

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity

Oscar Pérez Martín

Centre de la Imatge i la Tecnologia Multimèdia, Universitat Politècnica de Catalunya

Bachelor's degree in Video Game Design and Development (2021-22)

Mr. Marc Garrigó Invers

June 30, 2022

Aetherius © 2022 by Oscar Pérez Martín is licensed under CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.citm.upc.edu/
https://www.citm.upc.edu/
https://www.citm.upc.edu/

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 1

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Abstract

This thesis describes the development of Aetherius, a Unity tool which can

generate and visualize virtually endless and unique cloudscapes in real-time dynamically;

The resulting tool can be used in videogames to easily and quickly create immersive and

dynamic skies without wasting resources in the development of a dedicated system.

Developing a volumetric cloud system is complicated and especially small studios

do not have the resources to create such systems for their skies. The objective of this

project is to provide an accessible and easy to use alternative for small studios and indie

developers to turn static, boring and featureless skies into high quality ones.

In this document the problems encountered during the development of the tool

and the techniques used to generate, render and optimize cloudscapes are described; to

test the tool’s usefulness this project includes the creation of a small demo application.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 2

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Acknowledgements

I would like to acknowledge everyone that helped me get to where I am now, for

their support and inspiration during the development of this thesis and project.

I want to thank my friends and my family for being there, aiding me when I needed

it and helping me test the project. I would also especially like to thank my mom Silvia

and my friend Carla for being as enthusiastic as I am about clouds and sending me photos

of them every time they looked at the sky and saw cool cloudscapes. Finally, I want to

thank Adrià Serrano for helping me with mathematical questions when I needed it.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 3

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Keywords

Ray Marching, Volumes, Clouds, 3D, Procedural Generation, Real-Time, Unity,

Tool, HLSL, Videogames

Links

The Unity project containing the source code and files for the tool in this thesis

can be found on GitHub through the following link:

https://github.com/oscarpm5/Aetherius

The different demonstration applications that have been compiled for the project

can be found in the same repository under the Releases section or through the following

link:

https://github.com/oscarpm5/Aetherius/releases

The trailer showcasing the tool can be found at:

https://youtu.be/OHnivbkmO6s

https://www.upc.edu/en
https://github.com/oscarpm5/Aetherius
https://github.com/oscarpm5/Aetherius/releases
https://youtu.be/OHnivbkmO6s

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 4

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Table of Contents

I. STATE OF THE ART ... 16

Cloud Representations .. 16

Skybox .. 16

Billboard ... 17

Polygon ... 18

Voxel .. 19

Procedurally Generated Clouds .. 19

Volumetric Rendering .. 20

Volumetric Cloud Tools Available ... 23

Unity Engine ... 25

Unity Packages ... 26

Unreal Engine ... 28

II. METHODOLOGY ... 30

Documentation Structure .. 30

Procedure and Tools for Project Monitoring .. 30

Gantt with Agantty ... 30

Kanban with Trello ... 30

Version Control Tools with GitHub and GitHub Desktop 32

Evaluation Methods .. 33

Objectives Validation ... 33

Task Validation .. 33

Risks and Contingency Plans .. 34

General Risks .. 34

Concrete Risks .. 34

III. PLANNING ... 36

Phases of Development ... 36

Pre-Production .. 36

Production ... 36

Post-Production .. 38

Initial Cost Analysis ... 38

SWOT Analysis .. 40

Planning Changes and Deviation (15/03/22) .. 41

IV. DEVELOPMENT ... 42

Procedural Noise Generation .. 42

Worley Noise .. 43

Improved Perlin Noise .. 45

Fractal Brownian Motion ... 47

Cloud textures ... 48

Weather Map Textures ... 51

Cloud Modelling ... 51

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 5

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Ray March .. 51

Density Model .. 53

Weather System .. 57

Wind and Skew ... 57

Cloud Layers .. 57

Presets and Transitions ... 58

Cloud Lighting .. 59

Multiple Scattering Approximation .. 64

Day / Night Cycle ... 64

Scene Integration .. 65

Object Occlusion .. 65

Banding Reduction ... 65

Atmosphere ... 66

Custom Editor ... 68

Optimization ... 68

Evaluation Tools ... 68

Computing Power Related .. 69

Memory Related ... 72

Overview .. 72

V. CONCLUSIONS & FUTURE WORK .. 74

VI. REFERENCES .. 77

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 6

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Index of Tables

Table 1. Cloud generation noises ... 20

Table 2. Reference hardware .. 33

Table 3. Vertical slice initial tasks ... 36

Table 4. Alpha initial tasks ... 37

Table 5. Beta initial tasks ... 37

Table 6. Gold initial tasks ... 37

Table 7. Initial cost analysis ... 39

Table 8. SWOT analysis ... 40

Table 9. Optimizations performance .. 73

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 7

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Index of Figures

Figure 1. Battlefield 3 campaign level skybox ... 16

Figure 2. Billboard normal clouds in Sapiens .. 17

Figure 3. Billboard normal clouds (Schneider, 2015) .. 17

Figure 4. Billboard clouds in Sapiens ... 18

Figure 5. Polygon cloud (Schneider, 2015) .. 18

Figure 6. Geometry clouds in Minecraft .. 19

Figure 7. Absorption (Schneider, 2016) ... 21

Figure 8. In-Scattering (Schneider, 2016) .. 21

Figure 9. Out-Scattering (Schneider, 2016) ... 21

Figure 10. Silver Lining effect (Photograph) ... 22

Figure 11. Cloud dark edges (Schneider, 2015) (Photograph) 22

Figure 12.Horizon Zero Dawn clouds .. 23

Figure 13. Red Dead Redemption 2 clouds .. 24

Figure 14. Horizon Zero Dawn cloud gradient .. 24

Figure 15. Unity HDRP volumetric clouds .. 25

Figure 16. Sky Master ULTIMATE Unity package tool ... 27

Figure 17. Weather Maker Unity package tool .. 27

Figure 18. UniStorm Unity package tool ... 28

Figure 19. Unreal volumetric clouds .. 29

Figure 20. Unreal cloud material .. 29

Figure 21. Gantt project .. 30

Figure 22. Kanban project .. 31

Figure 23. Worley cell selection. .. 43

Figure 24. Worley 1 octave .. 44

Figure 25. 2D Improved Perlin vectors .. 46

Figure 26. Fade interpolation function ... 46

Figure 27. Improved Perlin 1 octave .. 47

Figure 28. FBM code example ... 47

Figure 29. Improved Perlin octave comparison.. 48

Figure 30. Remap function code .. 49

Figure 31. Cloud base texture channels .. 50

Figure 32. Cloud detail texture channels .. 50

https://www.upc.edu/en
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490583
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490584
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490585
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490587
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490588
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490589
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490590
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490591
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490592
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490593
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490596
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490605
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490606
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490607
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490608
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490609
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490610

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 8

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Figure 33. Weather map channels .. 51

Figure 34. Initial Ray March sphere test .. 52

Figure 35. Early base cloud texture test ... 53

Figure 36. Density method code ... 54

Figure 37. Cloud generated with complex shape altering gradient 56

Figure 38. Complex shape altering gradient ... 56

Figure 39. Dual-lobe phase function .. 60

Figure 40. Henyey-Greenstein phase function ... 60

Figure 41. Light scattering initial approximation code .. 62

Figure 42. Light scattering integration ... 63

Figure 43. Light scattering integration code ... 63

Figure 44. Multiple scattering approximation total light contribution 64

Figure 45. Multiple scattering approximation octave light contribution 64

Figure 46. Multiple scattering approximation octaves ... 64

Figure 47. Blue Noise comparison ... 66

Figure 48. Benchmark system graphic output .. 69

Figure 49. Dynamic Ray March steps with density (Schneider, 2015) 70

https://www.upc.edu/en
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490616
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490619
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490620
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490621
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490622
https://d.docs.live.net/76c41ba7cf8c523e/TFG.docx#_Toc107490624

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 9

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Glossary

Abbreviations

E.g., exempli gratia, for instance, for example.

I.e., id est, that is, in other words.

Acronyms

CPU Central Processing Unit.

fBM Fractal Brownian Motion, fractional Brownian Motion.

GPU Graphics Processing Unit.

HDRP High Definition Render Pipeline.

HLSL High Level Shader Language

LUT Lookup Table.

PBR Physically Based Rendering.

RGB Red Green and Blue, usually image color channels.

RGBA Red Green Blue and Alpha (Transparency), usually image color channels.

UDP Universal Render Pipeline.

ND N-Dimensional.

(a) 2D Two-Dimensional.

(b) 3D Three-Dimensional.

Vocabulary

Algorithm (a) A set of mathematical instructions or rules that, especially if given to a

computer, will help to calculate an answer to a problem. (b) A step-by-step

procedure for solving a problem or accomplishing some end. E.g., a recipe is an

algorithm, which consists of specific instructions for preparing a dish or meal.

Pseudorandom (of a number, a sequence of numbers, or any digital data) Satisfying one

or more statistical tests for randomness but produced by a definite mathematical

procedure.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 10

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Shader A user-defined program designed to run on some stage of a GPU. Shaders provide

the code for certain programmable stages of the rendering pipeline. They can also be used

in a slightly more limited form for general, on-GPU computation.

Volumetric Showing or creating something in three dimensions; e.g., a technique known

as volumetric display creates moving 3D images that viewers can see from any angle.

Voxel Any of the discrete elements comprising a three-dimensional entity. The 3D

equivalent of a pixel. E.g., an image produced by magnetic resonance imaging.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 11

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Preface

Motivation

As a programmer and game developer I love converting my thoughts, the inner

worlds that I dream about, into tangible and interactable spaces that people can walk

through and explore. I find it incredible that through changes in ones and zeros these

worlds can be recreated and simulated to a certain extent inside small machines that we

call computers.

I had been creating spaces that made use of rasterization 1of 3D geometry for a

long time before writing this thesis but I wanted to embark on a new challenge and

experiment with a less commonly used rendering technique in videogames: Ray

Marching;

Another field that I have always been drawn to is that of Procedural Generation,

which allows a seemingly infinite amount of combinations and is already being widely

used in videogames, as it can improve the pace at which content is generated while saving

resources.

The blend of Procedural Generation with Ray Marching as a challenge to create

my own worlds combined with my love for clouds as these dynamic, epic, physics-driven

phenomena that occur every day almost unnoticed by people while being common and

internationally recognizable among humanity, has led me to try to recreate these

structures for use in videogames.

1 A technique used to render of 3D scenes, mostly used in real-time applications; Explained in detail

following the link (https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-

implementation)

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 12

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

The Problem

Skies in outdoor environments in videogames usually suffer from a lack of

importance on the development stage of games as it is very easy to replace the background

with a Skybox, a method that has been used traditionally; This makes the skies boring,

repetitive and static, as the same image is shown to the users every time they look up,

which does not contribute to the overall player immersion.

A solution has been adopted to solve the monotonous nature of static skyboxes:

rotating skyboxes; these are normal skyboxes but they rotate at a constant rate along an

axis to produce a more dynamic feeling. If the game has a day-night cycle the image can

be rotated along an axis contained in a horizontal plane to show both a day and a night

hemisphere; one clear example of this is Minecraft. Skyboxes in commercial engines that

use images of clouds usually revolve around a vertical axis as if the clouds were moving.

