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Abstract
Task-based programming models like OmpSs-2 and OpenMP
provide a flexible data-flow execution model to exploit dy-
namic, irregular and nested parallelism. Providing an effi-
cient implementation that scales well with small granularity
tasks remains a challenge, and bottlenecks can manifest in
several runtime components. In this paper, we analyze the
limiting factors in the scalability of a task-based runtime
system and propose individual solutions for each of the chal-
lenges, including a wait-free dependency system and a novel
scalable scheduler design based on delegation. We evaluate
how the optimizations impact the overall performance of the
runtime, both individually and in combination. We also com-
pare the resulting runtime against state of the art OpenMP
implementations, showing equivalent or better performance,
especially for fine-grained tasks.

CCS Concepts: •Computingmethodologies→ Parallel
programming languages.

Keywords: parallel programming models, OmpSs-2, Open-
MP, task-based runtimes, data dependencies, lock-free, wait-
free

1 Introduction
Due to diminishing returns on modern CPUs’ single-thread
performance, the industry has shifted towards many-core
and heterogeneous architectures [3, 11, 36]. The recent focus
on energy efficiency has increased the interest in systems
with numerous processing elements with lower frequencies.
Those parallel systems can achieve huge performance figures,
but their limiting factor is the scalability of the software.
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One of the most widely used standards for programming
shared-memory systems in both industry and academy is
OpenMP[6]. OpenMP initially had only a fork-join execu-
tion model, where programmers explicitly define parallel
regions. The fork-join model is an efficient way to exploit
well-structured parallelism, but it is not well suited to exploit
irregular, dynamic, or nested parallelism. In recent years,
task-based parallelism has been introduced in OpenMP to
overcome these limitations.
The task-based paradigm can exploit more fine-grained,

dynamic, and irregular parallelism than the fork-join model.
Additionally, it minimizes the need for global synchroniza-
tion points, and it naturally copeswith load-imbalance. These
features make the paradigm especially promising to exploit
modern many-core architectures [10, 22].

Moreover, the introduction of task data dependencies was
the critical element to truly move forward to a data-flow exe-
cution model that relies on fine-grained synchronizations be-
tween tasks. This model reduces further the need for global
synchronization points and allows the runtime to exploit
data-locality between tasks. However, task management in-
side the runtime might incur some non-negligible overhead,
especially for fine-grained tasks on large many-core systems.
This paper presents optimized designs for the main com-

ponents of a task-based runtime system. We also present a
lightweight and integrated instrumentation system, which
we used to analyze in detail how the scalability of each com-
ponent affects the global scalability of the runtime.

A task-based runtime system has three main components:
the dependency system, the task scheduler, and the memory
allocator, which tightly interact with each other. The first
stage of a task’s life cycle is its creation, which involves the
memory allocator. The runtime then checks its data depen-
dencies to determine if the task is ready or blocked based on
the previous tasks’ dependencies. Once all its dependencies
are satisfied, the task becomes ready and is added to the
scheduler, which will eventually schedule it on an available
core. Once the task has executed, it releases its dependen-
cies so that its successor tasks may become ready. Note that
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Figure 1. The graph of task dependency accesses on an
OmpSs-2 program. The program (left) results in the depen-
dency graph (right) between the accesses to location A.

the three components require a synchronization mechanism
as they have to deal with multiple requests simultaneously.
Thus, the application developer has to strike a balance in task
granularity: it has to be small enough to provide sufficient
work for all available cores while being coarse enough to
evade runtime system overheads [15]. However, as applica-
tions scale out to more cores (or nodes) and the problem size
remains constant, task granularities naturally decrease. At
some point in the scaling process, tasks can become so small
that the application is overhead-bound, and the scalability
depends on the ability of the parallel runtime to handle small
tasks.

