
Computers & Graphics 114 (2023) 337–346

U

s
s
i
p
p
t
t
i
c

t
c
p
f
t
[
[
a
[

t
i

(

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on CEIG 2023

Adaptive approximation of signed distance fields through piecewise
continuous interpolation
Eduard Pujol ∗, Antonio Chica
niversitat Politècnica de Catalunya, Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 18 May 2023
Accepted 14 June 2023
Available online 19 June 2023

Dataset link: https://github.com/UPC-ViRVI
G/SdfLib.git

Keywords:
Triangle meshes
Distance fields
Ray marching

a b s t r a c t

In this paper, we present an adaptive structure to represent a signed distance field through trilinear
or tricubic interpolation of values, and derivatives, that allows for fast querying of the field. We also
provide a method to decide when to subdivide a node to achieve a provided threshold error. Both
the numerical error control, and the values needed to build the interpolants, require the evaluation
of the input field. Still, both are designed to minimize the total number of evaluations. C0 continuity
is guaranteed for both the trilinear and tricubic version of the algorithm. Furthermore, we describe
how to preserve C1 continuity between nodes of different levels when using a tricubic interpolant,
and provide a proof that this property is maintained. Finally, we illustrate the usage of our approach
in several applications, including direct rendering using sphere marching.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

While the most common ways of representing objects only
tore the model surface to avoid dealing with volumetric data,
ome applications require these volumetric properties. Comput-
ng these properties from the boundary representation can be ex-
ensive. Therefore, having a method that efficiently stores these
roperties is an excellent way to improve the performance of
hese applications. In this paper, we focus on storing Signed Dis-
ance Fields (SDF) for efficient querying, encoding for any point
ts distance to the object’s surface, as well as its inside/outside
lassification.
Signed distance fields (SDF) are a way of representing shapes

hat are widely used in computer graphics. They are useful be-
ause of their efficiency when performing inside/outside and
roximity tests, determining the closest point on a surface, and
inding free areas. This has made them popular for many applica-
ions [1], such as surface reconstruction [2], rendering
3,4], modeling [5], geometry processing [6,7], collision detection
8–10], and many others. Recently, they have also found use
s input and output representations for deep neural networks
11–14].

We present a data structure that can accelerate signed dis-
ance field queries. The proposed data structure discretizes space
nto cubical nodes and stores a polynomial that represents the

∗ Corresponding author.
E-mail addresses: eduard.pujol.puig@upc.edu (E. Pujol), achica@cs.upc.edu

A. Chica).
ttps://doi.org/10.1016/j.cag.2023.06.020
097-8493/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
field behavior inside each node. As each polynomial approxi-
mates the input field inside its corresponding node, querying
the resulting structure results in approximate values of the SDF.
To minimize the error as much as possible and adjust it to the
one expected by the user, we propose an adaptive grid struc-
ture that uses thinner discretization only in critical parts of the
field. We use quadratures to estimate the error of the polyno-
mial approximations, and thus guide the adaptive subdivision of
nodes.

Computing both the polynomials, and the error they incur
with respect to the input, may require a large amount of eval-
uations of the input distance field. In order to reduce the total
cost, we use trilinear and tricubic interpolants, that allow us to
reuse queries of the input field among nodes. Furthermore, these
interpolants make it easier to achieve continuity between nodes,
even when they are of different sizes.

In summary, the contributions presented in this paper are:

• An adaptive data structure based on an octree that repre-
sents the field using polynomial approximations, and aims
to provide fast query operations.

• Approximation of the root mean square error (RMSE) be-
tween the polynomials and the input field through quadra-
tures to guide the subdivision of nodes.

• Minimization of the input distance field queries during the
structure construction by reusing them between nodes.

• Guaranteed C0 continuity, as well as C1 when using tricubic
interpolants, even between nodes of different levels.

The rest of the paper is structured as follows. Section 2 presents
the previous work related to the computation, storage, and
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.cag.2023.06.020
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2023.06.020&domain=pdf
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
https://github.com/UPC-ViRVIG/SdfLib.git
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:eduard.pujol.puig@upc.edu
mailto:achica@cs.upc.edu
https://doi.org/10.1016/j.cag.2023.06.020
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346

i
s
5
h
p
s
e
F
s

2

d
r
t
a
M
i
d
u

p
p
c
m
t
t
m
T
m
f
o
a
s
s
b
n
t
K
c
d
i

q
p
t
b
o
a
c
e
M
s
t
M
s
u
g
v
p
a
A
b
i

e
t
r
o
d
a
v
T
t
p
w
t
p
m
s
s
w

p
a
r
g
p
i
r
s
w
p
c
t
p
d
a
s

i
m
c
s
V
v
n
O

W
l
a
a
p
d
t
e
o
i
o
n
t
h
u
b
s

nterpolation of distances in SDF. Section 3 introduces the data
tructure, as well as an outline of the approach. Sections 4 and
describe the polynomial interpolants that are used, as well as
ow the RMSE is approximated. In Section 6, we deal with the
roblem of achieving C1 continuity between nodes of different
ubdivision levels when using tricubic interpolants. Section 7
xamines the performance and results of the proposed approach.
inally, in Section 8 we report our conclusions, and we consider
ome avenues for future work.

