Inducing braces and Hopf Galois structures ${ }^{\text {N }}$

Teresa Crespo ${ }^{\text {a,* }}$, Daniel Gil-Muñoz ${ }^{\text {b }}$, Anna Rio ${ }^{\text {c }}$, Montserrat Vela ${ }^{\text {c }}$
${ }^{\text {a }}$ Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain
${ }^{\text {b }}$ Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovska 83, 18600 Praha 8, Czech Republic
${ }^{\text {c }}$ Departament de Matemàtiques, Universitat Politècnica de Catalunya, Edifici Omega, Jordi Girona, 1-3, 08034, Barcelona, Spain

A R T I C L E I N F O

Article history:

Received 16 November 2022
Received in revised form 16 January
2023
Available online 28 February 2023
Communicated by A. Solotar

$M S C$:

Primary: 16T05; 16T25; 12F10;
secondary: 20B35; 20B05; 20D20; 20D45

Keywords:
Left braces
Holomorphs
Regular subgroups
Hopf Galois structures

Abstract

Let p be a prime number and let n be an integer not divisible by p and such that every group of order $n p$ has a normal subgroup of order p. (This holds in particular for $p>n$.) Under these hypotheses, we obtain a one-to-one correspondence between the isomorphism classes of braces of size $n p$ and the set of pairs $\left(B_{n},[\tau]\right)$, where B_{n} runs over the isomorphism classes of braces of size n and $[\tau]$ runs over the classes of group morphisms from the multiplicative group of B_{n} to \mathbf{Z}_{p}^{*} under a certain equivalence relation. This correspondence gives the classification of braces of size $n p$ from the one of braces of size n. From this result we derive a formula giving the number of Hopf Galois structures of abelian type $\mathbf{Z}_{p} \times E$ on a Galois extension of degree $n p$ in terms of the number of Hopf Galois structures of abelian type E on a Galois extension of degree n. For a prime number $p \geq 7$, we apply the obtained results to describe all left braces of size $12 p$ and determine the number of Hopf Galois structures of abelian type on a Galois extension of degree $12 p$. © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In [11] Rump introduced an algebraic structure called brace to study set-theoretic solutions of the YangBaxter equation. A left brace is a triple $(B,+, \cdot)$, where B is a set and + and \cdot are operations on B such that $(B,+)$ is an abelian group, (B, \cdot) is a group and the brace relation is satisfied, namely,

$$
a(b+c)=a b-a+a c
$$

[^0]for all $a, b, c \in B$. We call $N=(B,+)$ the additive group and $G=(B, \cdot)$ the multiplicative group of the left brace. The cardinal of B is called the size of the brace. If $(B,+)$ is not abelian, the corresponding brace is called a skew brace.

Given any abelian group $(A,+)$, it is easy to check that $(A,+,+)$ is a brace. Such a brace is called a trivial brace. We note that any brace of prime size is trivial (see [2] Proposition 2.4).

Let B_{1} and B_{2} be left braces. A map $f: B_{1} \rightarrow B_{2}$ is said to be a brace morphism if $f\left(b+b^{\prime}\right)=f(b)+f\left(b^{\prime}\right)$ and $f\left(b b^{\prime}\right)=f(b) f\left(b^{\prime}\right)$ for all $b, b^{\prime} \in B_{1}$. If f is bijective, we say that f is an isomorphism. In that case we say that the braces B_{1} and B_{2} are isomorphic.

In [3] Bachiller proved that given an abelian group N, there is a bijective correspondence between left braces with additive group N, and regular subgroups of $\operatorname{Hol}(N)$ such that isomorphic left braces correspond to regular subgroups of $\operatorname{Hol}(N)$ which are conjugate by elements of $\operatorname{Aut}(N)$.

In [5] Lemma 2.1, it is proved that $\operatorname{Aut}(N)$, as a subgroup of $\operatorname{Hol}(N)$, is action-closed with respect to the conjugation action of $\operatorname{Hol}(N)$ on the set of regular subgroups of $\operatorname{Hol}(N)$. Therefore, given an abelian group N, the set of isomorphism classes of left braces with additive group N is in bijective correspondence with the set of conjugacy classes of regular subgroups in $\operatorname{Hol}(N)$.

In [1] skew left braces of size $p q$ are classified, where $p>q$ are prime numbers. In [9] a classification of left braces of order $p^{2} q$, where p, q are prime numbers such that $q>p+1$ is given. In [5] the following conjecture on the number $b(12 p)$ of isomorphism classes of left braces of size $12 p$ is formulated, where p is a prime number, $p \geq 7$.

$$
b(12 p)=\left\{\begin{array}{lll}
24 & \text { if } p \equiv 11 & (\bmod 12), \tag{1}\\
28 & \text { if } p \equiv 5 & (\bmod 12), \\
34 & \text { if } p \equiv 7 & (\bmod 12), \\
40 & \text { if } p \equiv 1 & (\bmod 12)
\end{array}\right.
$$

We note that $b(24)=96, b(36)=46$ and $b(60)=28$ (see [14]).
Let B_{1} and B_{2} be left braces. Then $B_{1} \times B_{2}$ together with + and \cdot defined by

$$
(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right) \quad(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right)
$$

is a left brace called the direct product of the braces B_{1} and B_{2}.
Let B_{1} and B_{2} be left braces. Let $\tau:\left(B_{2}, \cdot\right) \rightarrow \operatorname{Aut}\left(B_{1},+, \cdot\right)$ be a morphism of groups. Consider in $B_{1} \times B_{2}$ the additive structure of the direct product $\left(B_{1},+\right) \times\left(B_{2},+\right)$

$$
(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)
$$

and the multiplicative structure of the semidirect product $\left(B_{1}, \cdot\right) \rtimes_{\tau}\left(B_{2}, \cdot\right)$

$$
(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \tau_{b}\left(a^{\prime}\right), b b^{\prime}\right)
$$

Then, we get a left brace, which is called the semidirect product of the left braces B_{1} and B_{2} via τ.
A Hopf Galois structure on a finite extension of fields K / k is a pair (\mathcal{H}, μ) where \mathcal{H} is a finite cocommutative k-Hopf algebra and μ is a Hopf action of \mathcal{H} on K, i.e. a k-linear map $\mu: \mathcal{H} \rightarrow \operatorname{End}_{k}(K)$ giving K a left \mathcal{H}-module algebra structure and inducing a bijection $K \otimes_{k} \mathcal{H} \rightarrow \operatorname{End}_{k}(K)$. Hopf Galois extensions were introduced by Chase and Sweedler in [6]. For a Galois field extension K / k with Galois group G, Greither and Pareigis [10] give a bijective correspondence between Hopf Galois structures on K / k and regular subgroups N of $\operatorname{Sym}(G)$ normalized by $\lambda(G)$, where λ denotes left translation. For a given Hopf Galois structure on K / k, we will refer to the isomorphism class of the corresponding group N as the type of the Hopf Galois structure. By Byott translation theorem [4], a correspondence is established between regular subgroups N of
$\operatorname{Sym}(G)$ normalized by $\lambda(G)$ and regular subgroups of the holomorph $\operatorname{Hol}(N)=N \rtimes$ Aut N. As a corollary, Byott obtains the following formula.

