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Let p be a prime number and let n be an integer not divisible by p and such that 
every group of order np has a normal subgroup of order p. (This holds in particular 
for p > n.) Under these hypotheses, we obtain a one-to-one correspondence between 
the isomorphism classes of braces of size np and the set of pairs (Bn, [τ ]), where Bn

runs over the isomorphism classes of braces of size n and [τ ] runs over the classes 
of group morphisms from the multiplicative group of Bn to Z∗

p under a certain 
equivalence relation. This correspondence gives the classification of braces of size 
np from the one of braces of size n. From this result we derive a formula giving the 
number of Hopf Galois structures of abelian type Zp × E on a Galois extension of 
degree np in terms of the number of Hopf Galois structures of abelian type E on 
a Galois extension of degree n. For a prime number p ≥ 7, we apply the obtained 
results to describe all left braces of size 12p and determine the number of Hopf 
Galois structures of abelian type on a Galois extension of degree 12p.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

In [11] Rump introduced an algebraic structure called brace to study set-theoretic solutions of the Yang-
Baxter equation. A left brace is a triple (B, +, ·), where B is a set and + and · are operations on B such 
that (B, +) is an abelian group, (B, ·) is a group and the brace relation is satisfied, namely,

a(b + c) = ab− a + ac,
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for all a, b, c ∈ B. We call N = (B, +) the additive group and G = (B, ·) the multiplicative group of the left 
brace. The cardinal of B is called the size of the brace. If (B, +) is not abelian, the corresponding brace is 
called a skew brace.

Given any abelian group (A, +), it is easy to check that (A, +, +) is a brace. Such a brace is called a 
trivial brace. We note that any brace of prime size is trivial (see [2] Proposition 2.4).

Let B1 and B2 be left braces. A map f : B1 → B2 is said to be a brace morphism if f(b +b′) = f(b) +f(b′)
and f(bb′) = f(b)f(b′) for all b, b′ ∈ B1. If f is bijective, we say that f is an isomorphism. In that case we 
say that the braces B1 and B2 are isomorphic.

In [3] Bachiller proved that given an abelian group N , there is a bijective correspondence between left 
braces with additive group N , and regular subgroups of Hol(N) such that isomorphic left braces correspond 
to regular subgroups of Hol(N) which are conjugate by elements of Aut(N).

In [5] Lemma 2.1, it is proved that Aut(N), as a subgroup of Hol(N), is action-closed with respect to the 
conjugation action of Hol(N) on the set of regular subgroups of Hol(N). Therefore, given an abelian group 
N , the set of isomorphism classes of left braces with additive group N is in bijective correspondence with 
the set of conjugacy classes of regular subgroups in Hol(N).

In [1] skew left braces of size pq are classified, where p > q are prime numbers. In [9] a classification of 
left braces of order p2q, where p, q are prime numbers such that q > p + 1 is given. In [5] the following 
conjecture on the number b(12p) of isomorphism classes of left braces of size 12p is formulated, where p is 
a prime number, p ≥ 7.

b(12p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

24 if p ≡ 11 (mod 12),
28 if p ≡ 5 (mod 12),
34 if p ≡ 7 (mod 12),
40 if p ≡ 1 (mod 12).

(1)

We note that b(24) = 96, b(36) = 46 and b(60) = 28 (see [14]).
Let B1 and B2 be left braces. Then B1 ×B2 together with + and · defined by

(a, b) + (a′, b′) = (a + a′, b + b′) (a, b) · (a′, b′) = (aa′, bb′)

is a left brace called the direct product of the braces B1 and B2.
Let B1 and B2 be left braces. Let τ : (B2, ·) → Aut(B1, +, ·) be a morphism of groups. Consider in 

B1 ×B2 the additive structure of the direct product (B1, +) × (B2, +)

(a, b) + (a′, b′) = (a + a′, b + b′)

and the multiplicative structure of the semidirect product (B1, ·) �τ (B2, ·)

(a, b) · (a′, b′) = (aτb(a′), bb′)

Then, we get a left brace, which is called the semidirect product of the left braces B1 and B2 via τ .
A Hopf Galois structure on a finite extension of fields K/k is a pair (H, μ) where H is a finite cocommu-

tative k-Hopf algebra and μ is a Hopf action of H on K, i.e. a k-linear map μ : H → Endk(K) giving K a 
left H-module algebra structure and inducing a bijection K⊗k H → Endk(K). Hopf Galois extensions were 
introduced by Chase and Sweedler in [6]. For a Galois field extension K/k with Galois group G, Greither and 
Pareigis [10] give a bijective correspondence between Hopf Galois structures on K/k and regular subgroups 
N of Sym(G) normalized by λ(G), where λ denotes left translation. For a given Hopf Galois structure on 
K/k, we will refer to the isomorphism class of the corresponding group N as the type of the Hopf Galois 
structure. By Byott translation theorem [4], a correspondence is established between regular subgroups N of 
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Sym(G) normalized by λ(G) and regular subgroups of the holomorph Hol(N) = N � AutN . As a corollary, 
Byott obtains the following formula.

Proposition 1 ([4] Corollary to Proposition 1). Let K/k be a Galois extension with Galois group G. Let N
be a group of order |G|. Let a(N, G) denote the number of Hopf Galois structures of type N on K/k and let 
b(N, G) denote the number of regular subgroups of Hol(N) isomorphic to G. Then

a(N,G) = |AutG|
|AutN | b(N,G).

