
SANS-MIRI: Review of linear algebra and

applications to data science

Jorge Garcia Vidal, Jose M. Barcelo Ordinas and Pau Ferrer Cid

July 17, 2023

The course SANS (Statistical Analysis of Networks and Systems) belongs to
the Master MIRI (Master of Innovation and Research in Computer Science) of
the Faculty of Computer Science of Barcelona. The course is an introduction
to some mathematical foundations used in data science. The course content
includes an introduction to probability, linear algebra, and estimation.

These lecture notes of the course are devoted to linear algebra concepts applied
to data science, and is divided into the following topics:

1. Basics in Linear Algebra: vector spaces, matrices and applications (linear
equations and least squares equations);

2. Eigendecomposition of square matrices: eigenvectors and eigenvalues, pos-
itive definite matrices and the trace operator;

3. Quadratic forms. Multivariate Gaussian distribution;

4. Eigendecomposition of square matrices: singular value decomposition,
pseudoinverses, matrix norms, Eckart-Young approximation (low-rank ap-
proximation of matrices);

5. Principal component analysis (PCA), the eigenfaces problem;

6. Fourier Transform and its applications;

7. Graph signal processing (GSP) and its applications.

Linear Algebra is a classical topic, and there are many very good books covering
the material that we need for our course at different levels of deep. Two books
that we especially like are: ”Introduction to Linear Algebra” by Gilbert Strang,
and ”Linear Algebra and Learning from Data” by Strang, Gilbert. Other books
related to this course is ”Data-Driven Science and Engineering: Machine Learn-
ing, Dynamical Systems, and Control” by Steven L. Brunton and J. Nathan
Kutz, or ” Introduction to Applied Linear Algebra – Vectors, Matrices, and
Least Squares” by Stephen Boyd and Lieven Vandenberghe.

1

1 Some basic facts that you probably know about
vectors and linear maps

1.1 Vector spaces and sub-spaces

Let V be a set in which we have defined the addition operation and the multipli-
cation by a scalar (in this course, the scalars will be usually real numbers). We
say that V is a vector space if the addition and scalar multiplication operations
satisfy the following properties:

∀u, v, w∈V :

• Associativity: u+ (v +w) = (u+ v) +w,

• Commutativity: u+ v = v + u,

• Additive identity: ∃0∈V such that v + 0 = v, ,

• Existence of inverse: ∀v∈V,∃−v ∈V such that v + (−v) = 0.

∀ a, b ∈ R and ∀u, v∈V :

• Associativity of scalar multiplication: a(bv) = (ab)v,

• Scalar multiplication identity: 1v = v,

• Distributivity of scalar sums: (a+ b)v = av + bv,

• Distributivity of vector sums: a(u+ v) = au+ av.

The elements of a vector space are called vectors. Some examples of vector
spaces are:

Example 1.1 (Coordinate space) The set of vectors x∈Rn with coordinates
x=(x1, ..., xn) and t∈R is a vector space.

Example 1.2 (Set of matrices) The set of matrices A∈Rm×n is a vector
space over R, (addition of matrices and multiplication of scalar over matrices).

Example 1.3 (Set of polynomials) The set of polynomials Pn over R (co-
efficients in R) and of order less or equal of n is a vector space.

Example 1.4 (Set of continuous functions) The set of continuous functions
f : Rn −→ R, where (f+g)(x) = f(x)+g(x) and (af)(x)=af(x) is a vector space.

2

If S is a subset of V (S⊂V) which is closed respect the operations of sum of
vectors (if u,v∈S, then u + v∈S), multiplication by an scalar (if u∈S and a
scalar then au∈S), and the zero vector is in S, we say that S is a vector subspace
of V . Some examples/non-examples of vector subspaces V are:

Example 1.5 A line or a plane containing the origin is a vector subspace.

Example 1.6 A line or a plane non containing the origin is not a vector sub-
space.

Example 1.7 A quadrant is not a vector subspace (fails to be close under scalar
multiplication).

Example 1.8 A circle is not a vector subspace (fails to be close under scalar
or vector multiplication and does not contain the zero).

1.2 Linear combinations and independence

If we have a set of vectors {v1, ...,vk}, a linear combination of these vectors
is an expression of the form v =

∑
i aivi for some scalars ai.

If we have a set of vectors belonging to a vector space, {v1, ...,vk}, the set of
all linear combinations of these vectors is a vector subspace. This subspace is
called:

span{v1, ...,vk} = {
k∑

j=1

βjvj ; with βj∈R} (1.2.1)

One vector w is linearly independent of a set of vectors {v1, ...,vk} when
w cannot be expressed as linear combination of the vectors {v1, ...,vk}, or
in other words, when w/∈ span{v1, ...,vk}. A set of vectors {v1, ...,vk} are
linearly independent when the only linear combination that produces the vector
0 is the one with all coefficients equal to zero. Summarizing, let us assume that∑k

j=1 ajvj = 0; if some aj ̸=0 then the vectors are linearly dependent (l.d.),
while if all aj=0 then the vectors are linearly independent (l.i.).

1.3 Bases and dimension

There are many examples of vector spaces: Rn, Cn, or Pn(R), the set of poly-
nomials of n degree with real coefficients. These spaces are examples of finite
dimensional vector spaces. This means that there is a set of linearly indepen-
dent vectors of V , {ui}i=1,...,n (a base of V) such that all other vectors of V
can be expressed as v =

∑n
i=1 viui. A vector space has in general an infinite

3

number of possible bases, but the number of elements in each of those basis is
always the same. We say that this number n the dimension of V , dim(V) = n.
Moreover, we can use these coefficients to represent v as a column vector:

v = [v1, v2, ..., vn]
⊤ =


v1
v2
...
vn

 (1.3.1)

The same definitions apply to vector subspaces.

Some vector spaces have infinite dimensions, for instance, P∞(R), the set of
polynomials of an arbitrary order, C[0, 1], the set of continuous functions defined
on the interval [0, 1], or L2[0, 1], the set of square integrable functions f for which∫ 1

0
|f |2dµ <∞. In this course, we will deal with the finite dimensional case only.

The infinite dimensional case is studied in functional analysis, and is important,
for instance, when dealing with stochastic processes.

1.4 Scalar product, orthogonality, and vector norms

The scalar product is an operation that takes two vectors u,v ∈ V and returns
a scalar; i.e., ⟨·, ·⟩: V×V −→ R. For this operation to qualify as a scalar product,
it must fulfill the following properties:

• commutative: ⟨u,v⟩ = ⟨v,u⟩,

• distributive: ⟨u,v +w⟩ = ⟨u,v⟩+ ⟨u,w⟩,

• linearity in any argument: ⟨au,v⟩ = ⟨u, av⟩ = a⟨u,v⟩,

• positive definiteness: if u ̸= 0, then ⟨u,u⟩ > 0.

The most commonly used definition of the scalar product for two column vectors
u and v is:

⟨u,v⟩ = u⊤v. (1.4.1)

Note, however, that we can define other scalar products. For instance, if S is a
symmetric positive definite matrix (see section 2.6), we can define a scalar
product as:

⟨u,v⟩ = u⊤Sv. (1.4.2)

Another important example is the scalar product of two square matrices A and
B defined as (see section 3.3 for the definition of trace):

⟨A,B⟩ = tr(A⊤B). (1.4.3)

4

A very important property of the scalar product is the Cauchy-Schwarz in-
equality:

|⟨u,v⟩|2 ≤ ⟨u,u⟩ ⟨v,v⟩. (1.4.4)

We have equality only when u = av for some scalar a.

A simple proof of this important fact is the following: consider an arbitrary
scalar a and two non-zero vectors u,v. Assume first that there is no scalar a for
which au = v. Then, the positive-definiteness property of the scalar product
implies that for any a:

0 < ⟨au− v, au− v⟩ = ⟨u,u⟩a2 − 2⟨u,v⟩a+ ⟨v,v⟩. (1.4.5)

But this second-degree polynomial on a is always non-negative for all a only
when:

4(⟨u,v⟩)2 − 4⟨u,u⟩⟨v,v⟩ < 0, (1.4.6)

and from this, we arrive at the strict Cauchy-Schwarz inequality.

Assume now that there is a scalar a∗ for which a∗u = v. In this case, we have

0 ≤ ⟨au− v, au− v⟩ = ⟨u,u⟩a2 − 2⟨u,v⟩a+ ⟨v,v⟩. (1.4.7)

with equality for a = a∗. This means that the second-degree polynomial in a
has a double root at a∗, which is only possible if:

4(⟨u,v⟩)2 − 4⟨u,u⟩⟨v,v⟩ = 0, (1.4.8)

and from this, we arrive at the equality case of Cauchy-Schwarz inequality when
v is colinear with u.

We can define the angle α between two non-zero vectors u,v as:

cos(α) =
⟨u,v⟩√

⟨u,u⟩ ⟨v,v⟩
. (1.4.9)

Two non-zero vectors are orthogonal when its scalar product is zero:

⟨u,v⟩ = 0. (1.4.10)

Thus, the angle between two orthogonal vectors is α = 90◦.

A norm is a function ∥·∥: Rn −→ R, such that for each vector v∈Rn, the following
conditions are satisfied:

• ∥ · ∥ is non-negative, ∥v∥ ≥ 0

• ∥ · ∥ is definite, ∥v∥ = 0 iif v = 0,

5

• ∥ · ∥ is homogeneous ∥(av)∥ = |a|∥v∥ with a scalar,

• ∥ · ∥ satisfies the triangle inequality (subadditivity property) ∥u + v∥ ≤
∥u∥+ ∥v∥.

The Euclidean norm or also called L2-norm represents the length of a vector
v, and is defined as the non-negative number:

∥v∥ = +
√

⟨v,v⟩ (1.4.11)

Other well-known norms are represented by a subscript ∥ · ∥p, where p∈R+ (R+

means any real number ≥0). Examples of useful norms are:

• ∥v∥0 (zero-norm or L0-norm) defined as the number of non-zero coordi-
nates of vector v (or also as the Hamming distance of the vector from
zero),

• ∥v∥1 (Taxicab norm or Manhattan norm or sum-absolute norm) defined
as ∥v∥1 =

∑n
i=1 |vi|,

• ∥v∥2 (Euclidean norm or L2-norm) defined as ∥v∥2 =
√∑n

i=1 |vi|2 =√
v⊤v,

• ∥v∥p (Lp-norm) defined as ∥v∥p = (
∑n

i=1 |vi|p)1/p,

• ∥v∥∞ (maximum norm or infinity norm or Chebyshev norm) defined as
∥v∥∞ = maxi=1...n{|vi|}.

Example 1.9 (vector norms) Let us assume vector v=[1,0,0,4,2,-3]. Then,
∥v∥0 = 4, ∥v∥1 = 10, ∥v∥2=

√
30 = 5.477, ∥v∥3.2 = 4.558 and ∥v∥∞ = 4

The Cauchy-Schwarz inequality for the Euclidean norm reads:

|u⊤v| ≤ ∥u∥ ∥v∥ (1.4.12)

Let us define the unit circle or unit ball as the set of all vectors v of norm 1
(∥v∥p = 1). Then plot, as an exercise, the unit circle for norms ∥v∥0, ∥v∥1,
∥v∥2, ∥v∥∞, and ∥v∥p for any p.

1.5 Linear maps and matrices

A linear map L is an application L: V → W , where V (domain) and W (co-
domain) are vector spaces, that satisfies ∀u,v∈V , and ∀a, b∈R:

L(u+ v) = L(u) + L(v) and L(au) = aL(u), (1.5.1)

6

or (identical definition)

L(au+ bv) = aL(u) + bL(v). (1.5.2)

For example; L(x1,x2)=(x1+x2,x1,x2+1) is not a linear map, as it fails in the
condition L(au) = aL(u). A linear map always transforms 0 to 0, i.e., L(0) = 0.

Assume that {vi}i=1,...,n is a base of a n dimensional space V , while {wi}i=1,...,m

is a base of a m dimensional space W . The image of the ui base vector by the
linear map L, i.e. L(ui), is a vector of W , that we can express in the base
{wi}i=1,...,m:

L(ui) = a1iw1 + a2iw2 + ...+ amiwm (1.5.3)

An m×n matrix A is an arrangement of these numbers aij into an m×n array
A = [aij]. For an arbitrary vector v, expressed as a column vector in the base
{vi}i=1,...,n, the product Av gives a result the vector w, which is the image of
the vector v by the linear map L expressed in the base {wi}i=1,...,m.

This is a bit confusing at first. Let’s think on the following example: {1, x, x2}
is a possible base of P2(R). Using this base, we can represent the polynomial
p(x) = a+ bx+ cx2 by the R3 vector p = [a, b, c]⊤. Let us define the linear map
d
dx : P2(R) → P2(R) that assigns to a polynomial p(x) its derivative (another
polynomial). If we represent the polynomials in the image and domain sets by
the same base {1, x, x2}, we can thus represent this linear map by the matrix:

D =

0 1 0
0 0 2
0 0 0

 . (1.5.4)

Usually, we will use matrices to represent linear maps. Very often, we express a
matrix A as an arrangement of its columns (or its rows) considered vectors. For
instance if A = [aij] and let us define the n column vectors ai = [ai1, ..., aim]⊤

for i = 1, ..., n. We can write the matrix as:

A = [a1, ...,an] (1.5.5)

Similarly, we can write A using its row vectors ri
⊤ = [a1i, ..., ani]:

A =

— r1
⊤ —
...

— rm
⊤ —

 . (1.5.6)

If we have a matrix A and a column vector v = [v1, ..., vn]
⊤, we can express its

matrix times vector product as

w = Av = [a1, ...,an]

v1...
vn

 =
∑

i=1,..,n

viai, (1.5.7)

7

which is saying that the image vector w is a linear combination of the column
vectors ai.

1.6 Rank of a matrix

The image f of all vectors of a subspace S of V by means of a matrix A is also
a subspace T of W ; f :S⊂V → T⊂W .