. Previous work

Exact distances There are several ways of computing signed
istances, given that they may be produced from boundary rep-
esentations or be the result of a closed-form expression. For
riangle meshes, exact computation is accelerated using hier-
rchical structures that speed up the nearest primitive search.
aier et al. [15] designed a sphere hierarchy to track the min-

mum upper bound distance found, thus avoiding distant nodes
uring computation. The approach in CGAL [16] applies a similar
pper bound strategy on a hierarchy of oriented bounding boxes.
Sign computation Still, signed distance computation can be

roblematic. Bærentzen et al. [17] introduced the angle weighted
seudo-normal as a way to compute the sign of distances to
losed manifold triangle meshes correctly. When the triangle
esh has holes, is non-manifold, or has other defects, we need

o resort to other methods. Xu and Barbic [18] developed a
echnique that obtains signed distance fields from non-manifold
eshes by exploiting the properties of an offset manifold surface.
heir approach may be combined with exact unsigned distance
ethods, as well as propagation methods. Jacobson et al. [19] go

urther, requiring only that the mesh has a reasonably consistent
rientation. By using a generalization of the winding number to
rbitrary triangle meshes, they divide a constrained Delaunay tes-
ellation into inside and outside tetrahedra. The result is a robust
egmentation of space. Then, in [20], Barill et al. proposed a tree-
ased algorithm that approximates this generalization of winding
umbers closely, while reducing the asymptotic complexity of
he method. They also extended the idea to support point clouds.
rayer and Muller [21] used a fast parallel distance transform to
ompute distances on the GPU. To deal with holes or other mesh
efects, they extracted the sign from winding numbers computed
n several directions.

Distance transforms For most applications, being able to
uery an approximated version of the field is sufficient. These ap-
roximations may be built using distance transforms or sampling
he exact field. The resulting values may then be interpolated
etween the samples. Distance transforms compute distances
ver a grid, either by propagation or via scan conversion. Prop-
gation methods result in approximate values. As distance fields
an be expressed as the solution of a special form of the Eikonal
quation, they can be computed using methods such as the Fast
arching Method by Sethian [22]. This method orders grid nodes
o that information is propagated from the boundary in the direc-
ion of increasing distance. An alternative is the Fast Sweeping
ethod presented by Zhao [23]. The grid points closest to the
urface are initialized using the exact distance, then propagated
sing directional sweeps. The proven convergence of this process
uarantees a linear cost. Still, Yatziv et al. [24] proposed a linear
ersion of the Fast Marching algorithm. Cuntz and Kolb [25]
resented a GPU-based approach based on propagation, using
hierarchy to reduce the total number of propagation steps.
nother option is to use vector propagation that provides error
ounds if the distance is propagated to a narrow band around the
nput surface. Schneider et al. [26] proposed a GPU version.
338
Scan conversion methods Scan conversion methods produce
xact results and are particularly efficient for distance compu-
ation close to the surface. The CSC algorithm by Mauch [27]
asterizes the Voronoi regions of every vertex, edge, and triangle
f the mesh, updating distance values on the grid only when the
istance is smaller than the one already stored. Sigg et al. [28]
dapted the CSC algorithm to the GPU, computing the scan con-
ersion of the Voronoi cells for each slice on a fragment program.
hen, Sud et al. proposed DiFi [29], an algorithm that computes
he distance field on the GPU, slice per slice, determining which
rimitives really contribute to each of them. This reduces the total
orkload. In [30] they improved their technique by decomposing
he non-linear distance function of the primitives into a dot
roduct of linear factors. This allowed them to exploit texture
apping hardware to compute the linear terms efficiently. These
can conversion methods may have leaks, where the computed
ign is incorrect. Erleben and Dohlman [31] enumerated the cases
here this may happen and proposed solutions.
Interpolation Once the discrete approximation has been com-

uted, there are several options to interpolate the values. Trilinear
nd tricubic interpolation [32] are one option, but they cannot
epresent sharp features. Ju et al. [33] store Hermite data on a
rid in order to recover sharp features. Instead, Qu et al. [34]
roposed two alternatives, one samples distance fields on an
rregular grid, while the other combines multiple distance field
epresentations for the same model. Mitchell [9] proposed to
tore signed distances into a non-manifold hexahedral mesh,
here the explicit connectivity between cells allows for overlap-
ing elements, cracks, and incisions. This is especially useful for
ollision detection. Another issue is that the gradient of a dis-
ance field may have discontinuities at points where the closest
rimitive changes. This is a problem when using the computed
istance field for certain applications. Sanchez et al. [35] proposed
n algorithm to apply a convolution filter, such that the field is
moothed, but the initial surface is preserved.
Representations As for many applications precise querying

s only required close to the surface, sparse grid representations
ay be used, thus improving performance and reducing memory
ost. Setaluri et al. [36] used such a representation for fluid
imulation on high-resolution adaptive grids. Museth presented
DB [37], an efficient hierarchical representation for sparse, time-
arying volumetric data, which may be used to compute and store
arrowband distance fields efficiently. Its open-source version,
penVDB [38], has been widely adopted by the film industry.
Alternative ways of representing distance fields also exist.
u and Kobbelt [39] presented a BSP-based structure with a

inear approximation of the field on every cell. Jones [40] used
predictor based on the Vector Distance Transform to develop
lossless compression technique for distance fields. It is also
ossible to store a first order approximation, i.e. a plane, of the
istance field for each node. Ban and Valasek [41] showed that
his approximation can be interpolated inside the cells and then
valuated, to improve the representation of the field. Another
ption is to approximate the field using polynomials instead of
nterpolating sampled values. Koschier et al. [42] proposed an
ctree discretization of space, where each cell contains a poly-
omial approximation of the distance field. They use quadratures
o compute the error between the polynomial and the field. This
elps them decide when to subdivide a cell, and which degree to
se for the polynomial approximation. Still, there is no continuity
etween cells, as the polynomial inside each of them is optimized
eparately.



E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346

e

Fig. 1. Final octree with different maximum depths and the same error. In this case, the input field is the distance field to a simple triangle mesh. The color shows
the different values of the field, with blue tones representing negative values (points inside), red and yellow tones representing positive values (points outside), and
white tones corresponding to values near zero. Isolines (lines with the same field value) are shown in gray, with one of them in black that corresponds to the zero
value and, thus, the triangle mesh. Vertical and horizontal lines mark the boundaries of the octree leaves.
3. Outline

The algorithm’s input is a field function and a maximum
xpected error (from now on target error) by the user. From the

field function, we only need to be able to query it for any point
in space. Optionally, getting for each query the field gradient can
help the performance and quality of the final result. Otherwise,
we use finite differences to approximate the gradient, which
requires more queries and can give less accurate results. With
this information, our method computes an octree representing
an approximation of the field which is potentially faster to query.
We use an octree structure where each tree leaf has a polynomial
representing the field behavior inside it.

