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Abstract: The use of equipment such as oscilloscopes, high-speed cameras or acoustic sensors is
quite common to measure detonation times from surface connectors and detonators. However, these
solutions are expensive and, sometimes, not adequate to use in field conditions, such as mining or
civil works. In this regard, a low-cost portable device is designed and tested using the Arduino
platform, achieving a simple, robust and precise system to carry out field measurements. This study
describes the characteristics and working principles of the designed device, as well as the verifications
carried out to check the accuracy of the Arduino ceramic oscillator. Additionally, a field test was
carried out using 100 actual detonators and surface connectors to verify the correct operation of the
designed equipment. We have designed a device, and a methodology, to measure detonation instants
with a minimum accuracy of 0.1 ms, being sufficient to carry out subsequent studies of detonation
time dispersion for non-electric detonators.

Keywords: blasting caps; scattering; Arduino-based; high-precision device; low-cost system; drift correction

1. Introduction

The use of explosives for excavations is a widely used technique in mining and civil
works, obtaining the effective and economical removal of rocks [1]. Blasting is based
on the drilling of a mesh of holes in which the explosive is introduced, achieving an
appropriate distribution of the energy contained in the explosive within the volume of rock
to be blasted [2,3].

Blasting is initiated using detonators, providing the required activation energy to the
explosive in the blast hole [4]. These detonators can be electric, non-electric or electronic.
The detonation of each blast hole must occur in an established order and at certain time
intervals, achieving it using micro-delay detonators [1,3,5,6]. Electric and non-electric
blasting caps contain a pyrotechnic delay element that will give the time delay according to
its length and reaction speed, acting similarly to a fuse, while electronic detonators contain
a microchip that allows programing the detonation time with high accuracy [7].

Blasting caps with pyrotechnic delay have a dispersion in the detonation times with
respect to their nominal values due to the chemical nature of the delay element itself, whose
reaction speed can suffer slight variations due to aging of the delay pyrotechnic element,
density/porosity variation due to production, small changes in its composition, tempera-
ture changes, different manufacturing batches, etc. [8]. Dispersion values of pyrotechnic
delay detonators are given in several publications [7,9–11], usually being a dispersion
between 4 to 8% of their nominal value.

If the detonation of a blast hole occurs at an instant far from its nominal value, over-
lapping or detonations outside the expected time can occur, with the appearance of ad-
verse effects such as projections, vibrations, airwaves, poor fragmentation, poor blast
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performance, etc. [12–15]. Hence, it is crucial to know the actual instant of detonation of
the detonators in order to study the accuracy of the initiation system and its influence on the
blasting results. For this purpose, commercial equipment can be used to measure the blast
holes’ moment of detonation, for instance, the equipment that allows monitoring blast holes
to measure the detonation velocity (VoD) of the explosive [16,17] and obtain, as additional
information, the detonation time delay between each blast hole. Another alternative is the
use of high-speed cameras for ultra-slow motion image analysis. However, this last option
is quite expensive, often out of reach for small operations and/or extracting materials of
low economic value, and the potential issues previously mentioned remain present.

The main goal of this study is to design a low-cost, portable and easy-to-use device,
based on the Arduino platform, to measure the detonation instants of detonators with an
accuracy of at least 0.1 ms. We describe the equipment proposed, its operating principle
and the correction of the drift in the microcontroller clock. Finally, field measurements
were recorded to verify the functioning and accuracy of the new device.

2. Detonation Time Measurement from Detonators

There are several alternatives to measure the detonation times from detonators and surface
connectors, each one with advantages and disadvantages, gathered in the following subsections.

2.1. Acoustic Sensors

Verna et al. [10] measured the time delay of electric detonators, recording the instant
of the pulse of the ignition current applied to the detonator and the detonation instant
using a microphone. The system is simple, but it has the disadvantages that each detonator
must be tested individually in a laboratory and it is not suitable for non-electric detona-
tors and surface connectors. In addition, the acoustic sensor is placed very close to the
detonators, only 0.8 m away, so its use in real blasting is ruled out due to the high risk of
equipment breakage.