Proposition 1 ([4] Corollary to Proposition 1). Let K / k be a Galois extension with Galois group G. Let N be a group of order $|G|$. Let $a(N, G)$ denote the number of Hopf Galois structures of type N on K / k and let $b(N, G)$ denote the number of regular subgroups of $\operatorname{Hol}(N)$ isomorphic to G. Then

$$
a(N, G)=\frac{|\operatorname{Aut} G|}{|\operatorname{Aut} N|} b(N, G) .
$$

In [7] we have established a one-to-one correspondence between the set of isomorphism classes of braces of size $8 p$, for a prime number $p \neq 3,7$, and the set of pairs consisting of an isomorphism class of braces of size 8 and a certain class of morphisms $\tau:\left(B_{n}, \circ\right) \rightarrow \mathbf{Z}_{p}^{*}$. We have used this result to determine all braces of size $8 p$. In this paper we generalize this result to braces of size $n p$, where p is a prime number and n an integer not divisible by p and such that every group of order $n p$ has a normal subgroup of order p. We note that these hypotheses hold in particular for $p>n$. More precisely, Proposition 4 below gives that any brace of size $n p$ may be explicitly obtained from a brace $\left(B_{n}, \cdot, \circ\right)$ of size n and a group morphism $\tau:\left(B_{n}, \circ\right) \rightarrow \mathbf{Z}_{p}^{*}$. Morover we obtain a one-to-one correspondence between isomorphism classes of braces of size $n p$ and pairs $\left(B_{n},[\tau]\right)$, where B_{n} runs over the isomorphism classes of braces of size n and $[\tau]$ runs over a set of classes of morphisms τ from (B_{n}, \circ) to \mathbf{Z}_{p}^{*} under the relation specified in Proposition 4. From our result on braces we derive a formula giving the number of Hopf Galois structures of abelian type $\mathbf{Z}_{p} \times E$ on a Galois extension of degree $n p$. For a prime number $p \geq 7$, we apply the obtained results to describe all left braces of size $12 p$ and determine the number of Hopf Galois structures of abelian type on a Galois extension of degree $12 p$. As a consequence of our classification of left braces of size $12 p$, for p a prime number, $p \geq 7$, we establish the validity of conjecture (1).

We note that in [12] and [13], Kohl considers also Hopf Galois structures on Galois extensions of degree $n p$, where p is a prime number and n an integer, non divisible by p. He works under the hypotheses that all groups of order $n p$ have a normal subgroup of order p and that p is not a divisor of the order of the automorphism groups of any group of order n. He applies his method to several families of Galois extensions of degree a square free integer.

From now on, p and n will always satisfy the following hypotheses.
(H): p is a prime number and n an integer such that p does not divide n and each group of order np has a normal subgroup of order p.

2. Braces of size $n p$

The following proposition is a generalization of [7], Proposition 1.
Proposition 2. Let p be a prime and n an integer such that p does not divide n and each group of order np has a normal subgroup of order p. Then every left brace of size $n p$ is a direct or semidirect product of the trivial brace of size p and a left brace of size n.

Proof. Let B be a left brace of size $n p$ with additive group N and multiplicative group G. Then, by the Schur-Zassenhaus theorem, $N=\mathbf{Z}_{p} \times E$ with E an abelian group of order n and $G=\mathbf{Z}_{p} \rtimes_{\tau} F$ with F a group of order n and $\tau: F \rightarrow \operatorname{Aut}\left(\mathbf{Z}_{p}\right)$ a group morphism (the trivial one giving the direct product). Let us observe that, since we are working with the trivial brace of size p, the group of brace automorphisms is the classical group $\operatorname{Aut}\left(\mathbf{Z}_{p}\right) \simeq \mathbf{Z}_{p}^{*}$.

Then, for $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right) \in B$,

$$
\begin{aligned}
\left(a_{1}, a_{2}\right)\left(\left(b_{1}, b_{2}\right)\right. & \left.+\left(c_{1}, c_{2}\right)\right)+\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{2}\right)\left(b_{1}+c_{1}, b_{2}+c_{2}\right)+\left(a_{1}, a_{2}\right)= \\
& =\left(a_{1}+\tau_{a_{2}}\left(b_{1}+c_{1}\right)+a_{1}, a_{2}\left(b_{2}+c_{2}\right)+a_{2}\right) .
\end{aligned}
$$

On the other hand,

$$
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)+\left(a_{1}, a_{2}\right)\left(c_{1}, c_{2}\right)=\left(a_{1}+\tau_{a_{2}}\left(b_{1}\right)+a_{1}+\tau_{a_{2}}\left(c_{1}\right), a_{2} b_{2}+a_{2} c_{2}\right)
$$

Therefore, from the brace condition of B we obtain an equality in the second component which tells us that we have a brace B^{\prime} of size n with additive group E and multiplicative group F. Then, B is the semidirect product via τ of the trivial brace with group \mathbf{Z}_{p} and this brace B^{\prime}.

Remark 3. The third Sylow theorem gives that the hypotheses in Proposition 2 are satisfied in particular when $p>n$.

As a corollary to Proposition 2, we obtain that for each brace of size n, there is a left brace of size $n p$ which is the direct product of the unique brace of size p and the given brace of size n. The braces of size $n p$ which are a semidirect product of the unique brace of size p and a brace of size n are determined by the following proposition, which generalizes Proposition 4 in [7].

Proposition 4. Let p be a prime and n an integer such that p does not divide n and each group of order np has a normal subgroup of order p. Let $N=\mathbf{Z}_{p} \times E$ be an abelian group of order $n p$.

The conjugacy classes of regular subgroups of $\operatorname{Hol}(N)$ are in one-to-one correspondence with couples (F, τ) where F runs over a set of representatives of conjugacy classes of regular subgroups of $\operatorname{Hol}(E)$ and τ runs over representatives of classes of group morphisms $\tau: F \rightarrow \operatorname{Aut}\left(\mathbf{Z}_{p}\right)$ under the relation $\tau \simeq \tau^{\prime}$ if and only if there exists $\nu \in \operatorname{Aut}(E)$ such that the corresponding inner automorphism Φ_{ν} of $\operatorname{Hol}(E)$ satisfies $\Phi_{\nu}(F)=F$ and $\tau=\left.\tau^{\prime} \circ \Phi_{\nu}\right|_{F}$.

Proof. As in Proposition 2, we may apply the Schur-Zassenhaus theorem and obtain that groups of order $n p$ are semidirect products $G=\mathbf{Z}_{p} \rtimes_{\tau} F$ with F a group of order n and $\tau: F \rightarrow \operatorname{Aut}\left(\mathbf{Z}_{p}\right)$ a group morphism.

For a given couple (F, τ) the semidirect product is

$$
G=\mathbf{Z}_{p} \rtimes_{\tau} F=\left\{((m, \tau(f)), f) \mid m \in \mathbf{Z}_{p}, f \in F\right\} \subseteq\left(\mathbf{Z}_{p} \rtimes \mathbf{Z}_{p}^{*}\right) \times \operatorname{Hol}(E)=\operatorname{Hol}(N)
$$

and the action on N is given by $((m, k), f)(z, x)=(m+k z, f x)$. Since G contains \mathbf{Z}_{p}, we have transitivity in the first component and G is regular in $\operatorname{Hol}(N)$ if and only if F is regular in $\operatorname{Hol}(E)$.

Let us describe inner automorphisms of $\operatorname{Hol}(N)=\left(\mathbf{Z}_{p} \rtimes \mathbf{Z}_{p}^{*}\right) \times(E \rtimes \operatorname{Aut}(E))$. We write elements in $\operatorname{Hol}(N)$ as (m, k, a, σ) accordingly. Since we are dealing with regular subgroups, we just have to consider conjugation by elements $(i, \nu) \in \operatorname{Aut}(N)=\mathbf{Z}_{p}^{*} \times \operatorname{Aut}(E)$. Let $\Phi_{(i, \nu)}$ be the inner automorphism corresponding to (i, ν) inside $\operatorname{Hol}(N)$. Then,

$$
\begin{aligned}
\Phi_{(i, \nu)}(m, k, a, \sigma) & =(0, i, 0, \nu)(m, k, a, \sigma)(0, i, 0, \nu)^{-1} \\
& =(i m, i k, \nu(a), \nu \sigma)\left(0, i^{-1}, 0, \nu^{-1}\right) \\
& =\left(i m, k, \nu(a), \nu \sigma \nu^{-1}\right)
\end{aligned}
$$

If we work in $\operatorname{Hol}(E)$, conjugation by $\nu \in \operatorname{Aut}(E)$ is

$$
\Phi_{\nu}(a, \sigma)=(0, \nu)(a, \sigma)\left(0, \nu^{-1}\right)=\left(\nu(a), \nu \sigma \nu^{-1}\right) .
$$

Let $G=\mathbf{Z}_{p} \rtimes_{\tau} F=\left\{(m, \tau(a, \sigma), a, \sigma) \mid m \in \mathbb{Z}_{p},(a, \sigma) \in F\right\}$. Then,

$$
\Phi_{(i, \nu)}(G)=\left\{\left(i m, \tau(a, \sigma), \nu(a), \nu \sigma \nu^{-1}\right) \mid m \in \mathbb{Z}_{p},(a, \sigma) \in F\right\} .
$$

Since $i \in \mathbf{Z}_{p}^{*}$, im runs over \mathbf{Z}_{p} as m does. Therefore, if $\left(F^{\prime}, \tau^{\prime}\right)$ is another pair, we have

$$
\Phi_{(i, \nu)}(G)=\mathbf{Z}_{p} \rtimes_{\tau^{\prime}} F^{\prime} \Longleftrightarrow F^{\prime}=\Phi_{\nu}(F), \text { and } \tau=\left.\tau^{\prime} \circ \Phi_{\nu}\right|_{F} .
$$

Let us observe that in that case $\operatorname{ker} \tau^{\prime}=\Phi_{\nu}(\operatorname{ker} \tau)$.

