
tion and the negative, time-reversed focusing function are out-going. The homogeneous
Green’s function of the second kind is a source-free field. In the most trivial case of
q(xxx,ω) = 0 the homogeneous Green’s function of the second kind is identical to the con-
ventional homogeneous Green’s function, i.e. g (xxx,ω;x fx fx f )+g∗(xxx,ω;x fx fx f ) (Oristaglio, 1989).

5.3. MARCHENKO-TYPE FOCUSING FUNCTIONS
We define a Marchenko-type focusing function as a focusing function with an additional
property: it vanishes on a particular part of the closed boundary ∂V of the volume V
for which x fx fx f ∈ V and q(xxx ∉ V ,ω) = 0 (Chapter 3). This property allows for formulating
an open-boundary reciprocity integral, similar to the Marchenko integral, see Burridge
(1980), Rose (2001), Broggini and Snieder (2012) and Chapter 3, that relates Marchenko-
type focusing functions with Green’s functions. While the Marchenko integral is well
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understood in 1D, its limitations in 2D and 3D scattering problems (Wapenaar et al.,
2014b) are unclear. We use the variable q(xxx,ω) to indicate that it is only a particular type
of focusing function sources that governs these Marchenko-type focusing functions.
In this paper we discuss a way of modelling these Marchenko-type focusing functions
in 2D. Furthermore, we illustrate and investigate the degree to which the fundamental
assumption that the Marchenko-type focusing function vanishes on a portion of ∂V is
feasible. On that note we make use of the following time reversal modelling formulation
of Equation 5.6 (Chapter 4):

(
∇2 + ω2

c2

)(
g (xxx,ω;x fx fx f )+ f (xxx,ω;x fx fx f , q(xxx,ω))−

f ∗(xxx,ω;x fx fx f , q(xxx,ω))
)
=

−
∫

xrxrxr ∈∂V

2iω

c
δ(xxx −xrxrxr ) f ∗(xrxrxr ,ω;x fx fx f , q(xxx,ω))dSSS . (5.7)

This equation is correct for xxx in V (but unphysical for xxx ∉V ) and simulates injecting the
in-coming wavefield, i.e. the focusing function, into the volume V . This holds true for
all focusing functions.
If we split the boundary ∂V in two parts and consider a Marchenko-type focusing func-
tion that is different from zero on ∂V0 and vanishes on ∂V1 we get

(
∇2 + ω2

c2

)(
g (xxx,ω;x fx fx f )+ f (xxx,ω;x fx fx f , q(xxx,ω))−

f ∗(xxx,ω;x fx fx f , q(xxx,ω))
)
=

−
∫

xrxrxr ∈∂V0

2iω

c
δ(xxx −xrxrxr ) f ∗(xrxrxr ,ω;x fx fx f , q(xxx,ω))dSSS . (5.8)

This equation forms the basis for the Marchenko integral, but it is not clear if such fo-
cusing functions, i.e. focusing functions that are zero on the boundary ∂V1, actually exist
in 2D and 3D. We will illustrate this time reversal modelling of Marchenko-type focusing
functions in 2D below.

5.4. CONCEPT OF INVERSE SOURCE DESIGN

We refer to the following procedure as inverse source design because we start by formu-
lating constraints for a wavefield that we would like to obtain and than invert for the
sources that govern this wavefield – or the closest, wave-equation-consistent version of
it in a least-squares sense. We invert for sources within a bounded area (active region)
and match the desired wavefield in a particular portion of the far field (matching region).
The part of the field that belongs to neither the active nor the matching region is referred
to as passive region. We will give an explicit example for how exactly to define these re-
gions in the next section.
We make use of the following relation between the sources s(xxx,ω) and the wavefield
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u(xxx,ω):

u(xxx,ω) =
∫

xsxsxs∈Vact

s(xsxsxs ,ω)g (xxx,ω;xsxsxs )dxsxsxs , (5.9)

exploiting that any field u(xxx,ω) can be written as a weighted superposition of Green’s
functions, where s(xxx,ω), analogous to Equation 5.3, acts as a weighting function. The
location xsxsxs is supposed to be within the volume Vact , i.e. within the active region.
Let uuu and sss be the discretely sampled vectorial forms of u(xxx,ω) and s(xsxsxs ,ω) for a single
frequency. While uuu is a vector for all locations xxx within the volume under investigation, sss
is a vector for all locations xsxsxs within the active region. We minimise the following objec-
tive function v(sss,α) for a given regularisation value α ∈ R+ to estimate the source term
sss:

v(sss,α) = ∥∥RWM︸ ︷︷ ︸
Q

sss −RWuuu︸ ︷︷ ︸
ddd

∥∥2
2 +α‖sss‖2

2 , (5.10)

where we have the real-valued restriction operator R that only keeps the wavefield in the
matching region, the real-valued weighting operator W that compensates for amplitude
decay due to geometrical spreading, i.e. by multiplication with a factor of

√
r (xxx;x fx fx f ),

and the complex modelling operator M that uses the analytical Green’s functions (Equa-
tion 5.4) to compute the superimposed wavefield that is generated by the individual
monopole sources in sss analogous to Equation 5.9. We assume a homogeneous medium
here, allowing for cheap computations of these Green’s functions and a trivial weighting
operator. Both matrices R and W are diagonal, R is additionally zero for several values on
the diagonal. This represents a linear inverse problem. We find the minimum of Equa-
tion 5.10 for

sss =
(
Q†Q+αI

)−1 (
Q†ddd

)
, (5.11)

where I is the identity matrix.
Note that we investigate a homogeneous medium in this study, which allows for a cheap
computation of the weighting operator W and the Green’s functions to get M. However,
the method is not in any way limited to homogeneous media. Heterogeneous media can
be examined by using, e.g., a Helmholtz solver to compute g (xxx,ω;xsxsxs ) in Equation 5.9.
While the weighting operator theoretically becomes more complex for heterogeneous
media, a homogeneous, e.g. effective medium, approximation might often be sufficient
to estimate W. Furthermore, we focus on 2D in this paper but the method can easily be
extended to 3D.

5.5. INVERSE SOURCE DESIGN FOR MODELLING BAND-LIMIT-
ED, MARCHENKO-TYPE FOCUSING FUNCTIONS

The aim of this paper is to investigate band-limited Marchenko-type focusing functions
in 2D. Hence, we aim to find sources s(xxx,ω) = s f (xxx,ω) via Equation 5.11 that govern a
negative, time-reversed focusing function u(xxx,ω) = f

(
xxx,ω;x fx fx f , q(xxx,ω)

)
(we choose the
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active region rmatract
passive region ∂V0

∂V1 matching region
Figure 5.1: Sketch of the active (blue outline), passive and matching region (red outline) used to model
Marchenko-type focusing functions. The active region is defined by the radius ract while the matching re-
gion follows from the radius rmat and the depth of the focusing location x fx fx f (black dot). The latter indicates the
horizontal upper boundary of the matching region. The variables ∂V0 (cyan) and ∂V1 (magenta) are related to
Equation 5.8. Note that the precise shapes of the regions are consistent with our numerical experiments, but
not a methodological restriction of any sorts.

negative, time-reversed version for it is a causal field and, thus, can be modelled in the
time domain later). From Equation 5.5 we know that we get

s f (xxx,ω) =−δ(xxx −x fx fx f )

2
− i

q(xxx,ω)

ρω
(5.12)

in the case of a focusing function source. Since q(xxx,ω) is a real-valued function (Chapter
3), s f (xxx,ω) is imaginary everywhere except at x fx fx f where it is complex with real part −δ(xxx−
x fx fx f )/2.
We are trying to model Marchenko-type focusing functions, i.e. focusing functions that
vanish on the portion ∂V1 of the boundary ∂V that encloses the volume V (compare
Equation 5.8 and Figure 5.1). Hence, we do not require any particular prior knowledge
of the field f

(
xxx,ω;x fx fx f , q(xxx,ω)

)
if we restrict the matching region Vmat to the area where

f
(
xxx ∈Vmat,ω;x fx fx f , q(xxx,ω)

)= 0 , (5.13)

see Figure 5.1. Thus, our matching region covers the far field in the lower half of the
volume, where we want the focusing function to vanish. This is extremely useful because
it means that we can find sources for the Marchenko-type focusing function when the
only prior information we have on the wavefield is that it is zero in a particular region.
We can then simplify the source term, Equation 5.12, by changing the desired wavefield
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to

u(xxx,ω) = g (xxx,ω,x fx fx f )

2
∀ xxx ∈Vmat , (5.14)

leading to the purely imaginary auxiliary source term s(xxx,ω) = sa(xxx,ω) with

sa(xxx,ω) =−i
q(xxx,ω)

ρω
. (5.15)

Note that there is no trivial solution to this problem: we are looking for an imaginary
source term that governs a Green’s function on ∂V1 while the actual source of the Green’s
function is δ(xxx −x fx fx f ), which is real-valued. If we solve the simplified problem with Equa-
tions 5.14 and 5.15 we get our desired source term for the Marchenko-type focusing func-
tion via

s f (xxx,ω) = sa(xxx,ω)− δ(xxx −x fx fx f )

2
. (5.16)

Finally, we want to obtain a band-limited version of a Marchenko-type focusing func-
tion. Hence, we are matching a band-limited wavefield u(xxx,ω), i.e. including a multipli-
cation with the band-limited frequency-domain wavelet w(ω). We use a Ricker wavelet
for this purpose. Furthermore, we have to multiply the impulse source in Equation 5.16
by w(ω). These two steps ensure that we relate our Marchenko-type focusing function
to a band-limited Green’s function with the wavelet w(ω).
Employing all of the above constraints, we can estimate a source sss by minimising the
following objective function

v(sss,α) =
∥∥∥∥[−RWI(M)

RWR(M)

]
sss −

[
RWR(uuu)
RWI(uuu)

]∥∥∥∥2

2
+α‖sss‖2

2 (5.17)

with uuu and sss being the vectorial forms of

u(xxx,ω) = g (xxx,ω;x fx fx f )w(ω)

2
(5.18)

and

s(xxx,ω) = 1

i
sa(xxx,ω) . (5.19)

Similar to before, Equation 5.17 can be solved for sss by using Equation 5.11 with an ac-
cordingly adjusted Q and ddd . The final source follows from

s f (xxx,ω) = sa(xxx,ω)− δ(xxx −x fx fx f )w(ω)

2
. (5.20)

By using a band-limited wavelet w(ω) we are able to compute s f (xxx,ω) for all frequencies
within a frequency range of interest and can convert the solution to the time domain via

s f (xxx, t ) = 1

2π

∫ ∞

−∞
s f (xxx,ω)exp(−iωt )dω . (5.21)
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Figure 5.2: Top: inverted source term s f (xxx,ω) at 25 Hz. Real part (top-left) and imaginary part (top-right) at
the same scaling. Centre: estimated wavefield, obtained by applying the modelling operator M to the inverted
focusing function source vector s fs fs f . Real part (centre-left) and imaginary part (centre-right) at the same scaling.
The dashed black circles denote the active region, the solid black lines show the outline of the matching region.
Note that the inverted source term (top plots) is only shown for the active region, while the wavefield (centre
plots) is shown for the full volume. The magenta circles mark a distance of 900 m to x fx fx f , where the circular
marker denotes an angle of 0◦ and the different triangles mark 90◦, 180◦ and 270◦. The orientation of these
triangles is the same in the wavefield plots (centre) and the bottom plot such that, e.g., the left-facing triangle
is at 90◦. Blue colors indicate negative and red colors positive values. Bottom: absolute value (power) of
estimated wavefield in a distance of 900 m as a function of angle, see magenta circles in wavefield plots.
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Figure 5.3: Time-domain source term s f (xxx, t ). Left: cube to illustrate the source as a function of space and time.
Blue colour is related to negative, red to positive amplitudes. For the locations marked by the three triangles
we show the source as a function of only time on the right. The grey cylinder outlines the active region. Right:
source as a function of time for three exemplary locations. The cyan line is at x fx fx f . The black curves show the
signal s f (xxx, t )+ s f (xxx,−t ) for the respective xxx locations.

This time-domain source function can then be used in Equation 5.1 to model the related
wavefield: (

∇2 − 1

c2

∂2

∂t 2

)
f
(
xxx, t ;x fx fx f , q(xxx, t )

)=−ρ ∂s f (xxx, t )

∂t
, (5.22)

where f
(
xxx, t ;x fx fx f , q(xxx, t )

)
is the negative, time-reversed version of a band-limited, Mar-

chenko-type focusing function. We note that this wavefield obeys our definition of a
focusing function in Equation 5.5. Hence, this is a perfect, full-spectrum focusing func-
tion. The condition in Equation 5.13, however, is only fulfilled approximately (in a least-
squares sense). By using finite difference modelling in the time domain to obtain the
negative, time-reversed focusing function, we can confirm the quality of the inverted
source term.

5.6. NUMERICAL EXAMPLE
In this section we illustrate the process of inverse source design for modelling band-
limited, Marchenko-type focusing functions. Our main emphasis is on studying the ac-
curacy of the assumption in Equation 5.13: can a focusing function actually vanish on
the boundary ∂V1? This is of interest for inverse scattering theory as this assumption un-
derlies the Marchenko integral and it remains unclear to what extent it is valid in 2D and
3D.
We study a medium with c = 2000 m/s and ρ = 1800 kg/m3. The focusing location is at
x f = 1000 m and z f = 1000 m. The volume under investigation extends 2000 m in x- and
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Figure 5.4: Modelling results for the Green’s function (top-left) and the Marchenko-type focusing function
(bottom-left). Modelling results for the homogeneous Green’s function (top-right) and the homogeneous
Green’s function of the second kind (bottom-right). Note that we only show the wavefields within the injection
boundary here (compare Figure 5.5 where we show the wavefields everywhere).

2000 m in z-direction, sampled in a 5 m interval. The wavelet is a filtered Ricker wavelet
(Ricker, 1953) with a peak frequency of 20 Hz and a compact frequency support on the
range between 0 Hz and 62.5 Hz. The frequencies are sampled with 0.5 Hz.
We use an active region with a radius of about 177 m (containing 3985 individual source
monopoles) and a matching region with a radius of 800 m, see Figure 5.1. Consequently,
the focusing function should vanish in the far field of the lower half of the model (at
∂V1).
Inverting for s f (xxx;ω) at 25 Hz using Equation 5.20 gives the source in Figure 5.2 (top).
We choose the optimal regularisation parameter α by means of an L-curve, which gives
α = 1015. As expected, this source follows Equation 5.12 in that it is imaginary every-
where except at x fx fx f , see the blue dot in the centre of the real part of the inverted source
multipole. The imaginary part has an interesting structure: while it is symmetric with re-
spect to the z-axis (through x fx fx f ), it is non-symmetric with respect to the x-axis (through
x fx fx f ).
Before proceeding with other frequencies, we can evaluate the estimated wavefield at
25 Hz by applying the modelling operator M to the inverted focusing function source s fs fs f
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(note that this refers to the vectorial form of s f (xxx,ω) here and not the source in Equa-
tion 5.19). This estimated wavefield is the best possible realisation of a Marchenko-type
focusing function. Hence it should, at least approximately, obey Equation 5.13. In fact,
the wavefield in Figure 5.2 (centre) is close to zero (white color) in the lower half of the
model. This is also shown in Figure 5.2 (bottom), where the absolute value of the fo-
cusing function is close to zero between about 0◦ and 180◦. We stress that we get this
wavefield without any prior knowledge on its appearance other than its approximate
vanishing at ∂V1. While this radiation condition, i.e. that the focusing function vanishes
at ∂V1, is only met approximately, the wave Equations 5.5 and 5.6 are obeyed perfectly.
We can repeat the process of estimating s fs fs f for all frequencies and ultimately use Equa-
tion 5.21 to get s f (xxx, t ). This time-domain source function is displayed in Figure 5.3. As
before, this source is related to a focusing function: the source is anti-symmetric in time
everywhere except at x fx fx f . This is also visualised by the black dotted lines in Figure 5.3.
For the cyan scenario, i.e. at x fx fx f , the superposition of s f (x fx fx f , t )+ s f (x fx fx f ,−t ) delivers the
symmetric wavelet −w(t ). For all other points xxx this superposition leads to zero. This is
again consistent with the band-limited time-domain interpretation of Equation 5.12.
Once we have the time-domain source term s f (xxx, t ), we can use it in Equation 5.22 to
model the Marchenko-type focusing function. For comparison we show the Green’s
function in Figure 5.4 (top-left) along with the Marchenko-type focusing function (bot-
tom-left). While the Green’s function resembles a cone where the wave is propagating
isotropically in space and forwards in time, our focusing function vanishes for about
z > 1000 m. Thus, its propagation is anisotropic in space with a distinctly preferred di-
rectionality towards small z values. This is consistent with our frequency domain ob-
servation in Figure 5.2: this focusing function should, in accordance with Equation 5.13,
vanish on ∂V1.
As a next step, we can inject our modelled focusing function into the volume V from its
boundary ∂V to obtain the homogeneous Green’s function of the second kind via time
reversal modelling, see Equation 5.7. For comparison we also model the homogeneous
Green’s function as the field solution to(

∇2 + ω2

c2

)(
g (xxx,ω;x fx fx f )+ g∗(xxx,ω;x fx fx f )

)
=∫

xrxrxr ∈∂V

2iω

c
δ(xxx −xrxrxr )g∗(xrxrxr ,ω;x fx fx f )dSSS . (5.23)

The homogeneous Green’s function is displayed in Figure 5.4 (top-right) along with the
homogeneous Green’s function of the second kind (bottom-right). The homogeneous
Green’s function has the shape of an hour glass. The in-coming wavefield (the time-
reversed Green’s function) contracts at negative times until it focuses at zero time. As
there is no source to absorb the energy, the wavefield keeps on propagating and ex-
pands at positive times. This out-going wavefield is the Green’s function. The homo-
geneous Green’s function of the second kind looks fairly similar but it appears to lack
one half of the hour glass – different halves at negative and positive times. Remember
that the homogeneous Green’s function of the second kind can be described by three
field contributions: the focusing function (in-coming), the negative, time-reversed fo-
cusing function (out-going) and the Green’s function (out-going), see Equation 5.6. We
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negative, 
time-reversed 
focusing function
---------------------------------

---------------------------------
homogeneous Green's 
function (HGF)
---------------------------------

---------------------------------
homogeneous Green's 
function of the second 
kind (HGF2)
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adding HGF2 and its 
time-reversed version
---------------------------------

---------------------------------
adding HGF2 and its 
time-reversed version, 
then subtracting HGF
---------------------------------