With the increase of GPU performance and the general adoption of shaders in

the industry in recent years more complex solutions have become available for developers

with shader knowledge. Real-time shaders which rely on atmosphere scattering

approximations are now available in most commercial engines causing the skies to react

to light almost identically to the real sky to the human eye and changing its color

depending on the time of day and dust in the atmosphere. With this, skies are now

dynamic, but almost featureless, as they lack something that humans perceive as inherent

to them; Clouds.

While other solutions like 2D billboard clouds with normals that react to light or

3D geometry exist, by far the most interesting and close to reality solution to that problem

is the concept of volumetric clouds, which most of the time comes in combination with

volumetric atmospheres. Volumetric clouds allow for the user to not only see the clouds

but traverse them as they are 3D volumes and do not have hard edges as opposed to clouds

represented with geometry. They are already present in some triple-A open-world

videogames such as Horizon Zero Dawn and Red Dead Redemption 2 and they are

making their way into the newer versions of the two most used commercial engines:

Unreal Engine and Unity, but are too complex for small studios and indie developers to

implement on their own with their limited resources.

The most advanced implementations of volumetric clouds that we find in video

games are already premade so they do not offer customization to the user and the tools

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 13

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

for generating their cloudscapes are not accessible to developers of other games. On the

other hand, plugins and systems for commercially available engines are too simple or do

not offer great usability as most of them are conceived only as tech demo projects. The

few systems that are usable and well-produced cost money or target high-end render

pipelines, which limit the amount of small studios and indie developers that can access

them.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 14

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Goals

General Objectives. This thesis has three main goals:

 Create a Tool: Develop a public and accessible tool to author volumetric

cloudscapes for Unity games in real-time and document its development.

 Develop a Project: Complete a project, plan, develop and close it with a

professional quality.

 Contribute Knowledge: Provide knowledge to the industry for those

interested in the project and its systems.

Specific Objectives. To accomplish these general goals the following specific

objectives will be targeted:

 Texture Generation: Make a system that allows for generation of 3D

seamless textures which can be used to generate clouds.

 Cloud Generation and Rendering: Make a cloud generation & rendering

system for the Unity Built-In Render Pipeline, making the clouds interact with

light as accurately as in real life.

 Customize the Clouds: Allow users to customize their cloudscapes from

presets, parameters and textures to better fit their own environments.

 Create and Publish the Tool: Publish the Tool as an open and accessible

Asset Store Package.

 Document Performance: Analyse and document the efficiency of the

methods used to generate and render cloudscapes.

 Create a Demo: Create a small Demo application demonstrating the

performance and main customizable parameters of the tool, while letting the

user explore the resulting cloudscape.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 15

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Scope of the Project

The target of this tool is not big videogame development studios but rather small

ones, with few employees and a small budget; indie game studios or amateur

developers who develop games as a hobby are good examples of our target audience.

That is the reason why, of the three predefined Unity render pipelines2, we chose to create

the tool for the Built-In Render Pipeline, as it is the most used pipeline among our target

audience and the easiest to set up for them.

Inside these small studios, our tool is aimed at their artists who are in charge of

creating the environments; it will allow them to create cloudscapes that integrate well

with the visual characteristics and aesthetics of their games. The tool has been developed

to be user-friendly and to require no programming skills.

Players are the ones who will benefit the most from this tool as the environments

on low budget and indie games they play will have enhanced visuals and provide better

immersion as a consequence. Developer teams will benefit from the tool as well, owing

to the fact that they will be allowed to produce more realistic and dynamic environments

with no time wasted developing the systems and no money spent on them, enabling

developers to spend their resources on other critical aspects of their projects.

This thesis’ aim is not to create an entirely new system from scratch but rather

attempts to adapt existing technology and knowledge into a tool that can be used in a

commercially available engine.

2 There are three main render pipelines available in Unity: (a) High Definition Render Pipeline (HDRP),

(b) Universal Render Pipeline (UDP), (c) Built-In Render Pipeline. More information available in the link

(https://docs.unity3d.com/Manual/render-pipelines.html)

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 16

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

State of the Art

A study of different techniques being used nowadays to model and light clouds is

shown in this section as well as tools currently available in commercial engines.

Cloud Representations

When trying to represent clouds in games in real-time numerous approaches have

been developed over the years; we are going to focus on the most used approaches in the

industry for this thesis.

Skybox

In this technique clouds are embedded into the background image. Lighting of the

clouds is baked or painted beforehand so no lighting calculations happen during the game

execution. More advanced skyboxes can handle dynamic lighting for clouds but this

technique is usually used in small levels where the player spends little time, so there is no

need for dynamic skyboxes or change of lighting or shape of the clouds. It is the most

used technique in fast-paced shooters, an example of which can be seen below.

Although not computationally intensive, it should be taken into account that

skyboxes can allocate a lot of memory depending on the resolution of the image.

Figure 1. Battlefield 3 campaign level skybox

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 17

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Billboard

In 3D, billboards are image planes that orient themselves towards a certain

direction, either one of the main coordinate axis or a direction defined by the developers,

like the camera vector in order to have the billboard face the player. Clouds are simulated

in an external application and rendered usually as a color image defining the normal

vector of each pixel; this direction is used then to simulate lighting direction of the clouds.

Usually more than one image is taken for each cloud as seen from different angles and

substituted or put together as the player moves around the world.

Figure 2. Billboard normal clouds in Sapiens

Figure 3. Billboard normal clouds (Schneider, 2015)

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 18

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Billboard clouds offer a more interactable look than skyboxes as they are

physically in a position in the world and can react to changes in lighting; one of the

limitations of billboard clouds is that they are only suited to be viewed from afar since

the illusion breaks once the player approaches or tries to fly through them. Furthermore,

the shape of these clouds does not evolve over time and shadows cannot be casted

between clouds realistically.

Figure 4. Billboard clouds in Sapiens

Polygon

With this technique clouds are constructed from vertices like normal geometry.

They are created using data from simulations made in external applications and the

lighting data is baked beforehand.

Figure 5. Polygon cloud (Schneider, 2015)

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 19

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

On the one hand, all game engines support vertex geometry so geometry clouds

can easily be imported into different engines. On the other hand, their shape cannot evolve

and clouds need have a high amount of polygons to look smooth enough to trick the

human eye; In addition, they cannot be traversed as a volume without making the player

see that they are only a shell. One example of a game that uses geometry clouds is

Minecraft, although they are low-poly.

Voxel

Voxel clouds are comprised of a three dimensional grid of voxels or 3D pixels,

each one storing a density value; Although they have to be created in an external

application beforehand and their shape cannot evolve, they are volumetric in nature and

can be flown trough. Voxel clouds use volumetric rendering, a technique detailed later.

The major downside of Voxel clouds is their high memory usage.

Procedurally Generated Clouds

This is the technique that is being used in this thesis, it uses procedurally generated

textures to define the shape and density of the clouds. It has very low memory usage, as

it only requires textures, and can evolve over time. This technique uses the same rendering

technique as Voxel clouds.

Procedurally Generated Content. Procedurally generated content is content that

can be created from a set of rules or an algorithm, which saves memory. It is normally

used in videogames to help developers quickly generate additional content and detail,

saving them work; In this case it is used to generate noise textures.

Figure 6. Geometry clouds in Minecraft

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 20

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Pseudorandom Tileable Noises. To generate volumetric clouds three types of

noise are usually used:

Table 1. Cloud generation noises

Perlin Worley Perlin-Worley

8 octaves of Perlin noise

3 octaves of Worley noise

Worley noise being used

to modify Perlin noise

The textures generated are usually 3D and tileable; i.e., when placing a texture

next to the other, the change between textures cannot be noticed. The values stored in

these textures are used to define the shape and detail of the clouds storing their density.

Generating these textures procedurally allows the developers to generate different

versions of noises only by changing the seed and a few parameters.

Volumetric Rendering

Volumetric rendering is a technique used to depict volumes which uses Ray

Marching to sample the density of the clouds at points in space stepping along view rays

from the camera.

It uses a lighting model derived from a simplification of how light interacts with

clouds in the real world. It also uses Ray Marching to calculate the lighting towards the

sun and describes three main ways in which the light can interact with particles in the

cloud medium:

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 21

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Absorption. The light ray can be absorbed by the particles inside the cloud. The

further it travels inside the cloud the higher the probability for the ray to be absorbed.

In-Scattering. The light ray can change course as a result of an interaction with

particles inside the cloud and exit the cloud towards the eye.

Out-Scattering. The light ray can change course as a result of an interaction with

particles inside the cloud and exit the cloud traveling away from the eye.

Figure 7. Absorption (Schneider, 2016)

Figure 8. In-Scattering (Schneider, 2016)

Figure 9. Out-Scattering (Schneider, 2016)

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 22

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

These light interactions can approximate two behaviours that occur in clouds in

real life:

Directional Scattering. Gives clouds their luminous quality

Silver Lining. Highlights the edges of the clouds when looking towards the sun.

However, there is a behaviour which they fail to approximate: the dark edges of

the clouds when looking away from the sun.

 Different implementations try to solve this problem using various non-physical

functions with distinct results.

Figure 10. Silver Lining effect (Photograph)

Figure 11. Cloud dark edges (Schneider, 2015) (Photograph)

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 23

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Volumetric clouds with Ray Marching have only been seen in games in recent

years due to the fact that rendering volumes is very computationally intensive, so the

technology had to wait for powerful enough GPUs capable of performing this technique

in real-time with shaders.

Volumetric Cloud Tools Available

Although there are very polished and capable tools in the industry, they happen to

be part of big studios and are only used for a handful of games, which is the case with

Nubis, one of the tools developed for Horizon Zero Dawn by Guerrilla, or the cloud

system developed for Red Dead Redemption 2. These are capable of simulating a

day/night cycle, smooth weather transitions and allow for a variety of artistic changes to

better fit their game needs. They are also integrated into a greater sky and atmosphere

system.

Figure 12.Horizon Zero Dawn clouds

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 24

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Figure 13. Red Dead Redemption 2 clouds

Horizon Zero Dawn’s weather system has an interesting approach to making its

clouds look more epic. A circular gradient is created around the player which tells the

weather system to gradually transition to cumulous clouds at 50% coverage starting at a

distance of 15 km. This makes sure that clouds at the horizon are always interesting and

poke above mountains.

Figure 14. Horizon Zero Dawn cloud gradient

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 25

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

There are, however, free and accessible alternatives to these tools for the two

biggest available commercial engines:

Unity Engine

Unity has recently released his volumetric clouds tool, a tool very similar to Nubis,

very flexible and user-friendly; the only downside of the tool is that it is only available

for the HDRP at the moment, leaving the majority of small studios and amateur

developers that use less powerful render pipelines without the chance of using the system.