In the special case when the subspace S is V itself, the generated subspace is
span{a1, ...,an}. The dimension of this subspace is the rank of the matrix A,
rank(A), and it is the number of linearly independent columns.

Very surprisingly, this number is also the number of linearly independent rows
of the matrix A, meaning that A and A⊤ have the same rank.

In terms of rows and columns of a matrix A∈Rm×n and matrix A⊤∈Rn×m,
we can state the actions of an m×n matrix remembering that matrix A can
be expressed as column vectors {a1, ...,an} or matrix A can be expressed as
row vectors {r1⊤, ..., rm⊤}. In the same way matrix A⊤ can be expressed
as column vectors {r1, ..., rm} or matrix A⊤ can be expressed as row vectors
{a1

⊤, ...,an
⊤}.

For any matrix, we can associate several subspaces: the null space (NS), the
column space (CS), the row space (RS), and the left null space (LNS).

Let us define the Range(A) or Im(A)=Image(A) as the image of the linear
transformation f :Rn⊂V → Rm⊂W :

Im(A) = Range(A) = {y∈Rm|y = Ax for some x∈Rn} (1.6.1)

and we can observe, Range(A)= Im(A) is a subspace of Rm. The Im(A⊤) is
defined in a similar way and is a subspace of Rn.

Im(A⊤) = Range(A⊤) = {x∈Rn|x = A⊤y for some y∈Rm} (1.6.2)

and, Range(A⊤)= Im(A⊤) is a subspace of Rn.

Define the column space ofA, CS(A), as the linear combination of its columns:
CS(A)={w∈Rm, w=c1a1 + · · ·+ cnan}, where ai∈Rm. The CS(A) is then a
subspace of Rm. The CS(A) is the Range(A) or Im(A) of the linear transfor-
mation f :Rn⊂V → Rm⊂W .

In a similar way, we define the row space of A, RS(A), as the linear combina-
tion of its rows: RS(A)= {v∈Rn, w=d1r1 + · · · + dnrm}, where ri∈Rn. The
RS(A) is then a subspace of Rn, and then it is the Range(A⊤) or Im(A⊤).

We know that dim(RS(A))= rank(A) and that dim(CS(A))= rank(A), which
makes dim(RS(A))=dim(CS(A))= rank(A). Since the columns of A are the
rows ofA⊤, finding a basis for CS(A) is equivalent to finding a basis for RS(A⊤).

8

The null space NS(A) or Ker(f) is defined as:

NS(A) = {x∈Rn|Ax = 0} (1.6.3)

and we can observe that NS(A) is a subspace of Rn. The NS(A⊤) (also called
the Left Null Space of A, LNS(A) or the CoKer(f)) is defined in a similar way
and is a subspace of Rm.

LNS(A) = NS(A⊤) = {y∈Rm|A⊤y = 0} = {y∈Rm|y⊤A = 0} (1.6.4)

IfA=[a1, ...,an] is a column partitioning, and rank(A)=span{a1, ...,an}. Now,
since the rank(A) is the dimension of the image; rank(A)= dim(Range(A))=
dim(Im(A))=dim(CS(A)), and we know that rank(A)=rank(A⊤). We say that
the matrix A∈Rm×n is rank deficient if rank(A)<min{m,n}, and therefore:

dim(RS(A)) + dim(NS(A)) = rank(A) + dim(NS(A)) = n (1.6.5)

We can state that RS(A)= Im(A⊤) ⊂Rn ⊥ NS(A)⊂Rn. On the other hand, in
terms of the CS and LNS:

CS(A) = Im(A)⊂Rm ⊥ LNS(A) = NS(A⊤)⊂Rm (1.6.6)

and

dim(CS(A)) + dim(LNS(A)) = rank(A) + dim(LNS(A)) = m (1.6.7)

You can see this in the following way: A⊤y=0 (or y⊤A=0), so rows of A⊤

multiplied by vectors y in the null space are equal to 0 (or vectors y of the left
null space multiplied by columns of A are equal to 0), so they are orthogonal.

Example 1.10 (Row space, column space, null space and left null space)
Let’s see an example of a matrix A∈Rm×n, with m=3 and n=4:

A =

2 1 1 1
3 0 0 2
1 3 6 0


The rank of this matrix is r=3. It has 3 row vectors; r⊤1 = [2, 1, 2, 1], r⊤2 =
[3, 0, 0, 2] and r⊤3 = [1, 3, 6, 0]. They form a basis of the row space that is a sub-
space of Rn = R4. The null space has 1 vector with basis rns = [−2/3, 4/9,−1/9, 1].
Now, vectors r1, r1, r1 and rns form a basis of the space Rn = R4.

Matrix A has 4 column vectors; a⊤
1 = [2, 3, 1], a⊤

2 = [1, 0, 3], a⊤
3 = [1, 0, 6] and

a⊤
4 = [1, 2, 0]. vectors a2 and a3 are linear dependent, thus, vectors a1, a2 and

a4 form a basis of the column space that is a subspace of Rm = R3, and the left
null space only contains vector alns = [0, 0, 0].

1.7 Applications

Let us see some applications where these concepts appear.

9

Figure 1: Fundamental theorem of linear algebra.

1.7.1 Linear equations

Let us consider the Figure 1, where we have plotted the orthogonality of the
subspaces and we consider the system of equations:

Ax = b (1.7.1)

where A∈Rm×n, x∈Rn and b∈Rm.

We can observe that the action of matrix A over a vector xr in the RS is to
transform it in a vector b in the CS.

On the other hand, we can observe that the action of matrix A over a vector
xn in the NullSpace is to transform it in vector 0.

An interesting property is that a vector xp = xr + xns that is the sum of a
vector in the RS and a vector of the NullSpace goes to the CS, since Axp=
A(xr + xns) = Axr +Axns = b + 0 = b.

The conclusion of these facts are that the particular solution of Ax = b is
xr, the homogeneous solution of Ax = b is xns, and the general solution
of Ax = b is xp = xr + xns.

10

1.7.2 Least squares equations

Let us consider the Figure 2, where we have plotted the orthogonality of the
subspaces and we consider the system of equations:

Ax = b

where A∈Rm×n, x∈Rn and b∈Rm. The objective is to find a vector x that
satisfies the equation Ax = b. Let us consider three cases:

Figure 2: Least squares equations.

• Undetermined case: This is the case in which there are more vari-
ables than equations, meaning m < n. In this case, there exists infinity
solutions, since x̂ = {x: Ax=b} = {xr + xns} with xr∈RS(A) and
xns∈Null(A). This is because rank(A)=r=m, so the Null(A⊤) only con-
tains the 0 vector and Null(A) has n-m=n-r vectors (assuming that A is
full row rank).

The best that can be done is to find the vector x in the RS which when
transformed by matrix A is closest to CS, it is to say:

minimize ∥x∥22
subject to Ax = b
variable x

(1.7.2)

This vector is given (we will prove it in TOML-MIRI when we will study
non-linear optimization) by the right pseudo-inverse:

A† = A⊤(AA⊤)−1 (1.7.3)

We call it right pseudo-inverse because AA† =I (A† is on the right). We
will come back to a derivation of the left pseudo-inverse when we study
the singular value decomposition (SVD).

11

Example 1.11 (Undertermined case) Let us consider the following lin-
ear system:

Ax = b →
[
2 1 0
1 3 1

]x1x2
x3

 =

[
3
1

]

A null space vector is xns = [1,−2, 5]. The solution xr is given by xr=
A⊤(AA⊤)−1b:

xr = A⊤(AA⊤)−1b =

2 1
1 3
0 1

 (

[
2 1 0
1 3 1

]2 1
1 3
0 1

)−1

[
3
1

]

and:

xr =

2 1
1 3
0 1

[
11/30 −1/6
−1/6 1/6

] [
3
1

]
= 1/30

 46
−2
−10


and a solution of this linear system of equations is in the form of x =
xr + cxns, with c any real constant.

• Unique solution: This is the case in which there are the same number
of variables as equations, meaning m = n. In this case, there are several
possibilities:

– If matrix A is non-singular (invertible), then there exists a unique
solution:

x̂ = A−1b (1.7.4)

– If matrix A is singular (non-invertible), then rank(A)=r < (m=n),
and there exists infinity number of solutions given by:

x̂ = A†b+ xns (1.7.5)

with xns∈NS(A), and A† the pseudinverse of A.

• Overdetermined case: This is the case in which there are fewer variables
than equations, meaning m > n. In this case, there exists no solution.

The best that can be done is to make the error e=Ax − b as small as
possible. Since Ax can never leave the CS, we have to find a vector x
such that Ax is closest to b, or in other words this point is the projection
p= Ax̂ of b in the CS. In this way e=b-p is the smaller length if:

minimize ∥Ax− b∥22
variable x

(1.7.6)

12

This vector is given (we will prove it in TOML-MIRI) by the left pseudo-
inverse

A† = (A⊤A)−1A⊤ (1.7.7)

We call it left pseudo-inverse because A†A= I (A† is on the left). How-
ever, we can derive it from the interpretation of Figure 1. We have to
note that e=b-p is perpendicular to the CS, so e is in the left null space.
Then:

A⊤e = A⊤(Ax− b) = 0 (1.7.8)

From here, we obtain:

A⊤Ax = A⊤b (1.7.9)

And finally:

x̂ = (A⊤A)−1A⊤b = A†b (1.7.10)

We will come back to a derivation of the left pseudo-inverse when we study
the singular value decomposition (SVD).

Example 1.12 (Overdetermined case) Let us consider the following
linear system:

Ax = b →

2 1
1 3
0 1

[
x1
x2

]
=

31
4


The solution xr is given by x= (A⊤A)−1A⊤b:

x = (A⊤A)−1A⊤b = (

[
2 1 0
1 3 1

]2 1
1 3
0 1

)−1

[
2 1 0
1 3 1

]31
4


and:

x =

[
11/30 −1/6
−1/6 1/6

] [
2 1 0
1 3 1

]31
4

 = 1/30

[
27
15

]
and a solution of this linear system of equations is in the form of x =
1/30[27, 15] = [0.9, 0.5].

2 Eigenvectors and eigenvalues

An eigenvector of a linear transformation is a nonzero vector that changes at
most by a scalar factor when that linear transformation is applied to it. The

13

corresponding eigenvalue λ is the factor by which the eigenvector is scaled. The
eigenvector points in a direction in which the vector is scaled by the trans-
formation and the eigenvalue is the factor by which the vector is scaled. A
main application is the decomposition of a matrix by using eigenvectors and
eigenvalues (called de eigenvector decomposition, EVD). Other applications ap-
pear when solving differential equations, dimensionality reduction (e.g. princi-
pal component analysis, PCA), denoising (e.g. eigenfaces), data compression,
spectral graph theory, signal reconstruction, etc. The EVD (applied to squared
matrices) is connected to another important decomposition called singular value
decomposition (SVD) when the matrices are not-squared.

2.0.1 Linear transformations

If T is a linear transformation on a vector space over itself, i.e., T :V → V , an
eigenvector is a vector that satisfies:

T (v) = λv (2.0.1)

Assuming that the linear transformation (as seen in previous lectures) can be
related to a matrix. Let, then, A∈Rn×n be a square real matrix (although the
matrix A has real components, in this section is better to think that vectors can
have complex coefficients and that scalars are also in general complex numbers).
A non zero vector v is an eigenvector, and the scalar λ is an eigenvalue of
the matrix A when:

Av = λv (2.0.2)

Eigenvalues must fulfill the condition: Av − λv = (A − λI)v = 0. As v
is non-zero, this is only possible if rank(A) < n, which is equivalent to the
condition det(A − λI) = 0. This determinant is in general a polynomial on
λ of degree n, meaning that has n complex roots (if we count the multiplicity
of roots). For very small matrices we can find the roots of this polynomial
to compute eigenvalues. For larger matrices, there are more computationally
efficient methods.

Once we know the eigenvalues, we can find the associated eigenvectors by solving
the undetermined system of linear equations (A − λI)v = 0. We can set, for
instance, the condition ∥v∥ = 1 to find unique solutions (up to the sign).

In the case of eigenvalues of multiplicity larger than 1, we can have several
linearly independent associated eigenvectors. The dimension of the generated
subspace must be less or equal to the multiplicity of the root. When this di-
mension is strictly lower than the multiplicity of λ, we say that the matrix is
defective. You can find detailed discussions on this in any text on linear al-
gebra. We will be interested mainly in symmetric matrices, which are never
defective.

14

2.1 Diagonalization and eigendecomposition

Let A be a square n×n matrix with n linearly independent eigenvectors vi
(where i=1, . . . , n). Then A can be factorized as:

A = VΛV−1 (2.1.1)

where V is a squared n×n matrix with column vectors vi (eigenvectors), and
Λ is a squared n×n diagonal matrix whose diagonal elements Λii=λi (are the
eigenvalues). This is easy to see since if v i an eigenvector:

Av = λv

AV = VΛ

A = VΛV−1

(2.1.2)

See the following property. The linearly independent eigenvectors associated
with the eigenvalues different of 0, form the range(A) or Image(A), and they
are the basis of the column space CS(A). The linearly independent eigenvectors
associated with eigenvalues equal to 0, form the basis of the null space of A.

2.2 Some important types of matrices

• An square n×n matrix Λ with 0 off-diagonal elements is a diagonal ma-
trix. The product Λv produces a stretching (or directional scaling) of
the different components of the vector v according to the corresponding
values of the diagonal. If some components of the diagonal of Λ are zero,
the product collapses to zero the corresponding components of v. The
inverse of Λ is obtained by simply inverting the diagonal elements (if any
of those elements is zero, then the matrix is not invertible).

• A square matrix Q with columns that are orthonormal vectors (i.e. or-
thogonal and with norm 1) is called an orthonormal matrix (or very
often simply orthogonal matrix, as we will assume the norm 1 condi-
tion). The product Qv produces a rotation, a reflection, or a combination
of both operations (called roto-reflection), on the vector v. Orthonormal
matrices are always invertible and Q−1 = Q⊤.