Figure 5.5: Snapshots for different wavefields and times. Left to right is increasing time, see bottom labels.
Top to bottom is for different wavefields, see labels on the left. The four bottom rows involve time reversal
modelling with a field injection from the closed boundary ∂V . This injection boundary is indicated by the grey,
dotted lines. Note that we show the full wavefields, including the fields outside of the injection boundaries that
were muted in Figure 5.4. This leads to, e.g., the wavefront for the homogeneous Green’s function at −0.32 s
outside of the injection boundary. This is an out-going wave and an artefact of the time reversal modelling. The
fields within the injection boundaries, however, are accurate. All plots are at the same scaling. Red indicates
positive, blue negative amplitudes.
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Figure 5.6: Snapshots for different wavefields and times. Left to right is increasing time, see bottom labels.
All wavefields (top to bottom) show the result of adding the respective homogeneous Green’s function of the
second kind and its time-reversed version and then subtracting the homogeneous Green’s function, similar to
the bottom row in Figure 5.5. The different underlying homogeneous Green’s functions of the second kind are
based on different open injection boundaries. The top row for instance only uses the portion of the previous,
closed boundary for which z < 900 m. From top to bottom the portion of the boundary that is ignored gets
less, see labels on the left. The injection boundaries are indicated by the grey, dotted lines. All plots are at the
same scaling as Figure 5.5.
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can relate this to the wavefield in Figure 5.4 (bottom-right) in the following way: we in-
ject the time-reversed, negative version of the wavefield in Figure 5.4 (bottom-left). This
is the in-coming focusing function. As we consider a Marchenko-type focusing func-
tion, it only propagates in a particular region of the volume (the upper half-space with
z < 1000 m). The field contracts and focuses at zero time. At positive times the wavefield
keeps on propagating in the other, lower half-space with z > 1000 m. The interpreta-
tion of this out-going field might be counter-intuitive at first. It is actually a superposi-
tion of the (isotropic) Green’s function, see Figure 5.4 (top-left), and the negative, time-
reversed focusing function, see Figure 5.4 (bottom-left). As the negative, time-reversed
focusing function is approximately zero in the lower half-space with z > 1000 m, the de-
scribed superposition in Figure 5.4 (bottom-right) resembles the Green’s function in that
area. In the other half-space, however, we find that the negative, time-reversed focusing
function and the Green’s function cancel each other. This indicates that this negative,
time-reversed Marchenko-type focusing function resembles a negative Green’s function
in this half-space.
A similar experiment that follows an easier intuition is this: decompose a Green’s func-
tion into an up-going Green’s function (the portion of the field that propagates towards
small values of z) and a down-going Green’s function (the portion that propagates to-
wards high values of z). If we inject the time-reversed, up-going Green’s function from
the upper half of the volume the wavefield would propagate towards x fx fx f , contract, fo-
cus and then keep on propagating in an expanding manner, governing the (non time-
reversed) down-going Green’s function. This experiment delivers a very similar half-
hour-glass structure, Figure 5.4 (bottom-right). We return to this thought experiment
later.
The wavefields in Figure 5.4 are also shown as snapshots in Figure 5.5. The top two rows
are for the Green’s function and the negative, time-reversed focusing function. In addi-
tion to the previous observation that the focusing function vanishes in the lower half-
space, its snapshot at zero time now reveals distinct features apart from the central focal
spot. These features translate to field contributions that break the otherwise perfectly
half-circular structure of the wavefronts at positive times. Note that these features be-
long to the solution and are not undesired artefacts. The homogeneous Green’s function
and the homogeneous Green’s function of the second kind are displayed in the third and
fourth row of Figure 5.5. We stress that the snapshot of the homogeneous Green’s func-
tion of the second kind at zero time exhibits a clean focal spot, similar to that of the
Green’s function in the top row. Note that we inject the focusing function from the full,
closed boundary here.
In order to further investigate the inverted focusing function we make use of the fact
that adding the homogeneous Green’s function of the second kind, Equation 5.6, and its
time-reversed version delivers the conventional homogeneous Green’s function. This is
shown in the penultimate row of Figure 5.5. Subtracting the homogeneous Green’s func-
tion from this estimated wavefield (obtained from the homogeneous Green’s function
of the second kind) should consequently deliver zero, see last row in Figure 5.5. In fact,
the wavefield is nearly zero (white color) within the injection boundary. This is expected
as the underlying partial differential equations are obeyed perfectly with our inversion
approach. Any inaccuracies in this result (see faint, cross-like structure at 0 s) are due to
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inaccuracies of the numerical modelling.
We stated in the beginning of this section that we want to study the accuracy of Equa-
tion 5.13. We do this now by modelling the homogeneous Green’s function of the second
kind with an open injection boundary, similar to Equation 5.8. In fact, we compare dif-
ferent open injection boundaries. As the resulting wavefields are all similar to the closed
boundary homogeneous Green’s function of the second kind in Figure 5.5 (fourth row),
we show the error plots (similar to the last row in Figure 5.5) in Figure 5.6. Note that
we used the upper part (with z < 1000 m) of the closed injection boundary in Figure
5.5 as ∂V0 in the source inversion process and the lower part (with z > 1000 m) as ∂V1.
When we use an open injection boundary that ignores some of ∂V0 (top row in Figure
5.6), we get significant artefacts. Note that we do not use spatial tapering for the injected
wavefield. These errors are primarily occurring in a depth of about 1000 m, where the
open injection boundary ends. This is a consequence of ignoring a portion of the in-
coming wavefield in the time reversal modelling. Remember that the focusing function
is non-zero everywhere in the upper half-space, compare Figure 5.2. When we use an
open injection boundary with z < 1000 m, i.e. ∂V0 from the inverse source design pro-
cess, there are still artefacts, but they are much weaker – a consequence of the fact that
the focusing function is nearly zero at the remaining boundary. These remaining arte-
facts illustrate that Equation 5.13 is not obeyed perfectly. This might be related to, e.g.,
the limited bandwidth of the wavelet or the generally smooth character of wave equa-
tion solutions, only allowing for a smooth transition from zero to non-zero wavefields.
Enlarging the open injection boundary to also include some of ∂V1 leads to vanishingly
small artefacts, compare four lower-most rows in Figure 5.6.
We mentioned previously that injecting a time-reversed, up-going Green’s function from
the upper boundary delivers a similar half-hour-glass structure as that in Figure 5.4. We
stress that the up-/down-decomposition in this thought experiment would not lead to
a perfect, full-spectrum focus at zero time though. This is due to missing field contri-
butions and propagation artefacts from the edges of the injected wavefield (comparable
to the top rows in Figure 5.6). Hence, this experiment is inherently approximative. Our
focusing function on the other hand, delivers a perfect focal spot when injected into a
source-free medium from its closed (or a sufficiently large open) boundary, see Figures
5.5 and 5.6.
For the case of a homogeneous medium we illustrated that Marchenko-type focusing
functions exist which are nearly zero on a particular portion of an enclosing bound-
ary. This allows for approximating time reversal modelling by only injecting the fo-
cusing function from an open boundary. Similarly, this approximate vanishing of the
Marchenko-type focusing function justifies the Marchenko integral (Chapter 3). The ac-
tual quality of this approximation depends on the medium properties and the geometry
of the open boundary. In fact, some heterogeneous media might allow for significantly
smaller open injection boundaries to be accurate approximations. Hence, further re-
search is required to investigate arbitrarily heterogeneous media. In the next section we
want to make a first step in that direction.
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Figure 5.7: Top-left: heterogeneous velocity model. Top-right: imaginary part of inverted source term s f (xxx,ω)
at 25 Hz. Centre: estimated wavefield, obtained by applying the modelling operator M to the inverted focusing
function source vector s fs fs f . Real part (centre-left) and imaginary part (centre-right) at the same scaling. The
dashed black circles denote the active region, the solid black lines show the outline of the matching region.
The magenta circles mark a distance of 900 m to x fx fx f , where the circular marker denotes an angle of 0◦ and the
different triangles mark 90◦, 180◦ and 270◦. The orientation of these triangles is the same in the wavefield plots
(centre) and the bottom plot such that, e.g., the left-facing triangle is at 90◦. Blue colors indicate negative and
red colors positive values. Bottom: absolute value (power) of estimated wavefield in a distance of 900 m as a
function of angle, see magenta circles in wavefield plots.
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5.7. A NOTE ON EXTENDING THE METHOD TO HETEROGENE-
OUS MEDIA

In general the theory presented in this manuscript is directly extendable to heteroge-
neous media. However, there are two main things that need to be considered. Firstly:
when we have an acoustic wave equation for variable velocity c(xxx) and density ρ(xxx) in
the form of (

ρ(xxx)∇·
(

1

ρ(xxx)
∇

)
− 1

c2(xxx)

∂2

∂t 2

)
u(xxx, t ) =

−ρ(xxx)
∂s(xxx, t )

∂t
(5.24)

we can not use an analytical expression like that in Equation 5.4 to estimate the Green’s
functions in Equation 5.9 but we have to use a numerical solver. Note that all partial dif-
ferential equations, see Equations 5.5 and 5.6, can easily be adjusted to heterogeneous
media by using the respective wave operator (Chapter 3). Secondly: the active region in
the inverse source design process might have to be adjusted depending on the scatter-
ing properties of the medium. In heterogeneous media there are scattered waves from
impedance changes across the model. If we aim to find a Marchenko-type focusing func-
tion, Equation 5.13, the active region has to not only emit a directional wavefield but also
to cancel all scattered waves that travel towards the boundary ∂V1. This implies a poten-
tially large active region which makes the inverse source design more computationally
expensive.
The simplest, heterogeneous example is a medium that is radially symmetric around x fx fx f

like the velocity model in Figure 5.7 (top-left). In such a model all scattered waves pass
through the source location x fx fx f . Hence, it is sufficient to have a small sphere around
x fx fx f as the active region, just as in the previous, homogeneous medium example. This
active region can then emit a directional wave and cancel all downwards propagating
scattered waves such that the wavefield vanishes at ∂V1. The imaginary part of the in-
verted source is displayed in Figure 5.7 (top-right). This is clearly different to the source
in Figure 5.2 (top-right), implying that this heterogeneous model does indeed require a
different focusing function source to account for the scattered waves. Note that the real
part of the source is (per definition) identical to that in Figure 5.2 (top-left). Regarding
the estimated frequency domain wavefield, Figure 5.7 (centre), one can see the different
velocity layers of the model in terms of changing wavelengths across space. The radia-
tion condition, meaning that the focusing function vanishes at the lower boundary ∂V1

according to Equation 5.13, appears to be fulfilled similarly well as in the previous, ho-
mogeneous medium example, see also bottom plot in Figure 5.7.
We show this as a first example and suggest further studies of this approach for modelling
Marchenko-type focusing functions in heterogeneous media.

5.8. DISCUSSION
The research presented in this paper is fundamentally related to the Marchenko integral,
but it also has implications for general acoustics, where directional source multipoles
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and open boundary wavefield focusing are relevant topics.
While Equation 5.13 holds true and can directly be used for modelling Marchenko-type
focusing functions in 1D (Chapter 4), we presented a first study of its accuracy in 2D in
this paper. In contrast to other methods for modelling Marchenko-type focusing func-
tions, see Elison et al. (2021), Wapenaar and de Ridder (2022), Hajjaj et al. (2022) and
Chapters 3 and 4, our inverse source design approach allows for retrieving perfectly ac-
curate focusing functions that obey Equations 5.5 and 5.6. Consequently, these focus-
ing functions lead to perfect, full-spectrum wavefield focusing within the homogeneous
Green’s function of the second kind. The radiation property of Marchenko-type focusing
functions on the other hand, see Equation 5.13, is only satisfied in a least-squares sense.
As with other optimisation problems, one could envision the use of other metrics (e.g.
L1 or mixed L2 and L1), as well any number of additional constraints – both of which
could create distinctively different focusing-related sources in practice.
Based on our homogeneous medium analysis, one might think that Marchenko-type fo-
cusing functions are inherently approximate in 2D and 3D. However, we also found that
this approximation appears to be relatively accurate, see only small artefacts in Figure
5.6. Hence, we can inject focusing functions from open boundaries and still obtain a
close-to-perfect wavefield focus.
When the Marchenko integral is used to estimate Green’s functions from boundary mea-
surements, see Wapenaar et al. (2014b) and Chapter 6, the radiation condition is obeyed
perfectly while the related focusing functions and Green’s functions are approximated.
This is comparable to enforcing that Equation 5.13 holds true, while Equations 5.5 and
5.6 are only approximated – exactly opposite to our modelling approach in this paper.
This may become problematic when Equation 5.13 is a poor approximation. We propose
further studies of inverse source design for heterogeneous media to gain a more gen-
eral understanding of Marchenko-type focusing functions in 2D and 3D. We already pre-
sented a first study towards heterogeneous media with promising results. While this ap-
pears to be a computationally more expensive problem, it should follow the same theo-
retical concept. Further such studies will help to understand limitations of the Marchenko
integral in higher dimensions.
More generally, inverse source design allows for estimating wavefields when given some
constraints on their appearance. In the case of Marchenko-type focusing functions we
have some limitations about the source term and know that the wavefields should vanish
in the matching region. This is enough to compute a wave-equation-consistent solution
that approximately obeys our assumptions. This might be useful for other fields of re-
search as well, where wavefields with particular properties are desirable.
We found that in a homogeneous medium the focusing function is similar to a decom-
posed Green’s function. Hence, we can build source multipoles like that in Figure 5.3 that
appear to emit a Green’s function in one direction and are zero in the other. This could
be useful for acoustical engineering but also for, e.g., seismic imaging problems where
ghost reflections (undesired reflections from the surface of the sea with a source in the
water) bias the measurement of scattering data from below.
Furthermore, these inverted, Marchenko-type focusing functions might be useful when
a wave is injected into a medium in order to focus but the medium is only accessible
from an open portion of its boundary. This includes medical applications (Thomas and
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Fink, 1996; Meles et al., 2019a) as well as geophysical, e.g., source localisation methods
(Gajewski and Tessmer, 2005; Li et al., 2020).

5.9. CONCLUSION
We present an inverse source design approach for modelling Marchenko-type focus-
ing functions that, when injected into a source-free volume from its open boundary,
lead to a nearly perfect, full-spectrum wavefield focus. Our method allows for a reli-
able analysis of Marchenko-type focusing and might help to understand limitations of
the Marchenko integral in 2D and 3D. Our numerical studies suggest that Marchenko-
type focusing functions are inherently approximate in 2D but fairly accurate at least in
homogeneous and radially symmetric media. Furthermore, the underlying concepts of
directional source multipoles and open boundary wavefield focusing might have inter-
esting applications in fields such as acoustical engineering.
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FOCUSING AND GREEN’S FUNCTION

RETRIEVAL IN THREE-DIMENSIONAL

INVERSE SCATTERING REVISITED: A
SINGLE-SIDED MARCHENKO INTEGRAL

FOR THE FULL WAVEFIELD

The Marchenko integral, key to inverse scattering problems across many disciplines,
is a long-standing equation that relates single-sided reflection data and Green’s func-
tions for virtual source locations inside of an inaccessible, one-dimensional volume.
The concept was later expanded to two and three dimensions, yielding important ad-
vances in imaging complex media, particularly in the context of geophysics. However,
this expansion is based on a set of coupled Marchenko equations which requires up-
/down-decomposition of the wavefields at both the level of the measurement surface
and the level of the virtual source of the desired Green’s function. The underlying theory
implies that the recently developed Marchenko relations, while enabling novel applica-
tions, carry intrinsic limitations. For example, this scheme cannot incorporate evanes-
cent or refracted waves, and in turn practical implementations must discard data to meet
such requirements. We present a derivation that circumvents these limitations, thereby
yielding a Marchenko integral akin to those in recent advances, but that is more general
than previously assumed. We set up a wave-equation-based framework to describe the
physical concept of focusing functions by introducing homogeneous Green’s functions
of the second kind. Based on this, we derive integral representations for both closed and
open boundary volumes. Owing to our new perspective on the integral formalism, we
present an inverse scattering approach for retrieving Green’s functions from single-sided

The content of this chapter was published as Diekmann and Vasconcelos (2021a). Note that the Green’s func-
tion and the focusing function are defined with different signs in this chapter compared to the published paper.
They were changed to accomplish consistency of the equations in this thesis. However, we stress that in this
chapter (and the published paper) the out-going focusing function is referred to as a time-reversed field – in
contrast to all other chapters in this thesis. This is the conventional definition which, given that the following
chapter is related to our first publication on the topic, we initially adapted.
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reflection data – with the same practical applicability of recent methods, but without
any limitations due to one-way decomposition. Finally, we illustrate the capability of
the Marchenko method to obtain the full wavefield, including evanescent and refracted
waves, within an unknown scattering medium by means of a numerical example.

6.1. INTRODUCTION

Imaging the interior of an object that is only accessible at its boundary is a key problem
in many fields, such as seismology (Etgen et al., 2009; Virieux and Operto, 2009), helio-
seismology (Rickett and Claerbout, 1999), quantum mechanics (Snieder and Tarantola,
1989), medical imaging (Szabo, 2004; Hoskins et al., 2019; Bernard et al., 2017; Boehm
et al., 2018; Guasch et al., 2020; Lambert et al., 2020) or non-destructive testing (Müller
et al., 2012; Kalogeropoulos et al., 2013). Imaging methods rely on acoustic, seismic (Mal-
colm et al., 2004) or electromagnetic (van den Berg and Abubakar, 2001) waves to probe
the interior of objects with sources and receivers located on their boundaries. The ob-
jective of inverse scattering theory (Colton and Kress, 1998) is the retrieval of the phys-
ical characteristics of the medium from measuring its remotely-observed scattering re-
sponse.
The Marchenko integral is an elementary equation in one-dimensional inverse scatter-
ing theory (Burridge, 1980; Rose, 2001; Chadan and Sabatier, 2012). While the medium-
parameters, e.g. the scattering potential, can be directly inferred from the Marchenko
equation in one dimension (Ware and Aki, 1969), Broggini et al. (Broggini et al., 2012;
Broggini and Snieder, 2012) studied the Marchenko integral’s capability to pro-
duce Green’s functions for virtual sources inside of an inaccessible medium. In con-
trast to popular interferometric methods for Green’s function retrieval (e.g. Wapenaar
and Fokkema, 2006; Curtis and Halliday, 2010; Wapenaar et al., 2010a), the Marchenko
method allows for retrieving Green’s functions from single-sided reflection measure-
ments.
Recognising the potential of Marchenko-based Green’s function retrieval and its role in
inverse scattering, Wapenaar et al. (Wapenaar et al., 2013, 2014b, 2016) expanded the
Marchenko theory to two and three dimensions. Their derivation builds on up-/down-
decomposition of the involved wavefields, both at the acquisition surface and at the
depth-level of the virtual source of the Green’s function. They use convolution- and
correlation-type reciprocity theorems for these decomposed wavefields and describe
two different wave states in the true and the truncated medium, i.e. a version of the true
medium which is reflection-free everywhere underneath the virtual source location. Ul-
timately, this approach delivers a set of coupled Marchenko equations. Their derivation
implies several limitations regarding the retrievable Green’s functions. Firstly, using up-
/down-decomposition along with correlation-type reciprocity in depth leads to a neglect
of evanescent waves inside the medium under investigation. Secondly, using a truncated
medium leads to a neglect of refracted and diving waves, i.e. waves that would arrive be-
fore the direct arrival in the truncated medium. These issues were partially addressed
latetly (Wapenaar, 2020a). However, this recent study is based on the conventional cou-
pled Marchenko equations and currently limited to laterally homogeneous media.
One of the main achievements of the three-dimensional Marchenko method (e.g. Wape-
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naar et al., 2013, 2014b; van der Neut et al., 2015b), in addition to the theoretical ad-
vancement, is the fact that those representations can be reliably translated into practical
approaches to retrieve the Green’s functions of real unknown media from single-sided
reflection data (Ravasi et al., 2016). While there are certain Marchenko-based primary
estimation methods (van der Neut and Wapenaar, 2016; Zhang and Slob, 2019) that re-
quire no a priori knowledge of the medium, solving the three-dimensional Marchenko
scheme for in-volume Green’s functions requires knowledge of a background medium-
parameter model, i.e. a wavespeed model that allows for approximating the direct ar-
rivals of the intended Green’s functions – but that does not contain information on the
unknown scatterers within the medium. Furthermore, the solution is tied to certain
causality arguments that generally hold for one dimension, but become less general in
higher dimensions (Wapenaar et al., 2014b). Hence, complicated models with spatially
varying, strong-contrast medium perturbations can pose an issue for the Marchenko
method (e.g. Vasconcelos and Sripanich, 2019; Vargas and Vasconcelos, 2020). Nonethe-
less, the Marchenko integral proved to be a valuable extension of existing Green’s func-
tion retrieval methods (Wapenaar and Thorbecke, 2017; Wapenaar et al., 2017) and is
becoming widely used for geophysical applications (e.g. Ravasi et al., 2016; Brackenhoff
et al., 2019b; Staring and Wapenaar, 2020; Staring et al., 2020).
In this paper, we present a more general, alternative strategy to deriving Marchenko-
type integral relations for Green’s function retrieval from remote, single-sided scattering
data. We start by introducing homogeneous Green’s functions of the second kind, which
are an extension of the concept of conventional homogeneous Green’s functions. Using
reciprocity, we obtain integral representations of these fields for both closed and open
boundary systems. The open boundary representation is similar to the previously intro-
duced Marchenko equations (Wapenaar et al., 2014b), but it is obtained without the need
for: i ) defining an auxiliary, truncated medium wave state or i i ) imposing wavefield de-
composition within the medium at the location of the desired Green’s function. Hence,
the Marchenko integral we propose here can be used to obtain the full Green’s func-
tion – with wave components propagating in all directions, i.e. including the medium’s
evanescent and refracted field response. Finally, relying on constraints used by previous
approaches, we present a practical scheme to solve our single-sided Marchenko equa-
tion for an unknown scattering medium’s Green’s function. We illustrate our findings
with a numerical example.