Figure 15. Unity HDRP volumetric clouds

This tool has three different modes allowing for three levels of customization,

depending on the amount of control the developers want to have over the clouds:

Simple mode. This mode lets the user choose between four predefined presets:

Sparse, Cloudy, Overcast and Stormy. Additionally, there is an option to create a

customized preset with curves and parameters that can be changed to quickly create

unique looking cloudscapes. Density curve by height, erosion curve by height, shape scale

and offset and density multiplier are some of the settings that can be customized in this

mode.

Advanced mode. Has similar options to the simple mode but with added settings

to customize three different types of clouds: cumulus, alto stratus and cumulonimbus.

These types of clouds and the rain regions of the world are controlled by a texture each

that contains information about the cloud coverage for the former and rain distribution

for the latter.

Manual mode. Shares settings with the previous modes but the cloud location

and density, cloud type and rain location are controlled by a single texture which has all

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 26

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

that information encoded in its RGB channels. Furthermore, another texture serves as a

LUT3, encoding the following information in its color channels: cloud coverage (R),

erosion (G), ambient occlusion (B).

Besides these modes, the tool offers earth curvature simulation, cloud layer height

and thickness, wind skewing for cloud shapes, shadow casting on terrain, direct and

ambient light color personalization and some quality controls to balance quality and

performance.

Unity Packages

Unity has an asset store where users can submit their own tools and assets. There

are good volumetric cloud tools for both HDRP and URP and some of them are also

compatible with the Built-In Render Pipeline but most of them cost money so many

people cannot access these tools. The tools available for free contain very basic

functionality or are just demo projects with no personalization at all.

The following list contains the most relevant unity asset store tools that include

volumetric clouds as a core part of their package.

Sky Master ULTIMATE. Includes volumetric clouds, lighting, PBR sky with

atmospheric scattering, an ocean system and real-time global illumination. It has a sky

manager that supports a day/night cycle and smooth weather transitions.

3 Lookup Table. I.e., a predetermined array of numbers that provide a shortcut for a specific computation.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 27

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Figure 16. Sky Master ULTIMATE Unity package tool

This tool is compatible with both URP and HDRP Unity pipelines and its price in

the asset store is 61.64€.

Weather Maker. Weather Maker supports (a) a day/night cycle; (b) volumetric

clouds, fog and light; (c) terrain overlay; and (d) a sky system. Supports both 2D and 3D

modes.

Figure 17. Weather Maker Unity package tool

This tool is compatible with both Built-In and URP Unity render pipelines and its

price in the asset store is also 61.64€.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 28

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

UniStorm. Includes atmospheric fog; cloud shadows; star constellations;

customizable moon phases, cloud profiles and sounds for ambient and weather;

procedural auroras; dynamic weather; and a day/night cycle.

Figure 18. UniStorm Unity package tool

This tool is compatible with both Built-In and URP Unity render pipelines and its

price in the asset store is 53.59€.

Unreal Engine

Unreal engine has a very powerful and easy to set up volumetric cloud system

integrated with visuals similar to the Unity tool; however, it doesn’t have that many

options by default and it is less user friendly and more cumbersome to work with

compared to its Unity counterpart.

Cloud settings are scattered across the engine: the volumetric cloud object

contains cloud layer related properties such as cloud height and thickness as well as

atmosphere curvature; the main directional light contains light related settings such as

transmittance or shadow extent; and the sky light object contains ambient occlusion

related properties. This makes it difficult for the end user to adjust the clouds’ look.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 29

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Figure 19. Unreal volumetric clouds

On the other hand, Unreal provides detailed and fine control for users that want to

personalize every aspect of the visual quality of the clouds through a cloud material whose

properties can be accessed through the material instance or changed in the material itself

using a node based approach.

Figure 20. Unreal cloud material

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 30

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Methodology

Documentation Structure

This thesis documentation follows a combined structure between the sixth and

seventh editions of APA style4, the thesis director’s recommendations and the university’s

guidelines and thesis examples; although this is the norm, exceptions will be made since

clarity of the thesis is prioritized. If a section of the document is hard to understand, the

format and style will be adapted with the goal of making the thesis more readable and

accessible to the reader.

Procedure and Tools for Project Monitoring

Gantt with Agantty

A Gantt chart has been created using Agantty. This chart provides us with a

timeline with tasks that we can use to identify if we are ahead or behind schedule and

adapt the project’s pace and the tasks’ priority and complexity accordingly. A detailed

explanation of project phases and tasks can be found in the Planning section.

Figure 21. Gantt project

Kanban with Trello

To manage Gantt tasks with more granularity we use the Kanban method in a

Trello board. We create smaller subtasks representing single features for the tool for each

Gantt task which are managed through this task management process; the development

4 American Psychological Association style (https://apastyle.apa.org/)

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 31

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

process of each task is divided into six different modules which the defined tasks have to

go through in order to be completed.

1. Backlog: List of pending tasks.

2. To Do: List of tasks for the current Gantt task which are not being worked on

yet but will be in the near future. Tasks are ordered by priority.

3. Doing: These are the tasks that are currently in progress.

4. Code Review: These are the tasks which need to be reviewed to check if they

meet all the requirements needed to be tested.

5. Testing: Tasks which are currently being checked for bugs or errors.

6. Done: List of tasks which have already been reviewed and tested and are

considered complete.

Tasks status and progress is evaluated and their scope is adjusted accordingly.

Tasks have color tags which determine its priority: green (low priority), yellow (medium

priority), orange (high priority), and red (critical, highest priority).

Figure 22. Kanban project

The Backlog section is used for tasks that will need to be performed in the future

but should not or cannot be performed now or non-priority bugs that can also be solved

in the future.

When a Gantt task needs to be started, it is divided into feature contained Kanban

tasks which are placed under the To Do list. Tasks from the To Do list are being moved

to the Doing list following two criteria:

1. Tasks with higher priority are performed first.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 32

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

2. If the task is not the one with highest priority in the To Do list but a task with

the highest priority in the To Do or Doing list depends on it, it is performed

first.

To not be overwhelmed, the minimum amount of tasks possible will be in the

Doing list at any given time.

Once a task is moved into the Doing phase the first thing that happens, if not done

earlier, is extensive research on the task or the task feature. Once the possible

implementations are understood or need to be tested to understand them, the task enters

the Development phase in Unity. In this phase, if the task is complex, a first naïve

implementation is done to quickly test its feasibility. If a task is determined non-feasible,

more research or troubleshooting is done to conceive a viable alternative.

Once a task is deemed feasible a more thought-out implementation is performed.

The implementation is iterated from a simpler version of the feature to a more complex

and complete one; when the code implementation is finished and the task has the required

functionality, the user interface in the custom editor is programmed, and then the task

goes through a final polish pass. After that it is moved into Code Review. The Testing

phase is detailed in the Task Validation section below.

During all the process of doing the task, if it exceeds its planned timeframe or it

is considered not feasible to be developed in that amount of time, a revaluation of the task

is performed according to the Risks and Contingency Plans section.

Version Control Tools with GitHub and GitHub Desktop

GitHub is being used to store all project files and code versions. New versions of

the tool will also be uploaded to the GitHub repository during the project development

using the GitHub Desktop app as commits. Demo application versions will also be

uploaded to the GitHub Releases section; Builds will try to be made for capability

demonstration purposes but are not strictly needed during development as the tool is

intended to have functionality in the Unity editor and can be tested in real-time. At least

one build will be created before finishing the gold phase and more will try to be made if

tasks are being completed ahead of schedule.

The GitHub repository has two distinct branches:

 Main: Stable and feature-complete versions of the project are uploaded here.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 33

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

 Development: In-progress versions of the project are uploaded here, they are

not stable and the features in these versions may not be complete.

Evaluation Methods

Objectives Validation

There are two types of objectives that we need to differentiate when evaluating.

Subjective. The result of these objectives cannot be easily quantifiable. They need

to be evaluated by a consensus between the thesis director and the tool developer. One

example of an objective of this type can be if the rendering quality of the clouds is realistic

enough.

Mesurable. These objectives can be measured and quantified. An example of

such an objective is if the cloud rendering works in less than 16 milliseconds. To measure

this we need to take into account the hardware used in the evaluation, in this case the

reference hardware is detailed in the following table.

Table 2. Reference hardware

CPU
AMD Ryzen 5 5600X 6-Core Processor,

3701 MHz

GPU NVIDIA GeForce RTX 2060

RAM 16,0 GB

System Windows x64

Task Validation

Certain criteria must be met in order to consider a task as completed. A task enters

the validation phase when it is moved from the Code Review to the Testing section on

the Kanban Trello board. While the task is in this section, special attention is paid to it

while the tool is running. Only one task can be in the Testing section at a time; if no major

errors or bugs are found, the task is considered done. Minor bugs are considered a new

independent task and the main task is still marked as completed.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 34

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Risks and Contingency Plans

Risks have been divided into two categories: General Risks and Concrete Risks;

The former describes the most common risks applicable to any phase or task in the project

while the latter describes the risks associated with certain tasks which are most likely to

have problems. Not only the risks are described but also their solutions; Prevention work

is also described for general risks.

General Risks

Bad planning. The task takes more time to be developed than initially planned.

Prevention. Project has been divided into phases to better acknowledge when

there is a deviation from the planning with enough time to not affect the whole project.

There is also a Clean Up task at the end of the planning to account for time deviations.

Solutions. Review features based on importance and delete or simplify some of

the less important ones.

Too much complexity. A specific system or task is too complex, not fully

understood or there is a lack of ability to correctly implement it. This can lead to trying

different implementations which can lead to lack of time, in which case solutions for that

risk apply.

Prevention. Previous research has been done so the level of complexity is already

expected.

Solutions. Do some more research and/or ask the thesis director for advice.

Solutions for the previous risk also apply here.

Concrete Risks

Clouds Lighting (T1.4). High Risk. There are different implementations possible

and it is a complex topic. Can take a lot of time to get right. It is a critical feature of the

project.

Solutions. Solutions are ordered from more to less preferred.

1. Take time from optimization or clean up tasks.

2. Being a critical feature it must be present in the project so the feature cannot

be deleted, but can be simplified if necessary.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 35

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Noise Generation and Visualization System (T1.2). Medium Risk. The

generation part of the system is complex and I have no prior experience programing 3D

noises. Can take a lot of time to get right.

Solutions. Solutions are ordered from more to less preferred.

1. Use Unity built-in Perlin Noise to generate Improved Perlin Noise textures

without the need to code them from scratch, saving time and having to

program only Worley Noise.

2. Delete the Generation part of the system. Make users import pregenerated

textures from external programs manually.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 36

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Planning

Phases of Development

This project development will be divided into three main phases similarly to

videogames and software tool development.

Pre-Production

In this first phase all the research is performed to have a good understanding of

the systems and features that we want to implement. Additionally, the planning of the

project and its tasks is carried out.

Production

Also referred as development phase; in this phase the tool itself is created

following an incremental and iterative agile model. The tool starts with basic functionality

and more is added incrementally with each completed milestone; if necessary, tasks are

changed and systems can be improved on in future milestones iteratively.

 The development stage is comprised of four different phases or milestones, each

of them divided into tasks that follow a Kanban agile methodology detailed in the

Methodology section.

Vertical slice. Provides a demonstration of basic and minimum functionality of

the tool.

