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Abstract 

This thesis describes the development of Aetherius, a Unity tool which can 

generate and visualize virtually endless and unique cloudscapes in real-time dynamically; 

The resulting tool can be used in videogames to easily and quickly create immersive and 

dynamic skies without wasting resources in the development of a dedicated system. 

Developing a volumetric cloud system is complicated and especially small studios 

do not have the resources to create such systems for their skies. The objective of this 

project is to provide an accessible and easy to use alternative for small studios and indie 

developers to turn static, boring and featureless skies into high quality ones. 

In this document the problems encountered during the development of the tool 

and the techniques used to generate, render and optimize cloudscapes are described; to 

test the tool’s usefulness this project includes the creation of a small demo application. 

  

https://www.upc.edu/en


Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 2 

 

© Oscar Pérez Martín 2022                 Universitat Politècnica de Catalunya 

Acknowledgements 

I would like to acknowledge everyone that helped me get to where I am now, for 

their support and inspiration during the development of this thesis and project. 

I want to thank my friends and my family for being there, aiding me when I needed 

it and helping me test the project. I would also especially like to thank my mom Silvia 

and my friend Carla for being as enthusiastic as I am about clouds and sending me photos 

of them every time they looked at the sky and saw cool cloudscapes. Finally, I want to 

thank Adrià Serrano for helping me with mathematical questions when I needed it. 

 

https://www.upc.edu/en


Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 3 

 

© Oscar Pérez Martín 2022                 Universitat Politècnica de Catalunya 

Keywords 

Ray Marching, Volumes, Clouds, 3D, Procedural Generation, Real-Time, Unity, 

Tool, HLSL, Videogames 

 

Links  

The Unity project containing the source code and files for the tool in this thesis 
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The different demonstration applications that have been compiled for the project 
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The trailer showcasing the tool can be found at: 

https://youtu.be/OHnivbkmO6s 
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Glossary 

Abbreviations 

E.g., exempli gratia, for instance, for example. 

I.e., id est, that is, in other words. 

Acronyms 

CPU Central Processing Unit. 

fBM Fractal Brownian Motion, fractional Brownian Motion. 

GPU Graphics Processing Unit. 

HDRP High Definition Render Pipeline. 

HLSL High Level Shader Language 

LUT Lookup Table.  

PBR Physically Based Rendering. 

RGB Red Green and Blue, usually image color channels. 

RGBA Red Green Blue and Alpha (Transparency), usually image color channels. 

UDP Universal Render Pipeline. 

ND N-Dimensional.  

(a) 2D Two-Dimensional. 

(b) 3D Three-Dimensional. 

Vocabulary 

Algorithm (a) A set of mathematical instructions or rules that, especially if given to a 

computer, will help to calculate an answer to a problem. (b) A step-by-step 

procedure for solving a problem or accomplishing some end. E.g., a recipe is an 

algorithm, which consists of specific instructions for preparing a dish or meal. 

Pseudorandom (of a number, a sequence of numbers, or any digital data) Satisfying one 

or more statistical tests for randomness but produced by a definite mathematical 

procedure. 

https://www.upc.edu/en
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Shader A user-defined program designed to run on some stage of a GPU. Shaders provide 

the code for certain programmable stages of the rendering pipeline. They can also be used 

in a slightly more limited form for general, on-GPU computation. 

Volumetric Showing or creating something in three dimensions; e.g., a technique known 

as volumetric display creates moving 3D images that viewers can see from any angle. 

Voxel Any of the discrete elements comprising a three-dimensional entity. The 3D 

equivalent of a pixel. E.g., an image produced by magnetic resonance imaging. 

https://www.upc.edu/en
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Preface 

Motivation 

As a programmer and game developer I love converting my thoughts, the inner 

worlds that I dream about, into tangible and interactable spaces that people can walk 

through and explore. I find it incredible that through changes in ones and zeros these 

worlds can be recreated and simulated to a certain extent inside small machines that we 

call computers.  

I had been creating spaces that made use of rasterization 1of 3D geometry for a 

long time before writing this thesis but I wanted to embark on a new challenge and 

experiment with a less commonly used rendering technique in videogames: Ray 

Marching;  

Another field that I have always been drawn to is that of Procedural Generation, 

which allows a seemingly infinite amount of combinations and is already being widely 

used in videogames, as it can improve the pace at which content is generated while saving 

resources. 

The blend of Procedural Generation with Ray Marching as a challenge to create 

my own worlds combined with my love for clouds as these dynamic, epic, physics-driven 

phenomena that occur every day almost unnoticed by people while being common and 

internationally recognizable among humanity, has led me to try to recreate these 

structures for use in videogames. 

                                                                                       

1 A technique used to render of 3D scenes, mostly used in real-time applications; Explained in detail 

following the link (https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-

implementation) 

https://www.upc.edu/en
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The Problem 

Skies in outdoor environments in videogames usually suffer from a lack of 

importance on the development stage of games as it is very easy to replace the background 

with a Skybox, a method that has been used traditionally; This makes the skies boring, 

repetitive and static, as the same image is shown to the users every time they look up, 

which does not contribute to the overall player immersion.  

A solution has been adopted to solve the monotonous nature of static skyboxes: 

rotating skyboxes; these are normal skyboxes but they rotate at a constant rate along an 

axis to produce a more dynamic feeling. If the game has a day-night cycle the image can 

be rotated along an axis contained in a horizontal plane to show both a day and a night 

hemisphere; one clear example of this is Minecraft. Skyboxes in commercial engines that 

use images of clouds usually revolve around a vertical axis as if the clouds were moving. 

With the increase of GPU performance and the general adoption of shaders in 

the industry in recent years more complex solutions have become available for developers 

with shader knowledge. Real-time shaders which rely on atmosphere scattering 

approximations are now available in most commercial engines causing the skies to react 

to light almost identically to the real sky to the human eye and changing its color 

depending on the time of day and dust in the atmosphere. With this, skies are now 

dynamic, but almost featureless, as they lack something that humans perceive as inherent 

to them; Clouds. 

While other solutions like 2D billboard clouds with normals that react to light or 

3D geometry exist, by far the most interesting and close to reality solution to that problem 

is the concept of volumetric clouds, which most of the time comes in combination with 

volumetric atmospheres. Volumetric clouds allow for the user to not only see the clouds 

but traverse them as they are 3D volumes and do not have hard edges as opposed to clouds 

represented with geometry. They are already present in some triple-A open-world 

videogames such as Horizon Zero Dawn and Red Dead Redemption 2 and they are 

making their way into the newer versions of the two most used commercial engines: 

Unreal Engine and Unity, but are too complex for small studios and indie developers to 

implement on their own with their limited resources.  

The most advanced implementations of volumetric clouds that we find in video 

games are already premade so they do not offer customization to the user and the tools 

https://www.upc.edu/en
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for generating their cloudscapes are not accessible to developers of other games. On the 

other hand, plugins and systems for commercially available engines are too simple or do 

not offer great usability as most of them are conceived only as tech demo projects. The 

few systems that are usable and well-produced cost money or target high-end render 

pipelines, which limit the amount of small studios and indie developers that can access 

them. 

 

https://www.upc.edu/en
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Goals 

General Objectives. This thesis has three main goals: 

 Create a Tool: Develop a public and accessible tool to author volumetric 

cloudscapes for Unity games in real-time and document its development.  

 Develop a Project: Complete a project, plan, develop and close it with a 

professional quality. 

 Contribute Knowledge: Provide knowledge to the industry for those 

interested in the project and its systems. 

Specific Objectives. To accomplish these general goals the following specific 

objectives will be targeted: 

 Texture Generation: Make a system that allows for generation of 3D 

seamless textures which can be used to generate clouds. 

 Cloud Generation and Rendering: Make a cloud generation & rendering 

system for the Unity Built-In Render Pipeline, making the clouds interact with 

light as accurately as in real life. 

 Customize the Clouds: Allow users to customize their cloudscapes from 

presets, parameters and textures to better fit their own environments. 

 Create and Publish the Tool: Publish the Tool as an open and accessible 

Asset Store Package.  

 Document Performance: Analyse and document the efficiency of the 

methods used to generate and render cloudscapes. 

 Create a Demo: Create a small Demo application demonstrating the 

performance and main customizable parameters of the tool, while letting the 

user explore the resulting cloudscape. 

https://www.upc.edu/en
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Scope of the Project 

The target of this tool is not big videogame development studios but rather small 

ones, with few employees and a small budget; indie game studios or amateur 

developers who develop games as a hobby are good examples of our target audience. 

That is the reason why, of the three predefined Unity render pipelines2, we chose to create 

the tool for the Built-In Render Pipeline, as it is the most used pipeline among our target 

audience and the easiest to set up for them. 

Inside these small studios, our tool is aimed at their artists who are in charge of 

creating the environments; it will allow them to create cloudscapes that integrate well 

with the visual characteristics and aesthetics of their games. The tool has been developed 

to be user-friendly and to require no programming skills. 

Players are the ones who will benefit the most from this tool as the environments 

on low budget and indie games they play will have enhanced visuals and provide better 

immersion as a consequence. Developer teams will benefit from the tool as well, owing 

to the fact that they will be allowed to produce more realistic and dynamic environments 

with no time wasted developing the systems and no money spent on them, enabling 

developers to spend their resources on other critical aspects of their projects. 

This thesis’ aim is not to create an entirely new system from scratch but rather 

attempts to adapt existing technology and knowledge into a tool that can be used in a 

commercially available engine. 

                                                                                       

2 There are three main render pipelines available in Unity: (a) High Definition Render Pipeline (HDRP), 

(b) Universal Render Pipeline (UDP), (c) Built-In Render Pipeline. More information available in the link 

(https://docs.unity3d.com/Manual/render-pipelines.html) 

https://www.upc.edu/en
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State of the Art 

A study of different techniques being used nowadays to model and light clouds is 

shown in this section as well as tools currently available in commercial engines.  

 

Cloud Representations 

When trying to represent clouds in games in real-time numerous approaches have 

been developed over the years; we are going to focus on the most used approaches in the 

industry for this thesis. 

Skybox 

In this technique clouds are embedded into the background image. Lighting of the 

clouds is baked or painted beforehand so no lighting calculations happen during the game 

execution. More advanced skyboxes can handle dynamic lighting for clouds but this 

technique is usually used in small levels where the player spends little time, so there is no 

need for dynamic skyboxes or change of lighting or shape of the clouds. It is the most 

used technique in fast-paced shooters, an example of which can be seen below. 

 

Although not computationally intensive, it should be taken into account that 

skyboxes can allocate a lot of memory depending on the resolution of the image. 

 

 

 

Figure 1. Battlefield 3 campaign level skybox 

https://www.upc.edu/en
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Billboard 

In 3D, billboards are image planes that orient themselves towards a certain 

direction, either one of the main coordinate axis or a direction defined by the developers, 

like the camera vector in order to have the billboard face the player. Clouds are simulated 

in an external application and rendered usually as a color image defining the normal 

vector of each pixel; this direction is used then to simulate lighting direction of the clouds. 