6.2. INTEGRAL REPRESENTATIONS FOR FOCUSING AND

GREEN’S FUNCTIONS

In the following section we present a derivation for integrals that relate so-called focus-
ing functions and Green’s functions. While previous derivations (Wapenaar et al., 2014b)
do not include evanescent and refracted waves, our new approach is applicable to the
full wavefield. We start by introducing a partial differential equation (PDE) for focusing
functions. Then we use reciprocity to obtain integral representations.
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6.2.1. THE HOMOGENEOUS GREEN’S FUNCTION OF THE SECOND KIND
The acoustic wave equation in the frequency domain is given by

L (xxx,ω)u(xxx,ω) = ρ(xxx)iωs(xxx,ω) (6.1)

with the wave operator

L (xxx,ω) = ρ(xxx)∇· 1

ρ(xxx)
∇∇∇+ ω2

c2(xxx)
, (6.2)

where u(xxx,ω) is the acoustic pressure field at location xxx = (x1, x2, x3) and frequency ω.
The source function is of volume injection rate density and denoted by s(xxx,ω), i.e. there
are no force sources. The medium is defined by density ρ(xxx) and propagation velocity
c(xxx). The variable i denotes the imaginary unit. Although we consider acoustics in the
frame of this paper, the following derivations should be applicable for other PDEs as well
(e.g. Snieder et al., 2007; Wapenaar and Douma, 2012).
A Green’s function g (xxx,ω;x fx fx f ) is a wavefield that obeys

L (xxx,ω)g (xxx,ω;x fx fx f ) = ρ(xxx)iωδ(xxx −x fx fx f ) . (6.3)

It is the medium’s response to a filtered impulse source at x fx fx f . Adding the complex con-
jugate of Equation 6.3 to Equation 6.3 delivers the so-called homogeneous Green’s func-
tion, i.e. a source-free superposition of Green’s functions, according to

L (xxx,ω)
(
g (xxx,ω;x fx fx f )+ g∗(xxx,ω;x fx fx f )

)
= 0 . (6.4)

In the context of this paper, we refer to this equation as the homogeneous Green’s func-
tion of the first kind. The star denotes complex conjugation in the frequency domain
which is similar to time-reversal in the time domain. The Green’s function g (xxx,ω;x fx fx f ) is
a causal wavefield, i.e. the wave propagates after the source triggering at time t = 0. Fur-
thermore, it is an out-going wavefield, i.e. with respect to a certain volume of interest
that contains the source location x fx fx f . Thus, g∗(xxx,ω;x fx fx f ) in Equation 6.4 is an in-coming
wavefield for times t < 0. This wavefield focuses at the source location and than, ac-
cording to Equation 6.4, keeps on propagating as the forward Green’s function, i.e. as an
out-going field for times t > 0. At time t = 0, when focusing occurs, both the in-coming
and out-going fields coalesce to equal impulsive sources of opposite polarity, thus satis-
fying Equation 6.4.
As a next step we rewrite the time-reversed Green’s function, i.e. we replace it by

L (xxx,ω)g∗(xxx,ω;x fx fx f ) =
L (xxx,ω)

(
f (xxx,ω;x fx fx f )− f ∗(xxx,ω;x fx fx f )

)
, (6.5)

where

L (xxx,ω) f (xxx,ω;x fx fx f ) =−ρ(xxx)iωδ(xxx −x fx fx f )

2
+q(xxx,ω;x fx fx f ) . (6.6)
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These equations hold for real-valued q(xxx,ω;x fx fx f ), such that q(xxx,ω;x fx fx f )− q∗(xxx,ω;x fx fx f ) = 0.
Apart from this restriction, the source field q(xxx,ω;x fx fx f ) is arbitrary up to this point. Its
argument x fx fx f does not actually represent a necessary dependence but is kept for the sake
of consistency. This reformulation allows for replacing the Green’s function by a super-
position of so-called focusing fields f (xxx,ω;x fx fx f ). We note here that although we refer to
f (xxx,ω;x fx fx f ) as focusing fields, these are more general than in previous definitions (e.g.
Wapenaar et al., 2014b), since they are tied to the arbitrary source fields q(xxx,ω;x fx fx f ). The
Green’s and focusing functions are different wavefield realisations but obey the same
source function. When modelling numerically, we conventionally propagate the source
energy forwards in time from t = 0. This new representation is different in that the source
produces a causal and an anti-causal field, suggesting the corresponding wave excita-
tion may also be active at t < 0 relative to reference origin time that is associated with
the Green’s function. Take for instance q(xxx,ω;x fx fx f ) = 0. We can then write

f (xxx,ω;x fx fx f )− f ∗(xxx,ω;x fx fx f ) =
1

2
g∗(xxx,ω;x fx fx f )− 1

2
g (xxx,ω;x fx fx f ) . (6.7)

One way of visualising the physics behind this choice is to imagine an in-coming field, in
this case g∗(xxx,ω;x fx fx f ) with half amplitude, that interacts with the source at zero time. The
source energy is larger then the field energy, i.e. the in-coming field gets absorbed and
additionally a new field, in this case −g (xxx,ω;x fx fx f ) with half amplitude, is created. Note
that the focusing function f (xxx,ω;x fx fx f ) is, in contrast to the Green’s function, not unique –
because q(xxx,ω;x fx fx f ) can be chosen arbitrarily, so long as it satisfies Equation 6.6.
We may now write the homogeneous Green’s function of the second kind according to

L (xxx,ω)
(
g (xxx,ω;x fx fx f )+ f (xxx,ω;x fx fx f )− f ∗(xxx,ω;x fx fx f )

)
= 0 . (6.8)

Mathematically, this is equivalent to Equation 6.4, but it gives an additional physical in-
sight. Let f (xxx,ω;x fx fx f ) be an in-coming field. This field focuses at x fx fx f and, afterwards, keeps
on propagating as the forward Green’s function. On the way to the focal point, however,
it also produces a scattered field which is not related to the Green’s function, namely the
out-going field f ∗(xxx,ω;x fx fx f ). The choice which of the two, f (xxx,ω;x fx fx f ) or − f ∗(xxx,ω;x fx fx f ), is
the in-coming field is, because of the fields’ time symmetry, indeed arbitrary. We call the
field that satisfies Equation 6.8 the homogeneous Green’s function of the second kind for
it is a source-free field that yields the causal Green’s function. The involved fields, how-
ever, are not necessarily the same as those in Equation 6.4 – this distinction is essential
to our approach.
While we did not specify the source q(xxx,ω;x fx fx f ) in more detail, this subsection introduced
the general idea of the homogeneous Green’s function of the second kind. In the next
subsection we discuss the interferometric representation of the partial differential Equa-
tion 6.8.

6.2.2. INTEGRAL REPRESENTATIONS
In this subsection we derive an integral representation for the wavefields in Equation
6.8. The derivation is similar to derivations for multi-dimensional convolution and de-
convolution (Wapenaar et al., 2008; Wapenaar and van der Neut, 2010; Wapenaar et al.,
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Figure 6.1: Sketch of the wave state setup for a closed boundary. The rays indicate involoved Green’s functions,
i.e. from x̂̂x̂x to xsxsxs , from xsxsxs to xrxrxr and from x̂̂x̂x to xrxrxr .

2011). We start our derivation from the general form of Rayleigh’s reciprocity theorem
for acoustic waves (Fokkema and van den Berg, 1993; Vasconcelos et al., 2009), i.e.∫

xsxsxs∈∂V
(u AvBvBvB −uB v Av Av A) · dSSS =∫

xxx∈V
f Af Af A ·vBvBvB + sB u A −fBfBfB ·v Av Av A − s AuB dV

+
∫

xxx∈V
iω(κB −κA)u AuB − iω(ρB −ρA)v Av Av A ·vBvBvB dV , (6.9)

where the superscripts A and B mark two different wave states. In addition to the pre-
viously introduced pressure field u = u(xxx,ω) we also require the particle velocity field
vvv = (v1, v2, v3) = vvv(xxx,ω). The quantities fff = (f1, f2, f3) = fff(xxx,ω) and s = s(xxx,ω) denote
sources of volume force density and volume injection rate density, respectively. The
compressibility is given by κ = κ(xxx) = 1/

(
ρ(xxx)c2(xxx)

)
and density by ρ = ρ(xxx). We are

investigating a volume V , bounded by the smooth surface ∂V .
We consider two states with identical compressibility and density in a lossless volume
V , thus the last integral in Equation 6.9 vanishes. Furthermore, we choose not to have
any force sources within the volume, i.e. f Af Af A = fBfBfB = 000. This yields vvv = 1/(ρiω)∇∇∇u (e.g.
Fokkema and van den Berg, 1993). Inside the volume we use

s A = δ(xxx −xrxrxr ) (6.10)

u A = g (xxx,ω;xrxrxr ) (6.11)

sB = 0 (6.12)

uB = p(xxx,ω; x̂̂x̂x) . (6.13)

Note that xrxrxr lies in V , while the sources for uB are outside of the volume. The variable x̂̂x̂x
shows the dependency of uB on the source distribution and appearance of sB outside V .
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This wave state configuration is sketched in Figure 6.1. Inserting these definitions into
Equation 6.9 delivers

p(xrxrxr ; x̂̂x̂x) =−
∫

xsxsxs∈∂V

1

ρ(xsxsxs )iω

(
g (xsxsxs ;xrxrxr )∇∇∇p(xsxsxs ; x̂̂x̂x)

−p(xsxsxs ; x̂̂x̂x)∇∇∇g (xsxsxs ;xrxrxr )
)
· dSSS , (6.14)

where we show dependencies on space but omit those on frequency for brevity. Let the
medium outside V be reflection-free. Then the Green’s function is purely out-going,
while p(xxx; x̂̂x̂x) is both in-coming and out-going with respect to V . Hence, we can write

p(xxx; x̂̂x̂x) = p i n(xxx; x̂̂x̂x)+pout (xxx; x̂̂x̂x) , (6.15)

where the superscripts mark in-coming and out-going fields, respectively. Here we are
neglecting waves that travel along ∂V . Using a far-field approximation (e.g. Wapenaar
and Fokkema, 2006; Schuster, 2009) or pseudo-differential operator theory (Fishman,
1993), the latter circumventing the need for an approximation, one finds that the terms
g∇∇∇pout and pout∇∇∇g are identical, thus cancelling each other. On the other hand, the
terms g∇∇∇p i n and p i n∇∇∇g deliver the same outcome but with opposite sign, as p i n is an
in-coming and g an out-going field. Therefore, Equation 6.14 becomes

p(xrxrxr ; x̂̂x̂x) =
∫

xsxsxs∈∂V

2

ρ(xsxsxs )iω
∇∇∇g (xsxsxs ;xrxrxr )p i n(xsxsxs ; x̂̂x̂x) · dSSS . (6.16)

If p i n(xxx; x̂̂x̂x) happens to be a time-reversed field, i.e. p i n∗
(xxx; x̂̂x̂x), this equation still holds

when neglecting evanescent waves on the boundary ∂V (Wapenaar, 2020b). As a next
step, we can insert the fields from the wave Equation 6.8 into Equation 6.16. This is
possible because the respective overall field is source-free, i.e. just like our previously
defined field p(xxx; x̂̂x̂x) it has no sources in V . Furthermore, we replace the variable x̂̂x̂x by
x fx fx f in order to emphasise the dependence on the focusing location x fx fx f . The effective
sources, however, are at x̂̂x̂x and inject the in-coming field. This in-coming field is then
given by f (xxx;x fx fx f ), thus we get

g (xrxrxr ;x fx fx f )+ f (xrxrxr ;x fx fx f )− f ∗(xrxrxr ;x fx fx f ) =∫
xsxsxs∈∂V

2

ρ(xsxsxs )iω
∇∇∇g (xsxsxs ;xrxrxr ) f (xsxsxs ;x fx fx f ) · dSSS . (6.17)

This is the integral form for a closed boundary. We note here that this is the most general
representation relating focusing and Green’s functions, potentially having applications
of its own, which will be the subject of further research.
Ultimately, one is not limited to the case of a closed boundary. This is important be-
cause one of our main goals is to retrieve a medium’s Green’s function response from
remote, single-sided wave data – without access to enclosing boundaries. To that end,
let the volume be bounded by a horizontal interface ∂V0, e.g. at x3 = 0, and a half-sphere
∂V1. Setting the radius of the half-sphere to infinity and considering only the subset of
focusing functions for which f (xxx ∈ ∂V1;x fx fx f ) = 0 the contribution of the respective surface
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Figure 6.2: Illustration of the wave state setup for an open boundary. Rays indicate involved Green’s functions.

integral vanishes. In-coming and out-going fields are now down- and up-going fields,
respectively. Let xrxrxr and x̂̂x̂x be immediately below and above ∂V0, respectively, i.e. both
are very close to the surface but the receiver is still in V and the source outside V . As the
medium is reflection-free outside V and the down-going field pdown(xxx; x̂̂x̂x) is as such not
propagating along the horizontal boundary ∂V0, it follows that the field p(xrxrxr ; x̂̂x̂x) on the
left-hand side of Equation 6.16 becomes purely up-going, i.e.

pup (xrxrxr ; x̂̂x̂x) =

−
∫

xsxsxs∈∂V0

2

ρ(xsxsxs )iω

∂

∂x3
g (xsxsxs ;xrxrxr )pdown(xsxsxs ; x̂̂x̂x)d 2xsxsxs , (6.18)

where we assume a downwards pointing x3 axis. This is also sketched in Figure 6.2. In-
serting Equation 6.8 into Equation 6.18 again we now get

g (xrxrxr ;x fx fx f )− f ∗(xrxrxr ;x fx fx f ) =∫
xsxsxs∈∂V0

R(xsxsxs ;xrxrxr ) f (xsxsxs ;x fx fx f )d 2xsxsxs , (6.19)

with

R(xsxsxs ;xrxrxr ) =− 2

ρ(xsxsxs )iω

∂

∂x3
g (xsxsxs ;xrxrxr ) . (6.20)

This relation has exactly the same form as the single-sided Green’s function represen-
tation shown by, e.g., Wapenaar et al. (2014b). However, given our PDE-based deriva-
tion, the wavefields in our equation are significantly more general than previously un-
derstood. Because we rely on up-/down-decomposition only on the surface ∂V0, the in-
tegral fully accounts for evanescent waves inside the medium V . Furthermore, the con-
cept of a truncated model space becomes unnecessary, so refracted and diving waves
are included in the representation. Additional notes regarding a comparison with the
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Figure 6.3: Velocity model. The star denotes the location of an exemplary source for which we investigate its
wave propagation through the medium. The dark rectangle marks the volume of interest, which is considered
for this propagation study. The two black triangles refer to virtual source locations that are examined in more
detail in the Appendix.

traditional Marchenko scheme can be found in the Appendix.
We want to stress that integral Equation 6.17 is entirely general with respect to the fo-
cusing function f (xsxsxs ;x fx fx f ). If we consider the special case of q(xxx;x fx fx f ) = 0 for instance,
Equation 6.17 represents injecting the half-amplitude, time-reversed Green’s function
governing the half-amplitude homogeneous Green’s function. In fact, it is well known
that this time-reversal homogeneous Green’s function retrieval works for closed bound-
aries, but not for open boundaries as depicted in Equation 6.19 (Wapenaar and Thor-
becke, 2017). This representation generally produces non-physical artefacts. In the next
section we present a way of solving a particular form of Equation 6.19, i.e. the Marchenko
integral, for the Green’s and focusing function based on an estimate of the first arrival of
the Green’s function. We also discuss the approach in the context of the aforementioned
artefacts arising from the open boundary representation.