Table 3. Vertical slice initial tasks

Task

ID
Task Start date Due date

T1.1
Implement Ray Marching and render simple

volumes to screen.
07/02/2022 14/02/2022

T1.2
Create a system to generate and display different

types of noise in real time as tileable textures.
15/02/2022 22/02/2022

T1.3 Generate simple cloud shapes from noise textures. 23/02/2022 28/02/2022

T1.4 Create the lighting system for the clouds. 01/03/2022 07/03/2022

T1.5 Basic optimization. 08/03/2022 14/03/2022

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 37

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Alpha. The tool is feature-complete at this stage, only missing UI/UX and some

artistic elements.

Table 4. Alpha initial tasks

Task

ID
Task Start date Due date

T2.1 Implement basic cloud types and cloud type map. 15/03/2022 22/03/2022

T2.2 Make atmosphere have a curvature. 23/03/2022 30/03/2022

T2.3 Implement a weather system. 31/03/2022 14/04/2022

T2.4
Render clouds in front of objects. I.e., Integrate

clouds into the 3D world.
15/04/2022 21/04/2022

T2.5 Post processing. Atmospheric haze and light shafts. 22/04/2022 28/04/2022

Beta. During this stage, the main focus changes from adding features to

integrating and optimizing the tool.

Table 5. Beta initial tasks

Task

ID
Task Start date Due date

T3.1
More optimization. Make the tool usable for

games.
29/04/2022 29/05/2022

T3.2
Level of detail for clouds depending on distance

from the player.
29/04/2022 05/05/2022

T3.3 Cloud shadows on terrain. 06/05/2022 20/05/2022

Gold. In this last milestone the tool is finished, cleaned up and published, with the

demo application also being finished.

Table 6. Gold initial tasks

Task

ID
Task Start date Due date

T4.1 Clean up of the systems and code. 30/05/2022 19/06/2022

T4.2
Start the publishing procedure for the tool into the

asset store.
30/05/2022 19/06/2022

T4.3 Prepare the demo project to showcase the tool. 30/05/2022 19/06/2022

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 38

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Post-Production

Last phase of the project; in this phase, which happens once the tool is completed,

bugs that have not been solved yet are continued to be fixed with the time left until the

thesis is finished. Conclusions to acknowledge what has and has not work are elaborated.

Initial Cost Analysis

The project will be developed over the course of five months, with a dedication

to development of twenty-four hours a week; this is relevant and is taken into account

when calculating maintenance costs such as water or electricity. This project is not

intended to make any profit. Costs have been divided into the following categories:

 Personal and maintenance: Monthly payments calculated from a salary

estimation.

 Software licenses: Licenses for the tools used to develop both the project and

the thesis.

 Hardware: Physical parts and electronic components needed to research and

develop the thesis and the tool.

 Books: Books needed for research purposes.

 Videogames: Videogames needed for research purposes, which use systems

related to the thesis.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 39

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Table 7. Initial cost analysis

Concept
Cost (€)

Month

Cost (€)

Total

Personal and maintenance 1332,55€ 6662,75€

Salary 1290,10€ 6450,50€

Water 7,15€ 35,75€

Food 24,28€ 121,40€

Electricity 11,02€ 55,10€

Software Tools - 0,00€

Agantty - 0,00€

Trello - 0,00€

GitHub - 0,00€

Google Docs - 0,00€

GIMP - 0,00€

Hardware - 1732.79€

Mouse - 19,44€

Mouse Pad - 12,75€

Keyboard - 22,99€

Computer - 1550,15€

Screen - 146,90€

Books - 141,14€

Production Volume Rendering Design and Implementation - 51,23€

GPU Pro 7: Advanced Rendering Techniques - 89,91€

Videogames - 109,98€

Horizon Zero Dawn - 49,99€

Read Dead Redemption 2 - 59,99€

Total 8646,66€

Salary makes up a large portion of the costs since the necessary materials are

minimal and most of the software tools needed have free licenses or free alternatives.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 40

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

SWOT Analysis

A SWOT5 analysis will be used to assess our project’s position compared with

other tools and research papers in the field.

Table 8. SWOT analysis

SWOT Positive Negative

Internal

Strengths

Worked with shaders previously,

some experience in graphics

programming.

No great monetary cost or

subscription software is needed for

this project.

Experienced working with Unity in

different projects.

Weaknesses

Not experienced in extensive

academic research.

First time developing a tool for Unity

and publishing it as an asset store

package.

Inexperienced with Ray Marching

algorithms and volume rendering.

External

Opportunities

Other tools for Unity are far simpler,

behind a paywall or not available for

the Built-In Render Pipeline.

A successful tool could be expanded

and improved into a more complete

one in the future, learning from the

project problems and challenges.

Extensive documentation for Unity

and its Built-In Render Pipeline

exist.

Threats

Some tools for volumetric cloud

generation already available for

Unity.

Unity volumetric cloud system

adapted to the Built-In Render

Pipeline could make the tool

obsolete.

Publishing the tool depends on Unity

Asset Store approval.

5 The SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is a framework used to evaluate

a company's competitive position and to develop strategic planning. SWOT analysis assesses internal and

external factors, as well as current and future potential.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 41

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Planning Changes and Deviation (15/03/22)

Few changes have been made to the initial planning since the start of the project.

One major change has occurred:

The cloud lighting task (T1.4) has been more complex to develop that initially

thought. Different lighting methods have been experimented with to get the right look

and performance for this system causing the task to take longer to complete than expected.

This was anticipated in the Risks and Contingency Plans section being T1.4 a high risk

task. This task is also critical; I.e., cannot be removed from the project.

The first solution for task T1.4 detailed in the Concrete Risks section has been

followed; Task T1.5, basic optimization, has been removed as it has been assessed that at

this point in time optimization is not yet needed. Following the solutions in the General

Risks section, task T3.3, terrain shadows, has also been removed and task T2.5 has been

simplified by removing light shafts from it. All tasks removed or simplified will be

considered for future work. Removing or simplifying these tasks allows more time to be

spent further developing task T1.4 until it is in a desirable state. No other task has been

moved and task T1.4 will continue to be developed in the timeframe of the affected tasks

to not further affect the project phases and timeframe.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 42

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Development

This section describes the development of the tool in Unity; all topics and systems

will be explained in depth but in a way that the readers with little or no knowledge in

programming will be able to have an overview of the development process.

Procedural Noise Generation

As mentioned in the State Of The Art section, the tool needs some textures to be

able to generate the shape of the clouds as well as the weather map. To make the user not

have to worry about creating the different textures necessary for it to function in an

external program, to streamline the cloud generation process and to allow more variety in

the shapes, I have opted to create a system that is capable of generating the textures

needed within the unity editor in real time. This system is also designed to allow both the

user who interacts with the tool and the developer to customize the textures and visualize

the results in real time.

The first thing that needs to be done to start creating the noises is to have a way to

debug them in the first place. This is done in a very simple fragment shader which, given

the screen output texture and the texture we want to display, displays the latter in front of

the former. The display texture can be scaled in the range [0, 1] being one the size of the

shortest axis of the screen; We do that because the script that controls the shader has to

work in a dynamic environment with changing screen dimensions as it is designed to

work in Edit Mode; i.e., in a Unity mode where a script and its methods are executed in

the editor instead of in the final game. This shader also has the capability of scaling down

the coordinates of the display texture allowing users to control the amount of tiling of the

texture that is seen on screen.

Two different types of procedurally generated noise are needed to create the

textures that the tool will use and these noises are generated in a compute6 shader to allow

the generation to be computed fast and decoupled from the main rendering stage. As the

noises will need to be tiled extensively, the implementations explained here have

seamless borders and can be put next to themselves without any broken pattern or hard

6 A compute shader is a Shader Stage that is used entirely for computing arbitrary information in the GPU.

While it can do rendering, it is generally used for tasks not directly related to drawing triangles and pixels.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 43

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

transition. The explanation for these implementations focuses on the 2D version of the

algorithms with details on how to convert them to 3D but both the 2D and 3D versions

have been implemented for the tool.

The texture display shader is used during the development process of the noises

to help debug them better and faster in real time.

Worley Noise

Worley noise7, also called cellular noise, is a type of noise based on distance fields;

i.e., it represents the distance from the current pixel to the closest point in a set of points.

This noise is often confused with Voronoi diagrams as they use this noise as a base.

While the implementation seems straightforward (iterate all the points in a loop

for each pixel and find the nearest one calculating the distance between the point and the

pixel), it becomes highly inefficient once we have a large set of points to evaluate. This,

together with the fact that it makes it more difficult to create a seamless tileable noise, is

the reason another approach is used. The space is divided in a grid pattern instead and

only one point is placed inside each grid cell, in a pseudorandom location.

 For each position that needs to be evaluated, the cell which corresponds to that

position is located, alongside with its adjacent cells. Then its pseudorandom points are

compared and the one closest to the desired position is selected. The distance between

that point and the initial position is the generated value for that pixel.

7 An in-depth explanation and code implementation of Worley noise can be found in The Book of Shaders

website, following this link: https://thebookofshaders.com/12/.

Figure 23. Worley cell selection.

https://www.upc.edu/en
https://thebookofshaders.com/12/

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 44

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

This approach gives a much more uniform look to the noise because of the cells

of similar sizes and is easy to convert to a repeatable noise pattern simply by wrapping

around the adjacent cells’ positions when the position being evaluated is located in an

edge cell in the texture.

All pseudorandom points generated for the cells need to be consistent no matter

what position is being checked inside the cell. That means that for every pixel checked

inside the cell the same point must be returned. Most of the implementations of the

algorithm use a pseudorandom function to do this but another approach was used here

instead, as it allows for more control: the pseudorandom points are generated in the script

in CPU instead, and passed to the shader as an array of three-dimensional vectors. They

are calculated once using Unity’s own math library and their location can be controlled

by a seed number.

The resulting image resembles a biological cell pattern (Figure 24.a) with bright

edges, which is not what we want if we are trying to build billowy clouds, so a final step

is required; the noise value has to be inverted from the [0,1] range to the [1,0] range

highlighting the round shapes of the structure (Figure 24.b).

The implemented noise is a 2D noise since it is easier to work with, but once it is

verified that it works, the algorithm has to be converted to 3D so that it can be used in

cloud modelling. With this noise the change is straightforward, instead of checking 8

adjacent cells we check 26 as we are in a three-dimensional space.

The texture display shader has to be modified to support displaying 3D textures;

a variable with a [0, 1] range has been created to let the user control which slice of the 3D

texture is displayed as a 2D texture.

Figure 24. Worley 1 octave

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 45

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Improved Perlin Noise

Improved Perlin noise is an improved version of the original Perlin noise by Ken

Perlin. This improved version will be implemented as it gets rid of some directional

artefacts and it is no more difficult to implement than the original while still being

coherent noise with smooth changes.