• A square matrix A that fulfills A=A⊤ is a symmetric matrix. Sym-
metric matrices satisfy the following properties: i) sum (or difference) of
symmetric matrices is symmetric, ii) if A and B are symmetric, then AB
is symmetric only if AB=BA; iii) if A−1 exists, then it is symmetric if
and only if A is symmetric;

• If v is a column vector of V , the square n×n matrix vv⊤ is a matrix (do
not confuse with the scalar product v⊤v which is a number) of rank 1.

15

• We define a projection as a linear operator P :V → V such that P 2=P .
If the vector space V is finite-dimensional, a square matrix P is called
projection matrix if P 2=P . Moreover, if P is real, and P 2=P=P⊤ then
P is called a orthogonal projection matrix. For the general case of a
non-unitary vector v, the projection matrix is defined as:

P = v < v,v >−1 v⊤ (2.2.1)

so the projection of a vector t on the vector v, would be given by:

t̂ = Pt = v < v,v >−1 v⊤t (2.2.2)

Example 2.1 (Projection matrix for a vector) We want to project
vector t= [1, 2] over vector v= [2, 1]. We first obtain the projection matrix
P :

P =
1

∥v∥22
vv⊤ =

1

5

[
2
1

] [
2 1

]
=

1

5

[
4 2
2 1

]
Then, now, the projection of vector t on the vector v, would be given by:

t̂ = Pt =
1

5

[
4 2
2 1

] [
1
2

]
=

1

5

[
6
4

]
=

[
1.2
0.8

]
and the projected vector will be t̂ = [1.2, 0.8]. We can observe that the
matrix P satisfies property P 2=P=P⊤:

P 2 =
1

5

[
4 2
2 1

]
1

5

[
4 2
2 1

]
=

1

25

[
20 10
10 5

]
=

1

5

[
4 2
2 1

]
Finally, observe that since we project a vector over a vector, matrix P has
rank r = 1.

In the special case in which v is unitary, < v,v >=1, and P= vv⊤. The
projection of vector t on the unitary vector v will then be t̂ = Pt = vv⊤t.

In the case that the we want to project a vector t on a subspace generated
by the matrix A, then the projection matrix will be given by:

P = A(A⊤A)−1A⊤ (2.2.3)

and the projection of the vector t on the subspace generated by the matrix
A will be given by:

t̂ = A(A⊤A)−1A⊤t (2.2.4)

Example 2.2 (Projection matrix for a matrix) We want to project
vector t= [1, 2] over the space generated by matrix:

A =

2 1
1 3
0 1


16

The projection matrix P will be given P = A(A⊤A)−1A⊤:

P =

2 1
1 3
0 1

 (

[
2 1 0
1 3 1

]2 1
1 3
0 1

)−1

[
2 1 0
1 3 1

]
=

1

30

29 2 −5
2 26 10
−5 10 5


and we can observe that matrix P has rank r = 2 (the same as matrix A).

2.3 An n×m matrix of rank r maps a sphere of dimension
n into an ellipsoid of dimension r

A basic fact of linear algebra is the following: Assume that we have an n×m
matrix A with rank(A)=r. Assume that we compute the products y = Ax,
where x is an n-dimensional vector that lies in a sphere of radius 1 in the space
Rn. Then the locus (set of points) of all the generated vector y lies in an ellipsoid
of dimension r embedded in the space Rm.

As an example, assume a 2×2 matrix A of rank 2. If we compute y = Ax
for x = (cos(θ), sin(θ))⊤ with θ ∈ [0, 2π), the vector y will lie in an ellipsoid
centered in the origin in R2. If rank(A)=1, the ellipsoid will collapse one of its
dimensions, resulting in a segment that crosses the origin.

2.4 Matrix factorization

In this course, we deal with two important matrix factorizations:

• S = QΛQ⊤, for symmetric matrices.

• A = UΣV ⊤, Singular Value Decomposition (SVD) for general matrices.

We are interested in the first factorization as covariance matrices are symmetric,
and we are interested in the second factorization as it allows us to approximate
clouds of points in high-dimensional spaces by clouds of points in lower dimen-
sional spaces.

2.5 Diagonalization of symmetric matrices

Assume that S is an n×n symmetric matrix, i.e. S = S⊤, i.e., aij = aji ∀i, j.
Symmetric matrices have the following properties: i) S1+S2 (sum) is symmetric
if S1, S2 are symmetric, ii) S1S2 (product) is not necessarily symmetric even
if S1, S2 are symmetric, iii) if S−1 exists, is symmetric if and only if S1 is
symmetric.

The spectral theorem tells us when a linear operator or matrix can be diag-
onalized. In the case of S (symmetric matrix), the finite-dimensional spectral

17

theorem says that any symmetric matrix S whose entries are real can be diag-
onalized by an orthogonal matrix (so, the eigenvectors are orthonormal).

• S has n real eigenvalues, λi, (counting possible multiplicities)

• The n associated eigenvectors, qi are orthonormal.

• These matrices are not defective (defective means that rank(A)=r<n, then
rank(S)=n) if they are positive definite.

Let us prove it for the case in which the matrix has non-repeated eigenvalues.
This result can be extended for the repeated eigenvalues case by using continuity
arguments.

2.5.1 Eigenvectors are orthogonal

Assume that Sv = λv and Su = µu different eigenvalues λ and µ. We have:

v⊤Su = µv⊤u (2.5.1)

and

u⊤Sv = λu⊤v (2.5.2)

but u⊤Sv = v⊤S⊤u = v⊤Su as S is symmetric, and u⊤v = λv⊤u, which
implies λu⊤v = µu⊤v, and from this we get u⊤v = 0 (eigenvectors are orthog-
onal).

2.5.2 Eigenvalues are real

Assume that λ is a complex eigenvalue. As S is real, λ∗ (i.e. its complex
conjugate) must also be an eigenvalue:

Sv = λv (2.5.3)

and:

Sv∗ = λ∗v∗ (2.5.4)

Then we have:

v∗TSv = λv∗Tv = λ (2.5.5)

since eigenvectors v are orthonormal (v∗v = 1), and:

vTSv∗ = λ∗vTv∗ = λ∗ (2.5.6)

18

But λ∗ = vTSv∗ = (vTSv∗)⊤ = v∗TSv = λ, meaning λ = λ∗.

As a consequence, we can write S as: S=QΛQ⊤, where Q is an n×n matrix
with columns the eigenvectors of S, Q=[q1,. . . , qn], and Λ is a diagonal matrix
with diagonal elements Λi,i = λi.

An alternative way of expressing this is by the formula: S =
∑

i λiqiqi
t. Recall

that the terms qiqi
t are rank 1 matrices.

If rank(S)=n, the eigenvalues λi must be different from 0 (if not, the corre-
spondent eigenvector qi would belong to the null space and rank(S)<n). In this
case, S has an inverse, which is also a symmetric matrix, and: S−1=QΛ−1Q⊤ =∑

i
1
λi
qiqi

⊤.

Example 2.3 (Symmetric matrices) Let us assume the following symmet-
ric matrix A:

A =


2 1 0 1
1 3 4 5
0 4 1 4
1 5 4 4


Then the eigendecomposition of matrix A will A = QΛQ⊤, with:

Q =


−0.128 −0.978 −0.155 −0.051
−0.596 0.021 0.553 −0.582
−0.463 0.204 −0.812 −0.29
−0.643 0.028 0.103 0.758


and

Λ =


11.712 0.0 0.0 0.0
0.0 1.95 0.0 0.0
0.0 0.0 −2.228 0.0
0.0 0.0 0.0 −1.434


and as we can observe, all eigenvalues are real, and the eigenvectors are oth-
ornormal; q⊤

i qi = 1 and q⊤
i qj = 0 with i ̸=j, e.g. q⊤

0 q0= [−0.128, −0.596,

−0.463, −0.643]⊤ [−0.128, −0.596, −0.463, −0.643]= 1.0 and q⊤
0 q2= [−0.128,

−0.596, −0.463, −0.643]⊤ [−0.155, 0.553, −0.812, 0.103]= 0.0.

Observe also that the matrix Q is a rotation matrix; for example Qqi = [0, . . . ,
1, . . . , 0], a unitary vector with a 1 at position i, 0’s in the remainder.

2.6 Positive definite matrices

When all eigenvalues S are positive, we say that the symmetric matrix is pos-
itive definite. In this case, S−1 is also a symmetric positive definite matrix.
These matrices somehow play the role of positive numbers in the matrix world.

19

For example, the variance-covariance matrix Σ = E[(X1, .., Xn)(X1, ..., Xn)
⊤]

of multivariate Gaussian distributions is a positive definite matrix. The inverse
of the covariance matrix, called precision matrix is also positive definite.

• An n×n symmetric real matrix A is said to be positive definite if

x⊤Ax>0 (2.6.1)

for all non-zero vectors x∈Rn and it is said negative definite if

x⊤Ax<0. (2.6.2)

• An n×n symmetric real matrix A is said to be positive semi-definite if

x⊤Ax≥0 (2.6.3)

x⊤Ax≥0 for all non-zero vectors x∈Rn and it is said negative semi-
definite if

x⊤Ax≤0 (2.6.4)

• An n×n symmetric real matrix which is neither positive semi-definite nor
negative semi-definite is called indefinite.

• A matrixA is positive (negative) definite if and only if all of its eigenvalues
are >0 (<0).

• A matrix A is positive (negative) semi-definite if and only if all of its
eigenvalues are ≥0 (≤0).

You can find several interesting properties such as: i) if A and B are positive
definite matrices, then the sum A+B is a positive definite matrix; or ii) if A
is a positive definite matrix, then the inverse A−1 is a positive definite matrix.

Finally, an interesting result is the following: let be a m×n A matrix. The
matrix S=A⊤A is positive definite (and then symmetric), and therefore S has
orthonormal eigenvectors and positive eigenvalues.

Example 2.4 (Positive definite matrices) Let us consider matrices A, B,
C and D. Check positive definiteness.

A =

−1 1 −1
1 0 1
0 1 1

 ; B =

−3 0 −1
0 −5 −2
−1 −2 −3



C =

 3 1 −1
0 4 −2
−1 −2 3

 ; D =

3 1 −1
0 4 −2
3 4 −3


20

Let us obtain the eigenvalues. The eigenvalues of matrix A are λ=[−1.879,
0.347, 1.532]. The matrix is neither positive or negative definite. The eigenval-
ues of matrix B are λ=[−1.319, −3.358, −6.323] are all negative, and then the
matrix is negative definite. The eigenvalues of matrix C are λ=[1.097, 3.194,
5.709] are all positive, and then the matrix is positive definite. The eigenval-
ues of matrix D are λ=[0.0, 0.586, 3.414] are all positive or equal to zero, and
then the matrix is positive semidefinite. Moreover, since there are one eigen-
value equal to zero, the rank of this matrix is 2. On the other hand, the rank of
matrices A, B, C is 3.

3 Useful properties of matrices

3.1 Geometric interpretation for symmetric matrices: Ro-
tation/Reflection, Stretching, Rotation/Reflection−1

Figure 3: Symmetric matrix applied to a disc of radius 1.

We know that matrix multiplication can be interpreted as linear map com-
position, meaning that the geometric interpretation of Sv = QΛQ⊤v for an
arbitrary vector v is:

• Rotate the coordinate system to align it with the set of vectors qi which
form the columns of the matrix Q. The vector v in this new coordinate
system has the expression Q⊤v (note that the vectors qi expressed in the

21

new coordinate system have the expression Q⊤qi = [0, ..., 1, ...0] as we
expect).

• Stretch each component of the resulting vector Q⊤v according with the
diagonal elements of the matrix Λ, obtaining the vector ΛQ⊤v. This
stretching causes in general a change of direction of the vector, but if v is
aligned with a vector qi, it does not change its direction.

• Apply the inverse rotation to the coordinate system. If we express the
resulting ΛQ⊤v in this new coordinate system we obtain QΛQ⊤v.

For instance, a positive definite matrix S will map an n-dimensional sphere of
radius 1 to an n-dimensional ellipsoid with axis given by its eigenvectors qi, and
axis lengths given by its eigenvalues λi, (think on this, Figure 3).

3.2 Derivatives with vectors and matrices

First, some matrix manipulations typically appear when working with differen-
tiation.

• (AB)−1 = B−1A−1

• (AB)⊤ = B⊤A⊤

• (a⊤Ab)⊤ = b⊤A⊤a

• a⊤b = b⊤a

• (A+B)C = AC+BC

• AB ̸= BA

• a⊤b = b⊤a

• (a+ b)⊤C = a⊤C+ b⊤C

The Hadamard product (also known as the element-wise product, entry-wise
product, or Schur product) returns a matrix of the multiplied corresponding
elements. It is defined with the symbol ⊙ (sometimes also with symbol ◦):

(A ◦B)ij = (A⊙B)ij = (A)ij(B)ij . (3.2.1)

Example 3.1 (Hadamard product of matrices) Consider matrices A and
B.