An electro-acoustic sensor was also used by Pytlik et al. [18] to measure detonation
times between two connectors or detonators, which may be non-electric. The detonators
have to be placed at the same distance from the acoustic sensor to avoid systematic errors
in the time taken for the sound wave to reach the sensor. As in the previous case, this
system is not applicable to real production blasting, since it requires the same distance
between detonators and the sensor. Besides, the acoustic signal may be masked by wind or
external noises, among other factors, together with the risk of equipment breakage due to
its proximity to the blast.

2.2. VoD Measurement Equipment

Commercial equipment is available to measure the velocity of detonation (VoD) of an
explosive, based on the variation of the electrical resistance of a wire probe inserted into a
blast hole as it is destroyed by the blast [16]. The detonation time delay from bore to bore
can be obtained as a by-product of the VoD recordings.

Commercial VoD equipment has been used to measure the detonation times of elec-
tronic detonators [18]. However, the measurements fail in 70% of the cases, because the
detonators are not powerful enough to break the special probe wire designed to be con-
sumed by the explosion inside a blast hole. This fact makes the system not suitable to
measure the detonation moments of surface connectors, whose power and explosive charge
are much lower than that of bottom-of-hole detonators.

2.3. High-Speed Camera

Another alternative to measuring the detonation times of surface connectors and
detonators is the use of high-speed cameras, analysing images in slow motion and visually
determining the frames in which detonation occurs. This system is used to simultaneously
measure dozens of detonators of any type [18], as long as it is in the camera’s field of view
and the camera has enough internal memory to record the entire sequence. Additionally,
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the equipment is expensive and it must be located in a safe place to avoid damage from
detonator shrapnel.

While this system may be valid to determine the detonation time of surface connec-
tors in a real blast, it is not suitable to measure the detonation instant of bottom-of-hole
detonators, as the event occurs inside the blast hole and is not visible.

2.4. Oscilloscope: Open-Circuit Probe

The usage principle is the same as the Arduino device, measuring the time intervals
between breaks in a signal cable that cause a step change in voltage. An oscilloscope is a
device with a high sampling rate, achieving highly accurate measurements. However, they
have the disadvantage that as the number of available channels increases, they become
more expensive and, sometimes, the sampling rate decreases. It should also be borne in
mind that this equipment is delicate and impractical for use in field tests, where there are
environmental hash conditions (rain, dust, must, etc.), no power sockets and a certain risk
of breakage due to projections of rock fragments from the blast.

Oscilloscopes were used in a laboratory environment to measure the detonation times
of detonators in other studies [18,19]. The measurement of the detonation time intervals
is performed manually, using the cursor to select the instant of the analog signal at which
the voltage drop occurs. Additionally, the measurement of several circuits is a somewhat
laborious process.

Table 1 exposes the different characteristics and potential usages of existing measuring
techniques, considering the main advantages and disadvantages of each option.

Table 1. Comparison of the existing techniques.

Acustic Sensors
VoD

Measurement
Equipment

High-Speed Camera
Oscilloscope.
Open-Circuit

Probe
Arduino Device

pros Simple.

Robust equipment
designed for
production

blasting
measurements.

No connection is
necessary for the
measurements.

Additionally, it has
other interesting

applications such as
measuring the rock

displacement velocity.

High accuracy. Simple and
inexpensive.

cons

Requires the same
distance between

detonators and the
sensor. Not suitable

for production
blasting.

Expensive and it
cannot be used for
surface connectors

measurement.

Very expensive. It
cannot be used for
measurements of
detonators inside

blast holes.

Expensive.
Delicate

equipment for use
in field conditions.

It is necessary to
make connections
and lay cables for

measurements.

3. Device Description

Unlike high-cost commercial devices, such as high-speed cameras, VoD meters or
oscilloscopes, the availability of free hardware and software platforms offers a wide range
of possibilities for developers to create open-source electronic projects at an affordable cost.