In [7] we have established a one-to-one correspondence between the set of isomorphism classes of braces of 
size 8p, for a prime number p �= 3, 7, and the set of pairs consisting of an isomorphism class of braces of size 
8 and a certain class of morphisms τ : (Bn, ◦) → Z∗

p. We have used this result to determine all braces of size 
8p. In this paper we generalize this result to braces of size np, where p is a prime number and n an integer 
not divisible by p and such that every group of order np has a normal subgroup of order p. We note that 
these hypotheses hold in particular for p > n. More precisely, Proposition 4 below gives that any brace of 
size np may be explicitly obtained from a brace (Bn, ·, ◦) of size n and a group morphism τ : (Bn, ◦) → Z∗

p. 
Morover we obtain a one-to-one correspondence between isomorphism classes of braces of size np and pairs 
(Bn, [τ ]), where Bn runs over the isomorphism classes of braces of size n and [τ ] runs over a set of classes of 
morphisms τ from (Bn, ◦) to Z∗

p under the relation specified in Proposition 4. From our result on braces we 
derive a formula giving the number of Hopf Galois structures of abelian type Zp ×E on a Galois extension 
of degree np. For a prime number p ≥ 7, we apply the obtained results to describe all left braces of size 12p
and determine the number of Hopf Galois structures of abelian type on a Galois extension of degree 12p. 
As a consequence of our classification of left braces of size 12p, for p a prime number, p ≥ 7, we establish 
the validity of conjecture (1).

We note that in [12] and [13], Kohl considers also Hopf Galois structures on Galois extensions of degree 
np, where p is a prime number and n an integer, non divisible by p. He works under the hypotheses that 
all groups of order np have a normal subgroup of order p and that p is not a divisor of the order of the 
automorphism groups of any group of order n. He applies his method to several families of Galois extensions 
of degree a square free integer.

From now on, p and n will always satisfy the following hypotheses.

(H): p is a prime number and n an integer such that p does not divide n and each group of order np has a 
normal subgroup of order p.

2. Braces of size np

The following proposition is a generalization of [7], Proposition 1.

Proposition 2. Let p be a prime and n an integer such that p does not divide n and each group of order np
has a normal subgroup of order p. Then every left brace of size np is a direct or semidirect product of the 
trivial brace of size p and a left brace of size n.

Proof. Let B be a left brace of size np with additive group N and multiplicative group G. Then, by the 
Schur-Zassenhaus theorem, N = Zp × E with E an abelian group of order n and G = Zp �τ F with F a 
group of order n and τ : F → Aut(Zp) a group morphism (the trivial one giving the direct product). Let us 
observe that, since we are working with the trivial brace of size p, the group of brace automorphisms is the 
classical group Aut(Zp) 	 Z∗

p.
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Then, for (a1, a2), (b1, b2), (c1, c2) ∈ B,

(a1, a2)((b1, b2) + (c1, c2)) + (a1, a2) = (a1, a2)(b1 + c1, b2 + c2) + (a1, a2) =
= (a1 + τa2(b1 + c1) + a1, a2(b2 + c2) + a2).

On the other hand,

(a1, a2)(b1, b2) + (a1, a2)(c1, c2) = (a1 + τa2(b1) + a1 + τa2(c1), a2b2 + a2c2).

Therefore, from the brace condition of B we obtain an equality in the second component which tells us that 
we have a brace B′ of size n with additive group E and multiplicative group F . Then, B is the semidirect 
product via τ of the trivial brace with group Zp and this brace B′. �
Remark 3. The third Sylow theorem gives that the hypotheses in Proposition 2 are satisfied in particular 
when p > n.

As a corollary to Proposition 2, we obtain that for each brace of size n, there is a left brace of size np
which is the direct product of the unique brace of size p and the given brace of size n. The braces of size 
np which are a semidirect product of the unique brace of size p and a brace of size n are determined by the 
following proposition, which generalizes Proposition 4 in [7].

Proposition 4. Let p be a prime and n an integer such that p does not divide n and each group of order np
has a normal subgroup of order p. Let N = Zp ×E be an abelian group of order np.

The conjugacy classes of regular subgroups of Hol(N) are in one-to-one correspondence with couples (F, τ)
where F runs over a set of representatives of conjugacy classes of regular subgroups of Hol(E) and τ runs 
over representatives of classes of group morphisms τ : F → Aut(Zp) under the relation τ 	 τ ′ if and only if 
there exists ν ∈ Aut(E) such that the corresponding inner automorphism Φν of Hol(E) satisfies Φν(F ) = F

and τ = τ ′ ◦ Φν |F .

Proof. As in Proposition 2, we may apply the Schur-Zassenhaus theorem and obtain that groups of order 
np are semidirect products G = Zp�τ F with F a group of order n and τ : F → Aut(Zp) a group morphism.

For a given couple (F, τ) the semidirect product is

G = Zp �τ F = {((m, τ(f)), f) | m ∈ Zp, f ∈ F} ⊆ (Zp � Z∗
p) × Hol(E) = Hol(N)

and the action on N is given by ((m, k), f)(z, x) = (m + kz, fx). Since G contains Zp, we have transitivity 
in the first component and G is regular in Hol(N) if and only if F is regular in Hol(E).