6.3. SOLVING THE MARCHENKO INTEGRAL FOR THE GREEN’S

FUNCTION
In this section, we want to focus on solving the open boundary Equation 6.19 for the
medium’s unknown Green’s function, based on having an estimate of its first arrival as
a priori information. The physical arguments closely follow those of Wapenaar et al.
(2014b), however, we are directly solving the more general un-coupled Marchenko in-
tegral, i.e. without up-/down-decomposition. For the sake of brevity, we neglect all ar-
guments in the following equations and instead use the discrete matrix-operator form
(van der Neut et al., 2015a) of Equation 6.19, i.e.

ggg − fff ∗ =RRR fff , (6.21)

where we assume any numerical integration details, such as scaling, to be included
within the discrete kernel of the RRR operator. In this paper we use the composite rectangle
rule for numerical integration. We want to stress that the focusing function fff which we
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Figure 6.4: Snapshots showing the wave propagation for the source and area marked in Figure 6.3. The left col-
umn, (a) to (i), shows the first arrival. The right column, (b) to (j), shows the true wavefields and the Marchenko
solutions in an interlaced manner. The bottom colours black and grey specify columns showing the true and
the estimated wavefield, respectively, separated by white lines. The first row, (a) and (b), is for 0.3 s, (c) and (d)
are for 0.4 s, (e) and (f) for 0.5 s, (g) and (h) for 0.6 s and (i) and (j) for 0.7 s. The colour bars are clipped at 1% of
the overall absolute maximum amplitude.
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investigate in the following is just one of many possible realisations of f (xxx;x fx fx f ) in Equa-
tion 6.8, i.e. for a particular source q(xxx;x fx fx f ). The realisation that we are interested in is
defined by certain causality arguments, more specifically, that fff and ggg are separable in
time-space domain such that fff is preceding ggg . These conditions are numerically im-
posed by introducing the windowing function ΘΘΘ (Wapenaar et al., 2014b; van der Neut
et al., 2015b). This function acts as a mask, i.e. ΘΘΘ is zero for times |t | > td (xrxrxr ;x fx fx f )+ ε
and one elsewhere. In this context td (xrxrxr ;x fx fx f ) is the first arrival time for a source at x fx fx f

and a receiver at xrxrxr and ε being greater zero accounts for the limited bandwidth of the
wavelet (Zhang et al., 2018). We postulate that this is the realisation of f (xxx;x fx fx f ) that is
most compact in the time-space domain. This focusing function has to extend up to the
time-reversed first arrival of the Green’s function in order to be able to produce a focus
at x fx fx f but can be assumed to be zero before it. In fact, this bound has to be symmetric in
time, since we can not record anything before having injected energy, thus the up-going,
time-reversed focusing function must be zero before the time-reversed first arrival of
the Green’s function, too. These separability assumptions hold in the reflection regime,
however, they break in complex media with significant diffracted energy and laterally lo-
calised velocity perturbations that induce caustics on the first arrivals.
When presenting the open boundary integral representation above, we alluded to the
fact that artefacts may arise in the retrieval of the Green’s function. Such artefacts are
well-known to arise from open-boundary systems when retrieving Green’s functions by
means of time-reversal (Wapenaar and Thorbecke, 2017). It is absolutely key that we
solve for the injected field instead of simply injecting, e.g., the time-reversed Green’s
function as done in the context of time-reversal. This important distinction is what
makes our Green’s function retrieval a full wavefield inverse scattering approach, as op-
posed to a direct application of conventional time-reversal principles. Hence, we find a
focusing field that only produces its own time-reversed copy with opposite sign as well
as the desired causal-only Green’s function when injected from a single-sided measure-
ment surface, but no noise or artefacts by apparently missing boundary data. This spe-
cific focusing function is therefore not only defined by the temporal preconditioning,
i.e. the window function ΘΘΘ, but also by the general form of the integral representation
itself, i.e. fff for an open boundary is different from fff for a closed boundary. The window
functionΘΘΘ is designed such that

ΘΘΘggg = gdgdgd (6.22)

ΘΘΘfff = fff , (6.23)

where ggg = gdgdgd +gmgmgm , i.e. the sum of the first arrival gdgdgd and the coda gmgmgm . Note that we use
the subscript d which was originally proposed in the Marchenko context to denote the
direct arrival in a truncated medium (Wapenaar et al., 2014b), but we are in fact referring
to the first arrival in the actual medium, which not only propagates upwards towards the
boundary, but also in all other directions. This important difference means that, here, gdgdgd

and also the respective travel times td (xrxrxr ;x fx fx f ) include diving and refracted waves from
the medium below x fx fx f . Because the window operator is a filter in the time domain, it acts
as a convolutional operator in the frequency domain (Wapenaar et al., 2014b). Applying
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this windowing to Equation 6.21 gives

gdgdgd − fff ∗ =ΘRΘRΘR fff . (6.24)

This represents the three-dimensional Marchenko integral. It follows from Equation
6.19 when choosing the most compact focusing function in time along with consequent
causality arguments. Time-reversing this relation yields

gdgdgd
∗− fff =ΘRΘRΘR∗ fff ∗ , (6.25)

noting thatΘΘΘ is symmetric in time. Applying the window operatorΛΛΛ= III −ΘΘΘ to Equation
6.21 we also get

gmgmgm =ΛRΛRΛR fff . (6.26)

Rearranging Equation 6.24 for fff ∗ and inserting it into Equation 6.25, we obtain

fff = (
III −ΘRΘRΘR∗ΘRΘRΘR

)−1(gdgdgd
∗−ΘRΘRΘR∗gdgdgd

)
. (6.27)

Inserting this into Equation 6.26 and adding gdgdgd , we get

ggg = gdgdgd +ΛRΛRΛR
(
III −ΘRΘRΘR∗ΘRΘRΘR

)−1(gdgdgd
∗−ΘRΘRΘR∗gdgdgd

)
. (6.28)

This expression delivers the Green’s function for a virtual source inside of an inaccessible
volume measured at receivers on the surface from an estimate of the first arrival of the
Green’s function gdgdgd , the windowing function ΘΘΘ and the single-sided reflection data RRR.
While RRR can be obtained from a measurement, one needs to have an estimate of the
physical medium to approximate gdgdgd . Generally, we assume that a smooth, kinematically
correct version of the actual model is sufficient. Similarly, we require such a model to
build the windowing operatorΘΘΘ, i.e. to find the first arrival times, e.g., via ray-tracing.
Rather than solving for either ggg or fff we can also solve for

bbb ≡R fR fR f =RRR
(
III −ΘRΘRΘR∗ΘRΘRΘR

)−1(gdgdgd
∗−ΘRΘRΘR∗gdgdgd

)
, (6.29)

such that both fff and ggg follow from the respective filtering in the time domain, i.e.

ggg = gdgdgd +ΛbΛbΛb (6.30)

and

fff ∗ = gdgdgd −ΘbΘbΘb . (6.31)

If the operator norm of ΘRΘRΘR∗ΘRΘRΘR is smaller than one, we can use a Neumann series to
estimate the inverse in Equations 6.27, 6.28 and 6.29, i.e.

(
III −ΘRΘRΘR∗ΘRΘRΘR

)−1 =
∞∑

k=0

(
ΘRΘRΘR∗ΘRΘRΘR

)k . (6.32)

90



6

6. GREEN’S FUNCTION RETRIEVAL IN THREE-DIMENSIONAL INVERSE SCATTERING

Regarding the accordingly gained infinite series for ggg , i.e.

ggg = gdgdgd +ΛRgdΛRgdΛRgd
∗−ΛRΘRΛRΘRΛRΘR∗gdgdgd + . . . , (6.33)

one can indeed derive the same result from the coupled Marchenko equations (Wape-
naar et al., 2014b). However, the previous result assumes up-/down-decomposition in-
side the volume, which means that laterally propagating waves and those which are
evanescent in the vicinity of x fx fx f are excluded. Furthermore, the previous gdgdgd is defined in
a truncated medium, and thus excludes refracted or diving waves that are often present
in real media. We derived the solution without the need of a truncated medium, circum-
venting up-/down-decomposition at the focusing level. As a result of this, our newly
adjusted Marchenko method is, in principle, able to retrieve the full wavefield response
of the medium. We did not prove that the focusing function always exists under the
above conditions, i.e. separated from the Green’s function and for an open boundary.
We suspect, however, that it does as long as the model complexity is moderate. If it ex-
ists, the inverse in Equations 6.27, 6.28 and 6.29 exists and we can use the described
method to estimate the Green’s function. There are of course still limitations with re-
gard to, e.g. finite apertures (e.g. Sripanich and Vasconcelos, 2019), spatial sampling of
the integrands (Peng and Vasconcelos, 2019; Wapenaar and van IJsseldijk, 2020), model
complexity (Vasconcelos and Sripanich, 2019), band limitation (Dukalski et al., 2019) and
the accessible background model information. In the next section we show a numerical
example in support of our theoretical findings and illustrate some remaining issues.

6.4. NUMERICAL EXAMPLE: FULL WAVEFIELD RETRIEVAL IN A

HETEROGENEOUS MEDIUM
In this section we investigate a numerical example in the geophysical context. We want
to show that the Marchenko integral can be used to retrieve the full wavefield, including
evanescent and refracted waves. Here, we focus on the single-sided integral represen-
tation in Equation 6.19 and solve it as suggested in Equation 6.33. Hence, we rely on
wavefield observations at the horizontal upper boundary of a heterogeneous, scattering
half-space. In real-life applications, such measurements are typically limited to a finite
aperture, i.e. sources and receivers only cover a certain extension of ∂V0. We use the two-
dimensional model in Figure 6.3 with constant mass density ρ = 2000 kg/m3. We rename
x1 and x3 for two dimensions, i.e. xxx = (x, z). We use 501 equally spaced receivers on the
surface and record 501 shots for sources on the same grid. Note that the model is more
complex than conventional velocity media used for numerical studies of the Marchenko
integral (e.g. Wapenaar et al., 2014b, 2017), i.e. here we consider a shallow high velocity
layer and relatively large velocity contrasts.
In order to visualise the estimated wave propagation through the volume, we solve the
Marchenko integral for the Green’s functions of all points within the dark rectangle in
Figure 6.3 according to Equation 6.33 – regularly sampled from x = 1192 m to x = 2808 m
and from z = 0 m to z = 1600 m at every 4 m both in x- and z-direction. Then we make
use of source-receiver reciprocity and choose the same receiver location xrxrxr for all these
Green’s functions to get the Green’s function for a source at the respective surface loca-
tion xrxrxr measured at all x fx fx f in the volume under investigation.
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Figure 6.5: Difference of the true and the estimated snapshot for 0.6 s, compare Figure 6.4 (h). The black
contours show the geometry of the velocity model. The colour bar is clipped at the same values as in Figure
6.4.

We start by using the correct first arrival wavefield gdgdgd and window operator ΘΘΘ, which
in this particular case we obtain from modelling in the correct velocity model. This is
done solely as a proof of concept, i.e. to show that the Marchenko integral performs suf-
ficiently well. Figure 6.4 presents five snapshots of the wave propagation for a source
in the top left corner of the target volume. In the left column we show gdgdgd . As we are
using the correct medium, these wavefields actually show the correct Green’s function,
however, they are masked by ΘΘΘ as we only use the first arrivals. In the right column we
show the correct and the estimated snapshots. The two wavefields are superimposed
and visualised in an alternating fashion to facilitate their comparison. These snapshots
show a very good match between true and estimated fields. In particular, the estimated
wavefields include refracted and evanescent waves, observable, e.g., in the region of the
fourth layer, see arrows in Figures 6.4 (d), 6.4 (f) and 6.4 (h). While one can only see a sin-
gle event in Figure 6.4 (d), Figures 6.4 (f) and 6.4 (h) show a separate refracted (vertical
arrow) and evanescent (diagonal arrow) wave. Looking more closely into the accuracy
of the estimated field, Figure 6.5 depicts the absolute error of the true and the estimated
wavefield at 0.6 s. Note that the colour bar is clipped at the same amplitudes as in Fig-
ure 6.4. Hence, Figure 6.5 shows that the fields match well almost everywhere within the
medium, but it also reveals regions where the Marchenko field is reconstructed slightly
worse. These errors mainly manifest as poorly matched amplitudes rather than un-
wanted wavefield artefacts. The first of these poorly matched regions, marked by I in
Figure 6.5, refers to the nearly horizontally travelling wave near the surface. Given the
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Figure 6.6: Smoothed versions of the model in Figure 6.3. The smoothing degree increases linearly from (a) to
(b) to (c).

up-/down-decomposition at the surface ∂V0 in our derivation, it might be challenging
for the Marchenko integral to incorporate the energy of this particular field that arrives
at the receivers under such a near-horizontal propagation angle. This would probably
improve for wider bandwidth and/or larger aperture data. Furthermore, the misfit is
right at the edge of the window function ΘΘΘ, i.e. right after the first arrival of the Green’s
function. This makes it hard for the method to retrieve accurate amplitudes. The sec-
ond poorly matched area, marked by II, refers to a rather steep, deeper event. As this
up-going wavefront is yet to travel through the fourth, high-velocity layer, its slope, i.e.
in terms of horizontal wavenumber, can be assumed to increase even further on its way
up. We surmise that this amplitude mismatch is mainly caused by the limited aperture
of the numerical experiment, i.e. missing sources and receivers, especially at x > 4 km.
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Figure 6.7: Snapshots showing the wave propagation for the source and area marked in Figure 6.3. Left and
right column show, as before, the first arrival and the true/estimated wavefield, respectively. Black bottom
colour marks the true, grey the estimated wavefield columns. The first row (a, b) is obtained for the lightly
smoothed velocity model in Figure 6.6 (a), the second row (c, d) for the moderately smoothed model in Figure
6.6 (b) and the last row (e, f) for the considerably smoothed model in Figure 6.6 (c). The colour bars are clipped
at 1% of the overall absolute maximum amplitude. All snapshots show the same propagation time, i.e. 0.3 s.

We want to stress that the Neumann expansion was truncated at a constant term for this
experiment. Including additional terms may also lead to potentially further improved
amplitudes for I and II. Overall, our numerical example supports the claim that our
un-coupled Marchenko integral can be used to reproduce the full non-linear scattering
of the Green’s function, including evanescent and refracted waves within the medium.
There are still limits in the accuracy of the here retrieved wavefields mainly related to
the band limitation of the data, the windowing operator and the limited extension of the
measurement surface.
In most practical scenarios, one does not typically have access to the correct first ar-
rival. Therefore, we want to analyse the outcomes for three different approximations of
gdgdgd based on smooth estimates of the correct wavespeed model, displayed in Figure 6.6,
with increasing degrees of inaccuracy relative to the actual medium. Such models may
be obtained by tomographic inversion methods for instance (e.g Rawlinson et al., 2010).
While the models are potentially too smooth to produce reflections they can be used
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Figure 6.8: Similar to Figure 6.7, but for a propagation time of 0.6 s. The big green windows in (d) and (f) show
zoomed-in regions. Their respective locations are marked by the small green windows.

to approximate the first arrival gdgdgd and the window operator ΘΘΘ. Then, the Marchenko
integral can be utilised to approximate all orders of scattering inside the medium. Gen-
erally speaking, the estimated Green’s function combines the kinematic information of
the background model comprised in the first arrival with the reflection measurement,
seeking to find a consistent wavefield that matches both. Figure 6.7 shows the esti-
mated wavefields for a propagation time of 0.3 s. At first glance, all three estimated fields
show comparable results. While the reflections are not known a priori, we retrieve them
through the Marchenko scheme, using the information from the smooth background
models. It is, however, easily observed that the estimated wavefields also contain a sig-
nificant amount of noise. There are artefacts, mostly in form of apparently steep, co-
herent events. While they are lower in amplitude than the desired signal, they are not
negligible. Furthermore, we observe that these artefacts become more pronounced for
smoother background models, i.e. the field in Figure 6.7 (b) is better than that in Figure
6.7 (f). Figure 6.8 presents the snapshots at a later propagation time of 0.6 s. Again, all
estimated fields appear to be of similar, good quality at first sight. In fact, the wavefields
seem to be better for higher propagation times, i.e. there are fewer visible artefacts com-
pared to the earlier-time counterparts in Figure 6.7. Evanescent and refracted waves are
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still retrieved, albeit with lower accuracy. Upon closer inspection, however, there are still
evident biases. Especially for the smoothest model, Figure 6.6 (c), the interlaced snap-
shot, Figure 6.8 (f), reveals significant phase shifts between true and estimated arrivals.
This is a result of an inaccurate gdgdgd estimate, which is observable by comparing the first
arrivals in the bottom right area of Figure 6.8 (f) between true and estimated fields. This
misfit affects all later reflections and produces significant phase and amplitude errors
at all orders of scattering. Both local and coherent artefacts can be inspected in greater
detail in the zoomed-in regions in Figures 6.8 (d) and 6.8 (f). While the wavefield is still
rather good for the former, it reveals a different shape and several point-like structures
in the latter. In fact these artefacts also relate to the stability of the Marchenko integral.
It is not evident that the inverse in Equations 6.27, 6.28 and 6.29 should always exist,
in particular when considering complex media and/or inaccurate background models,
the latter reflecting upon the quality of the window operatorΘΘΘ. Empirically, we find this
inverse to be generally stable for moderately heterogeneous media, e.g., media where ve-
locity increases rather monotonically with depth. In these cases, even strong smoothing
of the true model delivers an appropriateΘΘΘ and a stable inverse. Furthermore, the Neu-
mann expansion in Equation 6.33 appears to deliver a convergent series then. For more
complex settings, as, e.g., the model in Figure 6.3, the inverse can become unstable, in
particular as the background models used to obtain ΘΘΘ become smoother. We also ob-
served, in addition, that using a truncated model as required by the original Marchenko
approach (Wapenaar et al., 2014b) leads to even greater instability (see Appendix). Fi-
nally, we point out that we use a finite Neumann series to solve the Marchenko equation
in this paper, where the order of the last term can be thought of as playing a regularisa-
tion role. In fact, the leading-order solution already yields an accurate first guess, while
remaining stable even for relatively inaccurate background models, i.e.

ggg ≈gdgdgd +ΛRgdΛRgdΛRgd
∗−ΛRΘRΛRΘRΛRΘR∗gdgdgd +ΛRΘRΛRΘRΛRΘR∗ΘRgdΘRgdΘRgd

∗

−ΛRΘRΛRΘRΛRΘR∗ΘRΘRΘRΘRΘRΘR∗gdgdgd . (6.34)

For the results shown in this paper, we use the tenth-order truncated series. This order
is chosen for its accuracy seems adequate and the computational cost reasonable, while
still delivering sensibly regularised results for the investigated smoothed models.
These numerical results support our hypothesis that the Marchenko integral is gener-
ally valid for the full wavefield. The quality of the reconstructed wavefields is shown to
depend on the quality of the required a priori model in terms of producing an accurate
first arrival estimate. While we can use smooth medium-parameter estimates, they can
introduce artefacts and phase shifts in the resulting wavefields. We found these effects to
be strong for highly complex media and addressing a better practical scheme for Green’s
function retrieval in such cases is the topic of current research. However, with the current
practical scheme, the Marchenko integral can generally be used to obtain a rather reli-
able approximation of the entire wavefield within a volume of interest for a wide range
of medium configurations.
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6.5. DISCUSSION

