
Monitoring, IoT Devices, and Semantics
Marc Vila∗†, Maria-Ribera Sancho∗‡, and Ernest Teniente∗

∗InLab FIB, Universitat Politècnica de Catalunya, Barcelona, Spain
{marc.vila.gomez,maria.ribera.sancho,ernest.teniente}@upc.edu

†Worldsensing, Barcelona, Spain
‡Barcelona Supercomputing Center, Barcelona, Spain

Abstract—Efforts to improve Internet of Things (IoT) device
interoperability for monitoring are still required. This demo
paper proposes monitoring infrastructure safety and security
with the use of semantics. We make use of an ontology we
proposed for interoperability in the IoT, the Connectivity Man-
agement Tool Semantics (CMTS) ontology. We demonstrate its
use and the advantages it provides by monitoring a bridge, a
crucial infrastructure that must be verified in near real-time.
Two Raspberry Pi devices with sensors are used to monitor the
inclination and vibration of the bridge, sending the data to a
cloud server, which handles the ontology data-model. We also
provide a web visualization tool, developed to assist users of the
ontology to comprehend the status of the system’s entities.

Index Terms—IoT, Interoperability, Sensors, Semantics, Per-
vasive Computing

I. INTRODUCTION

Various types of devices are increasingly used in the Internet
of Things (IoT) to monitor entities throughout the world. What
is apparent not only to the industry but also to academia is
that a large number of these devices communicate data over
the Internet, each with a different data format to provide the
same semantic concept, being often very heterogeneous [1].
This results frequently in data incompatibilities, making it hard
to extract the knowledge underlying the data [2]. Ongoing re-
search in the Interoperability of Things is aimed at solving this
problem by providing a homogenization of the communication
characteristics or information among IoT devices and systems
[3], [4], which is frequently accomplished through offering
semantic interoperability [5].

Some years ago, both the writing and reading of the
information to be communicated were done mainly by humans
and it was indirectly solved by the use of a common spoken or
written language. Nowadays, with the emergence of pervasive
systems such as IoT, communication is mainly done Machine-
to-Machine (M2M) [6]. Hence, the devices themselves are the
ones obtaining the data, generating the information from this
data, and sending it in real-time to other machine entities.

Figure 1 illustrates a communication between two devices
that provide temperature measurements to a machine. How-
ever, there is no semantic interoperability between them, since
one thermometer sends data in Celsius degrees and the other
in Fahrenheit. There are two approaches to make them seman-
tically compatible. The first one is to implement on the client
machine a message translation mechanism that accepts both
definitions and translates them locally. The second approach
is to agree with both sensor manufacturers and communicate

using a single measurement system, in this case, either Celsius
or Fahrenheit. This second option is a step forward in terms of
interoperability, since both entities share the same terminology
and concepts.

The confluence of ontologies, semantics, and the IoT
paradigm is being worked in [7]. As a result of this confluence,
the monitoring of infrastructures via IoT devices has emerged.
IoT devices are interconnected physical objects or entities
equipped with sensors that allow them to observe, collect, and
exchange data with other entities. They are used mainly as
human consumables (such as wearables, health trackers, or
home appliances) and also in industrial settings (e.g., Industry
4.0, Connected Cars, or Smart Cities) [8].

Fig. 1. Why do we need semantic interoperability?

In this demonstration, we focus on a previous work by
Vila et al. [9], where a general ontology for monitoring
entities using IoT devices was proposed. We exemplify it with
Raspberry Pi devices that communicate measurements with
our cloud server. These devices gather data from their wired
accelerometer and temperature sensors, to have precise and
real-time information about a bridge, as shown in Figure 2.

Fig. 2. Conceptual setup of the experiment

II. SYSTEM OVERVIEW

A. Ontology
We use the Connectivity Management Tool Semantics on-

tology (CMTS) that we proposed in [9]. It is based on well-
known ontologies, such as SSN/SOSA1, GeoSPARQL2 and
OWL-Time3. Ontologies are used to represent the entities (i.e.