Usually more than one image is taken for each cloud as seen from different angles and 

substituted or put together as the player moves around the world. 

 

 

 

 

Figure 2. Billboard normal clouds in Sapiens 

Figure 3. Billboard normal clouds (Schneider, 2015) 

https://www.upc.edu/en
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Billboard clouds offer a more interactable look than skyboxes as they are 

physically in a position in the world and can react to changes in lighting; one of the 

limitations of billboard clouds is that they are only suited to be viewed from afar since 

the illusion breaks once the player approaches or tries to fly through them. Furthermore, 

the shape of these clouds does not evolve over time and shadows cannot be casted 

between clouds realistically. 

Figure 4. Billboard clouds in Sapiens 

 

Polygon 

With this technique clouds are constructed from vertices like normal geometry. 

They are created using data from simulations made in external applications and the 

lighting data is baked beforehand. 

Figure 5. Polygon cloud (Schneider, 2015) 

https://www.upc.edu/en
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On the one hand, all game engines support vertex geometry so geometry clouds 

can easily be imported into different engines. On the other hand, their shape cannot evolve 

and clouds need have a high amount of polygons to look smooth enough to trick the 

human eye; In addition, they cannot be traversed as a volume without making the player 

see that they are only a shell. One example of a game that uses geometry clouds is 

Minecraft, although they are low-poly. 

 

Voxel 

Voxel clouds are comprised of a three dimensional grid of voxels or 3D pixels, 

each one storing a density value; Although they have to be created in an external 

application beforehand and their shape cannot evolve, they are volumetric in nature and 

can be flown trough. Voxel clouds use volumetric rendering, a technique detailed later. 

The major downside of Voxel clouds is their high memory usage. 

Procedurally Generated Clouds 

This is the technique that is being used in this thesis, it uses procedurally generated 

textures to define the shape and density of the clouds. It has very low memory usage, as 

it only requires textures, and can evolve over time. This technique uses the same rendering 

technique as Voxel clouds. 

Procedurally Generated Content. Procedurally generated content is content that 

can be created from a set of rules or an algorithm, which saves memory. It is normally 

used in videogames to help developers quickly generate additional content and detail, 

saving them work; In this case it is used to generate noise textures. 

Figure 6. Geometry clouds in Minecraft 

https://www.upc.edu/en
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Pseudorandom Tileable Noises. To generate volumetric clouds three types of 

noise are usually used: 

Table 1. Cloud generation noises 

Perlin Worley Perlin-Worley 

 

8 octaves of Perlin noise 

 

 

3 octaves of Worley noise 
 

Worley noise being used 

to modify Perlin noise 

 

 

The textures generated are usually 3D and tileable; i.e., when placing a texture 

next to the other, the change between textures cannot be noticed. The values stored in 

these textures are used to define the shape and detail of the clouds storing their density. 

Generating these textures procedurally allows the developers to generate different 

versions of noises only by changing the seed and a few parameters. 

 

Volumetric Rendering 

Volumetric rendering is a technique used to depict volumes which uses Ray 

Marching to sample the density of the clouds at points in space stepping along view rays 

from the camera. 

It uses a lighting model derived from a simplification of how light interacts with 

clouds in the real world. It also uses Ray Marching to calculate the lighting towards the 

sun and describes three main ways in which the light can interact with particles in the 

cloud medium: 

https://www.upc.edu/en
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Absorption. The light ray can be absorbed by the particles inside the cloud. The 

further it travels inside the cloud the higher the probability for the ray to be absorbed. 

 

In-Scattering. The light ray can change course as a result of an interaction with 

particles inside the cloud and exit the cloud towards the eye. 

 

Out-Scattering. The light ray can change course as a result of an interaction with 

particles inside the cloud and exit the cloud traveling away from the eye. 

 

 

 

Figure 7. Absorption (Schneider, 2016) 

Figure 8. In-Scattering (Schneider, 2016) 

Figure 9. Out-Scattering (Schneider, 2016) 
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These light interactions can approximate two behaviours that occur in clouds in 

real life: 

Directional Scattering. Gives clouds their luminous quality 

Silver Lining. Highlights the edges of the clouds when looking towards the sun.  

 

However, there is a behaviour which they fail to approximate: the dark edges of 

the clouds when looking away from the sun. 

 

 Different implementations try to solve this problem using various non-physical 

functions with distinct results. 

Figure 10. Silver Lining effect (Photograph) 

Figure 11. Cloud dark edges (Schneider, 2015) (Photograph) 
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Volumetric clouds with Ray Marching have only been seen in games in recent 

years due to the fact that rendering volumes is very computationally intensive, so the 

technology had to wait for  powerful enough GPUs capable of performing this technique 

in real-time with shaders. 

 

Volumetric Cloud Tools Available 

Although there are very polished and capable tools in the industry, they happen to 

be part of big studios and are only used for a handful of games, which is the case with 

Nubis, one of the tools developed for Horizon Zero Dawn by Guerrilla, or the cloud 

system developed for Red Dead Redemption 2. These are capable of simulating a 

day/night cycle, smooth weather transitions and allow for a variety of artistic changes to 

better fit their game needs. They are also integrated into a greater sky and atmosphere 

system. 

Figure 12.Horizon Zero Dawn clouds 
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Figure 13. Red Dead Redemption 2 clouds 

 

Horizon Zero Dawn’s weather system has an interesting approach to making its 

clouds look more epic. A circular gradient is created around the player which tells the 

weather system to gradually transition to cumulous clouds at 50% coverage starting at a 

distance of 15 km. This makes sure that clouds at the horizon are always interesting and 

poke above mountains. 

 

 

Figure 14. Horizon Zero Dawn cloud gradient 
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There are, however, free and accessible alternatives to these tools for the two 

biggest available commercial engines: 

Unity Engine 

Unity has recently released his volumetric clouds tool, a tool very similar to Nubis, 

very flexible and user-friendly; the only downside of the tool is that it is only available 

for the HDRP at the moment, leaving the majority of small studios and amateur 

developers that use less powerful render pipelines without the chance of using the system. 

Figure 15. Unity HDRP volumetric clouds 

 

 

This tool has three different modes allowing for three levels of customization, 

depending on the amount of control the developers want to have over the clouds: 

Simple mode. This mode lets the user choose between four predefined presets: 

Sparse, Cloudy, Overcast and Stormy. Additionally, there is an option to create a 

customized preset with curves and parameters that can be changed to quickly create 

unique looking cloudscapes. Density curve by height, erosion curve by height, shape scale 

and offset and density multiplier are some of the settings that can be customized in this 

mode. 

Advanced mode. Has similar options to the simple mode but with added settings 

to customize three different types of clouds: cumulus, alto stratus and cumulonimbus. 

These types of clouds and the rain regions of the world are controlled by a texture each 

that contains information about the cloud coverage for the former and rain distribution 

for the latter.  

Manual mode. Shares settings with the previous modes but the cloud location 

and density, cloud type and rain location are controlled by a single texture which has all 
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that information encoded in its RGB channels. Furthermore, another texture serves as a 

LUT3, encoding the following information in its color channels: cloud coverage (R), 

erosion (G), ambient occlusion (B). 

Besides these modes, the tool offers earth curvature simulation, cloud layer height 

and thickness, wind skewing for cloud shapes, shadow casting on terrain, direct and 

ambient light color personalization and some quality controls to balance quality and 

performance. 

Unity Packages 

Unity has an asset store where users can submit their own tools and assets. There 

are good volumetric cloud tools for both HDRP and URP and some of them are also 

compatible with the Built-In Render Pipeline but most of them cost money so many 

people cannot access these tools. The tools available for free contain very basic 

functionality or are just demo projects with no personalization at all. 

The following list contains the most relevant unity asset store tools that include 

volumetric clouds as a core part of their package. 

Sky Master ULTIMATE. Includes volumetric clouds, lighting, PBR sky with 

atmospheric scattering, an ocean system and real-time global illumination. It has a sky 

manager that supports a day/night cycle and smooth weather transitions. 

                                                                                       

3 Lookup Table. I.e., a predetermined array of numbers that provide a shortcut for a specific computation. 
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Figure 16. Sky Master ULTIMATE Unity package tool 

 

This tool is compatible with both URP and HDRP Unity pipelines and its price in 

the asset store is 61.64€. 

Weather Maker. Weather Maker supports (a) a day/night cycle; (b) volumetric 

clouds, fog and light; (c) terrain overlay; and (d) a sky system. Supports both 2D and 3D 

modes. 

Figure 17. Weather Maker Unity package tool 

 

This tool is compatible with both Built-In and URP Unity render pipelines and its 

price in the asset store is also 61.64€. 
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UniStorm. Includes atmospheric fog; cloud shadows; star constellations; 

customizable moon phases, cloud profiles and sounds for ambient and weather; 

procedural auroras; dynamic weather; and a day/night cycle. 

Figure 18. UniStorm Unity package tool 

 

This tool is compatible with both Built-In and URP Unity render pipelines and its 

price in the asset store is 53.59€. 

Unreal Engine  

Unreal engine has a very powerful and easy to set up volumetric cloud system 

integrated with visuals similar to the Unity tool; however, it doesn’t have that many 

options by default and it is less user friendly and more cumbersome to work with 

compared to its Unity counterpart. 

Cloud settings are scattered across the engine: the volumetric cloud object 

contains cloud layer related properties such as cloud height and thickness as well as 

atmosphere curvature; the main directional light contains light related settings such as 

transmittance or shadow extent; and the sky light object contains ambient occlusion 

related properties. This makes it difficult for the end user to adjust the clouds’ look. 
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Figure 19. Unreal volumetric clouds 

 

On the other hand, Unreal provides detailed and fine control for users that want to 

personalize every aspect of the visual quality of the clouds through a cloud material whose 

properties can be accessed through the material instance or changed in the material itself 

using a node based approach. 

Figure 20. Unreal cloud material 
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Methodology 

Documentation Structure 

This thesis documentation follows a combined structure between the sixth and 

seventh editions of APA style4, the thesis director’s recommendations and the university’s 

guidelines and thesis examples; although this is the norm, exceptions will be made since 

clarity of the thesis is prioritized. If a section of the document is hard to understand, the 

format and style will be adapted with the goal of making the thesis more readable and 

accessible to the reader.  

 

Procedure and Tools for Project Monitoring 

Gantt with Agantty 

A Gantt chart has been created using Agantty. This chart provides us with a 

timeline with tasks that we can use to identify if we are ahead or behind schedule and 

adapt the project’s pace and the tasks’ priority and complexity accordingly. A detailed 

explanation of project phases and tasks can be found in the Planning section. 