The octree is built in a top-down manner. The algorithm starts
at a start depth decided by the user. For each node, an approxi-
mating interpolant is computed as described in Section 4. Then,
each node decides if the approximation is enough or if it needs
to be subdivided. The node accuracy is estimated by computing a
numerical integration of the Mean Square Error of the field inside
the node. Fig. 1 illustrates the constructed octree using the same
maximum error and different maximum depth. As can be seen
in the images, as we increase the maximum depth, the resulting
field gets closer to the input field. Notice that as nodes reach the
desired error, they stop subdividing. At depth 3 only the bottom
part of the model is subdivided because it is more complex than
the upper part. And at depth 4 only some interior parts containing
the medial axis are subdivided.

One of the main issues when using adaptative octrees for
interpolating values, are the discontinuities between neighbor
nodes of different size. In Section 6, we propose a building strat-
egy that forces continuity between nodes by looking at the neigh-
bor nodes during the octree construction to decide if a node needs
further subdivision.

Even though we have focused specifically on representing
distance fields from meshes, any algorithm that, given a point
in space, returns the field’s value could be used as input. In
our case, the distance to a mesh is equal to the distance to the
nearest triangles. We use an SVH (Sphere Volume Hierarchies)
[15] to accelerate the nearest triangle search. We also use the
pseudonormals described in [17] to compute the field sign using
only the nearest triangle. This sign computation only works for
closed-orientable two-manifold meshes.

Finally, using this structure, we can query the approximate
field faster than evaluating the input field itself. In order to query
the field at a point, we only need to traverse the octree top-down
until finding the leaf node containing the point. Then, we use its
polynomial to compute the field value at that specific point.

4. Polynomials

For each octree leaf, we want to fit a polynomial representing
the behavior of the distance field. To avoid storing a different
339
Fig. 2. Example of the two interpolation methods used. The left image shows the
constraints used in each method, and the right image the resulting polynomial.
The input field is the signed distance field of the surface represented in red.

number of coefficients at each leaf, we use the same degree
polynomial for all nodes. We tried the trilinear and the tricubic
polynomials. We choose these polynomials because both guar-
antee C0 continuity between neighbor nodes, and their formulas
and constraints are isotropic (uniform in all axis directions). Both
equations are defined by:

g(x, y, z) =

n∑
i,j,k=0

aijkxiyiz i

where n is 1 for trilinear and 3 for tricubic interpolation (see
Fig. 2). The polynomial coefficients aijk dictate the polynomial’s
behavior. Given a node, we want to find the coefficients that bet-
ter fit the input field inside the node. We calculate the coefficients
by formulating a linear system in which the unknowns are the
coefficients. To have a unique solution, we need the same number
of equations. Each equation is a constraint that forces the final
polynomial to behave in a certain way.

Given a 2D node described as a quad with vertices (x1, y1),
(x , y ), (x , y ), (x , y ) and a function f that given a 2D point
2 2 3 3 4 4



E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346

r
i

t

d
a
u
e
s
d
r

i
c
w

t
a
o
n
t

C
i
f
g
f
c
o

5

h
i
a
p
e
d

eturns the value of the input field, the 2D polynomial with n = 1
s:

g(x, y) = a00 + a10x + a01y + a11xy
To find the polynomial coefficients, we design a linear system

hat forces the field’s value on each node vertex:⎛⎜⎝1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4

⎞⎟⎠
⎛⎜⎝a00
a10
a01
a11

⎞⎟⎠ =

⎛⎜⎝f (x1, y1)
f (x2, y2)
f (x3, y3)
f (x4, y4)

⎞⎟⎠
We compute the polynomial coefficients by taking the inverse

of this matrix and multiplying it by the vector containing the field
values. Because the nodes are square, the columns of the matrix
are independent, and the matrix is always invertible. Notice that,
as all octree nodes have the same shape, we can calculate the
approximating polynomial coefficients without building a new
system for each node. To achieve this, we scale and translate the
nodes to have the same vertex positions. This avoids having to
perform a matrix inversion each time we need to compute an
approximating polynomial. The 3D case is analogous, but we have
one more axis, so instead of 4 coefficients, we have 8. We force
the eight vertices of the node to have the corresponding field
value.

If instead we use tricubic polynomials (with n = 3), we have
43

= 64 coefficients. To have a system with a unique solution, we
need 64 constraints. Therefore, if we want to force constraints
only at the eight vertices of the node, we need to specify eight
constraints per vertex. For that purpose, we use the method pro-
posed by Lekien and Marsden [32]. On each vertex, they constrain
the value field, the gradient (which has three components, one
for each axis), the second derivative over xy, yz and xz and the
third derivative over xyz. In our case, we set all the second and
third derivatives to zero because we use triangle meshes which
are planar representations. Setting all these parameters to zero
reduces the number of operations required. We do not include
the equations of the tricubic interpolation because it is a dense
64 × 64 matrix, but it may be found in [32].

As explained, we scale and translate the nodes to have the
same vertex positions, so it is possible to reuse the same matrix.
In our case, when computing the polynomials, all nodes are
transformed into a common standard unit cube that has unit
volume and its minimum point at the origin. The values of the
vertices are the same in a scaled node, but the gradients are
not. If the node gets smaller, the gradient should have a bigger
magnitude to represent the same value change. Given a cubical
node of size L and with its minimum point (xm, ym, zm), we
efine the mapping h between the default cube and the node
s h(x, y, z) = (xm + Lx, ym + Ly, zm + Lz). As a result, we can
se coordinates (x, y, z) inside the standard unit cube [0, 1]3, but
valuate the input function f , that uses the original coordinate
ystem, using the expression f (h(x, y, z)). This returns the correct
istance values. For the gradients, we need to apply the chain
ule. For the x-axis:

∂ f (h(x, y, x))
∂x

=
∂h
∂x

·
∂ f
∂h

(x, y, z) = L ·
∂ f
∂h

(x, y, z)

For the other axes and for the second derivatives, the concept
s similar. We need to multiply the gradient by the node size to
ompute the coefficients. Notice that for the second derivative,
e need to multiply it by the square of the node size.
A property of the two interpolation methods is their C0 con-

inuity at the node boundary. In both cases, the interpolation on
node face reduces to a bilinear and bicubic of the constraints
f the vertices forming that face. Also, the interpolation of a
ode edge is equivalent to a linear and cubic interpolation of
he two vertices forming that edge. These two properties ensure
340
0 continuity when performing interpolation on a uniform grid,
.e. same sized nodes, because the shared edges and faces are
ormed by the same vertices, and thus have the same values and
radients used as constraints. The same is true for C1 continuity
or the tricubic interpolant (see [32]). Furthermore, with some
are, C0 and C1 continuity can also be achieved between nodes
f different sizes (see Section 6 and Appendix).

. Error estimation

An essential part of the method is deciding when a node
as to be further subdivided. Over-subdividing a node would
ncrease the structure memory consumption, the building time,
nd the query time. Likewise, under-subdividing a node would
roduce an error bigger than the one expected. We calculate the
rror inside a node using the root-mean-square error (RMSE). We
efine the RMSE of the polynomial g inside the node c as:

RMSE(g) =

√∫ 1

0

∫ 1

0

∫ 1

0
(g(x, y, z) − f (x, y, z))2 dx dy dz

Where f is the input field and c is a node with a mini-
mum point at (0, 0, 0) and a maximum point at (1, 1, 1). We
use this equation for all the nodes, so we scale and translate
the nodes to have the same size and location. Computing this
integral algebraically can be computationally expensive or even
impossible because f does not have to be an algebraic function.
So we estimate it using the trapezoidal quadrature rule, which is
a method for approximating definite integrals.

In our case, we at least need to split the interval once, because
without subdividing the approximated RMSE will always be zero.
As we saw in the previous section, the polynomials used to rep-
resent the field inside the leaf nodes are forced to be equal to the
field in the node vertices. So, evaluating the error only using those
points is not an option. We subdivide the space into eight parts
equivalent to the octree children. This way, we can recycle the
computed values to compute the children’s polynomials without
making more queries if the node is finally subdivided.

In a 2D case, the final formula for approximating the RMSE
would be:∫ 1

0

∫ 1

0
E((x, y)) dx dy ≈

∫ 1

0

1
4
(E((0, y)) + 2E((0.5, y))

+E((1, y))) dy =

=
1
16

(E((0, 0)) + 2E((0.5, 0))) + E((1, 0)) + 2E((0, 0.5))

+4E((0.5, 0.5))+
+2E((1, 0.5)) + E((0, 1)) + 2E((0.5, 1)) + E((1, 1))

where E(x, y) = (g(x, y)− f (x, y))2. In this case, we need to make
5 more queries to the function f with respect to the values we
already needed to compute the polynomial g for the current node.
In the 3D case, we need 19 more queries. In both cases, if the
node is finally subdivided, we would be able to reuse the queried
values to build the interpolants on the children nodes.

6. Forcing continuity

As we saw in the previous section, the interpolation polynomi-
als guarantee that neighbor nodes of the same size are continuous
in their shared faces. This property is not automatically fulfilled
between nodes of different depths because the nodes have dif-
ferent sizes. In some applications, having discontinuities in the
field can be a problem. In this section, we propose a method for
forcing this continuity between different-sized nodes during the
structure construction.



E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346

v
n
w
o
B
a
m
F
I
n
s
i

s
o

Fig. 3. Example showing how the structure discontinuities are solved for the
input field in (a). For (b), (c), and (d), red lines are the isolines of the input field.
When we have two nodes of the same size (b), we do not have discontinuities.
After subdivision of the bottom node (c), discontinuities appear. By forcing the
vertex in green (d) to match the polynomial in the top node, we preserve the
continuity.

Two adjacent neighbors can share a face or an edge. The
ertices of these shared faces and edges are the same between
odes of the same size. Therefore, the field in these shared parts
ill be the same because, as we proved earlier, the interpolation
nly depends on the values of the vertices forming these parts.
ut, between neighbor nodes of different sizes, not all the vertices
re shared, and the field might not be continuous. To force it, we
ake the unshared vertices to be equal to the neighbor’s field.
ig. 3 illustrates how these discontinuities in the field are solved.
n this example, we use a large target error, so the final field does
ot equal the ground truth. Notice that the upper node is not
ubdivided further even though the input field has a bump that
s not present in the final result.

In the base algorithm, the octree is built using a top-down
trategy from a starting depth. The algorithm subdivides the
ctree until no more nodes need to be subdivided, or it reaches a
341
maximum depth. A node is subdivided if its polynomial approx-
imation exceeds the expected error. We want to force the node
polynomial of the subdivided nodes to have continuity with its
neighbors. To do this, we build the octree using a breadth-first
strategy, so that each node has information on its neighbors sta-
tus before subdividing it. For each depth, we process all the nodes
in two steps. First, we decide which nodes should be subdivided
according to the error of their polynomial approximation. Then,
we iterate through all the nodes again. If a node does not need
more subdivision, we write the node in the final octree as a leaf.
If it has to be subdivided, we create the node’s children, visit the
neighbor nodes, and force the non-shared vertices of the children
to be equal to the neighbor interpolated field. Notice that this
final step is not needed if all the nodes neighbors have decided
to perform a subdivision step.

This algorithm guarantees continuity in all the field, but it
can produce artifacts in some places. The problem arises when
we decide to subdivide a node and not its neighbors. In this
situation, some subdivided node vertices are forced to some value
to guarantee continuity. Forcing these vertices to be equal to their
non-subdivided neighbor nodes is a strong restriction. This strong
constraint can result in some artifacts that were not present in the
input field.