1https://www.w3.org/TR/vocab-ssn/
2https://www.ogc.org/standards/geosparql
3https://www.w3.org/TR/owl-time/

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. http://dx.doi.org/10.1109/PerComWorkshops56833.2023.10150279

https://www.w3.org/TR/vocab-ssn/
https://www.ogc.org/standards/geosparql
https://www.w3.org/TR/owl-time/


concepts) and relationships among them that exist within a
domain. They are also helpful for monitoring the infrastructure
of an IoT system because they allow for a clear and stan-
dardized representation of the different components and their
interconnections. With a well-defined ontology, it becomes
easier to analyze and understand the data generated by the
system and to detect and diagnose problems that may arise.

Our ontology, summarized in Figure 3, contributes to the
Interoperability of Things by providing semantics for the data
management of IoT devices. It is built from two key concepts:
the Site, i.e. a physical area being monitored, and the Devices
installed to monitor. Furthermore, the ontology defines the
Sensors, a Device that may be either Hardware or Software
and the Gateways and Nodes. It also enables the definition
of the Location of the entities. Finally, measurements are
named Observations, and these are the means to monitor the
ObservableProperty of each Sensor.

Fig. 3. Summary of components of the CMTS ontology [9]

B. Software Components

Our demo incorporates several software components which
are encapsulated in functional modules since we make use
of a microservices architecture, as seen in Figure 4. Each
module has its own process that communicates with others
using lightweight mechanisms, such as HTTP requests. With
this, we empower the scalability, interoperability, modularity,
and extensibility of the project.

When a user, either human or device, wants to communicate
with our system, our Kong4 API Gateway will be on the
front line waiting to receive the request. When received,
Kong handles it and responds in a good manner. That is,
if the request aim is to serve an update in the frontend,
Kong will contact with the NGINX + React service. If the
request is to query or update the status of an element in
our database, Kong will communicate with the our Python
FastAPI5 backend service. For instance, when a registered
device sends a measurement to our Cloud and the backend
server has to digest it. Our backend is made up of multiple
endpoints, and it makes use of the CMTS ontology, imple-
menting endpoints like the one that creates the Sensors or
the one that allows measurement (Observations). Finally, once
the data is received on our backend, it is ready to be used,
manipulated, or displayed in our frontend.

4https://konghq.com/products/api-gateway-platform
5https://fastapi.tiangolo.com

For data storage, we use PostgreSQL, a relational database
that can be optimized to handle data time series. Our frontend
consists of React.js, a Javascript framework, where all the
metadata of the system is observed. As a monitoring data
visualization system, we use Grafana6, which can be config-
ured to be adapted to most of the IoT data types that we deal
with. With all of this, we have a monitoring and visualization
system with the data reported by the devices. We also provide
a visualization tool in our Web frontend that shows entities
instantiated in real-time in the system (Figure 5).

Fig. 4. Overview of the software components used

The system architecture is orchestrated and deployed using
microservices by means of Docker and Docker-compose. In
this way, we provide a systematic solution to automate a faster
deployment of our components inside portable containers.

C. Hardware Components

We have a cloud server where all these components are
running, and where humans and devices connect. Our cloud
setup is a GCP E2-small instance with 1 vCore and 2 GB of
RAM running Debian 11 Linux. Here, we deployed our own
server code, developed according to the CMTS ontology.

We use as well two Raspberry Pi 4B devices with a GrovePi
Shield7 on top of each, with two Grove - 6-Axis Accelerometer
and Gyroscope8 sensors for monitoring. Raspberry Pi devices
are capable of reaching the Internet by submitting measure-
ments wirelessly to the Cloud server, as data is submitted using
an HTTP API communication via their WiFi adapter.

III. DEMONSTRATION SCENARIO

We conducted our experiments using two Raspberry Pi
located near a bridge, with the aim of monitoring its stability
using accelerometer sensors. This setting is shown in Figure 6.
The bridge is 3D printed with flexible material, that allows us
to perform a variety of scenarios. On each side of the bridge,
there is one sensor connected to the GrovePi shield on top of
one Raspberry Pi. These sensors measure the inclination of
the bridge’s surface as well as the node temperature.