Figure 21. Gantt project 

 

Kanban with Trello 

To manage Gantt tasks with more granularity we use the Kanban method in a 

Trello board. We create smaller subtasks representing single features for the tool for each 

Gantt task which are managed through this task management process; the development 

                                                                                       

4 American Psychological Association style (https://apastyle.apa.org/) 

https://www.upc.edu/en


Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 31 

 

© Oscar Pérez Martín 2022                 Universitat Politècnica de Catalunya 

process of each task is divided into six different modules which the defined tasks have to 

go through in order to be completed.  

1. Backlog: List of pending tasks. 

2. To Do: List of tasks for the current Gantt task which are not being worked on 

yet but will be in the near future. Tasks are ordered by priority. 

3. Doing: These are the tasks that are currently in progress. 

4. Code Review: These are the tasks which need to be reviewed to check if they 

meet all the requirements needed to be tested. 

5. Testing: Tasks which are currently being checked for bugs or errors. 

6. Done: List of tasks which have already been reviewed and tested and are 

considered complete. 

Tasks status and progress is evaluated and their scope is adjusted accordingly. 

Tasks have color tags which determine its priority: green (low priority), yellow (medium 

priority), orange (high priority), and red (critical, highest priority).   

Figure 22. Kanban project 

 

The Backlog section is used for tasks that will need to be performed in the future 

but should not or cannot be performed now or non-priority bugs that can also be solved 

in the future.  

When a Gantt task needs to be started, it is divided into feature contained Kanban 

tasks which are placed under the To Do list. Tasks from the To Do list are being moved 

to the Doing list following two criteria: 

1. Tasks with higher priority are performed first. 
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2. If the task is not the one with highest priority in the To Do list but a task with 

the highest priority in the To Do or Doing list depends on it, it is performed 

first. 

To not be overwhelmed, the minimum amount of tasks possible will be in the 

Doing list at any given time. 

Once a task is moved into the Doing phase the first thing that happens, if not done 

earlier, is extensive research on the task or the task feature. Once the possible 

implementations are understood or need to be tested to understand them, the task enters 

the Development phase in Unity. In this phase, if the task is complex, a first naïve 

implementation is done to quickly test its feasibility. If a task is determined non-feasible, 

more research or troubleshooting is done to conceive a viable alternative.  

Once a task is deemed feasible a more thought-out implementation is performed. 

The implementation is iterated from a simpler version of the feature to a more complex 

and complete one; when the code implementation is finished and the task has the required 

functionality, the user interface in the custom editor is programmed, and then the task 

goes through a final polish pass. After that it is moved into Code Review. The Testing 

phase is detailed in the Task Validation section below. 

During all the process of doing the task, if it exceeds its planned timeframe or it 

is considered not feasible to be developed in that amount of time, a revaluation of the task 

is performed according to the Risks and Contingency Plans section. 

Version Control Tools with GitHub and GitHub Desktop 

GitHub is being used to store all project files and code versions. New versions of 

the tool will also be uploaded to the GitHub repository during the project development 

using the GitHub Desktop app as commits. Demo application versions will also be 

uploaded to the GitHub Releases section; Builds will try to be made for capability 

demonstration purposes but are not strictly needed during development as the tool is 

intended to have functionality in the Unity editor and can be tested in real-time. At least 

one build will be created before finishing the gold phase and more will try to be made if 

tasks are being completed ahead of schedule. 

The GitHub repository has two distinct branches: 

 Main: Stable and feature-complete versions of the project are uploaded here. 
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 Development: In-progress versions of the project are uploaded here, they are 

not stable and the features in these versions may not be complete. 

 

Evaluation Methods 

Objectives Validation 

There are two types of objectives that we need to differentiate when evaluating. 

Subjective. The result of these objectives cannot be easily quantifiable. They need 

to be evaluated by a consensus between the thesis director and the tool developer. One 

example of an objective of this type can be if the rendering quality of the clouds is realistic 

enough. 

Mesurable. These objectives can be measured and quantified. An example of 

such an objective is if the cloud rendering works in less than 16 milliseconds. To measure 

this we need to take into account the hardware used in the evaluation, in this case the 

reference hardware is detailed in the following table. 

Table 2. Reference hardware 

CPU 
AMD Ryzen 5 5600X 6-Core Processor, 

3701 MHz 

GPU NVIDIA GeForce RTX 2060 

RAM 16,0 GB 

System Windows x64 

 

Task Validation 

Certain criteria must be met in order to consider a task as completed. A task enters 

the validation phase when it is moved from the Code Review to the Testing section on 

the Kanban Trello board. While the task is in this section, special attention is paid to it 

while the tool is running. Only one task can be in the Testing section at a time; if no major 

errors or bugs are found, the task is considered done. Minor bugs are considered a new 

independent task and the main task is still marked as completed. 
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Risks and Contingency Plans 

Risks have been divided into two categories: General Risks and Concrete Risks; 

The former describes the most common risks applicable to any phase or task in the project 

while the latter describes the risks associated with certain tasks which are most likely to 

have problems. Not only the risks are described but also their solutions; Prevention work 

is also described for general risks.  

General Risks 

Bad planning. The task takes more time to be developed than initially planned. 

Prevention. Project has been divided into phases to better acknowledge when 

there is a deviation from the planning with enough time to not affect the whole project. 

There is also a Clean Up task at the end of the planning to account for time deviations.  

Solutions. Review features based on importance and delete or simplify some of 

the less important ones. 

Too much complexity. A specific system or task is too complex, not fully 

understood or there is a lack of ability to correctly implement it. This can lead to trying 

different implementations which can lead to lack of time, in which case solutions for that 

risk apply. 

Prevention. Previous research has been done so the level of complexity is already 

expected. 

Solutions. Do some more research and/or ask the thesis director for advice. 

Solutions for the previous risk also apply here. 

Concrete Risks 

Clouds Lighting (T1.4). High Risk. There are different implementations possible 

and it is a complex topic. Can take a lot of time to get right. It is a critical feature of the 

project. 

Solutions. Solutions are ordered from more to less preferred.  

1. Take time from optimization or clean up tasks. 

2. Being a critical feature it must be present in the project so the feature cannot 

be deleted, but can be simplified if necessary.  
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Noise Generation and Visualization System (T1.2). Medium Risk. The 

generation part of the system is complex and I have no prior experience programing 3D 

noises. Can take a lot of time to get right. 

Solutions. Solutions are ordered from more to less preferred.  

1. Use Unity built-in Perlin Noise to generate Improved Perlin Noise textures 

without the need to code them from scratch, saving time and having to 

program only Worley Noise. 

2. Delete the Generation part of the system. Make users import pregenerated 

textures from external programs manually.  
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Planning 

Phases of Development 

This project development will be divided into three main phases similarly to 

videogames and software tool development. 

Pre-Production 

In this first phase all the research is performed to have a good understanding of 

the systems and features that we want to implement. Additionally, the planning of the 

project and its tasks is carried out. 

Production 

Also referred as development phase; in this phase the tool itself is created 

following an incremental and iterative agile model. The tool starts with basic functionality 

and more is added incrementally with each completed milestone; if necessary, tasks are 

changed and systems can be improved on in future milestones iteratively. 

 The development stage is comprised of four different phases or milestones, each 

of them divided into tasks that follow a Kanban agile methodology detailed in the 

Methodology section. 

Vertical slice. Provides a demonstration of basic and minimum functionality of 

the tool. 

Table 3. Vertical slice initial tasks 

Task 

ID 
Task Start date Due date 

T1.1 
Implement Ray Marching and render simple 

volumes to screen. 
07/02/2022 14/02/2022 

T1.2 
Create a system to generate and display different 

types of noise in real time as tileable textures. 
15/02/2022 22/02/2022 

T1.3 Generate simple cloud shapes from noise textures. 23/02/2022 28/02/2022 

T1.4 Create the lighting system for the clouds. 01/03/2022 07/03/2022 

T1.5 Basic optimization. 08/03/2022 14/03/2022 
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Alpha. The tool is feature-complete at this stage, only missing UI/UX and some 

artistic elements. 

Table 4. Alpha initial tasks 

Task 

ID 
Task Start date Due date 

T2.1 Implement basic cloud types and cloud type map. 15/03/2022 22/03/2022 

T2.2 Make atmosphere have a curvature. 23/03/2022 30/03/2022 

T2.3 Implement a weather system. 31/03/2022 14/04/2022 

T2.4 
Render clouds in front of objects. I.e., Integrate 

clouds into the 3D world. 
15/04/2022 21/04/2022 

T2.5 Post processing. Atmospheric haze and light shafts. 22/04/2022 28/04/2022 

 

Beta. During this stage, the main focus changes from adding features to 

integrating and optimizing the tool. 

Table 5. Beta initial tasks 

Task 

ID 
Task Start date Due date 

T3.1 
More optimization. Make the tool usable for 

games. 
29/04/2022 29/05/2022 

T3.2 
Level of detail for clouds depending on distance 

from the player. 
29/04/2022 05/05/2022 

T3.3 Cloud shadows on terrain. 06/05/2022 20/05/2022 

 

Gold. In this last milestone the tool is finished, cleaned up and published, with the 

demo application also being finished. 

Table 6. Gold initial tasks 

Task 

ID 
Task Start date Due date 

T4.1 Clean up of the systems and code. 30/05/2022 19/06/2022 

T4.2 
Start the publishing procedure for the tool into the 

asset store. 
30/05/2022 19/06/2022 

T4.3 Prepare the demo project to showcase the tool. 30/05/2022 19/06/2022 
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Post-Production 

Last phase of the project; in this phase, which happens once the tool is completed, 

bugs that have not been solved yet are continued to be fixed with the time left until the 

thesis is finished. Conclusions to acknowledge what has and has not work are elaborated. 

 

Initial Cost Analysis 

The project will be developed over the course of five months, with a dedication 

to development of twenty-four hours a week; this is relevant and is taken into account 

when calculating maintenance costs such as water or electricity. This project is not 

intended to make any profit. Costs have been divided into the following categories: 

 Personal and maintenance: Monthly payments calculated from a salary 

estimation. 

 Software licenses: Licenses for the tools used to develop both the project and 

the thesis. 

 Hardware: Physical parts and electronic components needed to research and 

develop the thesis and the tool. 

 Books: Books needed for research purposes. 

 Videogames: Videogames needed for research purposes, which use systems 

related to the thesis. 
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Table 7. Initial cost analysis 

Concept 
Cost (€) 

Month 

Cost (€) 

Total 

Personal and maintenance 1332,55€ 6662,75€ 

Salary 1290,10€ 6450,50€ 

Water 7,15€ 35,75€ 

Food 24,28€ 121,40€ 

Electricity 11,02€ 55,10€ 

Software Tools - 0,00€ 

Agantty - 0,00€ 

Trello - 0,00€ 

GitHub - 0,00€ 

Google Docs - 0,00€ 

GIMP - 0,00€ 

Hardware - 1732.79€ 

Mouse - 19,44€ 

Mouse Pad - 12,75€ 

Keyboard - 22,99€ 

Computer - 1550,15€ 

Screen - 146,90€ 

Books - 141,14€ 

Production Volume Rendering Design and Implementation - 51,23€ 

GPU Pro 7: Advanced Rendering Techniques - 89,91€ 

Videogames - 109,98€ 

Horizon Zero Dawn - 49,99€ 

Read Dead Redemption 2 - 59,99€ 

Total 8646,66€ 

 

Salary makes up a large portion of the costs since the necessary materials are 

minimal and most of the software tools needed have free licenses or free alternatives. 
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SWOT Analysis 

A SWOT5 analysis will be used to assess our project’s position compared with 

other tools and research papers in the field. 

