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Abstract Agent-Based Simulation is a suitable approach used now-a-
days to simulate and analyze complex societal environments and sce-
narios. Current Agent-Based Simulation frameworks either scale quite
well in computation but implement very simple reasoning mechanisms,
or employ complex reasoning systems at the expense of scalability. In
this paper we present our work to extend an agent-based HPC platform,
enabling goal-driven agents with HTN planning capabilities to scale and
run parallelly. Our extension includes preferences over their objectives,
preferences over their plans, actions, and moral values. We show the
expresiveness of the extended platform with a sample scenario.
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1 Introduction

Agent-Based Simulation (ABS) is a computational approach for simulating the
activities and interactions of autonomous agents in order to better understand
how a system behaves. Furthermore, they allow for the simulation of complex
environments where perception, decision-making processes and actions carried
out are dispersed among several stakeholders or agents. The purpose of ABS is
therefore to obtain explanatory insight into the behavior of a group of agents
which share a common environment. ABS can be applied to many fields such
as biology, social sciences, ecology, economics, policy-making, etc. Specifically,
ABS can be used to analyze the social relationships between agents by means
of norms, moral values, and social conventions, their adherence to those norms
and values, how they affect and limit their actions, and how they may change
over time as the agents interact with each other and their environment.

Many ABS frameworks have been built focusing on large simulations to be
run in High-Performance Computing (HPC) platforms. In current HPC-Based



ABS approaches (such as Repast[24], NETLOGO[21], and MASON[14]) models
may be elevated to and examined at genuinely large scales at the expense of hav-
ing agents with limited reasoning capabilities and/or limited interaction among
them, sometimes even reducing agents to mere rule-based or functional input-to-
output transformers. An opposite approach are Multi-Agent frameworks (such
as Jadex[5], 2APL[8], BDI4Jade[15] or GOAL[10]) that offer cognitive agents
with more powerful practical reasoning capabilities, but at the expense of hav-
ing very limited scalability. Many other approaches in literature offer different
levels of reasoning and scalability ([1] and [18] provide an interesting comparative
analysis on many of them, showing the reasoning level vs. scalability trade-off).

In [9], Gnatyshak et al. present a custom Python-based BDI-agent simulation
framework capable of both hosting agents imbued with more powerful practical
reasoning capacity and running simulations with large numbers of these agents.
Scalability is tackled in this framework by parallelizing via PyCOMPSs[20] the
reasoning cycle of goal-oriented agents. In this paper we address the issue of
further enhancing this framework by giving agents the capability to deal with
preferences over their objectives, preferences over the actions they take in order
to accomplish those objectives and (moral) values, as a first step towards a pow-
erful agent-based micro-simulation framework to analyse the impact of social
values, norms and conventions in large populations. In this work we also aim to
explore how far we can go without using numbers in our preference mechanisms.
Generally, humans do not reason using hard numbers but in qualitative terms.
However, all state-of-the-art approaches we have analysed [6,17,23,7,22] end up
adding hard numbers and/or ad-hoc numerical formulae to their selection strat-
egy. So we aim to explore how not using numbers limits the expressiveness of our
system, how severe this limitation is, and draw some conclusions as to whether
it is acceptable to use numbers to attain a desirable level of complex reasoning.

This paper is structured as follows: in §2 we briefly describe the previous
works we used as reference; in §3 we describe the conceptual model and how
we added goals, preferences over goals, preferences over plans and actions, and
support for the expression of moral values; in §4 we show how our additions to
the model work in a sample scenario; and in §5 we conclude by discussing some
limitations of the current model and extensions to be explored as future work.

2 Related Work

Our model of goals has been inspired by two agent frameworks with working
implementations: GOAP and BDI4JADE.

GOAP [16] is the AI created for the enemies of the video game F.E.A.R,
mainly formalized by Jeff Orkin. In GOAP, goals are represented by specifying
a desired state of the world that agents strive to achieve. This desired state
is described using the same structure used for the current state of the world, an
agent’s beliefs, actions’ effects, etc. Agents can have many independent goals, but
can only pursue one at the same time. In order to plan, an agent must have a set
of available actions, a set of beliefs about the world and sensors to periodically



update those beliefs, and a set of goals. Each goal has a current priority, and the
agent will choose to plan for the goal with the highest current priority. GOAP
uses numeric priorities (i.e., a quantitative relation rather than qualitative). A*
is used to plan with a heuristic minimizing the weighted number of actions used
to reach the desired state., i.e., minimize the sum of costs of the actions in the
plan. We borrow such goals defined as desired world states (see §3.1).