Among these open-source platforms, the Arduino stands out for its popularity [20,21],
chosen to build the low-cost device presented in this study. The Arduino platform allows
the design of electronic circuits that incorporate a microcontroller, with various digital
and analog inputs/outputs, that can interface with various sensors. The fact that both
the software and hardware are open-source offers developers the possibility to create
projects completely tailored to their needs in an unlimited number of applications [22]. For
example, some fields in which Arduino-based applications have been developed are home
automation [23], agriculture [24] or energy [25], among many other usages. In the mining
sector, there is also a collection of several applications focused on wearable systems, field
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monitoring systems and autonomous systems [26]. Although there is no previous evidence
of the use of Arduino in the field of explosives and blasting, this study confirms the great
versatility offered by the platform and, thus, broadens its wide range of applications.

Apart from its cost, another advantage of the equipment is its portability and simplicity,
which allows it to easily measure in a production blasting environment, either in surface
connectors or in-hole detonators. Moreover, it does not interfere with blast operations and
does not require the transfer of explosive material to a laboratory.

3.1. Operating Principles

The principle for recording the detonation instant of each detonator is based on the
interruption of the conductivity of a circuit when it is broken by the effects of an explosion.
The cable breakage causes the digital input, going from a voltage of 5 V (high) to 0 V (low).
The instant at which this event occurs is recorded with the microcontroller using its clock.

3.2. Hardware

The detonation time measurement equipment consists of an Arduino mega board with
an ATmega 2560 microcontroller and a 16 MHz quartz oscillator. The microcontroller has a
256 kB flash memory where the program containing the operating instructions is stored.
The board has 54 digital input/output (I/O) terminals, of which a total of six terminals are
used for the connection of the measurement circuits. Another six I/O terminals are used to
control the liquid crystal display (LCD) that shows system information. Communication
with the microSD card for data recording occupies another four I/O terminals. The rest of
the digital pins are left free, so the unit could easily be expanded with a larger number of
circuits to measure detonation times.

To select the unit peripherals and check their operation, an initial prototype has been
built through connecting the microcontroller to the rest of the components using a bread-
board. This breadboard allows to easily change the wiring and connections, interchange
components and test the software until the desired functionality is achieved. Once the
peripherals, their connections and the programming of the microprocessor had been vali-
dated, a PCB board was designed and manufactured so that all the components could be
soldered on it in a solid and resistant way, obtaining a suitable unit to use in field conditions.
A scheme of the elements used is shown in Figure 1.
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The PCB board, with all its components, has been housed inside a custom-made
PLA (polylactic acid) thermoplastic casing. Power is supplied by an external rechargeable
5V lithium-ion battery connected to the USB port of the Arduino board. A quick screw
connector holder box has been included to facilitate the connection of the measurement
circuits to the device. Figure 2 shows the measurement equipment built in one of the tests
carried out in the field.
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3.3. Software

The integrated development environment (IDE) was used, being compatible with
different platforms (Linux, Windows, Mac) and free to use under the GNU Lesser General
Public License. The flowchart of the program that controls the device is shown in Figure 3.
The programmed code is attached in Annex 1.
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3.4. Minimum Interval Measurement Time

The minimum time that must elapse between two events, cable breaks, to be measured
is given by the time it takes the microcontroller to execute the code necessary to record the
values. To determine this value, the sketch containing the operating instructions has been
started with all the measurement circuits in a low state. Under these conditions, the values
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recorded using the system are 8 or 12 microseconds, i.e., between two and three times the
resolution of the function micros(), which is 4 microseconds. Therefore, events occurring in
a time interval of three times the resolution (0.012 ms) or higher will be recorded without
problems, which are the potential blasting conditions.

3.5. Minimum Accuracy Required

The minimum accuracy required for statistical studies of detonation time dispersion
in non-electric detonators (NONELs) is, at least, 0.1 ms. This accuracy is set in the Euro-
pean standard (EN 13763-16) for the determination of the delay accuracy of detonators
and relays [27].

4. Functional Validation

The validation of the operation and accuracy of the equipment was performed through
preliminary checks, determining the drift of the microcontroller clock and the correction
needed to apply to the readings obtained using the device.