Table 8. SWOT analysis 

SWOT Positive Negative 

Internal 

 

Strengths 

 

Worked with shaders previously, 

some experience in graphics 

programming. 

 

No great monetary cost or 

subscription software is needed for 

this project. 

 

Experienced working with Unity in 

different projects. 

 

 

Weaknesses 

 

Not experienced in extensive 

academic research. 

 

 

First time developing a tool for Unity 

and publishing it as an asset store 

package. 

 

Inexperienced with Ray Marching 

algorithms and volume rendering. 

 

External 

 

Opportunities 

 

Other tools for Unity are far simpler, 

behind a paywall or not available for 

the Built-In Render Pipeline. 

 

A successful tool could be expanded 

and improved into a more complete 

one in the future, learning from the 

project problems and challenges. 

 

Extensive documentation for Unity 

and its Built-In Render Pipeline 

exist. 

 

 

Threats 

 

Some tools for volumetric cloud 

generation already available for 

Unity. 

 

Unity volumetric cloud system 

adapted to the Built-In Render 

Pipeline could make the tool 

obsolete. 

 

Publishing the tool depends on Unity 

Asset Store approval. 

 

 

 

  

                                                                                       

5 The SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is a framework used to evaluate 

a company's competitive position and to develop strategic planning. SWOT analysis assesses internal and 

external factors, as well as current and future potential. 
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Planning Changes and Deviation (15/03/22) 

Few changes have been made to the initial planning since the start of the project. 

One major change has occurred: 

The cloud lighting task (T1.4) has been more complex to develop that initially 

thought. Different lighting methods have been experimented with to get the right look 

and performance for this system causing the task to take longer to complete than expected. 

This was anticipated in the Risks and Contingency Plans section being T1.4 a high risk 

task. This task is also critical; I.e., cannot be removed from the project.  

The first solution for task T1.4 detailed in the Concrete Risks section has been 

followed; Task T1.5, basic optimization, has been removed as it has been assessed that at 

this point in time optimization is not yet needed. Following the solutions in the General 

Risks section, task T3.3, terrain shadows, has also been removed and task T2.5 has been 

simplified by removing light shafts from it. All tasks removed or simplified will be 

considered for future work. Removing or simplifying these tasks allows more time to be 

spent further developing task T1.4 until it is in a desirable state. No other task has been 

moved and task T1.4 will continue to be developed in the timeframe of the affected tasks 

to not further affect the project phases and timeframe.  
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Development 

This section describes the development of the tool in Unity; all topics and systems 

will be explained in depth but in a way that the readers with little or no knowledge in 

programming will be able to have an overview of the development process. 

 

Procedural Noise Generation 

As mentioned in the State Of The Art section, the tool needs some textures to be 

able to generate the shape of the clouds as well as the weather map. To make the user not 

have to worry about creating the different textures necessary for it to function in an 

external program, to streamline the cloud generation process and to allow more variety in 

the shapes, I have opted to create a system that is capable of generating the textures 

needed within the unity editor in real time. This system is also designed to allow both the 

user who interacts with the tool and the developer to customize the textures and visualize 

the results in real time. 

The first thing that needs to be done to start creating the noises is to have a way to 

debug them in the first place. This is done in a very simple fragment shader which, given 

the screen output texture and the texture we want to display, displays the latter in front of 

the former. The display texture can be scaled in the range [0, 1] being one the size of the 

shortest axis of the screen; We do that because the script that controls the shader has to 

work in a dynamic environment with changing screen dimensions as it is designed to 

work in Edit Mode; i.e., in a Unity mode where a script and its methods are executed in 

the editor instead of in the final game. This shader also has the capability of scaling down 

the coordinates of the display texture allowing users to control the amount of tiling of the 

texture that is seen on screen. 

Two different types of procedurally generated noise are needed to create the 

textures that the tool will use and these noises are generated in a compute6 shader to allow 

the generation to be computed fast and decoupled from the main rendering stage. As the 

noises will need to be tiled extensively, the implementations explained here have 

seamless borders and can be put next to themselves without any broken pattern or hard 

                                                                                       

6 A compute shader is a Shader Stage that is used entirely for computing arbitrary information in the GPU. 

While it can do rendering, it is generally used for tasks not directly related to drawing triangles and pixels. 
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transition. The explanation for these implementations focuses on the 2D version of the 

algorithms with details on how to convert them to 3D but both the 2D and 3D versions 

have been implemented for the tool. 

The texture display shader is used during the development process of the noises 

to help debug them better and faster in real time. 

Worley Noise 

Worley noise7, also called cellular noise, is a type of noise based on distance fields; 

i.e., it represents the distance from the current pixel to the closest point in a set of points. 

This noise is often confused with Voronoi diagrams as they use this noise as a base.  

While the implementation seems straightforward (iterate all the points in a loop 

for each pixel and find the nearest one calculating the distance between the point and the 

pixel), it becomes highly inefficient once we have a large set of points to evaluate. This, 

together with the fact that it makes it more difficult to create a seamless tileable noise, is 

the reason another approach is used. The space is divided in a grid pattern instead and 

only one point is placed inside each grid cell, in a pseudorandom location.  

 For each position that needs to be evaluated, the cell which corresponds to that 

position is located, alongside with its adjacent cells. Then its pseudorandom points are 

compared and the one closest to the desired position is selected. The distance between 

that point and the initial position is the generated value for that pixel.  

                                                                                       

7 An in-depth explanation and code implementation of Worley noise can be found in The Book of Shaders 

website, following this link: https://thebookofshaders.com/12/. 

 

Figure 23. Worley cell selection. 
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This approach gives a much more uniform look to the noise because of the cells 

of similar sizes and is easy to convert to a repeatable noise pattern simply by wrapping 

around the adjacent cells’ positions when the position being evaluated is located in an 

edge cell in the texture.  

All pseudorandom points generated for the cells need to be consistent no matter 

what position is being checked inside the cell. That means that for every pixel checked 

inside the cell the same point must be returned. Most of the implementations of the 

algorithm use a pseudorandom function to do this but another approach was used here 

instead, as it allows for more control: the pseudorandom points are generated in the script 

in CPU instead, and passed to the shader as an array of three-dimensional vectors. They 

are calculated once using Unity’s own math library and their location can be controlled 

by a seed number. 

The resulting image resembles a biological cell pattern (Figure 24.a) with bright 

edges, which is not what we want if we are trying to build billowy clouds, so a final step 

is required; the noise value has to be inverted from the [0,1] range to the [1,0] range 

highlighting the round shapes of the structure (Figure 24.b). 

 

The implemented noise is a 2D noise since it is easier to work with, but once it is 

verified that it works, the algorithm has to be converted to 3D so that it can be used in 

cloud modelling. With this noise the change is straightforward, instead of checking 8 

adjacent cells we check 26 as we are in a three-dimensional space. 

The texture display shader has to be modified to support displaying 3D textures; 

a variable with a [0, 1] range has been created to let the user control which slice of the 3D 

texture is displayed as a 2D texture. 

Figure 24. Worley 1 octave 
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Improved Perlin Noise 

Improved Perlin noise is an improved version of the original Perlin noise by Ken 

Perlin. This improved version will be implemented as it gets rid of some directional 

artefacts and it is no more difficult to implement than the original while still being 

coherent noise with smooth changes. 

Like the previous one, in this algorithm the space is divided into a grid of cells of 

equal size. This algorithm is divided into two different stages: 

In the first one a pseudorandom value is generated from a position in space. This 

is done by a hash function that takes as inputs a permutation table and the current cell 

position. The permutation table is generated in the script outside the shader and consists 

of the values between 0 and 255 which are first shuffled. This permutation table is indexed 

using the X component of the position of the cell and the result is added to the Y 

component and is used as a new index of the permutation table. If the noise is 3D, the 

same procedure is done with the Z axis. Note that with this approach after 255 cells the 

noise will repeat due to the limited size of the permutation table. For us this is not a 

problem as the noise that is used doesn’t have more than 100 cells in each axis. A problem 

occurs when implementing this: sometimes the index will overflow the permutation table 

size. Two solutions are proposed to solve this issue: The first one is to duplicate the 

permutation table after the shuffle, ending up with a 512 value table of two repeated 

sections. The second is to simply do the modulo operator of the index by the size of the 

table. The second solution has been chosen because of the memory savings when passing 

the table to the shader; the performance loss caused by the second option is not important 

here since the shader only runs once, not every frame.  

The second part of the algorithm takes the pseudorandom number generated in the 

first part and uses it to index a small table of gradient vectors. In the 2D version of the 

algorithm the following eight 2D vectors have been used: 

(1,1),(-1,1),(1,-1),(-1,-1),(1,0),(-1,0),(0,1),(0,-1) 

In the 3D version of the algorithm Perlin (Perlin, 2002) uses twelve 3D vectors, 

with the constraints that vectors must be skewed away from the coordinate axis and long 

diagonals to remove directional bias in the gradients; the same following vectors have 

been used to generate improved Perlin noise for the tool: 
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(1,1,0),(-1,1,0),(1,-1,0),(-1,-1,0),(1,0,1),(-1,0,1),(1,0,-1),(-1,0,-1),(0,1,1), 

(0,-1,1),(0,1,-1),(0,-1,-1) 

When evaluating a position inside a cell, one gradient vector for each corner must 

be found. This is done by inputting the cell position to the algorithm to find the bottom-

left gradient vector of the cell and the position of the next adjacent cells to find the 

gradients of the other corners. See RGBA color vectors in Figure 25 (Gradient Vectors). 

Another group of vectors is calculated by subtracting the point position from each 

of the corner positions. See brown vectors in Figure 25 (Position Vectors). For each 

corner the dot product between the gradient vector and the position vector of that corner 

is calculated. The resulting number is interpolated with the numbers of the other corners 

of the cell using (a) bilinear interpolation in 2D or (b) trilinear interpolation in 3D. The 

result of that operation is the value of the noise at that point in space; a value between the 

[-1, 1] range. Both the 2D and 3D algorithms have been implemented as they are needed 

for cloud erosion and the weather map. If linear interpolation is used it will result in abrupt 

transitions so a fade function provided in (Perlin, 2002) is used as the interpolation factor 

instead as seen in Figure 26.  

Figure 25. 2D Improved Perlin vectors 

Figure 26. Fade interpolation function 
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The resulting texture after the interpolation can be seen in Figure 27.  