On the other hand, we have an instance of the system, shown
in Figure 5, which is making use of the CMTS ontology.

6https://grafana.com
7https://www.seeedstudio.com/GrovePi.html
8https://www.seeedstudio.com/Grove-6-Axis-Accelerometer-Gyroscope.

html

https://konghq.com/products/api-gateway-platform
https://fastapi.tiangolo.com
https://grafana.com
https://www.seeedstudio.com/GrovePi.html
https://www.seeedstudio.com/Grove-6-Axis-Accelerometer-Gyroscope.html
https://www.seeedstudio.com/Grove-6-Axis-Accelerometer-Gyroscope.html


Fig. 5. Entities of the ontology and its relation to other entities

• Gateway: Router 1 as the router that connects devices to
the Internet.

• Node: Tilt A and Tilt B as the Raspberry Pi devices that
hold the operative system and manage the measurements.

• HardwareSensor: Tilt 6Axis A Inclination and Tilt 6Axis
B Inclination that are the GrovePi accelerometer and
gyroscope sensors.

• SoftwareSensor: Tilt 6Axis A Temperature and Tilt 6Axis
B Temperature that are the internal temperature processor
sensors from the Raspberry Pi devices.

• ObservableProperty: Inclination as property to observe
from the bridge. In addition to the Temperature observed.

• DeviceType: Four types of devices, Router WiFi for the
Gateways, TiltSensor6Axis for the nodes and Tiltmeter
and Thermometer for the Sensors.

• Location: All the mentioned entities are located in San
Francisco, CA, USA.

Fig. 6. Experimentation setup

The ontology, in addition to defining the format of the
data to be sent, guides us in implementing the steps to take.
So, the deployed system understands that the client —us in

this demonstration— needs to perform the monitoring, by the
definition of the elements through which it is accomplished.

The suggested frontend, in Figure 7, depicts the current state
of the system. All of the entities that have been registered, as
well as their metadata information, are shown.

Fig. 7. Our Devices tab frontend showing the onboarded entities

As stated in Section II-B, our system uses an API that is
accessible via HTTP as its input mechanism. It is used to
setup the complete frontend, as well as to enter the values
of the measurements taken. The HTTP GET, POST, and
DELETE methods are available to the user for each entity in
the ontology. Listing 1 shows the code that should be provided
in a POST request to our API’s /sensors endpoint. This
HTTP call is the one that generated the fourth row in Figure 7.

1{
2 "name": "Tilt 6Axis B Inclination",
3 "device_type": "TiltSensor6Axis",
4 "observable_property": "Inclination",
5 "type": "hardwaresensor",
6 "location": "San Francisco",
7 "info": "Y Axis"
8}

Listing 1. HTTP body to create a Sensor



In the Observations tab, there is a table with the obser-
vations and the sensors that measured them. When a sensor
is selected, a monitoring view similar to the one illustrated
in Figure 8 is shown. In this scenario, the graph of the Tilt
6Axis B Inclination sensor is shown between 15:51:00h and
15:54:00h, with the sensor reporting an acceleration on the x-
axis between -1900 and -1800. This sensor measures between
-32k and +32k, with 0 being neutral inclination. In our use
case, the sensor is tilted to one side on the x-axis. Furthermore,
around 15:52:45, the sensor detects vibration. This vibration
lasts until 15:53:15 approximately.

The data of the experiment is reported by the components
depicted in Figure 6, where the devices communicate infor-
mation to our cloud server on a regular basis in the format
prescribed by the CMTS ontology seen in Listing 1 and
Listing 2 as HTTP communication examples with our system.

Fig. 8. Our Grafana frontend and the Tilt 6Axis for the X-Axis Observations

Listing 2 shows how data from the Tilt 6Axis B Inclination
sensor was provided to the platform using a POST request
to the /observations endpoint. Furthermore, the user can
send the reading time. If the field is empty, the system will
use the reception time as the reading time of the sensor. With
that affirmation is how the Figure 8 depicts a time series based
on a combination of several HTTP calls.

