
Dynamic spawning of MPI processes
applied to malleability

Journal Title
XX(X):1–19
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Iker Martı́n-Álvarez1, José I. Aliaga1, Maribel Castillo1, Sergio Iserte2 and Rafael Mayo1

Abstract
Malleability allows computing facilities to adapt their workloads through a resource management systems (RMS) to
maximize the throughput of the facility and the efficiency of the executed jobs. This technique is based on reconfiguring
a job to a different resource amount during execution and then continuing with it. One of the stages of malleability is the
dynamic spawning of processes in execution time, where different decisions in this stage will affect how the next stage of
data redistribution is performed, which is the most time-consuming stage. This paper describes different methods and
strategies, defining eight different alternatives to spawn processes dynamically and indicates which one should be used
depending on whether a strong or weak scaling application is being used. In addition, it is described for both types of
applications which strategies benefit most the application performance or the system productivity. The results show that
reducing the number of spawning processes by reusing the older ones can reduce reconfiguration time compared to
the classical method by up to 2.6 times for expanding and up to 36 times for shrinking. Furthermore, the asynchronous
strategy requires analysing the impact of oversubscription on application performance.

Keywords
Process spawning, MPI, Application reconfiguration, Malleability, Threading

1 Introduction

High performance computing (HPC) facilities need the
application of novel programming techniques to fully utilise
the large number of processors interconnected via high-speed
networks. The main goal of HPC, particularly in exascale
supercomputers, is to use specialised techniques to maintain
a high rate of productivity in the system in terms of jobs
completed per unit of time.

Large computing facilities usually include resource
management systems (RMS), which monitor available
resources and allocate them when users launch new jobs.
Therefore, when a job asks the RMS for the resources
necessary for its complete execution, its allocation should
be different depending on whether the main goal is to end the
execution as soon as possible or to improve the productivity
in the system. Usually, from the application’s point of view,
the shortest execution times occur when more resources are
assigned, although not all of them are always used during
its execution, whereas higher system productivity is obtained
when all resources are used most of the time. To combine both
goals, RMS must assign the optimal number of resources
in each step of the job, achieving a trade-off between the
execution time of the applications and the productivity of the
system.

In this regard, malleability allows applications to modify
the initially allocated computational resources, while the job
is running. The benefits of its usage can be analysed from
two different points of view. For every single application, the
benefit can derive from the increase of its performance when
the job obtains more resources, whereas, for the global system,
the benefit can derive from the increase of the throughput with
the reduction of the makespan.

The application of malleability has shown an approximately
20% reduction of the makespan in Posner and Fohry (2021).
Furthermore, Iserte et al. (2020) demonstrated the ways to use
it to reduce makespan by approximately 4x when combined
with malleability techniques, whereas Iserte and Rojek
(2019) showed its impact on energy efficiency improving
approximately 2.4x in GPU-capable workloads.

To date, malleability is infrequently used by applications,
as described in Hori et al. (2021) and Bernholdt et al. (2018).
Although checkpoint/restart (C/R) techniques exhibit similar
behaviour and can ease the adoption of malleability in codes,
they have exceedingly high reconfiguration times Iserte et al.
(2016).

In this study, we considered malleability as the capability
of a distributed MPI parallel job to modify the number
of processes without stopping its execution, varying the
computational resources initially assigned to the job as many
times as it is required and without storing application data on
disk.

Malleability is applied to specific points of the execution
where processes are synchronized in a checkpoint. For
iterative applications, defining a single checkpoint will be the
most common option, whereas for non-iterative ones, defining
a checkpoint at the beginning of each phase will be a good

1Universitat Jaume I, Dept. Ing. y Ciencia de los Computadores, Castelló,
Spain
2Barcelona Supercomputing Center, Dept. of Computer Science, Spain

Corresponding author:
Iker Martı́n-Álvarez, Universitat Jaume I, Dept. Ing. y Ciencia de los
Computadores, Castelló, Spain.
Email: martini@uji.es

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

The final version of thisb accepted manuscript can be found at: https://doi.org/10.1177/1094342023117652

Copyright © 2023 by SAGE Publications

2 Journal Title XX(X)

alternative. The first task to execute in the checkpoints is to
contact the RMS to determine if the application should be
reconfigured because RMS is responsible for making this
decision. If the RMS proposes to apply malleability, the
following tasks are to be performed:

1. Resources reallocation. The RMS allocates new and/or
relinquishes assigned resources to/from a job.

2. Processes management. Spawn/terminate processes
according to the RMS reconfiguration decision.

3. Data redistribution. Communicate data among initial
and new processes, such that the execution continues
properly.

This paper is focused only on stage 2, probing different
methods to spawn and terminate MPI processes, and analysing
their impact on the performance of malleable applications. In
the near future, another study will extend this analysis to the
stages 1 and 3, finding the best combination of methods to
apply malleability in a job.

The main contributions of the paper can be summarized as
follows:

– Two methods are presented for spawning processes:

– Baseline, where any malleability action spawns
new processes; and

– Merge which always attempts to reuse the old
processes, reducing the number of spawned ones.

– These methods can be applied with different strategies:

– Asynchronous: POSIX threads are responsible for
spawning processes in the background (in contrast
to the synchronous operation, where processes
wait for completing the reconfiguration).

– Single: Only one process is involved in the
spawning (in contrast to the original collective
spawn).

– All methods were evaluated using a synthetic
application that defined two designed benchmarks,
simulating weak and strong scaling applications.

The rest of this paper is organized as follows. Section 2
discusses related work in the area of malleability and dynamic
spawn of processes in MPI applications. Section 3 describes
the different methods and strategies to apply malleability
in MPI. Section 4 shows results obtained when a synthetic
application is used, showing the best alternatives in different
scenarios. Section 5 summarizes the paper and discusses
future work.

2 Background
Several strategies of spawning and terminating MPI ranks
in reconfigurable jobs have been implemented by different
malleability solutions. This section reviews these approaches
along with the frameworks in which they are implemented.

On the one hand, C/R strategies for malleability base their
processes reconfiguration on launching NC new processes
(children). Some examples are the Process Checkpointing and

Migration (PCM) API El Maghraoui et al. (2006), Scalable
C/R (SCR) Moody et al. (2010) or Stop Restart Software
(SRS) Vadhiyar and Dongarra (2002). For this purpose, NP
old processes (parents) store the data in a disk and terminate
their execution. Then, children are spawned and they load the
data from the disk. This approach always spawns all children
both to expand and shrink the number of processors.

A specific solution for an MPI Computational Fluid
Dynamics (CFD) application is found in Houzeaux et al.
(2021), which employs COMP Superscalar (COMPSs) Badia
et al. (2015), along with the Tracking Application Live
Performance (TALP) library Lopez et al. (2021), to allow
performance-aware malleability. COMPSs exploit parallelism
directly from sequential code, allowing users to avoid any
issue related to concurrency. The CFD-modified application
uses C/R techniques, which leverage COMPSs to reconfigure
the application. Reconfigurations occur only if the TALP
library indicates that it will provide a reduction in execution
time while expanding or similar efficiency with fewer
resources. When a reconfiguration occurs, the application
creates a checkpoint, saving the data to the filesystem, and
the application is restarted with the new number of processes
and the data is distributed accordingly.

On the other hand, recently, there have been in-memory
solutions for malleability, which avoid disk usage during the
reconfiguration.

In Iserte et al. (2020), the Dynamic Management
of Resources (DMR) framework is introduced, which
implements malleability using the OmpSs programming
model1 on the runtime Nanos++2. This is a distributed parallel
runtime based on MPI, responsible for handling processes and
their communication. DMR expands jobs by spawning all the
children in a new communicator from scratch, as presented
in Iserte et al. (2018). Once data are received by the NC
children, the NP parent processes are terminated. As a result,
before this termination, there are NP +NC processes during
the data redistribution stage. Nevertheless, DMR shrinks jobs
by terminating processes if the ids are equal to or greater than
NC. In this case, some parents are terminated, rather than
spawning any children. This termination occurs when the data
is redistributed among the parents to continue the execution
of NC processes.

Furthermore, Iserte et al. (2017) presented an asynchronous
version of DMR that schedules reconfiguration actions while
applications execute their computations. Thus, the runtime
already knows if an expansion, shrinkage, or no action has to
be performed in the malleability point before asking to the
RMS since the action has been programmed in the previous
request. Notice that the asynchronous version produces more
action abortions than the synchronous because the continuous
cluster status changing.

Authors in Lemarinier et al. (2016) present a reconfigura-
tion technique for MPI applications based on the User Level
Failure Mitigation (ULFM) MPI Bland et al. (2013), which
supports the use of the standard MPI Comm spawn routine
and dynamic removal of processes. In this solution, jobs are
expanded by spawning new processes and merging them into
the main communicator. Because the collective operations
do not return uniformly in the presence of unexpected pro-
cess termination, ULFM counts with the MPI Comm shrink

Prepared using sagej.cls

Martı́n-Álvarez et al. 3

routine that creates a new communicator from the original
communicator in which unwanted processes are excluded.

Flex-MPI is a performance-aware reconfiguration
library Martı́n et al. (2015). Processes in Flex-MPI are
divided into two types: initial, processes spawned when
launching the application; and dynamical, processes created
during execution time. Flex-MPI does not allow initial
processes to be terminated during the execution. Therefore,
only dynamical processes after an expansion can be shrunk.
Furthermore, dynamic processes are created/terminated
one at a time. In the case of an expansion, each new
process is created in a new communicator connected to the
main group of processes, which in turn, is merged into an
intra-communicator using the MPI Intercomm merge routine.

Authors in Comprés et al. (2016) developed an
infrastructure for elastic execution of MPI applications
relying on Slurm3 and MPICH4. This approach introduces
an adaptive mode in which the execution must be explicitly
initialized. Then, the reconfiguration operation provides
two communicators as output: one communicator that is
equivalent to the one provided by spawn routines, and
another communicator that provides an early view of the
future MPI COMM WORLD communicator. For shrinking,
processes to be removed will not have access to the
future MPI COMM WORLD, setting their communicator to
MPI COMM NULL. Finally, pre-existing and new processes
are joint in MPI COMM WORLD.

In summary, merging communicators for expanding a
job is presented as the most adopted solution. However, no
consensus exists during shrinking because each framework
solves it differently.

Existing solutions rarely use asynchronous MPI methods,
although Wittmann et al. (2013) demonstrated that the use of
asynchronous primitives in MPI could reduce the execution
time by overlapping communications with computation. This
technique can also be used to overlap reconfigurations with
computation.

The authors in Aliaga et al. (2022) describe a more
extensive malleability state-of-the-art including less related
works.

3 Methods to dynamically reconfigure MPI
applications

This section analyses different methods that allow varying the
number of processes during malleable executions.