3. Hopf Galois structures on a Galois field extension of degree $\boldsymbol{n p}$

From Proposition 4 we obtain the following corollary.
Corollary 5. Let E be a group of order $n, N=\mathbf{Z}_{p} \times E$. Let F be a regular subgroup of $\operatorname{Hol}(E)$ and $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$ a group morphism. The length of the conjugacy class of the regular subgroup of $\operatorname{Hol}(N)$ corresponding to (F, τ) is equal to the length of the conjugacy class of F in $\operatorname{Hol}(E)$ times the number of morphisms from F to \mathbf{Z}_{p}^{*} equivalent to τ under the relation defined in Proposition 4.

Using this corollary, we shall determine, the number of regular subgroups of the holomorph of N. Applying then Byott's formula (Proposition 1), we shall obtain the number of Hopf Galois structures of abelian type on a Galois extension of degree $n p$. We note that all these Galois structures are induced, in the sense of [8], by Theorem 9 in [8]. In order to apply Byott's formula, we determine the automorphisms of a semidirect product $\mathbf{Z}_{p} \rtimes_{\tau} F$.

Let $G=\mathbf{Z}_{p} \rtimes F$, with F a group of order n. By the Schur-Zassenhaus theorem, any subgroup of G of order equal to $|F|$ is conjugate to F. We assume that the semidirect product is not direct, then F has exactly p conjugates, namely $F_{i}:=\left(i, 1_{F}\right) F\left(-i, 1_{F}\right), 0 \leq i \leq p-1$. If φ is an automorphism of G, then $\varphi\left(\mathbf{Z}_{p}\right)=\mathbf{Z}_{p}$ and $\varphi(F)$ is a subgroup of G isomorphic to F. We have then $\varphi(F)=F_{i}$ for some i. Let

$$
S=\{\varphi \in \operatorname{Aut} G: \varphi(F)=F\} .
$$

Clearly S is a subgroup of $\operatorname{Aut}(G)$. Let C_{i} denote conjugation by $(i, 1)$ in $\operatorname{Aut}(G)$. Then $\left\{C_{i}\right\}_{0 \leq i \leq p-1}$ is a transversal of S in $\operatorname{Aut}(G)$, hence $|\operatorname{Aut}(G)|=p|S|$.

We give now a characterization of S in terms of $\operatorname{Aut} \mathbf{Z}_{p}$, Aut F and the morphism $\tau: F \rightarrow$ Aut $\mathbf{Z}_{p} \simeq \mathbf{Z}_{p}^{*}$ defining the semidirect product $\mathbf{Z}_{p} \rtimes F$.

Proposition 6. The image of the injective map

$$
S \rightarrow \operatorname{Aut} \mathbf{Z}_{p} \times \operatorname{Aut} F, \quad \varphi \mapsto\left(\varphi_{\mid \mathbf{Z}_{p}}, \varphi_{\mid F}\right)
$$

is precisely the set of pairs $(f, g) \in \operatorname{Aut} \mathbf{Z}_{p} \times$ Aut F such that $\tau g=\tau$.
Proof. Let $\varphi \in$ Aut G. For $x \in F, 1 \in \mathbf{Z}_{p}$, we have $x 1=\tau(x) x$. Applying φ to this equality, we get $\varphi(x) \varphi(1)=\varphi(\tau(x)) \varphi(x)$. Now, since $\varphi(x) \in F$ and $\varphi(1) \in \mathbf{Z}_{p}$, we have $\varphi(x) \varphi(1)=\tau(\varphi(x)) \varphi(1) \varphi(x)$. We obtain then the equality $\varphi(\tau(x))=\tau(\varphi(x)) \varphi(1)$. This implies $\varphi_{\mid \mathbf{Z}_{p}} \tau(x)=\tau\left(\varphi_{\mid F}(x)\right) \varphi_{\mid \mathbf{Z}_{p}}$ in Aut \mathbf{Z}_{p}. Since Aut \mathbf{Z}_{p} is commutative, we obtain $\tau=\tau \varphi_{\mid F}$.

Reciprocally, let $(f, g) \in$ Aut $\mathbf{Z}_{p} \times$ Aut F such that $\tau g=\tau$. We define a map φ from $\mathbf{Z}_{p} \times F$ to $\mathbf{Z}_{p} \times F$ by $\varphi(i, x)=(f(i), g(x))$. Now φ is an automorphism of $\mathbf{Z}_{p} \rtimes_{\tau} F$ if and only if $\varphi((i, x)(j, y))=\varphi((i, x)) \varphi((j, y))$, equivalently $(f(i+\tau(x) j), g(x y)))=(f(i), g(x))(f(j), g(y))=(f(i)+\tau(g(x)) f(j), g(x) g(y))$. Since g is an
automorphism, the two second components coincide. Since f is an automorphism, the equality of the first components is equivalent to $f(\tau(x) j)=\tau(g(x)) f(j)$ for all j, equivalently $f \tau(x)=\tau(g(x)) f$, for all $x \in F$, which is fulfilled, since $\tau g=\tau$ and Aut \mathbf{Z}_{p} is commutative.

Corollary 7. For $G=\mathbf{Z}_{p} \rtimes_{\tau} F$, with τ a nontrivial morphism from F to \mathbf{Z}_{p}^{*}, we have \mid Aut $G|=p(p-1)| S_{0} \mid$, where $S_{0}=\{g \in$ Aut $F \mid \tau g=\tau\}$.

Proof. From the proposition we obtain clearly $S=$ Aut $\mathbf{Z}_{p} \times S_{0}$, hence \mid Aut $G|=p| S|=p(p-1)| S_{0} \mid$.

4. Braces of size $12 p$: direct products

There are five groups of order 12, up to isomorphism, two abelian ones C_{12} and $C_{6} \times C_{2}$ and three non-abelian ones, the alternating group A_{4}, the dihedral group $D_{2 \cdot 6}$ and the dicyclic group Dic ${ }_{12}$. By computation with Magma, we obtain that the number of conjugacy classes of regular subgroups of $\operatorname{Hol}(E)$ isomorphic to F, equivalently, the number of isomorphism classes of left braces with additive group E and multiplicative group F is as shown in the following table.

$E \backslash F$	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic_{12}
C_{12}	1	1	0	2	1
$C_{6} \times C_{2}$	1	1	1	1	1

For p a prime number, $p \geq 7$, the Sylow theorems give that a group G of order $12 p$ has a normal subgroup H_{p} of order p. We obtain then the following corollary to Proposition 2.

Corollary 8. Let $p \geq 7$ be a prime. Every left brace of size $12 p$ is a direct or semidirect product of the trivial brace of size p and a left brace of size 12 .

From the description of the braces of size 12 and the definition of direct product of braces we obtain the following result.

Proposition 9. For a prime number p, there are 10 left braces of size $12 p$ which are direct product of the unique brace of size p and a brace of size 12 .