Ingrid Nunes’s BDI4JADE [15] platform provides a BDI layer on top of JADE
[2]. It uses the same structure as Orkin’s GOAP to represent goals (desired
state of the world). It supports the declaration of different types of goals: ‘belief
goals’ (goals that deal with states of the world described by boolean variables),
‘beliefset value goals’ (same as before, but variables are continuous or have more
than two possible values), ‘composite goals’ (used to represent goals composed
of subgoals which have to be achieved sequentially or in parallel), etc. It also
differentiates between desires (non-committed goals) and intentions (committed
goals). Plans are an ordered set of actions and are executed to achieve a specific
goal. In BDI4JADE agents do not have a set of actions that they can use to
build plans, but rather, they have a library of plans that the agents can choose
from. Each plan in the library has some applicability conditions (equivalent
to actions’ preconditions) that are used in the plan selection process. We get
inspiration from BDI4JADE on its plan selection strategy.

Our main inspiration for the modelling of preferences over goals comes from
CP-nets[4]. Although our actual implementation is definitely not an implementa-
tion of a CP-net, the main inspirations we have drawn from them is to establish
one default and many conditional preorder relationships over goals, and building
a graph to both visualize them and interpret them. We also analysed Dignum et
al. approach in [7] to model values (to adapt it to model preferences over goals),
but upon closer inspection, we decided not to follow this approach since it uses
numerical values and in this work we aim for a more qualitative approach.

In the case of preferences over plans, we drew a great deal of inspiration
from Visser’s work in [22]. It introduces the concepts of goals’ properties, which
we use extensively in our modeling of priorities over plans. We also make use
of their mechanism for property propagation in our implementation. We should
note that our implementation is simpler than theirs. For instance, the paper
defines both properties of goals (discrete values that a property can take) and
resources of goals (numerical values and intervals that represent how much of a
resource -e.g., money, food- is being consumed by a goal or a sub-goal), but we
chose to simplify the approach and add only discrete properties, as we want to
explore a qualitative, scalar-free preference approach.

3 Conceptual model

A multi-agent system M is defined as the tuple M = {E,A+, C} where E
is an environment, in which the agents reside, that they can perceive, gather
information from, and act on; A+ is a non-empty set of agents; C is a controller,
defined as the tuple C = {I, inAcs} where I is the inbox for all the agents’



outgoing messages (supporting agent communication), and inAcs is the set of
all the actions to be exercised on the environment (regulating how agents access
and act upon it).

An agent is defined asAi = {ID,msgQs, outAcs,Bh,B,G, gc,Pc,MP,Pg,Pp}
where:

– ID = {AgID,AgDesc} is Ai’s identity data:
• AgID is the unique identifier of Ai

• AgDesc is an arbitrary description of Ai

– msgQs = {I,O} is the set of Ai’s message queues
• I = {. . . ,msgi, . . . } is the Inbox, the set of messages sent to Ai

• O = {. . . ,msgi, . . . } is the Outbox, the set of messages sent by Ai

• msgi = {AgIDs, AgIDr, performative, content, priority} is a message
sent from agent with ID = AgIDs to the agent with ID = AgIDr, with
the corresponding (FIPA-like) performative type, content, and priority.

– outAcs is the set of external actions to be executed on the environment. It
is composed of tuples of the form: {senderID, ae}, where ID is the sender’s
ID, and ae is the action that is being sent.

– Bh = {RG,P} is Ai’s role behavior
• RG is the set of role goals associated with the Bh which Ai is enacting
• P is the set of plans P associated with the Bh

– B is the set of Ai’s beliefs. It uses the same world state structure as E
– G is the set of Ai’s own goals (see §3.1).
– gc ∈ (G ∪ RG) is the current committed goal (see §3.1).
– Pc = {. . . , abi, . . . } is Ai’s current plan, which is an ordered set of action

blocks. Each action block abi = {. . . , aij , . . . } is an ordered set of actions
(each aij is an action). There are three types of actions: internal actions
(actions that are executed by the agent in order to change their beliefs),
external actions (actions that are sent by the agent to the controller in
order to be executed on the environment to alter it), message actions
(actions that are used to generate messages intended to other agents)

– MP is the metaplanner, a library of plans for each goal (see §3.2).
– Pg is the set of preferences over goals (see §3.3).
– Pp is the set of preferences over plans (see §3.4).