We present a new derivation for the Marchenko integral which proves that the equation
is more general than previously assumed. Introducing the concept of the homogeneous
Green’s function of the second kind is the key point in this derivation. While previous
versions of Marchenko representations target very particular choices for the focusing
function, e.g., defined by means of the transmission operator of an auxiliary, truncated
medium (Wapenaar et al., 2014b), we present a generalisation of focusing functions,
which encompasses previous choices but accommodates for new approaches. Using
conventional reciprocity theorems one can easily obtain integral representations that
relate the Green’s and focusing functions to observed reflection data. These data can
either be obtained on a closed or an open boundary, and for either case our respec-
tive Marchenko-like formalism is well-defined. Furthermore, we present a new, general
strategy for solving the un-coupled Marchenko integral to infer the medium’s response
from open boundary observations, i.e. for a single-sided reflection experiment. The
physical arguments that lead this solution are generally equivalent to those by Wapenaar
et al. (2014b). To obtain the Green’s function from Equation 6.19 we rely on the special re-
alisation of a focusing function that is most compact in time-space. This focusing func-
tion has the benefit of being separable from the Green’s function in time, thus allowing
for a solution of the Marchenko integral based on an estimate of the first arrival gdgdgd . Ad-
ditionally, the method circumvents artefacts that are conventionally introduced by open
boundary integral representations, delivering, in principle, an unbiased Green’s function
estimate. Kiraz et al. (2020) recently presented a heuristic, iterative scheme to solve the
closed boundary integral Equation 6.17 using the very same, time-compact, physical re-
alisation of a focusing function. In this case, injecting f (xxx;x fx fx f ) into the medium delivers
a wavefield that, when adding its complex conjugate, equals the homogeneous Green’s
function of the first kind. Our generalised framework for focusing functions might be
useful for future studies, e.g. directly involving the partial differential Equation 6.8. In
particular, there might be possibilities of including focusing functions in other inverse
scattering approaches without explicitly relying on the Marchenko equation, such as full
waveform inversion (Virieux and Operto, 2009) or the contrast source method (van den
Berg and Abubakar, 2001).
Our numerical studies show that the Marchenko integral can be used to obtain an ac-
curate approximation of the full wavefield Green’s function from only an estimate of
its first arrival and single-sided reflection data. The necessary a priori estimate of the
first arrival can be based on a reference model, i.e. a smooth estimate of the actual
model. We show how, under this new theory, the corresponding adaptions to the ex-
isting Marchenko workflow produce reliable wavefields for relatively complex models –
with the key addition of retrieving evanescent and refracted fields within an unknown
scattering medium. Furthermore, we present the estimated wavefields for an entire vol-
ume allowing for a more thorough, spatially dependent analysis of propagation effects.
Finally, we discuss the impact of the accuracy of the background model used to approx-
imate gdgdgd . For complex media, a poor estimate of the first arrival from an inaccurate
reference model can produce significant local artefacts and phase shifts in the recovered
fields, but it still allows for a good approximation of the global, scattered field. When in
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Figure 6.9: Time-reversed focusing function fff ∗ (a) and Green’s function ggg (b) obtained with our approach.
Time-reversed focusing function fff ∗ (c) and Green’s function ggg (d) obtained with the conventional approach.
All fields are for the virtual source location x fx fx f marked by the downwards pointing triangle in Figure 6.3 and
show the respective fields for all receivers xrxrxr on the surface of the model. All colour bars are clipped at the
same value, i.e. at about one precent of the absolute maximum amplitude of all four wavefields.

doubt about the quality of the reference medium in achieving sufficiently accurate first
arrival estimates, we suggest to use a first-order truncated Neumann series, generally
allowing for a stable yet reasonably accurate estimate of the Green’s function. Alterna-
tively, one may solve Equations 6.27, 6.28 and 6.29 directly using a numerical solver like
LSQR (Paige and Saunders, 1982; Dukalski and de Vos, 2017).
As mentioned earlier, there are variations of the conventional Marchenko scheme that
can be used for primary estimation, i.e. multiple reflections can be filtered out (van der
Neut and Wapenaar, 2016; Zhang and Slob, 2019). Such primary estimation schemes
can be applied without the need for a parameter, e.g. wavespeed, model, making them
rather attractive for processing wavefield data. It is yet to be investigated, how our find-
ings can be linked to these methods. While we only consider acoustic waves in this pa-
per, some studies already investigated the conventional Marchenko method for elastic
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Figure 6.10: Similar to Figure 6.9, but for the virtual source location x fx fx f marked by the upwards pointing triangle
in Figure 6.3.

waves (da Costa Filho et al., 2014; Wapenaar and slob, 2015; Reinicke et al., 2020). This
extension is valuable for certain data applications, e.g. seismic imaging or medical elas-
tography, and it will be a topic of future research to connect our new insights with these
studies.
We note that the coupled Marchenko system (Wapenaar et al., 2014b) remains very use-
ful. In the example of geophysical applications, there is purpose to directly estimate
the decomposed up- and down-going Green’s functions at a certain level in the medium.
This allows for so-called redatuming and target-oriented imaging, independent of model
perturbations above the redatuming level (e.g. Singh and Snieder, 2017; Cui et al., 2020).
The implicit model truncation, however, that is inherent to the coupled Marchenko ap-
proach, might be an issue in complex media. In these cases it might be beneficial to
solve the un-coupled Marchenko integral first, see Section 6.3, and then decompose the
estimated Green’s functions afterwards if desired or, alternatively, to adjust the coupled
Marchenko equations to match our new scheme. There are also applications that can
make use of the full Marchenko-estimated wavefield inside a volume of interest. Such a
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wavefield might for instance be used to estimate the scattering potential, i.e. the pertur-
bations of the medium that are missing in the reference model and induce the scattered
wavefield (Cummings and Curtis, 2020; Diekmann and Vasconcelos, 2020). It will be a
topic of future research to see what other ways there are for the Marchenko approach
to add value to related inverse scattering and imaging schemes and, in this regard, for
it to be applied not only in geophysical, but also in, e.g., medical applications and non-
destructive testing.

6.6. CONCLUSION
We introduce the homogeneous Green’s function of the second kind delivering a frame-
work for focusing functions that is substantially more general than in previous Marchen-
ko related applications. Based on the resulting partial differential equation, we can con-
struct integral representations for the involved wavefields. The single-sided represen-
tation is identical in its form to the previously derived three-dimensional Marchenko
relations, however, our new derivation imposes significantly fewer limitations on the re-
trievable wavefields, while accommodating also for closed boundary representations.
As such, we find that the Marchenko equation is therefore more general than previ-
ously assumed and can indeed be used to obtain the full wavefield response from an
unknown scattering medium including evanescent and refracted waves. For practical
Green’s function retrieval, we present a direct solution of the un-coupled Marchenko in-
tegral that follows certain causality assumptions – in a manner analogous to the current
approach for the coupled Marchenko representation. It is only in this step, that we make
use of a particular realisation of the focusing function that is purposefully chosen to be
separated from the Green’s function in time. Lastly, we show numerical examples that
illustrate the Marchenko integral’s capability of estimating the entire, full field Green’s
function from an estimate of the first arrival and single-sided reflection data. This paves
the way for more complex data applications and a potentially broader usage in related
imaging sciences.
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APPENDIX: COMPARISON WITH THE CONVENTIONAL MAR-
CHENKO SCHEME
In the following, we want to illustrate and discuss differences of our newly interpreted
Marchenko-based Green’s function retrieval approach and the conventional method.
For the theory of the conventional method we refer the interested reader to previous
works (e.g. Wapenaar et al., 2013, 2014b, 2016; van der Neut et al., 2015b).
In the conventional approach, the focusing function is defined as the inverse transmis-
sion response in a truncated medium and its direct arrival is approximated by the time-
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reversed direct Green’s function (Wapenaar et al., 2014b). This approximation of the di-
rect arrival of the focusing function is conventionally regarded as the necessary a priori
information when solving for a virtual Green’s function. However, the approximation
is known to be insufficiently accurate when complex models are considered (Vasconce-
los et al., 2015). In our approach, we do not define the focusing function via an inverse
transmission response. Instead, we show that there are many functions f (xxx;x fx fx f ) that
obey Equation 6.19. It is only for the most compact of these focusing functions in time-
space domain, however, that we are able to solve the system for the Green’s function.
Furthermore, we use a different window operator ΘΘΘ, i.e. as suggested by, e.g., Zhang et
al. (Zhang et al., 2018) versus the conventional window (Wapenaar et al., 2014b). This
window operator shifts the a priori information from the direct arrival of the focusing
function (in the conventional approach) to the first arrival of the Green’s function (in
our approach). Hence, we indeed require an accurate guess of the first arrival Green’s
function as a priori information and not an inverse transmission response. As already
pointed out several times throughout the paper, we never consider a truncated medium
wave state. Therefore, the required a priori information is the first arrival of the Green’s
function in the actual medium, including diving and/or refracted waves – no approxi-
mations involved.
Our newly adjusted Marchenko scheme can incorporate diving and refracted as well as
evanescent waves. While we show results to proof these points for our method above,
we want to do a comparison with the conventional approach here to directly highlight
differences. Figures 6.9 and 6.10 show time-space domain focusing functions f (xrxrxr ;x fx fx f )
and Green’s functions g (xrxrxr ;x fx fx f ) for the two virtual source locations marked in Figure 6.3
both using our approach and the conventional approach. We use the correct first arrival
and direct arrival Green’s functions, respectively, where the latter is obtained by mod-
elling in the accordingly truncated, correct medium. For both approaches we use the
same, unfiltered reflection data, i.e. including also, e.g., refracted arrivals. The arrows in
Figures 6.9 (b) and 6.10 (b) denote refracted waves that are reconstructed by our scheme,
but not by the conventional one. The conventional method can not obtain any Green’s
function contributions before the direct arrival in the truncated medium, neglecting re-
fracted waves and, in general, diving waves, as they obey the same physics. Regarding
evanescent waves, we note that the traditional theory excludes them (Wapenaar et al.,
2014b) while our new theory includes them.
Last but not least, Figures 6.9 and 6.10 illustrate the instability of the conventional ap-
proach. Comparing the focusing functions in Figures 6.9 (a) and 6.10 (a) with those in
Figures 6.9 (c) and 6.10 (c) one clearly sees largely increased amplitudes in the latter. This
indicates a divergence related energy growth of the Neumann series for the conventional
approach.
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7
A NOTE ON MARCHENKO-LINEARISED

FULL WAVEFORM INVERSION FOR IMAGING

Full waveform inversion and least-squares reverse time migration are the leading
technologies for imaging with seismic waves. Both of them usually rely (in one way or
another) on a single-scattering approximation, i.e. the Born approximation, to compute
gradients and obtain an updated model. This approximation linearises the relation be-
tween modelled data and model by ignoring multiple scattering. We propose to use the
Marchenko integral, an equation originating from inverse scattering theory, to obtain an
alternative linear equation. Using the Marchenko method we can retrieve Green’s func-
tions, including all orders of scattering, for virtual sources anywhere within the volume
of interest – without prior knowledge of the high-wavelength model variations that in-
duce scattering. Plugging these estimated Green’s functions into the Lippmann-
Schwinger integral delivers a Marchenko-linearised relation between the full waveform
data and the model. We present this new linearisation strategy and illustrate its ad-
vantages and disadvantages by comparing numerical results for different inversion ker-
nels. Our new linearisation is exact, i.e. it does not exclude any orders of scattering,
however, it relies on the quality of the Marchenko-derived Green’s functions. These
Marchenko-based Green’s functions require an estimate of the first arrivals of the Green’s
functions – commonly obtained by modelling in a background medium. Although these
first arrival estimates strongly bias our results for inaccurate background models, we
find the Marchenko-linearisation to deliver overall slightly better inverted models than
the single-scattering approximation.

7.1. INTRODUCTION
Inferring the physical properties of a volume from its scattering response to incident,
e.g., acoustic waves is essential for many applications, ranging from non-destructive
testing (Grohmann et al., 2017) over medical imaging (Bernard et al., 2017; Guasch et al.,
2020) to seismic imaging (Warner et al., 2013). Regarding high-resolution imaging with
seismic waves there are two main state-of-the-art strategies in Geophysics: least-squares

The content of this chapter was published as Diekmann et al. (2023b).
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reverse time migration (LSRTM) and full waveform inversion (FWI). Both of these meth-
ods rely on reducing the misfit between the measured, scattering data on the medium’s
boundary and the respectively estimated data, obtained from numerical modelling.
LSRTM requires a background model, containing the long-wavelength variations of the
physical properties, and aims to retrieve the missing reflection model, i.e. the short-
wavelength model structures that induce scattering (Dai et al., 2012). The background
model can for instance be obtained via tomography (Rawlinson et al., 2010). LSRTM is
based on the Born integral (Born and Wolf, 1999) which provides an approximate, linear
relation between the modelled data and the desired reflection model. This Born integral
is at its core a single-scattering approximation, meaning that multiply scattered waves
can not be handled accurately in LSRTM (in particular if the unknown, short-wavelength
model perturbations are large). There are, however, various strategies to include multi-
ple scattering in LSRTM, dealing with both surface-related multiples (Zuberi and Alkhal-
ifah, 2014) and internal multiples (Malcolm et al., 2009; Zhang and Schuster, 2014; Wang
et al., 2020).
FWI on the other hand attempts to estimate the model from as little prior information
as possible – usually starting with a rather simple initial model (Tarantola, 1984; Virieux
and Operto, 2009; Virieux et al., 2017). FWI is a non-linear inversion strategy, i.e. it ac-
curately represents the non-linear relation between modelled data and model. It can be
solved in the following way: modelling in the initial model delivers wavefields that can
be plugged into the Born integral. This linear system can be solved to obtain an updated
model. This new model can then be used for remodelling the wavefields, using Born
again and so on. Starting by matching the low-frequency content of the measured data
and sequentially including higher frequencies, FWI attempts to avoid artefacts from the
single-scattering approximation underlying its gradient computations. To further over-
come local minima, i.e. converging to wrong models when, e.g., low frequency data are
unavailable, improved formulations of FWI, such as extended FWI (Huang et al., 2018;
van Leeuwen, 2019), adaptive waveform inversion (Warner and Guasch, 2016) or inver-
sion based on optimal transport (Métivier et al., 2019; Engquist and Yang, 2022), were
presented.
We note that there are also reflection FWI approaches that focus on inverting for high-
frequency model perturbations (Yao et al., 2020) as well as non-linear formulations of
LSRTM (Yao and Jakubowicz, 2012). In practice, LSRTM and FWI depart in three main
aspects. Firstly, their goal: FWI is generally used as a high-end, long-spatial-scale ve-
locity model building tool, whereas LSRTM aims at retrieving the sharp components –
the details – of the subsurface structure, commonly referred to as an image. Secondly,
because of their different goals, different parts of the data are employed for FWI (e.g.,
long-offset data, diving/head waves) and LSRTM (e.g., short-offset data, reflected and
diffracted waves) to condition the input data for inversion toward the desired length
scales. Thirdly, owing to the different desired scales in target models, FWI and LSRTM
often differ on how the models are parametrised in the inverse problem, both in terms of
separating background versus update components, as well as physical quantities them-
selves, e.g., FWI favouring velocity parametrisation and LSRTM favouring impedance or
reflectivity parameters. These three key differences often result in significantly different
practical strategies in data-misfit metrics, gradient preconditioning/shaping and opti-
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misation.
In this paper, we discuss an alternative to the single-scattering approximation, i.e. an-
other way to obtain a linear relation between the modelled data and the model and thus
to compute a model update. Our proposed strategy is fundamentally based on using
the Marchenko integral (Wapenaar et al., 2014b). The Marchenko integral was originally
introduced in the context of one-dimensional inverse scattering theory (Burridge, 1980;
Rose, 2001; Broggini et al., 2012). It relates Green’s functions and so-called focusing func-
tions via the reflection response of the medium measured on its boundary. Its exten-
sion to 2D and 3D about ten years ago enabled various applications regarding imaging
in complex media (Wapenaar et al., 2013; Meles et al., 2015; Ravasi et al., 2016; Vargas
et al., 2021). Most importantly for this paper, the Marchenko integral allows for retriev-
ing the Green’s function for a virtual source inside of an inaccessible medium – it does,
however, require an estimate of the first arrival of the desired Green’s function. This first
arrival is usually obtained by modelling in a smooth background, i.e. a long-wavelength-
accurate, medium. This means, that one can obtain the full Green’s function, including
all orders of scattering, for a virtual source located anywhere inside of the volume of in-
terest without requiring an actual physical source inside the volume or having to know
the medium’s high-frequency, scattering-inducing physical property perturbations.
Marchenko Green’s functions can be used for LSRTM and FWI in various ways. Com-
monly, the Marchenko method is used for redatuming the wavefields to a target level,
where different inversion strategies can be used to image the medium (Cui et al., 2020;
Shoja et al., 2020, 2022). Instead, we propose to use Marchenko-based Green’s functions
inside the kernel of the inverse problem (Diekmann and Vasconcelos, 2020; Diekmann
et al., 2021): by plugging the estimated Green’s functions into the Lippmann-Schwinger
integral (Lippmann and Schwinger, 1950) we obtain a new, linear relation between mod-
elled data and model. This linear relation can be used to obtain a model update, i.e. to
invert for the model. The linearisation is (in theory) exact, i.e. by using the full Green’s
functions with all orders of scattering rather than background Green’s functions (as done
in the Born integral) we get an exact, linear system. There are, however, other assump-
tions and approximations underlying the Marchenko scheme and, consequently, this
new linearisation. Hence, we do not necessarily consider this a superior method to well-
established schemes, but we aim to explain, discuss and illustrate the possibilities and
limitations of using Marchenko methods to linearise seismic imaging. We will refer to
our approach as Marchenko-linearised full waveform inversion, although the approach
is generally quite similar to LSRTM – it is, however, not based on a single-scattering ap-
proximation but supposed to accurately include multiple scattering and, therefore, the
full wavefield.
We start by introducing the Lippmann-Schwinger integral which forms the basis for gra-
dient computations in seismic inversion. Then we discuss Green’s function retrieval by
the Marchenko method. Next, we discuss our Marchenko-linearised full waveform in-
version strategy. Finally we show numerical results for different kernel approximations
to compare and evaluate the quality of our new Marchenko-linearisation.
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7.2. LIPPMANN-SCHWINGER INTEGRAL
The constant-density acoustic wave equation is given by

L (xxx,ω)u(xxx,ω) = ρiωs(xxx,ω) (7.1)

with the wave operator

L (xxx,ω) =∇2 + ω2

c2(xxx)
, (7.2)

the wavefield u(xxx,ω) at location xxx = (x1, x2, x3) and frequencyω and the volume injection
rate density source term s(xxx,ω). The constant mass density is denoted by ρ and velocity
by c(xxx), i marks the imaginary unit.
The Green’s function is the causal wavefield that obeys

L (xxx,ω)g (xxx,ω;xsxsxs ) = ρiωδ(xxx −xsxsxs ) , (7.3)

i.e. it is the medium response to an impulse source at location xsxsxs . Similarly, we can
define a background Green’s function in a background medium, i.e. a medium with dif-
ferent physical properties, for a source at xrxrxr according to

L0(xxx,ω)g0(xxx,ω;xrxrxr ) = ρiωδ(xxx −xrxrxr ) (7.4)

with

L0(xxx,ω) =∇2 + ω2

c2
0 (xxx)

(7.5)

and the velocity c0(xxx). We will assume that c0(xxx) is a smooth background model, while
c(xxx) is the actual model. As before, this background Green’s function is a causal wave-
field.
Making use of reciprocity (Schuster, 2009; Fokkema and van den Berg, 1993; Snieder and
Van Wijk, 2015), we can combine Equations 7.3 and 7.4 to obtain the following volume
integral:

gs (xrxrxr ,ω;xsxsxs ) =
α(ω)

∫
xxx∈V

g0(xxx,ω;xrxrxr )g (xxx,ω;xsxsxs )ν(xxx)dV , (7.6)

where we use the scattered Green’s function

gs (xrxrxr ,ω;xsxsxs ) = g (xrxrxr ,ω;xsxsxs )− g0(xrxrxr ,ω;xsxsxs ) , (7.7)

the scattering potential

ν(xxx) = 1

c2(xxx)
− 1

c2
0 (xxx)

, (7.8)
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Figure 7.1: Sketch to illustrate the matrix-operator Equations 7.10 (top) and 7.11 (bottom). The matrix G (red)
is diagonal, whereas G0 (blue) has dense batches (number of receivers × number of volume sample points)
along its diagonal. The matrix M (magenta) is dense. The arrows represent which variable, i.e. the receiver

location xrxrxr or volume sample xxx, is changing in the respective direction and range. The variables xxxi
sss and xxx

j
sss and

ωm and ωn denote different source locations and frequencies, respectively.

and the scaling factor

α(ω) = iω

ρ
, (7.9)

see Appendix for details. The volume V contains xrxrxr and xsxsxs as well as all perturbations
of the scattering potential, i.e. ν(xxx ∉ V ) = 0. Equation 7.6 is the Lippmann-Schwinger
integral (Lippmann and Schwinger, 1950).
We can write the Lippmann-Schwinger integral in matrix-operator form as

gs = G0Gννν , (7.10)

where the matrices G0 and G contain the respective background Green’s functions and
Green’s functions. Note that G0 also contains the scaling term, see Equation 7.9, as well
as an additional scaling factor to account for the integration, e.g. ∆x2 for a square grid
in two dimensions where ∆x is the spacial sampling interval. The vector gs contains the
scattered Green’s function, Equation 7.7, and the vectorννν the scattering potential, Equa-
tion 7.8. Equation 7.10 accurately represents a discretized Lippmann-Schwinger integral
for multiple receiver locations xrxrxr , source locations xsxsxs and frequencies ω, however, it is a
fairly big and sparse system, compare Figure 7.1. A more convenient way of setting up
the linear system is

gs = Mννν , (7.11)
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where M = G0G is a dense matrix, see Figure 7.1.