5. Braces of size $12 p$: semidirect products

For $p \geq 7$ and $n=12$, the hypotheses of Proposition 4 are satisfied and we shall apply it to determine the braces of size $12 p$ which are semidirect products of the unique brace of size p and a brace of size 12 . To this end, we shall consider the braces of order 12 with additive group E and multiplicative group F and determine the classes of the morphisms $\tau: F \rightarrow \operatorname{Aut}\left(\mathbf{Z}_{p}\right)$ under the relation described in Proposition 4. We note that finding all such morphisms τ reduces to consider the normal subgroups F^{\prime} of F such that F / F^{\prime} is a cyclic group C whose order divides $p-1$ and taking into account the automorphisms of C. From now on, the kernel of τ will be referred to as the kernel of the brace (or conjugation class of regular subgroups) determined by the pair (F, τ).

Remark 10 (Description of the holomorphs). We consider now the abelian groups of order 12, that is, $E=C_{12}$ and $E=C_{6} \times C_{2}$ and describe $\operatorname{Hol}(E)$ in each case.

For $E=C_{12}=\mathbf{Z}_{12}$, we have $\operatorname{Aut}\left(\mathbf{Z}_{12}\right)=\mathbf{Z}_{12}^{*}=\{1,5,7,11\} \simeq C_{2} \times C_{2}$ and $\operatorname{Hol}\left(\mathbf{Z}_{12}\right)=\{(x, l): x \in$ $\left.\mathbf{Z}_{12}, l \in \mathbf{Z}_{12}^{*}\right\}$ with product given by $(x, l)(y, m)=(x+l y, l m)$.

For $E=C_{6} \times C_{2}$, we have $\operatorname{Aut}(E) \simeq D_{2.6}$. We write $C_{6} \times C_{2}=\langle a\rangle \times\langle b\rangle$ and consider the automorphisms ρ, σ of E defined by

$$
\begin{aligned}
& \rho: a \mapsto a^{5} b \quad \sigma: a \mapsto a^{5} \\
& b \mapsto a^{3} \quad b \mapsto a^{3} b .
\end{aligned}
$$

We may check that ρ has order $6, \sigma$ has order 2 and $\sigma \rho \sigma=\rho^{-1}$, hence $\operatorname{Aut}(E)=\langle\rho, \sigma\rangle$. We have $\operatorname{Hol}(E)=$ $\{(x, \varphi): x \in E, \varphi \in$ Aut $E\}$ with product defined by $(x, \varphi)(y, \psi)=(x \varphi(y), \varphi \psi)$.

We shall use the descriptions above throughout this section.

5.1. $F=C_{12}$

Let us write $F=\langle x\rangle$. We determine now the possible morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$. To be used in Section 6, we compute $S_{0}(\tau)=\{g \in$ Aut $F \mid \tau g=\tau\}$. We have Aut $C_{12} \simeq \mathbf{Z}_{12}^{*}=\{1,5,7,11\}$.

1) There is a unique morphism $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$ with kernel of order 6 , namely the one sending the generator x of F to -1 . We have $S_{0}(\tau)=\operatorname{Aut} F$.
2) When $p \equiv 1(\bmod 4), \mathbf{Z}_{p}^{*}$ has a (unique) subgroup of order 4 . Let ζ_{4} be a generator of it. We may define two morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 3, namely

$$
\tau_{1}: x \mapsto \zeta_{4}, \quad \tau_{2}: x \mapsto \zeta_{4}^{-1} .
$$

We have $S_{0}\left(\tau_{1}\right)=S_{0}\left(\tau_{2}\right)=\{1,5\}$.
3) When $p \equiv 1(\bmod 6), \mathbf{Z}_{p}^{*}$ has a (unique) subgroup of order 6 . Let ζ_{6} be a generator of it. We may define two morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 2, namely

$$
\tau_{1}: x \mapsto \zeta_{6}, \quad \tau_{2}: x \mapsto \zeta_{6}^{-1}
$$

and two morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 4, namely

$$
\tau_{3}: x \mapsto \zeta_{6}^{2}, \quad \tau_{4}: x \mapsto \zeta_{6}^{-2} .
$$

We have $S_{0}\left(\tau_{1}\right)=S_{0}\left(\tau_{2}\right)=S_{0}\left(\tau_{3}\right)=S_{0}\left(\tau_{4}\right)=\{1,7\}$.
4) When $p \equiv 1(\bmod 12), \mathbf{Z}_{p}^{*}$ has a (unique) subgroup of order 12 . Let ζ_{12} be a generator of it. We may define four morphisms from F to \mathbf{Z}_{p}^{*} with a trivial kernel, namely

$$
\begin{array}{ll}
\tau_{1}: x \mapsto \zeta_{12}, & \tau_{2}: x \mapsto \zeta_{12}^{5}, \\
\tau_{3}: x \mapsto \zeta_{12}^{-5}, & \tau_{4}: x \mapsto \zeta_{12}^{-1} .
\end{array}
$$

We have $S_{0}\left(\tau_{1}\right)=S_{0}\left(\tau_{2}\right)=S_{0}\left(\tau_{3}\right)=S_{0}\left(\tau_{4}\right)=\{1\}$.
Case $E=C_{12}$
If $E=C_{12}$, we may take $F=\langle(1,1)\rangle \subset \operatorname{Hol}(E)$, i.e. we have now $x=(1,1)$. We determine the conjugation relations between the morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$.

1) We consider the two morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 3 . We observe that $\tau_{2}(-1,1)=$ $\tau_{2}\left((1,1)^{-1}\right)=\zeta_{4}$, hence $\tau_{1}=\tau_{2} \Phi_{-1}$ and we obtain then one brace.
2) We consider the two morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 2 and the two with a kernel of order 4. We have $\tau_{1}=\tau_{2} \Phi_{-1}$ and $\tau_{3}=\tau_{4} \Phi_{-1}$ and obtain then two braces.
3) We consider the four morphisms from F to \mathbf{Z}_{p}^{*} with a trivial kernel. We observe that $(1,1)^{5}=$ $(5,1),(1,1)^{-5}=(-5,1),(1,1)^{-1}=(-1,1)$, hence $\tau_{1}=\tau_{2} \Phi_{5}=\tau_{3} \Phi_{-5}=\tau_{4} \Phi_{-1}$ and obtain then one brace.

We state the obtained result in the following proposition.
Proposition 11. Let $p \geq 7$ be a prime number. We count the left braces with additive group $\mathbf{Z}_{p} \times \mathbf{Z}_{12}$ and multiplicative group $\mathbf{Z}_{p} \rtimes \mathbf{Z}_{12}$.

1) If $p \equiv 11(\bmod 12)$ there are 2 such braces. One of them is a direct product and the second one has a kernel of order 6 .
2) If $p \equiv 5(\bmod 12)$ there are 3 such braces. Two of them are as in 1) and the third one has a kernel of order 3.
3) If $p \equiv 7(\bmod 12)$ there are 4 such braces. Two of them are as in 1) and the other two have kernels of orders 2 and 4, respectively.
4) If $p \equiv 1(\bmod 12)$ there are 6 such braces. One of them is a direct product and the other five have kernels of orders $6,4,3,2,1$, respectively.

Case $E=C_{6} \times C_{2}$
For $E=C_{6} \times C_{2}$, we use the notations in Remark 10. We may take $F=\langle(a b, \varphi)\rangle \subset \operatorname{Hol}(E)$, where φ is the order 2 automorphism defined by $\varphi(a)=a, \varphi(b)=a^{3} b$, i.e. $\varphi=\rho^{3} \sigma$. We may check that F is indeed a cyclic group of order 12 and a regular subgroup of $\operatorname{Hol}(E)$. We have now $x=(a b, \varphi)$. We determine the conjugation relations between the morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$.

