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Resum

Aquest projecte té com a objectiu desenvolupar un programari de missió crı́tica que fa-
ciliti la supervisió i automatització del pla d’operacions entre el Centre d’Operacions i els
CubeSats. Aquest programari ajudarà els operadors en diverses tasques, com programar
les communicacions amb els satèl·lits, controlar una o diverses Estacions Terrestres per
seguir el satèl·lit, preparar plans d’execució amb contingències per a totes les diferents
etapes del protocol de comunicació i automatitzar aquests processos.

Per minimitzar els errors introduı̈ts pels operadors, el programari oferirà una interfı́cie d’u-
suari interactiva per configurar conjunts de missatges i intercanviar informació durant el
contacte. També permetrà la configuració de blocs condicionals que depenen de les da-
des rebudes, creant un bucle de retroalimentació sense problemes i sense errors.

L’objectiu final és reduir gradualment la càrrega de treball de l’operador fins al punt de
fer innecessària la seva interacció. Això permetrà la comunicació automatitzada amb el
satèl·lit en qualsevol moment del dia. Com a part de les operacions, totes les dades
intercanviades s’emmagatzemaran per al seu posterior tractament, amb un processament
automatitzat sempre que sigui possible.

El programari es desenvoluparà utilitzant el llenguatge de programació Rust, conegut per
la seva velocitat, seguretat de memòria i seguretat de fils d’execució. El compilador Rust
detecta una quantitat important d’errors comuns en temps de compilació, això permetrà el
desenvolupament d’una aplicació altament fiable i d’alt rendiment.

Si bé el projecte es centrarà inicialment en donar suport al satèl·lit 3Cat-4, també crearà
les bases per operar qualsevol altre satèl·lit en el futur, com ara el RITA Payload.
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Overview

This project aims to develop mission-critical software that facilitates the monitoring and
automation of the operations plan between the Operation Center and the CubeSats. This
software will assist operators in various tasks, including scheduling satellite passes, con-
trolling one or multiple Ground Stations to follow the satellite, preparing execution plans
with contingencies for all the different steps in the communication protocol, and automat-
ing these processes.

To minimize errors introduced by operators, the software will offer an interactive user in-
terface for configuring message sets and information exchange during contact. It will also
allow for the setup of conditional blocks that depend on received data, creating a seamless
and error-free feedback loop.

The objective is to gradually reduce the operator’s workload, to the point of making their
interaction unnecessary. This will enable automated communication with the satellite at
any time of day. As part of the operations, all uploaded and downloaded data will be
stored for posterior processing, with automated processing wherever possible.

The software will be developed using the Rust programming language, known for its speed,
memory safety, and thread safety. Rust compiler detects a significant amount of com-
mon errors at compile-time, this will allow the development of a highly reliable and high-
performance application.

While the project will initially focus on supporting the 3Cat-4 satellite, it will also create the
basis to operate any other satellite in the future, such as the RITA Payload.
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INTRODUCTION
Since the beginning of humanity, an insatiable curiosity to explore the unknown has driven
humanity to exceed the boundaries of what is deemed possible. This relentless pursuit
began the space race and propelled incredible technological advancements, from the de-
velopment of rockets to the creation of sophisticated satellites orbiting our planet. In recent
years, a remarkable surge in satellite launches has been observed. This phenomenon is
a result of various factors that have contributed to this growing trend.

Technological advancements in the space industry have played a significant role in driving
the increase in satellite launches. Ongoing developments and improvements in satellite
technology have enabled the creation of smaller, more efficient, and cost-effective designs.
This has opened up new opportunities for organizations and companies to design, build,
and launch their satellites.

The rising demand for space services has also been a key driver behind the increase
in satellite launches. Telecommunications, Earth Observation (EO), satellite navigation,
meteorology, scientific research, and other areas increasingly rely on satellite infrastructure
to provide global services and connectivity.

However, the growing number of satellites presents challenges in terms of management
and control. It is crucial to have a robust infrastructure that enables efficient monitoring,
control, and coordination of these satellites. This involves real-time tracking of their posi-
tion and status, establishing reliable two-way communications, and processing the large
volumes of data generated by the satellites.

As humanity continues to push the boundaries of space exploration and satellite technol-
ogy, it is essential to ensure the availability of the necessary infrastructure and capabilities
to effectively manage this expanding fleet of satellites. This requires collaboration, innova-
tion, and the development of advanced systems and technologies to support the future of
space exploration and maximize the benefits that satellites can bring to society.

Objectives
This final degree thesis focuses on the development of a mission-critical software system
that revolutionizes the monitoring and automation of operations between the Operation
Center and CubeSats. The main objective is to design an Operation Center software that
integrates and manages various tasks handled by the operator during satellite missions.
Acting as a central hub and orchestrator, the software will facilitate the coordination of one
or more Ground Stations.

The Operation Center software will be designed to fulfill three fundamental tasks: schedul-
ing satellite passes, providing Telemetry, Tracking, and Command (TT&C) capabilities, and
enabling data analysis. By leveraging a tracking system based on the Standard General
Perturbations Satellite Orbit Model 4 (SGP4) Orbit propagator and satellite’s Two-Line El-
ement (TLE), the software will allow operators to predict future passes of the satellites.
Furthermore, it will enable the programming of communication with compatible Ground
Stations.

In addition, the software will allow operators to configure the sequence of processes and
messages to be exchanged during the missions through a user-friendly graphical inter-
face. The interface will be a graph-based operations flowgraph, where each node will
correspond to a telecommand, and responses will be analyzed to guide the flow toward
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further actions. The software will be capable of generating telecommands, receiving and
parsing responses and beacons from any of the implemented satellites, and establishing
network socket connections with the Ground Stations.

Upon reception of the messages, the scientific data will be recollected for future analysis
and the telemetry data obtained will be stored in an InfluxDB database. This will enable
the visualization of telemetry data through the Grafana software.

Methodology
This project has been carried out at the UPC NanoSat Lab and has had a duration of
one year. In the development of this project, three phases have been identified. The
first phase focused on learning the Rust programming language while also designing and
planning the project. Simultaneously, an analysis of the libraries that should be used for
the development was conducted. This established the foundations for the subsequent
software development.

The next phase involved the actual implementation of the project, translating the design of
the different modules into executable code, and creating a user-friendly graphical interface.
In the final stage of the project, tests and verifications were performed to ensure the proper
functioning of all software components and validate that they met the defined requirements.
Any issues or bugs discovered during testing were carefully addressed and resolved to
improve the stability and reliability of the software.

Throughout the project, regular weekly meetings were held to monitor progress, discuss
encountered challenges, and make necessary adjustments. Additionally, version control
using Git was employed to ensure the integrity of the codebase.

Contents
This thesis report has been divided into six chapters. Chapter 1 serves as an introduction,
providing the necessary background knowledge and context for the project. It offers an
overview of satellite operations, describing the equipment used in the ground segment,
the TT&C process, and the data processing associated with these operations.

The next two chapters considered the core of the project, focus on the development pro-
cess. Chapter 2 outlines the scope of the project and presents the software requirements
that need to be fulfilled. With a clear understanding of the project’s needs, Chapter 3 delves
into the software development process, discussing decision-making, employed technolo-
gies, and the overall development approach. It provides an overview of the steps and
methodologies followed in the software development.

Once the software’s functionality is developed and explained, Chapter 4 conducts a spe-
cific study for the 3Cat-4 satellite. This study explores the considerations, characteristics,
requirements, and challenges associated with the 3Cat-4 satellite, to take into account to
provide support with the developed software.

Chapter 5 focuses on the validation of the software’s functionality and performance. It
details the procedures and methods used to conduct verification tests and presents the
results obtained. Additionally, it discusses the testing of the software in a real-world sce-
nario.

The final chapter, Chapter 6, concludes the thesis by providing an overview of the project
and highlighting potential areas for future improvements and further implementations.



CHAPTER 1. STATE OF THE ART

1.1. Introduction to Satellites and CubeSats

During the last decades, the increasing number of satellites being launched for various
purposes, such as communications, EO, navigation systems, and space exploration, has
been mainly driven by the development of smaller satellites known as CubeSats. CubeSats
are standardized, small-sized satellites that can be built, assembled, and launched in a
relatively shorter period of time and at a lower cost compared to traditional larger satellites.

The CubeSat standard introduced a modular and compact design based on a standardized
unit known as a 1U. A 1U CubeSat is a 10 cm cube typically weighing around 1 to 1.33 kg.
This standardized form factor enables easy integration and compatibility across different
CubeSat missions.

Since the inception of the CubeSat concept, larger sizes beyond the 1U have become
increasingly popular. These larger sizes, such as the 1.5U, 2U, 3U, 6U, and 12U, have
provided a scalable and versatile platform for satellite designers. Each size represents a
multiplication of the 1U unit, allowing for greater volume and expanded capabilities [19].

Figure 1.1: Standard CubeSats sizes [18].

1.2. Satellite operations

Satellite operations can be divided into two segments that work in coordination: the space
segment and the ground segment.

The space segment refers to the satellite itself and its components that operate in the
space environment. It operates autonomously or under the guidance of ground control
commands, executing various functions to achieve the desired mission outcomes. These
functions may include data collection, signal transmission, scientific measurements, or
navigation services.

On the other hand, the ground segment contains the infrastructure and systems on Earth
that support satellite operations. It includes a network of Ground Stations (GSs) strate-
gically located around the globe, Operation Centers (OpCens), communication networks,
and the associated software and hardware. Is responsible for managing and monitoring
the satellite’s activities, receiving and processing telemetry data, sending commands, and
analyzing the data collected by the satellite.

7
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1.2.1. Ground segment

The ground segment of satellite operations involves a range of equipment and systems
that support the management, control, and monitoring of satellite activities. The primary
components commonly found in the ground segment:

• Ground Stations: GSs are equipped with antennas and communication equipment,
they serve as the direct link between the ground segment and satellites in orbit. Their
primary function is to receive telemetry data transmitted by the satellite, including
information on the satellite’s health, status, and performance. In addition, are re-
sponsible for tracking satellites as they move across the sky, by precisely pointing
their antennas toward the satellite’s location, establish and maintain communication
links during the satellite’s orbit. Furthermore, transmit commands and instructions
to the satellite, allowing for control and operation.

• Ground Networks: The ground segment relies on ground networks to establish con-
nectivity between GSs, OpCens, and other facilities involved in satellite operations.
These networks facilitate the transmission of data, commands, and instructions be-
tween different components of the ground segment and the satellite.

• Operations Centers: They act as the central hub for managing satellite operations.
OpCens are equipped with sophisticated software systems, hardware infrastructure,
and a team of operators. The operators are in charge of monitoring and controlling
the satellite’s activities, analyzing telemetry data, and making decisions regarding
mission objectives and satellites.

• Remote Terminals: They serve as user interfaces that enable the retrieval of trans-
mitted information for additional processing.

1.2.2. Telemetry, Tracking and Command

Satellite TT&C is an essential part of space missions, encompassing functions and pro-
cesses for monitoring, controlling, and communicating with the satellite from a ground
station or control center.

Telemetry is a key component of TT&C and involves collecting data from the satellite’s on-
board sensors, such as temperature, power levels, attitude, and orbit details. This teleme-
try data provides valuable insights into the satellite’s health, status, operational parame-
ters, scientific experiments, and EOs. It is transmitted to ground stations, allowing oper-
ators to monitor the satellite’s performance, detect anomalies or deviations, and conduct
data analysis for scientific purposes.

Command uplink is another crucial aspect of TT&C, allowing operators to send instructions
and commands to the satellite. These commands can include configuring subsystems,
executing specific operations, adjusting orbital parameters, or performing diagnostics. The
command uplink ensures that the satellite operates according to mission objectives and
can adapt to changing requirements.

Maintaining reliable communication between the GS and the satellite is essential through-
out the mission. The TT&C subsystem enables bidirectional communication, facilitating
the transmission of telemetry data from the satellite to the ground station and the recep-
tion of commands and instructions from the GS to the satellite. This communication link
ensures effective monitoring, control, and coordination of the satellite’s operations.
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1.2.3. Satellite Orbit Analysis and Tracking

This section focus on studying satellite orbits and exploring the necessary tools and steps
for accurate satellite tracking. This includes characterizing satellite trajectories, under-
standing orbital propagation algorithms, conversions between coordinate systems, and
determining Look Angles for precise antenna alignment with the satellite. Which are es-
sential aspects for establishing reliable communication between GS and satellites.

1.2.3.1. Keplerian elements

An orbit is the trajectory that a satellite follows around a celestial body, such as the Earth.
These trajectories are defined by Kepler’s Laws that describe the motion of planets:

• Law 1: All planets move in elliptical orbits with the Sun located at one focus.

• Law 2: The line connecting any planet to the Sun sweeps out equal areas in equal
times.

• Law 3: The square of the period of any planet is proportional to the cube of the
semi-major axis of its orbit. ⇒ T 2 =Ca3

An orbit can be characterized based on the Keplerian elements (a,e, i,Ω,ω,v). These
elements are a set of parameters that describe the shape, size, and orientation of an orbit
in space [16].

Figure 1.2: Keplerian elements describing a satellite orbit in the ECI coords [15].

The Keplerian elements include:

• a : Semi-major axis, gives the size of the orbit.

• e : Eccentricity, gives the shape of the orbit (0 ≤ e < 1).
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• i : Inclination angle, gives the angle of the orbit plane to the central body’s equator.

• Ω : Right ascension of the ascending node, which gives the rotation of the orbit
plane from reference axis.

• ω : Argument of perigee is the angle from the ascending nodes to perigee point,
measured along the orbit in the direction of the satellites motion.

• v : True anomaly gives the location of the satellite on the orbit.

1.2.3.2. Two-Line Element Set Format

The TLE is a data format used to represent the mean Keplerian orbital elements of Earth-
orbiting objects. These elements are made available by North American Aerospace De-
fense Command (NORAD) and are commonly used for tracking and predicting the orbits
of satellites and other space objects.

The mean values for each element are generated using the SGP4 orbital model, which is a
mathematical algorithm used to predict the orbital state vectors of satellites relative to the
Earth-Centered Inertial (ECI) coordinate system, based on its orbital elements, including
parameters such as inclination, eccentricity, mean anomaly, argument of perigee, and
mean motion. This model predicts the effect of perturbations caused by the Earth’s shape,
drag, radiation, and gravitation effects from other bodies such as the sun and moon [17].

The data of the NORAD TLE consists of three lines in the following format:

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN

Where Line 0 is a twenty-four character name, and Lines 1 and 2 correspond to the stan-
dard Two-Line Orbital Element Set Format. Figure 1.1 shows each line’s contents in detail.

Table 1.1: TLE format.
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1.2.3.3. Orbital Coordinate Systems

Before delving into the topic of tracking satellites and pointing GS antennas towards them,
it is important to consider the different coordinate systems that accurately define the po-
sition and orientation of objects in three-dimensional space. These coordinate systems
include the ECI, the Earth-Centered Earth-Fixed (ECEF), the East, North, Up (ENU), and
the Latitude, Longitude, and Altitude (LLA).

The ECI coordinate system is centered at the Earth’s center, remains fixed in space, and
does not rotate with the Earth. The z-axis runs along the Earth’s rotational axis pointing
North, the x-axis points in the direction of the vernal equinox (an imaginary line segment
pointing from the center of the Earth towards the center of the Sun at the beginning of
Spring of epoch J2000), and the y-axis completes the right-handed orthogonal system.

When using an orbital propagator like SGP4, the position obtained is typically represented
in the ECI coordinate system. This coordinate system provides a fixed reference frame,
allowing for an accurate representation of satellite positions in space.

The ECEF coordinate system, on the other hand, is fixed with respect to the Earth’s sur-
face. Its origin is at the Earth’s center, and its axes are aligned with the Earth’s rotation.
In the ECEF system, the z-axis aligns with the Earth’s rotational axis, pointing towards the
North Pole, the x-axis points to the Prime Meridian (Greenwich Meridian), and the y-axis,
as before, completes the orthogonal system.

(a) Earth-Centered Inertial (ECI). (b) Earth-Centered Earth-Fixed (ECEF) and East,
North, Up (ENU).

Figure 1.3: Coordinate Systems [11].

In the ENU coordinate system, the reference point serves as the origin, and the x-axis
points East, the y-axis points North, and the z-axis points up perpendicular to the local
tangent plane. The orientation of the axes is determined by the reference point and is
aligned with the local horizontal and vertical directions.

Finally, the LLA, also known as geodetic coordinates, represents a position on the Earth’s
surface using latitude, longitude, and altitude (or elevation). LLA coordinates take into
account the Earth’s shape, specifically using an ellipsoidal model such as the WGS84
ellipsoid, which approximates the Earth’s shape more accurately than a simple sphere.
This coordinate system is the most commonly used in everyday navigation, maps, and
geospatial applications, and it is the one used to describe the location of the GSs.
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Figure 1.4: Geodetic Coordinate System[14].

To accurately point toward the satellite during its trajectory, coordinate system conversions
are necessary. As mentioned earlier, the satellite’s position obtained from the orbital prop-
agator is typically expressed in ECI coordinates. However, to determine the satellite’s
position relative to the Earth’s surface, a conversion from ECI to ECEF coordinates is nec-
essary. This conversion takes into account the Earth’s rotation and aligns the coordinate
system with the Earth’s surface.

Simultaneously, LLA coordinates of the GS need to be converted to ECEF coordinates.
Once both the satellite and GS positions are represented in the same coordinate system,
the next step is to calculate the azimuth and elevation angles, commonly referred to as
Look Angles. The Look Angles represent the direction in which the ground station antenna
should be pointed to establish a line-of-sight connection with the satellite.

To make the conversion from ECI to ECEF we need to take into account that both have
approximately the same origin and z-axis and only differ by an angular component on the
xy plane. This angular difference can be used to rotate a vector from one frame to the
other.

This angular component, also known as Greenwich Sidereal Time, can be computed as:

θg(T ) = θg(0h)+ωe ·∆t (1.1)

where ∆t is the UTC time of interest, ωe = 7.2921151010−5rad/s is the Earth’s rotation
rate, and θg(0h) the Greenwich sidereal time at 0h (midnight) UTC, obtained from:

θg(0h) = 24110.54841+8640184.812866 ·T +0.093104 ·T 2 −0.0000062∗T 3 (1.2)

T = d/36525 (1.3)

d = JD−2451545.0 (1.4)

where T is in Julian centuries from 2000 Jan. 1 12h UT1 and d is the number of days of
Universal Time elapsed since JD 2451545.0 (2000 January 1, 12h UT1) [10].

To transform between two Cartesian coordinate systems, a common approach is to per-
form axis rotations. By rotating the axes along one of the axes, the transformation can be
achieved. The rotation matrices are [12]:
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Figure 1.5: ECI to ECEF conversion [14].

R1[θ] =

1 0 0
0 cosθ sinθ

0 −sinθ cosθ

 ;R2[θ] =

cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 ;R3[θ] =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1


(1.5)

Imposing the condition that zECI = zECEF , obtained is:xECEF
yECEF
zECEF

= R3[θ]

xECI
yECI
zECI

 (1.6)

and finally, the conversion is obtained as:

xECEF = xECI · cosθ+ yECI · sinθ (1.7)

yECEF =−xECI · sinθ+ yECI · cosθ (1.8)

zECEF = zECI (1.9)

The conversion between the LLA coordinates of an object to ECEF Cartesian using the
ellipsoid WGS84 can be done using the following expressions:

xECEF =

 a√
1− e2 sin2

φ

+h

cosφ · cosλ (1.10)

yECEF =

 a√
1− e2 sin2

φ

+h

cosφ · sinλ (1.11)

zECEF =

 a(1− e2)√
1− e2 sin2

φ

+h

sinφ (1.12)
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where λ means geodetic longitude, φ means geodetic latitude, h means the height above
the ellipsoid and a, e are the ellipsoid parameters.

Now that both the satellite and the GS are represented in the same coordinate system, it
is possible to obtain the vector that points from the GS position to the satellite. This can
be achieved by subtracting the vectors of the GS and satellite ECEF coordinates.

V = Sat −GS (1.13)

To determine the relative position of the satellite with respect to a GS, the GS is considered
as the origin of the ENU coordinate system. This coordinate system allows us to calculate
the position of the satellite relative to the GS using the ENU axes.

Figure 1.6: Transformations between ENU and ECEF coordinates [13].