We assumed that initially NP processes (parents) execute
an application and, at any given time, this number is modified,
such that NC processes (children) execute the application,
where NC can be greater or lower than NP (expand or shrink,
respectively).

Without deviating from the standard MPI scope Message
Passing Interface Forum (2021), we considered different
alternatives to complete the reconfiguration stage of a job
reconfiguration. Particularly, this section describes different
methods/strategies to set a new layout of MPI ranks, mapping
new MPI ranks to nodes or cancelling some of the active
processes, while the job is running. About the methods, we
consider the following:

– Baseline. A basic method to spawn the required
processes.

– Merge. A more complex method in which the number
of spawned processes creating new communicators is
reducing, reusing, and merging existing communica-
tors.

These methods can be used along with any combination of
the following strategies:

– Determining the number of parents involved in the
spawn operation: only one, or all collectively.

– Spawning processes synchronously or asynchronously.

Therefore, each method has up to four different ways of
spawning processes as they can be used with no strategies,
one of them, or both.

These methods are mainly based on the MPI routine
MPI Comm spawn, which is a collective operation on the
specified communicator. The definition of this routine, which
appears in Message Passing Interface Forum (2021), is as
follows:

int MPI Comm spawn(const char *command,
char *argv[], int maxprocs, MPI Info
info, int root, MPI Comm comm, MPI Comm

*intercomm, int array of errcodes[])

where:

– command and argv include the name of the program
to be executed on the new processes and the
corresponding arguments, respectively.

– maxprocs contains the number of processes to be
spawned.

– info provides additional information to the processes,
using user-specified (key, value) pairs.

– root determines the MPI rank, which supplies the
previous arguments to the routine. For the other
processes in the communicator, the value of these
parameters is ignored.

– comm is the intra-communicator of the calling group,
the parents.

– intercomm is the inter-communicator defined
between the parents and the newly spawned processes.

– array of errcodes is an integer vector, with a
size equal to maxprocs. Each component informs
whether the launch of the corresponding process has
been successful or not.

We note that only the last two are output parameters, whereas
the others are input parameters.

As it is reported in Comprés et al. (2016), the routine
included in MPI Standard has the following issues:

– It is a synchronous operation for all the processes
involved in the invocation, parents, and newly spawned
processes.

– It produces an inter-communicator based on disjointed
processes groups: one for the parents and the other for
the newly spawned processes.

– Subsequent creation of processes results in multiple
process groups. Communication between them is not
straightforward to manage.

– Processes can only be terminated on the entire process
group. Therefore, processes in a group are not destroyed
until all of them invoke MPI Finalize.

Prepared using sagej.cls

4 Journal Title XX(X)

1 void baseline_parents(char *cmd, int root,
2 MPI_Comm intracomm, MPI_Comm *newcomm) {
3 char *hostlist;
4 int hostlist_size, spawn_method=BASELINE;
5 MPI_Info info;
6
7 // Calculates where each new process will be mapped,
8 // returning the list of processes and its size.
9 calculate_physical_distribution(&hostlist,

10 &hostlist_size, spawn_method);
11 MPI_Info_create(&info);
12 MPI_Info_set(info, "hosts", hostlist);
13 MPI_Comm_spawn(cmd, MPI_ARGV_NULL, hostlist_size,
14 info, root, intracomm, newcomm,
15 MPI_ERRCODES_IGNORE);
16 MPI_Info_free(&info);
17
18 // Additional spawn operations for new processes
19 void baseline_children(MPI_Comm *new_comm) {
20 MPI_Comm_get_parent(&new_comm);
21 }

Listing 1: Basic skeleton of the Baseline method.

– By default, processes created with spawn operations
are run in the same resource allocation.

These features must be considered in the development of the
different spawning methods.

3.1 Baseline method
The Baseline reconfiguration is defined as a synchronous
method where all NP parents are involved in the spawn of
NC children.

In this method, a call to MPI Comm spawn is executed
to spawn NC new processes. The MPI Info argument
will propose the mapping of each new MPI rank to the
target hosts, although the final decision will be made by the
RMS in production systems. Moreover, the returned inter-
communicator by the MPI routine allows communication
between parents and children. For malleability, once this
operation is completed, parents terminate their execution,
whereas children will continue with the application.

Figure 1a represents the stages of this method during the
execution of an iterative application, which is reconfigured
after the first iteration. Therefore, it starts with NP processes
running It0, then new NC processes are spawned, which
continue in It1. Notably, before terminating the parents,
NP +NC processes are running.

Listing 1 shows a pseudo code on the functioning of this
method. Mapping is performed at L7-L10, whereas children
are spawned at L13-L15 along with the creation of the inter-
communicator newcomm. We note that intracomm should
be the communicator defined by the NP parents.

The theoretical computational time of this method (RTS)
is calculated by using (1),

RTS = T Spw(NP,NC), (1)

where T Spw(NP ,NC) is the consumed time by
MPI Comm spawn to spawn NC processes.
NP and NC are included in the equation because it has

been experimentally proved that T Spw depends on both.

3.2 Merge method
The Merge method, which was proposed in Radcliffe et al.
(2011), reconfigures a job by creating only the necessary

processes or removing those that are no longer required.
Therefore, two different options are considered:

– Expanding (when NP < NC), which generates
NC −NP new processes

– Shrinking (when NP > NC), which suspends NP −
NC processes.

In both cases, it is considered that the mapping of the
surviving parents is not changed.

3.2.1 Expanding a job
In this case, MPI Comm spawn is configured to create

NC −NP new processes. All further communications
in the application should be conducted using a new
intra-communicator, which includes both the parents
and new spawned processes. This intra-communicator
can be created from the parents’ communicator and
the returned inter-communicator, using the MPI routine
MPI Intercomm merge, which is defined as follows:

int MPI Intercomm merge(MPI Comm intercomm,
int high, MPI Comm *newintracomm)

In this definition, the parameter high determines the group
of processes that are numbered first and last.

Therefore, the steps to perform this method are the
following:

1. Set physical mapping for NC −NP processes.

2. Spawn the NC −NP processes.

3. Execute MPI Intercomm merge to join parents and
new processes into a single communicator.

Figure 1b represents the expansion of an iterative
application using this method. In addition, the reconfiguration
starts at the end of It0, involving the spawn (Spw) and the
communicators merge (Mrg) stages. Finally, old and new
processes continue running the next iteration (It1).

Listing 2 shows a pseudo code for the way of expansion
with the Merge method. From the parents’ point of view,
this pseudo code is close to the Baseline method, because
only some additional operations, marked in blue (L4, L6, and
L17), are added to join old and new processes into the new
intra-communicator; subsequently, the inter-communicator
is freed. A similar conclusion can be drawn from the point
of view of new processes, because the additional operations,
marked in blue operations (L23-L26), only focus on merging
both communicators. We note that the second parameter
of MPI Intercomm merge determines that parents are
numbered before new processes.

The theoretical computational time of this method (RTS)
is calculated by using (2),

RTS = T Spw(NP,NC −NP) + T Mrg(NC), (2)

where T Spw is the time required by MPI Comm spawn to
spawn (NC −NP) processes, and T Mrg is the time required
to combine both groups into a single one with NC processes.

Prepared using sagej.cls

Martı́n-Álvarez et al. 5

(a) Baseline (2 → 4). (b) Merge (2 → 4). (c) Merge (4 → 2).

(d) Baseline Single (2 → 4). (e) Merge Single (2 → 4). (f) Async. Baseline (2 → 4).

(g) Async. Baseline Single (2 → 4). (h) Async. Merge Single (2 → 4).

Figure 1. Functioning of different reconfiguration methods. In each subplot, the groups of horizontal blocks refer to a process,
showing the executed iteration (ItX) and the main operations: spawn (Spw), connect (Con), and merge (Mrg). Moreover, striped blocks
refer to the time wasted by process/thread.

1 void merge_expand_parents(char *cmd, int root,
2 MPI_Comm intracomm, MPI_Comm *new_comm) {
3 char *hostlist;
4 int hostlist_size, spawn_method=MERGE;
5 MPI_Info info;
6 MPI Comm intercomm;
7
8 // Calculates where each new process will be mapped,
9 // returning the list of processes and its size.

10 calculate_physical_distribution(&hostlist,
11 &hostlist_size, spawn_method);
12 MPI_Info_create(&info);
13 MPI_Info_set(info, "hosts", hostlist);
14 MPI_Comm_spawn(cmd, MPI_ARGV_NULL, hostlist_size,
15 info, root, intracomm, newcomm,
16 MPI_ERRCODES_IGNORE);
17 MPI Intercomm merge(intercomm, 0, new comm);
18 MPI_Info_free(&info);
19 }
20
21 // Additional spawn operations to merge new processes
22 void merge_new_procs(MPI_Comm *new_comm) {
23 MPI Comm intercomm;
24 MPI_Comm_get_parent(&intercomm);
25 MPI Intercomm merge(intercomm, 1, new comm);
26 MPI Comm free(&intercomm);
27 }

Listing 2: Basic skeleton of the Merge Expand method.

3.2.2 Shrinking a job
In this case, only NC parents must be maintained in the

application. Therefore, the MPI routine MPI Comm split
is used to create a new intra-communicator with only NC
processes. The definition of this routine is shown below,

int MPI Comm split(MPI Comm comm, int color,

int key, MPI Comm *newcomm),

in which the parameter color is used to divide the current
communicator. For shrinking, only two groups are considered:
NC processes to be stayed and NP −NC processes to be
suspended.

The discarded processes are no longer needed and they
become zombies, releasing their resources and suspending
their execution until MPI Finalize. It is important to
suspend these processes until all other processes in the
same communicator complete their work and execute the
MPI Finalize routine, avoiding a busy-wait loop that can
disturb the execution of active processes. Notice that all
processes in the same communicator have to be removed
at the same time calling MPI Finalize. For this purpose,
the root process must wake up zombies to allow all processes
to finalize the MPI environment before MPI Finalize is

Prepared using sagej.cls

6 Journal Title XX(X)

invoked by active processes. Therefore, the steps to complete
this method are as follows:

1. Execute MPI Intercomm split to divide the
current group of processes into two groups: NC actives
and NP −NC zombies.

2. Root process obtains the PID and the node name of the
zombies using MPI Gather.

3. Zombies move to a deep sleep state, whereas the active
processes continue running.

4. Before the program ends, the root process awakens
the zombies, allowing all processes to finalize the MPI
environment.

Various alternatives exist to suspend processes, each of
them with different overheads. We propose to use the system-
call sigsuspend to allow zombie processes to move into
a deep sleep state where they do not consume resources.
Additionally, different factors about the ways the root process
wakes up zombies must be considered.