Let us describe inner automorphisms of Hol(N) = (Zp�Z∗
p) ×(E�Aut(E)). We write elements in Hol(N)

as (m, k, a, σ) accordingly. Since we are dealing with regular subgroups, we just have to consider conjugation 
by elements (i, ν) ∈ Aut(N) = Z∗

p × Aut(E). Let Φ(i,ν) be the inner automorphism corresponding to (i, ν)
inside Hol(N). Then,

Φ(i,ν)(m, k, a, σ) = (0, i, 0, ν)(m, k, a, σ)(0, i, 0, ν)−1

= (im, ik, ν(a), νσ)(0, i−1, 0, ν−1)

= (im, k, ν(a), νσν−1)

If we work in Hol(E), conjugation by ν ∈ Aut(E) is

Φν(a, σ) = (0, ν)(a, σ)(0, ν−1) = (ν(a), νσν−1).
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Let G = Zp �τ F = {(m, τ(a, σ), a, σ) | m ∈ Zp, (a, σ) ∈ F}. Then,

Φ(i,ν)(G) = {(im, τ(a, σ), ν(a), νσν−1) | m ∈ Zp, (a, σ) ∈ F}.

Since i ∈ Z∗
p, im runs over Zp as m does. Therefore, if (F ′, τ ′) is another pair, we have

Φ(i,ν)(G) = Zp �τ ′ F ′ ⇐⇒ F ′ = Φν(F ), and τ = τ ′ ◦ Φν |F .

Let us observe that in that case ker τ ′ = Φν(ker τ). �
3. Hopf Galois structures on a Galois field extension of degree np

From Proposition 4 we obtain the following corollary.

Corollary 5. Let E be a group of order n, N = Zp×E. Let F be a regular subgroup of Hol(E) and τ : F → Z∗
p

a group morphism. The length of the conjugacy class of the regular subgroup of Hol(N) corresponding to 
(F, τ) is equal to the length of the conjugacy class of F in Hol(E) times the number of morphisms from F
to Z∗

p equivalent to τ under the relation defined in Proposition 4.

Using this corollary, we shall determine, the number of regular subgroups of the holomorph of N . Applying 
then Byott’s formula (Proposition 1), we shall obtain the number of Hopf Galois structures of abelian type 
on a Galois extension of degree np. We note that all these Galois structures are induced, in the sense of [8], 
by Theorem 9 in [8]. In order to apply Byott’s formula, we determine the automorphisms of a semidirect 
product Zp �τ F .

Let G = Zp � F , with F a group of order n. By the Schur-Zassenhaus theorem, any subgroup of G
of order equal to |F | is conjugate to F . We assume that the semidirect product is not direct, then F has 
exactly p conjugates, namely Fi := (i, 1F )F (−i, 1F ), 0 ≤ i ≤ p − 1. If ϕ is an automorphism of G, then 
ϕ(Zp) = Zp and ϕ(F ) is a subgroup of G isomorphic to F . We have then ϕ(F ) = Fi for some i. Let

S = {ϕ ∈ AutG : ϕ(F ) = F}.

Clearly S is a subgroup of Aut(G). Let Ci denote conjugation by (i, 1) in Aut(G). Then {Ci}0≤i≤p−1 is a 
transversal of S in Aut(G), hence | Aut(G)| = p|S|.

We give now a characterization of S in terms of AutZp, AutF and the morphism τ : F → AutZp 	 Z∗
p

defining the semidirect product Zp � F .

Proposition 6. The image of the injective map

S → AutZp × AutF, ϕ �→ (ϕ|Zp
, ϕ|F )

is precisely the set of pairs (f, g) ∈ AutZp × AutF such that τg = τ .

Proof. Let ϕ ∈ AutG. For x ∈ F , 1 ∈ Zp, we have x1 = τ(x)x. Applying ϕ to this equality, we get 
ϕ(x)ϕ(1) = ϕ(τ(x))ϕ(x). Now, since ϕ(x) ∈ F and ϕ(1) ∈ Zp, we have ϕ(x)ϕ(1) = τ(ϕ(x))ϕ(1)ϕ(x). We 
obtain then the equality ϕ(τ(x)) = τ(ϕ(x))ϕ(1). This implies ϕ|Zp

τ(x) = τ(ϕ|F (x))ϕ|Zp
in AutZp. Since 

AutZp is commutative, we obtain τ = τϕ|F .
Reciprocally, let (f, g) ∈ AutZp×AutF such that τg = τ . We define a map ϕ from Zp×F to Zp×F by 

ϕ(i, x) = (f(i), g(x)). Now ϕ is an automorphism of Zp �τ F if and only if ϕ((i, x)(j, y)) = ϕ((i, x))ϕ((j, y)), 
equivalently (f(i + τ(x)j), g(xy))) = (f(i), g(x))(f(j), g(y)) = (f(i) + τ(g(x))f(j), g(x)g(y)). Since g is an 
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automorphism, the two second components coincide. Since f is an automorphism, the equality of the first 
components is equivalent to f(τ(x)j) = τ(g(x))f(j) for all j, equivalently fτ(x) = τ(g(x))f , for all x ∈ F , 
which is fulfilled, since τg = τ and AutZp is commutative. �
Corollary 7. For G = Zp �τ F , with τ a nontrivial morphism from F to Z∗

p, we have | AutG| = p(p −1)|S0|, 
where S0 = {g ∈ AutF | τg = τ}.

Proof. From the proposition we obtain clearly S = AutZp × S0, hence | AutG| = p|S| = p(p − 1)|S0|. �
4. Braces of size 12p: direct products

There are five groups of order 12, up to isomorphism, two abelian ones C12 and C6 × C2 and three 
non-abelian ones, the alternating group A4, the dihedral group D2·6 and the dicyclic group Dic12. By 
computation with Magma, we obtain that the number of conjugacy classes of regular subgroups of Hol(E)
isomorphic to F , equivalently, the number of isomorphism classes of left braces with additive group E and 
multiplicative group F is as shown in the following table.