The preliminary test consisted of cutting the signal cables with scissors and recording
the event using an oscilloscope. This test was carried out to verify the correct functioning of
the hardware, the programmed code and the connection protocol between the oscilloscope
and the Arduino for the simultaneous recording of the signal. Subsequently, a field test was
carried out through firing one hundred detonators in groups of four, recording the analog
signal of the cutting of wires, due to the effects of an explosion, using an oscilloscope and
the time provided by the microcontroller’s clock, which made it possible to compare both
results and validate the correct functioning and accuracy of the equipment.

4.1. Clock Drift

Microcontrollers measure time through counting the number of pulses of a periodic
signal generated by an oscillator [28], called a clock. Since perfect oscillators do not
exist, the signal is affected by an error in the period between pulses, with the actual
vibration frequency being different from the nominal one. Apart from this tolerance error,
inherent in any manufactured component, the oscillator frequency can also be affected by
environmental factors, such as temperature or aging [29]. The difference between actual
oscillation frequency and nominal frequency, Figure 4, means that the time measured by
the clock has a drift that must be determined and, subsequently, corrected.
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The error of a clock controlled by an oscillator of nominal frequency, fn, relative to an
ideal reference time, t, is shown in Equation (1) [30].

εt(t) = τ0 +
(

φ + M·
(

T
◦ − T

◦
re f

)
− 1

)
·t + D·t2 + σx(t) (1)

et is the total time error.
t0 is the initial synchronisation error, i.e., the difference between the time measured by the
clock and the reference time.
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φ = fr
fn

is the ratio of the actual oscillator frequency, fr, to the nominal frequency, fn, at
25 ◦C.
φ = Tn

Tr
is the tolerance term. It can also be expressed as a ratio of the nominal oscillator

period, Tn, to the actual period, Tr.
M is the environmental factor, a frequency-relative variation with respect to temperature.
T
◦
re f is the reference temperature, usually 25 ◦C.

T
◦

is the oscillator temperature.
D is the first derivative of the relative variation of the frequency with respect to time, or the
ageing term of the oscillator.
sx(t) is the stochastic error term due to signal noise.

σx(t) =
N
∑

i=1
ξi, where ξi is the stochastic error of the i-th pulse of the signal, resulting

from the difference between the nominal period, Tn, and the actual period, Tr (Figure 5).
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The first three terms from Equation (1) correspond to systematic deviations that can
be corrected, while the last term is random, with a median of zero, and cannot be corrected.
However, this last term can be processed employing averaging techniques.

4.2. Arduino Clock Drift Measurement

Equation (1) can be simplified considering that the Arduino device does not have to
be synchronised with any reference time to perform the detonation time interval measure-
ments. Having the first term null, t0 = 0, we obtain Equation (2).

εt(t) =
(

φ + M·
(

T
◦ − T

◦
re f

)
− 1

)
·t + D·t2 + σx(t) (2)

This means that, to know the error in the time measured by the Arduino, it must be
determined how much the real frequency of the ceramic oscillator varies from its nominal
value, considering the manufacturing tolerance and the external environmental factors.

4.2.1. Tolerance Measurement

Tolerance error is inherent in any manufacturing process and it expresses the difference
between the nominal and actual value of the characteristics of a material or product.
The nominal frequency of the ceramic oscillator, controlling the clock of the Arduino
microcontroller, is 16 MHz, with an accuracy of around ±0.5% at 25 ◦C [31]. Table 2
summarises the characteristics of the CSTCE16M0V53 oscillator on the Arduino Mega
2560 board [32].
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Table 2. Characteristics of the ceramic oscillator CSTCE16M0V53 of the Arduino MEGA 2560 board.