This can be done by two rotations, where φ and λ are the latitude and longitude of the
ellipsoid, respectively. First, anti-clockwise rotation over east-axis by an angle 90− φ to
align the up-axis with the z-axis, and then anti-clockwise rotation over the z-axis by an
angle 90+λ to align the east-axis with the x-axis. That is:E

N
U

= R1[(π/2−φ)]R3[(π/2+λ)]

x
y
z

 (1.14)

where the rotation matrix yields:

R1[(π/2−φ)]R3[(π/2+λ)]

 −sinλ cosλ 0
−cosλsinφ −sinλsinφ cosφ

cosλcosφ sinλcosφ sinφ

 (1.15)

The vector computed in the ECEF coordinates can be expressed in the ENU coordinates
as:

x = (−sinλ,−cosλsinφ,cosλcosφ) (1.16)

y = (cosλ,−sinλsinφ,sinλcosφ) (1.17)

z = (0,cosφ,sinφ) (1.18)
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Finally, the elevation and azimuth (Look Angles) of the GS antenna, and the slant range
can be computed easily from the ENU Cartesian coordinates as:

d =
√

E2 +N2 +U2 (1.19)

el = arcsin
(

U
d

)
(1.20)

az = arctan
(

E
N

)
(1.21)

Figure 1.7: Local coordinate frame showing the elevation (E) and azimuth (A). [13].

A satellite is considered visible for the GS when the elevation angle is positive. In order to
establish a communication link, the antenna of the GS needs to be positioned based on
the Look Angles ensuring that it is in line of sight with the satellite, allowing for successful
communication.

1.3. NanoSat Laboratory

The Nano-Satellite and Payload Laboratory (UPC NanoSat Lab) is a multidisciplinary re-
search facility located at the Technical University of Catalonia - UPC Barcelona Tech (Cam-
pus Nord). It is dedicated to the design, development, and exploration of nanosatellites,
with a particular focus on innovative small spacecraft system concepts and EO payloads.

The lab is fully equipped with all the necessary tools for soldering and assembling different
boards and subsystems. It boasts advanced features such as Helmholtz coils and an air
pad, which are utilized for precise testing and calibration of the attitude control system.
Moreover, the lab has been designed to carry out environmental qualification tests (vibra-
tions, and vacuum and thermal cycling), in a clean environment (Class 8 clean room) for
the integration of payloads, subsystems, and small satellites.

The lab promotes a collaborative environment among students from diverse academic
backgrounds, enabling them to work on missions and gain experience in nanosatellite
research and engineering. This collaborative environment promotes knowledge sharing
and offers valuable opportunities for learning and participation in real missions.
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1.3.1. Missions

The UPC NanoSat Lab has participated in a variety of satellite missions, including:

• 3Cat-1: The 3Cat-1 satellite was the first satellite developed by the UPC NanoSat
Lab and the first in Catalonia. This 1U satellite integrates seven different pay-
loads, enabling a wide range of scientific research and experimentation. These pay-
loads include the Eternal self-powered beacon, CellSat Solar Cells, MEMS-based
monoatomic oxygen detector, Graphene Transistor in-space characterization, study
of plasma effects in Wireless Power Transfer links, low-resolution CMOS camera,
and geiger counter. Each payload serves a specific purpose, such as generating
power, assessing solar cell performance, detecting monoatomic oxygen, studying
graphene transistors, exploring plasma effects, capturing images, and measuring
ionized particles and radiation dosimetry. The 3Cat-1 satellite was launched in
November 2018 [20].

• 3Cat-2: The 3Cat-2 satellite, launched in August 2016, is a 6U CubeSat, is equipped
with a GNSS-R payload for EO. It carries four payloads, including the PYCARO
GNSS-R main payload for reflectometry, the Mirabilis star tracker for validation pur-
poses, the IEEC AMR eLISA magnetometer for behavior analysis, and the FAPEC
compression algorithm for data compression. These payloads enable altitude map-
ping, wind analysis, magnetometer validation, and efficient data compression for
scientific missions [20].

• 3Cat-4: The 3Cat-4 is a 1U satellite designed to demonstrate the capabilities of
nano-satellites for EO using GNSS-R and microwave radiometry, as well as for Au-
tomatic Identification Services (AIS). The mission includes scientific experiments
focused on assessing GNSS-R observables, studying ionospheric corrections, eval-
uating GNSS-R applications over land surfaces, assessing RFI detection and miti-
gation techniques, creating RFI maps, and validating the design of an AIS receiver.
The 3Cat-4 mission is part of the ”Fly Your Satellite!” program of the European Space
Agency (ESA) Academy [20].

• 3Cat-5: The FSSCat mission, consisting of two federated 6U Cubesats (³Cat-5/A
and ³Cat-5/B), in support of the Copernicus Land and Marine Environment ser-
vices. These CubeSats, carry a dual microwave payload (GNSS-Reflectometer and
L-band radiometer) and a multi-spectral optical payload for measuring soil mois-
ture, ice extent, ice thickness, and detecting melting ponds over ice. The mission
also includes an Optical Inter-Satellite Link (OISL) technology demonstrator and a
proof-of-concept for a Federated Satellite System (FSS). The FSSCat mission was
launched in September 2020 [20].

• 3Cat-6: The RITA is a 1U payload of the AlainSat-1 CubeSat, dedicated to studying
global warming and vegetation. It includes various instruments such as an L-Band
Microwave Radiometry for soil humidity analysis, a hyperspectral camera for veg-
etation measurements, and RFI detection capabilities. To optimize its operations,
the payload is designed with different operational modes that have specific power
and data budgets. This allows flexibility in adapting to scientific interests, power
availability, and ground station contact.
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1.3.2. Ground segment

Currently, the laboratory operates and maintains a GS located at the Montsec Observa-
tory facilities managed by the Institut d’Estudis Espaials de Catalunya (IEEC)1. This GS is
equipped with S-Band, Ultra High Frequency (UHF), and Very High Frequency (VHF) an-
tennas. However, there is a lack of an OpCen able to centralize all the satellite operations
and GSs management tasks.

This project aims to develop an OpCen software able to supply all the deficiencies, by
providing the necessary tools and functionalities for planning, scheduling, monitoring, and
controlling satellite operations, which will enable operators to efficiently supervise and co-
ordinate the various tasks, such as satellite communication, data storage, telemetry anal-
ysis, and mission planning.

1More information can be found at: https://montsec.ieec.cat/

https://montsec.ieec.cat/




CHAPTER 2. CONCEPTUAL DESIGN

In this chapter, the reasons behind the development of this software will be explained,
along with the necessary requirements it must fulfill and the overall scope of the project.
There are three distinct needs that this software aims to address: Scheduling, TT&C, and
Data Downlink and Storage. Each of these needs is intended to support the different tasks
performed by operators throughout the satellite operation process. For convenience, each
of them will be referred to as:

• Scheduling module

• TT&C module

• Data Downlink and Storage module

The satellite operators at UPC NanoSat Lab require a reliable and efficient tool to effec-
tively manage and coordinate the commanding and downlink of the satellites through the
GSs and OpCen. To address these challenges, a centralized software is necessary to pro-
vide operators with a comprehensive overview of all satellites under their control, allowing
them to track and monitor each satellite, ensuring optimal resource utilization and stream-
lined coordination across various missions, making better decisions, prioritizing tasks, and
allocating resources strategically.

2.1. Ground Segment management

Without a robust scheduling mechanism, the operators face significant challenges in main-
taining centralized control, leading to potential inefficiencies, operational difficulties, and
the risk of errors.

One of the key advantages of implementing a scheduling system is its ability to predict
and determine when satellites will be visible from specific GSs. By leveraging orbital data,
satellite orbits, and the Earth’s rotation, operators can identify optimal communication win-
dows, facilitating efficient planning and scheduling of communication sessions. This en-
sures a reliable and uninterrupted data exchange between satellites and GSs.

Furthermore, a scheduling system will facilitate the management of the GSs, by leverag-
ing knowledge of their operational status, and indicating whether they are available and
ready for communication with the satellites or under maintenance. This information will
assist in selecting the most suitable GS, based on factors such as availability, operational
frequencies, and bandwidth, thereby optimizing overall communication performance within
a network of GSs.

In previous works done by the team of UPC NanoSat Lab, this topic has been addressed
[9]. By designing an OpCen that centralizes data and enables the control of multiple GSs.
This centralized approach allows for efficient management, analysis, and control of satel-
lite operations. Operators can seamlessly monitor and communicate with satellites, and
automated scheduling capabilities optimize GS utilization. That is why this new project is
presented as an evolution of the previous work, providing greater scope and utility to the
system.

19
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2.1.1. Satellite management

The scheduling module should support the management and scheduling of multiple satel-
lites. Operators should be able to easily add, remove, and modify satellite information.
This includes assigning operational frequencies of satellites, allowing for the selection of
the appropriate GS during scheduling. Additionally, it should allow for the modification of
the NORAD ID as it may be assigned shortly after the satellite’s deployment into orbit.
The NORAD ID serves as a unique identifier for the satellite and is crucial for tracking and
communication purposes. Thus, updating the NORAD ID is necessary to ensure accurate
and coherent information.

Furthermore, during the initial stage after launch, predicting the precise orbit of a satellite
can be challenging due to the difficulty of distinguishing individual nanosatellites from other
cubesats during the early stages when they are launched together. Additionally, the lack
of precision in the injection vector provided by the launcher makes it difficult to determine
the precise position and velocity of the orbit. As a result, the software used for tracking
and orbit prediction should allow for manual input of TLE data by operators. This ensures
that the most up-to-date and accurate information is used for orbital predictions. Moreover,
the software should have the capability to automatically update the TLE data periodically
using the Celestrak1 Application Programming Interface (API), which provides reliable and
current orbital information.

2.1.2. Ground Station management

In addition to controlling the different satellites, the software should also enable the man-
agement of GSs to have control over both sides of the communication. The software
should provide information about the available GSs, including their locations, operational
frequencies, and current operational status. This information will be crucial in determining
the feasibility of communication with the satellite.

2.1.3. Scheduling module

The scheduling module unifies satellite management and GS management, intending to
efficiently plan and schedule communications with the satellites based on their specific re-
quirements and specifications. By integrating satellite management and GS management,
the scheduling module enables seamless coordination of resources and tasks. It takes
into account various factors such as satellite availability, GS capabilities, communication
windows, and satellite-specific requirements.

The scheduling module leverages the specifications provided by the satellites to choose
the most compatible GSs taking into consideration the frequency bands and bandwidth of
the satellites, ensuring that the communication sessions are planned in a way that meets
the specific needs of each satellite. Furthermore, the scheduling module uses the TLE to
compute the satellite orbits to determine when the communication can take place.

1Celestrack: https://celestrak.org/

https://celestrak.org/


Conceptual design 21

2.1.3.1. Scheduling options

The software should offer a variety of options to accommodate diverse scheduling needs.
Operators will have the flexibility to choose from different scheduling modes based on their
specific requirements. These options include:

• One Pass: This option schedules the next available pass for a satellite starting from
the current time. It allows operators to quickly schedule a single communication
session for immediate operations.

• Multiple Passes: Operators can specify the number of consecutive passes they
want to schedule for a satellite, and the software will search and schedule the near-
est passes that will happen.

• Multiple Passes from Date: With this option, operators can schedule a specific
number of passes starting from a chosen date. This option is useful for planning
future communication sessions in advance.

• All Passes Until Date: Operators can schedule all available passes for a satellite
until a specified future date.

• All Passes Within Time Interval: This option allows operators to define a specific
time interval and schedule all the passes that will occur within that period.

When making these predictions, several factors must be considered, as they can affect
both the performance and accuracy of the software. The predictions are based on the
orbital parameters extracted from the TLE of the satellites. Therefore, if the TLE data is
not up-to-date, the predictions may not be entirely accurate. Additionally, when scheduling
a pass far in advance, the predicted results may not be entirely precise.

Furthermore, the calculation follows an iterative process to identify the moments of ac-
quisition of sight and loss of signal events. If the search period is not properly defined, it
could potentially cause the software to become stuck in an infinite loop, in the cases that
the desired event may not occur. To prevent this, a time limit is imposed for the first three
cases, mentioned above, where there is no specific end date for the search. This time limit
can either be a default value set by the software or directly inputted by the operator.

Another factor to consider is what to do when two passes of different satellites occur at the
same time and require the use of the same GS. In such cases, if a conflict is found with
a previously scheduled pass, the operator will be notified of the conflict, and the schedul-
ing software will prevent the conflicting pass from being scheduled, avoiding overlaps or
clashes in the planned passes. By notifying the operator about the conflict, they will have
the opportunity to review and adjust the scheduling accordingly to ensure the desired exe-
cution.

Finally, all the predictions will be displayed in a graphical interface, providing essential in-
formation for the operator. This includes details such as the satellite, GS, start and end
time of the pass, maximum elevation, and other relevant information. The interface will
allow operators to easily visualize and evaluate the scheduled passes, being able to elim-
inate those that do not meet the needs or do not want to be carried out. Additionally, the
interface will also display the completed passes, allowing operators to review the historical
data and performance of the satellite operations.
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2.1.3.2. External Accessibility

Furthermore, an additional application for this software is to promote collaboration and
facilitate resource sharing among external operators and organizations. This will enable
them to utilize the infrastructure available at the UPC NanoSat Lab.

By providing access to this software, external users can plan and schedule their satellite
passes, ensuring the availability of the necessary resources for their specific missions and
operations, and enabling them to make the most of the deployed infrastructure at the UPC
NanoSat Lab.

In summary, the scheduling module of the software serves both operational and commer-
cial purposes. It facilitates the scheduling of passes for the satellites, ensuring efficient
resource utilization. Once the passes are completed, all relevant information is recorded,
allowing for the billing of services rendered. This capability enables the UPC Nanosat Lab
to track and charge for the utilization of its resources.

2.2. Flowgraph-based TT&C

Nowadays, the tasks of TT&C in satellite operations are carried out manually by operators
at UPC NanoSat Lab, and even though the procedures to be followed during operations
are defined in detail, these introduce the possibility of human errors, which may impact
the satellite’s performance. The TT&C operators are responsible for collecting telemetry
data, commanding its operations, maintaining its orbit, detecting anomalies, managing
communication links, and monitoring the satellite’s health. These tasks are crucial for
ensuring the successful operation and management of satellites throughout their lifetimes.

There is a strong need for automated support that simplifies operations and provides com-
prehensive assistance and guidance to the operators. By implementing advanced automa-
tion and intelligent software, this process would effectively reduce the workload and greatly
enhance the efficiency of TT&C tasks, leading to smoother and more efficient satellite op-
erations.

2.2.1. Flowgraph

A flowgraph defines a set of processes and operations to be performed by software. These
tasks are grouped into independent components and connected following a predefined
logic. This modular approach promotes code reusability, maintainability, and scalability,
as components can be easily added, removed, or modified without impacting the entire
system.

The goal is to provide a flexible and adaptable design tool for different missions. Operators
can easily modify or extend flowgraphs to accommodate changes in mission requirements
or operational scenarios. This allows for quick adjustments of components, making it eas-
ier to build complex systems from smaller, reusable blocks.

Furthermore, flowgraphs enable automated decision-making by incorporating logic and
algorithms within the design of blocks. The flowgraph analyzes data and makes real-time
decisions, reducing the need for manual intervention and improving the overall reliability
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Figure 2.1: Example implementation of a TT&C flowgraph.

and efficiency of satellite operations. Additionally, flowgraphs offer a visual representation
of the system’s structure and the flow of data between different components.

For those reasons, the integration of flowgraph technology covers all the objectives, as
it provides a powerful tool for visualizing, organizing, and managing the complex flow of
the data, commands, and processes involved in satellite operations. This provides a clear
and intuitive representation of the entire process, enables operators to visually design and
configure the sequence of operations, define dependencies between tasks, monitor the
flow of data and commands, and make informed decisions in real time.

When designing a flowgraph, it is important to consider that each satellite mission has its
own unique objectives, goals, and specific requirements. These missions utilize different
protocols and communication systems, making it impractical to reuse the same code in the
blocks for every mission. Therefore, a personalized flowgraph is necessary for each mis-
sion to accommodate these variations and ensure optimal performance and compatibility.

In this context, three different types of blocks have been distinguished based on their
functionalities. These include utility blocks, mission blocks, and background blocks.

• Utility blocks: These blocks are designed to be versatile and applicable to various
missions. They offer high-level control and functionality, performing generic oper-
ations that assist in managing and controlling the flowgraph. Their purpose is to
provide a consistent and standardized set of operations that can be used across
different satellites, promoting reusability and reducing the need for mission-specific
customization.

• Mission blocks: These blocks are specific design for each mission and are respon-
sible for the exchange of information between the satellite and the OpCen. They in-
corporate mission communication protocols, commands, data structures, and other
specific functionalities. Also, integrate some logic to take decisions about the next
block to be executed. These blocks share the same functionality and visual repre-
sentation across all the satellites and only vary their execution based on the specifi-
cations of the missions.

• Background blocks: These blocks handle background processes and tasks that
support the overall operation of the satellite. They provide essential functions such
as connecting to the GS, managing database storage, and performing auxiliary
tasks. While these blocks may not directly contribute to the primary mission ob-
jectives, they play a crucial role in ensuring the correct functioning of the satellite’s
operations.
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2.2.1.1. Utility blocks

Within this group, there are two blocks that have very similar functionalities: the Acquisition
of Signal (AOS) and Loss of Signal (LOS) blocks. These blocks employ orbital propagation
algorithms to predict and calculate various parameters related to satellite passes over a
GS, as well as to detect and manage the satellite’s visibility to the GS.

The AOS block is responsible for monitoring the satellite’s position and determining the
moment when it is about to pass over the GSs, preparing for the initiation of communi-
cation. By utilizing parameters such as the latitude, longitude, and altitude of the GSs,
along with the satellite’s TLE data, the AOS block calculates the Look angles necessary
for establishing communication.

Once the satellite’s elevation angle exceeds a predefined threshold, the LOS block takes
over. This block continuously tracks the satellite to determine when it is no longer visible
to the GSs, marking the end of the communication.

Additionally, another block, known as the Tracking block, can be found in this group. The
Tracking block is responsible for computing the necessary antenna movements required
to accurately point the antenna toward the satellite and track its path during the pass. Its
main function is to generate a file containing the calculated movements and send it to the
GSs to follow these instructions.

2.2.1.2. Mission blocks

Mission blocks are responsible for generating and receiving data that is transmitted to and
from the satellite. These blocks have a unique and customized implementation specifically
for the mission they are designed for. This means that each set of mission blocks is exe-
cuted by a different code to adapt to the communication requirements and protocols of the
individual satellite missions. By utilizing mission-specific code, these blocks can efficiently
handle data generation, reception, and processing following the unique characteristics and
objectives of each mission.

However, it is important to highlight that there is an ongoing effort to standardize the oper-
ation of satellites in the future. This initiative aims to eliminate the need for such distinction
among mission blocks, as a unified and standardized approach would be adopted across
multiple satellites. This will greatly facilitate the operation of new satellites, as they will be
compatible with the standardized software and protocols, promoting enhanced interoper-
ability and reducing complexity.

During operations, mission blocks take input data and generate a serialized message for
transmission through the GSs interface. They then await a response, which is subse-
quently decoded and analyzed to determine the block’s success. These blocks also in-
corporate control parameters for communication, such as the timeout time. The timeout
defines the duration within which a block considers a package lost if no response is re-
ceived. The adjustability of the timeout is crucial since the processing speed of commands
by the satellite may vary, resulting in different RTT (Round Trip Time) for each case. Ad-
ditionally, mission blocks include the number of retry attempts for package transmission in
case of a timeout or other unsuccessful execution.

Based on the received response or the inability to execute the block successfully due to a
timeout or other events, mission blocks determine their output, enabling further decision-
making and processing within the flowgraph.
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The mission blocks can be categorized into three types, as a function of the input param-
eters:

• Send Command: This block takes a command as input. It generates a data pack-
age containing the command to be transmitted to the satellite through the GSs inter-
face.

• Send File Command: This block takes both a command and a file as input. The
command represents instructions, while the file contains the actual content of the
package to be sent.

• Send Bytes Command: This block directly accepts a sequence of bytes as input
and is utilized in scenarios where no specific data structure has been defined for a
particular case. It allows for the transmission of raw bytes as the content of the data
package, providing flexibility in handling diverse data formats or situations that do
not adhere to predefined structures.

In addition, to provide flexibility for handling various execution scenarios within the mission
blocks and providing appropriate output paths depending on the outcome of the block’s
operation can be differentiated another three different cases:

• Simple Output: In this case regardless of the execution result, there is only one
possible output.

• Success-Fail Conditional Output: In this scenario, the output is determined based
on the success or failure of the block’s execution. If the execution is considered
successful, the Success output is chosen; otherwise, the Fail output is selected.