7.3. MARCHENKO-BASED GREEN’S FUNCTION RETRIEVAL
We define the focusing function as the wavefield (Chapter 6)

L (xxx,ω)
(− f ∗(xxx,ω;x fx fx f )

)=−ρiωδ(xxx −x fx fx f )

2
−q(xxx,ω) , (7.12)

where − f ∗(xxx,ω;x fx fx f ) obeys a radiation condition of in-coming waves at infinity, i.e. it is
an anti-causal wavefield, and we use the same, non-dissipative wave operator as before,
Equation 7.2. The source term q(xxx,ω) has to be real-valued, but is otherwise arbitrary.
The symbol ∗ denotes complex conjugation (or time-reversal in the time domain). The
negative, conjugate focusing function consequently follows from

L (xxx,ω) f (xxx,ω;x fx fx f ) =−ρiωδ(xxx −x fx fx f )

2
+q(xxx,ω) . (7.13)

Note that f (xxx,ω;x fx fx f ) is in fact a causal, out-going wavefield. Combining Equation 7.3 for
a source at x fx fx f with Equations 7.12 and 7.13 we get the homogeneous Green’s function of
the second kind (Chapter 3) as the wavefield that obeys:

L (xxx,ω)
(
g (xxx,ω;x fx fx f )+ f (xxx,ω;x fx fx f )− f ∗(xxx,ω;x fx fx f )

)= 0 . (7.14)

This is a source-free, i.e. homogeneous, wavefield that relates focusing and Green’s func-
tions.
Using reciprocity, we can obtain the following integral equation from the homogeneous
Green’s function of the second kind:

−
∫

x̃xx∈∂V0

r (x̃xx,ω;xsxsxs ) f ∗(x̃xx,ω;x fx fx f )dSSS =

g (xsxsxs ,ω;x fx fx f )+ f (xsxsxs ,ω;x fx fx f ) , (7.15)

where

r (x̃xx,ω;xsxsxs ) =− 2

ρiω

∂

∂x̃3
g (x̃xx,ω;xsxsxs ) , (7.16)

see Appendix for details. ∂V0 is a horizontal, open boundary at x3 = 0 bounding the
half-space below. Both the focusing location x fx fx f and the source location xsxsxs are in this
half-space, but xsxsxs is close to the boundary ∂V0 (in practice source locations are usu-
ally collocated with receivers x̃xx). Note that Equation 7.15 only holds true for a very spe-
cific type of focusing functions (and thus a specific type of sources q(xxx,ω) in Equation
7.12), i.e. these wavefields f (xxx,ω;x fx fx f ) only propagate between x fx fx f and ∂V0 but vanish in
other directions of the half-space (Chapter 3). We refer to this as a radiation assumption
because we assume focusing functions with a very particular radiation pattern. Equa-
tion 7.15 generally relates focusing and Green’s functions via the surface reflection data
r (x̃xx,ω;xsxsxs ). In order to use this integral for Green’s function retrieval, an additional step is
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necessary.
Building on experiences in one-dimensional inverse scattering theory, Wapenaar et al.
(2014b) suggested to rewrite Equation 7.15 to

−Θ(xsxsxs ,ω;x fx fx f )?
∫

x̃xx∈∂V0

r (x̃xx,ω;xsxsxs ) f ∗(x̃xx,ω;x fx fx f )dSSS =

g f i r st (xsxsxs ,ω;x fx fx f )+ f (xsxsxs ,ω;x fx fx f ) (7.17)

with Θ(xsxsxs ,ω;x fx fx f ) being a time-symmetric filter in the time domain, a so-called window-
ing operator, that mutes everything at |t | > t f i r st (xsxsxs ;x fx fx f ), where t f i r st (xsxsxs ;x fx fx f ) is the first
arrival travel time for a source at x fx fx f and a receiver at xsxsxs . The symbol ? denotes con-
volution (along the frequency axis). The first arrival of the Green’s function is given by
g f i r st (xsxsxs ,ω;x fx fx f ) = Θ(xsxsxs ,ω;x fx fx f )? g (xsxsxs ,ω;x fx fx f ), i.e. the windowing operator removes every-
thing after the first arrival from the Green’s function. Note that we assume that the fo-
cusing function f (xsxsxs ,ω;x fx fx f ) remains unchanged by the windowing operator, meaning
that the focusing function is supposed to be zero for |t | > t f i r st (xsxsxs ;x fx fx f ). We refer to this
as a time-separability assumption because it means that the focusing function and the
Green’s function appear separated from each other in time (apart from a small overlap
at the first arrival of the Green’s function). Equation 7.17 is a Marchenko-type integral.
In matrix-operator form we can write the Marchenko-type equation as

−ΘΘΘRf∗ = gfirst + f (7.18)

and Equation 7.15 as

−Rf∗ = g+ f (7.19)

where −f∗ is the focusing function vector, gfirst is the vector that contains the first arrivals
of the Green’s functions and g is the full Green’s function vector. The matrix R comprises
the reflection data, Equation 7.16, as well as a scaling factor for the integration, e.g. mul-
tiplication with the spatial sampling interval ∆x for a one-dimensional boundary. The
matrixΘΘΘ accounts for the convolution with the windowing operator.
If both the radiation assumption and the time-separability assumption are met such that
Equation 7.18 holds, we can solve Equations 7.18 and 7.19 for the full Green’s function
g given the boundary data measurement R and an estimate of gfirst (which also governs
the associated first arrival travel times for the construction of the windowing operatorΘΘΘ)
according to

g = gfirst +ΛR(I−ΘΘΘR∗ΘΘΘR)−1(g∗
first −ΘΘΘR∗gfirst) , (7.20)

where ΛΛΛ = I−ΘΘΘ, i.e. it mutes all data at |t | ≤ t f i r st (xsxsxs ;x fx fx f ), and I is the identity operator
(Chapter 6). Usually, the estimate of the first arrival Green’s function gfirst is obtained by
modelling in a background medium, i.e. a smooth approximation of the actual model.
We can either solve Equation 7.20 directly (van der Neut et al., 2015a; Revelo et al., 2022)
or approximate it by a truncated Neumann expansion (van der Neut et al., 2015b):

g =gfirst +ΛRg∗
first −ΛRΘΘΘR∗gfirst

+ΛRΘΘΘR∗ΘΘΘRg∗
first −ΛRΘΘΘR∗ΘΘΘRΘΘΘR∗gfirst + . . . . (7.21)
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Figure 7.2: True Marmousi model (top left) and smooth background model (top right). Comparison of different
Green’s functions (bottom): the grey line is the Green’s function modelled in the true medium (top left), the red
line is the one modelled in the background medium (top right) and the blue one is obtained by using the back-
ground medium (top right) in a Marchenko-based Green’s function retrieval scheme. All Green’s functions are
for a source inside the volume (green star) and a receiver at the surface (green triangle). Note that amplitudes
at later arrival times are consistently magnified to allow for a good comparison.

For the numerical examples in this paper we use a Neumann expansion that is truncated
after the last explicitly given term in Equation 7.21. This rather early truncation ensures
a relatively stable Green’s function estimation even if our assumptions about radiation
and time-separability (and thus the theoretical justification for the Marchenko-type in-
tegral) are not perfectly satisfied. This might for instance happen, when dealing with
complicated models or when only a poor estimate of the first arrival Green’s function is
given.
Finally, we illustrate the capability of Marchenko-based Green’s function retrieval in Fig-
ure 7.2. We compare different Green’s function traces for a source inside the volume and
a receiver on its surface. We use a slightly modified version of the Marmousi model.
Modelling in the true medium delivers various events, see multitude of wiggles, because
the wavefield is reflected at the sharp interfaces between different velocity layers, in-
ducing multiple scattering. Modelling in the smooth background medium on the other
hand, delivers a very similar first arrival but hardly any multiple scattering. By muting
everything after the first arrival of the background Green’s function, we obtain an esti-
mate of gfirst. Using this estimate along with the consequent window operator ΘΘΘ and
the surface data R in Equation 7.21 we get the Marchenko-based Green’s function. This
Green’s function is quite similar to the true-model Green’s function. Note that we did
not need an actual source or receiver inside the true model to obtain this estimate. This
demonstrates how we can obtain full Green’s functions, i.e. including all orders of scat-
tering, for virtual sources inside of an inaccessible volume from a smooth background
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matrix meaning

G Green’s function in true model
G0 Green’s function in background model
GM

0 Marchenko-reconstructed Green’s function
using first arrival in background model

GF first arrival of Green’s function in true model
GM Marchenko-reconstructed Green’s function

using first arrival in true model

Table 7.1: Overview of different Green’s function matrices.

kernel name

G0G reference
G0G0 single-scattering
G0GM

0 Marchenko
G0GF single-scattering reference
G0GM Marchenko reference

Table 7.2: Different inversion kernels and their names.

model and surface scattering data.

7.4. SOLVING THE MARCHENKO-LINEARISED LIPPMANN-
SCHWINGER INTEGRAL FOR THE SCATTERING POTENTIAL

To this point, we introduced the Lippmann-Schwinger integral and the Marchenko-type
integral. In this section, we present the concept of Marchenko-linearised full waveform
inversion by sequentially making use of both integrals. We want to stress right away that
although we refer to the following procedure as FWI, it is quite similar to LSRTM as well.
We will discuss this ambiguity at the end of the section.
Using a Tikhonov regularisation with β ∈ R+ we can estimate the real-valued scattering
potential ννν from Equation 7.11 by minimising the objective function

s(ννν;β) = ∥∥Mννν−gs
∥∥2

2 +β
∥∥ννν∥∥2

2 . (7.22)

The first term is the residual norm, the second term the solution norm. Note that for our
example the scattering potential is given by Equation 7.8 and indeed real-valued. While
this does not necessarily imply a real-valued velocity c(xxx) and therefore a physically rea-
sonable result, it is easy to implement and significantly reduces the model space. The
matrix M denotes the kernel, gs the data, i.e. it comes from a measurement. Hence, the
objective function depends on the unknown scattering potentialννν as well as the regular-
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Figure 7.3: Examples of snapshots at 0.8 s for different Green’s functions using the true model and the back-
ground model as shown in Figure 7.2. The names are analogous to Table 7.1. For the four approximations
(second panel to last panel) of G (first panel) the left parts of the panels shows the actual fields, whereas the
right parts show the differences. The green stars denote the source location. All fields (Green’s functions and
wavefield differences) are clipped at the same values for a direct comparison. Note that these clip values are
relatively small to enhance the visibility of multiple scattering and wavefield differences.

112



7

7. A NOTE ON MARCHENKO-LINEARISED FULL WAVEFORM INVERSION FOR IMAGING

  

0 20 40 60
frequency [Hz]

0

+
po

w
er

spectrum

kernel misfit: single-scattering kernel misfit: Marchenko

kernel misfit: single-scattering ref. kernel misfit: Marchenko reference

2.
5

km

5 km

amplitude
0

kernel: reference

Figure 7.4: Top left: frequency spectrum of the source wavelet (20 Hz Ricker). The red area denotes the fre-
quencies used for inversion, the red line marks 20 Hz, i.e. the frequency for which we analyse the kernels.
Real part of the reference kernel (top right). Source and receiver are denoted by the green star and the green
triangle, respectively. Real parts of the kernel misfits (lower four panels) for the single-scattering, Marchenko,
single-scattering reference and Marchenko reference approximations. All kernels are based on the models in
Figure 7.2, kernel names are analogous to Table 7.2. Kernel and kernel misfits are clipped at the same values
for a direct comparison. Hence, white colour in a kernel misfit indicates a good approximation. Dashed, black
ellipses and rectangles outline areas that are compared in the text.

isation value β. We minimise s(ννν,β) for a given β by solving the following linear system:

ℜ(M)
ℑ(M)√
βI


︸ ︷︷ ︸

Q

ννν=
ℜ(gs)
ℑ(gs)

000


︸ ︷︷ ︸

d

, (7.23)
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Figure 7.5: Four different background models with increasing smoothness from model A to model D. Back-
ground model C is the same as the background model in Figure 7.2.

where ℜ(M) and ℑ(M) are the real and imaginary parts of the matrix M, respectively, and
000 is a vector full of zeros. The explicit solution consequently is

ννν= (Q†Q)−1(Q†d) , (7.24)

where † generally denotes the adjoint but in this case simplifies to the transpose as Q
is real-valued. Since Q easily becomes very large when looking at multiple sources, re-
ceivers and frequencies, we do not explicitly build this matrix. Instead, we use a matrix-
free approach to solve Equation 7.23 via LSQR (Paige and Saunders, 1982). We do, how-
ever, use a great number of iterations in LSQR to make sure that we converge (within
some pre-defined tolerance) to the actual solution in Equation 7.24 if possible.
Apart from the size of the inverse problem, we also have to deal with its non-linearity.
In fact, the kernel matrix M = G0G used in Q is usually unknown. This is because we do
not have any measurements of the Green’s function G within the volume but only at its
surface. Note that we do know G0, i.e. we use modelling in a background model (usually
a smooth, tomographic approximation of the actual model) to obtain it.
Conventionally, G is approximated by G0 under the assumption that ννν is small, leading
the kernel M ≈ G0G0. This is called the single-scattering approximation, i.e. this kernel
is generally able to reproduce primary reflections but all higher order scattering is ne-
glected. This kernel is also at the core of the Born approximation (Born and Wolf, 1999).
The Born approximation, however, involves an additional linearisation in order to, e.g.,
directly invert for the velocity perturbation c(xxx)−c0(xxx) rather than the scattering poten-
tial ν(xxx).
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We propose an alternative to the single-scattering approximation. Using the smooth
background model, that we would use for the single-scattering approximation, in a Mar-
chenko-based Green’s function retrieval scheme we are able to obtain full, i.e. including
all orders of scattering, Green’s functions g (xsxsxs ,ω;x fx fx f ) – for sources x fx fx f anywhere inside
the volume and receivers xsxsxs on the boundary ∂V0. By actually stepping through the en-
tire discretised volume, i.e. solving for all x fx fx f within some bounds, we are able to obtain
an estimate of the matrix G by source-receiver reciprocity, i.e. we get g (x fx fx f ,ω;xsxsxs ) for all
x fx fx f ∈ V . Obviously, it is an important question how to discretise the volume: with a fine
grid the amount of Green’s functions that need to be estimated is very high, whereas
a coarse grid comes with significantly fewer Green’s function estimations but also sets
limits to the achievable inversion accuracy in terms of wave number. We will refer to
this Marchenko-based Green’s function matrix as GM

0 . It allows for the kernel approxi-
mation M ≈ G0GM

0 which we will call the Marchenko approximation. Although we call
it an approximation it is important to note that GM

0 contains all orders of scattering and
is, as we have shown visually in Figure 7.2, very similar to G even when the respective
G0, i.e. the Green’s function which is modelled in the same background model that we
use for Marchenko, is not. In that sense, this kernel appears to represent the physics sig-
nificantly better and we are hoping to achieve improved inversion results for ννν in terms
of reduced artefacts and increased resolution (Diekmann and Vasconcelos, 2020). Note,
however, that GM

0 remains an approximation due to the impact of the first arrival Green’s
function, which is conventionally approximated by modelling in a background medium,
as well as the Marchenko scheme, i.e. the potentially approximate procedure of solving
the inverse in Equation 7.20. Additionally, there might be a bias from the Marchenko-
type equation itself when the radiation assumption or the time-separability assumption
is broken.
Because we want to have a sort of reference kernel for both the single-scattering and
the Marchenko approximation we also introduce the wavefields GF and GM. The Green’s
functions GF are obtained from the actual Green’s functions, i.e. modelled in the true
medium, by muting everything that arrives after the respective first arrivals. Hence, only
the very first event of each Green’s function remains. From this we can construct the
single-scattering reference kernel M ≈ G0GF. Note that this is not a representation of
what actually happens within the single-scattering framework when ννν goes to zero. In-
stead, we want to use this reference kernel to distinguish between the effects of missing
higher order scattering versus having a wrong background model. The matrix GM is the
Marchenko-based estimate that uses the first arrival of the actual Green’s function, i.e.
GF, rather than the first arrival of the background Green’s function. Thus, we can build
the Marchenko reference kernel M ≈ G0GM.
Table 7.1 gives a quick overview of the different Green’s function matrices, while Table
7.2 summarises the different kernels and their names.
Figure 7.3 shows exemplary Green’s function snapshots for the different scenarios dis-
cussed above. The Green’s function approximations that use the background model, i.e.
G0 and GM

0 , exhibit a distinct error around the first arrival. This is because they are based
on a different velocity model, implying different travel times and amplitudes. GM

0 does,
however, recover most of the multiple scattering. The approximations based on the true
model on the other hand, i.e. GF and GM, match the first arrival of the true Green’s func-
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Figure 7.6: L-curves for the four different background models (A, B, C and D from sharpest to smoothest as
shown in Figure 7.5) and the five different inversion kernels, see Table 7.2. While kernels can be differentiated
by colour, the different background models are marked in the vicinity of the respective first, i.e. highest regu-
larisation value β in Equation 7.22, sample point of each line in the bottom right corner. Note that all L-curves
for different kernels start out in the same region for the same background model, but diverge for decreasing
regularisation values β towards the top left corner. We use the same eight regularisation values β (from 1028

to 1021) to sample all L-curves. Exemplarily, the different β sample points are written into the plot for the low-
ermost black curve. The residual norm is the first term and the solution norm the second term (without the
factor β) in Equation 7.22. Circles denote convergent (for the tolerance and maximum number of iterations
as described in the text), squares denote non-convergent inversion runs – the latter only occur for some of
the experiments and only for the lowermost regularisation value β. Note that the solution norm is related to

a summation over
(
c−2(xxx)− c−2

0 (xxx)
)2 for all xxx such that its small values are due to the velocity unit being m/s

here.

tion. The Marchenko estimate GM indeed recovers nearly the entire Green’s function
with only small errors.
Figure 7.4 shows the frequency spectrum of the source wavelet along with an exemplary
reference kernel and the misfits of the respective kernel approximations. All fields are in
the frequency domain at 20 Hz. The intricate scattering behaviour of the medium leads
to complicated interference patterns within the kernel. As expected, the background-
based kernel approximations, i.e. the single-scattering and the Marchenko kernel, ex-
hibit overall larger misfits than the true-model-based approximations, i.e. the single-
scattering reference and the Marchenko reference kernel. The Marchenko results, how-
ever, are superior to the respective single-scattering results in both cases: the Marchenko
kernel matches the reference kernel significantly better in the top central part of the
model compared to the single-scattering kernel (see black ellipses) and the Marchenko
reference kernel is a close to perfect match in the central model area whereas the single-
scattering reference kernel is not (see black rectangles).
We introduced two different ways to linearise the inverse problem of solving Equation
7.23 for ννν based on a background model: the single-scattering approximation and the
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Figure 7.7: Scattering potentials for the true model in Figure 7.2 and background model C, Figure 7.5. The true
potential (top left) follows from Equation 7.8. The five inverted potentials are for the different kernels in Table
7.2. All inversion results are for a regularisation parameter β= 1022. The magenta box denotes artefacts in the
Marchenko solution. Cyan boxes denote areas where the Marchenko result is better than the single-scattering
result. See Figure 7.8 for zoomed boxes.