Manufacturer Murata
Part Number CSTCE16M0V53-R0
Composition Ceramic

Frequency 16 MHz
Frequency Tolerance ±0.5%

Max Operating Temperature 80 ◦C
Min Operating Temperature −20 ◦C

To know the real frequency of the oscillator, fr, and be able to correct the clock sig-
nal of the microcontroller, the frequency has been measured using a Rhode&Schwarz
high-impedance probe, Figure 6. Before the measurement, the board has been in a room
temperature at 25 ◦C for one hour, being the reference temperature for the measurement of
the tolerance.
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Results obtained show that the ceramic oscillator of the plate used has an oscillation
frequency of 15.98836 MHz at 25 ◦C, i.e.,−727.5 ppm, with respect to its nominal value and,
therefore, is within the tolerance ± 5000 ppm specified by the manufacturer. The measured
frequency is shown in Figure 7.
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4.2.2. Frequency and Temperature Stability

The frequency variation concerning temperature, for the CSTCE_V(_A) ceramic oscilla-
tor, is shown in Figure 8, adapted from catalog Cat.No.P16E-16 from Murata Manufacturing
Co., Ltd., available at [32]. The oscillator is very stable to frequency change because of
temperature, with a linear variation in the range of −20 ◦C to +50 ◦C with a slope of
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M = 3 ppm/◦C. This temperature range is quite large and covers almost any extreme
environmental situation in which the device would operate. The temperature range of the
other components is higher and, therefore, it is not a problem for the system proposed.
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In general, this correction is several orders of magnitude lower than the required
equipment accuracy of 0.1 ms and, therefore, it can be neglected. Only in the case of
measurements over long time intervals and at extreme temperatures could one consider
taking this term into account.

4.2.3. Frequency Stability against Ageing

When an oscillator changes its frequency over time, with constant environmental and
system conditions, it is usually ageing [33]. The typical ageing specification for ceramic
oscillators is a maximum of 0.3% per decade [31]. Age drift is related to the degradation of
materials over the years. This term would only be significant if very long periods elapsed
between measurements, in the order of several years or decades. Therefore, given that
the time that elapsed between the measurement of the oscillator tolerance and the tests
performed was only a few weeks, the Dt2 term is completely negligible in Equation (2).

4.2.4. Stochastic Error

The last term from Equation (2) is a zero-median stochastic error, which cannot be
corrected [34]. However, its effect can be compensated using averaging techniques. Each
pulse of the periodic signal generated by the oscillator is affected by a random frequency
variation, Figure 5, due to noise in the signal. However, the noise spectrum is symmetrical
on both sides of the actual frequency and, thus, its mean value will tend to be zero, obtaining
a negligible term for the time intervals in which measurements are made in the studies.

4.3. Time Correction

Once the non-significant tolerance terms are removed, the simplified equation to
calculate the error of the microcontroller clock is gathered in Equation (3).

εt =

(
Tn

Tr
− 1

)
·t = (φ− 1)·t (3)

This equation is depicted in Figure 9. In the case of an ideal oscillator, φ = 1, no time
drift occurs and no correction is necessary. If the actual period of the oscillator differs from
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the nominal one, then φ 6= 1 and the microcontroller clock will be advanced or delayed
depending on whether f is greater or less than unity, respectively.
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Knowing the error of the time et, it is possible to correct the time drift measured by the
Arduino device by means of Equation (4).

tc = tm (1 − et/106) (4)

tc: drift corrected time;
tm: time measured by the microcontroller clock;
et: oscillator time error, in ppm.

This adjustment has been introduced in the control software, so that subsequent
measurements incorporate this correction.

4.4. Oscilloscope Operational Pre-Testing

Once it has been defined the applicable correction to the times measured by the device,
its operation was checked through carrying out a test, consisting of measuring the cutting
times of four signal cables with a four-channel Tektronix DPO 3054 digital oscilloscope
using scissors, Figure 10. This test was used to verify the correct operation of the hardware,
programmed code and the connection protocol between the oscilloscope and Arduino,
which will be used in the field test with real detonators.

Wires of the measuring circuits have been placed 1 mm to 10 mm apart from each other
with the help of a plastic holder. Different break times can be obtained through varying the
spacing between wires and the speed at which they are cut. The measured time intervals
are between 2 ms and 1 s, covering the usual range of detonation times between holes in
open pit mining, underground mining and civil works.
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4.5. Field Test

A field test was carried out to check the operation of the equipment under actual
conditions. It consisted of measuring the detonation intervals of 100 non-electric detonators,
with the signal cable breaking due to the effect of an explosion. The detonators have been
triggered in groups of four, due to the limitation imposed by the number of channels
of the oscilloscope, recording the analog signal of all the wire breaks. Once the drift of
the measured times has been corrected, employing Equation (4), both results have been
compared, validating the operation of the equipment in actual conditions.