First, all active processes must conclude their computation
before the zombies wake up to avoid execution overheads by
a busy-wait. A solution is to synchronize active processes in
a MPI Barrier just before the root starts to wake up the
zombies.

Second, zombie processes are waking up only to finalize
their execution, therefore, it might be better to directly force
their cancellation. If all zombies are on the same node as the
root process, it could send them a system-call kill, and then
all active processes execute MPI Finalize. However, if a
zombie is on a different node from the root, the best alternative
is to execute MPI Abort, which, in most implementations,
terminates all processes.

Figure 1c shows the Merge Shrink method in an iterative
execution, where the label Mrg refers to the shrink operation.

Listing 3 shows a pseudo code about the use of this method
to perform shrinking. The Gather zombie info routine
allows the root process to obtain the PID and node name of all
the zombies. Moreover, release somehow resources
releases the local resources of a process, whereas
enter deep sleep suspends the process until the root
wakes it up.

1 #define ZOMBIE 0
2 #define ACTIVE 1
3
4 void merge_shrink(MPI_Comm intracomm,
5 MPI_Comm *newcomm, int rank, int NC) {
6 int situation = ZOMBIE;
7
8 if(rank < NC) situation = ACTIVE;
9

10 MPI_Comm_split(intracomm, situation, rank, newcomm);
11
12 Gather_zombie_info();
13
14 if(situation == ZOMBIE) {
15 release_somehow_resources();
16 enter_deep_sleep();
17 }
18 }

Listing 3: Basic skeleton of the Merge Shrink method.

Next, we show the theoretical computational time of this
method (RTS) by using (3),

RTS = T split(NP) + T gather(NP), (3)

where T split is the time required to divide the communicator
into two groups, and T gather is the time required to gather
information about the zombies. The computation costs are
shown in the order in which the operations are executed, and
their overhead mainly depends on the number of parents.

3.3 Single strategy
This strategy restricts the spawning operation to be executed
on a single process and can be applied to both the Baseline and
Merge methods.To achieve this, only the root of the parents
invokes MPI Comm spawn from the MPI COMM SELF
communicator, whereas the other parents wait for the
reconfiguration completion. Moreover, an additional step is
needed to connect the NP − 1 non-root parents to the newly
spawned processes because initially only the root is connected
to the children via an inter-communicator.

This new step can be summarized as follows:

1. The routine MPI Open port is used by the root
of new processes to open a communication port. Its
definition is shown below:

int MPI Open port(MPI Info info, char

*port name)

2. Root of new processes sends the port name returned
by MPI Open port to the root of parents through the
inter-communicator.

3. All involved processes must be connected to this
port: parents invoke MPI Comm connect, whereas
children use MPI Comm accept. The definition of
both routines is as follows:

int MPI Comm connect(const char

*port name, MPI Info info, int root,

MPI Comm intracomm, MPI Comm

*newcomm),
int MPI Comm accept(const char

*port name, MPI Info info, int root,
MPI Comm intracomm, MPI Comm

*newcomm),

where port name and info in both routines are
required only for the root of parents or root of
new processes. The output parameter newcomm,
which will contain the new inter-communicator, is
required by all processes. Notably, intracomm is the
intra-communicator in which parents or children are
respectively defined in each function.

4. Finally, the root of parents and all new pro-
cesses free the inter-communicator returned by
MPI Comm spawn.

The theoretical advantage of this approach is to eliminate
the synchronization among parents to perform the spawn
operation because it is only performed by the root. Therefore,
if the cost of this synchronization is greater than the

Prepared using sagej.cls

Martı́n-Álvarez et al. 7

mentioned additional operations, this strategy can reduce its
reconfiguration time.

Additionally, this strategy can be applied for expanding or
shrinking in the Baseline method, whereas only for expanding
in the Merge method. Notice that the single strategy has only
effect when spawning new processes, which is not done when
shrinking ranks.

Figures 1d and 1e show the two expanding methods. In
these figures, we can observe that a new operation is required
in both cases to connect all parents to the inter-communicator
labeled as Con.

Listing 4 includes a pseudo code showing the application
of the Single strategy on the Baseline method. The coloured
lines show the modifications concerning the original method
focused mainly on joining all processes in an inter-
communicator, particularly L14, L17-L21, and L24-L27 for
parents, as well as L37-L43 for new processes. Lines marked
in red (L24-L25 and L42-L43) emphasize the communication
operations necessary to connect parents and children.

1 void baseline_single_parents(char *cmd, int rank,
2 int root, int root_chd, MPI_Comm intracomm,
3 MPI_Comm *newcomm) {
4 char *hostlist, *port name;
5 int hostlist_size, spawn_method=BASELINE SINGLE;
6 MPI_Info info;
7 MPI Comm intercomm;
8
9 // Calculates where each new process will be mapped,

10 // returning the list of processes and its size.
11 calculate_physical_distribution(&hostlist,
12 &hostlist_size, spawn_method);
13
14 if(rank == root) {
15 MPI_Info_create(&info);
16 MPI_Info_set(info, "hosts", hostlist);
17 MPI_Comm_spawn(cmd, MPI_ARGV_NULL, hostlist_size,
18 info, root, MPI COMM SELF, &intercomm,
19 MPI_ERRCODES_IGNORE);
20 MPI Recv(port name, MPI MAX PORT NAME, MPI CHAR,
21 root chd, tag, intercomm, MPI STATUS IGNORE);
22 MPI_Info_free(&info);
23 }
24 MPI Comm connect(port name, MPI INFO NULL, root,
25 intracomm, newcomm);
26 if(rank == root)
27 MPI Comm free(&intercomm);
28 }
29
30 // Additional spawn operations for the
31 // single alternative
32 void baseline single children(MPI_Comm *newcomm,
33 int rank, int root, int root_prn) {
34 char *port name;
35 MPI_Comm intercomm;
36 MPI_Comm_get_parent(&intercomm);
37 if(rank == root) {
38 MPI Open port(MPI INFO NULL, port name);
39 MPI Send(port name, MPI MAX PORT NAME, MPI CHAR,
40 root prn, tag, intercomm);
41 }
42 MPI Comm accept(port name, MPI INFO NULL, root,
43 MPI COMM WORLD, newcomm);
44 MPI_Comm_free(&intercomm);
45 }

Listing 4: Basic skeleton of the Baseline Single method.

The theoretical reconfiguration time of this strategy with
the Baseline method (RTS) is calculated by using (4),

RTS = T Spw(1, NC) + T Con(NP,NC), (4)

where T Spw is the time required by MPI Comm spawn to
spawn NC processes with the collaboration of one parent, and
T Con is the time required to connect NP parents and NC

children into the same inter-communicator. The operations
are shown in the order they are executed.

Furthermore, the theoretical computational time when this
strategy is applied for expanding using the Merge method
(RTS) is calculated by using (5),

RTS = T Spw(1, NC −NP)+
T Con(NP,NC −NP) + T Mrg(NC),

(5)

where T Spw is the time required by MPI Comm spawn
to spawn NC −NP processes with the collaboration of 1
parent, T Con is the time required to connect NP parents and
NC −NP new processes into the same inter-communicator,
and T Mrg is the time required to combine both groups (NC
processes). The operations are shown in the order they are
executed.

We note that the parameters in T Con are different in (4)
and (5). The impact of the difference in their performances
will be discussed in Section 4.

3.4 Asynchronous strategy
Reconfigurations can also be performed asynchronously using
auxiliary threads, which are responsible for spawning new
processes. To achieve this, first, each parent process creates a
thread to perform this task. Subsequently, while these threads
perform the reconfiguration, the corresponding main threads
can continue the execution of the application. In some cases,
overlapping reconfiguration and computation could improve
job performance, justifying the study of this strategy.

The combination of processes and threads in MPI requires
the following considerations:

– MPI Init thread should be used to start the MPI
environment with thread support. Its definition is shown
below:

int MPI Init thread(int *argc,
char ***argv, int required,

int *provided).

The environment will start properly for thread
management if the input parameter required is
MPI THREAD MULTIPLE, and the returned parame-
ter provided has the same value.

– POSIX thread routines will be used to manage threads,
thus pthread create and pthread exit rou-
tines create and finalize a thread, respectively.

– To avoid conflicts between collective operations
executed by different threads in the same process,
auxiliary threads use the MPI routine MPI Comm dup
to duplicate the main communicator. Then, the main
thread in each process will use the original main
communicator, whereas the auxiliary threads will use
the duplicated one.

– The main and auxiliary threads in each process only
communicate to detect if the auxiliaries have finalized
the spawning. We use a flag shared by all threads
in a process, shared state, indicating if the operation
has been completed. To assure a correct updating
and reading, its accesses are controlled using mutex
routines.

– The frequency with which the value of shared state is
consulted has an impact on the final performance. This

Prepared using sagej.cls

8 Journal Title XX(X)

frequency has to be adjusted to the process creation
time in order to prevent the system overload with an
intensive pooling, or stagnate the execution until the
next request.

This strategy is always started by parent processes creating
their auxiliary thread to perform the spawning task, whereas
the main thread continues the execution of the application.
When the auxiliary thread finishes, it modifies the value of
shared state, whereas the main thread will periodically test
this shared variable in the checkpoint.

Verifying that all auxiliary threads have completed the
operation requires checking the value of shared state in each
process. The simplest option is to use a collective operation,
allowing each process to send its value, and the final result
indicates whether all processes have ended. Considering
that shared state is initiated to 0 and changed to 1 when
the auxiliary thread completes the local reconfiguration,
the proposal is to use the MPI routine MPI Allreduce,
computing the minimum of this variable in all processes.

Therefore, only when the value of shared state in all
processes is one, the reconfiguration will be considered
complete.

Any of the aforementioned methods can be modified to
incorporate this Single strategy, such that the different stages
of spawning processes (expanding or shrinking) are created by
auxiliary threads by adding some special operations. However,
the Asynchronous Merge method requires controlling the
access to all communicators that are created during an
expansion, between the main and auxiliary threads, as well
as those associated with old and new processes, until old and
new processes communicate through a single communicator.

The combination of Single and Asynchronous strategies
also generates special situations; therefore, a new stage is
defined, in which only the root of parents creates an auxiliary
thread to spawn the new processes. Subsequently, when the
root of parents verifies that this operation has finished, it
will notify the rest of the parents by using a MPI Bcast
operation. Then, these create their auxiliary thread which is
responsible for completing the connect operation, whereas the
main threads continue with the computation. The main threads
will periodically test at the checkpoint if the auxiliaries have
finished their work. When it occurs, auxiliary threads of
parents will terminate and the children continue running.

Figures 1f, 1g, and 1h show how auxiliary threads are
responsible for reconfiguration tasks, whereas the main thread
continues running. These figures show the way to incorporate
thread management in the Baseline method, the Baseline
Single method, and the Merge Single method.