Our contributions are to (1) present a novel wait-free data
structure and algorithm to support complex dependency
models in a task-based runtime; (2) provide a scalable task
scheduler that works well under high contention and uses
delegation instead of work-stealing; and (3) analyze and cre-
ate a detailed performance profile of the task-based runtime
with a lightweight instrumentation framework.

2 Data dependency system
The data dependency system is one of the limiting factors in
the scalability of task-based runtimes, especially when run-
ning programs with very fine-grained tasks. Such programs
register large amounts of small tasks with dependencies that
take a short time to execute. Thus the overhead in the depen-
dency system can significantly impact the overall application
performance.
In this paper, we apply our optimizations to the Nanos6

runtime [4] for the OmpSs-2 programming model. Compared
to OpenMP, the model for data dependencies in OmpSs-2
is more complex [5, 13, 28]. The main complexity increase
is because the dependency domains of tasks on different
nesting levels can share dependencies, which complicates
the locking scheme used to implement the model. Reductions
also are treated as data dependencies on OmpSs-2 tasks,
unlike OpenMP where they are defined at a task group level.

2.1 Dependencies in Nanos6
In Nanos6, a task is a sibling of another when they are at
the same nesting level. Tasks declared inside another one
(nested) are considered child tasks.

The dependencies of a task in Nanos6 are represented as
accesses, which are composed of a memory address and an
access type, e.g., read or write. Two accesses have a successor
relation when they share the same memory address and their
tasks have a sibling link. Similarly, two accesses have a child
relation if they share the same memory address and their
tasks have a child link. Task access relations on OmpSs-2 pro-
grams form binary trees between the linked tasks, as shown
in Figure 1. Note that on OpenMP users cannot express de-
pendencies crossing nesting levels, and the child relationship
is not considered to determine the dependencies between
tasks.

During an OmpSs-2 program, several tasks can be created
and finished concurrently. They have to propagate depen-
dency information through the data structures to determine
if the added tasks are ready and if the recently finished tasks
allow any successor to become ready.

2.2 Wait-free data dependencies
The previous implementation of dependencies inside Nanos6
was based on fine-grained locking, but it was very complex
to avoid possible deadlocks. Instead of protecting the data
structures that hold the information about the dependencies
through mutual exclusion, our alternative is to adapt some
wait-free programming concepts to create a data structure
capable of supporting the concurrency we need. Otherwise,
if we had decided to build a data structure based on mu-
tual exclusion, we would have to compromise either with
the complexity of fine-grained locking or the performance
degradation of coarse-grained locking. The main goal is not
to have wait-freedom as a requirement but to provide fast
and scalable dependency registration.

In this section, we describe the concept behind the depen-
dency implementation we propose for the Nanos6 runtime.
In the following section, we will formalize the approach and
prove its wait-freedom property.
When a program creates a task, all the dependencies are

registered inside the Nanos6 runtime using the DataAccess
structure, shown in Listing 1. The Task structure stores all
task-related information, including a pointer to the array of
its accesses. Each access has an atomic flags field that stores
its current state, indicating if the dependency is currently
satisfied (not preventing the task execution) and whether
the satisfiability information has propagated to its successor
and child accesses. The access also stores a pointer to its
successor, which is the next access (belonging to a successor
task) to the same address in the current nesting level, and a
pointer to the child, which points to the first access to the
same address that belongs to a child task.
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The flags field represents a Finite State Machine in which
the state diagram has no cycles, so there are starting and
final states. Since we only modify this data structure with
atomic operations, we have named it Atomic State Machine
or ASM. Note that there is one instance of this state machine
for each access.

1 struct Task {

2 ...