 

Fractal Brownian Motion 

Both Worley and Improved Perlin noises explained and generated in the sections 

prior are correct but lack detail and variety. One way of generating more detailed noises 

procedurally is using an iterative technique called fractal Brownian Motion (fBM from 

now on). 

What fBM does is it adds up different textures with different intensities and 

varying dimensions. Three new variables (persistence, lacunarity and number of octaves) 

determine the look of the fBM noise as we can see in Figure 28: 

 

Figure 28. FBM code example 

Figure 27. Improved Perlin 1 octave 
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 The octaves determine the number of noise layers that need to be generated. 

The higher the number, the greater the detail, but also the greater the 

performance impact. 

 Lacunarity is usually a number greater than one; it multiplies the frequency of 

the noise, making it noisier and more detailed with each octave. 

 Persistence is usually a number less than one; it multiplies the amplitude and 

determines how much each octave affects the overall noise shape. 

For Improved Perlin noise the fBM is implemented exactly as seen in Figure 28 

to let the user customize all of the parameters, but for Worley noise the number of octaves 

has been set to 3 and for each octave the frequency (and thus the lacunarity) can be 

adjusted manually to give more control and achieve a more cloudy shape feel. 

The maximum number of octaves allowed for the user in the tool for Improved 

Perlin is 10 but with more than 5 octaves the difference is negligible and not worth the 

cost as seen in Figure 29. 

Figure 29. Improved Perlin octave comparison 

 

Cloud textures 

Following a similar approach to (Schneider, 2015), we will use two 3D textures 

to erode clouds in the density model: 

The first texture has a default resolution of 128px * 128px but can be changed by 

the user to powers of two. It has four different channels (RGBA) and contains data used 

to create the base shape of the cloud: 

1. R Channel: consists on a Perlin-Worley noise. A texture consisting of a 

customizable number of octaves of Perlin is mixed with a three-octave Worley 

noise. Usually to mix two textures, one would simply be multiplied by the 
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other but we want to erode the borders of the Worley noise with the Perlin 

noise to not have gaps in the denser parts of the texture. To do that a remap 

function is used; the remap function code can be seen in Figure 30. The Worley 

noise is passed as the first input in the function and the Perlin is passed inverted 

as the second one. The third, fourth and fifth inputs are -1,-1, 1 respectively. 

This channel will form the base shape of the clouds. These noises have low 

frequency and the shapes they create are big.  

2. G Channel: Consists on a three-octave medium frequency Worley noise. 

3. B Channel: Consists on a three-octave high frequency Worley noise. 

4. A Channel: Consists on a three-octave higher frequency Worley noise.  

Figure 30. Remap function code 

 

The second texture has a default resolution of 32px * 32px and can also be 

changed by the user. It should have three different channels (RGB) but due to engine 

limitations a four-channel texture has to be used (RGBA) where the alpha channel is 

ignored. It might be used in the future to encode more information. The three channels 

encode data used to create the detail shapes of the clouds: 

1. R Channel: Consists on a three-octave low frequency Worley noise. 

2. G Channel: Consists on a three-octave medium frequency Worley noise. 

3. B Channel: Consists on a three-octave high frequency Worley noise. 

The process used to generate the noises for these textures is modular, each channel 

is generated separately running the shader different times and using a Vector4 mask of 

ones and zeros; the data generated in the shader is written only to the channels with a one 

in the mask. While this is not the most efficient approach, it leads to a more modular and 

reusable code and, since it is not executed every frame, the performance of this shader is 

not a key factor to take into account. 
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Figure 31. Cloud base texture channels 

 

Figure 32. Cloud detail texture channels 

 

Unity Scriptable Objects are used to store data regarding the noise settings. 

Scriptable objects allow both to modify the settings in real time and to save the variables 

as assets in disk to reuse them or swap them if needed. The texture generation script 

contains a list of noise settings Scriptable Objects for their textures and the correct ones 

are displayed in the custom editor of the script allowing them to be modified when their 

texture channel is selected.  

Two types of noise settings exist in the form of Scriptable Objects: 

 WorleySettings. Contains data to generate Worley noise: (a) the noise seed; 

(b) the frequency of the first, second and third octaves of the noise; and (c) the 

persistence value for the fBM. 

 ImprovedPerlinSettings. Contains data to generate Improved Perlin noise: 

(a) the noise seed; (b) the number of octaves of the noise; (c) the persistence 

and lacunarity values for the fBM; (d) the frequency of the initial noise octave. 

For the base and detail textures one WorleySettings Scriptable Object exist for 

each Worley noise channel and both a WorleySettings and an ImprovedPerlinSettings 

Scriptable Object exist for the Perlin-Worley channel. 
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Weather Map Textures 

Initially the weather map texture was created in an external program but to give a 

more integrated experience in Unity and to achieve more consistent results the texture is 

now generated procedurally in a shader. 

The first prototype texture is made of two different channels: a density channel 

(R) consisting of a Perlin-Worley noise and a cloud type channel (G) consisting of a Perlin 

noise. 

This prototype weather map texture has been quickly discarded and updated to a 

better one which allows the placement of three different layers in the same XZ plane 

coordinates. This new weather map texture consist of three channels (RGB) containing 

the following data: 

1. R Channel: encodes cloud layer 1 density. 

2. G Channel: encodes cloud layer 2 density. 

3. B Channel: encodes cloud layer 3 density. 

It also contains a fourth unused channel that might be used for precipitation clouds 

in the future. 

Figure 33. Weather map channels 

 

Weather map textures also use channel masks and a modular generation process 

equal to the one used for the cloud textures. 

 

Cloud Modelling 

Ray March 

To properly model the cloud density and shape, the 3D space has to be sampled. 

This is done using Ray Marching, a technique that shoots a ray for each pixel in the 
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camera matching its perspective in the direction of the camera view and marches through 

the ray evaluating points in the ray direction every certain distance. 

Initial tests have been done with a sphere intersection method, increasing a density 

value when the currently evaluated point in the ray is inside the sphere. This is a very 

simple test but allows to check that the Ray March matches the camera settings and 

perspective. The density value outputted has been used to then linearly interpolate 

between the color assigned to the volume and the scene view putting the sphere in a layer 

in front of what the player sees in the scene. A maximum number of points along the ray 

have been set to be tested so that the ray does not continue to evaluate points to infinity. 

 

After the initial tests, clouds have started to be modelled. The first step is to 

determine the cloud layer extent; two variables determine the minimum and maximum 

cloud height and the cloud density is only sampled when the point currently being 

evaluated is located between these height values.  

To test that the cloud base texture is correctly passed to the shader as a 3D texture, 

it is sampled from the evaluation position when it is inside the cloud layer resulting in 

Figure 35. 

Figure 34. Initial Ray March sphere test 
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Figure 35. Early base cloud texture test 

 

Density Model 

The base cloud noise texture sampling described in the last section has been 

moved into its own GetDensity method which returns the density value for a given vector 

of 3D space coordinates. This is the method responsible for the cloud formations, their 

density and shape. 

Following a similar approach to (Schneider, 2017) and (Häggström, 2018) the 

different input textures described in the procedural noise generation section are combined 

as seen in Figure 36. 

First, all textures (base shape, detail shape and weather map) are sampled at the 

location given and stored into variables. The G, B and A channels of the base shape 

texture containing 3 different frequencies of Worley fBM are combined with a weighted 

sum to form an fBM of different Worley noise frequencies. The sum is executed as 

follows: (G Channel*0.625) + (B Channel*0.5) + (A Channel*0.125); the result is then 

saved in a variable which will be called lowFreqFBM for simplicity.  

The cloud base noise now combines the main shape stored in the R channel of the 

first texture with this lowFreqFBM value. This could be done by multiplying them but 

we want to carve the noise into the base shape; following the same procedure as when 

Perlin-Worley noise was generated in the Procedural Noise Generation section, the remap 

function will be used.  
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The inputs for the remap function are the following: (a) base shape noise R 

channel; (b) negative inverted lowFreqFBM value, simplified to lowFreqFBM - 1; (c) 1; 

(d) 0; (e) 1. What this does is to take the base shape noise R channel value from the range 

[lowFreqFBM - 1, 1] to the range [0, 1], carving into it.  

Figure 36. Density method code 

 

The result is stored in a variable called cloudNoiseBase which outputs a 

homogeneous layer of cloud noise, now with more detail, but lacking the large clumps of 

dense noise that form the cloud shapes and the large voids where no clouds are present. 

To solve this the weather map texture density values are used. Clouds will form where 

more density is present in the weather map and no clouds will appear if the weather map 

shows no density. Another remap function is used to erode the weather map cloud 

formations with the billowy shapes of the base shape texture that the Perlin-Worley noise 

provided. The first input corresponds to the cloudNoiseBase value and the second input 

corresponds to the inverted weather map value times the coverage factor. The 

cloudNoiseBase value has first been multiplied by a shape altering method that given the 

height percent in the cloud layer returns a multiplier of the density at that height.  

The ShapeAltering method contains two remap functions multiplied together, 

each of them generate a gradient. The former generates a gradient from black to white as 

a function of height and the latter a gradient from white to black. When multiplied 
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together they form a gradient which starts with no density at the bottom, reaches full 

density somewhere in the middle of the cloud layer and fades to zero density again at the 

top, generating what would be a vertical slice of the cloud shape density. 

The result after eroding the cloudNoiseBase value times the ShapeAltering 

method by the weather map is a low resolution cloud shape that resembles real clouds but 

lacks some detail formations. This is fixed by using the sampled value of the detail shape 

texture to add more detail to the cloud. 

Before adding the detail, the cloud shape is multiplied by a density altering 

method. This method generates a similar gradient to the one generated by the 

ShapeAltering method, the difference is that the latter defines the shape of a certain type 

of cloud and the former softens the top and bottom boundaries of the entire cloud layer to 

not have hard transitions. 

To have more billowy details towards the top and wispier details towards the 

bottom, the detail value is interpolated by its negative version as a function of the height. 

This is then remapped into the main shape to carve out the details and the result is the 

final density value for a point in the cloud. 

The key factors of the model are the following: 

 Remap functions are used instead of multiplying values when we want to 

merge different textures to erode each other instead keeping the general shapes 

intact. 

 Density inside the cloud changes with height depending on how close the 

evaluated point is from the cloud layer boundaries (DensityAltering method) 

and the type of cloud that is being generated (ShapeAltering method). 

 Density of a vertical slice of cloud material is influenced by the weather map. 

To sum up the model, the steps that need to be followed to create the cloud shape 

are the following: 

1. Create billowy shapes eroding the base shape texture channel R with the other 

channels in the texture. 

2. Modify this billowy shapes density as a function of the height with the 

ShapeAltering method. 
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3. Create the main cloud shape eroding the weather map, which is a vertically 

extruded version of the 2D weather map, by the billowy shapes. 