Listing 5 shows the pseudo code executed by the main
threads to check whether a reconfiguration operation has
been completed. Initially, the main threads test the value
of shared state, which is shared by the main and auxiliary
threads in each process. When the reconfiguration starts, this
variable is initialized to GENERIC STAGE, except in the
case of using the Single strategy, in which SINGLE STAGE
is used. Other values are SINGLE COMPLETED, which
indicates that the Single strategy at the root is complete, or
SPAWN COMPLETED, which indicates that the participation
of the process in the reconfiguration is complete.

At the beginning of Listing 5, a local copy of the shared
variable is created using mutex routines (L8-L10). If the

first stage of the Single strategy is enabled, the local copy
of the root parent process is sent to the remaining NP − 1
parents using MPI Bcast (L17). When all processes obtain
SINGLE COMPLETED, the second stage starts by writing
GENERIC STAGE in the shared variable, and the non-root
processes create their auxiliary thread (L18-26). This value
will be changed to SPAWN COMPLETED in each process
when the spawn operation is completed. To verify that all
parents have finished, MPI Allreduce is used to compute
the minimum of local copies. When global state is equal to
SPAWN COMPLETED (L32), spawning is terminated and the
new communicator created by auxiliary threads is copied to
newcomm, whereas the routine returns one (L28-36).

1 int shared_state; // Initialized to NO_SPAWN
2 int check_spawn(int rank, int root, MPI_Comm comm,
3 MPI_Comm *newcomm) {
4 int global_state, local_state;
5 int result = 0;
6 pthread_mutex_t m;
7 // The shared value is copied to a local variable
8 pthread_mutex_lock(&m);
9 local_state = shared_state;

10 pthread_mutex_unlock(&m);
11 // Verify if the first step of single
12 // strategy is running
13 if(local_state == SINGLE_STAGE ||
14 local_state == SINGLE_COMPLETED) {
15 // Test if the first stage of Single
16 // strategy has ended
17 MPI_Bcast(&local_state, 1, MPI_INT, root, comm);
18 if(local_state == SINGLE_COMPLETED) {
19 pthread_mutex_lock(&m);
20 shared_state = GENERIC_STAGE;
21 pthread_mutex_unlock(&m);
22 if (rank != root) {
23 // Non root parents create their
24 // auxiliary thread
25 pthread_create(...);
26 }
27 } else {
28 // Verify if the auxiliary threads
29 // have finished
30 MPI_Allreduce(&local_state, &global_state, 1,
31 MPI_INT, MPI_MIN, comm);
32 if(global_state == SPAWN_COMPLETED) {
33 // Obtains the communicator created by threads
34 get_created_comm(newcomm);
35 result = 1;
36 }
37 }
38 return result;
39 }

Listing 5: Basic skeleton to verify if the auxiliary thread ended
their work.

Figure 2 shows a flowchart of the Asynchronous and
Single strategies’ interactions in the Baseline method, when a
reconfiguration from two parents to one child is performed.
A line divides the Single and Generic stages in the flowchart.
Label P and C denote the parents and children, respectively.
In addition, Main and Aux denote the master threads and the
auxiliary threads, respectively.

To obtain the theoretical computational time of this strategy
(RTA), we consider that an iterative application is executed,
where Titer is the time required to perform an iteration with
NP processes, and RTS is the theoretical reconfiguration
time from NP to NC processes, as defined in previous
subsections. Thus, It, the theoretical number of iterations
during an asynchronous reconfiguration, can be calculated as
it is shown in (6),

Prepared using sagej.cls

Martı́n-Álvarez et al. 9

Figure 2. Flowchart example of the asynchronous and single
strategies’ interactions in the Baseline method. The
reconfiguration is performed from two parents (P) to one child
(C).

RTA = RTS(NP,NC) ∗ α,
It = ceil(RTA/(Titer(NP) ∗ ω)),

CT = It ∗ Titer(NP) ∗ ω,
(6)

where α and ω are factors >= 1, which can increase the cost
of the corresponding operations as they have been overlapped.
Finally, the theoretical computational time (CT) is obtained
as the time consumed in the execution of It iterations.

3.5 Integrating the methods in an iterative
application

Adopting malleability in C/C++ applications requires
modifying their routine main. The red lines in Listing 6
show the typical adaptation of an iterative application:

– MPI Comm get parent (L4) is used to determine if
the current process is a parent or a child.

– If the value of intercomm (L5) is MPI COMM NULL,
the process is a parent and some specific data
initialization should be performed (L6).

– Otherwise (L8-L11), the process has been spawned
using MPI Comm spawn, and a different initialization
is needed to complete the reconfiguration stage.
Furthermore, the data redistribution should be
performed at the beginning of the code to allow the
correct execution of the iterative application.

Special considerations must be applied in L8 of Listing 6,
whose implementation could be different in each proposed
method. Particularly, when the Merge method is applied for
expanding, the execution is based on the code included in

Listing 2 (L22-L27). Similarly, the Single strategy is based
on the code in L32-45 of Listing 4.

1 int main(int argc, char* argv[]) {
2 MPI_Init_thread(...);
3 MPI Comm intercomm;
4 MPI Comm get parent(&intercomm); // parent or child?
5 if(intercomm == MPI COMM NULL){ // Is it a parent?
6 // Application initialization, if it is needed
7 } else { // It is a child
8 // Additional spawn operations, if they are needed
9 // Data redistribution is performed,

10 // if it is necessary
11 MPI Comm free(&intercomm);
12 }
13 MPI Comm comm = MPI COMM WORLD;
14 int break needed;
15 pthread t thread aux;
16 // Code for iterative application
17 while (...) {
18 // Check if a reconfiguration is running or applied
19 checkpoint for reconf(&comm, &thread aux,
20 &break needed);
21 if (break needed) break;
22 // Code of each iteration
23 }
24 // Operations to exit the application,
25 // if they are needed
26 MPI_Finalize();
27 }

Listing 6: Skeleton of an iterative application with
malleability.

In addition, the blue lines (L13-L25) in Listing 6
determine the way to apply malleability, although the
behaviour of each method is different. The key is the routine
checkpoint for reconf, whose code is summarized in Listing 7.
First, it will check whether a previously started asynchronous
reconfiguration has been completed invoking check spawn
in Listing 5, otherwise, the application asks the RMS if a
reconfiguration is required, in which case, a specific method
is started.

Some considerations about the adaptations of the output
variables are as follows:

– The parameter comm could be changed if the
reconfiguration is completed during the execution of
the routine.

– Asynchronous methods create auxiliary threads, which
are stored in the variable thread aux. For the other
methods, this variable is not used.

– The parameter break needed is always active for
the parents of Baseline methods when the spawning
is completed because their execution should be
terminated. Although this parameter is inactive for
Merge Expand methods because the processes continue
the execution.

– For the Merge Shrink methods, processes in which
zombie state is enabled also require break needed to
be set. Therefore, when they wake up they will exit the
loop.

– Processes which continue the execution after Merge
Shrink methods must wake up the zombie processes in
L24-L25 of Listing 6.

Prepared using sagej.cls

10 Journal Title XX(X)

1 // Indicates if an asynchronous reconfiguration
2 // has started
3 int async_reconf_started = 0;
4 int shared_state = NO_SPAWN;
5 void checkpoint_for_reconf(MPI_Comm *comm,
6 pthread_t *thread_aux, int *break_needed){
7 if (async_reconf_started) {
8 // Check Asynchronous state
9 if (check_spawn(..., comm) ==

10 SPAWN_COMPLETED) {
11 // Adapt parameters: thread_aux and break_needed
12 // async_reconf_started = 0
13 } else {
14 // Asynchronous reconfiguration still running
15 return;
16 }
17 } else {
18 // Ask RMS if a reconfiguration is required
19
20 // Choose method + strategy: mall_meth
21 async_reconf_started =
22 ((mall_meth is async_meth)? 1: 0);
23 if (async_reconf_started)
24 // If the asynchronous method,
25 // initialize shared_state
26 shared_state = ((mall_meth is Single)?
27 SINGLE_STAGE : GENERIC_STAGE);
28 // Adapt parameters: comm, thread_aux, break_needed
29 }
30 }

Listing 7: Basic code for a reconfiguration point.

4 Experimental results
This section presents the experiments performed to compare
the methods described in the previous section for expanding
and shrinking the number of processes of a job.

The results were obtained using a synthetic iterative appli-
cation, in which the computation time and communications
executed in each iteration can be parameterized.

4.1 Synthetic application
The authors in Martı́n-Álvarez et al. (2021) and Martı́n-
Álvarez et al. (2022) described a synthetic application,
which allows configuring benchmarks to study the effect of
malleability in applications.

This tool simulates and monitors the computational
behaviour of scientific MPI iterative applications.

Additionally, it also provides the possibility of being
reconfigured during its execution, simulating the RMS
demands, in which the number of processes of a job is
expanded or shrunk.

This action requires stopping the active application in the
job, creating/terminating processes, redistributing the data,
and continuing the application with the new process layout.

The executions of the tool are parameterized through
a configuration file, in which the main features of the
computational behaviour of a simulated application, as
well as the description of the reconfiguration stages, are
included. Thus, the use of this tool allows to analyse of
the impact of malleability on the computational behaviour
of MPI applications, comparing the performances of
different implementation techniques in distinct scenarios. The
conclusions of this analysis will be used to incorporate the
best malleability alternatives in the actual implementation
of an application. Notably, more than one reconfiguration
stage can be included in the configuration file, describing
a sequence of events managed by the RMS. Therefore, a
hierarchy of processes is obtained, in which each level is

composed of its active processes, and a transition between
levels is related to a reconfiguration.

This tool includes five main modules, which are briefly
described as follows.

Initialization module is in charge of starting the execution
of the simulations. The main task of this module is to read the
parameters from the configuration file and copy them to the
new processes after each reconfiguration. This is performed
by the first group of processes (those that start execution),
which is also responsible for initializing the other modules
of the synthetic application. Then, the first group will start
the execution of the simulated application in the Application
simulation module.

Application simulation module simulates the execution
of an iterative application with a specific computational
behaviour at one level of the hierarchy of processes. The main
features of the simulation are defined in some parameters
included in the configuration file. The most important features
include the number of iterations to be performed by the active
processes at each level of the hierarchy, the operation type
(communication/computation) executed in each iteration of
the simulation, the time spent for completing an iteration,
the memory consumed in the simulated application, and
the number of bytes transferred in both point-to-point and
collective communication operations. From these parameters,
some others must be computed, such as the number of times
the operation type must be executed to achieve the time
spent to complete an iteration. Thus, a simulation step will
execute the operation the computed number of times or
perform the specified communication operation transferring
the corresponding number of bytes. Furthermore, this module
is responsible for ensuring that a simulation step is computed
as many times as the specified number of iterations.