One way to reduce these artifacts is to balance the octree. An
octree is balanced if the depth difference between neighbors is
at most one. This strategy solves the problematic artifacts, but
it drastically increases the size of the final octree. To reduce
memory consumption, we only use the balancing strategy in parts
of the octree where the error at the border between neighbors is
too large.

The idea is to avoid having these strong constraints in crit-
ical parts by further subdividing the leaf neighbor nodes. In
the second step of the algorithm, instead of always forcing the
non-shared vertices to the neighbor interpolated field, we only
force the non-shared vertices that have an error smaller than
the threshold. If the error computed at that vertex is larger, we
perform an extra subdivision on the neighbor nodes sharing that
vertex until they have the same depth to avoid forcing the vertex.
When subdividing these leaf nodes, we do not check their node
error or force their own neighbor nodes to perform additional
subdivisions, because the parent node had already fulfilled the
target error condition.

Forcing the continuity between nodes adds a strong depen-
dency on the building algorithm. Still, because the interpolant of
each node is evaluated independently of its neighbors, and the
same is true for the error computation, it is possible to parallelize
the structure construction for each depth level.

7. Results

7.1. Method analysis

All the timings in the paper were obtained on an Intel(R)
Core(TM) i7-12700 with 32 GB of RAM and a GeForce RTX 4080
with 16 GB. Query times result from averaging the time needed
to solve signed distance field queries at arbitrary points inside
the octree bounding box. All the errors reported in this section
are expressed with respect to the model bounding box diagonal
length. We estimate the RMSE using Monte Carlo integration
(MC to shorten the titles) in the experiments. In all the models
generated in this section, when not specified, we use tricubic
interpolation, forcing the continuity of the field.

Tables 1 and 2 show the behavior of the technique with a
bunch of models (see Fig. 4) with different characteristics. The
error in all the models is always smaller than the requested
one. The resulting errors are not closer to the objective because



E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346
Fig. 4. Models used for benchmarking.
Table 1
Results obtained using the trilinear (TL) and tricubic (TC) interpolations with a maximum depth of 9 and a target error of 5e − 4. Building time is
the time taken to build the octree, Max error is the maximum error found during the Monte Carlo RMSE estimation, and Memory is the size of the
generated octree.
Model Triangles Building time Query time MC RSME Max error

TL TC TL TC TL TC TL TC

Armadillo 345944 10.563 s 4.216 s 0.0795 us 0.0954 us 3.30e−04 2.51e−04 0.00190 0.0035

Happy 814216 13.266 s 6.094 s 0.0745 us 0.0836 us 3.47e−04 2.43e−04 0.00235 0.00294

Bunny 70346 5.857 s 1.928 s 0.0709 us 0.0794 us 3.25e−04 2.39e−04 0.00169 0.00347

Screw 420902 8.828 s 4.011 s 0.0713 us 0.0761 us 3.56e−04 2.63e−04 0.00252 0.00421

Plate 1000000 14.476 s 5.823 s 0.064 us 0.0618 us 3.13e−04 1.99e−04 0.00146 0.00182

Temple 151328 5.306 s 3.238 s 0.069 us 0.0675 us 3.25e−04 2.39e−04 0.0722 0.074

Dragon 7218906 44.173 s 29.427 s 0.0797 us 0.0903 us 3.44e−04 2.29e−04 0.056 0.0617

Sponza 66442 8.718 s 6.999 s 0.0644 us 0.0675 us 2.86e−04 2.11e−04 0.05968 0.0615

Slender 754688 15.506 s 6.983 s 0.0646 us 0.077 us 3.43e−04 2.15e−04 0.0036 0.0044
Table 2
Size of the generated octree got using the trilin-
ear (TL) and tricubic (TC) interpolations with a
maximum depth of 9 and a target error of 5e− 4.
Model Memory

TL TC

Armadillo 66.15 MB 103.72 MB

Happy 56.25 MB 106 MB

Bunny 39.88 MB 55.62 MB

Screw 47.2 MB 82.18 MB

Plate 41.58 MB 63.34 MB

Temple 67.37 MB 142.14 MB

Dragon 69.68 MB 121.71 MB

Sponza 82.14 MB 226.05 MB

Slender 73.56 MB 122.81 MB
342
every subdivision implies a significant reduction. Also, we are not
trying to generate an octree with a mean error similar to the
one requested, but rather a method that produces an octree in
which all the nodes have an error smaller than the target. The
maximum error always surpasses the target error defined by the
user, but only in critical parts of the model. In most cases, these
large errors are generated at the medial axis of the model, where
the field makes pointy peaks that are difficult to represent for
either of the two interpolation methods. Notice that the building
time and the final memory cost not only depend on the number
of triangles, the model’s shape is also essential. Furthermore, the
tricubic interpolation has faster building times than the trilinear,
because it needs fewer subdivisions to approximate the field.
Still, the trilinear one has a smaller size because each trilinear
node needs 8 times fewer coefficients than the tricubic. Even
though the tricubic is more expensive in memory, it offers C1
continuity, while the trilinear only has C0. This is important for
certain applications, and it is apparent when rendering the field
using sphere marching.



E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346

c

Fig. 5. Analysis of the algorithm with respect to the requested target error using the Armadillo model and a maximum depth of 9. Notice that the target input error
(x-axis) in all the plots is in logarithmic scale. In plots (a), (b) and (d), their y-axis is also in logarithmic scale. In (c), the line called Ideal case represents the perfect
ase, where the method always gets a structure that represents exactly the field with the desired error.
Table 3
OpenVDB [38] comparison with our tricubic version for the Armadillo model
and a resolution of 64 × 64 × 64 for OpenVDB. Same input error uses the
maximum error of OpenVDB as target error for our method, while in Same final
error we pursued having the same resulting average error.
Method Build Query RMSE Max error Memory

Open VDB 0.456 s 0.084 us 6.1e−4 0.0127 7 MB

Same input error 3.28 s 0.089 us 3.16e−4 0.003 70 MB

Same final error 1.4 s 0.067 us 5.8e−4 0.0052 16.05 MB

Fig. 6. RMSE error measured at points at different distances from the surface,
using the structures defined in Table 3.