4. Soften the cloud layer boundaries multiplying the main cloud shape by the 

DensityAltering method result. 

5. Erode the main cloud shape by the detail texture, interpolated to cause wispy 

details at the bottom and billowy shapes at the top. 

The clouds generated this way are very basic; more complex shapes are desired to 

make the tool more complete. This is the reason why the shape altering method has been 

modified to allow for more complex gradients. Instead of generating the gradients from 

two remap functions they are sampled from a curve defined by the user which represents 

a density value for each height percentage in the cloud layer. The curve is sampled into 

an array of values in the CPU when the curve is modified, and then passed into the shader 

where a density value from the array is chosen depending on the height percentage of the 

evaluated position in the cloud layer. More realistic shapes can be achieved with this 

method as seen in Figure 37: 

 

Figure 37. Cloud generated with complex shape altering gradient  

Figure 38. Complex shape altering gradient 
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Weather System 

The weather system is a group of various features integrated inside the density 

model which makes the clouds feel more dynamic and interesting. 

Wind and Skew 

The first thing that has been implemented for this system is wind. Wind is simply 

an offset in the sample location of the base, detail and weather map textures. The shader 

receives a wind direction and the current game time and displaces the sample location 

accordingly. In practice, this makes the cloud noises and weather map scroll and move.  

A multiplier for each texture sample has been added to let the user adjust how 

much the wind will affect each texture scroll. Furthermore, in some games the developers 

want the cloudscape to be in a certain way, they do not want the clouds to move but they 

still want the dynamism of moving clouds, so an option has been implemented for the 

wind to not affect the weather map. This way the player can perceive some movement in 

the clouds due to the different noises moving but the overall shape and location of the 

clouds in the sky does not change.  

Skew has also been added to the clouds after the wind. This parameter distorts the 

overall shape of the clouds in the wind direction as if the wind was displacing them. Skew, 

like wind, woks by displacing the sample position of a texture, but it only displaces the 

weather map texture and the amount displaced increases with height. 

Cloud Layers 

To make the cloudscapes look more dramatic, a circular gradient like the one 

proposed in (Schneider, 2015) has been implemented and can be toggled on or off by the 

user. This gradient increments the presence of big clouds towards the horizon, making 

them more interesting. The distance from the camera at which this effect starts and the 

distance at which it maxes out can be controlled by the user of the tool. 

Initially the weather system only supported one cloud layer with one cloud type 

which made the cloudscapes look very uninteresting and not realistic enough, as only one 

type of cloud could be displayed at once. That is why the system has been changed to 

support three different cloud types at the same time. The cloud type of a certain location 

on the weather map is determined by its green channel; A value of 0 means cloud type 

one, a value of 0.5 means cloud type two and a value of 1 means cloud type three. Any 
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value between zero and one linearly interpolates the ShapeAltering method explained in 

the density model for the two closest types of clouds. Although this new approach allows 

for more variety in the cloud formations, it still lacks realism. 

Another solution has been proposed to solve this problem. Instead of encoding the 

cloud type in a weather map channel, three channels are used, one for each cloud type as 

detailed in the Procedural Noise Generation section. This allows for different cloud types, 

one on top of the other, effectively separating the cloud in three layers with independently 

customizable clouds for each layer. In the density model this is accomplished by 

performing all the steps for each cloud layer until the base shape for the clouds is created; 

then, the value with more density of the three layers is the one eroded by the detail noise. 

This final 3 layer solution also makes it easier for the circular gradient towards the 

horizon to be implemented as it only has to affect the third channel value of the weather 

map texture.  

Presets and Transitions 

For the tool to be used quickly and easily with good results, some presets for 

different weathers have been created. These include the following weather presets: sparse, 

cloudy, stormy and overcast. When a preset is selected, a weather map for the preset is 

generated with predefined settings in code and passed to the Ray March shader. To not 

make abrupt changes in the cloudscape, the weather map also manages transitions 

between presets. When a new preset is selected the weather system starts linearly 

interpolating both the old and the new weather maps for a specified amount of time. 

A problem identified with this approach is that if the user decides to change the 

preset when the weather system is already in the middle of a transition, the system will 

automatically finish the transition and an abrupt change will happen. There are three 

possible solutions to this problem: 

1. Do not let the user change the preset when the system is in the middle of a 

transition. This solution does not involve a lot of work to be implemented but 

makes the transition instruction to be discarded and lost.  

2. Queue the change and start the new transition once the last one finishes. This 

is a good solution but involves managing a queue and if a transition is queued 

it might happen later than expected by the user. 
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3. Bake the state of the transition into a texture at the time the new transition 

order is commanded and interpolate the newly generated weather map with 

this baked texture as the old weather map. This solution only involves a little 

bit of work and makes the transitions unnoticeable; this is also the solution 

chosen to be implemented. 

To bake the texture a simple compute shader is created, which takes two textures 

and an interpolation value and generates the result of the linear interpolation. 

 

Cloud Lighting 

The cloud lighting model defines how light is propagated through the cloud 

medium. While both multi-scattering and single scattering models exist, the former is not 

suitable for real time applications, so a single scattering approach has been adopted. With 

a single scattering model, light is calculated for every point evaluated along the Ray 

March, casting a secondary ray towards the light source. 

As described in the State Of The Art section the lighting in clouds is regulated by 

three phenomena which make the light exiting out of participating media be different of 

the light that has gone in: 

 Absorption: the photons are absorbed by the medium matter, decreasing the 

light that reaches the camera. 

 In-scattering: photons from all directions can change direction and scatter to 

the current light path, increasing the light that reaches the camera. 

 Out-Scattering: photons that are traveling towards the camera are scattered 

away, decreasing the light that reaches the camera. 

There is a fourth phenomenon which makes the media emit light when the 

temperature is really high. This effect will be ignored as we are working with clouds in a 

relatively cold environment. 

The goal of the lightning model is to simulate those phenomena as accurately as 

possible. Two methods are going to be used to simulate absorption and scattering: 

The Beer-Lambert Law is an extinction model (I.e., is concerned with how light 

energy attenuates over depth) that simulates light being absorbed when travelling through 
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a medium; a simplified version is used which takes as inputs the density accumulated in 

a certain distance and a term used to balance the solution. This is sometimes referred as 

the transmittance function: T = e-d*t where T is transmittance, d is density and t is the 

balancing term. 

A phase function describes the probability distribution of light direction. Given an 

angle between the incoming light ray and the scattered light direction, the phase function 

tells how much light scatters towards this direction. The phase function is responsible for 

simulating both in-scatter and out-scatter events. The phase function of cloud 

participating media is very hard to model so the same approximation as in (Schneider, 

2015) is used. The approximation used is the Henyey-Greenstein model, a phase function 

which can model directional scattering. This function has a problem: it is heavily biased 

towards one direction so when looking away from that bearing the clouds can appear 

nearly black as all the light is scattering towards the other direction. To solve this the 

approach presented in (Hillaire, 2016) is followed, which uses a dual-lobe phase function 

consisting of two Henyey-Greenstein functions blended together with a weight.  

With this dual-lobe function both forward and backward scattering can be 

approximated.    

 

In the images, Figure 40 uses a g factor of 0.4 and Figure 39 uses a g factor of 0.4 for the 

first lobe and 0.5 for the second lobe with a blend factor of 0.2. 

The first approach to lighting the clouds is a very naïve one; the initial system derives 

from early Ray March testing using density as a blend factor between a color and the 

background. That has become obsolete when lighting functions have started to be tested 

Figure 40. Henyey-Greenstein phase function Figure 39. Dual-lobe phase function 

https://www.upc.edu/en


Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 61 

 

© Oscar Pérez Martín 2022                 Universitat Politècnica de Catalunya 

and have not worked properly; a switch to an extinction model where work is only done 

to reduce the amount of light passing through the medium has been made. 

As the cloud lighting system is very complex, lots of tests were made to try and 

define a realistic look for the clouds. That caused the task to take longer than expected 

and the appropriate actions detailed in the Planning section were taken in consequence. 

Some of the tests involve: 

 Three different phase function implementations: (a) a simple Henyey-

Greenstein function that only simulated forward scattering; (b) a Henyey-

Greenstein function mixed with a secondary term that added more intensity 

around the sun for more dramatic sunsets; (c) the dual-lobe phase function 

detailed earlier. 

 Three attenuation functions: (a) the simple Beer-Lambert Law simplification; 

(b) a Beer-Powder function used in (Schneider, 2015) to approximate the 

cloud dark edges  when light scatters out of the cloud; (c) The attenuation 

function detailed in (Häggström, 2018), which uses the Beer-Lambert Law but 

with some light clamping.  

 Additional non-physical alterations described in (Häggström, 2018) to (a) alter 

the dark parts of the clouds to appear brighter and (b) to approximate dark 

edges of the clouds using an out-scattering ambient function. 

After the tests a lighting model mixing both the (Schneider, 2016) and 

(Häggström, 2018) approaches has been created. This model outputs the color of the cloud 

and the density and still mixes the background with the cloud color using this density. 

The light energy is calculated for every point in the Ray March process and multiplied by 

the transmittance result of the density at the current point times the length of the Ray 

March step.  

To calculate the light energy, a secondary ray from the point currently being 

evaluated is thrown towards the sun direction and marches taking a few samples and 

accumulating the density values encountered. Transmittance is then calculated for this 

density along the light ray to account for absorption; this lets the clouds self-shadow. The 

result is then multiplied by an in/out-scattering method that uses a dual-lobe phase 

function mixed with a secondary term as described in the tests earlier which takes the 

angle between the light ray and the view ray as an input; this accounts for the silver lining 
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effect. The out-scattering ambient function from (Häggström, 2018) is used to 

approximate the cloud dark edges by multiplying it in the light energy calculation. Finally 

light energy is multiplied by the density and the step length, giving a more consistent 

result. The overall density is accumulated at each step and outputted to be used as an 

interpolation factor between the cloud color and the background color. 

Figure 41. Light scattering initial approximation code 

While giving good visual results, two major problems have been encountered after 

implementing this approach which make it not ideal: 

 Using the density as a mixing color factor with the background is not 

physically based and causes problems when the value exceeds 1, having to be 

clamped manually. 

 Lots of Ray March samples are needed for the model to converge into a 

solution, usually more than 500, which decreases performance by a lot. 

A complete rework of the lighting model has been done to solve those issues. The 

new integration model is energy conserving and needs an order of magnitude less of 

samples to converge; with less than 50 samples the results are accurate. An analytical 

integration is used to calculate the scattered light over a range described in (Hillaire, 

2016). 
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The integration is defined as seen in Figure 42, where S represents the scattered 

light, σt represents the extinction coefficient, D is the integration depth and e is an 

exponential function. The exponential function is the Beer-Lambert Law simplification, 

the transmittance. 

 

When σt = 0 the result of the equation is undefined, so σt needs to be clamped to a small 

value. The extinction coefficient σt is calculated from the sum of two user tweakable 

values: the absorption coefficient σa and the scattering coefficient σs, being σt = σa + σs. 