Like the previous one, in this algorithm the space is divided into a grid of cells of

equal size. This algorithm is divided into two different stages:

In the first one a pseudorandom value is generated from a position in space. This

is done by a hash function that takes as inputs a permutation table and the current cell

position. The permutation table is generated in the script outside the shader and consists

of the values between 0 and 255 which are first shuffled. This permutation table is indexed

using the X component of the position of the cell and the result is added to the Y

component and is used as a new index of the permutation table. If the noise is 3D, the

same procedure is done with the Z axis. Note that with this approach after 255 cells the

noise will repeat due to the limited size of the permutation table. For us this is not a

problem as the noise that is used doesn’t have more than 100 cells in each axis. A problem

occurs when implementing this: sometimes the index will overflow the permutation table

size. Two solutions are proposed to solve this issue: The first one is to duplicate the

permutation table after the shuffle, ending up with a 512 value table of two repeated

sections. The second is to simply do the modulo operator of the index by the size of the

table. The second solution has been chosen because of the memory savings when passing

the table to the shader; the performance loss caused by the second option is not important

here since the shader only runs once, not every frame.

The second part of the algorithm takes the pseudorandom number generated in the

first part and uses it to index a small table of gradient vectors. In the 2D version of the

algorithm the following eight 2D vectors have been used:

(1,1),(-1,1),(1,-1),(-1,-1),(1,0),(-1,0),(0,1),(0,-1)

In the 3D version of the algorithm Perlin (Perlin, 2002) uses twelve 3D vectors,

with the constraints that vectors must be skewed away from the coordinate axis and long

diagonals to remove directional bias in the gradients; the same following vectors have

been used to generate improved Perlin noise for the tool:

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 46

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

(1,1,0),(-1,1,0),(1,-1,0),(-1,-1,0),(1,0,1),(-1,0,1),(1,0,-1),(-1,0,-1),(0,1,1),

(0,-1,1),(0,1,-1),(0,-1,-1)

When evaluating a position inside a cell, one gradient vector for each corner must

be found. This is done by inputting the cell position to the algorithm to find the bottom-

left gradient vector of the cell and the position of the next adjacent cells to find the

gradients of the other corners. See RGBA color vectors in Figure 25 (Gradient Vectors).

Another group of vectors is calculated by subtracting the point position from each

of the corner positions. See brown vectors in Figure 25 (Position Vectors). For each

corner the dot product between the gradient vector and the position vector of that corner

is calculated. The resulting number is interpolated with the numbers of the other corners

of the cell using (a) bilinear interpolation in 2D or (b) trilinear interpolation in 3D. The

result of that operation is the value of the noise at that point in space; a value between the

[-1, 1] range. Both the 2D and 3D algorithms have been implemented as they are needed

for cloud erosion and the weather map. If linear interpolation is used it will result in abrupt

transitions so a fade function provided in (Perlin, 2002) is used as the interpolation factor

instead as seen in Figure 26.

Figure 25. 2D Improved Perlin vectors

Figure 26. Fade interpolation function

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 47

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

The resulting texture after the interpolation can be seen in Figure 27.

Fractal Brownian Motion

Both Worley and Improved Perlin noises explained and generated in the sections

prior are correct but lack detail and variety. One way of generating more detailed noises

procedurally is using an iterative technique called fractal Brownian Motion (fBM from

now on).

What fBM does is it adds up different textures with different intensities and

varying dimensions. Three new variables (persistence, lacunarity and number of octaves)

determine the look of the fBM noise as we can see in Figure 28:

Figure 28. FBM code example

Figure 27. Improved Perlin 1 octave

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 48

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

 The octaves determine the number of noise layers that need to be generated.

The higher the number, the greater the detail, but also the greater the

performance impact.

 Lacunarity is usually a number greater than one; it multiplies the frequency of

the noise, making it noisier and more detailed with each octave.

 Persistence is usually a number less than one; it multiplies the amplitude and

determines how much each octave affects the overall noise shape.

For Improved Perlin noise the fBM is implemented exactly as seen in Figure 28

to let the user customize all of the parameters, but for Worley noise the number of octaves

has been set to 3 and for each octave the frequency (and thus the lacunarity) can be

adjusted manually to give more control and achieve a more cloudy shape feel.

The maximum number of octaves allowed for the user in the tool for Improved

Perlin is 10 but with more than 5 octaves the difference is negligible and not worth the

cost as seen in Figure 29.

Figure 29. Improved Perlin octave comparison

Cloud textures

Following a similar approach to (Schneider, 2015), we will use two 3D textures

to erode clouds in the density model:

The first texture has a default resolution of 128px * 128px but can be changed by

the user to powers of two. It has four different channels (RGBA) and contains data used

to create the base shape of the cloud:

1. R Channel: consists on a Perlin-Worley noise. A texture consisting of a

customizable number of octaves of Perlin is mixed with a three-octave Worley

noise. Usually to mix two textures, one would simply be multiplied by the

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 49

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

other but we want to erode the borders of the Worley noise with the Perlin

noise to not have gaps in the denser parts of the texture. To do that a remap

function is used; the remap function code can be seen in Figure 30. The Worley

noise is passed as the first input in the function and the Perlin is passed inverted

as the second one. The third, fourth and fifth inputs are -1,-1, 1 respectively.

This channel will form the base shape of the clouds. These noises have low

frequency and the shapes they create are big.

2. G Channel: Consists on a three-octave medium frequency Worley noise.

3. B Channel: Consists on a three-octave high frequency Worley noise.

4. A Channel: Consists on a three-octave higher frequency Worley noise.

Figure 30. Remap function code

The second texture has a default resolution of 32px * 32px and can also be

changed by the user. It should have three different channels (RGB) but due to engine

limitations a four-channel texture has to be used (RGBA) where the alpha channel is

ignored. It might be used in the future to encode more information. The three channels

encode data used to create the detail shapes of the clouds:

1. R Channel: Consists on a three-octave low frequency Worley noise.

2. G Channel: Consists on a three-octave medium frequency Worley noise.

3. B Channel: Consists on a three-octave high frequency Worley noise.

The process used to generate the noises for these textures is modular, each channel

is generated separately running the shader different times and using a Vector4 mask of

ones and zeros; the data generated in the shader is written only to the channels with a one

in the mask. While this is not the most efficient approach, it leads to a more modular and

reusable code and, since it is not executed every frame, the performance of this shader is

not a key factor to take into account.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 50

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Figure 31. Cloud base texture channels

Figure 32. Cloud detail texture channels

Unity Scriptable Objects are used to store data regarding the noise settings.

Scriptable objects allow both to modify the settings in real time and to save the variables

as assets in disk to reuse them or swap them if needed. The texture generation script

contains a list of noise settings Scriptable Objects for their textures and the correct ones

are displayed in the custom editor of the script allowing them to be modified when their

texture channel is selected.

Two types of noise settings exist in the form of Scriptable Objects:

 WorleySettings. Contains data to generate Worley noise: (a) the noise seed;

(b) the frequency of the first, second and third octaves of the noise; and (c) the

persistence value for the fBM.

 ImprovedPerlinSettings. Contains data to generate Improved Perlin noise:

(a) the noise seed; (b) the number of octaves of the noise; (c) the persistence

and lacunarity values for the fBM; (d) the frequency of the initial noise octave.

For the base and detail textures one WorleySettings Scriptable Object exist for

each Worley noise channel and both a WorleySettings and an ImprovedPerlinSettings

Scriptable Object exist for the Perlin-Worley channel.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 51

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Weather Map Textures

Initially the weather map texture was created in an external program but to give a

more integrated experience in Unity and to achieve more consistent results the texture is

now generated procedurally in a shader.

The first prototype texture is made of two different channels: a density channel

(R) consisting of a Perlin-Worley noise and a cloud type channel (G) consisting of a Perlin

noise.

This prototype weather map texture has been quickly discarded and updated to a

better one which allows the placement of three different layers in the same XZ plane

coordinates. This new weather map texture consist of three channels (RGB) containing

the following data:

1. R Channel: encodes cloud layer 1 density.

2. G Channel: encodes cloud layer 2 density.

3. B Channel: encodes cloud layer 3 density.

It also contains a fourth unused channel that might be used for precipitation clouds

in the future.

Figure 33. Weather map channels

Weather map textures also use channel masks and a modular generation process

equal to the one used for the cloud textures.

Cloud Modelling

Ray March

To properly model the cloud density and shape, the 3D space has to be sampled.

This is done using Ray Marching, a technique that shoots a ray for each pixel in the

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 52

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

camera matching its perspective in the direction of the camera view and marches through

the ray evaluating points in the ray direction every certain distance.

Initial tests have been done with a sphere intersection method, increasing a density

value when the currently evaluated point in the ray is inside the sphere. This is a very

simple test but allows to check that the Ray March matches the camera settings and

perspective. The density value outputted has been used to then linearly interpolate

between the color assigned to the volume and the scene view putting the sphere in a layer

in front of what the player sees in the scene. A maximum number of points along the ray

have been set to be tested so that the ray does not continue to evaluate points to infinity.

After the initial tests, clouds have started to be modelled. The first step is to

determine the cloud layer extent; two variables determine the minimum and maximum

cloud height and the cloud density is only sampled when the point currently being

evaluated is located between these height values.

To test that the cloud base texture is correctly passed to the shader as a 3D texture,

it is sampled from the evaluation position when it is inside the cloud layer resulting in

Figure 35.

Figure 34. Initial Ray March sphere test

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 53

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Figure 35. Early base cloud texture test

Density Model

The base cloud noise texture sampling described in the last section has been

moved into its own GetDensity method which returns the density value for a given vector

of 3D space coordinates. This is the method responsible for the cloud formations, their

density and shape.

Following a similar approach to (Schneider, 2017) and (Häggström, 2018) the

different input textures described in the procedural noise generation section are combined

as seen in Figure 36.

First, all textures (base shape, detail shape and weather map) are sampled at the

location given and stored into variables. The G, B and A channels of the base shape

texture containing 3 different frequencies of Worley fBM are combined with a weighted

sum to form an fBM of different Worley noise frequencies. The sum is executed as

follows: (G Channel*0.625) + (B Channel*0.5) + (A Channel*0.125); the result is then

saved in a variable which will be called lowFreqFBM for simplicity.

The cloud base noise now combines the main shape stored in the R channel of the

first texture with this lowFreqFBM value. This could be done by multiplying them but

we want to carve the noise into the base shape; following the same procedure as when

Perlin-Worley noise was generated in the Procedural Noise Generation section, the remap

function will be used.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 54

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

The inputs for the remap function are the following: (a) base shape noise R

channel; (b) negative inverted lowFreqFBM value, simplified to lowFreqFBM - 1; (c) 1;

(d) 0; (e) 1. What this does is to take the base shape noise R channel value from the range

[lowFreqFBM - 1, 1] to the range [0, 1], carving into it.

Figure 36. Density method code

The result is stored in a variable called cloudNoiseBase which outputs a

homogeneous layer of cloud noise, now with more detail, but lacking the large clumps of

dense noise that form the cloud shapes and the large voids where no clouds are present.

To solve this the weather map texture density values are used. Clouds will form where

more density is present in the weather map and no clouds will appear if the weather map

shows no density. Another remap function is used to erode the weather map cloud

formations with the billowy shapes of the base shape texture that the Perlin-Worley noise

provided. The first input corresponds to the cloudNoiseBase value and the second input

corresponds to the inverted weather map value times the coverage factor. The

cloudNoiseBase value has first been multiplied by a shape altering method that given the

height percent in the cloud layer returns a multiplier of the density at that height.