A =

2 1 −2
1 0 2
0 1 3

 ; B =

−3 0 −1
2 −5 −2
−1 2 4


22

Its Hadamard product is given by:

A⊙B =

2 1 −2
1 0 2
0 1 3

⊙

−3 0 −1
2 −5 −2
−1 2 4

 =

−6 0 2
2 0 −4
0 2 12


Let us assume vector x and we want to obtain vector derivatives over the func-
tion f(x) of the form df(x)/dx. We use the denominator layout (meaning that
f⊤ and x)

• f(x) = x⊤a −→ df(x)/dx = a

• f(x) = x⊤A −→ df(x)/dx = A

• f(x) = Ax −→ df(x)/dx = A⊤

• f(x) = x⊤x −→ df(x)/dx = 2x

• f(x) = x⊤Ax −→ df(x)/dx = 2Ax if A is symmetric

• f(x) = x⊤Ax −→ df(x)/dx = (A+A⊤)x

3.3 The trace operator

For a square matrix n×n A we define the trace as the sum of the elements of
its diagonal:

tr(A) =

n∑
k=1

akk = a11 + a22 + · · ·+ ann (3.3.1)

The trace of the n×n I identity matrix is the dimension of the space, namely
n: tr (In) = n. The following relationships are satisfied:

tr(A+B) = tr(A) + tr(B)

tr(cA) = c tr(A)
(3.3.2)

for all square matrices A and B, and all scalars c. Moreover:

tr(A) = tr
(
AT

)
(3.3.3)

3.3.1 The trace of a matrix is the sum of its eigenvalues counting
multiplicities

As we know, the eigenvalues λk are the solutions of the equation:

det(A− λI) = (−1)nλn + (−1)n−1tr(A)λn−1 + ... = 0 (3.3.4)

23

The eigenvalues λk are the roots of the polynomial in λ, meaning that we have:

(−1)n(λ− λ1)(λ− λ2)... = 0 (3.3.5)

and from this we obtain:∑
k

λk = tr(A) (3.3.6)

Example 3.2 (Symmetric matrices) Let us assume the following symmet-
ric matrix A:

A =


2 1 0 1
1 3 4 5
0 4 1 4
1 5 4 4


The eigenvalues are λ=[11.712, 2.228, 1.95, 1.434]. We can observe that

∑
i λi=

11.712+ 1.95+ (−2.228) + (−1.434)= 10.0 and that tr(A) = 2+ 3+ 1+ 4 = 10

3.3.2 The trace operator is cyclic

Let A and B be general non-square matrices of sizes n×m and m×n. The
diagonal elements of P = AB can be found as:

pkk =
∑

i=1,...,m

akibik (3.3.7)

while that for Q = BA we have:

qii =
∑

k=1,...,n

aikbki (3.3.8)

We have then

tr(AB) =
∑

k=1,..,n

∑
i=1,...,m

akibik =
∑

i=1,..,m

∑
k=1,...,n

akibik = tr(BA) (3.3.9)

If we have now three arbitrary matrices of the right sizes to produce a square
matrix in its product BAC we have:

tr(BAC) = tr((BA)C) = tr(C(BA)) = tr(CBA) (3.3.10)

Moreover for real column vectors a ∈ Rn and b ∈ Rn, the trace of the outer
product is equivalent to the inner product:

tr
(
baT

)
= aTb (3.3.11)

24

3.3.3 Derivatives of a trace

Let A∈Rn×m and X∈Rm×n matrices. Then:

d

dX
tr(AX) =

d

dX
tr(XA) = A⊤ (3.3.12)

Moreover, if A,X∈Rn×m:

d

dX
tr(AX⊤) =

d

dX
tr(X⊤A) = A (3.3.13)

Then, assuming correct matrices sizes A, B, X:

d

dX
tr(AXB) =

d

dX
tr(BAX) = (BA)⊤ (3.3.14)

On the other hand, for deriving (X⊤AX) with respect to X, we first fix one
of the X and then the other (e.g. fix one X and substitute the other X by Y
and derive with respect Y , and then repeat exchanging the order):

d

dX
tr(X⊤AX) =

d

dY
tr(Y ⊤AX)+

d

dY
tr(XAY) = (A + A⊤)X (3.3.15)

Using these rules, we can obtain the derivative of more complex trace expres-
sions.

3.4 Quadratic forms, sub-level sets, paraboloids and ellip-
soids

A quadratic function has the form of

f(x) =
1

2
x⊤Px+ b⊤x+ c (3.4.1)

where P is a n×n symmetric matrix, b and x are n-dim vectors, and c is a real
number. Define now a α sub-level set Cα of a function f :Rn → R, as

Cα = {x∈dom{f}|f(x) ≤ α} (3.4.2)

Let us now remember the equation of an n-dim ellipsoid as

x21
a21

+
x22
a22

+ · · ·+ x2n
a2n

= 1

Thus, we can see that the α sub-level set of a quadratic form is an ellipsoid. In
fact,

ϵ = {x|(x− xc)
⊤P−1(x− xc) ≤ 1} (3.4.3)

25

where P is symmetric and positive definite, and the vector xc is the center
of the ellipsoid. The matrix P defines how far the ellipsoid extends in every
direction from xc (directions given by eigenvectors of P), and the length of the
semi-axes of ϵ are given by

√
λi (with λi the eigenvalues of P .

If we consider now a new dimension xn+1, and make

xn+1 =
x21
a21

+
x22
a22

+ · · ·+ x2n
a2n

(3.4.4)

we obtain the equation of a paraboloid.

3.5 Multivariate Gaussian distribution

Recall that we say that X follows a multivariate gaussian distribution of pa-
rameters µ and Σ, where µ∈Rn and Σ is a positive definite matrix, if the joint
probability density function of X is of the form:

fX(x) =
1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)⊤Σ−1(x−µ) (3.5.1)

Many times, we will express themultivariate gaussian distribution as: p{x|µ,Σ} =
N{x|µ,Σ}, or X ∼ N{µ,Σ}.

3.5.1 The quadratic form 1
2 (x− µ)⊤Σ−1(x− µ)

If S is a definite positive matrix, then the graph of the quadratic form

z =
1

2
(x− µ)⊤Σ−1(x− µ) (3.5.2)

is a n+ 1 dimensional paraboloid that takes always values of z which are non-
negative and the only point at which z = 0 is µ.

Example 3.3 (Precission matrix Σ−1) For instance, let Σ =

[
3
2 − 1

2
− 1

2
3
2

]
.

To diagonalize Σ, we find the eigenvalues and orthonormal eigenvectors:

Σ =

[√
2
2 −

√
2
2√

2
2

√
2
2

] [
1 0
0 2

] [√
2
2

√
2
2

−
√
2
2

√
2
2

]
Meaning that:

Σ−1 =

[√
2
2 −

√
2
2√

2
2

√
2
2

] [
1 0
0 1

2

][√
2
2

√
2
2

−
√
2
2

√
2
2

]
=

[
3
4

1
4

1
4

3
4

]
.

Figure 4 we plot the 3-d parabole 1
2 (x− µ)⊤Σ−1(x− µ) for µ = [5, 5]⊤:

26

Figure 4: Paraboloid of a quadratic form given in the example.

3.5.2 Isocontour lines (or α-level sets)

We define the isocontour lines (or α-level sets) as the surface that represents
points of a constant value within a volume of space:

(x− µ)⊤Σ−1(x− µ) = c2 (3.5.3)

The equation of an ellipsoid centered at the origin and of semi-axis given by ai
oriented according to the orthonormal vectors qi is

x⊤Q


1
a2
1

0 . . . 0

0 1
a2
2

. . . 0

0 0 . . . 0
. 1

a2
n

Q⊤x = 1 (3.5.4)

If we plot the geometrical locus of the points that fulfill the equation:

(x− µ)⊤Σ−1(x− µ) = c2

we would obtain an n dimensional ellipsoid, centered at the point µ, with axis
aligned with the (orthonormal) eigenvectors qi of the matrix Σ, and with semi-
axis length in the axis pointed by qi equal to c

√
λi, where λi is the eigenvalue

associated with qi.

27

Figure 5: Ellipse equations in terms of a quadratic form.

Figure 6: Ellipse equations in terms of eigenvalue-eigenvectors.

3.5.3 Isotropic Gaussian distribution

The special case of having µ = 0 and Σ=I, we say that we have the multivariate
standard normal distribution, and ifΣ= σ2I, the distribution is called a isotropic
Gaussian distribution, meaning that instead of ellipsoids, we will obtain hyper-
spheres.

28

3.5.4 Datasets generated from independent sampling of a multivari-
ate Gaussian distribution

If we perform a number of independent sampling of a multivariate Gaussian
distribution, we will obtain clouds of points following the previously described
ellipsoids:

3.5.5 Expressing 1
2nx

⊤Σ−1x as the trace of the product of two ma-
trices

Assume that x is a vector with 0 mean (otherwise, we would use x−m instead).
Scalars are special cases of square matrices, meaning that

1

2n
x⊤Σ−1x = tr(

1

2n
x⊤Σ−1x) = tr(

1

2n
xx⊤Σ−1) =

1

2
tr(SnΣ

−1) (3.5.5)

where Sn = 1
nxx

⊤ is the sample covariance-variance matrix.

3.5.6 The term |Σ|1/2

The determinant of a matrix is the product of its eigenvalues, meaning that
|Σ|1/2 = (

∏
i λi)

1/2.

4 The Singular Value Decomposition (SVD)

The diagonalization of a symmetric matrix is an extremely important result,
that tells us that a symmetric matrix has as a ”core” a diagonal matrix with
real diagonal elements. A similar result can be generalized for some other square
matrices, but it cannot be applied to general (possibly non-square) matrices.

There is however another factorization that can be applied to general matrices,
even for non-square matrices which is known as Singular Value Decomposition

29

(SVD), that has a lot of applications, including dimensionality reduction appli-
cations (principal component analysis, PCA), obtaining the effective rank of a
matrix (closest rank approximation of a matrix, e.g. Eckart-Young theorem),
calculate the generalized inverse of a matrix (pseudoinverse), or in linear least
squares problems.

4.1 The SVD

As we have seen if S is a symmetric n×nmatrix, we can find a set of orthonormal
vectors uk, which are left and right eigenvectors of S associated with the real
eigenvalues λk, meaning that they fulfill the equations:

Sui = λiui, i ∈ {1, .., n} (4.1.1)

The SVD generalizes these equalities for a general m×n (i.e. m rows and n
columns) matrix A∈Rm×n of rank r≤min(m,n). The idea is to find orthonor-
mal matrices U∈Rm×m and V ∈Rn×n and diagonal matrix Σ∈Rm×n, such as
A = UΣV ⊤ (Figure 7). The elements of the diagonal matrix Σii = σi are real
positive numbers called singular values and which we will order as a nonincreas-
ing order σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0.

Σ =

[
Σr 0
0 0

]
(4.1.2)

with Σr=diag(σ1, . . . , σr). For example, let us see the structure of matrix Σ
for rank 1 and 2 in a 5×5 matrix:

σ1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ;


σ1 0 0 0 0
0 σ2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (4.1.3)

We can observe the similitude with the EVD (eigenvector decomposition) if put
matrix V on the left and see that it is satisfied the following expression:

Avi = σiui, i ∈ {1, .., n} (4.1.4)

Surprisingly, we will see that this decomposition is always possible. The values
σk are called singular values of A, while the columns of U and V are called the
left and right singular vectors of A.

Remember that orthonormality of singular vectors mean that

UU⊤ = U⊤U = Im (4.1.5)

and

V V ⊤ = V ⊤V = In (4.1.6)

30

Figure 7: SVD for a m×n A matrix.

4.2 Relation between EVD (eigenvalue decomposition) and
SVD (singular value decomposition)

Let us have a non-symmetric real matrix A∈Rm×n, and assume a SVD as
A = UΣV ⊤. We can see that the following relationships hold:

• Case A⊤A: in this case we obtain a n×n square matrix and:

A⊤A = (UΣV ⊤)⊤UΣV ⊤ = V Σ⊤U⊤UΣV ⊤ = V Σ⊤ΣV ⊤ (4.2.1)

which says that A⊤A has as eigenvectors the columns of V (right singular
vectors).

• Case AA⊤: in this case we obtain a m×m square matrix and:

AA⊤ = UΣV ⊤(UΣV ⊤)⊤ = UΣV ⊤V ⊤Σ⊤U⊤ = UΣΣ⊤U⊤ (4.2.2)

which says that AA⊤ has as eigenvectors the columns of U (left singular
vectors).

Finally, we can observe that the eigenvalues of A⊤A and AA⊤ are the squares
of the singular values of A: σ2

i=λi or σi=
√
λi.

4.3 Selecting the orthonormal basis in the SVD

Let us see how do we select the orthonormal basis {u1, . . . ,um} for the range
and the orthonormal basis {v1, . . . ,vn} for the domain (remember that we have
a function f :Rn → Rm associated to matrix A∈Rm×n). Let us assume that
rank(A)=r; then, we will have:

31

• The left eigenvectors u1, . . . ,ur with ui∈Rm are the orthonormal basis
of the Image(A)= CS(A);

• The left eigenvectors ur+1, . . . ,um with ui∈Rm are the orthonormal basis
of the Left Null Space LNS(A)= NS(A⊤);

U = [U r|Ũm−r] = [u1, . . . ,ur︸ ︷︷ ︸
Ur

,ur+1, . . . ,um︸ ︷︷ ︸
Ũr

] (4.3.1)

• The right eigenvectors v1, . . . ,vr with vi∈Rn are the orthonormal basis
of the row space RS(A);

• The right eigenvectors vr+1, . . . ,vn with vi∈Rn are the orthonormal basis
of the null space NS(A);

V = [V r|Ṽ n−r] = [v1, . . . ,vr︸ ︷︷ ︸
V r

,vr+1, . . . ,vn︸ ︷︷ ︸
Ṽ r

] (4.3.2)

We first assume symmetric matrix A⊤A∈Rn×n, and its eigenvalue decomposi-
tion (obtain its eigenvalues and eigenvectors since it is a squared n×n matrix):
A⊤A = V DV ⊤, where D is a diagonal matrix with eigenvalues λi arranged in
nonincreasing order (λ1 ≥ λ2 ≥ · · · ≥ 0), and the columns of V (eigenvectors of
A⊤A) are the orthonormal vectors {v1, . . . ,vn}. We can observe that vectors
{v1, . . . ,vn} form a basis of Rn. Moreover, since our matrix A has rank(A)=r,
the right singular vectors associated with non-zero singular values (there are r
of them) form a basis of RS(A), while the n-r right singular vectors associated
with the zero n-r singular values form a basis of the NS(A).

Remember that the Im(A) = Range(A) = {y∈Rm|y = Ax for some x∈Rn},
and then:

Avi·Avj = (Avi)
⊤·Avj = vi

⊤(A⊤Avj) = vi
⊤(λjvj) = λjvi

⊤vj = 0 (4.3.3)

since vi and vj are orthonormal. Then Avi and Avj also are orthogonal (not

necessarily orthonormal). Then the eigenvectors ofA⊤A and their images under
A form a basis for the range or image of A (or the column space CS(A)).