Fig. 5 shows the evolution of several properties with respect
to the input error. As we can see, even though the trilinear and
tricubic give different results, both give similar errors to the
target error. The building time is linearly correlated to the target
error, except for large target errors. This is caused because the
building time also includes other tasks, like processing the mesh,
that do not depend on the input error. Also, the octree size has
an inverse quadratic behavior with respect to the error.
343
We compare our method with the OpenVDB function for gen-
erating signed distance fields. In order to have a dense field,
we have forced OpenVDB to subdivide the whole bounding box
and store distance values everywhere, thus avoiding its sparse
capabilities. Their method first computes distances to the nearest
triangles only in nodes that contain them, and then expands them
via flooding. Because of this, the final OpenVDB structure has both
an approximation error coming from their interpolation strategy,
and from the flooding strategy. Fig. 6 contains a plot showing the
different RMSE errors at different distances to the surface. As we
can see, our adaptive method does a good job of ensuring the
same error level in the whole field representation. Conversely,
OpenVDB does not ensure a uniform error and has larger errors
when close to the surface. Even though our method is more
expensive than the OpenVDB in building time and structure size,
we can guarantee a uniform error.

7.2. Applications

As we mentioned before, signed distance fields can be used
in many applications. We implemented three different applica-
tions using our structure: a particle simulation with collision
with rigid-bodies, real-time lighting effects like ambient occlu-
sion and soft-shadows, and a ray casting technique to render
objects represented with a distance field without requiring any
mesh.

Solving collision between a particle and a mesh can be expen-
sive because you need to search for every frame if the particle
is colliding with some triangle. Particles are usually represented
as spheres with some radius. Therefore, to detect if a particle is
colliding with an object, we only need to check if the center of
the particle is at a distance smaller than its radius.

We implement a method for detecting and solving particle
collision only using the distance field of the object. When a
particle collides with the object, we calculate its response by
making a binary search between its current point and its previous

position to find the position where the particle is at a distance to



E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346

n
o
a
F

S
1

Fig. 7. Particle simulation with object collision.

Fig. 8. Render of the same model (Happy) with different illumination tech-
iques. (a) With a plain color (at 6779 FPS). (b) uses SDF based ambient occlusion
n the same mesh (at 895 FPS). Finally, (c) is the combination of using the
mbient occlusion technique plus a directional light with soft shadows (at 392
PS).

Fig. 9. Rendering of the Sponza mesh with real time ambient occlusion and soft
shadows added using the distance field. The scene has a positional light behind
the center column. The scene was rendered at 344 FPS.

the object equal to its radius. We take that as the position where
the particle started to collide with the object. Then, we only need
to get the gradient of the field in that position and compute the
response forces, the bounce and the friction. We compare our
distance field approximation method with the same strategy but
using SVH to compute the distance to the object. Using a scene
with the relief plate and a bunny (see Fig. 7), we were able to
simulate 100000 particles spending 5.5 ms per frame. Using the
VH structure, we were only able to simulate 1000 particles at
0.9 ms per frame. We use the distance field computed in Table 1.
344
Fig. 10. Renders of the distance field of the Armadillo model with different
target errors.

We implement two techniques to improve the rendering of
triangle meshes. First, we implement a method proposed by [4],
to estimate the ambient occlusion using our SDF approximation.
We also simulate soft shadows [43] by estimating the amount
of light coming from the light source. Figs. 8 and 9 are images
created using the ambient occlusion and soft shadow techniques
accelerated with our algorithm. As we can see, even though the
Sponza scene is more difficult to traverse for a sphere marching
based technique than the Happy model, both of them achieve
similar frame rates.

Also, we can use sphere marching to directly render the mod-
els instead of rasterizing them. In Fig. 10, we can see three renders
of the same model using the sphere marching technique and dif-
ferent target errors. Notice that between (b) and (c) the difference
is in the details of the surface. So, for computing shadows and
ambient occlusion, the field of (b) could be enough.

8. Conclusions

We have presented an octree-based data structure that adap-
tively represents a signed distance field, using a polynomial for
each node. This allows for very efficient queries. Choosing these
polynomials to be trilinear or tricubic interpolants also makes
it possible to guarantee continuity between different nodes. We
provide a proof that this is the case. The subdivision of a node
on the octree is guided by the root mean square error between
the current interpolant assigned to it and the input field. This
error cannot generally be computed exactly. Instead, we use an
approximation using a simple quadrature. Both the determination
of the interpolants and the computation of the error need to
evaluate the input field. Nevertheless, because of the way the
interpolants are computed, we reuse many of the evaluations,
reducing the total cost. An implementation of the algorithm and
the visualization tools used to generate the images are available
at https://github.com/UPC-ViRVIG/SdfLib.

We have focused this work on representing distance fields, but
it could also be useful for any scalar or vector field. However,
depending on the intended use, the fidelity of different proper-
ties could be relevant. For example, having a smooth gradient

https://github.com/UPC-ViRVIG/SdfLib


E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346

i
f
o

e
e
f
c
e
p
n
d

n
h
s
f
d

s
o
C

D

c
t

D

h

A

c
a
(
5
e
t
g

A

w
W
w

s important for blending applications [35]. For others, sharp
eatures is a requirement, and representing them precisely using
ur approach might require too much subdivision.
Furthermore, with the current implementation, all nodes use

ither the trilinear interpolant or the tricubic. The tricubic needs
ight times more coefficients, and in some places, especially
ar away from the surface, the trilinear might be enough. This,
ombined with the fact that it could be useful to require an
rror that depends on the distance to the surface, suggests the
ossibility of mixing different degree interpolants. We would
eed to guarantee that continuity is achieved between nodes of
ifferent depth and degree.
Right now, we only save a representation of the field in the

ode leaves. By storing this information in inner nodes, we could
ave different resolutions of the same field. This could be useful in
ome applications that require different precisions in the queries,
or example, in ray marching. Samples that do not require much
etail could stop before reaching the leaf node.
Finally, even though the structure is adaptive, it still con-

umes a considerable amount of memory. For very large scenes
r very detailed models, this could be an important limitation.
ompressing this representation should be helpful in this regard.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Algorithm implementation and visualization tools available at:
ttps://github.com/UPC-ViRVIG/SdfLib.git.