E\F C12 C6 × C2 A4 D2·6 Dic12

C12 1 1 0 2 1
C6 × C2 1 1 1 1 1

For p a prime number, p ≥ 7, the Sylow theorems give that a group G of order 12p has a normal subgroup 
Hp of order p. We obtain then the following corollary to Proposition 2.

Corollary 8. Let p ≥ 7 be a prime. Every left brace of size 12p is a direct or semidirect product of the trivial 
brace of size p and a left brace of size 12.

From the description of the braces of size 12 and the definition of direct product of braces we obtain the 
following result.

Proposition 9. For a prime number p, there are 10 left braces of size 12p which are direct product of the 
unique brace of size p and a brace of size 12.

5. Braces of size 12p: semidirect products

For p ≥ 7 and n = 12, the hypotheses of Proposition 4 are satisfied and we shall apply it to determine 
the braces of size 12p which are semidirect products of the unique brace of size p and a brace of size 12. 
To this end, we shall consider the braces of order 12 with additive group E and multiplicative group F and 
determine the classes of the morphisms τ : F → Aut(Zp) under the relation described in Proposition 4. We 
note that finding all such morphisms τ reduces to consider the normal subgroups F ′ of F such that F/F ′

is a cyclic group C whose order divides p − 1 and taking into account the automorphisms of C. From now 
on, the kernel of τ will be referred to as the kernel of the brace (or conjugation class of regular subgroups) 
determined by the pair (F, τ).

Remark 10 (Description of the holomorphs). We consider now the abelian groups of order 12, that is, 
E = C12 and E = C6 × C2 and describe Hol(E) in each case.

For E = C12 = Z12, we have Aut(Z12) = Z∗
12 = {1, 5, 7, 11} 	 C2 × C2 and Hol(Z12) = {(x, l) : x ∈

Z12, l ∈ Z∗
12} with product given by (x, l)(y, m) = (x + ly, lm).
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For E = C6×C2, we have Aut(E) 	 D2·6. We write C6×C2 = 〈a〉 ×〈b〉 and consider the automorphisms 
ρ, σ of E defined by

ρ : a �→ a5b

b �→ a3
σ : a �→ a5

b �→ a3b
.

We may check that ρ has order 6, σ has order 2 and σρσ = ρ−1, hence Aut(E) = 〈ρ, σ〉. We have Hol(E) =
{(x, ϕ) : x ∈ E, ϕ ∈ AutE} with product defined by (x, ϕ)(y, ψ) = (xϕ(y), ϕψ).

We shall use the descriptions above throughout this section.

5.1. F = C12

Let us write F = 〈x〉. We determine now the possible morphisms τ : F → Z∗
p. To be used in Section 6, 

we compute S0(τ) = {g ∈ AutF | τg = τ}. We have AutC12 	 Z∗
12 = {1, 5, 7, 11}.

1) There is a unique morphism τ : F → Z∗
p with kernel of order 6, namely the one sending the generator x

of F to −1. We have S0(τ) = AutF .
2) When p ≡ 1 (mod 4), Z∗

p has a (unique) subgroup of order 4. Let ζ4 be a generator of it. We may define 
two morphisms from F to Z∗

p with a kernel of order 3, namely

τ1 : x �→ ζ4, τ2 : x �→ ζ−1
4 .

We have S0(τ1) = S0(τ2) = {1, 5}.
3) When p ≡ 1 (mod 6), Z∗

p has a (unique) subgroup of order 6. Let ζ6 be a generator of it. We may define 
two morphisms from F to Z∗

p with a kernel of order 2, namely

τ1 : x �→ ζ6, τ2 : x �→ ζ−1
6

and two morphisms from F to Z∗
p with a kernel of order 4, namely

τ3 : x �→ ζ2
6 , τ4 : x �→ ζ−2

6 .

We have S0(τ1) = S0(τ2) = S0(τ3) = S0(τ4) = {1, 7}.
4) When p ≡ 1 (mod 12), Z∗

p has a (unique) subgroup of order 12. Let ζ12 be a generator of it. We may 
define four morphisms from F to Z∗

p with a trivial kernel, namely

τ1 : x �→ ζ12, τ2 : x �→ ζ5
12,

τ3 : x �→ ζ−5
12 , τ4 : x �→ ζ−1

12 .

We have S0(τ1) = S0(τ2) = S0(τ3) = S0(τ4) = {1}.

Case E = C12

If E = C12, we may take F = 〈(1, 1)〉 ⊂ Hol(E), i.e. we have now x = (1, 1). We determine the conjugation 
relations between the morphisms τ : F → Z∗

p.

1) We consider the two morphisms from F to Z∗
p with a kernel of order 3. We observe that τ2(−1, 1) =

τ2((1, 1)−1) = ζ4, hence τ1 = τ2Φ−1 and we obtain then one brace.
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2) We consider the two morphisms from F to Z∗
p with a kernel of order 2 and the two with a kernel of order 

4. We have τ1 = τ2Φ−1 and τ3 = τ4Φ−1 and obtain then two braces.
3) We consider the four morphisms from F to Z∗

p with a trivial kernel. We observe that (1, 1)5 =
(5, 1), (1, 1)−5 = (−5, 1), (1, 1)−1 = (−1, 1), hence τ1 = τ2Φ5 = τ3Φ−5 = τ4Φ−1 and obtain then one 
brace.

We state the obtained result in the following proposition.