Figure 43. Light scattering integration code 

 

In the code example seen in Figure 43, S is represented by the luminance variable. 

The luminance here takes into account the light source color and intensity as the l variable, 

the transmittance in the secondary light ray as the shadow variable and the double-lobe 

phase function described earlier. Instead of outputting the density, the background color 

is multiplied by the transmittance and then the luminance which arrives to the camera is 

added to the result. There are, however, issues that have not been solved yet: 

 No ambient light is taken into account when calculating light scattering. 

 The dark edge effect of clouds is not simulated. 

Figure 42. Light scattering integration 
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Multiple Scattering Approximation 

A multiple scattering approximation has been used to better diffuse the lighting 

inside of the clouds as proposed in (Wrenninge, Kulla, & Lundqvist, 2013). It uses a 

summation over several scales to artificially lower the extinction coefficient σt, the phase 

function g factor and the scattering coefficient σs along the light ray, allowing more light 

to reach the sample point. 

Figure 44. Multiple scattering approximation total light contribution 

 

Figure 45. Multiple scattering approximation octave light contribution 

 

In Figure 44, N is the number of octaves. In Figure 45, a is the attenuation, b is the 

contribution, and c is the eccentricity attenuation. N = 4 is a good value for the tool 

although it can be changed by the user in the inspector. a, b and c are set to 0.3, 0.75 and 

0.5 respectively and cannot be modified through the inspector. 

Figure 46. Multiple scattering approximation octaves 

 

Day / Night Cycle 

To approximate the ambient light interaction between the skybox and the clouds, 

the following method has been implemented: 

The ambient light directly above the player and the ambient light towards the sun 

have been retrieved from the ambient spherical harmonics probe. With a method to 

retrieve the luminosity from a color (0.299R + 0.587G + 0.114B), the luminosity value 

of both ambient colors is calculated and the maximum of the two is saved. This value 
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then multiplies the sun color, making it black when the ambient color is dark, at night. 

The dot product between the up direction and the sun direction is used to determine the 

sun inclination and increase the ambient color contribution towards the horizon, creating 

more epic dawns and dusks. On the shader side, the ambient color is remapped to the 

cloud height, being brighter the further up the evaluated point is in the cloud layer. 

 

Scene Integration 

In this section some features that aim to make the cloudscapes to be better 

integrated into the Unity 3D world are described. 

Object Occlusion 

Clouds need to interact with objects around them, being able to both occlude 

geometry, and be occluded by it at the same time, otherwise cloudscapes will be rendered 

in front of everything else. 

Unity already renders a depth texture for each frame so it can be retrieved on the 

shader to compute occlusion. There are some problems that need to be solved when 

working with a Unity depth texture, however; the depth values in the texture are not linear 

but we want linear depth to calculate distances reliably. Fortunately, Unity has a built-in 

method in HLSL which converts depth to normalized linear values ranging from 0 to 1. 

These values can then be converted to meters using the far plane distance of the camera 

and passed to the Ray Marching method which will stop rendering clouds if they exceed 

the calculated distance. 

A side effect of this feature is an increase in performance when the sky is blocked 

by objects as clouds do not need to be calculated. 

Banding Reduction 

One artefact which decreases the realism of the clouds is banding. This 

phenomenon is caused by the step size between the samples in the Ray March; as all the 

rays start at the same point and advance the same distance every frame, slices of the clouds 

are created at regular depths from the camera causing hard serrated edges to appear. To 

diminish the effects of banding, a simple solution has been adopted: make the rays start 

with slightly different offsets. The offset distance ranges from zero to one step.  
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Instead of using random values for each ray, a texture with blue noise is sampled 

to retrieve these offsets. The advantage of blue noise is that its values are evenly 

distributed; viewed from afar it appears as a featureless grey color texture. 

Figure 47. Blue Noise comparison 

 

Figure 47. (a) Some clouds with banding without the blue noise. (b) Blue noise 

active, no banding is perceived. 

Atmosphere 

In this section, atmosphere is defined as the region between the lower and upper 

boundaries of the cloud layer; I.e., the region where clouds can form. 

In the initial naïve implementation of the atmosphere, the region is defined by two 

planes or distances from the ground plane. The purpose of this implementation is to have 

an early prototype to allow for quick tests of the clouds. Therefore, no raycast against the 

planes is performed to find the starting point and optimize samples, the Ray March 

algorithm only tests if its Y coordinate is between those distances and processes clouds 

accordingly.  

This implementation has two drawbacks: 

 Some computational power is used in checking points were there are no 

clouds. 

 The clouds are parallel to the horizon, there is a gap between the lower bound 

of the cloud layer and the horizon. This is unrealistic as in real life the 

atmosphere is curved and clouds disappear behind the horizon. 

To solve these problems a curved atmosphere has been implemented. The 

atmosphere lower and upper bounds are defined by two concentric spheres. A sphere-ray 
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intersection function is created, which given a ray returns the points at which the ray 

intersects the sphere. 

A method has been created which takes the camera position as an input and returns 

a ray origin from where the Ray March starts and a maximum length for the ray. This 

method has three different behaviours depending on the camera position: 

Below the atmosphere. If the camera is below the atmosphere, the method detects 

where the ray casted from the camera intersects the interior sphere in front of the camera 

and sets that as the starting position for the Ray March. It also tests the collision with the 

outer sphere to detect where it has to stop and returns the length between the start and end 

positions. 

In the atmosphere. The method considers the camera position as the ray origin 

and the ray length is computed from the first positive intersection between any of the two 

concentric spheres. 

Above the atmosphere. When the camera is above the atmosphere, the method 

first determines if there is an intersection with the outer sphere; if there is, it checks 

whether the ray intersects first with the inner sphere or a second time with the outer sphere 

and uses this intersection to calculate the ray length. 

An issue has been encountered after implementing this method: when 

transitioning from being below the atmosphere to inside atmosphere, some clouds 

towards the horizon disappear. This is due to the ray stopping at the inner sphere 

intersection. 

A solution has been implemented to fix this popping behaviour: when inside the 

atmosphere, the algorithm only checks for intersections with the outer sphere. This 

solution comes at the expense of larger Ray March steps and less optimized sample points 

when looking below the horizon as the ray travels to the other side of the atmosphere. It 

also renders all the clouds of the atmosphere, including the ones at the other side of the 

globe, which is computationally expensive. To minimize the drawbacks, a third sphere 

has been created simulating the ground of the planet; when a ray intersects this ground 

plane, it stops. 
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Custom Editor 

Custom unity editors have been created for the scripts in the tool. This has been 

done mainly for two reasons: 

1. A complex user interaction with the tool settings. There are lots of settings 

that users can customize in the tool, but they might feel overwhelmed if all of 

them are displayed at the same time. A custom editor helps by only showing 

the settings needed depending on the context. 

2. Due to some scripts needing to be executed in the scene camera, methods that 

are called regularly can sometimes be called by that virtual camera, 

overwriting data and causing errors. With custom editors a workaround can be 

followed as the methods can be called from the editors themselves when a 

variable changes. 

 

Optimization 

Since the tool uses mostly procedural content, RAM usage is not an issue and does 

not need to be optimized. Instead, the focus is on performance optimizations and the 

metric used to assess performance is the time in milliseconds (ms from now on) it takes 

to render a frame or its inverse, frames per second (fps from now on). The goal is to render 

each frame in 16ms or less on the target hardware at full screen (1920px * 1080px). 

The different optimizations have been divided in two different categories 

depending on what their target is: Computing Power Related and Memory Related. These 

categories are detailed below.  

Evaluation Tools 

Some tools have been used when trying to evaluate performance for the clouds, 

both external and Unity’s own internal ones. These are the tools that have been utilized: 

 PIX: An external tool for performance tuning and debugging for DirectX 12 

games on Windows. 

 RenderDoc: A graphics debugger tool that allows for single-frame capture 

and inspection of applications in a variety of platforms and graphics 

languages. It is available as a standalone application and is also integrated in 

Unity for easier debugging. 
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 Unity’s frame debugger: An internal tool in Unity that outputs performance 

metrics for the overall frame and the functions that have been called in each 

of them. It does that for the last frames recorded in Unity’s own editor. 

Despite being useful in some specific cases in terms of finding errors, they are 

very cumbersome to use for fast iteration. The internal ones only work in the editor and 

Unity’s own performance impact pollutes the metrics, and the external ones have to 

launch the standalone application that wants to be tested, collect the metrics, save them 

externally and the user still has to search for the important performance indicators on the 

data collected, which makes it very time consuming. 

For these reasons a benchmark system has been created as a script in the tool. This 

system is part of the demonstration application and works both inside the Unity editor 

when play mode is active and in the standalone application. It only collects the data 

needed for the tool, it evaluates the performance at different altitudes in the sky in each 

of the weather presets available and outputs the information directly to the screen. This 

data can also be saved in a .csv file and opened with Excel or similar programs. All the 

metrics shown in the optimization section have been collected with the benchmark 

system. 

Figure 48. Benchmark system graphic output 

 

Computing Power Related 

Optimizations explained here focus on reducing the time it takes for the shader to 

execute its operations, which is directly related to the number of operations needed to be 
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performed and the time cost of each type of operation. E.g., the GPU takes longer to 

compute a square root function than a simple multiplication of values. 

Dynamic Steps with Density. Sampling textures on points along a ray is costly 

in terms of performance so we want to reduce the number of samples taken without a 

noticeable impact on the visual quality of the render. We can take advantage of the 

method that is used to get the density of the clouds at any point in space. As explained in 

the Cloud Modelling section, what this method does is to carve a base texture with other 

textures to get the final shape of the clouds so the shape is always contained within the 

base texture boundaries. This gives us the opportunity to divide the sampling method into 

two: the first is the detailed one, the one that has been used until this point, which is 

expensive and samples three textures; the second one is the cheap one, only sampling the 

base texture to know if the sample point is near a cloud.  

As proposed in (Schneider, 2015), instead of using a constant step length during 

the Ray March process, the shader now uses a two-level approach; Points are sampled at 

a greater length with the cheap density method and once the density sampled is non-zero 

the shader is potentially sampling a point inside a cloud. It then goes a step back and starts 

sampling with the detailed density method at closer intervals as it did before the 

optimization. When a certain number of points in succession encounter no density in the 

detailed mode, the shader switches back to cheap samples and long steps. This is 

illustrated in Figure 49. 

Figure 49. Dynamic Ray March steps with density (Schneider, 2015) 
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Dynamic Steps Over Distance. Since the nearest clouds are occupying most of 

the screen, they need a great amount of detail, whereas far away clouds with a span of 

only 10 pixels do not as it won’t be visible. With the constant step over distance approach 

that was first implemented, the detail density did not change wasting samples on far away 

clouds and rendering them with the same detail as the nearest ones. With this optimization 

it is proposed to, after a certain amount of distance from the camera has been reached, 

switch from constant samples to dynamic ones, increasing the distance between samples 

the further away they are from the camera. This reduces the amount of samples needed to 

be evaluated for each ray and increases performance. The implementation used in the tool 

linearly interpolates between a minimum and a maximum step length given a value 

between zero and one. This value is calculated as the percent that is the sampled distance 

from the maximum possible length a ray can be in the spherical atmosphere squared. 