1) For the two morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 3 , we observe that $(a b, \varphi)^{-1}=\left(\varphi\left(a^{-1} b\right), \varphi\right)=$ $\left(a^{2} b, \varphi\right)$, hence $\tau_{2}\left(a^{2} b, \varphi\right)=\zeta_{4}$. We have then $\tau_{1}=\tau_{2} \Phi_{\sigma}$, since $\Phi_{\sigma}\left(a b, \rho^{3} \sigma\right)=\sigma\left(a b, \rho^{3} \sigma\right) \sigma^{-1}=$ $\left(\sigma(a b), \sigma\left(\rho^{3} \sigma\right) \sigma\right)=\left(a^{2} b, \rho^{3} \sigma\right)$. We obtain then one brace.
2) For the two morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 2 and the two with a kernel of order 4 , as in the preceding case, we have $\tau_{1}=\tau_{2} \Phi_{\sigma}$ and $\tau_{3}=\tau_{4} \Phi_{\sigma}$ and obtain then two braces.
3) For the four morphisms from F to \mathbf{Z}_{p}^{*} with a trivial kernel, we observe that $(a b, \varphi)^{5}=\left(a^{5} b, \varphi\right),(a b, \varphi)^{-5}=$ $\left(a^{4} b, \varphi\right),(a b, \varphi)^{-1}=\left(a^{2} b, \varphi\right)$, hence $\tau_{1}=\tau_{2} \Phi_{\rho^{3}}=\tau_{3} \Phi_{\rho^{3} \sigma}=\tau_{4} \Phi_{\sigma}$ and we obtain then one brace.

We state the obtained result in the following proposition.
Proposition 12. Let $p \geq 7$ be a prime number. We count the left braces with additive group $\mathbf{Z}_{p} \times \mathbf{Z}_{6} \times \mathbf{Z}_{2}$ and multiplicative group $\mathbf{Z}_{p} \rtimes \mathbf{Z}_{12}$.

1) If $p \equiv 11(\bmod 12)$ there are 2 such braces. One of them is a direct product and the second one has a kernel of order 6 .
2) If $p \equiv 5(\bmod 12)$ there are 3 such braces. Two of them are as in 1) and the third one has a kernel of order 3.
3) If $p \equiv 7(\bmod 12)$ there are 4 such braces. Two of them are as in 1) and the other two have kernels of orders 2 and 4, respectively.
4) If $p \equiv 1(\bmod 12)$ there are 6 such braces. One of them is a direct product and the other five have kernels of orders $6,4,3,2,1$, respectively.

5.2. $F=C_{6} \times C_{2}$

Let us write $F=\langle x, y\rangle$, with x of order $6, y$ of order 2 . We determine now the possible morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$. To be used in Section 6, we compute $S_{0}(\tau)=\{g \in$ Aut $F \mid \tau g=\tau\}$. We use the determination of Aut F given in Remark 10.

1) There are three morphisms from F to \mathbf{Z}_{p}^{*} with kernel of order 6 , namely

$$
\begin{array}{rllllllllll}
\tau_{1}: & x & \mapsto & 1 \\
& y & \mapsto & -1
\end{array}, \begin{array}{rlllll}
\tau_{2}: & x & \mapsto & -1 \\
& y & \mapsto & -1
\end{array}, \begin{gathered}
\tau_{3}:
\end{gathered}, \begin{array}{llll}
& \mapsto & & -1 \\
y & \mapsto & 1
\end{array},
$$

with kernels $\langle x\rangle,\langle x y\rangle,\left\langle x^{2} y\right\rangle$, respectively. We have $S_{0}\left(\tau_{1}\right)=\left\langle\rho^{3}, \sigma\right\rangle, S_{0}\left(\tau_{2}\right)=\left\langle\rho^{3}, \rho^{2} \sigma\right\rangle, S_{0}\left(\tau_{3}\right)=\left\langle\rho^{3}, \rho \sigma\right\rangle$.
2) In order to have a morphism τ with $\operatorname{Ker} \tau$ of order 2 or 4 , it is necessary that $p \equiv 1(\bmod 6)$. In this case, let ζ_{6} be a generator of the unique subgroup of order 6 of \mathbf{Z}_{p}^{*}. We may define six morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 2, namely

$$
\begin{array}{rlll}
\tau_{1}: & x \mapsto \zeta_{6} & \tau_{2}: & x \mapsto \zeta_{6}^{-1} \quad \text { with } \operatorname{Ker} \tau=<y> \\
& y \mapsto 1 & & y \mapsto 1, \\
\tau_{3}: & x \mapsto \zeta_{6}^{2} & \tau_{4}: & x \mapsto \zeta_{6}^{-2} \quad \text { with } \operatorname{Ker} \tau=<x^{3}> \\
& y \mapsto \zeta_{6}^{3} & & y \mapsto \zeta_{6}^{3}, \\
\tau_{5}: & x \mapsto \zeta_{6} & \tau_{6}: & x \mapsto \zeta_{6}^{-1} \quad \text { with } \operatorname{Ker} \tau=<x^{3} y> \\
& y \mapsto \zeta_{6}^{3} & & y \mapsto \zeta_{6}^{3} .
\end{array}
$$

We have $S_{0}\left(\tau_{1}\right)=S_{0}\left(\tau_{2}\right)=\langle\rho \sigma\rangle, S_{0}\left(\tau_{3}\right)=S_{0}\left(\tau_{4}\right)=\left\langle\rho^{3} \sigma\right\rangle, S_{0}\left(\tau_{5}\right)=S_{0}\left(\tau_{6}\right)=\left\langle\rho^{5} \sigma\right\rangle$. We may further define two morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 4, namely

$$
\begin{array}{rlll}
\tau_{1}: & x \mapsto \zeta_{6}^{2} & \tau_{2}: & x \mapsto \zeta_{6}^{-2} \\
& y \mapsto 1 & & y \mapsto 1 .
\end{array}
$$

We have $S_{0}\left(\tau_{1}\right)=S_{0}\left(\tau_{2}\right)=\left\langle\rho^{2}, \rho \sigma\right\rangle$.
Case $E=C_{12}$
We know that in $\operatorname{Hol}\left(C_{12}\right)$ there is only one regular subgroup isomorphic to F. We may take

$$
F=\langle\alpha=(2,1), \beta=(3,7)\rangle \subset \operatorname{Hol}(E)
$$

following the notation in Remark 10.
The element α has order 6 , the element β has order 2 , they commute with each other and generate a regular subgroup of order 12 . We have now $x=\alpha, y=\beta$. We determine the conjugation relations between the morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$.

1) For the morphisms from F to \mathbf{Z}_{p}^{*} with kernel of order 6 , we have $\tau_{2}=\tau_{3} \Phi_{-1}$ and τ_{1} is not conjugate to the other two, since the second component of α is different from those of $\alpha \beta$ and $\alpha^{2} \beta$. We obtain then two braces.
2) For the morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 4 , we observe that $\tau_{2} \Phi_{11}(\alpha)=\zeta_{3}$ and $\tau_{2} \Phi_{11}(\beta)=$ 1 , hence $\tau_{1}=\tau_{2} \Phi_{11}$ and we obtain then a unique brace.
3) For the morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 2 , we observe that $\tau_{2}=\tau_{1} \Phi_{5}, \tau_{5}=\tau_{1} \Phi_{7}$, $\tau_{6}=\tau_{1} \Phi_{-1}$ and $\tau_{4}=\tau_{3} \Phi_{-1}$. So we obtain only two braces (determined by τ_{1} and τ_{3}).

We state the obtained result in the following proposition.

Proposition 13. Let $p \geq 7$ be a prime number. We count the left braces with additive group $\mathbf{Z}_{p} \times C_{12}$ and multiplicative group $\mathbf{Z}_{p} \rtimes\left(C_{6} \times C_{2}\right)$.

1) If $p \equiv 11(\bmod 12)$ there are 3 such braces. One of them is a direct product and the other two have a kernel of order 6 .
2) If $p \equiv 7(\bmod 12)$ there are 6 such braces. One of them is a direct product, two have kernel of order 6 , two have kernels of order 2 and one has kernel of order 4.
3) If $p \equiv 5(\bmod 12)$ there are 3 such braces. One of them is a direct product and the other two have a kernel of order 6 .
4) If $p \equiv 1(\bmod 12)$ there are 6 such braces. One of them is a direct product, two have kernel of order 6 , two have kernels of orders 2 and one has kernel of order 4.