Our conceptual model extends the one presented in [9]. Our extensions are
described in the following sections.

3.1 Adding goal structure

We extend the conceptual model in [9] by providing a formal model for goals:
what they are, how they are defined, and how they are related with plans. We
have chosen to model goals as desired states of the world that agents strive to
achieve. It is equivalent to the concept of desires in BDI. A goal is therefore
defined by a collection of subsets of the variables that describe a state of the world
(its conditions), and an assertion of their desired value(s). These conditions are
expressions such as ‘cash==10’ or ‘speed>=50’ to mean that having exactly 10



units of cash and that maintaining a speed of 50 or above are part of the desired
state of the world, respectively. Each subset describes a conjunction of variables
that describe a desired state of the world and, in order for a goal to be considered
achieved, it is required that all the variables of at least one of these subset have
the desired values in the eyes of the agent (its beliefs).

We formally define the structure of a set of goals G as an unordered set
of the form G = {g1, g2, . . . , gn} where each gi is an individual goal among
the many goals an agent has. A goal is defined as gi = {name, descr,C, status}
where name is a unique identifier of the goal, descr is an optional text describing
the goal, C is the set of conditions over the state of the world for the goal to be
considered achieved, and status is a boolean value that is True if and only if the
conditions C are satisfied according to the agent’s current beliefs B.

A set of conditions over the state of the world is defined as unordered
collections of assertions over the state of the world (the environment) of the form
C = {a1, a2, . . . , an} where ai = {n1 ⋆ v1, n2 ⋆ v2, . . . , nm ⋆ vm} is a conjunction
of statements over the values of variables of the agent’s beliefs, defined by ni,
which is the unique name of a variable of the agent’s beliefs; ⋆, which is a binary
operator ({=, ̸=, >,≥, <,≤}); and vi, which is the value of interest that is being
asserted to ni.

The agent possesses the capabilities to check whether or not an individual
goal has been achieved according to its beliefs: check goal(gi,B) outputs True
if, according to the agent’s beliefs, the conditions of the goal have been met,
and false otherwise. Our agents are allowed to have multiple goals (own goals
G and role goals RG), but are restricted to pursuing only one at a time. This
commitment to a goal that is intended to be pursued (gc in the agent tuple)
is equivalent to the concept of intention in BDI. Agents have the capability
to re-consider which goal they want to pursue, and may change the goal they
are committed to even if they have not achieved it, depending on their current
beliefs and the state of the world they perceive.

3.2 Adding a library of plans

We also extend [9] to enable specifying different plans for each goal, and to pick
different plans for a committed goal with an element that will act as a library
of plans, The implementation of the means-ends reasoner for the platform is
a Hierarchical Task Network (HTN) planner[13]. The HTN is a tree composed
of three types of nodes: (i) Primitive Tasks, (ii) Methods, and (iii) Compound
Tasks. The root of the HTN is an abstract compound task (e.g., order food).
Figure 1 provides an example. Our agents have a library of predefined HTN
plans that the agent can pick from, and these plans will be related to goals
by means of the structure of the metaplanner, which is the MP element of
the agent tuple. Formally, it can be viewed as MP : G −→ P∗ , a matching
relationship from goals towards plans, where P is the set of plans P associated
with goal gi and P∗ is used to indicate that it can output tuples of plans of
arbitrary cardinality (meaning one specific goal may have, for instance, three
plans associated to it, while a different goal might have five, or two). We need



also to add applicability conditions to plans: P = {C, ab1, . . . abn}, where C is
the set of conditions over the state of the world (see §3.1) that determine a plan
to be applicable, and each abi is an action block.

Other noteworthy aspects of the metaplanner are that it incorporates ap-
propriate functions for plan selection. Therefore, it will not simply act as a
library/collection of plans, but it will also perform part of the reasoning. This
reasoning includes both checking which of the associated plans are available for
application, as well as ordering them based on the preferences4. For the first func-
tionality, the metaplanner features a get available plans(gi,B) function which,
taking into account the current beliefs of the agent, it outputs a subset of the set
of plans associated with the goal, containing only all plans that are applicable.
For the second functionality, the metaplanner has a pick plans(gi,B, prefsP)
function, where prefsP are the agent’s preferences over plans, that will pick
the plan that is more adequate to the current situation according to the agent’s
preferences and beliefs, from among all the applicable plans.