1{
2 "sensor_name": "Tilt 6Axis B Inclination",
3 "observable_property": "Inclination",
4 "value_int": -1950
5}

Listing 2. HTTP body to submit an Observation

A working code for the entire experiment is available in
https://github.com/worldsensing/demo-monitoring-using-iot-
devices-and-semantics. This code orchestrates and manages
the entire architecture as explained in Section II-B. It also
contains the code that runs on the Raspberry Pi, to enable the
reception of data from the physical sensors connected to it
and transfers that data to the cloud backend. Additionally, the
documentation schema is presented, see Figure 9, alongside
the code when it is deployed in OpenAPI9 format so that
other developers may easily grasp the interface mechanisms,
facilitating its further use.

9https://www.openapis.org

Fig. 9. Extract from the documentation generated using OpenAPI

In our demo at PerCom 2023, we will showcase the capa-
bilities of our ontology by allowing users to monitor entities
by displacing the sensors. We will demonstrate the working
framework at the booth. Interested participants will be able to
input measurements into the framework via requests made by
Raspberry Pi devices and also to add their own elements to
the system for custom monitoring.

IV. CONCLUSION

In this demo we contribute to the achievement of data ho-
mogeneity in the IoT domain by providing an implementation
of the CMTS ontology in a fully functional framework, and by
allowing users to manage and monitor their IoT devices with a
minimal configuration. We also provide a practical experiment
to monitor a bridge using two IoT devices which shows the
advantages of developing applications according to CMTS.

ACKNOWLEDGMENTS

This work is partially funded by Industrial Doctorates from Gen-
eralitat de Catalunya (2019 DI 001). SUDOQU project, PID2021-
126436OB-C21 from MCIN/AEI, 10.13039/ 501100011033, FEDER,
UE. Thanks to Xavier Vilajosana for his help in this work.

REFERENCES

[1] P. Barnaghi et al. Semantics for the Internet of Things: Early Progress
and Back to the Future. Int. J. Semant. Web Inf. Syst. 8(1), 1–21, 2012.

[2] M.A. Razzaque, M. Milojevic-Jevric et al. Middleware for Internet of
Things: A Survey. IEEE Internet of Things Journal 3(1), 70-95, 2016.

[3] J. Kiljander et al., Semantic Interoperability Architecture for Pervasive
Computing and Internet of Things. IEEE Access, vol. 2, 856-873, 2014.

[4] X. Su et al. Distribution of Semantic Reasoning on the Edge of Internet
of Things. IEEE International Conference on Pervasive Computing and
Communications (PerCom), 1-9, 2018.

[5] M. Noura, M. Atiquzzaman, and M. Gaedke. Interoperability in Internet
of Things: Taxonomies and Open Challenges. Mobile Network Appli-
cations 24, 796–809, 2019.

[6] M. Elkhodr, S. Shahrestani, and H. Cheung. The Internet of Things: New
Interoperability, Management and Security Challenges. International
Journal of Network Security & Its Applications 8(2). 85-102, 2016.

[7] I. Szilagyi and P. Wira. Ontologies and Semantic Web for the Internet of
Things - a survey. IEEE Industrial Electronics Society (IECON), 2016,
pp. 6949-6954.

[8] P. Beckman, J. Dongarra et al. Harnessing the Computing Continuum
for Programming Our World. Fog Computing: Theory and Practice,
215–230, 2020.

[9] M. Vila, MR. Sancho, E. Teniente, and X. Vilajosana. Semantics for
Connectivity Management in IoT Sensing. Conceptual Modeling (ER).
Lecture Notes in Computer Science 13011, 2021.

https://github.com/worldsensing/demo-monitoring-using-iot-devices-and-semantics
https://github.com/worldsensing/demo-monitoring-using-iot-devices-and-semantics
https://www.openapis.org

	I Introduction
	II System Overview
	II-A Ontology
	II-B Software Components
	II-C Hardware Components

	III Demonstration Scenario
	IV Conclusion
	References