Marchenko approximation. The process of using the single-scattering approximation to
solve Equation 7.23 is conventionally referred to as least-squares reverse time migration.
This is a linear inverse problem and requires a relatively accurate background model.
Full waveform inversion, on the other hand, is based on non-linear inversion. It is sim-
ilar to reverse time migration in that it uses a single-scattering approximation to obtain
model updates. However, FWI is an iterative process: it starts with G0 from some initial
background model and computes a model update based on the single-scattering ap-
proximation. Then, the wavefield G0 is remodelled in the new, updated medium. From
this new G0 one gets a new model update and so on. In that sense, FWI uses wave-
equation modelling and is not solely build on Born modelling, i.e. the single-scattering
approximation. In the light of these differences we call our proposed Marchenko-linear-
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ised inversion a full waveform inversion strategy because it is not based on a single-
scattering approximation or Born modelling. It is, however, a linear inversion strategy
and its outcome is a scattering potential, i.e. a perturbation with respect to the back-
ground model, rather than a model. We note that our approach can also be used for
gradient computations only, i.e. it can be incorporated in a non-linear FWI strategy.

7.5. NUMERICAL EXAMPLES

In this section we show and discuss inversion results for the different kernels in Table 7.2
and various background models, see Figure 7.5. The true model is shown in Figure 7.1.
The model space is discretised with an interval step of 5 m in both directions, i.e. x1 and
x3. We use a 20 Hz Ricker wavelet, see Figure 7.4, for forward modelling wavefields. The
Marchenko-based Green’s functions are estimated with a truncated Neumann expan-
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reference
single-
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Figure 7.8: Zoomed versions of the highlighted areas in Figure 7.7. The letters A, B, C, D and E refer to the
different boxes, see Figure 7.7. We show these zoomed images for the reference kernel, the single-scattering
kernel and the Marchenko kernel, see Table 7.2.
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Figure 7.9: Scattering potentials for the true model in Figure 7.2 and background model B, Figure 7.5. The true
potential (top left) follows from Equation 7.8. The five inverted potentials are for the different kernels in Table
7.2. All inversion results are for a regularisation parameter β= 1022. The magenta box denotes artefacts in the
Marchenko solution. Cyan boxes denote areas where the Marchenko result is better than the single-scattering
result. See Figure 7.10 for zoomed boxes.

sion according to Equation 7.21. To save computation time we estimate these Green’s
functions on a coarse grid, i.e. with a 20 m increment, covering the same 2.5 km×5 km
volume. For the inversions we use 25 frequencies from 10 Hz to 28 Hz with a sampling
interval of 0.75 Hz, see again Figure 7.4. The upper limit of 28 Hz is related to the coarse
spatial grid on which we estimate the Marchenko-based Green’s functions. Assuming
a minimum medium velocity of 2000 m/s and a maximum frequency of 28 Hz we get a
minimum wavelength of about 71 m. Such a wavefield is therefore sampled more than
2.5 times (in the diagonal grid direction) per wavelength on the coarse grid, allowing for
an accurate computation of the volume integral, see Equation 7.6, in the inversion. In-
cluding higher frequencies in the inversions would require estimating the Green’s func-
tions on a finer grid. For the inversions we use 126 sources and 125 receivers, all located
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on the surface of the volume (x3 = 0, i.e. the top boundary) and equally distributed over
the 5 km model range. Hence, we have a source at 0 m, a receiver at 20 m, a source at
40 m, a receiver at 60 m and so on. We solve for the respective scattering potentials via
LSQR with a tolerance of 10−4 and a maximum of 250 iterations for all sources, receivers
and frequencies simultaneously. As indicated before, we use LSQR with a MATLAB func-
tion handle rather than explicitly defining the matrix M in Equation 7.11 – for double-
precision variables in our scenario this matrix M would consume nearly 200 GB of mem-
ory.
In order to analyse the quality of different inversion strategies, i.e. for various kernels
and background models, we propose to look at the L-curves in Figure 7.6. An L-curve
is obtained by solving Equation 7.24 for different values of β (the kernel M and data gs

are fixed of course). Conventionally, an L-curve is used to determine the optimal regu-
larisation value β. However, it also carries information on the general behaviour of the
respective inverse problem, i.e. on how ill- or well-posed it is. Note that we use LSQR to
mimic the L-curves, i.e. our L-curves will be less divergent for small regularisation val-
ues. We stress that we use noise-free data. However, all the kernels that we investigate
(with the exception of the reference kernel) are approximative and we investigate their
L-curves as a measure of how ill- or well-posed the respective inverse problems become.
For instance, we find that at large regularisation values β the type of kernel used in our
inversion does not matter very much: all kernels lead similar results for a large value of
β and this is true for all background models, see Figure 7.6. Note that we do not actually
look at the inverted scattering potentials here but only at the respective residual norms
and solution norms. Hence, coinciding L-curves do not imply identical models, how-
ever, they imply models of similar quality (as measured by our objective function). We
stress here that this quality comparison is not perfectly accurate because we are using
different kernels, i.e. the residual norms are computed in different ways.
As we go to lower regularisation values, we observe different results depending on the
kernel and background model. For all background models, the reference kernel per-
forms much better than any of the four approximated kernels. Even for low regularisa-
tion values it delivers reasonable results with relatively small solution norms. This means
that we require a small regularisation for the inverse problem using the reference kernel
because it accurately represents the physics that governed the data, while we need a high
regularisation for, e.g., the single-scattering kernel which is inconsistent with the physics
underlying the data.
For a bad background model, i.e. a smooth estimate similar to model D, we observe
that the single-scattering and the Marchenko kernel lead to similar results. The single-
scattering reference kernel delivers a much better L-curve, but the Marchenko reference
kernel is clearly the best approximation. We can interpret this as follows: using the
Marchenko-based Green’s functions from a smooth background model does not lead
to a significantly improved kernel compared to the conventional single-scattering ker-
nel – at least in terms of model quality. Even though the Marchenko kernel contains all
orders of scattering, it is fundamentally relying on the background model: travel times
and amplitudes are therefore not accurate enough to enable a beneficial linearisation of
the Lippmann-Schwinger integral. This limitation is, however, primarily related to our
prior knowledge (the background model), not to the Marchenko scheme itself. This can
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be seen by the good Marchenko reference result. While it is not perfect (due to, e.g., the
limited measurement aperture and the early truncation of the Neumann series) it ap-
parently represents a fairly good approximation – even for such a complicated model as
Marmousi. Note that the single-scattering reference kernel is not as successful, i.e. the
Marchenko-based retrieval of multiply scattered events in the Green’s functions is essen-
tial.
For a good background model, i.e. an estimate that is close to the true model (like back-
ground model A), the four approximated kernels generally perform comparably well.
The single-scattering reference kernel is slightly worse, missing multiple scattering that
is included in the Marchenko kernels and, for a sharp background model, even in the
single-scattering kernel.
Figure 7.7 shows inverted scattering potentials for background model C and β = 1022,
i.e. the penultimate β value. The reference result is quite close to the true potential. It
is, however, significantly smoother. This is because we solve for the scattering potentials
on the coarse grid (20 m sampling interval). Given the L-curve, see Figure 7.6, it seems
as if going to even smaller β values (beyond our last sample point at β= 1021) might fur-
ther push the quality of the inverted scattering potential for the reference kernel. Both
the single-scattering and the Marchenko result contain a significant amount of artefacts.
The Marchenko result contains high-frequency noise near the surface that is not present
in the single-scattering result, see magenta box A for strongest artefacts in Figures 7.7
and 7.8. These are potentially related to the unphysical combination of the background-
model-consistent arrival times/amplitudes and the Marchenko-recovered multiple scat-
tering – ultimately this leads a Green’s function in the Marchenko kernel that is neither
consistent with the true model nor with the background model. On the other hand, it
seems that the Marchenko result is slightly better in several areas of the model, see cyan
boxes in Figure 7.7. For zoomed versions of the boxes see Figure 7.8. Several interfaces
appear to be disrupted in the single-scattering solution while they are continuous in the
Marchenko and the reference result. When comparing the single-scattering reference
and the Marchenko reference result, we observe that the latter is close to perfect, i.e. it
is very similar to the reference solution, while the single-scattering reference solution is
still prone to artefacts.
Figure 7.9 shows scattering potentials for background model B. As before, we present the
true potential and the results for the five kernels in Table 7.2 for β = 1022. Owing to the
sharper background model, the scattering potential is overall lower than in the previous
example. The general observations, however, are the same. There are still some high-
frequency artefacts in the Marchenko solution, but they are less distinct than before, see
box A. The Marchenko result is slightly better than the single-scattering result, see boxes
B, C and D in Figures 7.9 and 7.10. The Marchenko reference result is a nearly perfect
match of the reference potential and better than the single-scattering reference.
These examples demonstrate that even though the single-scattering kernel and the Mar-
chenko kernel deliver similar-quality results in terms of residual norms and solution
norms in Figure 7.6, the actual scattering potentials are different: the Marchenko ker-
nel is slightly superior in recovering the medium structures particularly in the central
model area, but it is biased by high-frequency noise. As pointed out before, the main
issue of the Marchenko kernel is the inherent dependency on the background model:
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Figure 7.10: Zoomed versions of the highlighted areas in Figure 7.9. The letters A, B, C and D refer to the
different boxes, see Figure 7.9. We show these zoomed images for the reference kernel, the single-scattering
kernel and the Marchenko kernel, see Table 7.2.

as we do not update the first arrival Green’s function in the Marchenko scheme, Equa-
tion 7.20, the final Marchenko-based Green’s function becomes a sort of hybrid of the
background and the true Green’s function. The Marchenko reference kernel on the other
hand delivers a nearly perfect result and performs significantly better than the single-
scattering reference kernel – hence, including multiple scattering in the kernel generally
adds considerably to the quality of the inverted potential.

7.6. DISCUSSION
We introduced an approach for Marchenko-linearised full waveform inversion. We re-
fer to the method as full waveform inversion rather than least-squares migration be-
cause it is not based on a single-scattering approximation. Instead, the linearisation
of the inverse problem is based on replacing the unknown Green’s functions inside the
Lippmann-Schwinger integral by Marchenko-based Green’s functions. These Marchen-
ko-based Green’s functions contain all orders of scattering. They require reflection data
on the surface and an estimate of the first arrival of the Green’s function, e.g. from mod-
elling in a background medium – they do, however, not rely on sharp medium contrasts
in the background model to induce the scattered waves. The quality of the Marchenko-
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based Green’s functions appears to be quite good, see Figure 7.3, and the respective
Marchenko kernel is a better approximation than the single-scattering kernel, see Fig-
ure 7.4.
The numerical examples show that the Marchenko kernel tends to deliver a slightly bet-
ter scattering potential than the single-scattering approximation when comparing the
inverted results, but the kernels generally deliver models of similar quality, see L-curves
in Figure 7.6. The good quality of the Marchenko reference solution indicates that the er-
rors in the Marchenko result are not due to the underlying Marchenko scheme, but due
to the prior information on the first arrival of the Green’s function. Using a smooth back-
ground model inevitably leads to a wrong first arrival of the Green’s function in terms
of arrival times and amplitudes – an error that is currently not compensated for in the
Marchenko scheme. These errors lead to a Marchenko-based Green’s function that in-
cludes multiple scattering (as if being related to a sharp model) but that is also consistent
with the smooth background model in terms of the first arrival. Note that the Marchenko
kernel G0GM

0 is an approximation due to the underlying background model, while the
Marchenko reference kernel G0GM is exact if all underlying assumptions (regarding, e.g.,
the radiation and time-separability of focusing functions in the Marchenko scheme) are
met. Including multiples in the kernel generally leads to better results – this is also true
when comparing the Marchenko reference and the single-scattering reference solutions.
Broggini et al. (2014) used Marchenko-derived Green’s functions for imaging via multi-
dimensional deconvolution. This approach appears to have the benefit of suppressing
artefacts from first arrival Green’s function errors by further relying on the data domain
rather than going to the model domain and using a wave equation, as done in our study.
The fact that Marchenko-linearised full waveform inversion is strongly depending on
the first arrival estimate of the Green’s function makes it hard to exploit the full potential
of Marchenko-based Green’s function retrieval. For strongly scattering, high-impedance
media we would expect Marchenko-based imaging to be significantly superior to Born-
based approaches. These media, however, usually imply larger errors in the first ar-
rival Green’s functions due to, e.g., modelling in a background model that smooths over
strong contrasts in the true medium and are consequently hard to image via Marchenko-
linearised full waveform inversion.
We do not argue that our Marchenko-linearised full waveform inversion is in any way
better than full waveform inversion or least-squares reverse time migration. The aim of
this paper is first and foremost to study and illustrate the possibilities and limits of such a
Marchenko-linearisation. We showed how the Marchenko method can be connected to
conventional imaging workflows like FWI and LSRTM and hope that this might pave the
way for future imaging techniques. The current Marchenko-linearised inversion work-
flow is computationally expensive. This is, as indicated earlier, because we wanted to
compare different inversion kernels under optimal circumstances. One might of course
develop more elaborate schemes. We used an early truncation of the Neumann series
to approximate the Green’s functions via Equation 7.21. This generally leads to relatively
stable results and saves a significant amount of computation time as these Green’s func-
tions have to be estimated for all points in the volume. However, this early truncation
might, especially for a good background model, not deliver the optimal Green’s function
estimate. Hence, further optimising our approach may not only make it computation-
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ally cheaper but also more accurate. This could allow for iterating the process we de-
scribed, i.e. get new Marchenko-based Green’s functions using the inverted velocities as
a background model and invert for a new, updated model - similar to (non-linear) full
waveform inversion.
Generally, it seems that a parallel approach of combining the Marchenko scheme and
full waveform inversion might indeed be desirable. Currently, we combine them in a
sequential fashion: first we solve for the Marchenko-based Green’s functions, then we
invert for the scattering potential. This comes with the issue of the Marchenko-based
Green’s functions being physically inconsistent (containing features of both the back-
ground and the sharp, scattering model). As we saw in this study, the Marchenko equa-
tion itself generally performs quite well even for a complicated model like Marmousi,
see good inversion results for Marchenko reference kernels in Figures 7.7 and 7.9. If we
could solve both problems simultaneously we might therefore further benefit from the
constraining quality of the Marchenko equation in full waveform inversion.
In this study we assumed to have unknown velocities and, for simplicity, a constant
density. However, the density could in fact be arbitrarily heterogeneous in our scheme
as long as it is known. Our Marchenko-linearised full waveform inversion might also
be interesting in the opposite scenario, i.e. for known velocity and unknown density.
Actually, this would imply better knowledge of the first arrival of the Green’s function
since we would only expect amplitude errors but have correct arrival times. Hence, the
Marchenko kernel might perform even better when inverting for density than it did in
the examples we presented in this paper, potentially leading to less artefacts and better
resolution.
In general, Marchenko-based Green’s function retrieval also allows for the following strat-
egy: rather than using the retrieved Green’s functions solely in the kernel, i.e. to linearise
the inverse problem as discussed above, we can use them as additional data. In par-
ticular this means that we can put virtual receivers at every grid point of the volume
under investigation. If we have a single source and a single frequency but we have re-
ceivers covering the entire volume, Equation 7.24 actually becomes exact – assuming
that we know the Green’s function perfectly, that we sample the volume at a sufficiently
fine grid with respect to the investigated frequencies and that there are no scattering
perturbations outside the volume (Diekmann and Vasconcelos, 2020). Or one could use
the wave equation to directly invert for the medium properties, similar to seismic gra-
diometry (De Ridder and Curtis, 2017). An exact inverse problem implies that we can
retrieve the model with perfect resolution and accuracy. If, however, we use a coarse
grid or the Green’s functions are slightly biased, the result will be distorted by artefacts.
As we discussed earlier, the accuracy of Marchenko-based Green’s functions is inher-
ently limited by the prior knowledge of the first arrival Green’s functions. Overall, this
approach of using Marchenko wavefields as data in the inversion appears to be prone to
artefacts and does, in our experience, not lead to beneficial results. This strategy might,
however, work better for density inversion or when incorporated advantageously in a
parallel Marchenko and full waveform inversion scheme.
This paper represents a first step towards using Marchenko methods for improving the
kernel of full waveform inversion. These first results underline that using Marchenko-
based wavefields rather than a single-scattering assumption can deliver slightly superior
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inversion results.