Malleability module is in charge of modifying the number
of active processes during the simulation. Two main tasks
are involved: creating/terminating processes (Reconfiguration
stage) and redistributing data from old processes to new
processes (Redistribution stage). For the first task, all the
methods and strategies described in Section 3 are available.

Monitoring module keeps track of the different parts of the
simulation timings. These values are stored in intermediate
output files after each level of the hierarchy finalizes their
execution. MPI Wtime is used to perform these evaluations
in each iteration, both in process reconfiguration and in data
redistribution.

Completion module has two main tasks. On the one hand,
it finalizes processes at the end of each level of the hierarchy
of processes. Depending on the method/strategy chosen in
reconfiguration module, all active processes, some of them
or none are finalized. On the other hand, it is also responsible
for writing the timings monitored into the intermediate output
files for further analysis.

Figure 3 shows a workflow diagram of the synthetic
application. In this figure, its different functionalities are
highlighted by colours, using a colour per each different
module: green for Initialization, yellow for Application
simulation, purple for Malleability, blue for Monitoring, and
red for Completion. The simulation begins with the execution
of the Initialization module by the first group of processes
in the hierarchy. However, only a single process manages
to read all the parameters of the configuration file and store

Prepared using sagej.cls

Martı́n-Álvarez et al. 11

Figure 3. Flowchart of the synthetic application. The colour of
each task corresponds to the related module, green for
Initialization, yellow for Application simulation, purple for
Reconfiguration, blue for Monitoring, and red for Completion.

them in an internal data structure that is copied to the rest
of the active processes. This structure will be also copied
through the different levels of the hierarchy of processes when
each reconfiguration stage is completed. The Application
simulation module is then started, computing a simulation step
as many times as defined in the configuration file, which also
includes the main features of each simulation step. In the case
that a new reconfiguration is set (new level in the hierarchy
of processes), the execution continues in the Malleability
module, spawning/shrinking processes and redistributing data.
Then, the Monitoring module stores performance information
on an intermediate file, and the Application simulation
module continues the simulation. If no more levels exist,
the simulation finalizes, and intermediate files generated
by Monitoring module are merged by Completion module,
obtaining the performance of the simulation, which is written
to an output file.

4.2 Testbed

The experiments were executed on a cluster of six servers
with two 10-core Intel Xeon 4210 processors for a total of
120 cores, using MPICH 3.4.3 to compile and link the sources.

The study only considers a single reconfiguration stage per
experiment, doing it from 1, 10, 20, 40, 80, and 120 processes
to any of the same numbers, and testing the different strategies
to expand/shrink processes described in Section 3.

In all cases, the number of occupied nodes is computed
as ⌈N/20⌉, where N will be the number of parents (NP)
or children (NC), minimizing the resources allocated by the
RMS.

For the experiments, the configuration file contained
sequential iteration time (T seq

iter), benchmark type, number
of iterations before the reconfiguration, and the number
of processes after the reconfiguration. It also includes a
parameter to choose the method used to modify the number
of processes during the reconfiguration, in which all methods
explained in Section 3 are considered.

To properly interpret the results, the experiments only
consider computation operations, avoiding the impact of com-
munications on the analysis. Therefore, no communication
exists among processes and no data redistribution occurs
during the reconfiguration. In other words, the processes
compute Montecarlo π during T bench

iter (X) s, where bench
defines the executed benchmark and X is the number of
processes. Moreover, the chosen operation is a CPU-bound
computation, the use of which simplifies the comparison of
execution times.

Two types of scenarios were considered for the evaluation
of reconfiguring applications. One that simulates a strong
scaling benchmark, where the system workload is perfectly
divided among the processes involved in the computation.
Thus, the execution time in each process (T strong

iter (X)) will
be computed dividing T seq

iter by the number of processes X,
before and after reconfiguring, NP and NC, respectively.

The strong scaling benchmarks were configured to perform
100 iterations, three iterations before the reconfiguration and
97 afterwards. Moreover, T seq

iter was set to 4 s.
The other type simulates a weak scaling benchmark,

where the system workload is modified when the number
of processes increases or decreases because the processing
workload is fixed in each process (Tweak

iter (X) = T seq
iter).

The weak scaling benchmarks perform 30 iterations, three
iterations before reconfiguring, and 27 afterwards when T seq

iter

is equal to 0.2 s.
The number of iterations is smaller for these benchmarks

to reduce the effect of performing a large number of iterations
after the reconfiguration, allowing better analysis of the
impact of the methods defined Section 3 in the final execution
time.

Other intermediate experiments were also tested, analyzing
the strong scaling of the simulation when its speed-up is
distant from the maximum value. However, the results are
not shown because they were similar to the strong scaling
benchmark. We prefer to include extreme cases to better
explain the differences between the benchmarks.

From the previous definitions, the theoretical CT of each
test (T ex) is computed by using (7),

T ex = 3 ∗ Titer(NP) +RT (NP,NC,M)+
(ItAR − It) ∗ Titer(NC),

(7)

where

– Titer(X) is the time required to complete an iteration
in X processes. For weak scaling simulation, Titer will
be equal to T seq

iter, whereas this value will be divided by
NP or NC for strong scaling simulations.

– RT is the time to complete a reconfiguration, whose
value will be related to NP and NC, and also to
the selected method (M). If the chosen method is
asynchronous, RT is equal to CT in (6).

Prepared using sagej.cls

12 Journal Title XX(X)

– ItAR is the total amount of iterations, which should be
performed with NC processes without considering an
asynchronous strategy. Therefore, this value is 97 for a
strong scaling benchmark and 27 for the weak scaling
one.

– It indicates the number of iterations the initial processes
have performed while reconfiguring. Its value will be
zero if the method is synchronous and for asynchronous
methods a value between one and ItAR.

The times shown in the following tables correspond
to the median of 10 different executions using the same
configuration file, such that variability is reduced.

Moreover, for each table, the lowest time in each row is
highlighted in bold, and values within a range of 5% have
their cells coloured.

4.3 Experimental reconfiguration evaluation of
isolated methods

The first analysis compares the execution time of the
different methods, measured from the instant in which
parents start the expansion/shrink operation until children
continue the execution of the benchmark. The results will
be shown by groups to facilitate the analysis, considering
expansion and shrinkage separately, as well as synchronous
and asynchronous methods.

On the one hand, for the synchronous methods, the
reconfiguration time is independent of the benchmark because
it pauses its execution while the reconfiguration is being
performed. On the other hand, for asynchronous methods,
this difference could be important because the benchmark
continues running iterations while the reconfiguration is being
performed, and the overlapping of both tasks can influence
the performance of the benchmark.

4.3.1 Synchronous methods
Table 1 shows the reconfiguration times (RT) in seconds

for job expansion depending on the number of initial
processes (NP) and final processes (NC). The Merge method
is the clear winner, followed by the Merge Single, with up
to a 29% higher time than the winner. This is reasonable
since the winning methods spawn fewer processes than the
others, and this difference is more relevant as NP grows. It
is relevant only when NC −NP is equal to NC − 1, as
the overhead of T Mrg(NC) in (2) is significant, and the
Baseline method overcomes the others, e.g., expanding from
1 to 120. Additionally, the Single strategy is not beneficial
for Baseline and Merge methods, because the overhead
of T Con(NP ,NC) is greater than the benefit of using
T Spw(1,NC) in (4), instead of just using T Spw(NP,NC)
in (1).

Table 2 shows reconfiguration times (RT) (in seconds) for
process shrinkage using synchronous methods, depending on
the number of initial processes and final processes (NP, NC),
respectively. Again, the Merge method is always the best one,
since T Split(NP) in (3) is more than 10 times cheaper than
T Spw(NP,NC) in (1). Additionally, the results demonstrate
that incorporating the Single strategy into Baseline method
makes the shrinkage up to 61% slower.

The conclusion is that the Merge method is nearly always
the best option for both expansion and shrinkage when
choosing a synchronous method.

Table 1. Expansion median reconfiguration times (RTS) in
seconds for synchronous methods. NP and NC denote the initial
and final number of processes, respectively.

RTS (s)
NP NC Baseline Baseline

single Merge Merge
single

10 0,316 0,313 0,284 0,289
20 0,861 1,035 0,716 0,721
40 0,861 0,995 0,799 0,809
80 0,989 1,075 0,932 1,211

1

120 0,912 1,029 0,992 1,023
20 1,286 1,654 0,477 0,486
40 1,213 1,635 0,766 0,743
80 1,293 1,693 0,861 0,888

10

120 1,315 1,636 0,891 0,915
40 1,304 1,991 0,790 0,821
80 1,407 1,932 0,864 0,95820
120 1,413 1,870 1,089 1,071
80 1,429 2,022 0,894 0,87740 120 1,526 2,113 0,923 0,942

80 120 1,522 2,316 0,906 0,996

Table 2. Shrinkage median reconfiguration times (RTS) in
seconds for synchronous methods. NP and NC denote the initial
and final number of processes, respectively.

RTS (s)
NP NC Baseline Baseline

single Merge

10 1 0,200 0,205 0,001
1 0,400 0,427 0,00120 10 0,933 1,220 0,001
1 0,400 0,423 0,030

10 0,883 1,165 0,02540
20 1,271 1,740 0,116
1 0,388 0,418 0,217

10 0,881 1,189 0,181
20 1,262 1,826 0,14980

40 1,415 2,039 0,148
1 0,375 0,424 0,231

10 0,953 1,251 0,148
20 1,229 1,776 0,178
40 1,300 2,102 0,351

120

80 1,529 2,235 0,156

4.3.2 Asynchronous methods
Asynchronous strategies consider that an iterative

application is being executed during the reconfiguration.
Therefore, tables also include the application point of view,
showing the number of times checkpoint for reconf
(L19-L20 of Listing 6) is executed to complete the
reconfiguration (It), and the corresponding consumed time,
in seconds, from the first to the last call to the computational
routine (CT).

Tables 3 and 4 show the results for the strong scaling case,
in which, the iteration time is related to NP, as follows:

T strong
iter (NP) = T seq

iter/NP. (8)

Attempting to avoid extremely small iteration values, T seq
iter

has been fixed to 4 sec, such that for 120 processes,
T strong
iter (120) is equal to 0.033 sec.
The first analysis is that CT is significantly higher than

RT ranging from 12% to 1030% higher. It is worth noting
that CT depends on both RT and T strong

iter (NP) because the
checkpoint is performed at the end of each iteration. If we
compare the RT in Tables 1-3, and 2-4, we can observe that
it is also increased in all asynchronous cases.