We must check now that the vectors uk defined as Avk = σkuk are also or-
thonormal:

u⊤
i uj =

1

σiσj
v⊤
i A

⊤Avj =
σ2
j

σiσj
v⊤
i vj = 0, i ̸= j (4.3.4)

In order to complete the orthonormal bases of the range, we have to normalize,
thus:

ui =
Avi

|Avi|
=

Avi√
λi

=
Avi

σi
; 1 ≤ i ≤ r (4.3.5)

32

and defining σ2
i = λi, we obtain Avi = σiui, with 1 ≤ i ≤ r, which shows that

AV = UΣ taking ui the columns of U and vi the columns of V and Σii = σi.

Finally, we can express the matrix A as:

A = [U r, Ũ r]

[
Σr 0
0 0

] [
V r

Ṽ r

]
(4.3.6)

The dimensions of the matrices are U r∈Rm×r, Ũ r∈Rm×(m−r), V r∈Rn×r, and
Ṽ r∈Rn×(n−r). Observe that the following conditions are satisfied:

U⊤
r U r = Ir Ũ

⊤
r Ũ r = Im−r U⊤

r Ũ r = 0 U⊤
r U r + Ũ

⊤
r Ũ r = Im

V ⊤
r V r = Ir Ṽ

⊤
r Ṽ r = In−r V ⊤

r Ṽ r = 0 V ⊤
r V r + Ṽ

⊤
r Ṽ r = In

(4.3.7)

Example 4.1 (SVD example) Let’s calculate the SVD for matrix A∈R3×2:

A =

2 1
3 0
1 3

 =

−0.531 −0.113 −0.839
−0.595 −0.654 0.466
−0.602 0.748 0.279

4.169 0
0 2.572
0 0

[
−0.560 0.828
0.828 0.56

]

where we have used the full matrix decomposition; A = UΣV ⊤ . If we consider
the SVD with rank r=2, we can use the economy SVD A = U rΣrV

⊤
r :

A =

2 1
3 0
1 3

 =

−0.531 −0.113
−0.595 −0.654
−0.602 0.748

[
4.169 0
0 2.572

] [
−0.560 0.828
0.828 0.56

]

It can be easily seen that u⊤
i ui = 1 and u⊤

i uj = 0 with i ̸=j, e.g. u⊤
0 u0=

[−0.531,−0.595,−0.602]⊤[−0.531,−0.595,−0.602] = 1.0 and u⊤
0 u1= [−0.531,

−0.595, −0.602]⊤ [−0.113, −0.654, 0.748]= 0.0.

4.4 Geometric interpretation

Remember that we have a function f :Rn → Rm associated to matrix A∈Rm×n.
What happens if we apply matrix A to a unit sphere Rn (we assume m≤n) ?

Let us assume that x∈Rn are the vectors in the unit sphere. Remembering that
when we apply an orthonormal matrix to a vector we rotate the vector, then:

Ax = UΣV ⊤x (4.4.1)

which means that we first apply a rotation V ⊤ to vectors x (still in Rn), then
we stretch or shrink in each direction (since we multiply vectors by singular
values larger or than 0), producing an ellipsoid in Rm, and finally we rotate
again using U in Rm.

In other words, we produce a linear mapping in which a sphere in Rn is converted
to an ellipsoid in Rm (make some figures showing the geometric interpretation).

33

4.5 SVD, pseudo-inverse and projection matrices

Let us consider a linear system of equations:

Ax = y (4.5.1)

where A∈Rm×n, x∈Rn and y∈Rm.

If m=n we have a two-sided inverse of matrix A, i.e., AA−1 = A−1A = I,
that is what we call inverse of A if the nullspace(A) and nullspace(A⊤) only
contain the zero vector.

Let us consider the case in which the rank(A)=r=n, and then the nullspace(A)
only contains the zero vector. In this case m>n (overdetermined case) in
which case we can not produce an inverse. However, A⊤A has inverse since it
is a symmetric n×n matrix. From here and the SVD we can deduce what is
called the left pseudo-inverse:

A−1
left = A† = (A⊤A)−1A⊤ (4.5.2)

Deduction:

Ax = y → A⊤Ax = A⊤y (4.5.3)

We can observe that: A⊤A = V Σ⊤ΣV ⊤, and:

V Σ⊤ΣV ⊤x = A⊤y → x = V (Σ⊤Σ)−1V ⊤A⊤y (4.5.4)

since (A⊤A)−1 = V (Σ⊤Σ)−1V ⊤, we conclude that:

x = (A⊤A)−1A⊤y = A−1
lefty (4.5.5)

Note that A−1
leftA = In and that AA−1

left only is In if n = m. As a statement,

a non-symmetric matrix can not have a two-sided since A or A⊤ has null-space
different of the zero vector.

In the same way, let us consider the case in which the rank(A)=r=m, and then
the nullspace(A⊤) only contains the zero vector. In this case m<n (underde-
termined case) in which case we can not produce an inverse. However, AA⊤

has inverse since it is a symmetric n×n matrix. From here and the SVD we can
deduce what is called the right pseudo-inverse:

A−1
right = A† = A⊤(AA⊤)−1 (4.5.6)

Note thatAA−1
right = Im and thatA−1

rightA only is Im if n = m. As a statement,

a non-symmetric matrix can not have a two-sided since A or A⊤ has null-space
different of the zero vector.

Finally, IfA is full column rank (r = n), andA−1
left = (A⊤A)−1A⊤, then matrix

P = AA−1
left = A(A⊤A)−1A⊤ (4.5.7)

34

projects Rm into the column space of A.

In a similar way, If A is full row rank (r = m), and A−1
right = A⊤(A⊤A)−1,

then matrix

P = A−1
rightA = A⊤(A⊤A)−1A (4.5.8)

projects Rn into the row space of A.

What is the pseudo-inverse in terms of the SVD? The pseudo-inverse is
a matrix that satisfies that x = AA†x. In other words: UΣV ⊤A† = I, and
remembering that matrices U and V are othornormal (and easy to invert), then
A† = U⊤Σ†V . The best approximation of Σ† is a matrix with diagonal values
for i = 1, . . . , r for the first r rows (or columns), with r the rank of A and the
rest of diagonal values are zero.

Example 4.2 (Pseudo-inverse using the SVD) Remembering example 1.12,
we obtained the pseudoinverse of matrix A

Ax =

2 1
1 3
0 1


as A† = (A⊤A)−1A⊤:

A† = (

[
2 1 0
1 3 1

]2 1
1 3
0 1

)−1

[
2 1 0
1 3 1

]
=

[
0.567 −0.133 −0.167
−0.167 0.333 0.167

]

then, if we want to solve Ax = b, with b = [3, 1, 4], we obtain x=A†b= [0.9, 0.5].
Using the SVD, A† = U⊤Σ†V . Since (see example 4.1)

U =

−0.499 0.847 0.183
−0.834 −0.413 −0.365
−0.234 −0.335 0.913

 ; Σ =

3.719 0
0 1.473
0 0

 ; V

[
−0.493 −0.87
0.87 −0.493

]

and considering the inverse of the Σ matrix (Σ†) as:

Σ† =

0.268 0
0 0.679
0 0


Then, now:

A† = U⊤Σ†V =

[
0.567 −0.133 −0.167
−0.167 0.333 0.167

]

35

4.6 Economy, compact and truncated SVD

Remember that matrix Σ is a diagonal matrix with r singular values in positions
Σii, with i = 1, . . . , r and zeros otherwise:

Σ =


σ1 0 0 ... 0 0
0 σ2 0 ... 0 0
...
0 0 ... σr 0 ...
0 0 0 ...
0 0 0

 (4.6.1)

while V = [v1, ...,vn] and U = [u1, ...,um].

Let us assume that k = min(m,n). Then, A can be written as:

A = UΣV ⊤

= [σ1u1, ..., σkuk,0, ...,0][v1, ...,vn]
⊤

=
∑

j=1,..k

σjujv
⊤
j +

∑
j=k+1,..n

0 v⊤
j

=
∑

j=1,..k

σjujv
⊤
j

(4.6.2)

Defining Σj = diag(σ1, ..., σk), Uk = [u1, ...,uk], and Vk = [v1, ...,vk], we
obtain:

A = UkΣkV
⊤
k (4.6.3)

which is known as the economy SVD. On the other hand, if the rank r of A is
r<min(m,n), then there only are r singular values different of zero, and then

A = U rΣrV
⊤
r (4.6.4)

which is known as the compact SVD. This fact is useful when obtaining matrices
U and V since only ur and vr vectors have to be calculated.

Finally, in low-rank aproximation, only t singular values (the t highest ones) are
considered, and:

A = U tΣtV
⊤
t (4.6.5)

which is known as the truncated SVD.

4.7 The SVD as the sum of r matrices of rank 1

Let us take the economy SVD expression: A=U rΣrV
⊤
r . and express matrix A

as the sum of r matrices of rank 1:

A = U rΣrV
⊤
r =

r∑
k=1

σkukv
⊤
k (4.7.1)

36

This will be a key fact to find the best low-rank approximation (in the following
sections) of a matrix by using the SVD.

4.8 Matrix norms

Remember that norms assign a real number (a length) to an element of vector
space. The four (non-negativity, positive definiteness, absolute homogeneity and
subadditivity or triangle inequality) defining properties of any norm applied to
matrices A and B are (assume correct dimensions of the matrices):

• ∥A∥ ≥ 0 (positive-valued),

• ∥A∥ = 0 only if A=0mn (definite),

• ∥λA∥ = |λ| ∥A∥ (absolutely homogeneous),

• ∥A+B∥ ≤ ∥A∥+ ∥B∥ (triangle inequality).

For matrix norms we introduce the additional condition:

• ∥AB∥ ≤ ∥A∥ ∥B∥ (sub-multiplicative).

4.8.1 Matrix norms induced by vectors p-norms

One way of defining a matrix norm, is using vector norms. The matrix norm
measures how much a vector (assuming a vector p-norm) can increase in size
when it is multiplied by A. Observe that in the definition we use a vector x
that is a unitary vector (i.e., with norm ∥ · ∥ = 1). From this we can define:

• l−1 norm: maximum absolute column sum of A, i.e., sum all columns
and take the highest one:

∥A∥1 = max
∥Ax∥1
∥x∥1

= max∥x∥1=1∥Ax∥1 = max
1≤j≤n

m∑
i=1

|aij | (4.8.1)

• l−2 norm: maximum singular value of A:

∥A∥2 = max
∥Ax∥2
∥x∥2

= max∥x∥2=1∥Ax∥2 =

√
λmax(A

⊤A) = σmax(A)

(4.8.2)

This can be seen because A=UΣV ⊤, and the vector with maximum
length is v1. Then ∥Av1∥2 = ∥σ1u1∥2 = σ1∥u1∥2, taking into account
that ∥v1∥2=1 and ∥u1∥2=1, which yields the result;

37

• l−∞ norm: maximum absolute row sum of A, i.e., sum all rows and take
the highest one:

∥A∥∞ = max
∥Ax∥∞
∥x∥∞

= max∥x∥∞=1∥Ax∥∞ = max
1≤i≤m

n∑
j=1

|aij | (4.8.3)

You can find geometrically the value of a matrix norm for a given matrix A
geometrically by:

• Plotting the unit sphere for the matrix

• Finding the image under the transformation y = A = x

• Finding the maximum of ∥y∥

That means that an induced matrix norm ∥A∥ is how much a matrix can stretch
a vector to a maximum. If norm of a matrix is say number d; it means it can
stretch a vector x by d maximum.

Example 4.3 (Matrix norms) Let us take as example the matrix:

A =

[
1 2
0 2

]
and plot figures for ∥A∥1, ∥A∥2 and ∥A∥infty (Figure 8). Observe that σ1 =
2.9208 and σ2 = 0.6847. Thus ∥A∥1 = 4, ∥A∥2 = 2.9208 and ∥A∥∞ = 3. Ob-
serve, also, how vectors (1,0) transforms to (1,0) and (0,1) transforms in (2,2),
that precisely is ymax for ∥A∥1 and ∥A∥2. However, ymax=(3,2) corresponds to
point (1,1) for ∥A∥∞. Applying the norm definition to ymax, you should obtain
the same norm than applying the matrix p-norm definitions.

4.8.2 Schatten norms: Matrix norms that can be expressed in terms
of singular values

Other possible matrix norms are the Schatten norms, which are defined in terms
of the singular values, and which in some cases can be expressed in terms of the
trace operator.

The spectral norm is the operator norm induced by the vector 2-norm. Then,
this norm coincides with the induced vector p = 2 norm:

∥A∥2 = max
∥Ax∥2
∥x∥2

= σmax(A) (4.8.4)

38

Figure 8: Induced matrix norms representation.

The Frobenius norm can be defined in several ways (in terms of sum of all
absolute coefficient values of the matrix, in terms of the trace of (AA⊤) or trace
of (A⊤A), and in terms of the sum of singular values):

∥A∥F =

√∑
k

∑
i

|aik|2 =

√
tr(A⊤A) =

√
tr(AA⊤) =

√∑
k

σ2
k (4.8.5)

Frobenius norm is often easier to compute than induced norms, and has the use-
ful property of being invariant under rotations (and unitary operations in gen-
eral), meaning that if U is a rotation (unitary matrix), then ∥A∥F = ∥AU∥F =
∥UA∥F . From here, we get the connection between the expression ”summatory
of all matrix aij coefficients” and the summatory of square singular values, since

A=UΣV ⊤.

This norm is used in many applications, such as regularization in machine learn-
ing/optimization problems when using matrices. An example is in obtaining the
Laplacian matrix coefficients in graph signal processing (GSP) from the data
measurements (we will see this application in some days).