cknowledgments

This work has been partially funded by Ministeri de Cièn-
ia i Innovació (MICIN), Agencia Estatal de Investigación (AEI)
nd the Fons Europeu de Desenvolupament Regional (FEDER)
project PID2021-122136OB-C21 funded by MCIN/AEI/10.13039/
01100011033/FEDER, UE). The first author gratefully acknowl-
dges the Universitat Politècnica de Catalunya and Banco San-
ander for the financial support of his predoctoral grant FPI-UPC
rant.

ppendix. Continuity

In order to prove the C1 continuity of our tricubic approach,
we will use three facts. The first two come from Lekien and
Marsden [32]. First, when two cells of the same size share a
common face, and the constraints used on the vertices of that face
on each of the cells are the same, the tricubic interpolants are
C1 continuous on that face. We also know that the relationship
between the coefficients of the interpolant and the constraints
we are using is linear and invertible. This means that given a set
of constraints, there is one and only one tricubic interpolant that
satisfies them. Finally, even though we compute the interpolant
relative to the cell, changing coordinates from one cell to another
only requires a uniform scaling and a translation. As a result, the
computed polynomials are tricubic interpolants regardless of the
cell we use as reference.

Now, let us consider the case where we have two cells of
different sizes connected through a face. Let us call the largest
cell CL and the smaller one CS (see Fig. A.11). Remember that, in
order to force continuity between these two cells, our approach
evaluates the interpolant I of C and its derivatives, and forces
L L

345
Fig. A.11. Left: Two cells CL and CS of different sizes connected through a face.
Right: Subcell Cl inside CL that shares a common face with CS .

the vertices of CS on the common face to use them as constraints
for the computation of the interpolant IS of CS . We need to prove
that this guarantees C1 continuity between CL and CS .

If the large node CL were to be subdivided, one of its subnodes
ould have the same size as the smaller one CS and share a face.
e will call this subnode Cl, and consider the interpolant Il that
ould be obtained from using as constraints the evaluation of IL

at the vertices of Cl. But given that there is only one interpolant
satisfying these constraints, and that we can transform Il to the
same coordinate system as IL, IL and Il need to be the same
polynomial. Furthermore, as Il and IS used the same constraints
on their common face, they are C1 continuous on that face. Thus,
IL and IS are also C1 continuous.

The trilinear version is C0 continuous because of similar prop-
erties. The relationship between the coefficients of the interpolant
and the used constraints is linear and invertible, so changing from
the base of one cell to another still produces a trilinear inter-
polant, and these polynomials simplify to bilinear interpolants at
the cell’s faces.

References

[1] Jones MW, Baerentzen JA, Sramek M. 3D distance fields: A sur-
vey of techniques and applications. IEEE Trans Vis Comput Graphics
2006;12(4):581–99.

[2] Calakli F, Taubin G. SSD: Smooth signed distance surface reconstruction.
In: Computer Graphics Forum. 30, (7):Wiley Online Library; 2011, p.
1993–2002.

[3] Jamriška O, Havran V. Interactive ray tracing of distance fields. In: Central
european seminar on computer graphics, vol. 2. Citeseer; 2010, p. 1–7.

[4] Evans A. Fast approximations for global illumination on dynamic scenes.
In: ACM SIGGRAPH 2006 Courses. Association for Computing Machinery;
2006, p. 153–71.

[5] Frisken SF, Perry RN. Designing with distance fields. In: ACM SIGGRAPH
2006 Courses. 2006, p. 60–6.

[6] Liu S, Wang CC. Fast intersection-free offset surface generation from
freeform models with triangular meshes. IEEE Trans Autom Sci Eng
2010;8(2):347–60.

[7] Xia H, Tucker PG. Finite volume distance field and its application to medial
axis transforms. Internat J Numer Methods Engrg 2010;82(1):114–34.

[8] Macklin M, Müller M. Position based fluids. ACM Trans Graph
2013;32(4):1–12.

[9] Mitchell N, Aanjaneya M, Setaluri R, Sifakis E. Non-manifold level
sets: A multivalued implicit surface representation with applications to
self-collision processing. ACM Trans Graph 2015;34(6):1–9.

[10] Macklin M, Erleben K, Müller M, Chentanez N, Jeschke S, Corse Z. Local
optimization for robust signed distance field collision. Proc. ACM Comput.
Graphics Interact. Tech. 2020;3(1):1–17.

[11] Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S. Deepsdf: Learn-
ing continuous signed distance functions for shape representation. In:
Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition. 2019, p. 165–74.

[12] Wang P, Liu L, Liu Y, Theobalt C, Komura T, Wang W. NeuS: Learning neural
implicit surfaces by volume rendering for multi-view reconstruction. 2021,
arXiv preprint arXiv:2106.10689.

https://github.com/UPC-ViRVIG/SdfLib.git
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb5
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb5
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb5
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb6
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb6
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb6
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb6
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb6
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb7
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb7
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb7
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb8
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb8
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb8
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb10
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb10
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb10
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb10
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb10
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb11
http://arxiv.org/abs/2106.10689


E. Pujol and A. Chica Computers & Graphics 114 (2023) 337–346
[13] Yariv L, Gu J, Kasten Y, Lipman Y. Volume rendering of neural implicit
surfaces. Adv Neural Inf Process Syst 2021;34:4805–15.

[14] Takikawa T, Litalien J, Yin K, Kreis K, Loop C, Nowrouzezahrai D,
Jacobson A, McGuire M, Fidler S. Neural geometric level of detail: Real-
time rendering with implicit 3D shapes. In: Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition. 2021, p. 11358–67.