Case $E=C_{6} \times C_{2}$

If $E=C_{6} \times C_{2}$, we may take $F=\langle(a, \mathrm{Id}),(b, \mathrm{Id})\rangle \subset \operatorname{Hol}(E)$, following the notation of Remark 10 . We may check that F is indeed a regular subgroup of order 12 of $\operatorname{Hol}(E)$ isomorphic to $C_{6} \times C_{2}$. We have now $x=(a, \mathrm{Id}), y=(b, \mathrm{Id})$. We determine the conjugation relations between the morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$.

1) For the morphisms from F to \mathbf{Z}_{p}^{*} with kernel of order 6 , we have $\tau_{1}=\tau_{2} \Phi_{\rho^{4}}=\tau_{3} \Phi_{\rho^{5}}$. We obtain then one brace.
2) For the morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 4, we observe that $\tau_{1}=\tau_{2} \Phi_{\rho^{3}}$ and obtain then a unique brace.
3) For the morphisms from F to \mathbf{Z}_{p}^{*} with a kernel of order 2, we observe that $\tau_{6}=\tau_{1} \Phi_{\rho}=\tau_{2} \Phi_{\rho^{4}}=\tau_{3} \Phi_{\rho^{2}}=$ $\tau_{4} \Phi_{\sigma \rho^{2}}=\tau_{5} \Phi_{\rho^{3}}$. So we obtain only one brace.

We state the obtained result in the following proposition.

Proposition 14. Let $p \geq 7$ be a prime number. We count the left braces with additive group $\mathbf{Z}_{p} \times\left(C_{6} \times C_{2}\right)$ and multiplicative group $\mathbf{Z}_{p} \rtimes\left(C_{6} \times C_{2}\right)$.

1) If $p \equiv 11(\bmod 12)$ there are 2 such braces. One of them is a direct product and the second one has a kernel of order 6 .
2) If $p \equiv 7(\bmod 12)$ there are 4 such braces. One of them is a direct product, and the other three have kernels of orders 2, 4 and 6 , respectively.
3) If $p \equiv 5(\bmod 12)$ there are 2 such braces. One of them is a direct product and the second one has a kernel of order 6 .
4) If $p \equiv 1(\bmod 12)$ there are 4 such braces. One of them is a direct product, and the other three have kernels of orders 2, 4 and 6, respectively.

5.3. $F=A_{4}$

This case only occurs for $E=C_{6} \times C_{2}$. We use the notation of Remark 10 for the generators of $\operatorname{Hol}(E)$. We have $A_{4}=V_{4} \rtimes C_{3}$ and we may take $F=\left\langle a^{3}, b,\left(a^{4}, \rho^{2}\right)\right\rangle \subset \operatorname{Hol}(E)$, since a^{3}, b are order 2 elements commuting between them and (a^{4}, ρ^{2}) has order 3 and satisfies $\left(a^{4}, \rho^{2}\right) a^{3}\left(a^{4}, \rho^{2}\right)^{-1}=b,\left(a^{4}, \rho^{2}\right) b\left(a^{4}, \rho^{2}\right)^{-1}=a^{3} b$. We may further check that F is a regular subgroup of $\operatorname{Hol}(E)$. Since V_{4} is the unique proper nontrivial normal subgroup of A_{4}, we have that a nontrivial morphism from F to \mathbf{Z}_{p}^{*} has image a cyclic group of order 3. We have then two cases.

1) If $p \not \equiv 1(\bmod 3)$, the unique morphism from F to \mathbf{Z}_{p}^{*} is the trivial one and there is just one brace with additive group $\mathbf{Z}_{p} \times \mathbf{Z}_{6} \times \mathbf{Z}_{2}$ and multiplicative group $\mathbf{Z}_{p} \rtimes A_{4}$, the one whose multiplicative group is a direct product.
2) If $p \equiv 1(\bmod 3)$, let ζ_{3} be a generator of the (unique) subgroup of order 3 of \mathbf{Z}_{p}^{*}. We may define two morphisms from F to \mathbf{Z}_{p}^{*}, with kernel $\left\langle a^{3}, b\right\rangle$, namely

$$
\tau_{1}:\left(a^{4}, \rho^{2}\right) \mapsto \zeta_{3}, \quad \tau_{2}:\left(a^{4}, \rho^{2}\right) \mapsto \zeta_{3}^{-1} .
$$

We note that $\left(a^{4}, \rho^{2}\right)^{-1}=\left(a^{2}, \rho^{4}\right)=\sigma\left(a^{4}, \rho^{2}\right) \sigma$, hence $\tau_{1}=\tau_{2} \Phi_{\sigma}$ and we obtain one brace.
We state the obtained result in the following proposition.
Proposition 15. Let $p \geq 7$ be a prime number. We count the left braces with additive group $\mathbf{Z}_{p} \times \mathbf{Z}_{6} \times \mathbf{Z}_{2}$ and multiplicative group $\mathbf{Z}_{p} \rtimes A_{4}$.

1) If $p \not \equiv 1(\bmod 3)$ there is just one such brace, which is a direct product.
2) If $p \equiv 1(\bmod 3)$ there are 2 such braces. One is a direct product and the second one has kernel isomorphic to V_{4}.

To be used in Section 6, we compute $S_{0}(\tau)=\{g \in$ Aut $F \mid \tau g=\tau\}$ for the two nontrivial morphisms from F to \mathbf{Z}_{p}^{*}. We have Aut $A_{4} \simeq S_{4}$ and the isomorphism is obtained by sending a permutation in S_{4} to the corresponding conjugation automorphism. We obtain $S_{0}\left(\tau_{1}\right)=S_{0}\left(\tau_{2}\right)=A_{4}$.
5.4. $F=D_{2.6}$

Let us write $F=\langle r, s| r^{6}=\mathrm{Id}, s^{2}=\mathrm{Id}$, srs $\left.=r^{5}\right\rangle$. We describe the morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$. To be used in Section 6, we compute $S_{0}(\tau)=\{g \in$ Aut $F \mid \tau g=\tau\}$. We have Aut $D_{2 \cdot 6}=\langle\rho, \sigma\rangle \simeq D_{2 \cdot 6}$, where ρ and σ are defined as follows.

$$
\begin{array}{rllllll}
\rho: \quad r & \mapsto r \\
s & \mapsto r s
\end{array}, \quad \sigma: \quad r \quad \mapsto r r^{5}
$$

The only nontrivial morphisms from F to \mathbf{Z}_{p}^{*} are three morphisms with kernel of order 6 , namely

$$
\begin{aligned}
& \tau_{1}: r \mapsto 1 \quad \tau_{2}: r \mapsto-1 \quad \tau_{3}: r \mapsto-1 \\
& s \mapsto-1, \quad s \mapsto-1, \quad s \mapsto 1 \text {, }
\end{aligned}
$$

with kernels $\langle r\rangle,\left\langle r^{2}, r s\right\rangle$ and $\left\langle r^{2}, s\right\rangle$, respectively. We observe that $\operatorname{Ker} \tau_{1}$ is cyclic, while $\operatorname{Ker} \tau_{2}$ and $\operatorname{Ker} \tau_{3}$ are isomorphic to the dihedral group $D_{2.3}$. We have $S_{0}\left(\tau_{1}\right)=\operatorname{Aut} F, S_{0}\left(\tau_{2}\right)=S_{0}\left(\tau_{3}\right)=\left\langle\rho^{2}, \sigma\right\rangle$.

Case $E=C_{12}$

There are two regular subgroups of $\operatorname{Hol}(E)$ isomorphic to $D_{2 \cdot 6}$, up to conjugacy by Aut E,

$$
F_{1}=\left\langle\alpha_{1}=(2,1), \beta_{1}=(1,11)\right\rangle, \quad F_{2}=\left\langle\alpha_{2}=(1,7), \beta_{2}=(3,11)\right\rangle
$$

For $i \in\{1,2\}, \alpha_{i}$ has order $6, \beta_{i}$ has order 2 , and $\alpha_{i} \beta_{i} \alpha_{i}=\beta_{i}$, so $F_{i} \cong D_{2 \cdot 6}$. It is checked easily that F_{i} is regular. We have now $r=\alpha_{i}, s=\beta_{i}, i=1,2$.