• Success-Fail-Timeout Conditional Output: In this case, if a failure occurs, the
selection of the output varies depending on the origin of the failure, which can be
attributed to either a timeout or another reason.

Combining both groups, the software supports up to nine different combinations, providing
operators with a high degree of flexibility and customization. By linking the blocks together,
operators can define the sequence of operations and the data flow within the flowgraph,
allowing the coordination and integration of various tasks and ensuring that the execution
follows the desired workflow.

2.2.1.3. Background blocks

Background blocks, similar to utility blocks, are executed in the same way regardless of the
mission. They are designed to perform complementary tasks to the execution of the flow-
graph, providing support in various areas such as data querying and storage in databases
and files, as well as establishing connections with the GSs.

The Ground Station block acts as a bridge between the flowgraph execution and the GSs.
Its primary role is to establish and maintain a connection with the GSs throughout the com-
munication process. Moreover, it should enable GSs roaming, which allows for the flexibil-
ity to switch to a different communication GSs during satellite operations. This capability
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ensures uninterrupted communication by facilitating a smooth transition to an alternative
GSs location if required to maintain the satellite connection. Once the communication is
completed, it frees up the channel to allow the next communication session. Currently, the
UPC NanoSat Lab operates two antennas in Montsec (including one for UHF and another
for S-Band) and an additional two antennas in Barcelona (UHF and VHF). These anten-
nas have a standardized data exchange interface, making them interoperable within the
software, which will be explained in detail later.

During the flowgraph execution, the GS block receives packets generated by the mission
blocks and sends them to the GSs for transmission to the satellite. Simultaneously, it
receives packets sent by the satellite, allowing them to be processed by the mission blocks,
facilitating bidirectional communication between the satellite and the software.

The Database Connection block provides the functionality to interactively query the con-
figuration of the executing flowgraph. As the execution progresses, the flowgraph can
dynamically retrieve information such as which block to execute at each step, the specific
command to be sent, the data associated with the command, and any other relevant details
necessary for the proper functioning of the execution.

The Backup block has the functionality of collecting all the information generated during
the execution of the flowgraph. This includes data generated from packet reception and
transmission to the satellite, as well as the various decisions and paths taken during the
flowgraph execution.

The background block serves two main purposes. Firstly, it serves as a record of every-
thing that has happened during the communication for later analysis and error detection.
Secondly, the Background block is used to support the visual representation of the exe-
cution. When an operator joins the execution midway, it is essential to provide them with
a complete overview of the previous events. By utilizing the information collected by the
Background block, the operator can access to the complete representation of the execution
history. This ensures that the operator has the necessary context and can make informed
decisions based on the entire flowgraph execution, even if they didn’t observe it from the
beginning.

Finally, there is one last block directly related to Data Downlink and Storage, which is
explained in depth in Section 2.3.. This block is the Data Storage block, responsible for
storing all telemetry data received during the execution. The stored data can be visual-
ized by the operator using Grafana, allowing for monitoring and analysis of the satellite’s
performance and health, to take decisions during the processes.

Finally, there is one last block directly related to Data Downlink and Storage, which is
explained in depth in Section 2.3.. This block is the Data Storage block, responsible for
storing all telemetry data received during the execution. All the data is sent and saved into
a telemetry database, enabling the operator to visualize the stored data using Grafana.
This functionality allows for monitoring and analysis of the satellite’s performance and
health, aiding in informed decision-making during the processes. However, the detailed
discussion of the telemetry database falls beyond the scope of this work.
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2.2.2. Flowgraph edition modes

At this point, the advantages that a modular block design provides when it comes to de-
veloping the chain of actions and commands that must be executed in a flowgraph are
already known. One of these advantages is undoubtedly the flexibility that it offers and the
adaptability to any situation.

However, it is essential to consider how the satellite pass will be connected to the flowgraph
that must be executed. The choice of a flowgraph can be conditioned by many factors such
as the use of a particular GSs, the time in which the contact with the satellite will occur, or
the objectives of the communication.

In this manner, the introduction of different operating modes to the flowgraph enhances
another level of customization and flexibility for a given scenario. As a result, four different
selection criteria can be defined:

• Personalized pass: This mode enables the design of a chain of blocks to be exe-
cuted by explicitly selected passes (one or more), allowing the design of personal-
ized communications for specific scenarios.

• Programmed: In specific scenarios, it is possible that depending on what time the
contact with the satellite occurs, the operator is not available. This case could be,
for example, during nighttime hours when autonomous execution of the flowgraph
becomes necessary. During the configuration, it is essential to specify the start and
end time of the prioritized flowgraph selection period.

• Default Ground Station: Another criterion to consider in the flowgraph design can
be the selection of the GSs responsible for the transmission. Having different flow-
graphs, allows customization and adaptation to the specific capabilities of each GSs,
optimizing the communication parameters and protocols to maximize performance.
In this case, the operator should indicate their preferred GSs for the execution.

• Default flowgraph: However, if none of the previously configured modes in a satel-
lite are compatible with the pass, the default design will be selected. It is important
to note that unlike the other modes, which may or may not be present, there should
always be only one default model.

Before the satellite contact, the server examines the configured flowgraphs for that partic-
ular satellite to determine the appropriate flowgraph. Each mode is assigned a preference
based on its exclusivity and restrictions. The priority order, from highest to lowest, is as
follows: Personalized Pass, Programmed, Default GSs, and Default. This ensures that the
server selects the most suitable flowgraph for the given scenario, taking into account the
specific requirements and constraints of each mode. An example of the configuration and
assignment of these modes can be found in figure 2.2.
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Figure 2.2: Flowgraph mode configuration and assignment of flowgraph for each satellite
pass based on mode preference.

2.2.3. Execution manager

The Execution Manager is responsible for controlling and regulating communications with
satellites, acting as the background task that maintains overall control. It uses the data
stored in the OpCen’s database to control and schedule the communication timings of the
satellites.

The Execution Manager performs the following three main functions:

1. Maintenance of Scheduled Passes: Keeps track of the latest version of the sched-
uled passes by monitoring any changes that may affect the planned communication
sessions. Whenever a new pass is scheduled or an older one is removed, the sys-
tem verifies if any adjustments need to be made to the overall schedule.

2. Flowgraph Execution Lock: Prevents the editing of flowgraphs that are currently
executing to ensure that no modifications occur during execution. It informs the
start of the flowgraph execution and locks any further editing during the execution to
maintain the integrity of the flowgraph and avoid potential conflicts or disruptions in
the ongoing execution process.

3. Operator Interaction Support: Offers information and tools to the user’s websocket
threads, allowing them to interact with the execution of a specific satellite. It gives
the operators detailed information about the flowgraph design that has been chosen
for the pass, so they can keep track of the specific configuration and parameters
used. Additionally, it provides a dedicated communication channel for monitoring
and interacting with the execution in real-time.

For this reason, it must maintain a list of various attributes for each satellite and its next
pass. These attributes include:

• NORAD ID: The unique identifier of the satellite.

• Pass ID: A unique identifier for the pass scheduled for the satellite.

• Start Time: The date and time scheduled for the communication session with the
satellite. This information is used to determine the waiting time before initiating the
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execution of the corresponding flowgraph. In addition, it is also compared with newly
scheduled passes to ensure accuracy.

• Execution Flag: A flag indicating whether the flowgraph of the satellite is currently
executing. It acts as a mechanism to prevent operators from editing the flowgraph
while it is running to maintain the consistency of the operation.

• Broadcast Sender: This feature allows operators to interact with the execution of
the flowgraph (see in Chapter 3.2.4.).

• Flowgraph Identifier: During a communication session, it holds the identifier of
the flowgraph being executed. This identifier enables operators to have a graphical
visualization of the ongoing process.

• Task Thread: This thread is responsible for the execution process and remains in
a waiting state until the start time is reached. Whenever an update occurs for the
next pass of a satellite, the current execution task is aborted, and a new task with
the updated start time is initiated.

When the software is initialized, the Execution Manager queries the database to determine
the next scheduled satellite pass. For each satellite with a scheduled pass, it generates
a list with all the previously mentioned attributes. Simultaneously, it initiates a dedicated
thread for each satellite, which will remain waiting until the designated start time is reached.

Once the start time is reached, the thread should notify the Execution Manager that it is
ready to begin the execution. It will also provide information such as the flowgraph se-
lected to be executed, the communication channel through which operators can follow and
interact with the ongoing execution, and initiates the execution of the selected flowgraph.

After the execution of a flowgraph is completed, the Execution Manager needs to consult
the database again to check if there is a scheduled pass for the satellite that just finished
executing. If a scheduled pass is found, the Execution Manager should prepare a new
thread to execute the flowgraph for the upcoming pass.

At the same time, the Execution Manager will need to receive notifications from the database
regarding updates made by the Scheduling software. These updates can have an impact
on the execution threads, and the Manager should monitor all of them to ensure continu-
ous operation and timely execution for all satellites. This iterative process ensures that the
software will remain responsive to changes in the scheduled passes and will be always
prepared to execute the appropriate flowgraph for each satellite’s communication session.
The changes that must be checked are the following:

• Scheduling a New Pass: When this notification is received, the Execution Man-
ager checks if there is any existing execution planned for that satellite. If there is
no current execution, a new entry is created with the updated information, and a
corresponding execution thread is initiated. However, if there is already an existing
execution planned for that satellite, the Execution Manager compares the start time
of the new pass with the previous one. If the new has an earlier start time and the
ongoing execution has not started yet, the existing execution will be terminated, and
replaced with the new pass.
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• Removal of a Pass: In this case, the Execution Manager checks if the pass being
removed is one of the scheduled passes that are still awaiting execution. If the pass
is not currently being executed, it is removed from the list. After removing the pass,
the Execution Manager consults the database for the next scheduled pass for the
corresponding satellite.

• Removal of a Satellite: Similar to the previous case, the Execution Manager checks
if the satellite is currently executing a flowgraph. If the satellite is in the middle of
an execution, the Manager will wait for the flowgraph to complete, ensuring that the
ongoing execution is not interrupted. Otherwise, it will delete the thread assigned to
it.

• Change of NORAD ID a Satellite: This operation carries a potential risk of in-
troducing errors if performed while a flowgraph execution is in progress, as it may
affect the references used during execution. Therefore, it is crucial to ensure that
no execution is ongoing for the satellite before proceeding with any update or modi-
fication. The operator will need to wait until the current execution is complete before
performing the NORAD ID update, if not the software will refuse this petition. The
Execution Manager, responsible for managing flowgraph executions, will consult the
database to determine the next scheduled pass for the satellite with the updated
NORAD ID. Once the updated information is obtained, a new entry will be created in
the database, ensuring that the updated NORAD ID is properly reflected for future
executions.

2.2.4. Flowgraph execution modes

During the execution of a pass, two possible scenarios can occur. The first scenario occurs
when a pass is scheduled to reserve the connection with the GS, as there is a desire to
execute the message exchange using another software independent of the current one.
In this case, the software executes only the necessary Utility Blocks to ensure that the
communication channel remains free during the designated time and to provide information
about the antenna movements that need to be performed by the GS.

In the second scenario, the communication process follows a planned execution using the
flowgraph model. This involves the sequential execution of all the blocks that have been
carefully designed and included in the flowgraph to achieve the desired communication
objectives. The flowgraph serves as a roadmap for the execution, outlining the sequence
of operations and tasks to be performed during the communication session. Each block
represents a specific function or action, such as data transmission, telemetry collection,
command execution, or other relevant tasks.

In this case, the execution of the flowgraph can either be fully autonomous or monitored by
an operator. If an operator is actively monitoring the execution, they can intervene at any
moment by switching to manual execution mode. In manual execution mode, the operator
can pause the planned execution to send additional commands considered necessary for
the current circumstances.

This mode provides the operator with the flexibility to make real-time adjustments during
the communication process, controlling the execution and evaluating all the situations. It
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allows the customization of the commands to be sent, enabling the operator to respond to
unexpected events or optimize the communication process based on real-time information.

Furthermore, manual execution mode allows for the interruption of a specific block’s execu-
tion if the operator believes it is not functioning properly. This capability ensures that any
issues or anomalies can be promptly addressed and mitigated, maintaining the integrity
and effectiveness of the overall communication session.

2.3. Data downlink and storage

The main objective of EO missions is the collection and study of data. Therefore, it is
crucial to collect and store all the data exchanged, scientific experiments, and telemetry
received from the satellite and logs generated during the mission for later analysis.

During the execution of the flowgraph, a specific background block called the Data Storage
Block is responsible for handling the data received from the satellite and storing it.

The messages sent by the satellite contain various types of valuable data, including re-
sponses to commands, telemetry beacons, and experiment results. Each message type
requires specific treatment due to its unique structure and content. To interpret these mes-
sages, they need to be deserialized into different fields. This involves extracting the raw
bytes of the messages and converting them into their respective data types. Depending on
the specific data type, binary data may need to be converted into integers, floats, strings,
or other appropriate formats. Additionally, conversion factors may be applied to obtain the
desired information from the data.

Telemetry data provides information about the satellite’s performance, health, and status.
It serves as a valuable source of information for monitoring and diagnosing the satellite’s
behavior. By analyzing telemetry data, operators can identify anomalies, detect poten-
tial issues, and take corrective actions to ensure the satellite operates optimally. Storing
telemetry data enables historical analysis and trend identification. By having historical
telemetry records, patterns and trends can be identified over time, aiding in performance
optimization, predictive maintenance, and anomaly detection.

Scientific data obtained from experiments conducted by the satellite is also crucial to store.
This data may include measurements, observations, or any other experimental results.
Storing this scientific data allows researchers and scientists to retrieve and analyze it later,
facilitating in-depth studies, trend analysis, and scientific discoveries.

In addition to the data received from the satellite, it is important to store the logs generated
during the communication to maintain a complete record of all events and actions related to
the satellite’s operation. Logs provide a valuable source of information for troubleshooting
and post-mission analysis. They can help identify anomalies, track system behavior, and
assist in diagnosing issues that may arise during satellite operations.

The files generated by scientific experiments and the logs are stored as separate files,
which can be accessed by the operator through the graphical interface. On the other hand,
telemetry data requires to be stored in a database capable of handling large volumes of
data and providing efficient querying capabilities. InfluxDB2 is a widely-used option for

2InfluxDB official webpage: https://www.influxdata.com/.

https://www.influxdata.com/
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storing time-series data like telemetry due to its scalability and optimized storage structure
and in combination with Grafana3, offers a user-friendly interface for creating customizable
dashboards and visualizations. This combination enables operators to monitor and ana-
lyze telemetry data in real-time, enhancing their ability to make informed decisions and
optimize operations.

2.4. Access levels

Just as the software has been designed with distinct components to fulfill different func-
tionalities, it is equally important to differentiate the roles and responsibilities involved in
satellite operations. This differentiation ensures that each operator is assigned specific
tasks aligned with their designated role, promoting a secure utilization of the software.

By assigning specific roles to operators, the software can enforce access restrictions and
permissions based on their assigned tasks. This helps prevent unauthorized use of the
software and mitigates the risk of unintended actions or disruptions.

When managing the satellite, the operators have specific responsibilities that can be di-
vided into three main roles: Ground Station Manager, Satellite Operator, and Telemetry
Expert. These roles are assigned to operators based on their assigned tasks and exper-
tise.

By logging into the software with their credentials, operators are assigned access levels
according to their roles and responsibilities. This ensures that each operator has restricted
requests and actions, as well as limited views and operations available to them in the
graphical interface.

2.4.1. Ground Station Manager

The Ground Station Manager is responsible for monitoring and managing the availability
of the various GSs used for satellite communications. Their primary responsibility is to
monitor the status and availability of these GSs, providing essential information regarding
their operational status and maintenance activities. This information is vital for determining
whether communication sessions can be established with the satellites.

Additionally, they hold the responsibility of managing the satellites, including tasks such
as adding new satellites, removing existing ones, and making necessary configuration
adjustments. Besides, they have the authority to plan satellite passes using the scheduling
module. This involves careful consideration of various factors such as the duration of the
passes, the maximum elevation achievable during each pass, and the availability of the
GSs, to make sure that the objectives of the communications will be successfully met.

3Influx + Grafana: https://docs.influxdata.com/influxdb/cloud/tools/grafana/.

https://docs.influxdata.com/influxdb/cloud/tools/grafana/
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2.4.2. Satellite Operator

The Satellite Operator is responsible for designing the different flowgraphs that will be
executed during the scheduled passes. Their role involves carefully planning the commu-
nication exchange with the satellite, defining objectives, and determining the sequence of
commands to be executed. During the contact with the satellite, the Satellite Operator
assumes the responsibility of ensuring the proper execution of the flowgraph. They mon-
itor the communication process closely, ensuring that commands are transmitted to the
satellite and received successfully.

They also verify that the satellite responds appropriately to the commands, checking that
the desired actions are being carried out. They may also handle error handling, contin-
gency planning, and troubleshooting in case of any issues or anomalies during the com-
munication session.

In addition, they have access to all the data received or generated during the execution of
the flowgraphs. This includes telemetry data from the satellite, command logs, execution
status, and any other relevant information.

2.4.3. Telemetry Expert

The Telemetry Expert plays a complementary role to the Satellite Operator mentioned ear-
lier. Their primary responsibility is to closely monitor the communication with the satellite
and ensure the integrity and accuracy of the received telemetry data.

The Telemetry Expert continuously analyzes the telemetry data, which includes various
parameters such as satellite health status, sensor readings, power levels, temperature, and
other relevant information. They compare the received telemetry data with expected values
and predefined thresholds to identify any anomalies or deviations from normal behavior.
When unusual or unexpected behavior is detected, the Telemetry Expert alerts the Satellite
Operator, who can then take appropriate action to address the issue by adjusting the
command sequences, or initiating contingency plans if necessary.

2.5. Requirements

All the requirements mentioned in the prior sections have been compiled in the subse-
quent tables, separating the tasks of the backend (Table 2.1) and the frontend (Table 2.2).
Additionally, these tables indicate the procedures to follow in order to verify their correct
functionality.
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Table 2.1: Backend Requirements
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Table 2.2: Frontend Requirements





CHAPTER 3. SOFTWARE DESIGN

This chapter presents the design and implementation of the software, discussing the
decision-making process and justifying the chosen technologies based on the previously
defined requirements.

3.1. Architecture
The software is designed with a client-server structure, where the client requests services
or resources from the server, and the server provides those services or resources in re-
sponse to client requests.

Figure 3.1: Software architecture

The server, located at the UPC NanoSat Lab’s OpCen, offers three primary services:
Scheduling, Flowgraph-based TT&C, and Data downlink and storage. Each service has its
independent database for data storage and management, all hosted on the same server.
This separation ensures data isolation and enables independent management and pro-
cessing of the services.

To ensure synchronization between the Flowgraph and the Scheduling module, a com-
munication channel is established between the two. This allows for the notification of any
updates or changes in the satellite pass planning, enabling the Flowgraph module to ad-
just its execution accordingly and ensuring seamless coordination. Additionally, during the
execution of flowgraphs, the software establishes a connection with any of the GS in the
network.

37
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For the client, two graphical user interface options have been developed. The first option is
a web application hosted on the server, providing easy accessibility from any device with
a web browser, while the second one is a desktop application. Both interfaces offer the
same set of functionalities, allowing users to choose the one that best suits their needs
and preferences.

To allow interaction between the clients and the server, a RESTful API and a WebSocket
interface are utilized. This standardized interface allows clients to make queries, retrieve
data, and fully utilize the software’s capabilities.

Additionally, telemetry data obtained during communications can be visualized through the
interface provided by Grafana.

In the following sections, a more in-depth discussion will be provided about the process
and the functionalities of the previously introduced aspects.

3.1.1. Programming environment

For the development of the program, the Rust1 language has been chosen due to its
reputation built on its speed, memory safety, and thread safety. Rust features enable the
detection of numerous common errors during compilation, ensuring code correctness and
reducing the possibility of runtime errors. Its focus on memory safety, which helps to
prevent issues like null pointer dereferences and buffer overflows, enhancing the overall
reliability and security of the software [8].

The reason for choosing Rust for the development of the ground segment in satellite com-
munications is that it involves critical tasks such as command execution, telemetry pro-
cessing, and data storage. By preventing programming errors, Rust helps minimize the
risk of crashes, data corruption, and security vulnerabilities.

Furthermore, this project requires concurrent handling of multiple tasks simultaneously,
such as handling operator requests while communicating with satellites, receiving teleme-
try, sending commands, and managing data storage. Rust, combined with the Tokio2

framework, provides efficient and scalable solutions for managing concurrent operations
in an async environment.