For the semidefinite matrix A⊤A we can define an square root as a matrix B

39

Figure 9: Spectral and Frobenius norms representation (2-D). The nuclear norm
is the sum of σ1+σ2 and thus is the perimeter of the paralelogram (sum of orange
and blue arrows).

for which B2 = A⊤A. We define the nuclear (or Ky-Fan) norm or trace
norm as:

∥A∥N =
∑
k

σk = tr(

√
(A⊤A)) (4.8.6)

these norms usually appear in infinite dimensional spaces, and also it is often
used in mathematical optimization to search for low-rank matrices (measures
the ”amount of rank-1 matrices” needed to construct A). It has applications
in deep learning (chooses the best weights in gradient descent when there is
more weights than samples), and also appears in other applications such as
compressive sensing (express a vector in a ”compressed” way with many zero
entries).

Example 4.4 (Schatten norms) Let us assume matrix A

A =

2 1 0 1
1 3 4 2
0 1 3 3


Their singular values are σ1 = 6.909, σ2 = 2.238 and σ3 = 1.501. The spectral
norm is ∥A∥2 = σmax(A) = σ1 = 6.909. The Frobenius norm is ∥A∥F =√∑

k σ
2
k = 7.416, and the nuclear norm is ∥A∥N =

∑
k σk = 10.648.

40

4.9 Condition number of a matrix

The condition number of a matrix A∈Rn×n characterizes the sensitivity of the
solution of a linear system Ax = b to small changes in A and b. Let us take
derivatives at both sides of the linear system:

Adx+ (dA)x = db ⇒ dx = A−1(db− (dA)x) (4.9.1)

Now, taking the Euclidean norm at both sides:

∥dx∥ ≤ ∥A−1∥ ∥(db− (dA)x)∥ ≤ ∥A−1∥ (∥db∥+ ∥dA∥ ∥x∥) (4.9.2)

Now, we can use the inequality ∥b∥ = ∥Ax∥ ≤ ∥A∥ ∥x∥, we get:

∥d(x)∥
∥x∥

≤ κ(A) (
∥dA∥
∥A∥

+
∥db∥
∥b∥

) (4.9.3)

We define the condition number of matrix A as:

κ(A) = ∥A∥2∥A−1∥2 =
σmax

σmin
(4.9.4)

where σmax and σmax are the maximum and minimum singular values of matrix
A. Large condition number κ(A) results in a highly sensitive system, that is,
small changes in A or b may result in very large changes in the solution x. On
the other hand, a large condition number κ(A) implies that σmax >> σmin,
and then the matrix A is almost singular (is not invertible).

Example 4.5 (Condition number) Let us assume matrix A0 (it is a singu-
lar matrix) and an approximated matrix A.

A0 =

[
2 4
1 2

]
; A =

[
2.0002 3.9999
0.9996 2.0002

]
The SVD of matrix A is:

A =

[
2.0002 3.9999
0.9996 2.0002

]
=

[
−0.894 −0.447
−0.447 0.894

] [
4.999 0
0 0.00049

] [
−0.447 −0.894
−0.894 0.447

]
The condition number is κ(A) = σmax/σmin = 4.999/0.00049 = 1000.00. Let
us calculate A†:

A† =

[
800.08 −1599.96
−399.84 800.08

]
=

Let us solve the linear system Ax = b with several b’s:[
2.0002 3.9999
0.9996 2.0002

] [
x1
x2

]
=

[
b1
b2

]
For example b = [2, 1] results in x = [0.2, 0.4], while a small change in component
b1 such as b = [2.05, 1] results in x = [40.204,−19.592], or a small change in
component b2 such as b = [2, 1.02] results in x = [−31.79, 16.402].

41

4.10 Eckart-Young approximation (low-rank approxima-
tion)

Let A∈Rm×n be a matrix with n columns and m rows with m≥n (thus it is
full-rank when rank r=n). Suppose that A = AΣV ⊤ is the SVD, with U and
V are orthonormal matrices, and Σ is an m×n diagonal matrix with entries
(σ1, σ2, · · · , σn) such that σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The Eckart-Young Th. says that the best rank k approximation (a matrix B
with rank k≤n) to matrixA in the spectral norm ∥A∥2 is given by the truncated
SVD:

B = Ak =
k∑

i=1

σiuiv
t
i (4.10.1)

This result can be extended to the Frobenius and the Nuclear norms.

We can prove it for the special cases n=m=2 and k=1. For the general case,
the proof follows the same reasoning.

Let A = σ1u1v
⊤
1 + σ2u2v

⊤
2 , and A1 = σ1u1v

⊤
1 . We can easily see that ∥A −

A1∥ = σ2.

Let B an arbitrary rank-1 2×2 general matrix. We can thus express B as:
B = ρ1x1y

⊤
1 . Let w be an element of Ker(B) of length 1, which in our case

would be an orthonormal vector to y. We can express w in terms of v1 and v2

as w = γ1v1 + γ2v2, with γ
2
1 + γ22 = 1, with Bw = 0.

Using the definition of the spectral norm (which coincides with the induced
norm with p = 2) we have:

∥A−B∥22 ≥ ∥(A−B)w∥22 = ∥Aw∥22 = σ2
1γ

2
1 + σ2

1γ
2
2 ≥ σ2

2 (4.10.2)

meaning that:

∥A−B∥22 ≥ ∥A−A1∥22 (4.10.3)

Example 4.6 (Low rank approximation example) Let us consider matrix
A. Find the best rank-1, rank-2 and rank-3 approximations.

A =

2 1 0 1
1 3 4 2
0 1 3 3


First, we obtain the SVD of matrix A = UΣV ⊤:

U =

−0.188 −0.881 0.434
−0.78 −0.134 −0.611
−0.596 0.454 0.662


42

V =


−0.167 −0.452 −0.711 −0.512
−0.847 −0.371 0.368 0.094
0.172 −0.49 −0.304 0.799
−0.474 0.646 −0.517 0.302


and the singular values are:

Σ =

6.909 0 0 0
0 2.238 0 0
0 0 1.501 0


The best rank-1 approximation is given by A1 = σu1v

⊤
1

A1 = σ1u1v
⊤
1 = 6.909

−0.188
−0.78
−0.596

 [
−0.167 −0.452 −0.711 −0.512

]

=

0.217 0.588 0.923 0.665
0.902 2.439 3.832 2.761
0.69 1.864 2.929 2.11


In the same way, we can obtain rank-2 (A2) and rank-3 (A3) approximations:

A2 = σ1u1v
⊤
1 + σ2u2v

⊤
2 =

 1.888 1.319 0.198 0.479
1.157 2.551 3.721 2.732
−0.171 1.487 3.302 2.206



A3 = σ1u1v
⊤
1 + σ2u2v

⊤
2 + σ3u3v

⊤
3 =

2 1 0 1
1 3 4 2
0 1 3 3



5 Principal component analysis (PCA)

Large datasets are common in many data science applications. In order to
interpret such datasets, it is useful to drastically reduce their dimensionality in
an interpretable way, such that most of the information in the data is preserved.
One of the oldest and most widely used technique is principal component
analysis (PCA), which reduces the dimensionality of a dataset by solving an
eigenvalue/eigenvector problem, while preserving as much ”variability” - i.e.,
statistical information - as possible.

Principal component analysis is basically used as an exploratory tool for data
analysis, although there exist several adaptations to other applications such as
functional PCA (continuous variables), robust PCA (to avoid sensitiveness to
the presence of outliers), etc.

Thus, PCA is a dimensionality reduction method that is typically used to reduce
the dimensionality of large data sets. The reduced dimensional representation
retains the information conveyed by the large dimensional representation.

43

PCA is an orthogonal linear transformation that transforms the data into a new
coordinate system such that the largest variance by some scalar projection of
the data is placed in the first coordinate (called the first principal component),
the second largest variance in the second coordinate, etc.

5.1 Interpretation 1: maximizing directions with maxi-
mum variability

In other words: the principal components of a set of data X∈Rm×n (assum-
ing m≤n) provide a sequence of best linear approximations to that data, of all
ranks q≤n. In other words, given x1, . . . ,xm measurements, we want to find a
q-rank linear model for representing them.

y1 = a11x1 + a12x2 + · · ·+ a1nxn

y2 = a21x1 + a22x2 + · · ·+ a2nxn

. . .
yq = aq1x1 + aq2x2 + · · ·+ aqnxn

(5.1.1)

The new axes represent the directions with maximum variability and provide
simpler more concise description of the covariance structure. Let us assume in
general that we have matrices C and X. Let us assume that X is a ran-
dom variable with mean µX and covariance matrix ΣX and let’s take linear
combinations Y =CX. We know the following properties (seen in probability
sections):

µY = E[Y] = E[CX] = CE[X] = CµX (5.1.2)

ΣY = Cov[Y] = Cov[CX] = CΣXC⊤ (5.1.3)

Then, the PCA are those uncorrelated linear combinations y1, . . . , yq whose vari-
ances are as large as possible, meaning to maximize Var(y1)=a⊤

1 ΣXa1. We
should take care with the length of vectors a’s, since multiplying a1 by any con-
stant will increase the variance. Then, we have to restrict to vectors a’s whose
lengths are unitary: a⊤

1 a1=1. Then the algorithm has to solve the following:

Fist component: y1 = a⊤
1 X that maximizes Var(a⊤

1 X) subject to a⊤
1 a1=1.

Second component: y2 = a⊤
2 X that maximizes Var(a⊤

2 X) subject to a⊤
2 a2=1

and Cov(a⊤
2 X,a⊤

1 X)=0.

q-th component: yq = a⊤
q X that maximizes Var(a⊤

q X) subject to a⊤
q aq=1

and Cov(a⊤
q X,a⊤

j X)=0 for j < q.

Result: Let ΣX be the covariance matrix associated to X with random vari-
able X, and have ΣX the eigenvalue-eigenvector pairs (e1,λ1),. . . , (en,λn) with
λ1≥λ2≥ . . .≥λn≥0. Then, the i− th principal component is given by:

yi = e⊤i X (5.1.4)

with Var(yi)= e⊤i ΣXei=λi and Covar(yi,yj)= e⊤i ΣXej=0. That means that
the first component is the one with the largest eigenvector.

44

5.2 Interpretation 2: projecting in a subspace

Let us assume that we have m data measurements, each of dimension n. We
arrange the data in a matrix X∈Rm×n. Let us assume that we want to project
this data in 1-D subspace, whose direction is defined by vector u1. Without loss
of generality, we assume that this vector has length equal to 1 (u⊤

1 u1=1) since
we are interested in the direction and not in the length.

We now project each data point xi, i=1, . . . ,m in the 1-D subspace defined by
u1. This projection amounts to u⊤

1 xi, the projected mean is given by u⊤
1 x̄,

with x̄ the sample mean:

x̄ =
1

m

m∑
i=1

xi (5.2.1)

and the projected variance σ2
u1

is given by:

σ2
u1

=
1

m

m∑
i=1

(u⊤
1 xi − u⊤

1 x̄)
2=u⊤

1 Σu1 (5.2.2)

with Σ = XX⊤ the covariance matrix.

If we want to maximize the projected variance u⊤
1 Σu1 we have to consider the

constraint u⊤
1 u1=1, and add a Lagrange multiplier (we will see the meaning of

Lagrange multipliers in TOML, non-linear optimization). Then we multiply the
constraint by a scalar λ1 and add it to the variance objective function:

u⊤
1 Σu1 + λ1(1− u⊤

1 u1) (5.2.3)

To maximize this expression, we obtain the derivatives with respect to u1 equal
to 0, and obtain the following expression we obtain:

Σu1 = λ1u1 (5.2.4)

which says that u1 is an eigenvector with eigenvalue λ1 and they maximize the
variance of the projected data on subspace defined by u1. We can extend easily
this idea to higher dimensional projected spaces (more principal components).

5.3 Connection PCA-SVD

PCA and SVD are closely related approaches and can be both applied to de-
compose any rectangular matrices. Let us assume our data matrix X∈Rm×n,
and consider the covariance matrix S=X⊤X/(n− 1). Then:

S =
X⊤X

(n− 1)
=

V ΣU⊤UΣV ⊤

(n− 1)
=

V Σ2V ⊤

(n− 1)
=

V Σ2V −1

(n− 1)
(5.3.1)

45

since V is a unitary matrix and V ⊤ = V −1, and we know that Λ = Σ2/(n−1),
meaning that we can perform PCA using SVD or viceversa. In general, when
performing PCA is computationally easier to use SVD than EVD, due to the
economic/truncated SVD representations.

5.4 Amount of total variance explained

Once we have obtained the principal components, the proportion of total vari-
ance explained by the i− th principal component is given by:

λi∑n
i=1 λi

(5.4.1)

For example, if the first two-three principal components explain 80-90% of the
variability, then it could be worth replacing the n features by these principal
components.

5.5 Eigenfaces

We are going to use the SVD/PCA in a denoising application using a set of
images. The application is called eigenfaces. Let us assume that we have
a set of images of people where one person images are taken from different
angles, e.g. different bright/lighting conditions or different poses. For example
40 people with 50 images of each person, forming a set of K images. Each image
has p×q pixels that are vectorized. Consider that we have L1, . . . ,LM faces,
where each Li is a vector representing a face in RN , with N=p×q (a vectorized
representation of an image of p×q pixels).

The average face is given by Ψ=1/M
∑M

i=1 Li, and now we obtain the difference
of each face with respect the average face: xi=Li − Ψ with i=1, . . . ,M . We
then organize our database of faces in a matrix X=[x1, . . . ,xM]∈RN×M . we
obtain the SVD of X as:

X = UΣV ⊤ (5.5.1)

Where U∈RN×N and V ∈RM×M are the left and right singular vector matri-
ces, and Σ∈RN×M is the diagonal singular value matrix, with singular values
σ1≥σ2≥ . . .≥σN≥0.

Then, applying the Eckart–Young theorem, the best r-rank approximation of
matrix X can be obtained taking the singular vectors related to the r-largest
singular values, Xr=UrΣrV

⊤
r , with Ur∈RN×r, Vr∈RM×r and Σr∈Rr×r ex-

pressed in their truncated form. Afterwards, any new image taken can be pro-
jected onto the subspace generated by the left-singular vectors Ur. The idea
behind this operation lies in projecting the image into a subspace generated by
the most important latent patterns of face images encoded in the database.