3.3 Adding preferences over goals

The next extension we introduce in the model are preferences over goals. As
we explained in §2 we drew inspiration from CP-nets and conditional preference
formulas, to some extent, but we simplified the approach in order to be able to
work without scalars, that is, having a fully qualitative approach to specifying
preferences over goals.

To define preferences over a set of goals, the approach we have taken is to
establish a strict partial order relation between them to indicate which goals must
be pursued before trying to achieve other goals. These binary relations between
goals are reflexive, transitive and assymetric. To model the context-dependent
nature of preferences, we allow the declaration of conditional preferences, which
are also a strict preorder relation over goals, but they only apply when their
trigger conditions are met. A nice property of strict preorders is that they have
always a unique direct acyclic graph (DAG) associated to them.

In order to encode preferences over goals in our agents, we have added
the following element, Pg (which stands for “Preferences over goals”) to the
agent tuple. We define it as Pg = {dGP, cGP1, cGP2, . . . , cGPn}, where dGP are
the default preferences over goals (they apply under ‘normal’ circumstances),
and cGPi are conditional preferences over goals (they have some trigger set of
conditions Ci over the state of the world as defined in §3.1).

The dGP and each cGPi are defined as a DAG that corresponds directly
to a strict partial order relationship between goals, and the only difference
between them is that the dGP is the one active by default (does not need any
conditions to be met), while the various cGPi become active and replace dGP
if some associated conditions are true.

Once all the strict preorder relations have been established, we deduce their
associated DAGs. From those DAGs, we compute a valid topological ordering of

4 We describe how we model preferences over plans in §3.4



each, and these orders are the ones in which goals will be pursued by the agents
(by choosing the first non-achieved goal in the topological ordering), e.g.:

– We have one agent A′ which has the goals G0 = {g0, g1, g2}. g0 is a goal to
tidy the agent’s bedroom, g1 is a goal to tidy the agent’s kitchen, and g2 is
a goal to store clothes that are hanging out to dry in the open.

– If we denote “goal i must be achieved before goal j” as gi → gj , the default
preferences over goals of agent A′ are {g0 → g2, g1 → g2}, that is, before
storing the clothes that are outside, A′ must have cleaned both his bedroom
and his kitchen. Notice how both g0 and g1 must be accomplished before
focusing on g2, but there is no established order between g0 and g1, as it is
a strict partial order. A valid topological ordering might be: g0, g1, g2, but
also g1, g0, g2. By default, A′ will pursue his goals in either of those orders.

– The set of conditional preferences over goals of agentA′ is {g2 → g0, g1 →
g0} with the associated trigger conditions that the variable ‘raining’ must
be True. If it is raining, the agent’s top priority goal will be to collect the
clothes, then cleaning their kitchen or bedroom, in no specific order. There-
fore, the moment it starts to rain, A′ will switch to any of the topological
orderings that can be given to this set (for instance, g2, g1, g0)

5.

3.4 Adding preferences over plans and actions

By adding preferences over goals we provide agents with the capacity to choose
what to pursue. But we also need to provide them with means to have preferences
over how to achieve what they are pursuing. We humans have preferences not
only over what goals we want to achieve, but also over how we want to achieve
them, and these preferences may be context-dependent. Some people might pre-
fer to drive to their workplace, while some others would rather walk there. But
the preference on walking may change in the case the weather is very cold or
rainy, then prefering to commute to work by a combination of transportation
modes. In order to encode preferences over plans and actions in our agents,
we have added element Pp (which stands for “Preferences over plans”) to the
agent tuple. We define it as Pp = {gP1, gP2, . . . , gPn}.We denote the prefer-
ences over plans for each goal gi by gPi = {dPP, cPP1, cPP2, . . . , cPPn}, where
dPP are the default preferences over plans for goal gi (under ‘normal’ circum-
stances), and cPPi are conditional preferences over plans for goal gi (they have
some trigger set of conditions Ci over the state of the world).

A property of a goal is the name of a variable of interest that a goal
has the capacity to alter. Said variable does not necessarily have to be the
name of a variable in the set of beliefs of an agent. It is simply something note-
worthy that achieving a goal has the capacity to give a specific set of values.
For example, if a goal is to ‘order dinner’, some of the properties might be
‘vegetarian’ and ‘cuisine’, and their possibles values might be {True, False}
and {‘French’, ‘Italian’, ‘Spanish’, ‘Turkish’}, respectively. In our model each

5 In case of conflicts between preferences, the default behaviour is to choose by order
of declaration in the HTN. This can be overriden by the designer. Refer to §5.



goal, plan, subplan, and action may have a set of properties PS, of the form
PS = {prop1, prop2, . . . , propn}, and each property propi is of the form propi =
{v1, v2, . . . , vn} where: propi is the unique name/identifier of the property, and
vi is one of the possible values that the property can take. These values can be
boolean, numeric, etc., depending on the nature of the property itself. The set
of values that make up each property are used to indicate possible values the
property can take. All properties can have the special None value inside the set
of their possible values. The presence of this value in a property of a plan or
subplan indicates that said plan or subplan can be achieved through one or more
actions that do not use or alter the property in question at all.