Also, real-time processing and low-latency communication are crucial in the ground seg-
ment. Rust’s emphasis on low-level control and zero-cost abstractions enables efficient
memory management and optimal performance, making it suitable for these demanding
requirements.

Considering these factors, Rust emerges as the perfect choice for developing the ground
segment in satellite communications, as it provides the necessary safety, concurrency,
performance, and memory management features required for such critical and complex
tasks.

Additionally, the Rust community offers an extensive ecosystem of third-party crates, en-
abling developers to create clean, maintainable, and reusable code. Some notable exam-
ples used in this project include: serde3, used for the serialization and deserialization of

1Rust official webpage: https://www.rust-lang.org/.
2Tokio Docs: https://docs.rs/tokio/latest/tokio/.
3serde official webpage: https://serde.rs/.

https://www.rust-lang.org/
https://docs.rs/tokio/latest/tokio/
https://serde.rs/
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data structures; tracing4, which provides a flexible framework for instrumenting, collect-
ing, and analyzing diagnostic information in applications; anyhow5, for error handling, and
endian codec6, for encoding and decoding data in different endianness formats, making
it easy to work with binary data in big-endian or little-endian byte order.

3.1.1.1. Async ecosystem with Tokio

Tokio is an asynchronous runtime for the Rust programming language, offering a powerful
solution for handling concurrent and asynchronous tasks. It provides a multi-threaded
runtime for executing asynchronous code, an asynchronous version of the standard library,
and a large ecosystem of libraries [7].

The following code demonstrates the usage of Tokio. In the example, two asynchronous
tasks are concurrently executed using the tokio::spawn, which means that both tasks
are running at the same time. The handles vector stores the tasks, and the program awaits
the completion of each task. Tokio’s runtime manages the scheduling and execution of
these tasks, ensuring that they make progress concurrently without blocking each other.

#[tokio::main]
async fn main() {

let mut handles = Vec::new();

handles.push(tokio::spawn(async {
// Async task1

}));

handles.push(tokio::spawn(async {
// Async task2

}));

for handle in handles.into_iter() {
let _ = handle.await;

}
}

In the project, this behavior is applied to the whole software. The main execution of the Op-
Cen program utilizes multiple threads to handle different tasks concurrently. Three threads
are distinguished at the top of the program.

The first thread is dedicated to supporting the server, which allows operators to make
queries and requests. Inside this thread, each time an operator makes a query, a new
thread is created and destined to handle their request. This approach enables transparent
service provision to multiple operators simultaneously.

The second thread is dedicated to periodically updating the TLE of the satellites registered
on the system. This ensures that the latest orbital information is available for accurate
satellite tracking and management. Most of the time, this thread remains in an idle state,

4tracing Docs: https://docs.rs/tracing/latest/tracing/.
5anyhow Docs: https://docs.rs/anyhow/latest/anyhow/.
6endian codec Docs: https://docs.rs/endian_codec/latest/endian_codec/.

https://docs.rs/tracing/latest/tracing/
https://docs.rs/anyhow/latest/anyhow/
https://docs.rs/endian_codec/latest/endian_codec/
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without consuming system resources, and it only becomes active when it’s time to perform
the TLE updates according to the predefined refresh interval.

Finally, there is a dedicated thread for the Execution Manager, which is responsible for
managing the execution of satellite operations. This thread creates and controls individual
threads for each satellite, ensuring proper coordination and management of their respec-
tive tasks. More detailed information about this process will be provided later.

Also, the complexity of this project requires handling many tasks in parallel, and while some
tasks can be executed independently of each other, in most cases, there is a need for a
mechanism to communicate and exchange information between different threads of the
program. To facilitate these communications, channels are used. The Tokio library enables
asynchronous communication, which allows for non-blocking execution. For example, if
a thread is waiting for a message, it remains inactive, waiting for the arrival of a new
message, freeing up resources that can be dedicated to other tasks. The Tokio library
provides four different types of channels, three of which will be used throughout the project:

• mpsc (multi-producer, single-consumer): This type of channel allows communica-
tion between multiple producers and a single consumer. It is useful when multiple
threads need to send information to a single receiving thread.

• oneshot: This type of channel allows sending a value or an error once from a send-
ing thread to a receiving thread. It is useful when a one-time signal needs to be sent
from one thread to another.

• broadcast: This type of channel allows sending messages to multiple consumers.
Each time a message is sent, all connected consumers will receive a copy of the
message. It is useful when a message needs to be sent to multiple recipients.

These channels provide efficient and safe mechanisms for communication between threads,
enabling effective coordination of tasks and maintaining synchronization in a concurrent
environment.

3.1.2. Database Models

3.1.2.1. SQLite Database

When deciding on the type of database to use for data storage, the choice between a
relational or non-relational database depends on several factors, such as the nature of the
data, project requirements, and query needs. A relational database offers a well-defined
structure with tables, rows, and columns, and supports complex queries. On the other
hand, a non-relational database can handle large volumes of data with a flexible schema
and allows queries with high read and write performance.

Given the well-defined structure of the data models that will be discussed in the follow-
ing sections, a relational database has been chosen as the preferred storage solution.
Specifically, SQLite7 has been selected due to its lightweight nature and simplicity. These
qualities make it an ideal choice for efficient storage and management of structured data.

7SQLite webpage: https://sqlite.org/index.html.

https://sqlite.org/index.html
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This type of database provides a structured way to store and manage data. It consists
in tables, which are organized structures of rows and columns. Each table represents a
specific entity or type of information. Rows contain individual items, and columns represent
the attributes or characteristics of those items. Tables can be related to each other to
retrieve related information.

The rusqlite8 library provides a convenient way to integrate SQLite databases into Rust
projects. One of its important features is the ability to prevent Structured Query Lan-
guage (SQL) injection attacks. By using placeholders in the SQL statement and prepared
statements, rusqlite ensures that user-provided values are treated as data rather than
executable SQL code. This effectively mitigates the risk of SQL injection vulnerabilities, as
the user input is properly escaped and quoted.

However, in situations where concurrent access to the database is required, such as in
an asynchronous environment, proper concurrency mechanisms are necessary to ensure
data integrity. This is particularly important because SQLite is an embedded database
system that directly reads from and writes to the database file. To address this problem, the
combination of the tokio-rusqlite9 library and the rusqlite library provides mechanisms
for locking and managing concurrent access to the SQLite database.

The following example illustrates how a query is performed asynchronously using the
aforementioned libraries. The conn.call() method is used to execute the query asyn-
chronously, while the query row() method is employed to retrieve a single row from the
result set. The purpose of this specific query is to fetch the TLE of a satellite based on its
norad id. If everything goes as planned, the function will return its corresponding TLE.

async fn get_tle_satellite(conn: &Connection , norad_id:
i32) -> anyhow::Result <TLE, Error > {

let res = conn.call(move |conn| {
conn.query_row(

"SELECT tle1 , tle2 FROM satellites WHERE norad_id =
?1",

params![norad_id],
|row| {

let line1: String = row.get(0).unwrap();
let line2: String = row.get(1).unwrap();
Ok(TLE { line1 , line2 })

},)
}).await.context("Failed get TLE")?;

Ok(res)
}

8rusqlite GitHub repository: https://github.com/rusqlite/rusqlite.
9tokio-rusqlite Docs: https://docs.rs/tokio-rusqlite/latest/tokio_rusqlite/.

https://github.com/rusqlite/rusqlite
https://docs.rs/tokio-rusqlite/latest/tokio_rusqlite/
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3.1.2.2. Scheduling models

Scheduling is responsible for the forecasting and scheduling of satellite contacts. The
necessity of establishing a data structure capable of storing all relevant information on
such an event is reflected in the table Passes. This table should store relevant information
about each pass, including the satellite and GS involved, the timing of the communication,
and additional details like the maximum elevation of the satellite.

Two additional Database models, Ground station and Satellite, must also be defined. The
Ground station table includes fields such as localization, operating frequency range, avail-
able bandwidth, and other pertinent information. Similarly, the Satellite table stores data
on the satellite’s operating frequencies and bandwidth. This information facilitates the
identification of compatible GSs for each satellite based on their respective operational
requirements.

Figure 3.2: Scheduling Class diagram

The Class diagram shown in figure 3.2, defines how the different models will be related.
Both, Satellites and Ground station are considered independent entities, while Passes is
related to a single satellite and a GS.

Taking a closer look at the Satellite database model, the following attributes are estab-
lished:

• norad id: This field is mandatory, and corresponds to the Satellite Catalog Number.
This will be the unique identifier of the satellite, which will be used in the Passes
table to link a pass to its satellite.
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• satellite name: This field is only used as a complement to the norad id, this will
make the satellites easy to identify on the user’s platform, providing human readabil-
ity. It corresponds to the object name.

• ulfreq: The uplink frequency of the satellite is expressed in Hz, which is the fre-
quency at which the ground transmitter sends the signal to the satellite.

• dlfreq: The downlink frequency of the satellite expressed in Hz, refers to the fre-
quency at which the satellite transmits signals back to Earth for reception by the GS
antenna.

• bandwidth: The spectrum of the signal transmitted by the satellite. It serves to
identify which GSs are compatible for data transmission with the satellite, together
with the ulfreq and dlfreq.

• tle1: Corresponds to the Line1 of the TLE, which contains essential information
about the satellite, including its identification number, classification, and orbital infor-
mation.

• tle2: Like the previous field, this corresponds to Line 2 of the TLE. It provides de-
tailed orbital information about the satellite, such as the satellite’s inclination, right
ascension of the ascending node, and other information (see Chapter 1.2.3.2.).

• tle manual: A flag that indicates whether the origin of the TLE is of manual origin or
has been obtained from the Celestrack API.

• datetime: Refers to the DateTime in a TLE, that indicates the specific moment in
time at which the orbital elements are valid or applicable.

• update time: This field, unlike the previous one, provides the date and time at which
the TLE data was obtained. It is important to update the TLE used to calculate the
satellite’s orbits since it has a limited validity period due to the dynamic nature of
orbital motion and the influence of many factors. To achieve precise calculations
and predictions, a more up-to-date set of orbital elements is required [2].

Also, for the Ground station, following attributes are defined:

• gs id: A unique identifier for the GS. This will later be used in the Passes table to
link the pass to its GS.

• gs name: Indicates the name of the GS that should be displayed on the user’s
platform.

• gs location: This field contains the coordinates of the antenna, which are used
to calculate the look angles. The latitude, longitude, and altitude are stored in a
serialized object.

struct Coords {
latitude: f64,
longitude: f64,
altitude: f64,

}
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• ulfreq max: This field corresponds to the maximum operating frequency of the up-
link. Together with the minimum frequency, it determines the range of operability of
the GS.

• ulfreq min: As before, this field corresponds to the minimum frequency that a signal
can transmit in the case of the uplink.

• dlfreq max: This field indicates the maximum frequency at which a signal can be
received by the GS in the downlink.

• dlfreq min: This field represents the minimum frequency at which a signal can be
received by the GS antenna in the case of the downlink.

• bandwidth: The bandwidth of the GS determines the maximum amplitude of the
signal that can be sent or received.

• operative: A flag that indicates whether the GS is operative or not. Regardless, this
does not affect when a pass is scheduled; it will only be checked when starting a
flowgraph execution.

Finally, the Passes model contains the following elements:

• pass id: Unique identifier of the pass.

• satellite: A foreign key that connects a pass to the corresponding satellite, refers to
the NORAD ID of the satellite.

• ground station: A foreign key that connects a pass to the scheduled GS.

• start time: The date and time when the preparation of the pass will begin. The
edition of the flowgraph corresponding to the satellite will be blocked and the first
block will begin the execution of the AOS block, aiming to obtain the most precise
start of contact with the satellite.

• end time: The date and time at which the pass is considered complete, this indi-
cates that the GS is available for starting a communication with another satellite.

• acquisition of signal: It refers to the moment when the communication between
the satellite and the GS begins.

• loss of signal: It refers to the moment when satellite communication is expected to
be interrupted due to the orbital trajectory.

• max elevation: This field refers to the highest point in the sky that the satellite will
reach, this will help to determine the visibility and signal strength of the satellite at
the given pass.
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3.1.2.3. Flowgraph-based TT&C models

The operations software has two basic functionalities, on the one hand, it must provide
support for editing and visualizing flowgraphs, as well as all the specific information of
each block for its complete and correct execution during communication with the satellite.

In this way, the Flowgraph entity must group all the block instances that form it, let’s call
them Block instance. These instances are unique to each flowgraph, but their operation is
common to other blocks, therefore, they must be referenced to a specific Block definition.
Each instance can also have additional fields and variables beyond what would be the
basic block, called Block params. To generate the chain of commands, the blocks must be
able to be related to each other, this entity will be a Connection.

Figure 3.3: Flowgraph-based TT&C Class diagram

The Class diagram of figure 3.3 summarizes all the relationships that will be mentioned
in this section. It is important to note that Block definition is an entity related to a specific
satellite, and can be presented in multiple flowgraphs since a satellite can have different
designs depending on the modes of operation. However, an Block instance is restricted to
a flowgraph.

From the requirements, the following attributes are defined for Flowgraph:

• id: A mandatory unique identifier used to relate the blocks and connections with the
corresponding flowgraph.

• name: This field refers to the name of the flowgraph in question, which allows differ-
entiating the different designs of the same satellite.

• norad id: This field indicates to which satellite this design belongs, in such a way
that it allows to identify of the specific blocks and commands that can be configured.

• last edit: Indicates when the last accepted update was made.
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• mode: This field indicates which configuration mode has been assigned to this flow-
graph, and stores all the additional information for the correct identification of the
passes that must execute this flowgraph. This information is input via a serialized
enum. Each of the different modes was discussed in the previous chapters (see
Chapter 2.2.2.).

enum FlowgraphMode {
Default,
GS(i32),
Time((i32, NaiveTime, NaiveTime)),
Pass(Vec<i32>),

}

As mentioned before, all the blocks that can be used for the design of a flowgraph are pre-
viously defined and stored on a model of type Block definition. This one has the following
attributes:

• id: A unique identifier to link an instance with the corresponding block definition.

• block type: A field that serves both utilities, one to identify the type of widget that
must be displayed on the user’s platform, and used to identify the code to implemen-
tation during the execution of the desired block.

• norad id: The blocks that are supported for all satellites, this field is set to zero.
Other than that, some commands are unique to each satellite. That is the case
of Send Command and Send File Command, which will use NORAD to identify to
which satellite they belong.

• name: This field corresponds to the name that must display the operation platform.

• command id: As mentioned before, in the norad id field, some blocks had a com-
mand, so this will store the corresponding id to set while the command is generated.

Furthermore, when a block is configured on a flowgraph, it will be an instance of a Block
definition database model. This instance will be called as Block instance, and has the
following attributes:

• id: A unique identifier to match the instance with its parameters and connections.

• flowgraph id: A foreign key that links the instance to the flowgraph that it belongs.

• command: This field corresponds to the name that must display in the operation
platform and is the same as the name field of Block definition at which corresponds.

• block definition: Link to the block difinition.

• timeout time: Defines the maximum time limit within which a response or comple-
tion of the communication process is expected to be received. This time limit serves
as a threshold for determining if a communication operation has exceeded the ac-
ceptable duration.
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• timeout rep: Specifies the number of attempts that will be made in the event of a
timeout occurrence during the communication process. When a timeout happens
and no response is received within the expected time, the block can be programmed
to retry the operation multiple times before considering it as a failure.

• output type: This field indicates the mechanisms and conditions that will be used
to determine the output of the block.

• position x: This field specifies the position of the x-axis on which the block must be
displayed.

• position y: As before, this field corresponds to the position of the y-axis on which
the block must be positioned.

As a complement to the Block instance, the Block params, is in charge of saving all that
complementary information as:

• instance id: Identify the instance to which it belongs.

• params: A flexible field that accommodates data storage for various data structures
in a serialized format. It serves as a container for different types of information,
required for the blocks. For instance, in the case of the Send file command, would
include fields like filename and data, while the Send bytes command would utilize
this field to store the raw bytes of the content of the packet to be sent by the block.

Lastly, Connection is the entity that allows us to define the order and relationships between
blocks, and has the following attributes:

• flowgraph id: This field might seem redundant since the connections are made
from the instances, which are unique for each flowgraph. However, this reference to
the flowgraph increases the search efficiency, making it faster and easier to find a
connection between blocks.

• origin id: A foreign key that identifies the parent block of the connection.

• output: This field is only used in the operator platform when displaying the design
and indicates the name of the output pin.

• destination id: A foreign key that identifies the child block of the connection.

• input: This field is only used in the operator platform when displaying the design
and indicates the name of the input pin.

3.1.3. Interfaces

Given the nature of the software, a distributed client-server ecosystem, it is crucial to
establish well-defined interfaces to ensure effective, fluid, and efficient intercommunication
between the various components. The selection of appropriate messaging protocols for
each scenario has been influenced by their ability to meet specific requirements such as
real-time communication, scalability, reliability, and security.
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The software has incorporated three different messaging protocols: Representational State
Transfer (REST) API, WebSockets, and ZeroMQ. Each protocol serves a distinct purpose
and offers unique advantages in facilitating communication between the server and the
edge components.

3.1.3.1. RESTful API

REST API is an architectural style for building distributed systems. It provides a set of
well-defined endpoints that can be accessed by edge components through standard Hy-
pertext Transfer Protocol (HTTP) methods. These methods request standard functions like
creating, reading, updating, and deleting records (also known as CRUD) within a resource.

The choice of this protocol is based on its uniform interface and independence between
the client and server. REST APIs allow all requests to have the same format regardless
of their origin, and clients only need to know the Uniform Resource Identifier (URI) of the
requested resource. This makes the APIs platform-independent and easily consumable
by clients running on different platforms. Additionally, REST APIs are stateless, meaning
the server does not store any client-specific information between requests. This simplifies
server-side management and enables better scalability[3].

Thus, the API interface will be used for all communications that require sending, receiving,
or manipulating information without direct user interaction. By utilizing the API interface, an
efficient and standardized mechanism is established for exchanging information between
the user platform and the server.

3.1.3.2. WebSocket

WebSocket is a protocol that allows a persistent Transmission Control Protocol (TPC) con-
nection, this means that a full-duplex connection is established allowing real-time commu-
nication between the server and the user. Unlike REST API, where the client is responsible
for initiating requests to receive data updates, WebSocket allows the server to push up-
dates to connected clients instantly[4]. This behavior is shown in figure 3.4.

This bi-directional connection makes WebSocket more suitable for scenarios that require
continuous and cooperative communication, such as real-time execution and editing of
flowgraphs. One notable advantage is the ability to collaboratively design and configure
flowgraphs, allowing multiple users to work together and instantly verification of the design
changes by the server.

For both the REST API and WebSockets interface, Axum10 has been chosen as the frame-
work. Axum is a web application framework known for its emphasis on ergonomics and
modularity and it is specifically designed to leverage the capabilities of the Tokio ecosys-
tem.

Axum offers an intuitive API that simplifies the process of defining routes, handling HTTP
requests and responses, and implementing middleware. The modularity of Axum allows
for flexibility in building and organizing web applications, making it suitable for projects of
various sizes and complexities.

10Axum GitHub repository: https://github.com/tokio-rs/axum.

https://github.com/tokio-rs/axum
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(a) HTTP protocol (b) WebSocket protocol

Figure 3.4: HTTP vs WebSocket.

3.1.3.3. ZeroMQ

ZeroMQ11 is a high-performance asynchronous messaging library aimed at use in dis-
tributed systems. Unlike conventional sockets, that present a synchronous interface to
either connection-oriented reliable byte streams, ZeroMQ sockets present an abstraction
of an asynchronous message queue, with the exact queueing semantics depending on
the socket type in use. This provides a lightweight and flexible infrastructure for building
scalable and reliable messaging patterns [5].

ZeroMQ has been chosen as the communication framework for the interactions between
the Operation center and the GS. This decision is based on its ability to provide high
throughput, low latency, and fault tolerance, ensuring efficient and reliable data exchange
between the two endpoints.

In Rust, the crate that provides a binding to the ZeroMQ library is zmq12. It offers a high-
level API for creating sockets, sending and receiving messages, and implementing various
communication patterns such as publish-subscribe, and push-pull, which are the ones that
are going to be used in this project.

3.1.3.4. Cap’n Proto

In addition to the aforementioned messaging protocols, it is crucial to establish the for-
mat in which data will be exchanged between different components of the system. Cap’n
Proto is a serialization protocol that has been chosen as the data format for its efficiency,
compactness, and schema evolution capabilities.