LODs Over Distance. A very straightforward optimization already present in 

meshes for most of the commercially available engines and that is also applicable in the 

tool’s clouds. It consists on sampling a mipmap 8 depending on distance. For the tool it 

required to manually generate mipmaps for each of the textures passed to the shader and 

manually set the LOD level based on the sample distance from the camera as engines only 

do this automatically for geometry.   

Minor Shader Optimizations. The cloud rendering shader has been optimized 

removing certain elements and behaviours that decreased the performance: 

 Dynamic Branching: That is, if or if-else statements with conditions that 

change at runtime and cause the shader to break parallelism by forcing the 

GPU to perform different calculations at the same time. 

 Duplicated Operations: redundant operations that were calculated for every 

pixel and only needed to be calculated once have been moved out of the shader 

and passed as uniform variables instead, reducing the number of operations. 

Operations that were calculated more than once per pixel have also been 

moved to only be computed once and passed as variables on the methods. 

                                                                                       

8 A collection of bitmap images that accompany a texture to increase rendering speed and reduce rendering 

artefacts. Each bitmap image in the set is a scaled-down version of the main texture. 
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These minor optimizations has required most parts of the shader code to be 

refactored to some degree but has increased performance in return.  

Memory Related 

Optimizations explained here focus on reducing VRAM usage on the GPU and 

making the size of variables in the shaders smaller so they take up less space and are 

easier and faster for the GPU to fetch. 

Reduced Texture Bit Depth. The original RGBA textures stored 16 bits per 

channel, with each channel capable of holding one of 65,536 distinct values. The texture 

bit depth has been reduced to 8 bits, or 256 values, per channel with no significant visual 

change to the shape of the clouds. This makes the textures take less space and increases 

performance. 

Blue Noise as Single Channel. Blue noise is a black and white texture and prior 

to the optimization phase it was encoded as a normal RGBA texture taking 4 channels 

worth of space. That has been changed and now all the blue noise values are encoded in 

a single red channel of a texture. 

Base Noise Texture Size Reduced. The default size of the 3D base noise texture 

that forms the base shape of the clouds has been changed to be 128px * 128px * 128px 

instead of 256px * 256px * 256px with no noticeable visual changes but a performance 

increase. Users can still customize the size of this texture as desired. 

Overview 

Before any optimization, the cloud rendering shader performed at 93ms per frame 

on average, peaking at 131ms in certain cases on the target hardware. These values made 

it unusable for real time applications. After the optimization process, the average time it 

takes for a frame to render is 11ms with values as low as 4ms with some weather presets. 

This result represents a nearly tenfold increase in performance and makes it usable for 

videogames running at 60 fps (16ms). The table below details the performance increase 

with the different optimizations explained in this section applied: 
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Table 9. Optimizations performance 

Optimization 

Average ms 

(of all weather 

presets) 

No optimization 93 ms 

Reduced Texture Bit Depth + Blue Noise as Single Channel + 

Base Noise Texture Size Reduced 
61 ms 

Dynamic Steps with Density 35 ms 

Dynamic Steps Over Distance + LODs Over Distance 19 ms 

Minor Shader Optimizations 11 ms 
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Conclusions & Future Work 

Finally, after months of development, a usable tool has been created, allowing 

users to author their own cloudscapes. All of the general objectives proposed in the Goals 

section have been accomplished: 

Create a Tool. A free to download and use tool for Unity has been created, and 

its development has been documented in this thesis. Most of the tool’s options can be 

accessed from Unity’s inspector window, making it more accessible to people familiar 

with the engine but unfamiliar with code.  

Develop a Project. The project has been completed, ending with a finished 

product that can be used by the general public; its planning, research and development 

are documented in this thesis. 

Contribute Knowledge. Knowledge is being provided to those interested in 

developing a similar project or systems in two ways: through this thesis, with explanations 

of the tool and its systems and how they work, and through the tool itself, as the code is 

available both in GitHub and in the scripts contained in the tool. 

The level of accomplishment of the specific objectives mentioned in the Goals 

section is discussed below:  

Texture Generation. A system capable of generating seamless 3D textures has 

been developed to create the clouds. It has also been expanded to be able to make 2D 

weather maps procedurally. Users can tweak the generation of their 3D textures to 

customize the shape of their clouds. 

Cloud Generation and Rendering. The Density and Lighting models are the 

most critical systems in the tool, as they define the look and feel of the entire cloudscape. 

A lot of time, effort and polish has gone into these systems to achieve the realistic look 

of the clouds in the tool. A high level of accomplishment has been reached with these 

systems; however, with the final light integration used to render the clouds it has not been 

possible to simulate the dark edge effect when looking away from the sun. 

Customize the Clouds. The tool offers a high level of customization with two 

modes: the simple mode allows the user to choose from 4 premade weather presets and 

tweak them; the advanced mode has more options and lets the user customize everything 

about the look of the clouds. 
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Create and publish the tool. The tool development has been completed, it has 

been submitted to the Unity Asset Store as a package and it is currently in the process of 

being published. 

Document Performance. The performance and efficiency of different methods 

and systems in the tool has been discussed and documented in the Development section 

of this thesis. To help document performance better, a benchmarking system has been 

developed with the tool, recording various performance statistics while executing the 

demonstration application and also working in Unity’s play mode. Other tools to 

document performance have also been used to complement this system and are also 

mentioned in the Optimization subsection in the Development section. 

Create a Demo. A small demonstration application has been created, with four 

versions of the application available in the Releases section of the project’s GitHub 

repository. It allows the user to freely move around the world and customize the most 

important parameters of the tool in real time. It also shows its performance in real time 

and allows the user to further analyse it through its benchmark system. 

In summary, all major objectives set have been accomplished, successfully 

developing a tool to create clouds with a very high level of customization. However, there 

have been some challenges during the development phase: some small features have been 

left out in favour of completing critical features with the high quality needed to 

accomplish the goals that had been set. This has been detailed in the Planning Changes 

and Deviation subsection in the Planning section. The tool also required a lot of 

optimization to be capable of performing the rendering in less than 16ms and be 

considered real time in the target hardware. 

The development of the project shows that with current commercially available 

hardware it is possible for new generation games to use volumetric cloudscapes with a 

high level of realism. However, only a few games nowadays use this technique and with 

this tool the aim is to spread the knowledge and technology and give developers in the 

industry more options to work with. 

The objective in the near future is to, once it gets approved and thus published to 

Unity’s Asset Store, keep working on the tool, improving it and adding new features, as 

it can be very useful to Unity users. Developing a version of the tool for Unity’s URP and 
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HDRP render pipelines would allow the project to reach more users and it is also being 

contemplated. 

 

 

  

https://www.upc.edu/en


Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 77 

 

© Oscar Pérez Martín 2022                 Universitat Politècnica de Catalunya 

References 

Bauer, F. (2019). Creating the Atmospheric World of Red Dead Redemption 2: A 

Complete and Integrated Solution. Retrieved from 

https://advances.realtimerendering.com/s2019/slides_public_release.pptx 

Fong, J., Wrenninge, M., Kulla, C., & Habel, R. (2017). Production Volume Rendering 

SIGGRAPH 2017 Course. Retrieved from 

https://graphics.pixar.com/library/ProductionVolumeRendering/paper.pdf 

Häggström, F. (2018). Real-time rendering of volumetric clouds. Retrieved from 

https://www.diva-portal.org/smash/get/diva2:1223894/FULLTEXT01.pdf 

Hillaire, S. (2016). Physically Based Sky, Atmosphere and Cloud Rendering in 

Frostbite. Retrieved from 

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-

frostbite-sky-clouds-new.pdf 

Perlin, K. (2002). Improving Noise. In Proceedings of the 29th annual conference on 

Computer graphics and interactive techniques (pp. 681-682). 

Schneider, A. (2015). The Real-time Volumetric Cloudscapes of Horizon: Zero Dawn. 

Retrieved from http://advances.realtimerendering.com/s2015/The%20Real-

time%20Volumetric%20Cloudscapes%20of%20Horizon%20-

%20Zero%20Dawn%20-%20ARTR.pdf 

Schneider, A. (2016). Real-Time Volumetric Cloudscapes. In W. Engel, GPU Pro 7: 

Advanced Rendering Techniques (pp. 97-127). CRC Press. 

Schneider, A. (2017). Nubis: Authoring Real-Time Volumetric Cloudscapes with the 

Decima Engine. Retrieved from 

http://advances.realtimerendering.com/s2017/Nubis%20-

%20Authoring%20Realtime%20Volumetric%20Cloudscapes%20with%20the%

20Decima%20Engine%20-%20Final%20.pdf 

Wrenninge, M., Kulla, C., & Lundqvist, V. (2013). Oz: The Great and Volumetric. 

SIGGRAPH '13: ACM SIGGRAPH 2013 Talks. Anaheim. 

 

https://www.upc.edu/en

	Abstract
	Acknowledgements
	Keywords
	Links
	Table of Contents
	Index of Tables
	Index of Figures
	Glossary
	Abbreviations
	Acronyms
	Vocabulary


	Preface
	Motivation
	The Problem
	Goals
	Scope of the Project

	State of the Art
	Cloud Representations
	Skybox
	Billboard
	Polygon
	Voxel
	Procedurally Generated Clouds

	Volumetric Rendering
	Volumetric Cloud Tools Available
	Unity Engine
	Unity Packages
	Unreal Engine


	Methodology
	Documentation Structure
	Procedure and Tools for Project Monitoring
	Gantt with Agantty
	Kanban with Trello
	Version Control Tools with GitHub and GitHub Desktop

	Evaluation Methods
	Objectives Validation
	Task Validation

	Risks and Contingency Plans
	General Risks
	Concrete Risks


	Planning
	Phases of Development
	Pre-Production
	Production
	Post-Production

	Initial Cost Analysis
	SWOT Analysis
	Planning Changes and Deviation (15/03/22)

	Development
	Procedural Noise Generation
	Worley Noise
	Improved Perlin Noise
	Fractal Brownian Motion
	Cloud textures
	Weather Map Textures

	Cloud Modelling
	Ray March
	Density Model

	Weather System
	Wind and Skew
	Cloud Layers
	Presets and Transitions

	Cloud Lighting
	Multiple Scattering Approximation
	Day / Night Cycle

	Scene Integration
	Object Occlusion
	Banding Reduction
	Atmosphere

	Custom Editor
	Optimization
	Evaluation Tools
	Computing Power Related
	Memory Related
	Overview


	Conclusions & Future Work
	References