7.7. CONCLUSION
We present a Marchenko-linearised full waveform inversion scheme. While conven-
tional inversion strategies rely on a Born approximation to obtain a model update, our
method uses Marchenko-based Green’s functions to linearise the inverse problem. We
demonstrate how the theory for Marchenko-based Green’s function retrieval and gradi-
ent computations in full waveform inversion are connected. Marchenko-based Green’s
functions rely on prior knowledge of the first arrivals of the Green’s functions. These
first arrivals are usually obtained by modelling in a background medium. Our numer-
ical examples demonstrate that the quality of the first arrivals of the Green’s functions
is crucial for the success of Marchenko-linearised full waveform inversion. While our
scheme delivers slightly better inversion results than the single-scattering approxima-
tion when using the same background model, a correct first arrival Green’s function al-
lows for near-perfect inversion results. Hence, we illustrate the possibilities and limita-
tions of Marchenko-linearisation and hope that this will help future research in develop-
ing efficient and superior imaging methods.
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APPENDIX
In this section we demonstrate how both the Lippmann-Schwinger integral as well as
the Marchenko-type integral are related to Rayleigh’s reciprocity theorem.

RAYLEIGH’S RECIPROCITY THEOREM
Rayleigh’s reciprocity theorem for acoustic waves reads (Fokkema and van den Berg,
1993; Vasconcelos et al., 2009)∫

x̃xx∈∂V
(u AvBvBvB −uB v Av Av A) ·dSSS

=
∫

xxx∈V
f Af Af A ·vBvBvB + sB u A − f Bf Bf B ·v Av Av A − s AuB dV

+
∫

xxx∈V
iω(κB −κA)u AuB − iω(ρB −ρA)v Av Av A ·vBvBvB dV , (7.25)

where A and B mark two different wave states. The pressure field is given by u = u(xxx,ω),
the particle velocity field by vvv = (v1, v2, v3) = vvv(xxx,ω). The variable fff = ( f1, f2, f3) = fff (xxx,ω)
denotes the volume force density source, while s = s(xxx,ω) is the volume injection rate
density source. The compressibility is κ= κ(xxx) = ρ−1(xxx)c−2(xxx).
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LIPPMANN-SCHWINGER INTEGRAL
In order to derive the Lippmann-Schwinger integral from Equation 7.25, we are going to
use the following scenario: the density is the same in both wave states, there are no force
sources, one state is for the Green’s function and the other for the background Green’s
function, i.e.

ρA = ρB = ρ , (7.26)

f Af Af A = f Bf Bf B =000 , (7.27)

s A = δ(xxx −xsxsxs ) , κA = ρ−1c−2(xxx) , u A = g (xxx,ω;xsxsxs ) , (7.28)

sB = δ(xxx −xrxrxr ) , κB = ρ−1c−2
0 (xxx) , uB = g0(xxx,ω;xrxrxr ) . (7.29)

From Equation 7.27 it follows that vvv = (ρiω)−1∇u. Furthermore, we assume, e.g., Som-
merfeld radiation conditions on the boundary ∂V of the volume V such that the left-
hand side of Equation 7.25 vanishes. Hence, xsxsxs and xrxrxr as well as all perturbations of the
model c(xxx) with respect to the model c0(xxx) lie within the bounded volume V . Equation
7.25 then becomes

0 = g (xrxrxr ,ω;xsxsxs )− g0(xsxsxs ,ω;xrxrxr )

+
∫

xxx∈V

iω

ρ

(
1

c2
0 (xxx)

− 1

c2(xxx)

)
g (xxx,ω;xsxsxs )g0(xxx,ω;xrxrxr )dV . (7.30)

When using source-receiver reciprocity, that is g0(xsxsxs ,ω;xrxrxr ) = g0(xrxrxr ,ω;xsxsxs ), this delivers
the Lippmann-Schwinger integral, Equation 7.6.

INTEGRAL FORM OF THE HOMOGENEOUS GREEN’S FUNCTION OF THE SEC-
OND KIND
In order to derive a Marchenko-type integral from Equation 7.25, we are going to use the
following scenario: both density and velocity are identical in the two wave states, there
are no force sources, one state is for the Green’s function and one for the homogeneous
Green’s function of the second kind, i.e.

ρA = ρB = ρ , (7.31)

κA = κB = ρ−1c−2(xxx) , (7.32)

f Af Af A = f Bf Bf B =000 , (7.33)

s A = δ(xxx −xsxsxs ) , u A = g (xxx,ω;xsxsxs ) (7.34)

sB = 0 , uB = g (xxx,ω;x fx fx f )+ f (xxx,ω;x fx fx f )− f ∗(xxx,ω;x fx fx f ) . (7.35)

As we consider the same medium in both wave states (same compressibility and den-
sity), the second volume integral in Equation 7.25 vanishes. From Equation 7.33 we get
vvv = (ρiω)−1∇u. This gives

1

ρiω

∫
x̃xx∈∂V

(
g (x̃xx,ω;xsxsxs )∇uB −uB∇g (x̃xx,ω;xsxsxs )

) ·dSSS =

−(
g (xsxsxs ,ω;x fx fx f )+ f (xsxsxs ,ω;x fx fx f )− f ∗(xsxsxs ,ω;x fx fx f )

)
. (7.36)
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7. A NOTE ON MARCHENKO-LINEARISED FULL WAVEFORM INVERSION FOR IMAGING

While g (x̃xx,ω;xsxsxs ) is a purely causal (out-going) wavefield with respect to the volume V
for xsxsxs in V , uB contains both causal, i.e. uB

out = g (x̃xx,ω;x fx fx f )+ f (x̃xx,ω;x fx fx f ), and anti-causal
(in-coming), i.e. uB

i n = − f ∗(x̃xx,ω;x fx fx f ), contributions for x fx fx f in V . Using, e.g., a far-field

approximation (Schuster, 2009) we find that g (x̃xx,ω;xsxsxs )∇uB
out = uB

out∇g (x̃xx,ω;xsxsxs ) and
g (x̃xx,ω;xsxsxs )∇uB

i n =−uB
i n∇g (x̃xx,ω;xsxsxs ) leading to

2

ρiω

∫
x̃xx∈∂V

f ∗(x̃xx,ω;x fx fx f )∇g (x̃xx,ω;xsxsxs ) ·dSSS =

−(
g (xsxsxs ,ω;x fx fx f )+ f (xsxsxs ,ω;x fx fx f )− f ∗(xsxsxs ,ω;x fx fx f )

)
. (7.37)

If xsxsxs is close to the boundary ∂V , above equation will only reconstruct the out-going
portion of the wavefield uB on the right-hand side:

− 2

ρiω

∫
x̃xx∈∂V

f ∗(x̃xx,ω;x fx fx f )∇g (x̃xx,ω;xsxsxs ) ·dSSS =

g (xsxsxs ,ω;x fx fx f )+ f (xsxsxs ,ω;x fx fx f ) . (7.38)

Finally, we split the boundary ∂V into two parts: a horizontal boundary ∂V0 at x3 = 0 and
a half-sphere below, i.e. for x3 > 0 and a downwards-pointing x3-axis. Assuming that
the focusing function − f ∗(xxx,ω;x fx fx f ) vanishes for all xxx ∈ ∂V1, we only keep the integral
over ∂V0. Note that this requires very particular sources q(xxx,ω) in Equation 7.12, but we
will not explicitly write this dependency here in the arguments of the focusing function.
Using these additional assumptions in Equation 7.38 gives Equation 7.15.
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We present and discuss several topics in this thesis, touching on wavefield focusing,
inverse scattering theory, numerical modelling and imaging. Our key contributions, on
which the title of this thesis is based, can be summarised as follows:

• Generalisation of Marchenko-type focusing functions
We present a new derivation for the Marchenko integral that is based on partial dif-
ferential equations for focusing functions. Our partial-differential-equation frame-
work generalises the concept of previously introduced Marchenko-type focusing
functions. Furthermore, it allows for generalising the homogeneous Green’s func-
tion. Based on this new set of equations we can use conventional seismic inter-
ferometry to obtain Marchenko-like integrals for arbitrary boundary configura-
tions. We discuss this particularly in Chapters 3 and 6. Chapter 3 focusses on the
derivation of the Marchenko integral and the justification/illustration of under-
lying assumptions. Chapter 6 concentrates on using this newly derived integral
for Green’s function retrieval. In particular, we investigate the accuracy of the re-
trievable Green’s functions in terms of different wave types and varying a priori
model information. We can retrieve the full spectrum Green’s functions, including
refracted and evanescent waves, but the accuracy of the fields heavily depends on
our prior knowledge.

• Modelling of Marchenko-type focusing functions
We exploit our focusing framework to investigate the limitations of Marchenko-
type integrals by modelling focusing functions. We develop different strategies for
their numerical modelling. Starting with a rather cumbersome, proof-of-concept
approach for 1D in Chapter 3, we then present a one-step modelling scheme for
1D in Chapter 4. Ultimately, we present a method based on inverse source de-
sign for modelling Marchenko-type focusing functions in 2D and 3D in Chapter 5.
By modelling Marchenko-type focusing functions based on our partial differential
equations, one ensures to obtain wavefields that are consistent with all underly-
ing wave physics. Thus, these modelled focusing functions can be used to study
and understand the limitations of the Marchenko integral in multiple dimensions,
see Chapter 5. Our studies suggest that Marchenko-like integrals are inherently
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approximate when regarding scattering problems in more than one dimension.
Depending on the complexity of the medium, however, they can be very good ap-
proximations.

• Imaging with Marchenko-type focusing functions
We present a new strategy for linearising the Lippmann-Schwinger integral. This
integral is used for imaging and conventionally linearised by a single-scattering
approximation. We propose to use Marchenko-derived Green’s functions within
the Lippmann-Schwinger integral – a natural linearisation. The accuracy of this
linearisation depends on the accuracy of the retrieved Green’s functions. We in-
vestigate this with numerical examples and compare outcomes from different lin-
earisation strategies in Chapter 7. Overall, our Marchenko-linearised approach
performs slightly better than the single-scattering linearisation.

While we hope that this thesis answers some questions, several questions are only an-
swered partially and new ones are posed. In these last paragraphs we want to briefly dis-
cuss some of these remaining/new questions and associated topics for future research.

• How accurate is the Marchenko integral in arbitrarily heterogeneous 2D and 3D
media?
In both Chapters 6 and 7 we use the matrix-operator form of the integral represen-
tation that relates focusing and Green’s functions via the single-sided reflection
response:

−Rf∗ = g+ f , (8.1)

compare Equations 6.21 and 7.19. We can rewrite this as a linear equation(
−

[
I 0
0 I

]
−

[
R(R) I(R)
I(R) −R(R)

])
︸ ︷︷ ︸

V

[
R(f)
I(f)

]
︸ ︷︷ ︸

f

=
[
R(g)
I(g)

]
︸ ︷︷ ︸

g

, (8.2)

where R and I denote the real and imaginary part and I is the identity matrix.
Given the reflection data R and the Green’s function g, we can use f = V−1g to com-
pute what is often referred to as the true Marchenko-type focusing function (Var-
gas et al., 2021).
We discuss in, e.g., Chapter 3 that there is one key ingredient in deriving Equa-
tion 8.1 from the homogeneous Green’s function of the second kind: the focusing
function has to vanish on the boundary ∂V1. In other words, the focusing function
obeys a special radiation condition which only allows energy to propagate towards
the integration surface ∂V0. In Chapter 5 we demonstrate how to accurately model
these true Marchenko-type focusing functions within our framework. However,
these focusing functions are not identical to those that follow from f = V−1g. This
is because the focusing functions we model in Chapter 5 obey our partial differen-
tial equation for focusing functions but they only approximate the radiation con-
dition, i.e. the focusing functions only vanish approximately on ∂V1. Conversely,
using f = V−1g to estimate focusing functions enforces the radiation condition but
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only approximates our wave equation for focusing functions. In that sense, the
latter approach, via the inversion, does not actually deliver accurate wavefield fo-
cusing when injecting these focusing functions into the medium. The integral that
underlies their computation (Equation 8.1) is only an approximation but solved
exactly via f = V−1g.
This means that even if we were able to solve the Marchenko integral perfectly,
which would lead to the same focusing function as f = V−1g, this would only be
an approximation of the actual focusing function (regarding 2D and 3D scattering
problems).
On top of this approximation, i.e. that solving the Marchenko integral implies a
radiation condition that is only approximately true, we usually get a bias by en-
forcing separability of focusing and Green’s functions. This separability condition
is crucial if we seek to solve Equation 8.1 but we know neither g nor f, see Chap-
ter 6, and it is what transforms Equation 8.1 to the Marchenko integral. However,
numerical studies suggest that this separability is not a realistic assumption for
complicated 2D and 3D models (Vargas et al., 2021).
Furthermore, we need an estimate of the first arrival of the Green’s function when
using the separability constraint. Then, we can use this first arrival to estimate the
focusing function. This focusing function then delivers an estimate of the Green’s
function. However, the first arrival of the Green’s function is usually only known
approximately, e.g. by modelling in a smooth estimate of the medium. Hence, it
is biased by wrong velocities, leading to erroneous travel times and amplitudes in
the first arrival of the Green’s function.
Overall, there are many things that reduce the quality of Marchenko-based Green’s
functions. Nonetheless, numerical studies show that the results are often good ap-
proximations (Wapenaar et al., 2014b). If we are interested in a structural image,
the quality of these Green’s functions might be sufficient (Broggini et al., 2014).
If we are interested in true-amplitude imaging or model building, these Green’s
functions appear to not be good enough, compare Chapter 7.
Hence, it would be desirable to try and increase the quality of Marchenko-based
Green’s functions. In that context we think that further studies of Marchenko-type
focusing functions in heterogeneous media could be helpful. Using the inverse
source design approach (Chapter 6) might be a helpful tool for gaining further
insights. Additionally, one might be able to combine conventional Marchenko-
based Green’s function retrieval with wave equation constraints – involving our
new partial-differential-equation framework.

• Are there alternative strategies for combining full waveform inversion and the
Marchenko integral?
In Chapter 7 we presented an imaging approach that combines concepts of full
waveform inversion and the Marchenko integral. This appears to be useful as the
Marchenko integral allows for a correct allocation of primaries and multiples in
the data, suppressing conventional imaging artefacts by naturally linearising the
inverse problem. However, we find that this linearised Lippmann-Schwinger ap-
proach relies heavily on the quality of the Marchenko-based Green’s functions.

131



8

CONCLUSION AND OUTLOOK

Thus, we presume that a non-sequential or a non-linear scheme might be more
appropriate. Non-sequential refers to an approach that tries to solve both the
Marchenko integral and the Lippmann-Schwinger integral simultaneously rather
than solving them one after another as in our current approach. A non-linear im-
plementation could use our Marchenko-linearised Lippmann-Schwinger integral
to get an update and then repeat the process rather than stopping after one itera-
tion – similar to conventional, non-linear full waveform inversion.
Another potentially interesting research direction could be the use of Marchenko-
based Green’s functions in a non-linear, non-sequential version of gradiometry
(De Ridder and Curtis, 2017). In gradiometry we can use the retrieved Green’s
functions and their derivatives directly in a wave equation to estimate the phys-
ical medium properties. This is a local problem, meaning that a local estimate of
a wavefield and its derivatives is sufficient to estimate the local medium proper-
ties. This is fundamentally different to using the Lippmann-Schwinger integral,
which, due to the volume integral, is global: you need to know the wavefield in the
entire volume to be able to invert for medium properties. Therefore, gradiome-
try is computationally much cheaper. It is also a largely overdetermined problem,
because the wavefield for a single frequency should in theory be enough to deter-
mine the medium’s wave speed via the Helmholtz equation. However, we found
that a simple linear gradiometry with Marchenko-based Green’s functions is not
successful – due to the deficient quality of the retrieved Green’s functions. In ac-
cordance with our previous discussion, one might have to think about non-linear,
non-sequential strategies. For instance one might have to solve for Marchenko-
based Green’s functions in some neighbourhood to get a local wavefield and its
derivatives and then plug these into the wave equation. This might give an update
on the model, such that the process can be repeated until convergence. Work-
ing through a medium from top to bottom, meaning starting at the surface where
there might be better constraints on physical parameters and going deeper step by
step, could be a beneficial strategy here.

• Can we use the Marchenko integral directly for model building?
When retrieving Green’s functions via the Marchenko integral we rely on a back-
ground model to estimate the first arrival Green’s functions as well as the maskΘΘΘ,
see Chapter 6. We found that the quality of the background model strongly affects
the quality of the retrieved Green’s functions. We can check this in numerical tests
by comparing them with the actual, forward modelled Green’s functions. But is
there a way to determine whether a Green’s function is good or bad without having
a reference? Or similarly, whether a focusing function is good or bad? In fact this
boils down to the following question: is there an intrinsic quality in the Marchenko
integral that can tell us whether the underlying background model is good or bad?
Similar to Equation 8.2 we can write the Marchenko integral as(

−
[

I 0
0 I

]
−

[
R(ΘΘΘR) I(ΘΘΘR)
I(ΘΘΘR) −R(ΘΘΘR)

])
︸ ︷︷ ︸

U

[
R(f)
I(f)

]
︸ ︷︷ ︸

f

=
[
R(gfirst)
I(gfirst)

]
︸ ︷︷ ︸

g
first

, (8.3)

132



8

CONCLUSION AND OUTLOOK

Figure 8.1: Visualising the effect of a wrong (smooth) background model on the estimated Green’s function (top
three plots) and focusing function (bottom three plots). Both Green’s functions and both focusing functions
are at the same scale. Magenta and cyan lines indicate the traces at 1.6 km that are additionally plotted for a
direct comparison.
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whereΘΘΘ is a convolutional windowing operator, see Equations 6.24 and 7.18. Thus,
the focusing function then follows from f = U−1g

first
while the full Green’s function

follows from g = VU−1g
first

. In our numerical experiments it seems as if Green’s

functions only change marginally for changing background models. They get shif-
ted due to the biased gfirst, but the general structure as well as the amplitudes re-
main relatively stable. This is why we obtain good Green’s function estimates even
for smooth background models. We demonstrate this effect in Figure 8.1 (top three
plots). For these plots we use the model and approach from Chapter 6 (the focus-
ing location is at x = 1900 m and z = 980 m). Focusing functions on the other hand
seem to change much quicker for varying background models. In particular, their
amplitudes appear to increase significantly for increasingly smooth/wrong back-
ground models, see Figure 8.1. This implies that the inverse of U might become
increasingly unstable if the windowing operator ΘΘΘ is not consistent with the true
velocity model. While this instability cancels out for the Green’s function through
the multiplication with V (g = VU−1g

first
), it has a crucial impact on the focusing

function. Consequently, we suggest to investigate this relation between the norm
of f and the background velocity model used to get the maskΘΘΘ. Potentially, this is
linked to the ability of the background model to recreate refracted waves in the first
arrival Green’s function. This observation could be interesting for velocity model
building as it involves the whole data, does not require any picking of arrival times
andΘΘΘ can easily be computed with an Eikonal solver. However, one has to gener-
ally verify this observation and translate it to an inverse problem that can be solved
efficiently with common optimisation algorithms.

In addition to these questions, there might be other interesting applications of our re-
search. The new intuition and framework for Marchenko-type focusing functions might
be stimulating progress in time reversal acoustics. Our theory could also be interesting
for source characterisation problems in seismology, where focusing measured data by
back-propagation is essential. Inverse source design could be a helpful tool for creating
wavefields with other objectives as well. Last but not least, directional source multipoles
might have interesting applications in engineering acoustics and could be investigated
and validated by laboratory experiments.
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