Cap’n Proto provides a binary representation for serialized and deserialized data struc-
tures. One advantage is its code generation tool, which automatically generates code
in various programming languages based on a defined schema. This capability not only

11ZMQ official webpage: https://zeromq.org/.
12Rust ZMQ Crate documentation: https://docs.rs/zmq/latest/zmq/.

https://zeromq.org/
https://docs.rs/zmq/latest/zmq/
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saves development time but also allows for the seamless production and consumption of
structured data without the need for manual implementation of serialization and deseri-
alization logic. As a result, it simplifies the creation, manipulation, and access of values
defined in the schema, making the process easier and more efficient.

However, the advantages of Cap’n Proto go much further. One notable feature that it offers
is random access, which allows reading just one field of a message without parsing the
entire data structure, also it supports zero-copy data transfer, which improves performance
and reduces memory consumption. It also checks the structural integrity of the message
just like any other serialization protocol would [1].

For Rust, the capnp13 library contains the necessary facilities for reading and writing Cap’n
Proto messages. Additionally, the capnpc tool enables the compilation of the data struc-
tures, generating Rust code that can be used in the project. Considering the need to share
the models between the backend and the frontend, a library has been created to contain
these models. This approach enables more efficient and practical utilization of the models
in both projects, reducing redundant code and enhancing code reuse.

3.1.4. Date and time format

Date and time formats play a critical role in ensuring consistency and interoperability
between systems. Inconsistencies in date and time representations can result in soft-
ware malfunctions, incorrect calculations of satellite orbits, operator confusion, and loss of
passes. To mitigate these issues, the RFC 3339 standard format has been chosen as the
reference for handling date and time information.

RFC 3339: YYYY-MM-DDTHH:MM:SSZ

In this way, all dates processed on the server adhere to the Coordinated Universal Time
(UTC) zone, providing a common reference point for data consistency. Additionally, this
standardization also enables smooth operations with dates in the database. To avoid con-
fusion in the user interface, dates will be displayed in their respective local time zones.
However, it’s important to note that before sending requests to the server, these dates
must be properly parsed and converted to UTC to maintain consistency and accuracy.

3.1.5. Accesibility

The accessibility of the system has been implemented to ensure secure and controlled
access, following the access levels defined by the requirements. To achieve this, a combi-
nation of Lightweight Directory Access Protocol (LDAP) for authentication and JSON Web
Tokens (JWT) for authorization has been employed.

LDAP serves as the authentication mechanism, allowing users to verify their identities by
validating their credentials against a centralized directory. This directory securely stores
user information such as usernames and passwords. When a user attempts to login, their
credentials are compared against the LDAP directory to authenticate their identity.

Once a user is authenticated, JWT comes into play for authorization purposes. When a
successful authentication, the user is issued with a JWT token, which contains encrypted

13Cap’n Proto Github repository: https://github.com/capnproto/capnproto-rust.

https://github.com/capnproto/capnproto-rust
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information about their identity and role. This token is introduced on the header of the
subsequent requests, so the server can validate the JWT token to ensure that the user
has the necessary permissions and access rights to perform the requested actions.

By combining LDAP for authentication and JWT for authorization, the system establishes
a robust and secure access control mechanism. LDAP ensures that only authenticated
users with valid credentials can have access to the software, while JWT guaranty access
based on the user’s role and permissions encoded in the token.

3.2. Software structure

The software is structured into two main modules: the server module and the GUI module.
The server module is responsible for handling server-side logic and it is the core of the
project. While the GUI module focuses on presenting a user-friendly interface and handling
user interactions.

The server software, named operations, contains both the Scheduling and the Flowgraph-
based TT&C backends:

• operations

– src: This folder holds all the files of the main program.

– api: In this folder, the HTTP routes for the different services are defined,
including the authentication mechanisms, along with various methods nec-
essary for their proper functioning.

– pass scheduling: This folder contains the implementation of the HTTP
routes, database queries, and methods related to the Scheduling service.

– flowgraph: This folder contains the necessary files for flowgraph editing
and visualization. It includes HTTP routes, database queries, and threads
for managing WebSockets used in editing and executing flowgraphs.

– execution: This folder contains the code for the Execution Manager, Util-
ity, and Background blocks, along with a subfolder that contains the code
for the Mission blocks of each satellite mission to be operated. Addition-
ally, the code for the different missions is organized into separate folders,
each containing the necessary functions adapted to the specific charac-
teristics, protocols, and requirements of each satellite.

∗ main.rs: This file contains the code responsible for initializing the differ-
ent services offered by the program. It includes the initialization of the
database connection, starting the server, and the execution manager.

∗ lib.rs: This file defines several modules that encapsulate different function-
alities of the software.

– tests: In this folder, all the tests are grouped together, including unit tests,
integration tests, and any other tests related to the software.

∗ gs conf.toml : This configuration file defines the endpoints of the interfaces for
the differents GSs.

∗ Cargo.toml : Configuration file that specifies various aspects of the package,
including its name, version, dependencies, build settings, etc.
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The frontend module, named operations egui, has the following structure:

• operations egui

– api: This folder contains a library that implements all the API endpoints. It is
used for the frontend to request information from the server and interact with it.

– frontend: This folder contain the code of the GUI.

– assets: This folder contains the static assets such as images and js files
used in the frontend.

– src: This folder contains the frontend source code.

– componets: This folder contains reusable User Interface (UI) com-
ponents that are used throughout the application. It also includes the
different pages and views of the application, providing the necessary
components for rendering and displaying the user interface.

∗ main.rs: It is the main entry point of the frontend application.

∗ lib.rs: This file is responsible for managing the views and pages to be
displayed.

∗ app.rs: This file handles the application’s state and manages the re-
sponses received from the server.

∗ utils.rs: This file contains styles, visuals, color palettes, and themes
used in the application.

∗ index.html : Is the main HyperText Markup Language (HTML) file that
serves as the entry point for the frontend application, when it is compiled
for web application.

∗ Cargo.toml : The manifest file specifying dependencies and build configu-
rations.

∗ Cargo.toml : The manifest file for the frontend module.

In addition to these modules, there is an auxiliary library is used to share functionalities,
utilities, and resources between the server and GUI modules. It includes models built with
Cap’n Proto for communication between the server and user interfaces, as well as func-
tions for DateTime format conversions. This approach simplifies development, reduces
code duplication, and ensures consistency throughout the software, as these functions
are used in various parts of both modules.

The library named schemas has the following file structure:

• schemas

– models: This folder holds all the Cap’n Proto models used in the program.

∗ auth.capnp: This file contains the bodies of the messages exchanged dur-
ing the login process.

∗ configure flowgraph.capnp: This file contains the request bodies used
during the message exchanges in the WebSocket for configuring the flow-
graphs.
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∗ execute flowgraph.capnp: This file contains the request bodies used in
the WebSocket for executing the flowgraphs.

∗ ground station.capnp: This file contains the models related to the GS re-
quests.

∗ satellite.capnp: This file contains the models related to the satellite re-
quests.

∗ schedule.capnp: This file contains the models used for the Scheduling
API.

– src: contains the autogenerated code for the models defined in the Cap’n Proto
files, as well as the ”lib” file.

∗ lib.rs: This file serves as an entry point for utilizing the Cap’n Proto models
and includes the necessary import statements to make these modules ac-
cessible within the project. Additionally, it provides a collection of methods
that simplify datetime manipulation tasks. These methods handle opera-
tions such as converting datetimes between UTC and local time, parsing
datetime strings into objects, and formatting datetimes into desired string
representations.

∗ auth capnp.rs

∗ configure flowgraph capnp.rs

∗ execute flowgraph capnp.rs

∗ ground station capnp.rs

∗ satellite capnp.rs

∗ schedule capnp.rs

∗ build.rs: Script executed during the build process. Responsible for compiling
the Cap’n Proto files located in the ”models” folders and generating the cor-
responding Rust code in the ”src” folder.

∗ Cargo.toml : The manifest file for the Rust package.

3.2.1. API Implementation

One of the primary threads within the server is the API thread, which has been imple-
mented using the Axum framework. The API thread acts as the entry point for client
requests, processing incoming HTTP requests and generating appropriate responses.
It handles routing, ensuring that each request is directed to the corresponding endpoint
based on the defined routes. The endpoints are responsible for executing the necessary
logic to fulfill the client’s request and generate the desired response. The following routes
had been defined:

• /auth: This route handles the authentication, it contains the endpoint to perform the
login and consequently obtain an authentication token.

• /schedule: This route is responsible for managing the scheduling of satellite mis-
sions and tasks. It provides endpoints to do all the operations related to the satellites,
GS, and schedule passes.
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• /flowgraph: This route is responsible for handling operations related to the flow-
graph configurations. It provides various endpoints to facilitate the management of
flowgraph-related tasks within the TT&C software.

• /ws/configuration/flowgraph id: This route provides WebSocket endpoints
for real-time configuration of the flowgraph identified by the parameter.

• /ws/execution/norad id: Similar to the previous route, this route provides Web-
Socket endpoints for interacting with the execution of a specific satellite identified by
its NORAD ID.

A more detailed analysis of each route, method, message body, and access level can be
found in Appendix A. Most of the functions that handle operator requests involve reading or
writing data from the database. However, some functions have more complex functionality,
such as pass prediction, upload mission blocks, and the functionality of the WebSocket.
The following sections will provide more detailed explanations of these functionalities.

3.2.1.1. Pass schedule

In Section 2.1.3.1., the different options available for predicting passes were discussed,
including One pass, Multiple passes, Multiple passes from a specific date, All passes until a
specific date, and All passes within a time interval. When making a pass prediction request
using the RequestPasss Cap’n Proto model, the operator needs to provide the NORAD ID
of the satellite they want to predict passes for, along with their desired prediction option.

The data required for the prediction depends on the selected option. For example, if the
operator chooses the Multiple passes from a specific date option, they would need to
provide the number of passes and the start date for the prediction. In addition to the
required data, there are also optional parameters that can be provided. One parameter
is the maximum search duration, which is only necessary when the prediction does not
have an end date, if this parameter is not provided, a default value of 48 hours is used for
the calculation. Another optional parameter is the forced save flag. When conflicts arise
between the predicted passes and the saved passes, the default behavior is to not save
the predicted passes. However, if the forced save flag is set, only the passes that do not
have conflicts will be saved.

Once the request is received by the server, and as long as the operator has a valid token
with the role of Satellite Operator, the server performs several steps. First, it queries the
database to retrieve the TLE data of the satellite. If the satellite exists in the database, the
server proceeds to determine the compatible GS and obtains its coordinates.

Using the TLE data, the server employs the Rust library called sgp414 to retrieve the
Keplerian elements of the satellite’s orbit, as described in Section 1.2.3.2.. It then utilizes
the SGP4 model to propagate the orbit, enabling accurate predictions of the satellite’s
position and velocity over time.

Based on the specified start time provided in the request body or using the current time,
depending on the chosen option, the orbital elements of the satellite are propagated to that
specific moment in time. By propagating the orbital elements, the position and velocity of
the satellite are calculated in the ECI coordinate system.

14SGP4 Docs: https://docs.rs/sgp4/latest/sgp4/.

https://docs.rs/sgp4/latest/sgp4/
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To determine if the satellite is visible from the GS at that particular moment, the process
described in Section 1.2.3.3. is executed. Initially, a conversion from ECI to ECEF coor-
dinates takes place. This conversion takes into account the rotation of the Earth and its
orientation in space. Once the satellite’s position is in the ECEF coordinate system, fur-
ther conversion is carried out to obtain the Look Angles. Look Angles coordinates provide
the azimuth (horizontal angle), elevation (vertical angle), and slant range (distance) of the
satellite relative to the GS, enabling the determination of whether the satellite is within the
line-of-sight of the GS’s antenna.

This process is continued iterated by incrementing the propagation time in one-second
intervals until the satellite’s elevation angle with respect to the GS becomes positive. At
this moment, it is considered that the satellite is in line-of-sight of the GS. The next step
is to identify when the satellite will no longer be visible. This occurs when the elevation
angle becomes negative. The objective is to determine the specific window of time during
which communication with the satellite can take place. This process of predicting visibility
and communication windows is repeated until reaching either the specified end time or the
requested number of passes.

Once all the passes have been computed, the next step is to check if any of them conflict
with the already stored passes. If no conflict is found, the predicted passes will be stored
in the database. However, if a conflict occurs, the passes will only be saved if the force
save flag has been requested. In this case, only the passes that do not have any conflicts
will be saved.

After completing this process, a response containing all the resulting passes is sent back
to the operator. This response provides the operator with a list of all the predicted passes
and the conflicts found if any.

3.2.1.2. Upload Mission Blocks

The program has been designed to be as modular and adaptable as possible in order to
operate different satellites with minimal, simple, and fast configuration. In some cases,
as mentioned before, it is not always possible to achieve complete modularity because
certain satellites require the use of specific protocols for their communications. Therefore,
new code must be added to support those satellites. However, in other cases, the code for
mission blocks can be used for multiple satellites. The only difference between operating
with one satellite or another will be the commands to be sent, as the packet structure and
communication protocols are common among these satellites. That’s why it is necessary to
be able to upload files with the appropriate configuration. These files are in Tom’s Obvious,
Minimal Language (TOML)15 format, tailored to each satellite, and they specify the names
and identifiers of the commands and other specifications for their proper functioning.

In the following example, a fragment of the TOML configuration file for mission blocks is
shown for the 3Cat4 satellite. This file is sent in the request body along with the NORAD
ID to specify the desired configuration. The first line specifies that the configuration to be
executed for this satellite is the one classified as CubeCat4, and it includes the protocols
and message formats required for executing its flowgraph. The subsequent lines define
the names and identifiers of the commands, indicating whether they are send command or
send file command types. Additionally, the option field can be used to specify any special

15TOML official website: https://toml.io/en/

https://toml.io/en/
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execution requirements for a block. For instance, the ”UPDATE TIME” block should include
the timestamp of the last packet received by the satellite and the actual timestamp of the
GS as the message content. This special behavior is indicated by assigning a number
to the option field specifying the processes to be followed in this special case. These
processes are defined for each different configuration.

[CubeCat4]

[[CubeCat4.send_command]]
name = "HELLO"
id = 0

[[CubeCat4.send_command]]
name = "UPDATE_TIME"
id = 1
option = 0

[[CubeCat4.send_file_command]]
name = "MANAGER_SET_CONF"
id = 12

3.2.1.3. Configuration WebSocket

The main objective of the configuration WebSocket is to facilitate real-time control of up-
dates and configurations made by the operator on a specific flowgraph. Simultaneously,
these changes are reflected in the graphical interfaces of other operators who are also edit-
ing the same flowgraph. This serves as a central hub for managing configuration updates,
the server allows immediate visibility and synchronization, empowering users to work in
collaboration and coordination for the configuration of the flowgraph.

The server-side implementation of WebSockets establishes and maintains a continuous
connection by dedicating a separate thread to each user. Each thread is further divided
into two parts: one exclusively for sending messages and the other for receiving user
requests. These tasks are executed independently.

When a user sends a request, it is received by the receiving thread, which processes
the request and performs the necessary tasks. The result of these actions needs to be
transmitted not only to the thread responsible for transmission but also to all users who
want to receive updates on the flowgraph. To facilitate this, a communication channel is
established to enable the notification of changes to all interested parties. To achieve this
multi-producer, multi-consumer communication, a broadcast channel is used.

This channel is created when the server starts and is stored in the program’s state to be
accessible by all clients. Since the channel is common to all clients, every message carries
an identifier indicating the corresponding flowgraph to which the message applies. This al-
lows the transmission thread to filter the messages and send only the relevant information
to each client. The broadcast of changes allows for immediate visibility and synchroniza-
tion, empowering users to work together efficiently on the flowgraph. The server’s role in
facilitating real-time communication and dissemination of configuration updates enhances
the overall editing experience and ensures consistency across all connected clients.
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Figure 3.5: (1) The operator sends an update. (2) The server checks and stores the
information. (3) The update is sent to the transmission thread. (4) The updates are sent to
the operators.

The actions that can be performed using this functionality can be grouped into different
categories based on their objectives:

• Load data: This group includes two messages, the Load Flowgraph and Mission
Blocks. These messages are sent directly from the server to the client once the
WebSocket connection has been established, providing the necessary information
for the client to start working with the flowgraph. The Load Flowgraph contains all the
necessary information to load and display in the client interface the saved configu-
ration of the flowgraph. It includes details such as the nodes, connections, settings,
and parameters of the flowgraph. While the Mission Blocks message contains a
collection of commands and blocks that can be configured for the satellite.

• Update configuration: This group contains all actions related to the dynamic edit-
ing of the flowgraph. It includes operations such as inserting new blocks, creating
connections between them, deleting blocks or connections, moving blocks within the
graph, configuring block commands, uploading payload content for block commands,
and setting timeouts. When the server receives a configuration update request, it
validates the provided data to ensure its correctness. Once validated and saved the
changes, the server broadcasts the modifications to all users who are interested in
the particular flowgraph. This ensures that the graphical interfaces of all connected
users reflect the updated configuration in real-time.

• Configure flowgraph modes: This group contains actions related to the configu-
ration of the modes of execution of the flowgraph mentioned in Section 2.2.2., such
as adding a new flowgraph to the satellite’s configuration, deleting an existing flow-
graph, or updating an existing flowgraph.

• Control: This group comprises a single message known as Block edition. This
message is specifically intended to block the edition of the flowgraphs when com-
munication with the satellite is initiated. This message prevents any errors that may
occur due to parameter modifications during execution. Also, this message aware
the operators of the imminent start of satellite communication so that they can make
the necessary preparations for it.
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3.2.1.4. Execution WebSocket

For the Execution WebSocket, the functionality becomes more complex. In the previous
scenario, the operator would send a message, it would be processed, the changes would
be saved in the database, and all interested users would be notified. However, in this case,
the actions performed have direct implications for the execution flow of satellite communi-
cation.

The main objective of this WebSocket is to enable real-time monitoring of the processes
occurring during satellite communication. This allows the operator to actively control and
interact with the execution while simultaneously visualizing the ongoing processes on their
graphical interface. Therefore, in this case, it is not the reception thread of the WebSocket
that is responsible for notifying other interested operators. Instead, it is the thread execut-
ing the satellite’s flowgraph that processes the requests and generates the messages to
be sent by the transmission threads of the WebSockets.

The messages that can be sent through this WebSocket can be classified into the following
groups:

• Load data: This group includes messages that facilitate loading the graphical rep-
resentation of the flowgraph onto the operator’s interface. It consists of the Load
Flowgraph message, which contains all the blocks, connections, and configurations,
and the Info Time message, providing information about the timing of AOS and LOS
events. These messages are sent by the server once the communication is estab-
lished.

• Events: This group comprises messages that are sent by the server when an event
occurs, which should be displayed on the operator’s interface to keep them informed
about the ongoing processes. The messages in this group include Start Block, End
Block, Send Log, and Download File. The Download File message is sent when
a new file is generated as a result of an execution event, like the reception of a
scientific experiment result, and the operator can download it for further analysis.

• Execution control: These messages allow interaction and control over the ongo-
ing execution. The Req Manual Next Block message is sent by the server when
a block completes its execution, and there are multiple connected blocks on one
of its output pins. In response, the operator needs to provide a Res Manual Next
Block message indicating which configured block should be executed next. Addi-
tionally, some messages enable stopping the automatic execution of the flowgraph
and switching to manual mode. The Manual Execution message is used to transition
between automatic and manual modes, while Manual Block creates a block to be
executed manually, and Delete Manual Block removes a block from the waiting list.
Finally, the Finish message indicates the end of the execution, triggered either by
the operator’s request or the occurrence of the LOS event.

3.2.2. TLE automatic update Implementation

There is a second thread in the server’s execution responsible for updating the TLE of the
satellite at regular intervals over 48 hours. To accomplish this, the server check which
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satellites have the automatic update flag enabled. For each of these satellites, a request
is made to the Celestrak API16 to retrieve the updated TLE data. Regular TLE updates
ensure an up-to-date view of the satellite’s orbit and guarantee that the prediction of the
passes, the tracking of the satellites, and communication operations will be performed with
the most accurate information available.

The query to obtain the TLE information from Celestrak is the following, by replacing the
{norad id} placeholder with the correct five-digit NORAD ID of the satellite [25].

https://celestrak.org/NORAD/elements/gp.php?CATNR={norad id}&FORMAT=TLE
The response of Celestrak’s API includes on Line 0 the name of the satellite, while Lines
1 and 2 contain the first and second lines of the TLE data, respectively.

3.2.3. Execution Manager Implementation

The thread containing the Execution Manager can be considered the software’s core, as it
houses the most critical components of its logic. It is responsible for overseeing and man-
aging the execution of satellite flowgraphs. Based on the information inputted by operators
through the API and the scheduled communications, the Execution Manager takes charge
of resource allocation and task planning. This involves coordinating the efficient utilization
of execution threads dedicated to each satellite, optimizing the distribution and allocation
of resources, and ensuring that there are no conflicts or blocks in the concurrent execution
of flowgraphs.