The ShapeAltering method contains two remap functions multiplied together,

each of them generate a gradient. The former generates a gradient from black to white as

a function of height and the latter a gradient from white to black. When multiplied

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 55

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

together they form a gradient which starts with no density at the bottom, reaches full

density somewhere in the middle of the cloud layer and fades to zero density again at the

top, generating what would be a vertical slice of the cloud shape density.

The result after eroding the cloudNoiseBase value times the ShapeAltering

method by the weather map is a low resolution cloud shape that resembles real clouds but

lacks some detail formations. This is fixed by using the sampled value of the detail shape

texture to add more detail to the cloud.

Before adding the detail, the cloud shape is multiplied by a density altering

method. This method generates a similar gradient to the one generated by the

ShapeAltering method, the difference is that the latter defines the shape of a certain type

of cloud and the former softens the top and bottom boundaries of the entire cloud layer to

not have hard transitions.

To have more billowy details towards the top and wispier details towards the

bottom, the detail value is interpolated by its negative version as a function of the height.

This is then remapped into the main shape to carve out the details and the result is the

final density value for a point in the cloud.

The key factors of the model are the following:

 Remap functions are used instead of multiplying values when we want to

merge different textures to erode each other instead keeping the general shapes

intact.

 Density inside the cloud changes with height depending on how close the

evaluated point is from the cloud layer boundaries (DensityAltering method)

and the type of cloud that is being generated (ShapeAltering method).

 Density of a vertical slice of cloud material is influenced by the weather map.

To sum up the model, the steps that need to be followed to create the cloud shape

are the following:

1. Create billowy shapes eroding the base shape texture channel R with the other

channels in the texture.

2. Modify this billowy shapes density as a function of the height with the

ShapeAltering method.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 56

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

3. Create the main cloud shape eroding the weather map, which is a vertically

extruded version of the 2D weather map, by the billowy shapes.

4. Soften the cloud layer boundaries multiplying the main cloud shape by the

DensityAltering method result.

5. Erode the main cloud shape by the detail texture, interpolated to cause wispy

details at the bottom and billowy shapes at the top.

The clouds generated this way are very basic; more complex shapes are desired to

make the tool more complete. This is the reason why the shape altering method has been

modified to allow for more complex gradients. Instead of generating the gradients from

two remap functions they are sampled from a curve defined by the user which represents

a density value for each height percentage in the cloud layer. The curve is sampled into

an array of values in the CPU when the curve is modified, and then passed into the shader

where a density value from the array is chosen depending on the height percentage of the

evaluated position in the cloud layer. More realistic shapes can be achieved with this

method as seen in Figure 37:

Figure 37. Cloud generated with complex shape altering gradient

Figure 38. Complex shape altering gradient

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 57

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Weather System

The weather system is a group of various features integrated inside the density

model which makes the clouds feel more dynamic and interesting.

Wind and Skew

The first thing that has been implemented for this system is wind. Wind is simply

an offset in the sample location of the base, detail and weather map textures. The shader

receives a wind direction and the current game time and displaces the sample location

accordingly. In practice, this makes the cloud noises and weather map scroll and move.

A multiplier for each texture sample has been added to let the user adjust how

much the wind will affect each texture scroll. Furthermore, in some games the developers

want the cloudscape to be in a certain way, they do not want the clouds to move but they

still want the dynamism of moving clouds, so an option has been implemented for the

wind to not affect the weather map. This way the player can perceive some movement in

the clouds due to the different noises moving but the overall shape and location of the

clouds in the sky does not change.

Skew has also been added to the clouds after the wind. This parameter distorts the

overall shape of the clouds in the wind direction as if the wind was displacing them. Skew,

like wind, woks by displacing the sample position of a texture, but it only displaces the

weather map texture and the amount displaced increases with height.

Cloud Layers

To make the cloudscapes look more dramatic, a circular gradient like the one

proposed in (Schneider, 2015) has been implemented and can be toggled on or off by the

user. This gradient increments the presence of big clouds towards the horizon, making

them more interesting. The distance from the camera at which this effect starts and the

distance at which it maxes out can be controlled by the user of the tool.

Initially the weather system only supported one cloud layer with one cloud type

which made the cloudscapes look very uninteresting and not realistic enough, as only one

type of cloud could be displayed at once. That is why the system has been changed to

support three different cloud types at the same time. The cloud type of a certain location

on the weather map is determined by its green channel; A value of 0 means cloud type

one, a value of 0.5 means cloud type two and a value of 1 means cloud type three. Any

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 58

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

value between zero and one linearly interpolates the ShapeAltering method explained in

the density model for the two closest types of clouds. Although this new approach allows

for more variety in the cloud formations, it still lacks realism.

Another solution has been proposed to solve this problem. Instead of encoding the

cloud type in a weather map channel, three channels are used, one for each cloud type as

detailed in the Procedural Noise Generation section. This allows for different cloud types,

one on top of the other, effectively separating the cloud in three layers with independently

customizable clouds for each layer. In the density model this is accomplished by

performing all the steps for each cloud layer until the base shape for the clouds is created;

then, the value with more density of the three layers is the one eroded by the detail noise.

This final 3 layer solution also makes it easier for the circular gradient towards the

horizon to be implemented as it only has to affect the third channel value of the weather

map texture.

Presets and Transitions

For the tool to be used quickly and easily with good results, some presets for

different weathers have been created. These include the following weather presets: sparse,

cloudy, stormy and overcast. When a preset is selected, a weather map for the preset is

generated with predefined settings in code and passed to the Ray March shader. To not

make abrupt changes in the cloudscape, the weather map also manages transitions

between presets. When a new preset is selected the weather system starts linearly

interpolating both the old and the new weather maps for a specified amount of time.

A problem identified with this approach is that if the user decides to change the

preset when the weather system is already in the middle of a transition, the system will

automatically finish the transition and an abrupt change will happen. There are three

possible solutions to this problem:

1. Do not let the user change the preset when the system is in the middle of a

transition. This solution does not involve a lot of work to be implemented but

makes the transition instruction to be discarded and lost.

2. Queue the change and start the new transition once the last one finishes. This

is a good solution but involves managing a queue and if a transition is queued

it might happen later than expected by the user.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 59

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

3. Bake the state of the transition into a texture at the time the new transition

order is commanded and interpolate the newly generated weather map with

this baked texture as the old weather map. This solution only involves a little

bit of work and makes the transitions unnoticeable; this is also the solution

chosen to be implemented.

To bake the texture a simple compute shader is created, which takes two textures

and an interpolation value and generates the result of the linear interpolation.

Cloud Lighting

The cloud lighting model defines how light is propagated through the cloud

medium. While both multi-scattering and single scattering models exist, the former is not

suitable for real time applications, so a single scattering approach has been adopted. With

a single scattering model, light is calculated for every point evaluated along the Ray

March, casting a secondary ray towards the light source.

As described in the State Of The Art section the lighting in clouds is regulated by

three phenomena which make the light exiting out of participating media be different of

the light that has gone in:

 Absorption: the photons are absorbed by the medium matter, decreasing the

light that reaches the camera.

 In-scattering: photons from all directions can change direction and scatter to

the current light path, increasing the light that reaches the camera.

 Out-Scattering: photons that are traveling towards the camera are scattered

away, decreasing the light that reaches the camera.

There is a fourth phenomenon which makes the media emit light when the

temperature is really high. This effect will be ignored as we are working with clouds in a

relatively cold environment.

The goal of the lightning model is to simulate those phenomena as accurately as

possible. Two methods are going to be used to simulate absorption and scattering:

The Beer-Lambert Law is an extinction model (I.e., is concerned with how light

energy attenuates over depth) that simulates light being absorbed when travelling through

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 60

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

a medium; a simplified version is used which takes as inputs the density accumulated in

a certain distance and a term used to balance the solution. This is sometimes referred as

the transmittance function: T = e-d*t where T is transmittance, d is density and t is the

balancing term.

A phase function describes the probability distribution of light direction. Given an

angle between the incoming light ray and the scattered light direction, the phase function

tells how much light scatters towards this direction. The phase function is responsible for

simulating both in-scatter and out-scatter events. The phase function of cloud

participating media is very hard to model so the same approximation as in (Schneider,

2015) is used. The approximation used is the Henyey-Greenstein model, a phase function

which can model directional scattering. This function has a problem: it is heavily biased

towards one direction so when looking away from that bearing the clouds can appear

nearly black as all the light is scattering towards the other direction. To solve this the

approach presented in (Hillaire, 2016) is followed, which uses a dual-lobe phase function

consisting of two Henyey-Greenstein functions blended together with a weight.

With this dual-lobe function both forward and backward scattering can be

approximated.

In the images, Figure 40 uses a g factor of 0.4 and Figure 39 uses a g factor of 0.4 for the

first lobe and 0.5 for the second lobe with a blend factor of 0.2.

The first approach to lighting the clouds is a very naïve one; the initial system derives

from early Ray March testing using density as a blend factor between a color and the

background. That has become obsolete when lighting functions have started to be tested

Figure 40. Henyey-Greenstein phase function Figure 39. Dual-lobe phase function

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 61

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

and have not worked properly; a switch to an extinction model where work is only done

to reduce the amount of light passing through the medium has been made.

As the cloud lighting system is very complex, lots of tests were made to try and

define a realistic look for the clouds. That caused the task to take longer than expected

and the appropriate actions detailed in the Planning section were taken in consequence.

Some of the tests involve:

 Three different phase function implementations: (a) a simple Henyey-

Greenstein function that only simulated forward scattering; (b) a Henyey-

Greenstein function mixed with a secondary term that added more intensity

around the sun for more dramatic sunsets; (c) the dual-lobe phase function

detailed earlier.

 Three attenuation functions: (a) the simple Beer-Lambert Law simplification;

(b) a Beer-Powder function used in (Schneider, 2015) to approximate the

cloud dark edges when light scatters out of the cloud; (c) The attenuation

function detailed in (Häggström, 2018), which uses the Beer-Lambert Law but

with some light clamping.

 Additional non-physical alterations described in (Häggström, 2018) to (a) alter

the dark parts of the clouds to appear brighter and (b) to approximate dark

edges of the clouds using an out-scattering ambient function.

After the tests a lighting model mixing both the (Schneider, 2016) and

(Häggström, 2018) approaches has been created. This model outputs the color of the cloud

and the density and still mixes the background with the cloud color using this density.

The light energy is calculated for every point in the Ray March process and multiplied by

the transmittance result of the density at the current point times the length of the Ray

March step.

To calculate the light energy, a secondary ray from the point currently being

evaluated is thrown towards the sun direction and marches taking a few samples and

accumulating the density values encountered. Transmittance is then calculated for this

density along the light ray to account for absorption; this lets the clouds self-shadow. The

result is then multiplied by an in/out-scattering method that uses a dual-lobe phase

function mixed with a secondary term as described in the tests earlier which takes the

angle between the light ray and the view ray as an input; this accounts for the silver lining

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 62

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

effect. The out-scattering ambient function from (Häggström, 2018) is used to

approximate the cloud dark edges by multiplying it in the light energy calculation. Finally

light energy is multiplied by the density and the step length, giving a more consistent

result. The overall density is accumulated at each step and outputted to be used as an

interpolation factor between the cloud color and the background color.