Prepared using sagej.cls

Martı́n-Álvarez et al. 13

Next analysis compares the values in Tables 1-3, and 2-4,
computing the values of α in (6). Figure 4 shows the obtained
values for expanding (top) and shrinking (bottom). Thus, the
expansion produces an α increase lower than 70% in most
cases, and usually higher values are related to methods with
Single strategy, whereas Baseline and Merge methods are
nearly insignificant ranging from 3% to 30%, except in the
case (10,20) for Merge method with a 66%. For shrinking, α
values are usually higher than in the expansion, particularly
for the Baseline Single method, whose values are worse than
Baseline. The magnitude of the first five values in Table 2 is
extremely small compared to Table 4, generating α values
that are not relevant.

To complete this analysis, the ω values in (6) for
the different methods are also studied. These values are
computed as the quotient CT/It, and should be compared
to T strong

iter (NP). Figure 5 shows the obtained values for
expanding (top image) and shrinking (bottom image). The
analysis for expanding allows to conclude that NP has a
significant impact on the ω values, increasing T strong

iter (NP)
up to three times. By contrast, the relevance of NC is lower.
Moreover, Merge methods obtain smaller ω values than the
Baseline methods, and the use of the Single strategy within
the method, in general, allows for to reduction of the ω values
up to 90%. In the case of shrinkage, both NP and NC have
an impact on ω values. For this reason, Merge is the best
method and Single strategy usually reduces ω values.

The increase of α and ω values is justified by the
appearance of oversubscription problems when asynchronous
methods are used, growing the number of threads that are
being executed in the nodes. Only for the cases (1, 10) and
(10, 1), the problem is mainly avoided in all cases; however,
in the rest of the combinations of NP and NC, the Baseline
method surpasses until 40 active threads per node, whereas
the Merge method outperforms the others. In general, Merge
methods yield lower α and ω values because of their lower
number of threads compared to other solutions. However,
the inclusion of additional synchronization steps, as in the
case of the Baseline Single method, may exacerbate the
oversubscription problem. In addition, the use of the Single
strategy reduces the number of threads in each node and,
therefore, ω values are reduced. The higher ω values are
more related to the type of operation executed in the iteration.
Montecarlo π is a CPU-bound computation, and, therefore,
the oversubscription has a high impact on it. The use of
memory-bound could reduce ω values.

In summary, we can conclude that the Merge method
is the best alternative for both expansion and shrinkage
reconfiguration for strong scaling applications.

Results for weak scaling benchmarks are included in
Tables 5 and 6, where Tseq iter = 0.2 sec. We note that in
these experiments, the workload of the benchmark grows to
expand and reduces to shrink.

It is worth noting that in these tables, unlike in the strong
scaling benchmarks, RT and CT vales are similar in all
combinations of NP and NC. Additionally, the It columns
include smaller values, all of them lower than 10, whereas
Table 4 includes some It values close to 40.

The analysis of α and ω values in Figures 6 and 7 allows
drawing conclusions similar to the previous ones. Methods
based on Single strategy grow α values by 40% on average

Figure 4. Values of α for a strong scaling benchmark for the
asynchronous methods. Expansion at the top and Shrinkage at
the bottom.

Figure 5. Values of ω for a strong scaling benchmark for the
asynchronous methods. Expansion at the top and Shrinkage at
the bottom.

while reduce ω values by 50%, compared to non-Single
methods. Higher ω values are justified by the CPU-bound

Prepared using sagej.cls

14 Journal Title XX(X)

Table 3. Expansion median reconfiguration times (RTA), compute time of the benchmark (CT), both in seconds, and performs
iterations (It) for all asynchronous methods. NP and NC denote the initial and final number of processes, respectively.

Baseline Baseline
single Merge Merge

singleNP NC
RTA(s) CT (s) It RTA CT (s) It RTA(s) CT (s) It RTA(s) CT (s) It

10 0,355 4,026 1 0,345 4,025 1 0,307 4,015 1 0,320 4,025 1
20 0,900 4,086 1 1,099 4,069 1 0,853 4,019 1 0,991 4,016 1
40 0,942 4,264 1 1,009 4,228 1 0,877 4,024 1 0,980 4,014 1
80 1,001 4,054 1 1,596 4,275 1 0,891 4,060 1 1,113 4,070 1

1

120 0,966 4,246 1 1,037 4,132 1 0,898 4,054 1 1,124 4,086 1
20 1,317 2,312 2 2,676 4,240 6 0,799 1,114 2 1,030 1,391 3
40 1,308 2,122 3 2,292 3,708 6 0,915 1,462 3 1,367 1,742 4
80 1,463 2,159 3 2,322 3,678 5 1,085 1,496 3 1,456 1,799 4

10

120 1,356 2,123 3 2,555 3,227 5 1,130 1,570 3 1,444 1,804 4
40 1,386 1,946 3 3,049 3,769 7 0,895 1,065 3 1,259 1,588 5
80 1,486 1,874 3 3,131 3,857 7 1,018 1,136 3 1,392 1,839 620
120 1,429 1,971 3 3,197 3,929 8 1,069 1,536 3 1,640 2,126 7
80 1,621 1,861 5 3,233 3,651 12 0,926 1,170 5 1,247 1,457 840 120 1,499 1,940 5 2,850 3,169 11 0,980 1,199 5 1,196 1,416 9

80 120 1,727 1,943 7 2,943 3,205 23 0,934 1,059 7 1,231 1,304 16

Table 4. Shrinkage median reconfiguration times (RTA),
compute time of the benchmark (CT), both in seconds, and
iterations (It) for all asynchronous methods. NP and NC denote
the initial and final number of processes, respectively.

Baseline Baseline
single Merge

NP NC
RTA(s) CT (s) It RTA(s) CT (s) It RTA(s) CT (s) It

10 1 0,347 0,417 1 0,456 0,818 2 0,021 0,401 1
1 0,568 0,837 2 0,813 1,229 4 0,024 0,211 120 10 1,077 1,567 3 1,980 2,652 5 0,021 0,209 1
1 0,502 0,690 3 0,700 0,925 5 0,146 0,233 1
10 1,101 1,361 5 1,735 1,985 8 0,150 0,297 240
20 1,440 1,758 5 2,452 2,780 10 0,164 0,245 1
1 0,544 0,640 5 0,625 0,730 8 0,103 0,168 2
10 1,090 1,266 8 1,673 1,881 17 0,138 0,244 2
20 1,426 1,620 8 2,280 2,442 17 0,235 0,297 2

80

40 1,418 1,716 8 2,618 2,872 21 0,180 0,286 2
1 0,516 0,592 6 0,569 0,654 9 0,337 0,402 4
10 1,170 1,269 11 1,466 1,589 19 0,352 0,477 3
20 1,368 1,518 11 2,217 2,401 26 0,315 0,386 3
40 1,479 1,721 11 2,541 2,707 27 0,358 0,452 4

120

80 1,696 1,868 11 3,195 3,473 38 0,324 0,407 4

benchmark executing during the iteration, which is more
sensitive to the growth of the number of threads. Moreover,
NP is directly related to ω values because NP determines the
number of threads in the nodes, and then the importance of
oversubscription problems. Merge methods have a limited
impact on α and obtain the best ω values, therefore, these are
the best alternative.

4.4 Experimental reconfiguration evaluation for
applications and system productivity

Malleability is useful in large computing facilities when
the RMS decides to reconfigure jobs. Furthermore, from
the standpoint of system productivity, the reconfigure stage
should be completed as soon as possible to avoid resources
remaining idle while some jobs need more resources
(expansion), or to reduce the waiting time for jobs which are
ready to be executed using the released resources (shrinking).
Alternatively, applications would be more interested in
reducing their execution time.

Therefore, this section analyses the performance of the
different methods of expanding or shrinking when they are

Figure 6. Values of α for a weak scaling benchmark for the
asynchronous methods. Expansion at the top and Shrinkage at
the bottom.

integrated into an application to examine if the overlapping of
the computation and the reconfiguration stage using threads
is useful. Moreover, the aforementioned two viewpoints
have been considered, obtaining the best method for the
studied benchmarks and the best method for improving the
performances of the entire system.

For the first case, the best method for strong and weak
scaling benchmarks are analysed, whereas, for the second
case, those methods whose RT is closer than 10% of the
faster method in each combination of NP and NC are also
considered in the analysis of the system productivity.

Prepared using sagej.cls

Martı́n-Álvarez et al. 15

Table 5. Expansion median reconfigure times (RTA), compute time (CT) in seconds, and perform iterations (It) for all asynchronous
methods in a task-based benchmark. Labels NP and NC denote the initial and final number of processes, respectively.

Baseline Baseline
single Merge Merge

singleNP NC
RTA(s) CT (s) It RTA(s) CT (s) It RTA(s) CT (s) It RTA(s) CT (s) It

10 0,375 0,418 2 0,359 0,419 2 0,291 0,420 2 0,313 0,420 2
20 0,914 1,020 5 1,050 1,217 6 0,836 1,009 5 0,980 1,013 5
40 0,871 1,026 5 1,118 1,215 6 0,837 1,018 5 0,918 1,020 5
80 0,955 1,023 5 1,086 1,210 6 0,880 1,026 5 1,047 1,219 6

1

120 0,935 1,028 5 1,108 1,246 6 0,917 1,140 5 1,030 1,271 6
20 1,203 1,530 4 2,199 2,813 9 0,746 1,000 4 0,932 1,088 5
40 1,219 1,811 5 2,026 2,682 9 0,997 1,255 5 1,152 1,291 6
80 1,338 1,789 5 2,273 2,924 9 0,950 1,268 5 1,343 1,755 7

10

120 1,262 1,778 5 2,272 2,984 9 0,981 1,332 4 1,413 1,648 7
40 1,393 1,911 3 3,184 3,932 8 0,872 1,104 3 1,314 1,618 5
80 1,567 2,446 4 3,025 3,809 7 0,998 1,235 3 1,365 1,724 620
120 1,393 1,841 3 3,107 4,043 7 0,985 1,191 3 1,549 1,842 7
80 1,496 2,002 3 3,407 4,341 9 0,942 1,201 3 1,317 1,698 540 120 1,609 2,473 4 3,468 4,220 9 1,052 1,231 3 1,499 1,807 6

80 120 1,941 2,693 4 3,780 4,514 8 0,989 1,291 3 1,394 1,763 6

Table 6. Shrinkage median reconfiguration times (RTA),
compute time (CT) in seconds, and perform iterations (It) for all
asynchronous methods in a task-based benchmark. Labels NP
and NC denote the initial and final number of processes,
respectively.