Propagation of properties consists in sending the properties ‘upwards’
from the most concrete actions, up to the root goal, passing through every sub-
plan and subgoal in the way. The full description of the method is provided in
[22]. Given two sequential actions that have the same parent, the parent’s set of
properties will be the result of computing the union between the two children’s
properties. Each child will not have different possible values for the same prop-
erties, since they are sequential actions, and it would not make sense to design
a plan in which child action no. 1 sets ‘cuisine’=‘Spanish’ only for the child ac-
tion no. 2 to set the cuisine to be ‘French’. Therefore, the properties of the two
(sequential) children will always be different, and the resulting properties of the
parent node will simply be the joining of the children’s sets of properties, and it
is trivial to see that this process applies to n sequential children actions.

Given two alternative actions that have the same parent, the parent’s set
of properties will be the result of merging the properties of the children in the
following manner: if both children set different values for the same property then,
for the father, the values of the property will be the union of the values that
the children had (e.g., if child no. 1 had ‘cuisine’=‘Spanish’ and child no. 2 had
‘cuisine’=‘French’, the parent task will have ‘cuisine’={‘Spanish’, ‘French’} to
indicate that if that node is chosen, we will limit the possible values of ‘cuisine’
to those two values). If either child has a property that the other does not, the
parent will simply take the same properties of the child that has it, and will add
the special value None, to indicate that if that node is chosen, there is a path of
the plan that accomplishes the goal without ever giving a value to that property.

Figure 1 provides an example of property propagation. It shows the set of
plans associated to a goal of ordering dinner. There are three possible options:
a plan to order burgers, a plan to order falafel, and a plan to order pizza. We
assume that there is only a local burger, a local falafel, and both a local pizza
restaurant and a big company that makes pizza. Other assumptions that we take
are that all burgers and pizzas are non-vegan, and that all falafels are vegetarian.
The designer only needs to declare properties on the actions. Then, as a result
of the property propagation process, all vertices have their own set of properties
that have propagated upwards, from the leaves (actions). Notice how, in general,
all properties have propagated towards the upward nodes. However, most of these
propagations have been very simple ones: from single child to parent, although
there are two cases worth mentioning. The first one is the propagation from the



Figure 1. Property propagation on an HTN plan assocated to the order dinner goal

subplans to order local pizza and order from big pizza company. Notice how their
properties are the same in all fields except for the ‘local’ field, with one holding it
as True, and the other as False. However, these two alternative subplans share a
common parent, and when their properties are propagated to it, they are merged
in the way we described earlier: the parent has its property ‘local’ with all of
its children values, to represent that, if that subgoal (or its parent subplan) is
picked, then we can still order from either a local restaurant or a big chain. The
other note-worthy example is the propagation of properties to the root node,
where all options have been compiled in its properties.

3.5 Selection of plans and actions using properties

We will now briefly describe the process of choosing a plan taking preferences
into account. An assumption we make throughout this whole example is that
all plans are available, that is, our choices are not restricted by the environment
in any way, shape, or form. Given a concrete goal gi (order dinner) an agent
has a set of preferences over the plans to achieve gi. We can define this set
as gPi = {dPP, cPP1, cPP2}, where dPP is the default set of preferences, and
cPP1, cPP2 are conditional sets of preferences. We assume that we have the
following preferences over how to achieve the goal to order dinner (see Figure 1):



1. dPP = {cuisine = {falafel}}: by default the metaplanner would only follow the
branch with this property, and order from the falafel restaurant.

2. cPP1 = {cuisine = {burger, pizza}, local = {True}}[weather = snowy]: in case
of snow the metaplanner would follow branches that are either burger or pizza
cuisine, but only those that are local (in the case of pizza this restricts it to only
the local pizza place option).

3. cPP2 = {local = {False}, vegetarian = {False}, cuisine = {burger}}[weather =
rainy]: in case of rain the metaplanner attempts to follow branches meeting all the
conditions, but even if the agent prefers to order non-vegetarian burgers, the first
property prevails and leads to the only non-local option (pizza from big company).