4.5.1. Test Location

Tests were carried out in the vicinity of an explosives depot, which has a control hut
that allows the oscilloscope to be located in adequate environmental conditions, as well as
having a 220 V/50 Hz power supply. From this hut, the four bipolar signal cables have been
extended to a safety distance of 90 m, as well as the firing cable of the electric detonator
that initiates the shock wave transmission tube of the non-electric detonators. A diagram
of the test site is shown in Figure 11.
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4.5.2. Test Preparation

The measurement circuits have been connected to a four-channel digital oscilloscope
Tektronix DPO 3054, 500 MHz and to the Arduino, as shown in Figure 12.
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Figure 12. Setup to measure the detonation times.

The details of a surface detonator with signal wire to measure the detonation instant
t1 . . . t4 are displayed in Figure 13, calculating the three detonation intervals, t2–t1, t3–t2
and t4–t3, according to the time difference. The oscilloscope sampling rate is up to 2.5 Giga
samples per second on all analog channels. This allows recording the step from 5 V to 0 V
of each circuit, with an order of magnitude four times higher than the resolution of the
function micros(), which is four microseconds.
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The 100 surface connectors/detonators were triggered in groups of four since it is a
four-channel oscilloscope. Twenty-five tests were performed, covering the full range of
micro time delay offered by the manufacturer, between 9 ms and 750 ms. The sets tested are
shown in Table 3. The break wire has been taped to the surface connector or the detonator,
as shown in Figures 14 and 15.

Table 3. Surface connectors and detonators used in the validation tests.

Circuit
Number 1
(Trigger)

Circuit
Number 2

Circuit
Number 3

Circuit
Number 4

Number
of Tests

set 1 S-9 S-9 S-9 S-9 5
set 2 S-42 S-42 S-42 S-42 5
set 3 S-100 S-100 S-100 S-100 5
set 4 S-100 S-100 S-100 I-750 5
set 5 S-25 S-25 S-25 I-500 5

S-X: Surface detonator, I-X: In-hole detonator, X: nominal time (ms).
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In all tests, a length of one metre of transmission tube was left between the detonators,
Figure 16. Considering that the velocity of the shock wave travels at 2000 m/s inside
the tube, a delay of 0.5 ms is introduced to the detonation time of the surface connec-
tor/detonator. Since the same event is simultaneously measured using the oscilloscope
and the Arduino, this delay does not influence the times obtained for the validation of
the equipment.
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4.5.3. Temperature Correction

The temperature is 18 ◦C at the beginning of the tests and 27 ◦C at the end, so the
maximum temperature difference with respect to Tref = 25 ◦C is 7 ◦C. For this reason, the
correction of the time drift due to temperature has been omitted, as it has very low values,
between 0.0002 and 0.015 ms for a coefficient of variation M = 3 ppm/◦C (Figure 17).
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5. Field Measurement Results

The total number of time records measured using the oscilloscope and the Arduino
device is shown in Table 4. The three intervals of test 2 were not measured due to a
connection failure in the devices, whereas test 5 failed due to the signal cable failing to
break, being the only failure among the 100 detonators fired. In this regard, the copper
wire must be slightly tensioned in the area where the explosive charge is located so that
the breakage is easier. The last interval of test 13 was not recorded by the oscilloscope
because it was outside the programmed recording window. Overall, 70 out of 75 possible
detonation intervals were measured and compared.

Table 4. Set of tests and times measured using the oscilloscope and the Arduino device.