[15] Maier D, Hesser J, Männer R. Fast and accurate closest point search on
triangulated surfaces and its application to head motion estimation. In: 3rd
WSEAS International conference on signal, speech and image processing.
2003, p. 5.

[16] CGAL 5.4.1 - 3D Fast Intersection and Distance Computation (AABB Tree):
User Manual.

[17] Bærentzen JA, Aanaes H. Signed distance computation using the angle
weighted pseudonormal. IEEE Trans Vis Comput Graphics 2005;11(3):243–
53.

[18] Xu H, Barbič J. Signed distance fields for polygon soup meshes. In: Graphics
interface 2014. AK Peters/CRC Press; 2014, p. 35–41.

[19] Jacobson A, Kavan L, Sorkine-Hornung O. Robust inside-outside seg-
mentation using generalized winding numbers. ACM Trans Graph
2013;32(4):1–12.

[20] Barill G, Dickson NG, Schmidt R, Levin DI, Jacobson A. Fast winding
numbers for soups and clouds. ACM Trans Graph 2018;37(4):1–12.

[21] Krayer B, Müller S. Generating signed distance fields on the GPU with ray
maps. Vis Comput 2019;35:961–71.

[22] Sethian JA. A fast marching level set method for monotonically advancing
fronts. Proc Natl Acad Sci 1996;93(4):1591–5.

[23] Zhao H. A fast sweeping method for eikonal equations. Math Comp
2005;74(250):603–27.

[24] Yatziv L, Bartesaghi A, Sapiro G. O (N) implementation of the fast marching
algorithm. J Comput Phys 2006;212(2):393–9.

[25] Cuntz N, Kolb A. Fast hierarchical 3D distance transforms on the gpu.. In:
Eurographics (Short Papers). 2007, p. 93–6.

[26] Schneider J, Kraus M, Westermann R. GPU-based real-time discrete eu-
clidean distance transforms with precise error bounds.. In: VISAPP (1).
2009, p. 435–42.

[27] Mauch S. A fast algorithm for computing the closest point and distance
transform. 2000, http://www.acm.caltech.edu/seanm/software/cpt/cpt.pdf.
346
[28] Sigg C, Peikert R, Gross M. Signed distance transform using graphics
hardware. In: IEEE Visualization, 2003. VIS 2003.. IEEE; 2003, p. 83–90.

[29] Sud A, Otaduy MA, Manocha D. DiFi: Fast 3D distance field computation
using graphics hardware. Comput Graphics forum 2004;23(3):557–66.

[30] Sud A, Govindaraju N, Gayle R, Manocha D. Interactive 3d distance
field computation using linear factorization. In: Proceedings of the 2006
Symposium on interactive 3D graphics and games. 2006, p. 117–24.

[31] Erleben K, Dohlmann H. Signed distance fields using single-pass gpu scan
conversion of tetrahedra. Gpu Gems 2008;3:741–63.

[32] Lekien F, Marsden J. Tricubic interpolation in three dimensions. Internat J
Numer Methods Engrg 2005;63(3):455–71.

[33] Ju T, Losasso F, Schaefer S, Warren J. Dual contouring of hermite data.
In: Proceedings of the 29th Annual conference on computer graphics and
interactive techniques. 2002, p. 339–46.

[34] Qu H, Zhang N, Shao R, Kaufman A, Mueller K. Feature preserving distance
fields. In: 2004 IEEE Symposium on volume visualization and graphics.
IEEE; 2004, p. 39–46.

[35] Sanchez M, Fryazinov O, Fayolle P-A, Pasko A. Convolution filtering of
continuous signed distance fields for polygonal meshes. Comput Graph
Forum 2015;34(6):277–88.

[36] Setaluri R, Aanjaneya M, Bauer S, Sifakis E. SPGrid: A sparse paged
grid structure applied to adaptive smoke simulation. ACM Trans Graph
2014;33(6):1–12.

[37] Museth K. VDB: High-resolution sparse volumes with dynamic topology.
ACM Trans Graph 2013;32(3):1–22.

[38] Museth K, Lait J, Johanson J, Budsberg J, Henderson R, Alden M, Cucka P,
Hill D, Pearce A. OpenVDB: an open-source data structure and toolkit for
high-resolution volumes. In: Acm Siggraph 2013 Courses. 2013.

[39] Wu J, Kobbelt L. Piecewise linear approximation of signed distance fields.
In: VMV. 2003, p. 513–20.

[40] Jones MW. Distance field compression. J. WSCG 2004.
[41] Bán R, Valasek G. First order signed distance fields. In: Eurographics (Short

Papers). 2020, p. 33–6.
[42] Koschier D, Deul C, Bender J. Hierarchical hp-adaptive signed distance

fields. In: Symposium on Computer Animation. 2016, p. 189–98.
[43] Tan YW, Chua N, Koh C, Bhojan A. RTSDF: Real-time signed distance

fields for soft shadow approximation in games. 2022, arXiv preprint arXiv:
2210.06160.

http://refhub.elsevier.com/S0097-8493(23)00113-9/sb13
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb13
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb13
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb18
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb18
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb18
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb20
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb20
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb20
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb21
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb21
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb21
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb22
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb22
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb22
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb23
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb23
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb23
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb24
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb24
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb24
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb25
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb25
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb25
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb26
http://www.acm.caltech.edu/seanm/software/cpt/cpt.pdf
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb28
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb28
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb28
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb29
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb29
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb29
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb31
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb31
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb31
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb37
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb37
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb37
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb40
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb42
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb42
http://refhub.elsevier.com/S0097-8493(23)00113-9/sb42
http://arxiv.org/abs/2210.06160
http://arxiv.org/abs/2210.06160
http://arxiv.org/abs/2210.06160

	Adaptive approximation of signed distance fields through piecewise continuous interpolation
	Introduction
	Previous Work
	Outline
	Polynomials
	Error estimation
	Forcing continuity
	Results
	Method analysis
	Applications

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Continuity
	References