We consider the morphisms from F to \mathbf{Z}_{p}^{*} with kernel of order 6 . Since $\operatorname{Ker}\left(\tau_{1}\right)$ is cyclic while $\operatorname{Ker} \tau_{2}$ and $\operatorname{Ker} \tau_{3}$ are not, τ_{1} is not conjugate to the other two morphisms. We denote $\tau_{2}^{(i)}, \tau_{3}^{(i)}: F_{i} \rightarrow \mathbf{Z}_{p}^{*}, i=1,2$. Since $\Phi_{7}\left(\alpha_{1}\right)=\alpha_{1}$ and $\Phi_{7}\left(\beta_{1}\right)=\alpha_{1}^{3} \beta_{1}$, we obtain $\tau_{2}^{(1)}=\tau_{3}^{(1)} \Phi_{7}$. For $\tau_{2}^{(2)}$ and $\tau_{3}^{(2)}$ to be conjugate, we would need $\Phi_{\nu}\left(\beta_{2}\right)=\alpha_{2}^{k} \beta_{2}$, with an odd k. Since the second component of β_{2} is 11 and the second component of $\alpha_{2}^{k} \beta_{2}$ is 5 , for an odd k, there is no such Φ_{ν}. Hence $\tau_{2}^{(2)}$ and $\tau_{3}^{(2)}$ are not conjugate and we obtain five braces, two of which have order 6 cyclic kernel.

Proposition 16. Let $p \geq 7$ be a prime number. Then there are 7 left braces with additive group $\mathbf{Z}_{p} \times C_{12}$ and multiplicative group $\mathbf{Z}_{p} \rtimes D_{2 \cdot 6}$. Among these, two of them are a direct product, two other have cyclic kernel of order 6 and the other three have kernel isomorphic to $D_{2 \cdot 3}$.

Case $E=C_{6} \times C_{2}$

If $E=C_{6} \times C_{2}$, we may take $F=\left\langle(a, \mathrm{Id}),\left(b, \rho^{3}\right)\right\rangle \subset \operatorname{Hol}(E)$, which is regular. Indeed, one may check that (a, Id) is of order $6,\left(b, \rho^{3}\right)$ is of order $2,(a, \mathrm{Id})\left(b, \rho^{3}\right)(a, \mathrm{Id})=\left(b, \rho^{3}\right)$ and F has trivial stabilizer. We have now $r=(a, \mathrm{Id}), s=\left(b, \rho^{3}\right)$.

We consider the morphisms from F to \mathbf{Z}_{p}^{*} with kernel of order 6 . Again, since $\operatorname{Ker}\left(\tau_{1}\right) \cong C_{6}$ and $\operatorname{Ker}\left(\tau_{i}\right) \cong$ $D_{2 \cdot 3}, i \in\{2,3\}, \tau_{1}$ is not conjugate to the other two morphisms. Since $\tau_{2} \Phi_{\sigma}=\tau_{3}$, we obtain one brace with cyclic kernel and one brace with dihedral kernel.

Proposition 17. Let $p \geq 7$ be a prime number. Then there are 3 left braces with additive group $\mathbf{Z}_{p} \times\left(C_{6} \times C_{2}\right)$ and multiplicative group $\mathbf{Z}_{p} \rtimes D_{2 \cdot 6}$. Among these, one of them is a direct product, one has cyclic kernel of order 6 and the other one has kernel isomorphic to $D_{2 \cdot 3}$.
5.5. $F=\operatorname{Dic}_{12}$

The dicyclic group Dic_{12} is a group with 12 elements that can be presented as

$$
\operatorname{Dic}_{12}=\left\langle x, y \mid x^{3}=1, y^{4}=1, y x y^{-1}=x^{2}\right\rangle
$$

We determine now the possible morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$. To be used in Section 6 , we compute $S_{0}(\tau)=$ $\{g \in$ Aut $F \mid \tau g=\tau\}$. We have Aut $\operatorname{Dic}_{12}=\langle\rho, \sigma\rangle \simeq D_{2 \cdot 6}$, where ρ and σ are defined as follows.

$$
\begin{aligned}
& \rho: x \mapsto x \quad \sigma: x \mapsto x^{-1} \\
& y \mapsto x y^{-1}, \quad y \mapsto y
\end{aligned}
$$

1) There is a unique morphism τ from F to \mathbf{Z}_{p}^{*} with kernel of order 6 , namely the one sending the generator x to 1 and y to -1 . We have $S_{0}(\tau)=$ Aut F.
2) If $p \equiv 1(\bmod 4)$, let ζ_{4} be a generator of the subgroup of order 4 of \mathbf{Z}_{p}^{*}. We may define two morphisms from F to \mathbf{Z}_{p}^{*} with kernel $\langle x\rangle$:

$$
\begin{array}{rlll}
\tau_{1}: & x \mapsto 1 & \tau_{2}: & x \mapsto 1 \\
& y \mapsto \zeta_{4} & & y \mapsto \zeta_{4}^{-1} .
\end{array}
$$

We have $S_{0}\left(\tau_{1}\right)=S_{0}\left(\tau_{2}\right)=\left\langle\rho^{2}, \sigma\right\rangle$.
Case $E=C_{12}$
We know that in $\operatorname{Hol}\left(C_{12}\right)$ there exists only a regular subgroup isomorphic to F, up to conjugacy by Aut E. We may take

$$
F=\langle x=(4,1), y=(1,5)\rangle \subset \operatorname{Hol}(E),
$$

following the notation in Remark 10. The element x has order 3, the element y has order 4 and they satisfy the relation $y x y^{-1}=x^{2}$. We may check that F is a regular subgroup of $\operatorname{Hol}\left(C_{12}\right)$.

We determine now the conjugation relations between the morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$.
For the morphisms from F to \mathbf{Z}_{p}^{*} with kernel $\langle x\rangle$, we observe that $\tau_{2}=\tau_{1} \Phi_{7}$, so we obtain, in this case, only one brace.

We state the obtained result in the following proposition.

Proposition 18. Let $p \geq 7$ be a prime number. We count the left braces with additive group $\mathbf{Z}_{p} \times C_{12}$ and multiplicative group $\mathbf{Z}_{p} \rtimes \operatorname{Dic}_{12}$.

1) If $p \not \equiv 1(\bmod 4)$ there are 2 such braces. One of them is a direct product and the other one has a kernel of order 6 .
2) If $p \equiv 1(\bmod 4)$ there are 3 such braces. One of them is a direct product, and the other two have kernels of order 6 and 3, respectively.

Case $E=C_{6} \times C_{2}$
If $E=C_{6} \times C_{2}$, there is only a conjugacy class (of length 3) of regular subgroups isomorphic to Dic_{12}.
We may take

$$
F=\left\langle x=\left(a^{2}, I d\right), y=(b, \sigma)\right\rangle \subset \operatorname{Hol}(E),
$$

following the notation in Remark 10. The element x has order 3, the element y has order 4 and they satisfy the relation $y x y^{-1}=x^{2}$. We may check that F is a regular subgroup of $\operatorname{Hol}\left(C_{6} \times C_{2}\right)$.

We determine now the conjugation relations between the morphisms $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$.
For the morphisms τ with a kernel of order 3 , we observe that $\tau_{2}=\tau_{1} \Phi_{\sigma}$, so we obtain, in this case, only one brace.

We state the obtained result in the following proposition.
Proposition 19. Let $p \geq 7$ be a prime number. We count the left braces with additive group $\mathbf{Z}_{p} \times\left(C_{6} \times C_{2}\right)$ and multiplicative group $\mathbf{Z}_{p} \rtimes \mathrm{Dic}_{12}$.

1) If $p \not \equiv 1(\bmod 4)$ there are 2 such braces. One of them is a direct product and the other one has a kernel of order 6 .
2) If $p \equiv 1(\bmod 4)$ there are 3 such braces. One of them is a direct product, and the other two have kernels of order 6 and 3, respectively.