As we can see, the agent picks from all the plans that satisfy the leftmost
property, then, from those plans, it picks from those that satisfy the next leftmost
property, etc. This process is for both default and conditionally triggered prefer-
ences, as they have the same structure, the only difference being that the latter
need to be activated in order to take over and replace the default properties.

3.6 Adding values

Moral values can be simulated using the system of preferences over plans and
actions described in §3.4. Consider the previous example of ordering food. We
can ingrain moral values into each plan as extra properties. For instance, in
our food ordering example (see Figure 1) primitive tasks are associated to a
local value (meaning the social value to favour local businesses and products
over globalization-oriented trade of products coming from far away) that can
be connected to Universalism and Self-Transcendence in Schwartz’s theory of
human values [19]. Another example is provided in Figure 2, where bike and
walk options for transportations are positively associated to the environmentalist
value (that also can be connected to Universalism and Self-Transcendence) and
the health value (that can be connected to Hedonism and Self-Enhancement).

As we are associating values to the primitive tasks, this may look as if our
model pressuposes moral absolutism6, but actually, that is not true. As proper-
ties are defined for each plan of each agent, we can create an agent who thinks
that lying is morally wrong, and an agent that thinks that it is morally right.
Also, since the same action can be part of different subplans, we can also encode
the fact that the morality of actions depends on their context. For example, if an
agent kills an animal as part of a subplan to have fun, we can label that action
as morally evil, but if the same agent kills an animal in his job as a veterinarian,
then that action was not morally evil.

4 Example Scenario

We present a complex scenario to show how our agents fare with the extensions.
The simulation consists of 64 steps. It starts at 08:00, and ends at 00:00 of the

6 Moral absolutism is the position that there are universal ethical standards that apply
to actions, and according to these principles, these actions are intrinsically right or
wrong, regardless of what any person thinks, or context.



Figure 2. Library of plans for fun-related and transport goals

next day. Each simulation step corresponds to 15 minutes in the town. By default,
the town starts with clear weather. Every iteration, there is a 10% chance of the
weather changing. If that chance happens, there is a 60% chance of the weather
becoming clear, 30% chance of becoming cloudy, 9% chance of raining, and 1%
chance of snowing. At every iteration, there is also a 0.2% chance, for every
agent, to experience a medical emergency. All these parameters are configurable
by the user. The environment is randomly generated using a seed, and the agents
will react and plan accordingly to the changes on the environment. The agents’



Table 1. Alice’s and Bob’s goals, preferences and values.

ALICE’s self goals ALICE’s role goals
g6 - Go home g1 - Take children to school
g7 - Eat dinner g4 - Go collect her kids to
g8 - Attend any medical school

emergency g5 - Have fun with her kids

g2 - Go to work
g3 - Work

BOB’s self goals BOB’s role goals
g3 - Have fun g1 - Go to work
g4 - Go home g2 - Work
g5 - Eat dinner
g6 - Attend any medical

emergency

ALICE’s preferences over goals BOB’s preferences over goals
Default: Default:
[g1 → g4 → g5 → g6], [g1 → g2 → g3], [g6 → g7] [g1 → g2 → g4], [g2 → g3], [g4 → g5]
Conditional preferences: Conditional preferences:
− if (medical emergency) if (medical emergency)
[g8 → g1], [g1 → g4 → g5 → g6], [g1 → g2 → g3], [g6 → g1], [g1 → g2 → g4], [g2 → g3], [g4 → g5]
[g6 → g7]
− if (snowing)
[g2 → g3 → g6], [g1 → g4 → g6], [g6 → g7]

ALICE’s values BOB’s values
– For transport and fun-related goals:

• environmentalist = False
– For food-related goals:

• local = False #big chains

– For transport and fun-related goals:
• environmentalist = True
• healthy = {Super, V ery}

– For food-related goals:
• local = True#local businesses

ALICE’s preferences over plans (transport goals) BOB’s preferences over plans (transport goals)
Default: Default:
{trans = {car}} {trans = {bike}}

Conditional preferences:
{trans = {walk, bike}}[weather = cloudy]
{trans = {car}}[weather = {rainy, snowy}]