Proposition 11. Let p ≥ 7 be a prime number. We count the left braces with additive group Zp × Z12 and 
multiplicative group Zp � Z12.

1) If p ≡ 11 (mod 12) there are 2 such braces. One of them is a direct product and the second one has a 
kernel of order 6.

2) If p ≡ 5 (mod 12) there are 3 such braces. Two of them are as in 1) and the third one has a kernel of 
order 3.

3) If p ≡ 7 (mod 12) there are 4 such braces. Two of them are as in 1) and the other two have kernels of 
orders 2 and 4, respectively.

4) If p ≡ 1 (mod 12) there are 6 such braces. One of them is a direct product and the other five have kernels 
of orders 6,4,3,2,1, respectively.

Case E = C6 × C2

For E = C6 × C2, we use the notations in Remark 10. We may take F = 〈(ab, ϕ)〉 ⊂ Hol(E), where ϕ is 
the order 2 automorphism defined by ϕ(a) = a, ϕ(b) = a3b, i.e. ϕ = ρ3σ. We may check that F is indeed 
a cyclic group of order 12 and a regular subgroup of Hol(E). We have now x = (ab, ϕ). We determine the 
conjugation relations between the morphisms τ : F → Z∗

p.

1) For the two morphisms from F to Z∗
p with a kernel of order 3, we observe that (ab, ϕ)−1 = (ϕ(a−1b), ϕ) =

(a2b, ϕ), hence τ2(a2b, ϕ) = ζ4. We have then τ1 = τ2Φσ, since Φσ(ab, ρ3σ) = σ(ab, ρ3σ)σ−1 =
(σ(ab), σ(ρ3σ)σ) = (a2b, ρ3σ). We obtain then one brace.

2) For the two morphisms from F to Z∗
p with a kernel of order 2 and the two with a kernel of order 4, as 

in the preceding case, we have τ1 = τ2Φσ and τ3 = τ4Φσ and obtain then two braces.
3) For the four morphisms from F to Z∗

p with a trivial kernel, we observe that (ab, ϕ)5 = (a5b, ϕ), (ab, ϕ)−5 =
(a4b, ϕ), (ab, ϕ)−1 = (a2b, ϕ), hence τ1 = τ2Φρ3 = τ3Φρ3σ = τ4Φσ and we obtain then one brace.

We state the obtained result in the following proposition.

Proposition 12. Let p ≥ 7 be a prime number. We count the left braces with additive group Zp × Z6 × Z2
and multiplicative group Zp � Z12.

1) If p ≡ 11 (mod 12) there are 2 such braces. One of them is a direct product and the second one has a 
kernel of order 6.

2) If p ≡ 5 (mod 12) there are 3 such braces. Two of them are as in 1) and the third one has a kernel of 
order 3.

3) If p ≡ 7 (mod 12) there are 4 such braces. Two of them are as in 1) and the other two have kernels of 
orders 2 and 4, respectively.

4) If p ≡ 1 (mod 12) there are 6 such braces. One of them is a direct product and the other five have kernels 
of orders 6,4,3,2,1, respectively.
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5.2. F = C6 × C2

Let us write F = 〈x, y〉, with x of order 6, y of order 2. We determine now the possible morphisms 
τ : F → Z∗

p. To be used in Section 6, we compute S0(τ) = {g ∈ AutF | τg = τ}. We use the determination 
of AutF given in Remark 10.

1) There are three morphisms from F to Z∗
p with kernel of order 6, namely

τ1 : x �→ 1
y �→ −1

,
τ2 : x �→ −1

y �→ −1
,

τ3 : x �→ −1
y �→ 1

,

with kernels 〈x〉, 〈xy〉, 〈x2y〉, respectively. We have S0(τ1) = 〈ρ3, σ〉, S0(τ2) = 〈ρ3, ρ2σ〉, S0(τ3) = 〈ρ3, ρσ〉.
2) In order to have a morphism τ with Ker τ of order 2 or 4, it is necessary that p ≡ 1 (mod 6). In this 

case, let ζ6 be a generator of the unique subgroup of order 6 of Z∗
p. We may define six morphisms from 

F to Z∗
p with a kernel of order 2, namely

τ1 : x �→ ζ6 τ2 : x �→ ζ−1
6 with Ker τ =< y >

y �→ 1 y �→ 1,

τ3 : x �→ ζ2
6 τ4 : x �→ ζ−2

6 with Ker τ =< x3 >

y �→ ζ3
6 y �→ ζ3

6 ,

τ5 : x �→ ζ6 τ6 : x �→ ζ−1
6 with Ker τ =< x3y >

y �→ ζ3
6 y �→ ζ3

6 .

We have S0(τ1) = S0(τ2) = 〈ρσ〉, S0(τ3) = S0(τ4) = 〈ρ3σ〉, S0(τ5) = S0(τ6) = 〈ρ5σ〉. We may further 
define two morphisms from F to Z∗

p with a kernel of order 4, namely

τ1 : x �→ ζ2
6 τ2 : x �→ ζ−2

6

y �→ 1 y �→ 1.

We have S0(τ1) = S0(τ2) = 〈ρ2, ρσ〉.

Case E = C12

We know that in Hol(C12) there is only one regular subgroup isomorphic to F . We may take

F = 〈α = (2, 1), β = (3, 7)〉 ⊂ Hol(E)

following the notation in Remark 10.
The element α has order 6, the element β has order 2, they commute with each other and generate a 

regular subgroup of order 12. We have now x = α, y = β. We determine the conjugation relations between 
the morphisms τ : F → Z∗

p.