Baseline Baseline
single Merge

NP NC
RTA(s) CT (s) It RTA(s) CT (s) It RTA(s) CT (s) It

10 1 0,349 0,414 2 0,433 0,619 3 0,020 0,201 1
1 0,438 0,778 2 0,798 1,233 3 0,015 0,203 120 10 1,086 1,546 3 1,751 2,405 5 0,016 0,204 1
1 0,665 0,865 2 0,869 1,351 4 0,142 0,284 1

10 1,227 1,577 3 1,943 2,511 5 0,174 0,296 140
20 1,417 2,077 3 2,463 3,446 6 0,176 0,309 1
1 0,575 0,874 2 0,901 1,327 4 0,317 0,606 2

10 1,107 1,581 3 1,883 2,481 6 0,298 0,484 1
20 1,376 1,998 3 2,884 3,646 7 0,291 0,593 2

80

40 1,669 2,501 4 2,973 3,946 7 0,257 0,491 1
1 0,630 0,884 2 0,976 1,366 4 0,322 0,600 2

10 1,153 1,547 3 2,129 2,730 6 0,330 0,606 2
20 1,368 1,984 3 2,728 3,462 6 0,343 0,711 2
40 1,605 2,119 3 3,068 3,890 7 0,353 0,720 2

120

80 1,700 2,406 3 3,551 4,348 8 0,281 0,672 2

4.4.1 Experimental reconfiguration evaluation for strong
scaling benchmarks

Figure 8 shows graphically the best method for each pair
(NP, NC) from both viewpoints, benchmark (top) and system
productivity (bottom). The name of the axes, vertical for NP
and horizontal for NC, determines that the upper triangular
part of the matrix is related to expansion, whereas the lower
part is related to shrinkage. Moreover, the number in each
cell, along with the colour, identifies the fastest method for
each pair.

For our strong scaling benchmark, increasing the number
of processes reduces T strong

iter (X), allowing faster finalization
of the application. Therefore, Merge methods predominate
in the upper triangular part of Figure 8 (top) because
these methods were the fastest for reconfiguring. Moreover,
nearly all the shown methods are synchronous because
asynchronous methods delay the transition in most cases,
except pairs (20, 40) and (80, 120), in which the difference
to the synchronous counterpart is negligible. Thus, the results
in this figure correspond to the values in Table 1.

Figure 7. Values of ω for a weak scaling benchmark for
asynchronous methods. Expansion at the top and Shrinkage at
the bottom.

By contrast, decreasing the number of processes grows
T strong
iter (X), decelerating the finalization of the benchmark.

Thus, Asynchronous Baseline Single methods are more
common in the lower triangular part of Figures 8 (top)
because they are usually the slowest method (see Tables 2
and 4). Although in some cases ω values are greater than the
ratio between T strong

iter (NP) and T strong
iter (NC), and therefore

the aforementioned rule cannot be applied. To confirm this
assertion, we compute T ex for the different cases of the
shrinkage from 120 to 80 processes using Equation (7),
obtaining that T ex for Asynchronous Merge is 5.157 s,
whereas T ex for Asynchronous Baseline and Asynchronous

Prepared using sagej.cls

16 Journal Title XX(X)

Figure 8. Colour-maps of preferred methods depending on the
number of initial processes and final processes in a strong
scaling simulation. Application perspective at the top and RMS
point of view at the bottom.

Baseline Single are 6.268 sec and 6.523 sec, respectively.
Therefore, Asynchronous Merge is the best option for this
shrinkage.

In terms of the system productivity, the conclusions for
expansion in Figure 8 (bottom) are the same as in terms of
the application because the best method is the same for each
pair (NP, NC). The only exceptions are the pairs (20, 40) and
(80, 120) as Asynchronous Merge and Asynchronous Single
Merge are excluded from the analysis because RT is greater
than 10% threshold of the fastest method (Merge) for these
pairs.

By contrast, the conclusion for shrinkage is completely
different because the Synchronous Merge method is generally
chosen because it is the fastest method under the threshold.

This shows that the overhead of overlapping computation
is not beneficial for the system’s productivity.

4.4.2 Experimental reconfiguration evaluation for weak
scaling benchmarks

Figure 9 shows the same analysis as described in the
previous subsection for a weak scaling simulation. We note
that in this case, Tweak

iter is always equal to 0.2 sec regardless
of the number of processes, therefore, it is not an aspect to
consider in the analysis.

From the point of view of applications, Figure 9 (top)
summarize the values in Tables 1-2 and Tables 5-6. For
expansion, Asynchronous Merge methods are usually the
best option, with or without the Single strategy, depending
on the pair. The asynchronous methods are preferred as the
iteration time is constant and the Merge method spawns
fewer processes than the Baseline counterparts. We note that
the Single strategy is usually related to lower ω values, and
then, a greater number of iterations is executed during the

Figure 9. Colour-maps of preferred methods depending on the
number of initial processes and final processes in a weak scaling
simulation. Application perspective at the top and RMS point of
view at bottom.

reconfiguration, reducing the number of iterations after the
reconfiguration. Moreover, Asynchronous Baseline methods
are the best alternative when the number of parents is equal
to one because the cost of spawning processes is the same
between the Baseline and Merge methods, although Merge
methods must additionally perform the T Mrg(NC) operation.

For shrinking, the best option is to use Merge methods
because they are faster than an overlapped iteration, which
is affected by an ω. Usually, synchronous methods are more
appropriate except for some pairs, in which small α and ω
values allow asynchronous methods to be the best alternative.

In terms of system productivity, Figure 9 (bottom), the
expansion changes drastically to use the Merge and Merge
Single methods in nearly all cases. This occurs because the
difference between RT in the asynchronous versions contains
at least one overlapped iteration, which is sufficient to exceed
the threshold of 10%.

The similarity for shrinkage of both colour-maps in
Figure 9 allows us to assert that the conclusions for both
viewpoints are extremely similar with a higher tendency to the
Merge method. Synchronous methods which outperform their
asynchronous counterparts are based on the same reasoning
previously discussed for the expansions.

5 Conclusions
There are different methods and strategies to perform
the reconfiguration stage in an application when applying
malleability.

In this paper, two initial methods are introduced (Baseline
and Merge) on which two additional strategies can be applied
(Single and Asynchronous), obtaining up to eight different

Prepared using sagej.cls

Martı́n-Álvarez et al. 17

alternatives to spawn processes dynamically. All of them have
been evaluated by using a synthetic application configured to
simulate two types of scenarios: one based on strong scaling
benchmarks and another based on weak scaling benchmarks.
Both were executed on a six-node cluster, analysing their
behaviour for expanding and shrinking operations. The final
analysis has compared the methods when applied to different
aims: application performance and system productivity.

Due to fewer processes being created on expansion
and no processes being created when shrinking, we have
demonstrated that compared to the Baseline method, the
Merge method is up to 2.6 times faster when expanding, and
up to 36 times faster when shrinking. Conversely, the Baseline
method is the best alternative only from the application point
of view when shrinking with strong scaling because it is a
slow method, and a greater number of faster iterations are
executed by our benchmarks.

The Single strategy has increased reconfiguration times
of the methods because of the inclusion of additional MPI
routines and synchronization steps.

For the Asynchronous strategy, reconfiguration times
increase are justified by the appearance of oversubscription
issues caused by the growth in the number of threads running
on the nodes.

Nevertheless, this overhead is useful for shrinking
the strong scaling benchmark, improving the execution
time up to 20%, compared with the Baseline method,
because more iterations with more resources are completed.
Similarly, the weak scaling benchmark leverages overlapping
reconfiguration and computation in the asynchronous mode,
for this reason the execution time is reduced up to 16% when
expanding.

In general, when expanding, the Synchronous Merge
method has been demonstrated to be the best alternative in
12 and 14 cases out of 15, for application performance and
system productivity points of view, respectively.

Only for the weak scaling benchmark, the Asynchronous
Merge method performs better for increasing the application
performance because overlapping tasks can reduce the
execution time.

In the case of shrinkage, the Synchronous Merge method is
usually the best alternative. The exception is the application
performance point of view for strong scalability, in which the
slowness of the Asynchronous Baseline method allows the
execution of a greater number of faster iterations.

Therefore, we conclude that the Merge method is the best
alternative in nearly all cases. The Single strategy is not
recommended because it does not yield significant benefits.
Additionally, the Asynchronous strategy has been proven
interesting in nearly half of the cases.

The methods presented in this study are expected to
be integrated into a library, which could be leveraged by
malleability-enabled RMS. Thus, the best method in different
scenarios of reconfiguration will be applied depending on the
cluster policies.

Future work will extend the experiments to analyse the
behaviour of the methods when the data is distributed
from parents to children, both expanding and shrinking.
Additionally, the synthetic application will also simulate
other features, such as the memory consumed or the number

of bytes transferred in both point-to-point and collective
operations, such that the simulation will be more realistic.

Additionally, if the ULFM Bland et al. (2013) proposal
is added to the MPI standard, the Merge method will be
changed to allow the removal of processes according to the
proposal, along with the study analysing the way the current
implementation will change.

Declaration of conflicting interests

The authors declare that there is no conflict of interest.

Funding

This work has been funded by the following projects: project
PID2020-113656RB-C21 supported by MCIN/AEI/10.13039/
501100011033 and project UJI-B2019-36 supported by Universitat
Jaume I. Researcher S. Iserte was supported by the postdoctoral
fellowship APOSTD/2020/026, and researcher I. Martı́n-Álvarez
was supported by the predoctoral fellowship ACIF/2021/260, both
from Valencian Region Government and European Social Funds.

Notes

1. https://pm.bsc.es/ompss

2. https://pm.bsc.es/nanox

3. https://slurm.schedmd.com

4. https://www.mpich.org

References

Aliaga JI, Castillo M, Iserte S, Martı́n-Álvarez I and Mayo R
(2022) A survey on malleability solutions for high-performance
distributed computing. Applied Sciences 12(10). DOI:
10.3390/app12105231. URL https://www.mdpi.com/

2076-3417/12/10/5231.
Badia RM, Conejero J, Diaz C, Ejarque J, Lezzi D, Lordan F,

Ramon-Cortes C and Sirvent R (2015) Comp superscalar, an
interoperable programming framework. SoftwareX 3-4: 32–36.
DOI:10.1016/J.SOFTX.2015.10.004.

Bernholdt DE, Boehm S, Bosilca G, Venkata MG, Grant RE,
Naughton T, Pritchard HP, Schulz M and Vallee GR (2018) A
survey of mpi usage in the us exascale computing project DOI:
10.1002/cpe.4851. URL https://doi.org/10.1002/

cpe.4851.
Bland W, Bouteiller A, Herault T, Bosilca G and Dongarra J

(2013) Post-failure recovery of mpi communication capability:
Design and rationale. The International Journal of High
Performance Computing Applications 27(3): 244–254. DOI:
10.1177/1094342013488238. URL https://doi.org/10.