ALICE’s preferences over plans (fun-related goals) BOB’s preferences over plans (fun-related goals)
Default: Default:
{destiny = {beach}} {destiny = {beach}}
Conditional preferences: Conditional preferences:
{destiny = {park}}[weather = cloudy] {destiny = {cinema}}[weather = {cloudy, rainy,
{destiny = {cinema}}[weather = {rainy, snowy}] snowy}]
ALICE’s preferences over plans (food-related goals) BOB’s preferences over plans (food-related goals)
Default: Default:
{cuisine = {pizza}} {cuisine = {pizza}}
Conditional preferences:
{cuisine = {chinese}}[weather = {rainy}]

environment is a small town with some citizens living in it. These citizens are
people which have their own set of daily goals (e.g., go to their workplace, have
fun, eat dinner, etc.). Like real people, they have preferences over in which order
to pursue their goals, as well as preferences over how to achieve them. Finally,
they might have some moral inquiries into the actions we perform (e.g., being
environmentalists and thinking the usage of cars is immoral, etc.).

The environment class implements the map of city locations as well as other
variables such as the current weather, the time, and extra internal variables for
purposes of running the simulation. When an agent perceives the environment,
they will only perceive the current time, the current weather, and the information
of the location that they are currently in. For instance, if an agent is at the city
center, it will not update its information about the state of the school, only
about the state of the city center, the weather, and the time.

There are two main actors in our environment, Alice and Bob. They both
are complex agents with numerous goals, conditional preferences over these goals,
a rich library of plans, and preferences over those plans, along with moral values.

Alice is the CEO of a big company. She works at the office every day until
16:45. She has to take the children to school every morning, collect them from
school at 17:00, and go have fun with them in the afternoons (until 19:45). Then,
they order food at 20:00. Her initial beliefs are her current location, the current
weather and time, the current location of her children, whether she owns a car,



whether she has worked, if her children have gone to school, if she is at the
center of the city, and whether there is a medical emergency. Table 1 shows her
goals, preferences over goals and plans and her values. Alice’s library of plans
consists of three sets of complex plans: one set of plans for fun-related goals (see
left column in Figure 2), one set of plans for transport goals (see right column
in Figure 2) and one set for food plans (an extension of the one shown in Figure
1 with an extra plan branch for Chinese food). Goals g1, g2, g4, and g6 include
commuting, and therefore are mapped to transport plans by the metaplanner.
g5 and g7 are mapped to fun and order meal plans, respectively. The other plans
for other goals are trivial: they have a single plan, with a single action (e.g., in
the case of the plan to work, there is only one method, with a single action).

Bob is the second agent we have created for this test scenario. Like Alice,
he has his own set of beliefs, a place where he lives, a place where he goes to
work, preferences over how to have fun, etc. Bob lives in the city center and is a
worker in the local factory, every day until 16:45. He has no children so he goes
to work directly every morning. Once he is done, he goes to have fun however he
prefers. Then he goes back home and orders food at 21:00. His initial beliefs are
similar to Alice’s, excluding those children-related. Table 1 shows Bob’s goals,
preferences over goals, plans and values. Goals g1, g3 and g4 include commuting
and therefore are mapped to transport plans by the metaplanner. g3 and g5 are
mapped to fun and order meal plans, respectively. Bob’s goals are a subset of
Alice’s goals and are mapped to the same plans, but Bob will not act like Alice,
as their personal preferences and moral values differ.

4.1 Tests and Results

In this section we show some execution runs to see that agents plan according
to their goals, preferences and values, and that they respond to changes in the
environment that might cause them to reconsider their contextual preferences
and, therefore, need to replan, or even reconsider their goals.

Figure 3 shows the result of a simulation with all default parameters except
for emergencyodds = 0.2 (20%). At step 35 we can see that Alice is working in
her workplace when she receives a medical emergency of one of the kids. Then,
her conditional preferences over goals activate, she changes her current goal, and
she rushes to the hospital, as we can see in the next step. Although not shown
in the picture, when she goes to the hospital and is cured, her preferences over
goals revert to default, and she goes back to the offices to continue working.

In Figure 4 there is the result of a simulation with all default parameters
except for changeodds = 1, rainodds = clearodds = 0.5, and cloudoods =

snowodds = 0. At step 43, both agents were having fun at the beach. However,
it suddenly started to rain, and then their preferences over plans changed. The
goal (to have fun) does not change. What changes, however, is how they decide
to have fun. According to their conditonal preferences for fun, in case of rain
they prefer to go to the cinema, and they replan giving priority in the HTN to
the branches with the destiny={cinema} property.