1) For the morphisms from F to Z∗
p with kernel of order 6, we have τ2 = τ3Φ−1 and τ1 is not conjugate to 

the other two, since the second component of α is different from those of αβ and α2β. We obtain then 
two braces.
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2) For the morphisms from F to Z∗
p with a kernel of order 4, we observe that τ2Φ11(α) = ζ3 and τ2Φ11(β) =

1, hence τ1 = τ2Φ11 and we obtain then a unique brace.
3) For the morphisms from F to Z∗

p with a kernel of order 2, we observe that τ2 = τ1Φ5, τ5 = τ1Φ7, 
τ6 = τ1Φ−1 and τ4 = τ3Φ−1. So we obtain only two braces (determined by τ1 and τ3).

We state the obtained result in the following proposition.

Proposition 13. Let p ≥ 7 be a prime number. We count the left braces with additive group Zp × C12 and 
multiplicative group Zp � (C6 × C2).

1) If p ≡ 11 (mod 12) there are 3 such braces. One of them is a direct product and the other two have a 
kernel of order 6.

2) If p ≡ 7 (mod 12) there are 6 such braces. One of them is a direct product, two have kernel of order 6, 
two have kernels of order 2 and one has kernel of order 4.

3) If p ≡ 5 (mod 12) there are 3 such braces. One of them is a direct product and the other two have a 
kernel of order 6.

4) If p ≡ 1 (mod 12) there are 6 such braces. One of them is a direct product, two have kernel of order 6, 
two have kernels of orders 2 and one has kernel of order 4.

Case E = C6 × C2

If E = C6 × C2, we may take F = 〈(a, Id), (b, Id)〉 ⊂ Hol(E), following the notation of Remark 10. We 
may check that F is indeed a regular subgroup of order 12 of Hol(E) isomorphic to C6 ×C2. We have now 
x = (a, Id), y = (b, Id). We determine the conjugation relations between the morphisms τ : F → Z∗

p.

1) For the morphisms from F to Z∗
p with kernel of order 6, we have τ1 = τ2Φρ4 = τ3Φρ5 . We obtain then 

one brace.
2) For the morphisms from F to Z∗

p with a kernel of order 4, we observe that τ1 = τ2Φρ3 and obtain then 
a unique brace.

3) For the morphisms from F to Z∗
p with a kernel of order 2, we observe that τ6 = τ1Φρ = τ2Φρ4 = τ3Φρ2 =

τ4Φσρ2 = τ5Φρ3 . So we obtain only one brace.

We state the obtained result in the following proposition.

Proposition 14. Let p ≥ 7 be a prime number. We count the left braces with additive group Zp × (C6 × C2)
and multiplicative group Zp � (C6 × C2).

1) If p ≡ 11 (mod 12) there are 2 such braces. One of them is a direct product and the second one has a 
kernel of order 6.

2) If p ≡ 7 (mod 12) there are 4 such braces. One of them is a direct product, and the other three have 
kernels of orders 2, 4 and 6, respectively.

3) If p ≡ 5 (mod 12) there are 2 such braces. One of them is a direct product and the second one has a 
kernel of order 6.

4) If p ≡ 1 (mod 12) there are 4 such braces. One of them is a direct product, and the other three have 
kernels of orders 2, 4 and 6, respectively.
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5.3. F = A4

This case only occurs for E = C6×C2. We use the notation of Remark 10 for the generators of Hol(E). We 
have A4 = V4�C3 and we may take F = 〈a3, b, (a4, ρ2)〉 ⊂ Hol(E), since a3, b are order 2 elements commuting 
between them and (a4, ρ2) has order 3 and satisfies (a4, ρ2)a3(a4, ρ2)−1 = b, (a4, ρ2)b(a4, ρ2)−1 = a3b. We 
may further check that F is a regular subgroup of Hol(E). Since V4 is the unique proper nontrivial normal 
subgroup of A4, we have that a nontrivial morphism from F to Z∗

p has image a cyclic group of order 3. We 
have then two cases.

1) If p �≡ 1 (mod 3), the unique morphism from F to Z∗
p is the trivial one and there is just one brace with 

additive group Zp × Z6 × Z2 and multiplicative group Zp � A4, the one whose multiplicative group is a 
direct product.

2) If p ≡ 1 (mod 3), let ζ3 be a generator of the (unique) subgroup of order 3 of Z∗
p. We may define two 

morphisms from F to Z∗
p, with kernel 〈a3, b〉, namely

τ1 : (a4, ρ2) �→ ζ3, τ2 : (a4, ρ2) �→ ζ−1
3 .

We note that (a4, ρ2)−1 = (a2, ρ4) = σ(a4, ρ2)σ, hence τ1 = τ2Φσ and we obtain one brace.

We state the obtained result in the following proposition.

Proposition 15. Let p ≥ 7 be a prime number. We count the left braces with additive group Zp × Z6 × Z2
and multiplicative group Zp � A4.

1) If p �≡ 1 (mod 3) there is just one such brace, which is a direct product.
2) If p ≡ 1 (mod 3) there are 2 such braces. One is a direct product and the second one has kernel isomorphic 

to V4.

To be used in Section 6, we compute S0(τ) = {g ∈ AutF | τg = τ} for the two nontrivial morphisms 
from F to Z∗

p. We have AutA4 	 S4 and the isomorphism is obtained by sending a permutation in S4 to 
the corresponding conjugation automorphism. We obtain S0(τ1) = S0(τ2) = A4.