1177/1094342013488238.
Comprés I, Mo-Hellenbrand A, Gerndt M and Bungartz HJ (2016)

Infrastructure and api extensions for elastic execution of mpi
applications. In: Proceedings of the 23rd European MPI
Users’ Group Meeting, EuroMPI 2016. New York, NY, USA:
Association for Computing Machinery. ISBN 9781450342346,
p. 82–97. DOI:10.1145/2966884.2966917. URL https:

//doi.org/10.1145/2966884.2966917.
El Maghraoui K, Szymanski BK and Varela C (2006) An

Architecture for Reconfigurable Iterative MPI Applications
in Dynamic Environments. In: International Conference on
Parallel Processing and Applied Mathematics. pp. 258–27.

Prepared using sagej.cls

https://pm.bsc.es/ompss
https://pm.bsc.es/nanox
https://slurm.schedmd.com
https://www.mpich.org
https://www.mdpi.com/2076-3417/12/10/5231
https://www.mdpi.com/2076-3417/12/10/5231
https://doi.org/10.1002/cpe.4851
https://doi.org/10.1002/cpe.4851
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1145/2966884.2966917
https://doi.org/10.1145/2966884.2966917

18 Journal Title XX(X)

Hori A, Jeannot E, Bosilca G, Ogura T, Gerofi B, Yin J and Ishikawa
Y (2021) An international survey on mpi users. Parallel
Computing 108: 102853. DOI:10.1016/J.PARCO.2021.102853.

Houzeaux G, Badia RM, Borrell R, Dosimont D, Ejarque J, Garcia-
Gasulla M and López V (2021) Dynamic resource allocation for
efficient parallel cfd simulations. Technical report, Barcelona
Supercomputing Center.

Iserte S, Mayo R, Quintana-Orti E and Pena A (2020) DMRlib:
Easy-coding and Efficient Resource Management for Job
Malleability. IEEE Transactions on Computers DOI:10.1109/
TC.2020.3022933.

Iserte S, Mayo R, Quintana-Ortı́ ES, Beltran V and Peña AJ (2017)
Efficient Scalable Computing through Flexible Applications
and Adaptive Workloads. In: 46th International Conference
on Parallel Processing Workshops (ICPPW). Bristol (UK):
IEEE. ISBN 978-1-5386-1044-2, pp. 180–189. DOI:10.1109/
ICPPW.2017.36. URL http://ieeexplore.ieee.org/
document/8026084/.

Iserte S, Mayo R, Quintana-Ortı́ ES, Beltran V and Peña
AJ (2018) DMR API: Improving cluster productivity
by turning applications into malleable. Parallel Com-
puting 78: 54–66. DOI:10.1016/J.PARCO.2018.07.006.
URL https://www.sciencedirect.com/science/

article/pii/S0167819118302229?via%3Dihub.
Iserte S, Peña AJ, Mayo R, Quintana-Ortı́ ES and Beltran V (2016)

Dynamic management of resource allocation for ompss jobs.
ISBN 978-84-608-6309-0, pp. 55–58.

Iserte S and Rojek K (2019) An study of the effect of process
malleability in the energy efficiency on GPU-based clusters.
The Journal of Supercomputing : 1–20.

Lemarinier P, Hasanov K, Venugopal S and Katrinis K (2016)
Architecting Malleable MPI Applications for Priority-driven
Adaptive Scheduling. In: Proceedings of the 23rd European
MPI Users’ Group Meeting on - EuroMPI 2016. New York,
New York, USA: ACM Press. ISBN 9781450342346, pp. 74–
81. DOI:10.1145/2966884.2966907. URL http://dl.acm.

org/citation.cfm?id=2966884.2966907.
Lopez V, Ramirez Miranda G and Garcia-Gasulla M (2021) Talp:

A lightweight tool to unveil parallel efficiency of large-scale
executions. In: Proceedings of the 2021 on Performance
EngineeRing, Modelling, Analysis, and VisualizatiOn STrategy,
PERMAVOST ’21. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450383875, p. 3–10. DOI:
10.1145/3452412.3462753. URL https://doi.org/10.

1145/3452412.3462753.
Martı́n G, Singh DE, Marinescu MC and Carretero J (2015)

Enhancing the Performance of Malleable MPI Applications by
Using Performance-aware Dynamic Reconfiguration. Parallel
Computing 46: 60–77.

Martı́n-Álvarez I, Aliaga J, Castillo MI, Iserte S and Mayo
R (2021) A synthetic tool for analysing adaptive work-
loads. URL https://www.youtube.com/watch?v=

kwE2FiU3FM8#t=6h3m20s. Accessed: 2022-03-15.
Martı́n-Álvarez I, Aliaga JI, Castillo M and Iserte S (2022) Malleable

synthetic tool manual. Technical report, Universitat Jaume I.
Message Passing Interface Forum (2021) MPI: A Message-

Passing Interface Standard Version 4.0. URL
https://www.mpi-forum.org/docs/mpi-4.0/

mpi40-report.pdf.

Moody A, Bronevetsky G, Mohror K and de Supinski BR
(2010) Design, Modeling, and Evaluation of a Scalable Multi-
level Checkpointing System. In: ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC10). ISBN 978-1-4244-7557-5.

Posner J and Fohry C (2021) Transparent resource elasticity for
task-based cluster environments with work stealing. In: 50th
International Conference on Parallel Processing Workshop,
ICPP Workshops ’21. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450384414. DOI:10.1145/
3458744.3473361. URL https://doi.org/10.1145/

3458744.3473361.
Radcliffe N, Watson L and Sosonkina M (2011) A comparison of

alternatives for communicating with spawned processes. In:
Proceedings of the 49th Annual Southeast Regional Conference,
ACM-SE ’11. New York, NY, USA: Association for Computing
Machinery. ISBN 9781450306867, p. 132–137. DOI:10.1145/
2016039.2016078. URL https://doi.org/10.1145/

2016039.2016078.
Vadhiyar SS and Dongarra JJ (2002) Srs - a framework for

developing malleable and migratable applications for distributed
systems. Parallel Processing Letters 2: 291–312.

Wittmann M, Hager G, Zeiser T and Wellein G (2013) Asynchronous
MPI for the Masses .

Author Biographies

Iker Martı́n-Álvarez received the BS degree in Computer Engineering
from the Universitat Jaume I, Castello de la Plana, Spain, in 2019
and the MS degree in High Performance Computing from the
Universidade da Coruña, Spain, in 2021. He is currently carrying
out his pre-doctoral studies at the University Jaume I in the High
Performance Computing and Architectures (HPC&A) research
group, which started in 2021. His main research focuses on the
design of a prototype that allows the implementation and malleable
execution of MPI scientific applications in data centres. The aim is
to analyse different malleable mechanisms to determine how they
affect application execution time and system productivity.

José I. Aliaga is a professor of Computer Science and Artificial
Intelligence at the University Jaume I (UJI) in Castellón, Spain,
where he leads the HPCA group. From 2000 to 2005, he was
the head of the department with a staff of over 100 people. He
obtained his diploma and PhD degree in Computer Science from
Polytechnic University of Valencia (UPV), in 1990 and 1995,
respectively. During his career, he has participated in over 35
research projects funded by both national and private organizations
(in Spain or within the EU). In 7 of these projects, he figures as
the principal investigator. He was also involved in two transfer
technology contracts with international partners, leading one of
them. His main research interests include the solution of sparse
linear algebra problems on current high performance multi-core
processors, hardware accelerators and parallel systems.

Maribel Castillo is a member of the High Performance Computing
and Architectures group at University Jaume I (UJI) in Castellón,
Spain. Shed received her BSC and PhD in Computer Sciences, both
from the Universidad Politècnica de Valencia (Spain), in 1992 and
2001, respectively. From 1992 was hired as Assistant Professor and
later associate professor at UJI. Her research interest addresses the
optimization of scientific applications in general, and in more recent
years in bioinformatics applications on general purpose processors
as well as hardware accelerators and their parallelization on clusters

Prepared using sagej.cls

http://ieeexplore.ieee.org/document/8026084/
http://ieeexplore.ieee.org/document/8026084/
https://www.sciencedirect.com/science/article/pii/S0167819118302229?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0167819118302229?via%3Dihub
http://dl.acm.org/citation.cfm?id=2966884.2966907
http://dl.acm.org/citation.cfm?id=2966884.2966907
https://doi.org/10.1145/3452412.3462753
https://doi.org/10.1145/3452412.3462753
https://www.youtube.com/watch?v=kwE2FiU3FM8#t=6h3m20s
https://www.youtube.com/watch?v=kwE2FiU3FM8#t=6h3m20s
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1145/3458744.3473361
https://doi.org/10.1145/3458744.3473361
https://doi.org/10.1145/2016039.2016078
https://doi.org/10.1145/2016039.2016078

Martı́n-Álvarez et al. 19

and shared memory mutiprocessors. She has also participated in
several European and national projects on programming models and
energy efficiency. Prof. Castillo has published more than sixty papers
in journals and international conferences.

Sergio Iserte holds the degrees of BS in Computer Engineering
(2011), MS in Intelligent Systems (2014), and Ph.D. in Computer
Science (2018) from Universitat Jaume I (UJI), Spain. Sergio is a
senior researcher at Barcelona Supercomputing Center (BSC) in the
Computer Science Department, and course instructor of the HPC
subject at Universitat Oberta de Catalunya (UOC). He is currently
involved in HPC projects related to parallel distributed computing,
resource management, workload modeling, deep learning for
industrial applications, and in-network accelerators.

Rafael Mayo received the BS degree from the UPV in 1991.
He obtained his PhD in Computer Science in 2001 at the same
University. Since October 2002, he has been an associate professor
in the Department of Computer Science and Engineering in the
UJI. His research interests include the optimization of numerical
algorithms for general processors as well as for specific hardware,
and their parallelization on both message-passing parallel systems
(mainly clusters) and shared-memory multiprocessors. He was is
involved in several research efforts on HPC energy-aware systems,
cloud computing, and HPC system and development tools.

Prepared using sagej.cls

	1 Introduction
	2 Background
	3 Methods to dynamically reconfigure MPI applications
	3.1 Baseline method
	3.2 Merge method
	3.2.1 Expanding a job
	3.2.2 Shrinking a job

	3.3 Single strategy
	3.4 Asynchronous strategy
	3.5 Integrating the methods in an iterative application

	4 Experimental results
	4.1 Synthetic application
	4.2 Testbed
	4.3 Experimental reconfiguration evaluation of isolated methods
	4.3.1 Synchronous methods
	4.3.2 Asynchronous methods

	4.4 Experimental reconfiguration evaluation for applications and system productivity
	4.4.1 Experimental reconfiguration evaluation for strong scaling benchmarks
	4.4.2 Experimental reconfiguration evaluation for weak scaling benchmarks

	5 Conclusions