5.6. Total numbers

For a prime number $p \geq 7$ we compile in the following tables the total number of left braces of size $12 p$.
The additive group is $\mathbf{Z}_{p} \times E$ and the multiplicative group is a semidirect product $\mathbf{Z}_{p} \rtimes F$. In the first column we have the possible E 's and in the first row the possible F 's.

- If $p \equiv 11(\bmod 12)$

	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic_{12}	
C_{12}	2	3	0	7	2	
$C_{6} \times C_{2}$	2	2	1	3	2	
	4	5	1	10	4	$\mathbf{2 4}$

- If $p \equiv 5(\bmod 12)$

	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic $_{12}$	
C_{12}	3	3	0	7	3	
$C_{6} \times C_{2}$	3	2	1	3	3	
	6	5	1	10	6	$\mathbf{2 8}$

- If $p \equiv 7(\bmod 12)$

	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic_{12}	
C_{12}	4	6	0	7	2	
$C_{6} \times C_{2}$	4	4	2	3	2	
	8	10	2	10	4	$\mathbf{3 4}$

- If $p \equiv 1(\bmod 12)$

	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic_{12}	
C_{12}	6	6	0	7	3	
$C_{6} \times C_{2}$	6	4	2	3	3	
	12	10	2	10	6	$\mathbf{4 0}$

With the results summarized in the above tables, the validity of conjecture (1) is then established.

6. Hopf Galois structures on a Galois field extension of degree $12 p$

Let E, F be groups of order 12 with E abelian. By computation with Magma, we obtain that the number of regular subgroups of $\operatorname{Hol}(E)$ isomorphic to F is as shown in the following table.

$E \backslash F$	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic $_{12}$
C_{12}	1	1	0	3	1
$C_{6} \times C_{2}$	3	1	2	3	3

More precisely, for the groups F_{1}, F_{2} defined in the case $F=D_{2.6}, E=C_{12}$, we obtain that F_{1} is normal in $\operatorname{Hol}(E)$ while the length of the conjugation class of F_{2} in $\operatorname{Hol}(E)$ is 2 and $F_{2}^{\prime}=\langle(7,7),(9,11)\rangle$ is the second subgroup in this class.

For $E=C_{12}$ or $C_{6} \times C_{2}, F$ a regular subgroup of $\operatorname{Hol}(E), N=\mathbf{Z}_{p} \times E$ and $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$ a group morphism, Corollary 5 gives the length of the conjugacy class of the regular subgroup G of $\operatorname{Hol}(N)$ corresponding to (F, τ). For a fixed regular subgroup G of $\operatorname{Hol}(N)$, we want to determine the number of regular subgroups of $\operatorname{Hol}(N)$ isomorphic to G. This number is the sum of the lengths of the conjugacy classes corresponding to pairs (F, τ) such that $\mathbf{Z}_{p} \rtimes_{\tau} F \simeq G$. Then, we only need to consider the number of morphisms τ from F to \mathbf{Z}_{p}^{*} such that $\mathbf{Z}_{p} \rtimes_{\tau} F \simeq G$, without taking into account their distribution into classes. For example, in the case $F=D_{2 \cdot 6}, E=C_{12},|\operatorname{Ker} \tau|=6$, we only need to consider the morphisms $\tau_{1}, \tau_{2}, \tau_{3}$ and not the fact that their distribution into classes is different for F_{1} and F_{2}. We obtain the term $b(N, G)$ in Byott's formula (Proposition 1), for $N=\mathbf{Z}_{p} \times E, G=\mathbf{Z}_{p} \rtimes_{\tau} F$, as the product of the number of regular subgroups of $\operatorname{Hol}(E)$ isomorphic to F times the number of morphisms $\tau^{\prime}: F \rightarrow \mathbf{Z}_{p}^{*}$ such that $\mathbf{Z}_{p} \rtimes_{\tau^{\prime}} F \simeq G$. Applying Corollary 7 and the determination of S_{0} given in Section 5, we obtain the number of Hopf Galois structures of abelian type on a Galois field extension of degree $12 p$.

The number of Hopf Galois structures of abelian type on a Galois extension with Galois group $G=\mathbf{Z}_{p} \rtimes_{\tau} F$ is as given in the following tables. The first column gives the group F and the first row the kernel of the morphism $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$ defining the semidirect product. In each case, we assume that the value of p is such that a morphism $\tau: F \rightarrow \mathbf{Z}_{p}^{*}$ exists with the given kernel.

Hopf Galois structures of type $C_{12 p}$

$F \backslash \operatorname{Ker} \tau$	F	C_{6}	$D_{2 \cdot 3}$	C_{4}	C_{2}^{2}	C_{3}	C_{2}	$\{1\}$
C_{12}	1	p	-	p	-	p	p	p
$C_{6} \times C_{2}$	3	$3 p$	-	-	$3 p$	-	$3 p$	-
A_{4}	0	-	-	-	0	-	-	-
$D_{2 \cdot 6}$	9	$9 p$	$9 p$	-	-	-	-	-
Dic_{12}	3	$3 p$	-	-	-	$3 p$	-	-

Hopf Galois structures of type $C_{6 p} \times C_{2}$

$F \backslash \operatorname{Ker} \tau$	F	C_{6}	$D_{2 \cdot 3}$	C_{4}	C_{2}^{2}	C_{3}	C_{2}	$\{1\}$
C_{12}	1	p	-	p	-	p	p	p
$C_{6} \times C_{2}$	1	p	-	-	p	-	p	-
A_{4}	4	-	-	-	$4 p$	-	-	-
$D_{2 \cdot 6}$	3	$3 p$	$3 p$	-	-	-	-	-
Dic_{12}	3	$3 p$	-	-	-	$3 p$	-	-

Acknowledgements

We thank the referee for his/her corrections and remarks which helped improving the quality of the paper.

References

[1] E. Acri, M. Bonatto, Skew braces of size pq, Commun. Algebra 48 (5) (2020) 1872-2881.
[2] D. Bachiller, Classification of braces of order p^{3}, J. Pure Appl. Algebra 219 (2015) 3568-3603.
[3] D. Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016) 160-176.
[4] N. Byott, Uniqueness of Hopf Galois structure for separable field extensions, Commun. Algebra 24 (10) (1996) 3217-7228.
[5] V.G. Bardakov, M.V. Neshchadim, M.K. Yadav, Computing skew left braces of small orders, Int. J. Algebra Comput. 30 (4) (2020) 839-951.
[6] S.U. Chase, M. Sweedler, Hopf Algebras and Galois Theory, LNM, vol. 97, Springer-Verlag, Berlin, 1969.
[7] T. Crespo, D. Gil-Muñoz, A. Rio, M. Vela, Left braces of size 8p, J. Algebra 617 (2023) 317-339.
[8] T. Crespo, A. Rio, M. Vela, Induced Hopf Galois structures, J. Algebra 457 (2016) 312-322.
[9] C. Dietzel, Braces of order $p^{2} q$, J. Algebra Appl. 20 (8) (2021) 2150140.
[10] C. Greither, B. Pareigis, Hopf Galois theory for separable field extensions, J. Algebra 106 (1987) $239-258$.
[11] W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007) $153-170$.
[12] T. Kohl, Regular permutation groups of order $m p$ and Hopf Galois structures, Algebra Number Theory 7 (9) (2013) 2203-2240.
[13] T. Kohl, Hopf-Galois structures arising from groups with unique subgroup of order p, Algebra Number Theory 10 (1) (2016) 37-59.
[14] L. Vendramin, Problems on Skew Left Braces, Advances in Group Theory and Applications, vol. 7, 2019 , pp. 15-57.

[^0]: से The first author was supported by grant PID2019-107297GB-I00 (Ministerio de Ciencia, Innovación y Universidades). The second author was supported by Czech Science Foundation, grant 21-00420M, and by Charles University Research Centre program UNCE/SCI/022.

 * Corresponding author.

 E-mail addresses: teresa.crespo@ub.edu (T. Crespo), daniel.gil-munoz@mff.cuni.cz (D. Gil-Muñoz), ana.rio@upc.edu
 (A. Rio), montse.vela@upc.edu (M. Vela).
 https://doi.org/10.1016/j.jpaa.2023.107371
 0022-4049/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