5.4. F = D2·6

Let us write F = 〈r, s | r6 = Id, s2 = Id, srs = r5〉. We describe the morphisms τ : F → Z∗
p. To be used 

in Section 6, we compute S0(τ) = {g ∈ AutF | τg = τ}. We have AutD2·6 = 〈ρ, σ〉 	 D2·6, where ρ and σ
are defined as follows.

ρ : r �→ r

s �→ rs
,

σ : r �→ r5

s �→ s
.

The only nontrivial morphisms from F to Z∗
p are three morphisms with kernel of order 6, namely

τ1 : r �→ 1
s �→ −1

,
τ2 : r �→ −1

s �→ −1
,

τ3 : r �→ −1
s �→ 1

,

with kernels 〈r〉, 〈r2, rs〉 and 〈r2, s〉, respectively. We observe that Ker τ1 is cyclic, while Ker τ2 and Ker τ3
are isomorphic to the dihedral group D2·3. We have S0(τ1) = AutF, S0(τ2) = S0(τ3) = 〈ρ2, σ〉.
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Case E = C12

There are two regular subgroups of Hol(E) isomorphic to D2·6, up to conjugacy by AutE,

F1 = 〈α1 = (2, 1), β1 = (1, 11)〉, F2 = 〈α2 = (1, 7), β2 = (3, 11)〉.

For i ∈ {1, 2}, αi has order 6, βi has order 2, and αiβiαi = βi, so Fi
∼= D2·6. It is checked easily that Fi is 

regular. We have now r = αi, s = βi, i = 1, 2.
We consider the morphisms from F to Z∗

p with kernel of order 6. Since Ker(τ1) is cyclic while Ker τ2 and 

Ker τ3 are not, τ1 is not conjugate to the other two morphisms. We denote τ (i)
2 , τ (i)

3 : Fi → Z∗
p, i = 1, 2. Since 

Φ7(α1) = α1 and Φ7(β1) = α3
1β1, we obtain τ (1)

2 = τ
(1)
3 Φ7. For τ (2)

2 and τ (2)
3 to be conjugate, we would need 

Φν(β2) = αk
2β2, with an odd k. Since the second component of β2 is 11 and the second component of αk

2β2
is 5, for an odd k, there is no such Φν. Hence τ (2)

2 and τ (2)
3 are not conjugate and we obtain five braces, two 

of which have order 6 cyclic kernel.

Proposition 16. Let p ≥ 7 be a prime number. Then there are 7 left braces with additive group Zp×C12 and 
multiplicative group Zp �D2·6. Among these, two of them are a direct product, two other have cyclic kernel 
of order 6 and the other three have kernel isomorphic to D2·3.

Case E = C6 × C2

If E = C6 × C2, we may take F = 〈(a, Id), (b, ρ3)〉 ⊂ Hol(E), which is regular. Indeed, one may check that 
(a, Id) is of order 6, (b, ρ3) is of order 2, (a, Id)(b, ρ3)(a, Id) = (b, ρ3) and F has trivial stabilizer. We have 
now r = (a, Id), s = (b, ρ3).

We consider the morphisms from F to Z∗
p with kernel of order 6. Again, since Ker(τ1) ∼= C6 and Ker(τi) ∼=

D2·3, i ∈ {2, 3}, τ1 is not conjugate to the other two morphisms. Since τ2Φσ = τ3, we obtain one brace with 
cyclic kernel and one brace with dihedral kernel.

Proposition 17. Let p ≥ 7 be a prime number. Then there are 3 left braces with additive group Zp×(C6×C2)
and multiplicative group Zp � D2·6. Among these, one of them is a direct product, one has cyclic kernel of 
order 6 and the other one has kernel isomorphic to D2·3.

5.5. F = Dic12

The dicyclic group Dic12 is a group with 12 elements that can be presented as

Dic12 = 〈x, y |x3 = 1, y4 = 1, yxy−1 = x2〉.

We determine now the possible morphisms τ : F → Z∗
p. To be used in Section 6, we compute S0(τ) =

{g ∈ AutF | τg = τ}. We have AutDic12 = 〈ρ, σ〉 	 D2·6, where ρ and σ are defined as follows.

ρ : x �→ x

y �→ xy−1 ,
σ : x �→ x−1

y �→ y
.

1) There is a unique morphism τ from F to Z∗
p with kernel of order 6, namely the one sending the generator 

x to 1 and y to −1. We have S0(τ) = AutF .
2) If p ≡ 1 (mod 4), let ζ4 be a generator of the subgroup of order 4 of Z∗

p. We may define two morphisms 
from F to Z∗

p with kernel 〈x〉:
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τ1 : x �→ 1 τ2 : x �→ 1

y �→ ζ4 y �→ ζ−1
4 .

We have S0(τ1) = S0(τ2) = 〈ρ2, σ〉.

Case E = C12

We know that in Hol(C12) there exists only a regular subgroup isomorphic to F , up to conjugacy by AutE. 
We may take

F = 〈x = (4, 1), y = (1, 5)〉 ⊂ Hol(E),

following the notation in Remark 10. The element x has order 3, the element y has order 4 and they satisfy 
the relation yxy−1 = x2. We may check that F is a regular subgroup of Hol(C12).

We determine now the conjugation relations between the morphisms τ : F → Z∗
p.

For the morphisms from F to Z∗
p with kernel < x >, we observe that τ2 = τ1Φ7, so we obtain, in this 

case, only one brace.
We state the obtained result in the following proposition.

Proposition 18. Let p ≥ 7 be a prime number. We count the left braces with additive group Zp × C12 and 
multiplicative group Zp � Dic12.