Figure 41. Light scattering initial approximation code

While giving good visual results, two major problems have been encountered after

implementing this approach which make it not ideal:

 Using the density as a mixing color factor with the background is not

physically based and causes problems when the value exceeds 1, having to be

clamped manually.

 Lots of Ray March samples are needed for the model to converge into a

solution, usually more than 500, which decreases performance by a lot.

A complete rework of the lighting model has been done to solve those issues. The

new integration model is energy conserving and needs an order of magnitude less of

samples to converge; with less than 50 samples the results are accurate. An analytical

integration is used to calculate the scattered light over a range described in (Hillaire,

2016).

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 63

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

The integration is defined as seen in Figure 42, where S represents the scattered

light, σt represents the extinction coefficient, D is the integration depth and e is an

exponential function. The exponential function is the Beer-Lambert Law simplification,

the transmittance.

When σt = 0 the result of the equation is undefined, so σt needs to be clamped to a small

value. The extinction coefficient σt is calculated from the sum of two user tweakable

values: the absorption coefficient σa and the scattering coefficient σs, being σt = σa + σs.

Figure 43. Light scattering integration code

In the code example seen in Figure 43, S is represented by the luminance variable.

The luminance here takes into account the light source color and intensity as the l variable,

the transmittance in the secondary light ray as the shadow variable and the double-lobe

phase function described earlier. Instead of outputting the density, the background color

is multiplied by the transmittance and then the luminance which arrives to the camera is

added to the result. There are, however, issues that have not been solved yet:

 No ambient light is taken into account when calculating light scattering.

 The dark edge effect of clouds is not simulated.

Figure 42. Light scattering integration

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 64

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Multiple Scattering Approximation

A multiple scattering approximation has been used to better diffuse the lighting

inside of the clouds as proposed in (Wrenninge, Kulla, & Lundqvist, 2013). It uses a

summation over several scales to artificially lower the extinction coefficient σt, the phase

function g factor and the scattering coefficient σs along the light ray, allowing more light

to reach the sample point.

Figure 44. Multiple scattering approximation total light contribution

Figure 45. Multiple scattering approximation octave light contribution

In Figure 44, N is the number of octaves. In Figure 45, a is the attenuation, b is the

contribution, and c is the eccentricity attenuation. N = 4 is a good value for the tool

although it can be changed by the user in the inspector. a, b and c are set to 0.3, 0.75 and

0.5 respectively and cannot be modified through the inspector.

Figure 46. Multiple scattering approximation octaves

Day / Night Cycle

To approximate the ambient light interaction between the skybox and the clouds,

the following method has been implemented:

The ambient light directly above the player and the ambient light towards the sun

have been retrieved from the ambient spherical harmonics probe. With a method to

retrieve the luminosity from a color (0.299R + 0.587G + 0.114B), the luminosity value

of both ambient colors is calculated and the maximum of the two is saved. This value

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 65

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

then multiplies the sun color, making it black when the ambient color is dark, at night.

The dot product between the up direction and the sun direction is used to determine the

sun inclination and increase the ambient color contribution towards the horizon, creating

more epic dawns and dusks. On the shader side, the ambient color is remapped to the

cloud height, being brighter the further up the evaluated point is in the cloud layer.

Scene Integration

In this section some features that aim to make the cloudscapes to be better

integrated into the Unity 3D world are described.

Object Occlusion

Clouds need to interact with objects around them, being able to both occlude

geometry, and be occluded by it at the same time, otherwise cloudscapes will be rendered

in front of everything else.

Unity already renders a depth texture for each frame so it can be retrieved on the

shader to compute occlusion. There are some problems that need to be solved when

working with a Unity depth texture, however; the depth values in the texture are not linear

but we want linear depth to calculate distances reliably. Fortunately, Unity has a built-in

method in HLSL which converts depth to normalized linear values ranging from 0 to 1.

These values can then be converted to meters using the far plane distance of the camera

and passed to the Ray Marching method which will stop rendering clouds if they exceed

the calculated distance.

A side effect of this feature is an increase in performance when the sky is blocked

by objects as clouds do not need to be calculated.

Banding Reduction

One artefact which decreases the realism of the clouds is banding. This

phenomenon is caused by the step size between the samples in the Ray March; as all the

rays start at the same point and advance the same distance every frame, slices of the clouds

are created at regular depths from the camera causing hard serrated edges to appear. To

diminish the effects of banding, a simple solution has been adopted: make the rays start

with slightly different offsets. The offset distance ranges from zero to one step.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 66

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Instead of using random values for each ray, a texture with blue noise is sampled

to retrieve these offsets. The advantage of blue noise is that its values are evenly

distributed; viewed from afar it appears as a featureless grey color texture.

Figure 47. Blue Noise comparison

Figure 47. (a) Some clouds with banding without the blue noise. (b) Blue noise

active, no banding is perceived.

Atmosphere

In this section, atmosphere is defined as the region between the lower and upper

boundaries of the cloud layer; I.e., the region where clouds can form.

In the initial naïve implementation of the atmosphere, the region is defined by two

planes or distances from the ground plane. The purpose of this implementation is to have

an early prototype to allow for quick tests of the clouds. Therefore, no raycast against the

planes is performed to find the starting point and optimize samples, the Ray March

algorithm only tests if its Y coordinate is between those distances and processes clouds

accordingly.

This implementation has two drawbacks:

 Some computational power is used in checking points were there are no

clouds.

 The clouds are parallel to the horizon, there is a gap between the lower bound

of the cloud layer and the horizon. This is unrealistic as in real life the

atmosphere is curved and clouds disappear behind the horizon.

To solve these problems a curved atmosphere has been implemented. The

atmosphere lower and upper bounds are defined by two concentric spheres. A sphere-ray

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 67

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

intersection function is created, which given a ray returns the points at which the ray

intersects the sphere.

A method has been created which takes the camera position as an input and returns

a ray origin from where the Ray March starts and a maximum length for the ray. This

method has three different behaviours depending on the camera position:

Below the atmosphere. If the camera is below the atmosphere, the method detects

where the ray casted from the camera intersects the interior sphere in front of the camera

and sets that as the starting position for the Ray March. It also tests the collision with the

outer sphere to detect where it has to stop and returns the length between the start and end

positions.

In the atmosphere. The method considers the camera position as the ray origin

and the ray length is computed from the first positive intersection between any of the two

concentric spheres.

Above the atmosphere. When the camera is above the atmosphere, the method

first determines if there is an intersection with the outer sphere; if there is, it checks

whether the ray intersects first with the inner sphere or a second time with the outer sphere

and uses this intersection to calculate the ray length.

An issue has been encountered after implementing this method: when

transitioning from being below the atmosphere to inside atmosphere, some clouds

towards the horizon disappear. This is due to the ray stopping at the inner sphere

intersection.

A solution has been implemented to fix this popping behaviour: when inside the

atmosphere, the algorithm only checks for intersections with the outer sphere. This

solution comes at the expense of larger Ray March steps and less optimized sample points

when looking below the horizon as the ray travels to the other side of the atmosphere. It

also renders all the clouds of the atmosphere, including the ones at the other side of the

globe, which is computationally expensive. To minimize the drawbacks, a third sphere

has been created simulating the ground of the planet; when a ray intersects this ground

plane, it stops.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 68

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Custom Editor

Custom unity editors have been created for the scripts in the tool. This has been

done mainly for two reasons:

1. A complex user interaction with the tool settings. There are lots of settings

that users can customize in the tool, but they might feel overwhelmed if all of

them are displayed at the same time. A custom editor helps by only showing

the settings needed depending on the context.

2. Due to some scripts needing to be executed in the scene camera, methods that

are called regularly can sometimes be called by that virtual camera,

overwriting data and causing errors. With custom editors a workaround can be

followed as the methods can be called from the editors themselves when a

variable changes.

Optimization

Since the tool uses mostly procedural content, RAM usage is not an issue and does

not need to be optimized. Instead, the focus is on performance optimizations and the

metric used to assess performance is the time in milliseconds (ms from now on) it takes

to render a frame or its inverse, frames per second (fps from now on). The goal is to render

each frame in 16ms or less on the target hardware at full screen (1920px * 1080px).

The different optimizations have been divided in two different categories

depending on what their target is: Computing Power Related and Memory Related. These

categories are detailed below.

Evaluation Tools

Some tools have been used when trying to evaluate performance for the clouds,

both external and Unity’s own internal ones. These are the tools that have been utilized:

 PIX: An external tool for performance tuning and debugging for DirectX 12

games on Windows.

 RenderDoc: A graphics debugger tool that allows for single-frame capture

and inspection of applications in a variety of platforms and graphics

languages. It is available as a standalone application and is also integrated in

Unity for easier debugging.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 69

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

 Unity’s frame debugger: An internal tool in Unity that outputs performance

metrics for the overall frame and the functions that have been called in each

of them. It does that for the last frames recorded in Unity’s own editor.

Despite being useful in some specific cases in terms of finding errors, they are

very cumbersome to use for fast iteration. The internal ones only work in the editor and

Unity’s own performance impact pollutes the metrics, and the external ones have to

launch the standalone application that wants to be tested, collect the metrics, save them

externally and the user still has to search for the important performance indicators on the

data collected, which makes it very time consuming.

For these reasons a benchmark system has been created as a script in the tool. This

system is part of the demonstration application and works both inside the Unity editor

when play mode is active and in the standalone application. It only collects the data

needed for the tool, it evaluates the performance at different altitudes in the sky in each

of the weather presets available and outputs the information directly to the screen. This

data can also be saved in a .csv file and opened with Excel or similar programs. All the

metrics shown in the optimization section have been collected with the benchmark

system.

Figure 48. Benchmark system graphic output

Computing Power Related

Optimizations explained here focus on reducing the time it takes for the shader to

execute its operations, which is directly related to the number of operations needed to be

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 70

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

performed and the time cost of each type of operation. E.g., the GPU takes longer to

compute a square root function than a simple multiplication of values.

Dynamic Steps with Density. Sampling textures on points along a ray is costly

in terms of performance so we want to reduce the number of samples taken without a

noticeable impact on the visual quality of the render. We can take advantage of the

method that is used to get the density of the clouds at any point in space. As explained in

the Cloud Modelling section, what this method does is to carve a base texture with other

textures to get the final shape of the clouds so the shape is always contained within the

base texture boundaries. This gives us the opportunity to divide the sampling method into

two: the first is the detailed one, the one that has been used until this point, which is

expensive and samples three textures; the second one is the cheap one, only sampling the

base texture to know if the sample point is near a cloud.

As proposed in (Schneider, 2015), instead of using a constant step length during

the Ray March process, the shader now uses a two-level approach; Points are sampled at

a greater length with the cheap density method and once the density sampled is non-zero

the shader is potentially sampling a point inside a cloud. It then goes a step back and starts

sampling with the detailed density method at closer intervals as it did before the

optimization. When a certain number of points in succession encounter no density in the

detailed mode, the shader switches back to cheap samples and long steps. This is

illustrated in Figure 49.