At the program’s start, the Execution Manager queries the OpCen database for scheduled
passes of the satellites, selecting the one that will occur earlier. Based on this information,
it generates a thread for each satellite, which remains in a waiting state until the communi-
cation starts time. Additionally, it listens for notifications whenever there are modifications
to the pass schedule, ensuring that there is always a thread prepared to execute the com-
munication for the next upcoming pass of each satellite. Simultaneously, it informs the
operators about the satellites that are being executed and provides them with the chan-
nels through which they can monitor and interact with the execution process.

The satellite thread operates by waiting until the execution start time is reached, which is
configured to be three minutes before the satellite enters line-of-sight. This three-minute
window takes into consideration the operator’s preparation time and the antenna alignment
process, as this duration allows the operator to adequately prepare for the execution, and
additionally, it provides sufficient time for the GS antenna to align it with the satellite’s
position and ensuring an optimal line-of-sight connection, according to the procedures
explained in Section 1.2.3.3..

The first step is to inform the Execution Manager that the satellite communication is about
to take place so that it can notify the operators and lock the flowgraph configuration for that
satellite. Simultaneously, the flowgraph to be executed is selected, taking into account the
configured modes and preferences specified in the requirements (see Section 2.2.2.).

Along with selecting the flowgraph, the AOS block is obtained, serving as the initial point
for executing the mission blocks and establishing the chain of connections. In the case
that the satellite does not have any configured flowgraph, the same procedure is followed

16Celestrak webpage: https://celestrak.org/

https://celestrak.org/
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anyway. Obtaining the coordinates of the assigned GS for the pass and the satellite’s
TLE from the database, the Tracking Block calculates the required antenna movements.
It generates a file that includes timestamps, azimuth angles, and elevation angles, which
serve as guidance for aligning the antenna with the satellite, and this file is transmitted to
the GS using a ZMQ socket.

At this point, two scenarios can occur. If the satellite doesn’t have any configured flow-
graph, the AOS block is executed followed by the LOS block. Once these are completed,
the Execution Manager is informed to proceed. This ensures the reservation of necessary
resources for satellite communication from another software.

In the case where the satellite has a configured flowgraph and communication is to be
carried out from this software, four threads are initialized. Firstly, the main execution thread
is responsible for executing the different mission blocks. Secondly, the ZMQ interface
thread establishes a connection with the GS, enabling the sending and receiving of packets
to and from the satellite. The backup thread collects all events and execution details to
generate files for later analysis. It also stores past events so that operators viewing the
execution in real-time can access previous occurrences. Lastly, the LOS trigger thread
executes the LOS block, which starts once the AOS event occurs.

Figure 3.6: Satellite thread task flow.
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3.2.3.1. Main execution

This thread is responsible for sending commands to the satellite based on the operator’s
configuration and processing incoming packets from the satellite. The procedures to be
followed depend on the specific satellite being executed. These procedures are predefined
during the satellite configuration and rely on the appropriate structure and protocols for
successful communication with the satellite.

Figure 3.7: Main execution thread task flow.

The first task of this thread is to execute the AOS block. Using the satellite’s TLE data
and the GS’s coordinates, it determines the exact moment when the satellite becomes
visible, which means the start of the communication. Once this event occurs, a notification
is sent to the thread responsible for executing the LOS block, signaling that it can initiate
its execution. This thread takes charge of monitoring the satellite’s visibility window from
the GS and accurately determines when the satellite moves out of range.

Simultaneously, the database is consulted to determithe ne the next block to be executed.
There are three possible scenarios: no blocks are configured for continuous execution,
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resulting in manual satellite operation; a single block is configured, allowing for automatic
execution of the flowgraph; or multiple blocks are configured, requiring the operator to
select the block to proceed with execution.

In the case of multiple configured blocks, the thread waits for operator commands spec-
ifying which block should be executed. While waiting, other events can occur, such as
receiving a packet from the satellite, the LOS event, or the operator deciding to finish the
execution or switch to manual mode. If a packet is received, it needs to be decoded before
resuming the waiting state. Furthermore, the occurrence of the LOS event or the finish
event indicates the end of the communication process.

Once the command specifying the block to be executed is received, it is validated to ensure
that it is one of the eligible candidates. The execution process then proceeds as if only a
single block were configured. Before executing the block, a check is performed to ensure
that no LOS, Finish, or Change to Manual Mode events have occurred, and that there are
no pending messages that need to be processed. After these verifications, the selected
mission block is executed.

Depending on the output generated by the block (success, failure, or timeout), the corre-
sponding output pin is selected, and the process repeats by consulting the database for
the next block.

Figure 3.8: Mission Block task flow.

When executing a mission block, it is crucial to handle the telecommand transmission
effectively. In the event of not receiving a response from the satellite, whether due to a
lost packet or any other communication issue, the telecommand should be resent based
on the operator’s configuration. This configuration includes the number of retry attempts
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and the time interval to wait for a response. If no response is received within the specified
attempts and time interval, the execution of the block is considered failed.

Additionally, some checks are performed to verify that the communication has not been
terminated due to LOS or Finish events, as these events indicate the end of communica-
tion and signal the need to quit further execution or switch to Manual Mode. Furthermore,
it is required to decode all messages sent by the satellite until a response to the sent
command is received. This decoding process ensures that the received data is properly
interpreted and processed, enabling appropriate actions to be taken based on the infor-
mation received.

To handle these tasks, one thread is dedicated to managing timeouts and command re-
tries, while another thread handles the reception of ongoing events.

At the end of the mission block execution, three possible scenarios can occur: success, if
the satellite’s response matches the expected outcome; fail, if the response does not meet
the expected criteria; and timeout, if no response is received within the specified attempts
and time interval.

When the main thread transitions to manual execution, it starts executing mission blocks
at the operator’s request. These blocks are configured during the ongoing communication.
Operator requests are stored in a queue and executed in the order they are received. To
facilitate this process, a dedicated thread is assigned for creating and sending telecom-
mands, similar to the automatic execution of mission blocks. While another thread is re-
sponsible for receiving events.

Figure 3.9: Manual Mode task flow.
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After each mission block is completed, the next block in the queue is executed until either
automatic execution is restored or communication is terminated. The communication can
be terminated either by the operator or when the satellite is no longer visible (LOS event).

3.2.3.2. ZMQ Thread

Parallel to the main thread, the ZMQ thread is dedicated to establishing and maintaining
communication with the GS. This allows the transmission of telecommands from the Op-
Cen to the antenna for reception by the satellite, and vice versa. The ZMQ interfaces are
configured with a PUSH-PULL pattern, with the server located on the GS side. This inter-
face type accepts only a single client and server on each side of the channel. Therefore,
it is crucial to occupy the channel only during satellite communication and keep it free the
rest of the time for other purposes. Hence, the connection is established and closed at the
beginning and end of the flowgraph execution.

Since ZMQ PUSH-PULL interfaces are unidirectional, a channel is set up for sending
telecommands from OpCen to the GS and another channel for receiving telemetry from
the GS to OpCen. Each channel operates on a different port. Since the transmission of
these messages is independent of each other, separate threads are dedicated to perform
both tasks.

The thread is responsible for receiving telemetry waits to receive packets sent by the GS.
Its function is simple: receiving a packet of bytes and notifying the main thread to decode
it based on the satellite protocols and take appropriate actions. On the other hand, the
thread responsible for sending telecommands receives packets from the main thread and
sends them to the GS. Additionally, it remains alert to the completion of the flowgraph
execution to close the ZMQ connection releasing the channels for future communications.

Figure 3.10: ZMQ thread task flow.
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3.2.3.3. Backup Thread

The backup thread serves two main purposes. Firstly, it collects and records all events
that occur during the execution, allowing them to be stored and analyzed later, such as
telemetry, experiment results, or execution logs.

Secondly, the backup thread provides support to the operator when they initiate a con-
nection with the server. It informs the operator of all events that occurred before their
connection, enabling them to reproduce the events in their GUI. Additionally, the backup
thread provides the communication channel through which the operator can intervene and
interact with the flowgraph execution. This allows the operator to actively participate in the
execution process and make real-time adjustments as needed.

Figure 3.11: Backup thread task flow.

3.2.3.4. LOS Thread

In the LOS thread, the utility block responsible for handling the loss of sight events is
executed. This thread starts its execution once the AOS event occurs. When the satellite
goes out of the range of visibility, it notifies all other threads that the communication has
ended, allowing them to conclude their executions and free up the resources they were
utilizing for the next communication.
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Figure 3.12: LOS thread task flow.

3.2.4. Inter-Process communication

Throughout the explanation of the implementation, it has been mentioned that the server
consists of multiple threads to accommodate the program’s requirements, and information
exchange between them is essential for the project’s proper functioning. This necessitates
the establishment of communication channels between various software components, as
described in Section 3.1.1.1.. Two distinct types of messages can be identified: notification
messages (NotifyMsg) and execution messages (ExecutionMsg). Notification messages
serve to interact with the Execution Manager, including notifying updates on the OpCen
database, responding to operator inquiries regarding the satellite execution state, and pro-
viding notifications about the execution status of a flowgraph. On the other hand, exe-
cution messages are specifically designed to control the execution processes of specific
flowgraphs.

The NotifyMsg messages can be classified into three categories:

• Update notification: These messages are sent from the Database thread when an
operator requests a specific action through the API, which results in a modification
in the database that directly affects the satellites controlled by the Execution Man-
ager. These are NextPass, DeletePass, DeleteSatellite, and UpdateNorad and were
explained in depth in Section 2.2.3.

• Operator messages: This group includes the ReqExecuting and ResExecuting
messages, which are exchanged between the operator connected via WebSocket
and the Execution Manager. The ReqExecuting message is used to ask about the
execution status of a satellite, and the Manager responds accordingly. If the satellite
is currently executing or the execution event has started, the Manager informs all
connected users by sending a ResExecuting message.

In addition, there are the ReqChannelFG and ResChannelFG messages. Once the
operator has been notified that a satellite is executing, the operator’s WebSocket
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thread requests information about the specific flowgraph that is being executed and
the channel through which communication can be established with it. The ResChan-
nelFG message provides the operator with the requested information, allowing them
to interact with the ongoing execution.

• Execution notification: This group includes the StartExecution and FinishExecu-
tion messages. These messages are sent from the satellite execution thread to in-
form the Execution Manager about the initiation and completion of the satellite com-
munication process. The StartExecution message is sent when the communication
with the satellite begins, providing information about the selected flowgraph that will
be executed. It serves as a notification to the Execution Manager that the execution
process has started for a particular satellite. On the other hand, the FinishExecution
message is sent when the communication with the satellite is completed and con-
sequently, the Execution Manager marks the current pass as finished and initiates a
new thread for executing the next pass of the satellite.

Figure 3.13: Exchange of Update notification messages and the resulting behavior be-
tween the Database thread and the Execution Manager

In the example in Figure 3.14, the operator first queries if a specific satellite is being ex-
ecuted, and the Execution Manager responds that it is not. Then, the communication
with the satellite is initiated, and this event is notified by the Satellite thread to the Ex-
ecution Manager. The Execution Manager, in turn, informs the operator of this event.
Subsequently, the ChannelFG messages are exchanged, allowing the operator to start
monitoring the execution of the satellite task.



68 Implementation of a flowgraph-based satellite operations software for Earth Observation missions

Figure 3.14: Message exchange between the Operator WebSocket, Execution Manager,
and Satellite thread.

To facilitate communication and enable the transmission and reception of information from
various components, it should be set up as a broadcast channel. This allows multiple
threads, including those serving operators through the API and those dedicated to satel-
lites tasks, to send information to the Execution Manager. The Execution Manager can
then relay relevant information to all connected operators via WebSockets. Using a single
channel for these communications simplifies the tasks of the Execution Manager, as it only
needs to listen to the channel and respond accordingly when receiving a message.

On the other hand, ExecutionMsg can be classified into three groups. The first group
is intended for visual and monitoring purposes, allowing operators to see the ongoing
processes in their graphical interface. The second group is used to control and interact
with the execution, while the last group comprises messages sent from various satellite
task threads to inform about events that affect the normal flowgraph execution. These
messages are sent through different channels based on their origin and purpose.

• Informational messages: These messages are generated by the main thread of
the satellite. These messages include informative text to be displayed in the GUI
(LogMsg), indicating the start or end of block execution (StartBlock and EndBlock),
requesting the selection of the next block to execute (ReqNextBlock), or providing
predictions of AOS and LOS events. These messages are received by connected
operators through WebSockets and by the backup thread.

This channel is created by the Execution Manager, allowing operators to easily ac-
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quire it through message exchange of type NotifyMsg, specifically using ReqChan-
nelFG and ResChannelFG. This process is necessary because these channels are
unique to each thread and dynamically created. Initially, operators only have access
to the communication channel that enables them to communicate with the Execu-
tion Manager. Furthermore, when an operator establishes their connection with the
flowgraph execution, they send a message through the same channel to the Backup
thread (ReqExecution). In response, via a dedicated mpsc channel established be-
tween the operator and the backup thread, it transmits a list of previously received
messages and the sender endpoint, enabling interaction with the main satellite exe-
cution.

• Intervention messages: These messages influence the flowgraph execution through
operator intervention, and can be sent by different operators connected via the Web-
Socket interface. These messages are exclusively received and processed by the
main flowgraph thread. Therefore, they are sent through an mpsc channel, and
the sender information is stored in the backup thread, allowing operators to access
them when their connection is established. The operations that can be performed
through this channel include sending a ResNextBlock message in response to a Re-
qNextBlock, indicating the desired next block for execution. Also, operators can send
a ManualMode message to switch between automatic and manual execution modes,
a ManualBlock message containing the configuration of a mission block to be exe-
cuted, or a Finish message to terminate the flowgraph execution and communication
with the satellite.

• Control messages: Control messages are sent from the thread of the flowgraph.
These messages, just like informational ones, are transmitted through the same
broadcast channel. Despite sharing the channel, it doesn’t pose any issues be-
cause each endpoint will only process the messages that are relevant to them while
disregarding the rest. The control messages include ReqZMQ and ResZMQ, used
to exchange messages sent to or received from the satellite between the flowgraph
execution thread and the ZMQ interface; ResCommand, which is received when a
ZMQ message is a response to a sent telecommand; Timeout, triggered when the
mission block being executed has reached the maximum number of telecommand
resend attempts; ITelemetry or HTelemetry, received when new telemetry is obtained
from the satellite; ExperimentFile, received when the result of an experiment is ob-
tained; and finally, LOSMsg, which indicates that the satellite is no longer visible to
the GS, resulting in the termination of communication.
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Figure 3.15: Example exchange of ExecutionMsg during a flowgraph execution

3.3. Graphical User Interface (GUI)
Egui17 is a lightweight, immediate mode GUI framework for Rust that enables the creation
of native-looking user interfaces. The term ”immediate mode” refers to the fact that the GUI
is built from scratch on every frame based on the current state of the application. Therefore,
only the visible components are rendered, and interaction with them is immediate, offering
great performance and simplicity.

Additionally, Egui is designed to be cross-platform compatible, allowing developers to use
it on different devices and operating systems, such as Windows or Linux. The combination
of Rust’s strong type system and memory safety features with Egui’s design principles
leads to reliable and robust frontend development experiences [6].

Furthermore, Egui can be easily compiled into WebAssembly (WASM)18, a binary instruc-
tion format that runs with near-native performance and serves as a compilation target for
web applications. This feature enables developers to benefit from Egui’s capabilities in
web development, delivering native-like user interfaces on the web platform, that can be
run in any web browser.

Developing the application for the web has the advantage of being accessible from any
device with a web browser by simply accessing the web URL. However, in general, desktop

17Egui GitHub repository: https://github.com/emilk/egui.
18WASM official webpage: https://webassembly.org/.

https://github.com/emilk/egui
https://webassembly.org/
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applications tend to have better performance compared to those generated with WASM.
This is because the browser needs to interpret and translate the code, which can impact
performance and resource consumption.

Desktop applications can directly access system resources and take advantage of the full
power of the user’s device, including CPU, memory, and graphics processing. This direct
access often results in better performance and responsiveness compared to web-based
applications.

The answer to which option is the best for the software interface is that there is no definitive
answer. Both options offer different advantages, making them suitable for certain parts
of the project and not as ideal for others. The only difference when programming the
application for either option lies in how API calls to the server are made. In the case of
WASM, JavaScript is used for API calls, while in the desktop application, calls are made
directly from the application.

This supposes the need to adapt the way that the calls are made while the rest of the
logic and layout of the application keep the same for both options. By adding conditional
compilation tags #[cfg(not(target arch = "wasm32"))] or #[cfg(target arch =
"wasm32")] to the code, it can be specially tailored to any target architecture. This flexi-
bility in development is why the decision was made to create a graphical interface for both
options.

In this way, the web application allows the Scheduling interface to be accessed by multiple
users without the need for a standalone executable. However, for the TT&C software, it is
recommended to use the desktop application as it can provide better performance due to
the complexity of its operations.

The GUI has been designed in a way that all the information displayed in different views is
stored in the application’s state, making it accessible from any component. All responses
received from the server as a result of operator requests are centrally handled to update
the information stored in the app’s state and, consequently, update the content of the views
reactively. By centralizing response handling, the application ensures efficient and syn-
chronized updates to the app’s state, thereby reflecting real-time changes in the displayed
views.

When launching the application, the initial view presented is the login page, where the
operator can enter their credentials. In the event of incomplete or incorrect information, an
error message is displayed, ensuring operators are promptly informed. Once successful
validation of the credentials, a splash screen is displayed while the necessary information
is fetched from the server.

(a) Login View (b) SplashScreen

Figure 3.16: Login and SplashScreen Views
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After the loading process, a screen is displayed with a navigation bar at the top, providing
access to different components of the Scheduling module, such as the scheduler, satel-
lites, and GS, as well as the TT&C module.

The initial screen presents a table, as shown in Figure 3.17, that displays all the scheduled
passes. Operators can utilize the interface to program new passes and delete any passes
that are not required. Additionally, the table provides filtering options, enabling operators
to filter the passes based on specific criteria such as satellite name or NORAD ID, ground
station name, or maximum elevation by specifying a threshold.

At the bottom of the table, operators can adjust the number of items to display per page
and navigate through different pages of the table.

Figure 3.17: Programmed passes View

From the same screen, operators can program new passes by clicking on the ”New Pass”
button. This action opens a window, as shown in Figure 3.18, where operators can sched-
ule a pass with the multiple options explained in Section 2.1.3.1..

(a) One Pass (b) Multiple Passes (c) All Passes Within Time Inter-
val

(d) Multiple Passes from Date (e) All Passes Until Date (f) Date Picker

Figure 3.18: Scheduling modes
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At the same time, if the operators want to view the completed passes, they can click on
the ”Show past passes” button, and the table will display the completed passes, as shown
in Figure 3.19. In the case that any of these passes generated files during communication
with the satellite, it will be indicated by the � icon. By clicking on this icon, operators can
download a zip file containing all the associated files.

Figure 3.19: Past passes View

Through the navigation bar, operators can access the Satellite Management page. On this
page, all the satellites configured by the operator are displayed, as presented in Figure
3.20. The operator can perform various actions on this page, including adding a new
satellite by clicking on the green card and entering its details, modifying the NORAD ID,
or uploading a configuration file for a specific satellite using the å icon, and editing or
deleting a satellite using the � and � icons respectively.

Figure 3.20: Satellites View
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As before, operators can access the GS Management page through the navigation bar.
On this page, all the registered GS are displayed, including their basic information such as
location and operational frequency ranges. Additionally, operators have the option to view
and/or modify the status of the GS using a toggle switch, as shown in Figure 3.21.

Figure 3.21: Ground Stations View

Lastly, operators can access the page dedicated to the TT&C module, where a list of all
satellites with configured flowgraphs is displayed. From this page, operators can view up-
coming passes for a specific satellite and the selected flowgraph for execution, by clicking
in the ñ icon, as shown in Figure 3.22. When a flowgraph is about to start or is currently
running, a � icon is displayed, providing access to the execution visualization.

Figure 3.22: Flowgraph menu View

By selecting one of the satellites displayed on the list, the flowgraph editor page opens,
as shown in Figure 3.24. The top left of the screen displays the NORAD ID of the edited
satellite, along with the date and time of the last update and the remaining time until the
satellite’s execution begins. This window also provides information about the currently con-
figured flowgraph, and provides access to a menu that lists all the flowgraphs associated
with the satellite, from where can be modified their configurations, or create new ones, as
illustrated in Figure 3.23.
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Figure 3.23: Flowgraph Modes Configuration

On the other hand, the top right of the screen displays the scheduled passes for the se-
lected satellite and provides information about the time window during which the satellite
will be in line-of-sight, as well as the associated flowgraph that will be executed during that
pass.