46

Figure 10: Eigenfaces database (taken from Brunton book ”Data driven Science
& Engineering). (Left:) several faces from different people; (Right:) faces from
the same person.

Suppose now that we have a new face image. The aim is to denoise the image,
encoded in the vector xc∈RN, by projecting it onto the subspace generated by
Ur, and then perform a signal reconstruction. First, we find x̂c=xc−Ψ, the
difference between the daily in-situ calibrated LCS data with the new image
and the average of faces in the database. The new estimated vector will be
given by: x̃c = Ψ+UrU

⊤
r x̂c

A key parameter is the best r-rank approximation of matrix X, or in other
words what is the optimal hard threshold r to denoise and reconstruct the
images.

We assume that matrix X is the sum of a true value and some noise:

X = Xtrue +Xnosie (5.5.2)

where entries in Xnosie are identically and independently distributed with Gaus-
sian random variables of zero mean and variance γ. If the magnitude of γ is
known, then:

• If X∈Rn×n (square), then

r =
4√
3

√
nγ (5.5.3)

• If If X∈Rm×n (non-square) and m<<n, then the fraction 4/
√
3 is sub-

stituted by a function λ(β), with β=m/n (you can find the expression in

47

papers or in the book of S. Brunton ”Data driven Science & Engineering”).

r = λ(β)
√
nγ (5.5.4)

r = λ(β)=(2(β + 1) +
8β

(β + 1) + (β2 + 14β + 1)1/2
)1/2 (5.5.5)

If n<<m, then β=n/m, and of β=1 the expression reduces to the previous
one.

If the magnitude of γ is unknown, and X∈Rm×n (non-square) then the
optimal threshold is given by:

σ̃ = w(β)σmed (5.5.6)

where σmed is the median of the singular values, while w(β) is obtained as:

w(β) ≈ 0.56β3 − 0.95β2 + 1.82β + 1.43 (5.5.7)

where β=m/n. Finally, r corresponds to the number of singular values that are
greater than the threshold σ̃.

Figure 11: Eigenfaces database (taken from Brunton book ”Data driven Science
& Engineering”). The approximation improves for r≥400.

6 Fourier transform and its applications

The idea of Fourier series and Fourier transforms is to decompose functions
into their basic components. Fourier transforms have many applications such as
noise filtering, spectral derivatives, transforming partial differential equations,

48

Figure 12: Eigenfaces database (taken from Brunton book ”Data driven Science
& Engineering”). Since faces have mouth, eyes, cheeks, and a lot of features,
and there are more than 1600 faces representing a lot of situations, the approx-
imation works pretty well for a dog.

Figure 13: Eigenfaces database (taken from Brunton book ”Data driven Science
& Engineering”). Approximation for a cappuccino, works well because the 1600
faces also represent non-localized spatial features.

image processing, and a way of express vector data in generic or universal bases,
in contrast with vector data expressed in tailored bases, in which we were able
to compress data using the SVD (reduction of dimensionality).

Sparsity consists in expressing a signal with a vector in which many components

49

are zero, Although the fast Fourier transform is a technology that allows a signal
to be reconstructed from its sparse coefficients, it is not the only way to do so,
e.g. Fourier is the basis of JPEG or MPEG. The Fourier modes are generic or
universal bases, in the sense that nearly all natural images or audio signals are
sparse in these bases. It is also possible to compress signals using the SVD,
resulting in a tailored basis.

6.1 Fourier series

As in finite-dimensional vector spaces, the inner product may be used to project
a function into an new coordinate system defined by a basis of orthogonal func-
tions. A Fourier series representation of a function f is precisely a projection of
this function onto the orthogonal set of sine and cosine functions with integer
period on the domain [a, b].

An important result is that if f(x) is periodic and piecewise smooth, then it can
be written as a Fourier series. For example, if f(x) is L-periodic in [0,L), then:

f(x) =
a0
2

+

∞∑
k=1

(akcos(
2πkx

L
) + bksin(

2πkx

L
)) (6.1.1)

ak =
2

L

∫ L

0

f(x)cos(
2πkx

L
)dx =

< f(x), cos(2πkxL) >

∥cos(2πkxL)∥2
(6.1.2)

bk =
2

L

∫ L

0

f(x)sin(
2πkx

L
)dx =

< f(x), sin(2πkxL) >

∥sin(2πkxL)∥2
(6.1.3)

These coefficients may be viewed as the coordinates obtained by projecting the
function onto the orthogonal cosine and sine basis {cos(kx), sin(kx)}∞k=0.

Since we can write the Fourier series in complex form using the facts that
eikx = cos(2πkxL) + i sin(2πkxL) and ck = ak + i bk:

f(x) =

∞∑
k=−∞

cke
ikx =

∞∑
k=−∞

ckψk(x) (6.1.4)

Thus, a Fourier series is just a change of coordinates of a function f(x) into an
infinite-dimensional orthogonal function space spanned by sines and cosines.

6.2 Fourier transform

The Fourier series is defined for periodic functions, so that outside the domain of
definition, the function repeats itself forever. The Fourier transform integral
is essentially the limit of a Fourier series as the length of the domain goes to
infinity, which allows us to define a function defined on (−∞, ∞).

50

Thus, we represent the set of frequencies as wk=kπ/L, and taking the limit
L → ∞, such as k/L → f , w=2πf , ∆w=2π/L, and ∆w → 0, we will arrive to
the classical Fourier transforms formulas (not necessary to proof here the pass
from Fourier series to Fourier transform, see books for that proof if interested):

F (w) =

∫ ∞

−∞
f(x) e−iwx dx (6.2.1)

f(x) =

∫ ∞

−∞
F (w) eiwx dw (6.2.2)

Example 6.1 (Fourier Transform example) For example, assume a box sig-
nal, Figure 14, f(x)=A if x∈[−T/2, T/2] and 0 otherwise, has Fourier Transform
F(f)=ATsinc(fT)= ATsin(πfT/(πfT)), where the sinc(f)=sin(πf)/(πf).

(a) Box signal.

(b) Sinc signal

Figure 14: The box signal f(x)=A if x∈[−T/2, T/2] and 0 otherwise, has Fourier
Transform F(f)=ATsinc(fT)= ATsin(πfT)/(πfT)).

51

6.2.1 Some basic properties of the FT

Let us assume that we have functions f(x), g(x), and their Fourier Transform
F(w), G(w). The following basic properties hold:

• Linearity: the Fourier transform of sum of two or more functions that
are multiplied by a constant is the sum of the Fourier transforms of the
functions

(af(x) + bg(x)) =⇒ (aF (w) + bG(w)) (6.2.3)

• Scaling: if we stretch a function by the factor in the time domain then
squeeze the Fourier transform by the same factor in the frequency domain:

f(ax) =⇒ (1/|a|)F (w/a) (6.2.4)

• Derivative: differentiating function with respect to time yields to the
constant multiple of the initial function:

df(x)/dx =⇒ (jw)F (w) (6.2.5)

• Convolution: the Fourier transform of a convolution of two functions is
the point-wise product of their respective Fourier transforms:

f(x)∗g(x) =⇒ F (w)G(w) (6.2.6)

Note: the convolution of two functions is a mathematical operation that
says how the shape of a function is changed by the other function, a
convolution in continuous time is expressed as

f(x)∗g(x) =
∫ ∞

−∞
f(y)g(x− y) dy =

∫ ∞

−∞
f(x− y)g(y) dy (6.2.7)

• Time shift: a linear displacement in time corresponds to a linear phase
factor in the frequency domain:

f(x− x′) =⇒ F (w)e−jwx′
(6.2.8)

• Frequency shift: frequency is shifted according to the co-ordinates:

f(x)ejw
′x =⇒ F (w − w′) (6.2.9)

6.2.2 Applications

There are many applications in engineering in which Fourier Transforms are
used. Among them, we can list: i) solving of partial differential equations such as
the heat equation d2f(x,t)/dx2= df(x,t)/dt or the wave equation d2f(x,t)/dx2=
d2f(x,t)/dt2; ii) spectral analysis of time-series (e.g. to find the response of
the LTI (linear time invariant) systems); iii) filtering (lowpass, bandpass or
highpass); iv) etc, etc, etc. We will see some examples after seeing the discrete
version of the FT.

52

6.3 Discrete Fourier Transform and Fast Fourier Trans-
form

We have seen how to obtain the Fourier transform when the signal f(x) is a
continuous function. However, in general, we discretize the analog/continuous
signals, e.g., using an ADC that samples the signal to a specific sampling rate
or spacing ∆x, having a vector of data [f0, f1, . . . , fN−1]. Thus, it is necessary,
when dealing with vectors of data, to approximate the Fourier transform for
dealing with discrete vectors. This is called the discrete Fourier transform,
DFT. Remember that the domain of the function was called x and then the
data is sampled at point xi and the evaluation of the function (samples) are
then called fi. However, for simplicity, from now, we will express our vectors
of sampled data [f0, f1, . . . , fN−1] as [x0, x1, . . . , xN−1], to be coherent with the
variables expressed during the course (meaning that vector x is the sample data
and not the domain of the function).

Let us define the complex number wN = ej
2π
N = cos(2πN) + j sin(2πN), i.e. is the

first N -th root of −1. The Fourier matrix FN is defined as:

FN =
1√
N



1 1 1 ... 1

1 w−1
N w−2

N ... w
−(N−1)
N

1 w−2
N w−4

N ... w
−2(N−1)
N

1 w−2
N w−6

N ... w
−3(N−1)
N

...

1 w
−(N−1)
N w

−2(N−1)
N ... w

−(N−1)(N−1)
N


(6.3.1)

Sometimes the factor 1√
N

is omitted in the definition.

This matrix is unitary, meaning that FN
HFN=FNFN

H=I. The matrix AH

is called hermitian if it is a complex square matrix that is equal to its own
conjugate transpose, i.e., aij = āji (remember complex conjugate; if aij=3+j4,

then āji=3-j4) or A=AH (special case is when the component is a real number

in which A=A⊤). In other words, hermitian matrices can be understood as the
complex extension of real symmetric matrices.

Remember that as we are dealing with complex vectors and matrices, the scalar
product between two vectors x and y (e.g. two columns of FN) is defined as
xHy. Do not forget to use the conjugate transpose instead of simply transpose!.

For instance, if N = 4 we have:

F4 =
1

2


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

 (6.3.2)

The Fourier matrix is one of the most important matrices in applied mathemat-

53

ics and engineering.

6.3.1 The Discrete Fourier Transform (DFT)

The discrete Fourier transform (DFT), x̂, is the operation of multiplying a
vector of data x by the matrix FN :

x̂ = FNx =
1√
N



1 1 1 ... 1

1 w−1
N w−2

N ... w
−(N−1)
N

1 w−2
N w−4

N ... w
−2(N−1)
N

1 w−2
N w−6

N ... w
−3(N−1)
N

...

1 w
−(N−1)
N w

−2(N−1)
N ... w

−(N−1)(N−1)
N




x0
x1
x2
x3
. . .
xN−1


(6.3.3)

This operation is the same as:

x̂k =

N−1∑
i=0

xie
−j2πik/N ∀k = 0, . . . , N − 1 (6.3.4)

meaning that:

x=[x0, x1, . . . , xN−1]
DFT
=⇒ x̂=[x̂0, x̂1, . . . , x̂N−1] (6.3.5)

The result of this multiplication x̂ is called the transformed vector. For com-
modity, we will use the term signal for the vector x and Fourier transform for
the vector x̂. Recall that both vectors have dimension N . We can observe that
the DFT is a linear operator (a matrix) that maps data points x in the frequency
domain x̂. It is to say, we see the DFT operation corresponds to finding the
components of vector x expressed in the unitary base created by the columns
of FN (the so called Fourier base).

The Inverse DFT is defined as:

x = FH
N x̂ (6.3.6)

and this operation is the same as:

xi =
1

N

N−1∑
k=0

x̂ke
j2πki/N ∀i = 0, . . . , N − 1 (6.3.7)

meaning that:

x̂=[x̂0, x̂1, . . . , x̂N−1]
IDFT
=⇒ x=[x0, x1, . . . , xN−1] (6.3.8)

For a 2D signal X (e.g. a picture represented by a matrix with M rows and N
columns) we define the DFT as a two-step process: First find the DFT of the

54

columns, and then find the DFT of the columns of the resulting matrix (the
order can be changed):

X̂ = FH
MXFN (6.3.9)

6.3.2 The Fast Fourier Transform (FFT)

In general, if A is a N×N matrix, and x is a vector with N components, the
operation Ax requires N2 multiplications.

In the special case of FNx, the FFT algorithm gives a method for computing
this product in only 1

2Nlog2N multiplications. This is a huge improvement.
Some people (e.g. G. Strang) considers that the FFT is the most important
numerical algorithm of the XXth century.

6.3.3 The complex conjugate of the columns of the Fourier matrix
are the eigenvectors of the circulant matrices

Another extraordinary property of the columns of the Fourier matrix is that the
complex conjugate of its columns are the eigenvectors of circulant matrices.

A circulant matrix has the following form:

C =


h0 hN−1 hN−2 ... h1
h1 h0 hN−1 ... h2
...

hN−1 hN−2 hN−3 ... h0

 (6.3.10)

Circulant matrices are especially important as they can be used to represent
a very rich and important class of linear system, the linear systems that are
invariant to time shifts.

The eigenvector (1, wi, w2i, ..., w(N−1)i)⊤ has associated the eigenvalue λi =
h0 + h1w

−i + h2w
−2i + ...+ hN−1w

(N−1)i. Defining Λ = diag(λ0, ..., λN−1), we
obtain the decomposition:

C = FH
N ΛFN (6.3.11)

The output signal for an input x can be obtained very efficiently by applying
the FFT algorithm.