Figure 49. Dynamic Ray March steps with density (Schneider, 2015)

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 71

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Dynamic Steps Over Distance. Since the nearest clouds are occupying most of

the screen, they need a great amount of detail, whereas far away clouds with a span of

only 10 pixels do not as it won’t be visible. With the constant step over distance approach

that was first implemented, the detail density did not change wasting samples on far away

clouds and rendering them with the same detail as the nearest ones. With this optimization

it is proposed to, after a certain amount of distance from the camera has been reached,

switch from constant samples to dynamic ones, increasing the distance between samples

the further away they are from the camera. This reduces the amount of samples needed to

be evaluated for each ray and increases performance. The implementation used in the tool

linearly interpolates between a minimum and a maximum step length given a value

between zero and one. This value is calculated as the percent that is the sampled distance

from the maximum possible length a ray can be in the spherical atmosphere squared.

LODs Over Distance. A very straightforward optimization already present in

meshes for most of the commercially available engines and that is also applicable in the

tool’s clouds. It consists on sampling a mipmap 8 depending on distance. For the tool it

required to manually generate mipmaps for each of the textures passed to the shader and

manually set the LOD level based on the sample distance from the camera as engines only

do this automatically for geometry.

Minor Shader Optimizations. The cloud rendering shader has been optimized

removing certain elements and behaviours that decreased the performance:

 Dynamic Branching: That is, if or if-else statements with conditions that

change at runtime and cause the shader to break parallelism by forcing the

GPU to perform different calculations at the same time.

 Duplicated Operations: redundant operations that were calculated for every

pixel and only needed to be calculated once have been moved out of the shader

and passed as uniform variables instead, reducing the number of operations.

Operations that were calculated more than once per pixel have also been

moved to only be computed once and passed as variables on the methods.

8 A collection of bitmap images that accompany a texture to increase rendering speed and reduce rendering

artefacts. Each bitmap image in the set is a scaled-down version of the main texture.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 72

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

These minor optimizations has required most parts of the shader code to be

refactored to some degree but has increased performance in return.

Memory Related

Optimizations explained here focus on reducing VRAM usage on the GPU and

making the size of variables in the shaders smaller so they take up less space and are

easier and faster for the GPU to fetch.

Reduced Texture Bit Depth. The original RGBA textures stored 16 bits per

channel, with each channel capable of holding one of 65,536 distinct values. The texture

bit depth has been reduced to 8 bits, or 256 values, per channel with no significant visual

change to the shape of the clouds. This makes the textures take less space and increases

performance.

Blue Noise as Single Channel. Blue noise is a black and white texture and prior

to the optimization phase it was encoded as a normal RGBA texture taking 4 channels

worth of space. That has been changed and now all the blue noise values are encoded in

a single red channel of a texture.

Base Noise Texture Size Reduced. The default size of the 3D base noise texture

that forms the base shape of the clouds has been changed to be 128px * 128px * 128px

instead of 256px * 256px * 256px with no noticeable visual changes but a performance

increase. Users can still customize the size of this texture as desired.

Overview

Before any optimization, the cloud rendering shader performed at 93ms per frame

on average, peaking at 131ms in certain cases on the target hardware. These values made

it unusable for real time applications. After the optimization process, the average time it

takes for a frame to render is 11ms with values as low as 4ms with some weather presets.

This result represents a nearly tenfold increase in performance and makes it usable for

videogames running at 60 fps (16ms). The table below details the performance increase

with the different optimizations explained in this section applied:

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 73

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Table 9. Optimizations performance

Optimization

Average ms

(of all weather

presets)

No optimization 93 ms

Reduced Texture Bit Depth + Blue Noise as Single Channel +

Base Noise Texture Size Reduced
61 ms

Dynamic Steps with Density 35 ms

Dynamic Steps Over Distance + LODs Over Distance 19 ms

Minor Shader Optimizations 11 ms

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 74

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Conclusions & Future Work

Finally, after months of development, a usable tool has been created, allowing

users to author their own cloudscapes. All of the general objectives proposed in the Goals

section have been accomplished:

Create a Tool. A free to download and use tool for Unity has been created, and

its development has been documented in this thesis. Most of the tool’s options can be

accessed from Unity’s inspector window, making it more accessible to people familiar

with the engine but unfamiliar with code.

Develop a Project. The project has been completed, ending with a finished

product that can be used by the general public; its planning, research and development

are documented in this thesis.

Contribute Knowledge. Knowledge is being provided to those interested in

developing a similar project or systems in two ways: through this thesis, with explanations

of the tool and its systems and how they work, and through the tool itself, as the code is

available both in GitHub and in the scripts contained in the tool.

The level of accomplishment of the specific objectives mentioned in the Goals

section is discussed below:

Texture Generation. A system capable of generating seamless 3D textures has

been developed to create the clouds. It has also been expanded to be able to make 2D

weather maps procedurally. Users can tweak the generation of their 3D textures to

customize the shape of their clouds.

Cloud Generation and Rendering. The Density and Lighting models are the

most critical systems in the tool, as they define the look and feel of the entire cloudscape.

A lot of time, effort and polish has gone into these systems to achieve the realistic look

of the clouds in the tool. A high level of accomplishment has been reached with these

systems; however, with the final light integration used to render the clouds it has not been

possible to simulate the dark edge effect when looking away from the sun.

Customize the Clouds. The tool offers a high level of customization with two

modes: the simple mode allows the user to choose from 4 premade weather presets and

tweak them; the advanced mode has more options and lets the user customize everything

about the look of the clouds.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 75

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

Create and publish the tool. The tool development has been completed, it has

been submitted to the Unity Asset Store as a package and it is currently in the process of

being published.

Document Performance. The performance and efficiency of different methods

and systems in the tool has been discussed and documented in the Development section

of this thesis. To help document performance better, a benchmarking system has been

developed with the tool, recording various performance statistics while executing the

demonstration application and also working in Unity’s play mode. Other tools to

document performance have also been used to complement this system and are also

mentioned in the Optimization subsection in the Development section.

Create a Demo. A small demonstration application has been created, with four

versions of the application available in the Releases section of the project’s GitHub

repository. It allows the user to freely move around the world and customize the most

important parameters of the tool in real time. It also shows its performance in real time

and allows the user to further analyse it through its benchmark system.

In summary, all major objectives set have been accomplished, successfully

developing a tool to create clouds with a very high level of customization. However, there

have been some challenges during the development phase: some small features have been

left out in favour of completing critical features with the high quality needed to

accomplish the goals that had been set. This has been detailed in the Planning Changes

and Deviation subsection in the Planning section. The tool also required a lot of

optimization to be capable of performing the rendering in less than 16ms and be

considered real time in the target hardware.

The development of the project shows that with current commercially available

hardware it is possible for new generation games to use volumetric cloudscapes with a

high level of realism. However, only a few games nowadays use this technique and with

this tool the aim is to spread the knowledge and technology and give developers in the

industry more options to work with.

The objective in the near future is to, once it gets approved and thus published to

Unity’s Asset Store, keep working on the tool, improving it and adding new features, as

it can be very useful to Unity users. Developing a version of the tool for Unity’s URP and

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 76

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

HDRP render pipelines would allow the project to reach more users and it is also being

contemplated.

https://www.upc.edu/en

Aetherius: Real-Time Volumetric Cloud Generation Tool for Unity 77

© Oscar Pérez Martín 2022 Universitat Politècnica de Catalunya

References

Bauer, F. (2019). Creating the Atmospheric World of Red Dead Redemption 2: A

Complete and Integrated Solution. Retrieved from

https://advances.realtimerendering.com/s2019/slides_public_release.pptx

Fong, J., Wrenninge, M., Kulla, C., & Habel, R. (2017). Production Volume Rendering

SIGGRAPH 2017 Course. Retrieved from

https://graphics.pixar.com/library/ProductionVolumeRendering/paper.pdf

Häggström, F. (2018). Real-time rendering of volumetric clouds. Retrieved from

https://www.diva-portal.org/smash/get/diva2:1223894/FULLTEXT01.pdf

Hillaire, S. (2016). Physically Based Sky, Atmosphere and Cloud Rendering in

Frostbite. Retrieved from

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-

frostbite-sky-clouds-new.pdf

Perlin, K. (2002). Improving Noise. In Proceedings of the 29th annual conference on

Computer graphics and interactive techniques (pp. 681-682).

Schneider, A. (2015). The Real-time Volumetric Cloudscapes of Horizon: Zero Dawn.

Retrieved from http://advances.realtimerendering.com/s2015/The%20Real-

time%20Volumetric%20Cloudscapes%20of%20Horizon%20-

%20Zero%20Dawn%20-%20ARTR.pdf

Schneider, A. (2016). Real-Time Volumetric Cloudscapes. In W. Engel, GPU Pro 7:

Advanced Rendering Techniques (pp. 97-127). CRC Press.

Schneider, A. (2017). Nubis: Authoring Real-Time Volumetric Cloudscapes with the

Decima Engine. Retrieved from

http://advances.realtimerendering.com/s2017/Nubis%20-

%20Authoring%20Realtime%20Volumetric%20Cloudscapes%20with%20the%

20Decima%20Engine%20-%20Final%20.pdf

Wrenninge, M., Kulla, C., & Lundqvist, V. (2013). Oz: The Great and Volumetric.

SIGGRAPH '13: ACM SIGGRAPH 2013 Talks. Anaheim.

https://www.upc.edu/en

	Abstract
	Acknowledgements
	Keywords
	Links
	Table of Contents
	Index of Tables
	Index of Figures
	Glossary
	Abbreviations
	Acronyms
	Vocabulary

	Preface
	Motivation
	The Problem
	Goals
	Scope of the Project

	State of the Art
	Cloud Representations
	Skybox
	Billboard
	Polygon
	Voxel
	Procedurally Generated Clouds

	Volumetric Rendering
	Volumetric Cloud Tools Available
	Unity Engine
	Unity Packages
	Unreal Engine

	Methodology
	Documentation Structure
	Procedure and Tools for Project Monitoring
	Gantt with Agantty
	Kanban with Trello
	Version Control Tools with GitHub and GitHub Desktop

	Evaluation Methods
	Objectives Validation
	Task Validation

	Risks and Contingency Plans
	General Risks
	Concrete Risks

	Planning
	Phases of Development
	Pre-Production
	Production
	Post-Production

	Initial Cost Analysis
	SWOT Analysis
	Planning Changes and Deviation (15/03/22)

	Development
	Procedural Noise Generation
	Worley Noise
	Improved Perlin Noise
	Fractal Brownian Motion
	Cloud textures
	Weather Map Textures

	Cloud Modelling
	Ray March
	Density Model

	Weather System
	Wind and Skew
	Cloud Layers
	Presets and Transitions

	Cloud Lighting
	Multiple Scattering Approximation
	Day / Night Cycle

	Scene Integration
	Object Occlusion
	Banding Reduction
	Atmosphere

	Custom Editor
	Optimization
	Evaluation Tools
	Computing Power Related
	Memory Related
	Overview

	Conclusions & Future Work
	References