The flowgraph editor page provides operators with the necessary tools to configure the
sequence of blocks that will be executed during the mission. Operators can easily add
new blocks, customize commands, upload payload files for the commands, interconnect
the blocks, and perform various other actions.

Figure 3.24: Flowgraph configuration View

During an ongoing communication session with the selected satellite, operators will have
access to the execution control screen, depicted in Figure 3.25. This screen offers a
real-time view of the running flowgraph, allowing operators to monitor and track the perfor-
mance of the flowgraph. Executed blocks are visually distinguished by a green color, while
blocks currently in progress are highlighted in yellow and unexecuted blocks are presented
in gray, providing a clear visual representation of the flowgraph’s execution progress.

Furthermore, the top-right window provides access to the manual mode controls, from
which operators are allowed to temporarily halt the execution process and send messages
manually, the logs screen, and additionally, operators can also download files generated
during the communication with the satellite.
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Figure 3.25: Flowgraph execution View

The logs window, shown in Figure 3.26, displays all server-generated messages. These
messages include information about the currently executed block, received messages from
the satellite, telemetry data, and other relevant events. Operators can filter the messages
based on their tags or content, allowing for efficient navigation and analysis of the log
information.

Figure 3.26: Execution Logs Window
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3.4. Deployment
For the deployment of the project, the decision has been made to utilize Proxmox VE19.
Proxmox VE is an open-source server virtualization environment that enables the deploy-
ment and management of virtual machines and containers. It leverages Linux Containers
(LXC), an OS-level virtualization method that allows for the execution of multiple isolated
applications within a shared Linux kernel. Unlike fully virtualized machines, containers uti-
lize the same kernel as the host system, resulting in a lightweight and efficient virtualization
solution.

Moreover, deploying the project within an LXC provides additional benefits such as en-
hanced security and isolation. The container acts as a boundary between the application
and the host system, preventing conflicts and dependencies, and ensuring a more se-
cure execution environment. This approach offers a streamlined and efficient deployment
process while maintaining the necessary isolation and security for the project’s execution.

The steps to follow for the deployment are quite simple. First, a web browser must be
opened and navigated to the URL https://proxmox-IP-address:8006/. From there, a con-
tainer image of the desired operating system is downloaded, in this case, Ubuntu. Next,
a new container should be created providing the necessary configuration details, such as
the container name, container image, disk size, and RAM allocation. Once the container
has been created, it just needs to be started.

To run the project, several dependencies need to be installed. The first one, of course, is
Rust, which is required for compiling the project. Additionally, SQLite must be installed to
store the contents in the database, ZMQ is necessary for establishing the connection with
the GSs, and Cap’n Proto is needed for compiling the data schemas used in the API.

Furthermore, to deploy the web application, the WebAssembly compilation target and
Trunk, a WASM web application bundler for Rust, must also be installed. Finally, all that’s
left is to clone the code repository from GitHub and compile the server and web app.

In summary, the commands needed to set up the environment are the following ones:

$ sudo apt update
Install Rust:

$ curl --proto ’=https’ --tlsv1.3 https://sh.rustup.rs -sSf | sh
Install SQLite:

$ sudo apt install sqlite3
Install ZMQ:

$ apt install libzmq3-dev
Install Cap’n Proto:

$ sudo apt install capnproto

Webassembly compilation target:
$ rustup target add wasm32-unknown-unknown
Install Trunk:

$ cargo install trunk
Egui required dependencies:

$ sudo apt-get install libxcb-render0-dev libxcb-shape0-dev
libxcb-xfixes0-dev libxkbcommon-dev libssl-dev

19Promox Virtualization: https://www.proxmox.com/en/proxmox-ve

https://www.proxmox.com/en/proxmox-ve
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Clone GitHub repository:
$ git clone https://github.com/nanosatlab/operations.git
Build web app:

$ trunk build --release
Build OpCen software:

$ cargo build --release
Launch the server:

$ ./target/release/operations



CHAPTER 4. CASE STUDY: 3CAT-4

This chapter presents a specific study on the integration of the 3Cat-4 satellite into the
TT&C module. It focuses on the protocols defined for this satellite, the message format
used for communication, and the specifications required to successfully integrate and op-
erate the satellite using the designed software.

4.1. Application layer

As mentioned in previous chapters, the packets exchanged between the OpCen software
and the endpoint of the GSs are transmitted through ZMQ channels, operating at the
application layer.

These packets consist of an 11-byte header plus the payload data. The header incor-
porates a timestamp, which indicates the time at which the packet was generated, an ID
that identifies the type of packet, the length field specifies the size of the content in bytes
(excluding the header itself), and a CRC32 checksum for ensuring data integrity. All the
header fields are encoded using big-endian byte order, in which the most significant bit is
stored at the lowest memory address, while the least significant bit is stored at the highest
memory address. Figure 4.1 depicts the structure of the packet header with each of its
fields.

Figure 4.1: App layer packet format

4.1.1. Type Application layer packet

The 3Cat-4 protocol defines seven different types of messages, each identified by the ID
field in the header. These message types serve different purposes, including sending
commands, transmitting data, and providing telemetry information.

IT HT BEACON [ID = 0]

This message type is sent periodically by the satellite and contains Instantaneous teleme-
try along with a set of Historic telemetry. It provides detailed information about the current
and past states of the satellite.

IT BEACON [ID = 1]

During the first stage of the satellite mission, this message type is sent periodically. As no
Historic telemetry is available during this stage, it only provides Instantaneous telemetry
data.

79
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R HT [ID = 2]

This message type is used by the satellite to send Historic telemetry data in response to a
telecommand sent by the GS.

R PAY [ID = 3]

This message contains scientific data, such as experimental results or specific measure-
ments. It is sent by the satellite when requested by the GS, after performing the specified
experiments.

UL [ID = 4]

This message type is used exclusively for sending telecommands in the uplink direction. It
allows the GS to send instructions and commands to the satellite for various purposes.

ASYNC [ID = 5]

When the satellite responds to an uplink message, it uses this message type to send an
asynchronous response back to the GS. The response includes COMMS telemetry, pro-
viding information such as system boot count, received signal strength indicators (RSSI),
link quality indicators (LQI), transmitted power, packet counts, errors, temperatures, com-
munication frequency, and command and configuration packet details.

CHEKCKSUMS [ID = 6]

The checksums message payload contains a struct that holds 16-byte checksum values
for various components. These checksums serve as a form of error detection and verifi-
cation for the corresponding components, including the GNSS (Global Navigation Satellite
System), AIS (Automatic Identification System), RAD (Radio), PNS (Positioning and Navi-
gation Service) driver, OBDH (On-Board Data Handling), EPS (Electrical Power System),
ADCS (Attitude Determination and Control System), and other on-board systems.

AOCS TEST MODE [ID = 7]

This message type is specifically for conducting tests related to the Attitude and Orbit Con-
trol System (AOCS). It includes telemetry data related to the AOCS subsystem, providing
insights into the magnetic field, gyroscope measurements, photodiode readings, quater-
nion estimations, control values, and others.

4.1.2. CRC32 (Cyclic Redundancy Check)

The CRC32 algorithm is a checksum algorithm used in communication protocols to ensure
reliable data transmission. It calculates a checksum by performing polynomial division on
the input data stream using a generator polynomial and bitwise XOR operations. The
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sender computes the CRC32 checksum and appends it to the data stream for transmis-
sion. Upon receiving the data, the receiver performs the same polynomial division process
using the received data and compares the calculated checksum to the received checksum.
If they match, it indicates that the data was received without errors or corruption.

CRC32 is a preferred choice for ensuring data integrity because reproducing the same
checksum without possessing the exact original data is computationally infeasible. Even
a small change in the input data results in a completely different checksum due to bitwise
XOR operations and bit propagation. The algorithm exhibits pseudorandomness, distribut-
ing bits uniformly and making the checksum highly unpredictable. The use of modulo-2
arithmetic and XOR operations further enhances the uniqueness of the checksum. These
characteristics make CRC32 an effective and reliable method for detecting transmission
errors and ensuring data integrity [22].

The process for computing CRC32 in 3Cat-4 follows these steps: first, calculate the CRC32
for the header, excluding the last four bytes corresponding to the CRC32 itself. Then, use
the resulting value as the seed to compute the CRC32 for the content. And finally, insert
the resulting checksum into the header.

4.2. Telecommand

Telecommands are the instructions sent by the GS to control the satellites. As mentioned
earlier, these telecommands are sent as the payload of an UL message. They comprise
a 16-byte header followed by the command contents. The header of the telecommand is
encrypted using the Advanced Encryption Standard (AES) algorithm to ensure the confi-
dentiality and security of the commands sent from the Ground Station to the satellites.

The telecommand header consists of several important fields: Command Identifier, Com-
mand Counter, Padding, Length, and CRC32 checksum. The Command Identifier field
identifies the type of command being sent and specifies the desired action or instruction
for the satellite. The Command Counter field is used for acknowledgments (ACKs) and
keeps track of the sent commands, ensuring that the satellite confirms their receipt and
processing. The Padding field, consisting of 8 bytes, ensures that the header length is a
multiple of 16, as required for encryption and proper alignment in encryption algorithms.
The Length field indicates the size of the command contents, specifying the amount of
data that follows the header. Lastly, the CRC32 checksum provides a mechanism to verify
the integrity of the transmitted data by detecting errors or corruption in both the header
and command contents. It is important to note that all the header fields are encoded using
big-endian. Figure 4.2 depicts the structure of the command header with each of its fields.

Figure 4.2: Command packet format

When a telecommand is received, the satellite responds with an ASYNC message, con-
firming that the telecommand has been successfully received.
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4.2.1. AES Encryption

AES is a symmetric encryption algorithm. It operates on fixed-size blocks of data, typically
128 bits, and uses a secret key to perform encryption and decryption. AES employs mul-
tiple rounds of substitution, permutation, and mixing operations to transform the plaintext
into ciphertext. The strength of AES lies in its key size, with options for 128-bit, 192-bit,
and 256-bit keys. The encryption process involves applying mathematical operations to
the data and key, creating a complex and secure transformation that is computationally
difficult to reverse without the correct key. AES provides a high level of security and is
recognized as a standard encryption algorithm for sensitive information [23].

In the case of 3Cat-4, a 128-bit key is used to encrypt the header of the command. Before
encryption, it is required to compute the CRC32 with both the header and the content, as
it is included in the command header.

4.3. Telemetry

Telemetry transmitted by the satellite can be present in two different formats: Instanta-
neous Telemetry and Historic Telemetry.

Instantaneous Telemetry provides a complete snapshot of the satellite’s current state.
It includes a wide range of detailed information, such as sensor readings, system sta-
tuses, power levels, temperature measurements, and more. This real-time telemetry al-
lows ground operators to monitor the satellite’s health and performance in great detail.
This type of telemetry is transmitted in messages of the IT HT BEACON and IT BEACON
types. The telemetry payload within these messages has a fixed length of 308 bytes.

On the other hand, Historic Telemetry offers a condensed and simplified version of the
telemetry data collected over a period of time. This format contains a summarized view
of the satellite’s past performance, and provides valuable insights into the satellite’s long-
term behavior, enabling operators to analyze its performance over extended periods, even
in cases where there was no direct communication with the satellite. This type of telemetry
is sent together with the instantaneous telemetry in an IT HT BEACON packet or separately
upon operator request in an R HT packet.

To optimize data transmission and storage, Historic Telemetry is typically sent in blocks that
contain a certain number of messages. These blocks are compressed using the POCKET+
algorithm, which reduces the data size without significant loss of critical information. When
decompressed, these messages have a length of 111 bytes of information.

4.3.1. POCKET+ algorithm

POCKET+ is an efficient compression and decompression algorithm developed by the
ESA specifically designed for compressing time series data generated for status moni-
toring. It is particularly well-suited for compressing fixed-length data structures, such as
housekeeping telemetry data from spacecraft, while considering limitations in resources
and bandwidth during communication between the spacecraft and the GS.

The compression process employed by the satellite involves several steps to optimize the
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transmission and storage of data. Initially, when a new packet is generated, it undergoes
an XOR operation with a reference packet. This operation allows for the separation of the
bits into predictable and unpredictable categories based on the information provided in the
mask packet.

Any predictable bit value that is not the same as the reference data value is immediately
classed as nonpredictable (Negative Mask Update), while any non-predictable that has the
same value as the reference data value over a tracking period will be classed as predictable
in the next tracking period (Positive Mask Update).

The positive and negative mask updates are sent to the receiver in the form of counters,
followed by the corresponding non-predictable bit values sent in the clear. Once the com-
pressed packet is created, it can be transmitted or stored as required.

The mask is updated at every iteration and thus the data redundancy is constantly tracked.
Unexpected changes are dealt with immediately but it takes at least one tracking period of
consistent positive results to declare a bit predictable again. Thus the robustness of the
system is increased while the performance and stability are kept.

Figure 4.3: Compressed packet [24].

For decompression, the one that must be done in the OpCen software to obtain the teleme-
try data, a model of the mask is maintained and updated with the counters arriving in every
packet. These can be positive updates and/or negative updates and/or absolute values.
This mask is then used to indicate which bits in the non-predictable field of the compressed
packet should be inserted into a copy of the reference packet. Thanks to the update rules
the reference packet can be any packet of that type successfully received in the present or
last tracking period [24].
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CHAPTER 5. TESTING AND VERIFICATION

The complexity of this project, coupled with the requirement for scalability, demands thor-
ough testing to ensure the proper functioning of each component. These tests are not only
crucial for guaranteeing the project’s integrity but also serve to validate the preservation of
existing functionality during future developments.

This chapter provides an overview of the testing procedures conducted in the project. It
starts with unit tests, which focus on testing small functions. It then progresses to in-
tegration tests, which verify the behavior of more complex features. Finally, it includes
verifications of proper functionality for all the software modules, including the GUI, and
concludes with testing in a real-case scenario.

5.1. Unit tests

Unit tests are designed to assess small components or units of software. This approach is
well-suited for most of the API operations of the Scheduling module, as they primarily in-
volve CRUD operations (create, read, update, delete) on database instances. This type of
testing has been employed to validate the behavior of functions responsible for accessing
database resources and to ensure that any future developments do not impact the existing
functionality.

During the design of these tests, two challenges were encountered. The first challenge
was that all tests are executed in parallel, which impossibilities sharing a single database
for all the tests, as using a single database could lead to interference between the tests. To
overcome this challenge, a separate database is generated for each test, and it is deleted
at the end of the test. To facilitate this approach, the test-context1 library has been used,
which provides a convenient way to manage the setup and teardown of resources specific
to each test, ensuring isolation and avoiding interference between tests.

During the test setup phase, a database is created and populated with test data. The
function under test is then executed, and the resulting operation is validated to ensure
it produces the expected outcome. Finally, in the teardown phase, the test database is
deleted to clean up resources and prepare for subsequent tests.

The second challenge arises from the fact that Rust does not natively support testing
asynchronous code. However, this issue has been successfully resolved by utilizing the
async-trait2 library, which has made it possible to guarantee the correct behavior and
functionality of asynchronous operations within the project.

5.2. Integration tests

Integration tests are designed to evaluate the interaction and integration between different
components. These tests have been used to verify the correctness of the pass scheduling
process. This process involves multiple steps, such as interpreting the type of request
made by the operator, retrieving the satellite’s TLE from the database, selecting a GS,

1test-context Docs: https://docs.rs/test-context/latest/test_context/
2async-trait Docs: https://docs.rs/async-trait/latest/async_trait/
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Figure 5.1: Unit Tests results.

calculating the predicted passes based on the requested parameters, checking for conflicts
with previously scheduled passes, and finally saving the predicted passes.

To verify that the obtained results in the pass prediction are as expected, the communica-
tions widows had been calculated using the Gpredict3 program as a reference. A margin
of error has been allowed to account for slight differences between both predictions. Addi-
tionally, different scenarios have been tested, including cases without conflicts where the
passes should be saved, cases with conflicts, and extreme situations where the satellite
will never be visible to the ground station.

Figure 5.2: Integration Tests results.

5.3. Verification tests

The verification tests have focused on the core functionalities of each module in the OpCen
software. For the scheduling and TT&C modules, the tests have aimed to validate the
accuracy of the tracking and orbital prediction functions. In addition, for the TT&C module,
the tests have also focused on ensuring that the editing and execution of flowgraphs work
properly through the GUI. Lastly, for the Data Downlink and Storage module, the tests have
verified that the telemetry and experiment data sent by the satellite are decoded correctly
and accessible to the operators.

3Gpredict: http://gpredict.oz9aec.net/

http://gpredict.oz9aec.net/
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5.3.1. Orbit prediction and Tracking

To validate the results obtained from the calculations performed by the software, the Gpre-
dict application has been used. Gpredict is a powerful tool that provides fast and accurate
real-time satellite tracking using the NORAD SGP4/SDP4 algorithms and also tracks satel-
lites relative to different observer locations [21].

When verifying the accuracy of orbit predictions, it is important to consider that the SGP4
model, which has been the one implemented in the OpCen software, is specifically op-
timized for computing orbits in Low Earth Orbit (LEO), which typically range from a few
hundred kilometers up to around 2,000 kilometers above the Earth’s surface. One well-
known satellite operating in this orbit is the International Space Station (ISS). Figure 5.3
shows how the ground track of three orbit predictions performed by the OpCen software
matches the prediction obtained with Gpredict.

(a) Orbit prediction OpCen.

(b) Orbit prediction Gpredict.

Figure 5.3: Ground Track verification ISS.

However, conducting a more detailed analysis reveals valuable insights. Table 5.1 presents
the communication window predictions for the passes scheduled on 10/7/2023 at the
Montsec GS. The calculations of the times, azimuth angles, and elevation angles exhibit a
close alignment, demonstrating the accurate performance of the system.
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OpCen Gpredict
AOS LOS Max El AOS Az LOS Az AOS LOS Max El AOS Az LOS Az

00:20:22 00:30:14 17.22º 286.04º 56.35º 00:20:21 00:30:13 17.22º 286.04º 56.31º
01:58:01 02:07:59 18.46º 305.28º 78.29º 01:58:00 02:07:58 18.46º 305.22º 78.25º
03:34:52 03:45:43 56.94º 306.12º 115.66º 03:34:51 03:45:41 56.92º 306.12º 115.63º
05:11:54 05:21:39 17.98º 291.66º 162.95º 05:11:53 05:21:38 17.98º 291.67º 162.97º
20:18:46 20:28:05 14.30º 190.71º 71.22º 20:18:44 20:28:04 14.30º 190.78º 71.21º
21:54:23 22:05:15 70.69º 239.57º 54.72º 21:54:22 22:05:14 70.68º 239.55º 54.72º
23:32:00 23:42:04 19.76º 278.22º 53.89º 23:31:59 23:42:03 19.76º 278.17º 53.86º

Table 5.1: Passes prediction ISS 10/07/2023.

Additionally, an analysis of the Look Angles for the first identified pass confirms the effec-
tive performance of the antenna tracking. Figure 5.4 provides a visual representation of
the Look Angles, showcasing the consistent and reliable tracking capabilities of the OpCen
software.

(a) Tracking OpCen. (b) Tracking Gpredict.

Figure 5.4: Tracking verification ISS.

5.3.2. GUI Testing: Flowgraph Editing and Execution

To perform this test, two terminals were utilized, one running the desktop application and
the other running the web application, allowing the verification of functionality on both
platforms. The verification process began by ensuring the correct saving and retrieval of
configurations made by the operator, enabling the reproduction and visualization of the
flowgraph in the GUI. Additionally, the synchronization between multiple users has been
examined to confirm that simultaneous editing of the same flowgraph is possible, with
changes being accurately reflected in the GUI for all users.

Following the configuration phase, an execution test has been conducted. The ZMQ end-
points responsible for sending and receiving messages from the satellite were connected
to a dummy server that simulated the transmission of real satellite messages previously
recorded. This test aimed to evaluate the functionality of the GUI in handling and pro-
cessing the received messages sent by the OpCen software. Additionally, it allowed for
testing the execution process of the blocks within the flowgraph, ensuring that the desired
operations and interactions between components were properly executed.
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5.3.3. Data decoding verification

The main objective was to verify the proper decoding of the files and telemetry sent by
the 3Cat-4 satellite. This involved comparing the data obtained by the OpCen software
with the data provided by the satellite’s own software. By ensuring that the decoded data
matched, it was confirmed that the OpCen software accurately decoded and processed
the information transmitted by the satellite.