Test
Num. Test Set Measured

Chanels

tm Arduino
Measured
Interval

Time (ms)

tc Adjusted
Using

Equation (4)
(ms)

t Oscillo-
scope
(ms)

tm-t
Difference

without
Adjustment

(ms)

Relative Error
without

Adjustment
(ppm)

Relative Error
with

Adjustment
Equation (4)

(ppm)

1 set 1
1/2 10,892 10,900 10,887 5 459 1187
2/3 8720 8726 8754 −34 −3884 −3159
3/4 10,484 10,492 10,490 −6 −572 155

2 set 1 1/2 (*) --- (*) --- --- ---

3 set 1
1/2 8904 8910 8912 −8 −898 −171
2/3 10,500 10,508 10,500 0 0 728
3/4 10,616 10,624 10,628 −12 −1129 −402

4 set 1
1/2 11,080 11,088 11,076 4 361 1089
2/3 9596 9603 9608 −12 −1249 −522
3/4 10,789 10,797 10,808 −19 −1758 −1032

5 set 2
1/2 40,616 40,646 40,678 −62 −1524 −798
2/3 42,096 42,127 42,120 −24 −570 157
3/4 (**) --- --- --- --- ---

6 set 2
1/2 39,552 39,581 39,562 −10 −253 475
2/3 42,052 42,083 42,064 −12 −285 442
3/4 42,884 42,915 42,952 −68 −1583 −857

7 set 2
1/2 42,288 42,319 42,350 −62 −1464 −738
2/3 41,640 41,670 41,684 −44 −1056 −329
3/4 45,524 45,557 45,534 −10 −220 508

8 set 2
1/2 41,380 41,410 41,420 −40 −966 −239
2/3 46,112 46,146 46,134 −22 −477 250
3/4 41,128 41,158 41,164 −36 −875 −148

9 set 3
1/2 100,144 100,217 100,200 −56 −559 168
2/3 96,952 97,023 97,032 −80 −824 −98
3/4 97,812 97,883 97,876 −64 −654 73

10 set 3
1/2 104,748 104,824 104,870 −122 −1163 −437
2/3 101,824 101,898 101,880 −56 −550 177
3/4 101,848 101,922 101,920 −72 −706 21

11 set 3
1/2 102,304 102,378 102,350 −46 −449 278
2/3 100,880 100,953 100,990 −110 −1089 −363
3/4 102,676 102,751 102,760 −84 −817 −91

12 set 3
1/2 99,740 99,813 99,808 −68 −681 46
2/3 99,936 100,009 100,000 −64 −640 87
3/4 102,228 102,302 102,310 −82 −801 −75

13 set 4
1/2 98,976 99,048 99,080 −104 −1050 −323
2/3 96,832 96,902 96,890 −58 −599 128
3/4 754,460 755,009 (***) --- --- ---

14 set 4
1/2 101,380 101,454 101,520 −140 −1379 −653
2/3 98,112 98,183 98,190 −78 −794 −67
3/4 752,112 752,659 752,600 −488 −648 79

15 set 4
1/2 97,288 97,359 97,400 −112 −1150 −423
2/3 99,448 99,520 99,500 −52 −523 205
3/4 756,560 757,110 757,110 −550 −726 1

16 set 4
1/2 100,928 101,001 100,950 −22 −218 509
2/3 94,708 94,777 94,800 −92 −970 −244
3/4 739,868 740,406 740,400 −532 −719 8
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Table 4. Cont.

Test
Num. Test Set Measured

Chanels

tm Arduino
Measured
Interval

Time (ms)

tc Adjusted
Using

Equation (4)
(ms)

t Oscillo-
scope
(ms)

tm-t
Difference

without
Adjustment

(ms)

Relative Error
without

Adjustment
(ppm)

Relative Error
with

Adjustment
Equation (4)

(ppm)

17 set 5
1/2 25,300 25,318 25,300 0 0 727
2/3 23,492 23,509 23,500 −8 −340 387
3/4 505,596 505,964 506,000 −404 −798 −71

18 set 5
1/2 25,864 25,883 25,790 74 2869 3599
2/3 26,760 26,779 26,690 70 2623 3352
3/4 508,968 509,338 509,410 −442 −868 −141