1) If p �≡ 1 (mod 4) there are 2 such braces. One of them is a direct product and the other one has a kernel 
of order 6.

2) If p ≡ 1 (mod 4) there are 3 such braces. One of them is a direct product, and the other two have kernels 
of order 6 and 3, respectively.

Case E = C6 × C2

If E = C6 × C2, there is only a conjugacy class (of length 3) of regular subgroups isomorphic to Dic12.
We may take

F = 〈x = (a2, Id), y = (b, σ)〉 ⊂ Hol(E),

following the notation in Remark 10. The element x has order 3, the element y has order 4 and they satisfy 
the relation yxy−1 = x2. We may check that F is a regular subgroup of Hol(C6 × C2).

We determine now the conjugation relations between the morphisms τ : F → Z∗
p.

For the morphisms τ with a kernel of order 3, we observe that τ2 = τ1Φσ, so we obtain, in this case, only 
one brace.

We state the obtained result in the following proposition.

Proposition 19. Let p ≥ 7 be a prime number. We count the left braces with additive group Zp × (C6 × C2)
and multiplicative group Zp � Dic12.

1) If p �≡ 1 (mod 4) there are 2 such braces. One of them is a direct product and the other one has a kernel 
of order 6.

2) If p ≡ 1 (mod 4) there are 3 such braces. One of them is a direct product, and the other two have kernels 
of order 6 and 3, respectively.
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5.6. Total numbers

For a prime number p ≥ 7 we compile in the following tables the total number of left braces of size 12p.
The additive group is Zp × E and the multiplicative group is a semidirect product Zp � F . In the first 

column we have the possible E’s and in the first row the possible F ’s.

• If p ≡ 11 (mod 12)

C12 C6 × C2 A4 D2·6 Dic12
C12 2 3 0 7 2

C6 × C2 2 2 1 3 2
4 5 1 10 4 24

• If p ≡ 5 (mod 12)

C12 C6 × C2 A4 D2·6 Dic12
C12 3 3 0 7 3

C6 × C2 3 2 1 3 3
6 5 1 10 6 28

• If p ≡ 7 (mod 12)

C12 C6 × C2 A4 D2·6 Dic12
C12 4 6 0 7 2

C6 × C2 4 4 2 3 2
8 10 2 10 4 34

• If p ≡ 1 (mod 12)

C12 C6 × C2 A4 D2·6 Dic12
C12 6 6 0 7 3

C6 × C2 6 4 2 3 3
12 10 2 10 6 40

With the results summarized in the above tables, the validity of conjecture (1) is then established.

6. Hopf Galois structures on a Galois field extension of degree 12p

Let E, F be groups of order 12 with E abelian. By computation with Magma, we obtain that the number 
of regular subgroups of Hol(E) isomorphic to F is as shown in the following table.

E\F C12 C6 × C2 A4 D2·6 Dic12

C12 1 1 0 3 1
C6 × C2 3 1 2 3 3

More precisely, for the groups F1, F2 defined in the case F = D2·6, E = C12, we obtain that F1 is normal 
in Hol(E) while the length of the conjugation class of F2 in Hol(E) is 2 and F ′

2 = 〈(7, 7), (9, 11)〉 is the 
second subgroup in this class.
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For E = C12 or C6×C2, F a regular subgroup of Hol(E), N = Zp×E and τ : F → Z∗
p a group morphism, 

Corollary 5 gives the length of the conjugacy class of the regular subgroup G of Hol(N) corresponding to 
(F, τ). For a fixed regular subgroup G of Hol(N), we want to determine the number of regular subgroups 
of Hol(N) isomorphic to G. This number is the sum of the lengths of the conjugacy classes corresponding 
to pairs (F, τ) such that Zp �τ F 	 G. Then, we only need to consider the number of morphisms τ from 
F to Z∗

p such that Zp �τ F 	 G, without taking into account their distribution into classes. For example, 
in the case F = D2·6, E = C12, | Ker τ | = 6, we only need to consider the morphisms τ1, τ2, τ3 and not the 
fact that their distribution into classes is different for F1 and F2. We obtain the term b(N, G) in Byott’s 
formula (Proposition 1), for N = Zp ×E, G = Zp �τ F , as the product of the number of regular subgroups 
of Hol(E) isomorphic to F times the number of morphisms τ ′ : F → Z∗

p such that Zp �τ ′ F 	 G. Applying 
Corollary 7 and the determination of S0 given in Section 5, we obtain the number of Hopf Galois structures 
of abelian type on a Galois field extension of degree 12p.

The number of Hopf Galois structures of abelian type on a Galois extension with Galois group G = Zp�τF

is as given in the following tables. The first column gives the group F and the first row the kernel of the 
morphism τ : F → Z∗

p defining the semidirect product. In each case, we assume that the value of p is such 
that a morphism τ : F → Z∗

p exists with the given kernel.

Hopf Galois structures of type C12p

F\Ker τ F C6 D2·3 C4 C2
2 C3 C2 {1}

C12 1 p - p - p p p

C6 × C2 3 3p - - 3p - 3p -
A4 0 - - - 0 - - -
D2·6 9 9p 9p - - - - -
Dic12 3 3p - - - 3p - -

Hopf Galois structures of type C6p × C2

F\Ker τ F C6 D2·3 C4 C2
2 C3 C2 {1}

C12 1 p - p - p p p

C6 × C2 1 p - - p - p -
A4 4 - - - 4p - - -
D2·6 3 3p 3p - - - - -
Dic12 3 3p - - - 3p - -
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