5.4. Real case scenario

The objective of this test is to validate the functionality of the TT&C module in a real
environment. The test will be conducted at the UPC NanoSat Lab facilities, utilizing a
dummy GS equipped with a PlutoSDR.

PlutoSDR4 is a versatile Software-defined radio (SDR) device developed by Analog De-
vices. It offers a wide frequency range and can transmit and receive various signals. In
this context, the PlutoSDR will be used to transmit the messages between the GS and the
3Cat-4 satellite, which is currently in the lab’s facilities.

Scenario

Figure 5.5: Test Scenario.

The operator utilizes the OpCen software GUI to configure the flowgraph and monitor the
communication process, while Grafana is used to visualize the received telemetry data.
The GUI communicates with the OpCen server via websockets (1), while the OpCen server
communicates with the dummy GS using ZMQ sockets (2).

Within the dummy GS, two scripts are running: GNU Radio and plutozmq. GNU Radio5

is a free and open-source software development toolkit that handles signal processing
tasks and provides a variety of blocks for creating radio systems in software. The GNU
Radio script converts the bits received from the OpCen (2) into a modulated signal with
amplitude, phase, and frequency (3), and vice versa. The plutozmq script manages the
PlutoSDR board, redirecting its inputs and outputs to the GNU Radio script.

4Pluto SDR: https://wiki.analog.com/university/tools/pluto/devs/embedded_code
5GNU Radio Wiki: https://wiki.gnuradio.org/index.php/Main_Page

https://wiki.analog.com/university/tools/pluto/devs/embedded_code
https://wiki.gnuradio.org/index.php/Main_Page
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The PlutoSDR board transforms the processed bits (4) into a voltage signal, which is then
upconverted to the transmitting frequency and amplified (5). The antenna transmits these
signals, which are received by the satellite.

Additionally, to ensure the correct transmission between the GS and the satellite, an addi-
tional PlutoSDR device is used to listen to the communication frequency channel (437.35
MHz). This device connects via USB (6), and with the help of the open-source software
GQRX SDR6, the communications can be visualized for monitoring and verification pur-
poses.

Results

The successful test results demonstrate that the TT&C module operates effectively in a
real environment. The communication between the GS and the 3Cat-4 satellite was suc-
cessfully established using the dummy GS. All commands were processed correctly by the
satellite, and the exchange of messages was completed successfully.

Throughout the test, the operator utilized the OpCen software GUI to configure the flow-
graph and monitor the communication process. The operator had the capability to pause
the execution and switch to manual mode when required. The telemetry data received
from the satellite was accurately received and decoded. The data was then visualized in
Grafana.

The test’s positive outcome demonstrates the functionality and reliability of the TT&C mod-
ule in facilitating communication between the GS and the satellite.

6Gqrx SDR: https://gqrx.dk/

https://gqrx.dk/


CHAPTER 6. CONCLUSIONS AND FUTURE
WORK

This project focused on establishing the foundations for the creation of an OpCen capable
of supporting multiple satellite missions and facilitating coordination between different GS.
The implementation of the OpCen aimed to centralize the management of both satellite
and GS operations, and it needed to be a scalable and flexible platform to adapt to the
needs of current and future missions.

The main objective was to reduce the operator’s workload through a graphical interface that
simplified ground segment tasks. This interface would provide a design tool to configure
specific commands and processes during communications, as well as a control function to
visualize and monitor ongoing processes. The goal was to reduce the probability of human
errors and improve operational efficiency.

This project began by creating a module for orbit calculations to predict satellite communi-
cation windows. Through this module, the operator could input satellite data and schedule
one or multiple passes with compatible GS.

Simultaneously, a module was developed to support the TT&C area. In this module, the
operator was provided with the capability to design message chains to be exchanged with
the satellite, allowing them to interconnect blocks and create a customized flowgraph. This
functionality enabled efficient and flexible configuration and control of satellite communi-
cations, tailored to the specific needs of each mission. The flowgraph design provided an
intuitive and visual graphical interface, facilitating the understanding and configuration of
interactions between the operator and the satellite. Currently, this feature is only available
for communications with the 3Cat-4 satellite. However, by introducing the necessary code
for encoding and decoding messages and protocols from other satellites, it will be able to
provide the same support to them.

Furthermore, based on the scheduled passes created by the operator, the software is
capable of autonomously establishing a connection with the satellite, allowing for commu-
nications at any time of the day. The execution of the flowgraph takes into account the
received information to direct the flow of operations. Finally, all processed and generated
information during the execution is saved for later visualization and analysis.

Additionally, this project has been one of the first projects carried out by the UPC NanoSat
Lab using the Rust programming language. This required an in-depth study of its capabil-
ities and the available libraries that best suited the project’s requirements. The choice of
Rust as the programming language was based on its focus on safety, performance, and
concurrency, making it an ideal option for critical applications such as satellite operations
management. It has been confirmed that Rust indeed has a promising future in this field.
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Future work

Although the results of this project have been successful, there is still much work to be
done.

Firstly, the scheduling module for programming passes has certain limitations. It considers
a time margin before and after the communication to allow for antenna movement and
proper satellite pointing, which can result in missed communication opportunities. It would
be beneficial to implement a more precise calculation of the time needed for antenna
movements, allowing for smoother transitions and support for multiple satellites.

Similarly, the current system only allows scheduling a satellite pass using a single GS.
This means that once the satellite is no longer visible to that GS, the communication ends.
A valuable upgrade would be to enable the handover of communication between GSs,
allowing for longer and uninterrupted communication sessions.

Additionally, the GUI has a good margin for improvement. Implementing new features in
the flowgraph editor will allow more flexibility and facilities for the operator when designing
the missions. For example, introducing the concept of macro blocks composed of simple
blocks (currently implemented) would be useful for reusing patterns in different scenarios.
Other potential enhancements will arise as the software is used and user feedback is
gathered.

Lastly, the current method of storing all generated files on the OpCen server is not fea-
sible, since they are large-volume files and in large quantities. It is necessary to explore
alternative storage solutions that can accommodate the storage demands of the software
while maintaining efficient access to the necessary data.
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APPENDIX A. OPERATION CENTER SOFTWARE
API

A.1. Authentication

Description: Validates the credentials provided by the user and generates an authentica-
tion token with the permissions and access level of the requester.

Access Levels (Roles):

• Ground Station Manager

• Satellite operator

• Telemetry Expert

Method: POST

Path: /auth

Body: User

Answers:

• 200 OK → Roles

• 401 UNAUTHORIZED

A.2. Scheduling endpoints

Get all Passes

Description: Returns a list of all the passes scheduled in the OpCen that are not yet
complete, sorted by date in descending order (from closest to farthest).

Method: GET

Path: /schedule

Auth: -

Body: -

Answers:

• 200 OK → PassList
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Request Passes

Description: Schedule the passes for the given satellite based on the requested mode,
only if the stored configuration of the satellite is supported by any of the ground stations
and if there is no conflict with those already programmed.

Method: PUT

Path: /schedule

Auth: Ground Station Manager

Body: RequestPass (maxSearchDuration is optional, by default 48 hours)

Answers:

• 200 OK → PassList

• 400 BAD REQUEST

• 401 UNAUTHORIZED

• 404 NOT FOUND → (Unable to find the specified satellite or a compatible ground
station for the given satellite)

• 406 NOT ACCEPTABLE → (Error occurred while retrieving the TLE from the database,
decoding the elements, or computing the Keplerian elements)

• 409 CONFLICT → (Scheduling could not be successfully completed because one
or more passes have conflicted with the already scheduled ones)

Delete Pass

Description: Deletes the existing pass identified by the pass id parameter.

Method: DELETE

Path: /schedule

Auth: Ground Station Manager

Body: -

Answers:

• 200 OK

• 401 UNAUTHORIZED

• 404 NOT FOUND



Get all past passes

Description: Returns a list of 101 finished passes, sorted from most recent to least recent,
starting from index*100.

Method: GET

Path: /schedule/past/:index

Auth: -

Body: -

Answers:

• 200 OK → PassList

• 400 BAD REQUEST

Get all satellites

Description: Returns a list of all satellites stored in the database.

Method: GET

Path: /schedule/satellites

Auth: -

Body: -

Answers:

• 200 OK → SatelliteList

Add Satellite

Description: Creates a new satellite and stores it in the database using the provided
configuration.

Method: POST

Path: /schedule/satellites

Auth: Ground Station Manager

Body: Satellite

Answers:

• 200 OK

• 400 BAD REQUEST

• 401 UNAUTHORIZED

• 404 NOT FOUND → (Failed to download TLE data for the registered satellite)



Edit Satellite

Description: Rewrites the information of an existing satellite with the one provided in the
request.

Method: PUT

Path: /schedule/satellites

Auth: Ground Station Manager

Body: Satellite

Answers:

• 200 OK

• 400 BAD REQUEST

• 401 UNAUTHORIZED

• 404 NOT FOUND → (Failed to download TLE data for the updated satellite)

Update TLE Satellite

Description: Update the TLE of the satellite identified by the norad id parameter if the
satellite has the automatic download TLE flag configured.

Method: PUT

Path: /schedule/satellites/:norad id

Auth: Ground Station Manager

Body: -

Answers:

• 200 OK

• 400 BAD REQUEST → (The satellite does not have the automatic flag set)

• 401 UNAUTHORIZED

• 404 NOT FOUND → (Failed to download TLE data for the updated satellite)

Delete Satellite

Description: Deletes the satellite identified with the specified norad id parameter.

Method: DELETE

Path: /schedule/satellites/:norad id

Auth: Ground Station Manager



Body: -

Answers:

• 200 OK

• 401 UNAUTHORIZED

• 404 NOT FOUND

Update Satellite NORAD ID

Description: Update the NORAD ID of the satellite identified by the norad id parameter
and replace it with the norad id new parameter if the satellite is not currently performing a
pass.

Method: POST

Path: /schedule/satellites/:norad id/:norad id new

Auth: Ground Station Manager

Body: -

Answers:

• 200 OK

• 401 UNAUTHORIZED

• 404 NOT FOUND

• 406 NOT ACCEPTABLE → (Satellite is currently executing a pass)

Get all Ground Stations

Description: Returns a list of all the ground stations stored in the database.

Method: GET

Path: /schecule/gs

Auth: -

Body: -

Answers:

• 200 OK → GroundStationList



Update operative state Ground Station

Description: Update the operational flag of the ground station if it exists.

Method: PUT

Path: /schecule/gs

Auth: Ground Station Manager

Body: GroundStation (Only the gsId and operative fields are necessary)

Answers:

• 200 OK

• 400 BAD REQUEST

• 401 UNAUTHORIZED

• 404 NOT FOUND

A.3. Flowgraph-based TT&C endpoints

Get all Satellites (with a flowgraph configured)

Description: Returns a list of all satellites that have at least one configured flowgraph,
ordered by their last update timestamp.

Method: GET

Path: /flowgraph

Auth: Satellite operator & Telemetry Expert

Body: -

Answers:

• 200 OK → FlowgraphList

• 401 UNAUTHORIZED

Create new Flowgraph

Description: Create the first flowgraph for the desired satellite if none has been con-
figured yet, with the Acquisition of Sight block already instantiated and the default mode
configured.

Method: POST

Path: /flowgraph

Auth: Satellite operator



Body: Flowgraph (Only the name and noradId fields are necessary)

Answers:

• 200 OK → Flowgraph

• 400 BAD REQUEST

• 401 UNAUTHORIZED

• 406 NOT ACCEPTABLE → (Already exists one flowgraph for the satellite)

Upload Mission Blocks

Description: Upload a file containing the information for the desired mission block execu-
tion to be selected during the flowgraph execution, along with a list of all the commands.

Method: PUT

Path: /flowgraph

Auth: Satellite operator

Body: MissionBlockFile

Answers:

• 200 OK → Edition (operationType: missionBlock)

• 400 BAD REQUEST

• 401 UNAUTHORIZED

• 406 NOT ACCEPTABLE → (Error reading the import file)

Get all Flowgraphs Satellite

Description: Obtain all the flowgraphs associated with the satellite identified by the no-
rad id parameter.

Method: GET

Path: /flowgraph/:norad id

Auth: Satellite operator

Body: -

Answers:

• 200 OK → FlowgraphList

• 401 UNAUTHORIZED

• 404 NOT FOUND



Delete Flowgraphs Satellite

Description: Delete all flowgraphs associated with the satellite.

Method: DELETE

Path: /flowgraph/:norad id

Auth: Satellite operator

Body: -

Answers:

• 200 OK

• 401 UNAUTHORIZED

• 404 NOT FOUND

Test Satellite execution

Description: Starts the execution of the flowgraph using the Ground Station of the test
environment.

Method: GET

Path: /flowgraph/test/:norad id/:flowgraph id

Auth: Satellite operator

Body: -

Answers:

• 200 OK

• 401 UNAUTHORIZED

• 404 NOT FOUND

Websocket configuration interface

Description: Allows configuring the flowgraph identified by the flowgraph id parameter.
All operations performed are validated and accepted by the server, which sends updates
to all users connected to the socket, enabling collaborative configuration.

Path: /ws/configuration/:flowgraph id

Auth: Satellite operator

Message format: Edition



Websocket execution interface

Description: Allows viewing and controlling the execution of the flowgraph for the satellite
identified by the norad id parameter.

Path: /ws/execution/:norad id

Auth: Satellite operator (all functionalities) & Telemetry Expert (only receive messages
and request files)

Message format: Execution

A.4. Cap’n Proto Models

auth.capnp

@0xa53401f35b9c1292;

struct User {
username @0 : Text;
password @1 : Text;

}
struct Roles {

token @0 : Text;
satelliteOperator @1 : Bool;
groundStationManager @2 : Bool;
telemetryExpert @3 : Bool;

}

ground station.capnp

@0xde755e0b536afcda;

struct GroundStationList {
list @0 : List(GroundStation);

}
struct GroundStation {

gsId @0 : Int32;
gsName @1 : Text;
gsLocation @2 : Coords;
ulfreqMax @3 : UInt32;
ulfreqMin @4 : UInt32;
dlfreqMax @5 : UInt32;
dlfreqMin @6 : UInt32;
bandwidth @7 : UInt32;
operative @8 : Bool;

}
struct Coords {

latitude @0 : Float64;
longitude @1 : Float64;
altitude @2 : Float64;

}



schedule.capnp
@0xf47587b04aae443e;

struct RequestPass {
noradId @0 : Int32;
maxSearchDuration @1 : UInt32;
forcedSave @2 : Bool;
requestType : union {

onePass @3 : Void;
multiplePasses : group {

numPasses @4 : UInt32;
}
allPassesUntil : group {

end @5 : Text;
}
allPassesInterval : group {

start @6 : Text;
end @7 : Text;

}
multiplePassesFrom : group {

numPasses @8 : UInt32;
start @9 : Text;

}
}

}
struct TLE {

objectName @0 : Text;
line1 @1 : Text;
line2 @2 : Text;

}
struct PassList {

list @0 : List(PassData);
}
struct PassData {

id @0 : Int32;
noradId @1 : Int32;
startTime @2 : Text;
endTime @3 : Text;
aos @4 : Text;
los @5 : Text;
maxElevation @6 : Float64;
aosAzimuth @7 : Float64;
losAzimuth @8 : Float64;
conflict @9 : Bool;
satName @10 : Text;
gsName @11 : Text;
logPath @12 : Text;

}

ò Date time format is YYYY-MM-DDTHH:MM:SSZ (Example: 2023-06-18T16:30:20+00:00)



satellite.capnp

@0xee66025180549fc4;

struct SatelliteList {
list @0 : List(Satellite);

}
struct Satellite {

noradId @0 : Int32;
satelliteName @1 : Text;
ulfreq @2 : UInt32;
dlfreq @3 : UInt32;
bandwidth @4 : UInt32;
tle : union {

manual : group {
line1 @5 : Text;
line2 @6 : Text;

}
automatic : group {

datetime @7 : Text;
updateTime @8 : Text;

}
}

}

configure flowgraph.capnp

@0x89bf19e6c1a7021f;

struct Edition {
lastEdit @0 : Text;
operationType : union {

newBlock : group {
operationId @1 : UInt32;
blockId @2 : Int32;
blockDefinition @3 : Text;
positionX @4 : Float32;
positionY @5 : Float32;
command @6 : Text;
outputType @7 : Text;

}
newConnection : group {

originId @8 : Int32;
output @9 : Text;
destinationId @10 : Int32;
input @11 : Text;

}
uploadFile : group {

blockId @12 : Int32;
file @13 : Text;
data @14 : Data;



}
deleteBlock @15 : Int32;
deleteConnection : group {

originId @16 : Int32;
output @17 : Text;
destinationId @18 : Int32;
input @19 : Text;

}
loadFlowgraph : group {

blockList @20 : List(BlockInstance);
connectionList @21 : List(Connection);
paramsList @22 : List(BlockParams);

}
missionBlock : group {

noradId @23 : Int32;
blockList @24 : List(MissionBlock);

}
moveNode : group {

blockId @25 : Int32;
positionX @26 : Float32;
positionY @27 : Float32;

}
setCommand : group {

blockId @28 : Int32;
command @29 : Text;

}
addFlowgraph @30 : Flowgraph;
updateFlowgraph @31 : Flowgraph;
deleteFlowgraph @32 : Int32;
blockEdition @33 : Void;
setCommandBytes : group {

blockId @34 :Int32;
bytes @35 :List(UInt8);

}
configTimeout : group {

blockId @36 : Int32;
time @37 : UInt8;
rep @38 : Int16;

}
setCommandOption : group {

blockId @39 : Int32;
option @40 : UInt8;

}
}

}
struct FlowgraphList {

list @0 : List(Flowgraph);
}
struct PassesList {

list @0 : List(Pass);



}
struct Pass {

passId @0 : Int32;
aos @1 : Text;
los @2 : Text;
fgName @3 : Text;

}
struct Flowgraph {

noradId @0 : Int32;
flowgraphId @1 : Int32;
name @2 : Text;
lastEdit @3 : Text;
mode : union {

pass @4 : List(Int32);
time : group {

gsId @5 : Int32;
startTime @6 : Text;
endTime @7 : Text;

}
groundStation @8 : Int32;
default @9 : Void;

}
}
struct BlockInstance {

blockId @0 : Int32;
blockDefinition @1 : Text;
positionX @2 : Float32;
positionY @3 : Float32;
command @4 : Text;
timeOutTime @5 : UInt8;
timeOutRep @6 : Int16;
outputType @7 : Text;

}
struct MissionBlock {

name @0 : Text;
blockType @1 : Text;

}
struct MissionBlockFile {

noradId @0 : Int32;
data @1 : Data;

}
struct Connection {

originId @0 : Int32;
output @1 : Text;
destinationId @2 : Int32;
input @3 : Text;

}
struct BlockParams {

blockId @0 : Int32;
params @1 : Data;

}



execute flowgraph.capnp

@0xadb696cb50df038c;

struct Execution {
operationType : union {

loadFlowgraph : group {
blockList @0 : List(BlockInstance);
connectionList @1 : List(Connection);
paramsList @2 : List(BlockParams);
missionBlockList @3 : List(MissionBlock);

}
startBlock @4 : Int32;
endBlock @5 : Int32;
sendLog : group {

datetime @6 : Text;
tag @7 : Text;
log @8 : Text;
color @9 : Text;

}
reqManualNextBlock @10 : List(Int32);
resManualNextBlock @11 : Int32;
finish @12 : Void;
executeManualBlock : group {

blockDefinition @13 : Text;
command @14 : Text;
data @15 : Data;

}
aosTime : group {

blockId @16 :Int32;
aosTime @17 : Text;
losTime @18 : Text;

}
manualExecution @19 : Bool;
manualBlock : group {

blockId @20 : Int32;
blockDefinition @21 : Text;
command @22 : Text;
params @23 : Data;
timeoutTime @24 : UInt8;
timeoutRep @25 : Int16;

}
manualBlockDelete @26 : Int32;
downloadFile : group {

fileName @27 : Text;
data @28 : Data;

}
}

}
struct BlockInstance {



blockId @0 : Int32;
blockDefinition @1 : Text;
positionX @2 : Float32;
positionY @3 : Float32;
command @4 : Text;

}
struct Connection {

originId @0 : Int32;
output @1 : Text;
destinationId @2 : Int32;
input @3 : Text;

}
struct BlockParams {

blockId @0 : Int32;
params @1 : Data;

}
struct MissionBlock {

name @0 : Text;
blockType @1 : Text;

}
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