19 set 5
1/2 24,992 25,010 24,990 2 80 808
2/3 24,584 24,602 24,620 −36 −1462 −736
3/4 504,248 504,615 504,580 −332 −658 69

20 set 5
1/2 26,768 26,787 26,730 38 1422 2150
2/3 27,004 27,024 27,070 −66 −2438 −1712
3/4 505,288 505,656 505,590 −302 −597 130

21 set 1
1/2 10,480 10,488 10,508 −28 −2665 −1939
2/3 8920 8926 8909 11 1212 1941
3/4 9324 9331 9359 −35 −3718 −2994

22 set 2
1/2 41,996 42,027 42,028 −32 −761 −34
2/3 41,068 41,098 41,088 −20 −487 240
3/4 41,628 41,658 41,654 −26 −624 103

23 set 3
1/2 100,772 100,845 100,870 −98 −972 −245
2/3 100,892 100,965 100,970 −78 −773 −46
3/4 99,716 99,789 99,792 −76 −762 −35

24 set 4
1/2 91,192 91,258 91,290 −98 −1074 −347
2/3 98,520 98,592 98,590 −70 −710 17
3/4 747,000 747,543 747,500 −500 −669 58

25 set 5
1/2 25,368 25,386 25,380 −12 −473 254
2/3 24,796 24,814 24,840 −44 −1771 −1045
3/4 504,864 505,231 505,210 −346 −685 42

Mean −725 2
St. desv 1011 1012

(*) Error connection; (**) no wire breakage; (***) time value out screen.

Results show how the average relative error of the unadjusted times (−725 ppm) is vir-
tually identical to the measurement using a high-impedance probe of the oscillator tolerance
(−727.5 ppm), confirming the accuracy of the microcontroller’s clock drift determination.
The times measured using the Arduino device improve substantially when the Equation (4)
setting is applied, with the average relative error going from −725 ppm to an error of only
2 ppm. The time differences are shown in Figure 18, where it can be seen that, once the
oscillator drift correction is applied, the differences are smaller than the minimum required
accuracy, 0.1 ms, needed to measure the dispersion times of pyrotechnic detonators.

Regarding the influence of temperature and signal noise, it is confirmed that both
can be neglected for the required level of accuracy. The measurement of detonation times
using the Arduino’s digital pins is faster and more direct than using the oscilloscope, as no
manual operations are required. Additionally, errors such as the one in test 13, in which
the Arduino device recorded the instant of breakage of the cable, occurred because the
detonation moment was accidentally outside the programmed recording window due to
the dispersion of the pyrotechnic delay detoantors. The proposed device can measure up
to six detonation instants, overcoming the oscilloscope’s limitation of four analog channels.
Future prototypes could easily extend this number as there are still digital pins available,
making the measurement of detonation time dispersion from production blasts faster and
more efficient.
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6. Conclusions

The device proposed in this study, based on the open-source Arduino platform, has
shown to be a good option to measure the variation of detonator delay times. Results
obtained show the feasibility of using low-cost equipment to make this type of measurement
and to know the detonation instant of surface connectors and bottom-hole detonators. In
addition, the simplicity of using it in situ, without interfering with mining or civil work, and
the possibility to make future changes, adaptations or improvements allow new potential
users compared to other commercial systems.

The ceramic oscillator that controls the time of the Arduino’s internal clock has a toler-
ance that must be known to correct the internal clock signal properly. The real frequency of
the oscillator used has been measured using a high-impedance probe, finding a difference
of 727.5 ppm with respect to its nominal value of 16 MHz. This factor is the main error
source to be corrected, being preponderant concerning the deviation caused by temperature
changes, aging, and stochastic errors, which are several orders of magnitude below the
minimum required accuracy of 0.1 ms.

The field test carried out using 100 non-electric detonators for open-pit blasting, with
nominal times between 9 and 750 ms, corroborates the accuracy and good performance
of the equipment. Once the oscillator tolerance correction has been applied, absolute
differences are less than 0.1 ms between the time measured using an oscilloscope, with a
sampling frequency of 2.5 Giga samples per second, and the measures from the Arduino.
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