Figure 3. Agent Alice changing preferences over goals

Figure 5 shows an example of the interwork of conditional preferences over
plans and values. The Observer Agent tells us that it is raining. In the case
of Bob, his conditional preferences over food-related goals determine that its
single, permanent, default preference is always pizza (see Table 1). Therefore,
Bob’s HTN related to the “order food” goal (Figure 1) will select the order pizza
branches (except if Bob has less than $12, then the order falafel branch will be
explored). But to choose among the two order pizza sub-branches, Bob’s values
(local = True) are used to make the choice. From the two possible options to
order pizza, only “order local Pizza” has its local value True and is chosen (see
Bob’s mental state in Figure 5). The rainy weather has also triggered a change
in his transportation means (car), which is fully mandated by his conditional
preference over transportation plans. Here it is interesting to see that a con-
flict arises between the properties attached to the Car plan (healthy={no} and
environmentalist={false}) and Bob’s values ((healthy={Super, Very} and
environmentalist={true}). As we have no numbers to rate the relative impor-
tance of conflicting preferences, we have to solve the conflict by explictly placing
in the scenario definition file the trans preference before the healthy one.

In general, we see that our agents react to changes in their current context
by changing their priorities, and always plan according to them. Additionally we
see that they function as expected: they pursue their default goals in the correct
order, change priorities over goals whenever they should, replan according to
changes in both priorities over goals and plans, and make choices based on them.

5 Conclusions

In this paper, we describe an extension to an agent-based simulation environment
for High Performance Computing enabling goal-driven agents with hierarchical



Figure 4. Agents Alice and Bob changing preferences over plans

task network (HTN) plans to choose among goals and among plans based on
preferences and a simple moral values model. We have summarized extensions
done on the agent model and how they work in a sample scenario. We have also
been able to see how ‘far’ we could go without using any numbers to express
preferences over goals, plans, and moral values. As we have seen, we have been
able to express conditional preferences over both, have these preferences change
based on context, and agents replan based on environmental changes.

One of the biggest limitations in how we declare goals is that, at any given
moment, our agent can only pursue one goal at a time. This limitation is also
common in many BDI-inspired implementations. Only few agent platforms (such
as Jason[3] or 2APL[8]) allow to pursue several goals at the same time. We are al-
ready working on an extension of the model and its implementation to allow sev-
eral goals at the same time, specially to allow handling combinations of achieve-
ment goals and maintenance goals. Another limitation is that our agents do not
support adding (or removing) goals in runtime. Goals can be either achieved
or not achieved at any given moment, but they cannot be eliminated (nor new
goals can be added). This limitation was introduced for performance reasons.
We plan to tackle this in future extensions.



Figure 5. Agent Bob has used his preferred means of transport for when it rains and
his “local business” values to choose the local pizza option.

Perhaps the biggest limitation in our declaration of preferences over goals and
plans is that they are absolute, and this stems from the fact that we aimed to
not use numbers in our model. Therefore, we cannot express things like ‘I prefer
this a little more than that’, or ‘I prefer that a lot more than this’ that could be
used to solve conflicts (such as Bob’s conflicts between the plan preference and
his values). Visser’s et al approach [22] provides a more complex structure that
allows their agents to have more complex preferences (e.g., agents can reason
about quantities, quantity optimization, limitation by quantity, etc.). Also, their
agents are able to automatically extract properties of goals by looking at the
actions, and then derive the relevant properties of the goals. Our model relies on
the designer carefully listing (within the scenario description file) the properties
and the preferences in the right order. In future work we will explore more
flexible and expressive ways to solve this (with no numerical values, if possible).

One related issue we plan to investigate further is related to what to do
when the trigger conditions of non-default preferences over goals overlap (e.g.,
it is snowing and a medical emergency occurs), especially in the case they define
different preorders. Our current approach is to pick the first goal preorder (by
declaration order in the scenario file), and to allow the designer to implement an
ad-hoc, more complex solution, if their scenario requires so. It would be better
to modify our model to allow for a native way to handle this issue.

Finally, our encoding of moral values also totally relies on the designer care-
fully listing which actions have what moral implications and, while this is good
from an expressiveness point of view (it allows us to declare moral relativism
as different agents having different moral convictions) and context-dependent
morality (the same action carried out under different circumstances having dif-
ferent moral implications), it is a very exhaustive and daunting task. It would
be good to have the system partly automated, perhaps employing some match-
ing between the purpose of an action and a value-tree structure rooted in a
well-founded model of values (such as Schwartz’s[19], which is used in [7,12,11]).
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