Example 6.2 (Filtering noise (denoising) in a signal) A first example
es filtering noise (denoising) in a signal. For example consider figure 15 where
we have a signal f(t)= sin(2πf1t) + sin(2πf2t) for f1=50 and f2=120 (black
curve). We add some Gaussian noise distributed with zero mean and σ2 vari-
ance, i.e., N(0,σ2), (red curve). If we obtain the FT, we can observe the two

55

Figure 15: Denoising a signal (Figure taken from S.L. Brunton book, ”Data
driven science & engineering”).

peaks centered at f1=50 and f2=120. We can then filter the signal keeping
frequencies lower than f2=120, and then removing high frequency components.
We can observe in the third figure the original (without noise) signal and the
denoised filtered signal.

An example of a filter is to pass the signal f(t) by a linear system h(t). The output
is the convolution y(t)=f(t)∗h(t) −→ Y(W)=F(W)H(w). If H(w) is a filter
allowing to pass frequencies f1 and f2 and not allowing the rest of frequencies,
we are denoising (filtering noise) our signal.

Example 6.3 (Spectral derivative) A second example is the spectral deriva-
tive. We know that the FT of the derivative of a function in continuous time is
F(df(x)/dx)=jwF(f(x)). If we discretize, then we can substitute jw → jκ, with
κ = 2πk/n, assuming n components. For example, let us assume the function:

f(x) = cos(x)e−x2/25 =⇒ df(x)/dx = −sin(x)e−x2/25 − 2

25
xf(x) (6.3.12)

56

(a) Derivative methods with n=128 points.

(b) Error as a function of n

Figure 16: Taking the derivative of a signal (Figure taken from S.L. Brunton
book, ”Data driven science & engineering”).

One way of obtaining the derivative is to use finite differences:

df

dx
(xk) =

f(xk+1)− f(xk)

∆x
(6.3.13)

for some ∆x. So, if we want to obtain the derivative of our signal, we have
two options: i) use finite differences, and ii) take our signal, discretize with n
samples, obtain the FFT of the signal, multiple by jκ, and obtain the IFFT.
We can observe in Figure 16.a) the result of the true derivative (black), the
finite difference method (blue) and the FFT (red). Both, the finite difference
method (blue) and the FFT (red) are very close to the true derivative, but we
can observe in Figure 16.b) the error in both methods, in which is seen how the
FFT performs much better than the finite Euler method.

6.4 Most natural signals are sparse in the Fourier base

Let us assume a vector of data x∈Rn, a vector x is called sparse if it has a large
number of components equal to zero (or a small number of nonzero components).
A vector x is called dense if it has a large number of components non equal to

57

zero. A vector x is called k-sparse if it has n − k components equal to zero,
and k components equal to zero.

A fundamental property in science and engineering is that many natural signals
(pictures, video, audio, music, physical magnitudes such as heat, pressure, etc)
are sparse when expressed in the Fourier base. This is consequence of a fact of
nature that many of these signals are smooth.

On the contrary, if we generate a random vector, for instance with i.i.d compo-
nents sampled from a Gaussian distribution, we would have that with very high
probability the components of the vector expressed in Fourier base will be not
sparse. We call this sequence white noise.

7 Graph signal processing and its applications

7.1 Introduction

The framework of graph signal processing (GSP) was conceived in the last
decade with the ambition of generalizing the tools from classical digital signal
processing to the case in which the signal is defined over an irregular structure
modeled by a graph.

Let us take the example (taken from Ljubisa Stankovic et al. survey paper,
”Understanding the basis of graph signal processing via an intuitive example-
driven approach”, arXiv, May 2019) where a set of temperature sensors are
deployed over a large region. We are interested, Figure 17.a), of finding the
local neighborhood of nodes, in suchc a way that we will find a graph that
represents the network, Figure 17.b).

We have been able to connect (we will see later how), for example, node 20 with
nodes 19, 22, 23, and node 29 with nodes 27, 28, 51, 59, and so on.

If x(n) is the temperature value of node n, then we can now draw the temper-
ature using bars, Figure 18.a) or even with color in the vertices, Figure 18.b).

The objective is that now we can consider that the signal in a given node n is
related to the node itself and its neighborhood:

y(n) = x(n) +
∑

m∈N(n)

x(n) (7.1.1)

with N(n) the neighborhood of node n. For example, for node n=20:

y(20) = x(20) + x(19) + x(22) + x(23) (7.1.2)

For convenience, we will write this expression as:

y = x+Ax (7.1.3)

58

(a) Local neighborhood of single nodes. (b) Local neighborhood for all sensors.

Figure 17: Multisensor IoT example, where nodes measure temperature (Fig-
ure taken from L. Stankovic et al ”Understanding the Basis of Graph Signal
Processing via an Intuitive Example-Driven Approach” paper). Graph repre-
sentation.

(a) Bars indicate temperature values. (b) Temperature values as bars (left) and ver-
tex color (right)

Figure 18: Multisensor IoT example, where nodes measure temperature (Fig-
ure taken from L. Stankovic et al ”Understanding the Basis of Graph Signal
Processing via an Intuitive Example-Driven Approach” paper). Colour repre-
sentation of the temperature field.

where matrix A is the adjacency matrix. There are several ways of creating a
graph. The key is in discovering which are the relationships among the nodes.

Example 7.1 (Subgraph of node 29) The subgraph represented by node 29

59

with neighbors 27, 28, 51, 59 in Figure 18.b) would be represented by matrix:

A =


0 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 1
1 0 1 1 0

 (7.1.4)

The objective of GSP is to give a framework able to operate over such a graph
making use of these relationships.

7.2 Adjacency matrix, the weighted matrix and the Lapla-
cian matrix

The adjacency matrix is not the only way of representing the graph. Other ways
is using a weighted matrix and the Laplacian matrix.

The weighted matrix W has coefficients wij>0 if node i is connected to node
j, and zero otherwise. The idea behind the weighted matrix is that the cost of
the edges between connected nodes is not equal to one, thus considering that
are nodes better connected than others. In this case:

y(n) = x(n) +
∑

m∈N(n)

wmnx(n) −→ y = x+Wx (7.2.1)

We can observe that the operator A is a special case of the operator W , in
which all weights are considered of the same value.

Finally, we can use a third operator called the Laplacian matrix L, which is
obtained as:

L = D −W (7.2.2)

where D is the degree matrix and it has coefficients in the diagonal dii =∑
j ̸=i wij (sum of row except the value at the diagonal) and the rest are 0.

Example 7.2 (Laplacian matrix) We want to obtain the laplacian matrix
L, from the weight matrix W :

W =


0 .6 .3 0
.6 0 .1 .4
.3 .1 0 .2
0 .4 .2 0

 (7.2.3)

We first obtain the diagonal matrix D as sum of rows dii =
∑

j ̸=i wij:

D =


.9 0 0 0
0 1.1 0 0
0 0 .6 0
0 0 0 .6

 (7.2.4)

60

Then, the Laplacian will be:

L = D −W =


.6 −.6 −.3 0
−.6 1.1 −.1 −.4
−.3 −.1 .6 −.2
0 −.4 −.2 0.6

 (7.2.5)

7.3 Creating the graph

There are several ways of creating a graph. The key is in discovering which are
the relationships among the nodes:

• Physically knowledge of the weights: there is an intrinsic knowledge
of what are the weights, for example, circuits in electronic systems, social
networks, etc;

• Geometry of the vertex: use Euclidean distances. In this case it is
built a decreasing function of the distance:

wij = ed
2
ij/α or wij = edij/α (7.3.1)

• Obtain the weighted matrix or the Laplacian matrix from the
data measured matrix X. An example is to use a non-linear optimiza-
tion model:

minimize
L,Y

∥X−Y∥2F︸ ︷︷ ︸
data fidelity

+α tr(Y⊤LY)︸ ︷︷ ︸
smoothness

+β∥L∥2F︸ ︷︷ ︸
sparsity

subject to tr(L) = n,

Lij = Lji ≤ 0, i ̸= j,

L · 1 = 0.

(7.3.2)

We will study convex non-linear optimization in TOML-MIRI course, but
we can say that this optimization problem is not convex (it has not global
minimum). But it can be solved using in an alternating procedure, in
which we first fix Y = X, so we find L from our data measurements X.
We can play the sparsity (more Lij=0, meaning more nodes disconnected)
of our solution using the β parameter. Finally when L is found, we can
solved again fixing the L found and finding Y that will be a filtered version
of our data X.

61

Figure 19: Eigenvalues and eigenvectors of an N=8 node network (Figure taken
from L. Stankovic et al ”Understanding the Basis of Graph Signal Processing
via an Intuitive Example-Driven Approach” paper).

62

7.4 Spectral graph theory

Since adjacency matrixA is squared and symmetric (A=A⊤), is i) diagonizable,
ii) its eigenvalues are real (Λ=diag(λ0, . . . , λN−1) is a diagonal matrix), and iii)
its eigenvectors are orthogonal (∥uk∥22 = 1):

A = UΛU−1 = UΛU⊤ (7.4.1)

7.5 The adjacency matrix and the graph signal shift

Let us considerN samples of a signal expressed as a vector x=[x0, x1, . . . , xN−1].
A signal shift on a graph can be defined as the movement of the signal sample,
xn, from its original vertex, n, along all walks of length one that start at vertex
n. If we define x(1) as the signal shifted, then:

x(1) = Ax (7.5.1)

In case we go on shifting the signal:

x(2) = Ax(1) = A2x (7.5.2)

and thus, m shiftings result in:

x(m) = Ax(m−1) = A2x(m−2) = · · · = Am−1x(1) = Amx (7.5.3)

You can recall that instead of the adjacency matrix A we can use the Laplacian
matrix L, and consider the adjacency matrix a special case of the Laplacian
matrix, and thus:

x(m) = Lmx (7.5.4)

7.6 The graph discrete Fourier transform

The graph discrete Fourier transform (GDFT) of a signal, x, is defined as:

X = U−1x (7.6.1)

where X denotes a vector of the GDFT coefficients, and U is a matrix whose
columns represent the eigenvectors of the adjacency matrix, A or the Laplacian
matrixL. Let us assume that we take the adjacency matrix (same considerations
but different behavior if we use the Laplacian matrix), then vector X has k=0,1,
. . . , N-1 coefficients. Since matrix A is symmetric (A⊤ =A), we have that U−1

=U⊤, and:

X = U⊤x (7.6.2)

63

The inverse graph discrete Fourier transform (IGDFT) of a signal, x, is
thus defined as:

x = UX (7.6.3)

In case of having a circular graph, the GDFT reduces to the classical DFT.
Given that we have defined a GDFT/IGDFT, we can define filters, convolutions,
spectral analysis, signal reconstruction, denoising, and different operations per-
formed in classical signal processing.

7.7 Signal reconstruction in a IoT network

We consider the problem of having a subset of nodes (vertices of the graph)
with samples and we would like to estimate the signal of the graph in the other
vertices so that the resulting signal is smooth. Let is call M the set of nodes
in the graph with observed data, and U the set of nodes in the graph with
observed data (missing data). Thus the objective is to find the unobserved data
from the observed neighboring nodes. This can be seen as a signal reconstruction
problem that can be solved using methods from various fields. Let us consider
the following methods; Laplacian interpolation and GSP low-pass based graph
signal reconstruction. Laplacian interpolation is a graph-based semi-supervised
learning algorithm whose goal is regression with graph regularization assuming
smoothness with respect to the Laplacian matrix. This method regresses a
function f :V→R over the graph G, assuming partial information, it is to say,
information for M nodes. GSP low-pass based graph signal reconstruction is
a graph signal processing reconstruction method that considers subsampling
low-pass graph signals, thus assuming a sparse Fourier coefficient vector.

7.7.1 Laplacian interpolation

Also known as graph interpolated regularization by Belkin et al., this method
minimizes the quadratic form of the Laplacian matrix with respect to the graph
signal x, which is a measure of signal smoothness, given that the observed
measurements {xm: ∀m∈M} remain unchanged. This reconstruction results
in a linear combination of the observations weighted by the Laplacian matrix
entries Lij .

Minimize
y

y⊤Ly

s.t. ym = xm, ∀m∈M
(7.7.1)

7.7.2 Graph Signal Processing (GSP) low-pass reconstruction

This technique recovers a set of unobserved nodes {xu: ∀u∈U} given that the
graph discrete Fourier transform of the complete signal is sparse and of low-pass

64

nature, meaning that it has K nonzero components corresponding to the lowest
frequencies (smallest eigenvalues λi of the Laplacian matrix). Given that the
Laplacian matrix admits the eigendecomposition L=UΛU⊤, the graph discrete
Fourier transform (GDFT) of a graph signal x can be computed as:

X = U−1x (7.7.2)

Now, a K-sparse GDFT coefficient vector of the following form is to be recovered:

X = (X(0), . . . , X(K − 1), 0, . . . , 0)⊤ (7.7.3)

For this purpose a subset of measurements M are used to recover the sparse
coefficient vector by solving the following system:

xM = UMKXK (7.7.4)

Since the system is overdetermined, the solution of the above system in the least
squares sense is given by XK= U†

MKxM, where U†
MK= (U⊤

MKUMK)−1U⊤
MK

is the matrix pseudo-inverse of UMK ; the nonzero coefficients are obtained, and
after appending the corresponding zero coefficients, the inverse graph discrete
Fourier transform (IGDFT) x=UX is computed to obtain the complete set of
measurements x at all vertices.

Example 7.3 (GSP low pass reconstruction) Let us assume a network with
N = 8 nodes, in which we only have M = 4 measurements, e.g. x(2), x(4), x(5)
and x(7), and we want to reconstruct the signal with K = 2 coefficients.

Then, we have to find X(0) and X(1) that satisfies:x(4)x(5)
x(7)

 =

u0(4) u1(4)
u0(5) u1(5)
u0(7) u1(7)

[
X(0)
X(1)

]
(7.7.5)

For finding X(O) and X(1), we solve the overdetermined system, and when
we have these GDFT coefficients, we can obtain the original ones applying the
IGDFT x=UX, with X=[X(0), X(1), 0, 0, 0, 0, 0, 0].

65