3 DataAccess *dataAccesses;

4 };

5
6 struct DataAccess {

7 void *address;

8 std::atomic <access_flags_t > flags;

9 DataAccessType type;

10 DataAccess *successor , *child;

11 };

Listing 1. Relevant fields in the Task and DataAccess
structures

The only way for an ASM to transition from one state
to another is through receiving a data access message. The
structure of a message, shown in Listing 2, contains two flags
fields. One field contains the flags to set in the target access.
The other has flags that have to be set on the message’s orig-
inator as a delivery notification. The ASM’s transitions have
to be done as a single atomic operation, optimally through a
fetch&or. Based on the values before and after the transition,
the ASM may generate additional messages to deliver to its
child or successor accesses. All the messages that are still
pending to deliver are stored in a simple per-thread queue
called MailBox. We illustrate this process in Figure 2.

1 struct DataAccessMessage {

2 access_flags_t flagsForNext , flagsAfterPropagation;

3 DataAccess *from , *to;

4 };

Listing 2. DataAccessMessage structure

Figure 2 represents the basic structure of the algorithm.
While the MailBox has undelivered messages, we pop one
from the container and deliver it to the destination access.
Upon receiving the message, the access atomically updates
its flags field. The atomic update provides us with the flags’
exact values before and after the message was received. As
flags cannot be unset, we know each transition happens
only once in the access lifetime. With this information, we
decide if it is needed to generatemoremessages (to propagate
information about satisfied accesses, for example). Finally,
we atomically update the flags field of the originator access
of the message to notify the delivery of the information. We
use this last atomic update to determine we can safely delete
an access.

2.3 Formalization
In this section, we introduce several relevant definitions and
finally prove wait-freedom.
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Figure 2. Atomic state machine dependency propagation

Definition 2.1. Access Flags. We can define the set of all
possible flags an access can have as set 𝐹 . Then, the set 𝐹𝑎
of flags that an access 𝑎 has is defined as 𝐹𝑎 ⊆ 𝐹 . When 𝑎 is
created, flags are initialized as 𝐹𝑎 = ∅.

Definition 2.2. Delivery. The only operation that can be
done on the flags 𝐹𝑎 of an access 𝑎 is the delivery of a message
𝑀 ⊆ 𝐹 . A delivery operation is defined as:

𝐹𝑎,𝑖+1 = 𝑀 ∪ 𝐹𝑎,𝑖

Assuming the message M follows the two restrictions:

𝑀 ∩ 𝐹𝑎,𝑖 = ∅

𝑀 ≠ ∅

The restrictions on the content of the messages are part of
what provides the wait-freedom assurance. Informally, bits
in the flag field can only be set, and the field size is limited.
Additionally, each message that an access receives has to
contain at least one flag, and none of the flags can be already
set in the access. By those properties, we can deduce that
each access can receive only a limited number of messages,
which in the worst case is |𝐹 |.

Lemma 2.3. The delivery of a message 𝑀 to an access 𝑎 is
non-blocking and wait-free.

Proof. To establish wait-freedom, we need to prove that there
is a bound on the time a delivery operation can take regard-
less of any other threads. Assuming that the operation is
performed using a CAS primitive, we can assume constant
time for theCAS, but it can fail in case of conflict with another
thread. Hence, to prove wait-freedom, we need to bound the
number of failures due to conflict a delivery operation can
suffer.

A CAS can fail if and only if another thread modified the
memory location during the delivery operation. However,
in our system, the only way to change the flags 𝐹𝑎 of an
access 𝑎 is to deliver another message. As we established our
restriction that a message cannot be empty, the maximum
number of messages an access 𝑎 can receive if each message
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only contained one flag would be:

𝑀𝑚𝑎𝑥 = {{𝑥} | 𝑥 ∈ 𝐹 }

Then, the maximum number of CAS operations that have
to be done until one succeeds, assuming aworst case scenario,
is |𝑀𝑚𝑎𝑥 |, which trivially |𝑀𝑚𝑎𝑥 | = |𝐹 | .We can establish that
the maximum number of tries to deliver a message 𝑀 is
𝑇𝑚 ≤ |𝐹 |. It is possible to get a closer bound on the retries
if we consider the number of flags in the message to be
delivered, but this is sufficient for us to prove Lemma 2.3.
The time needed to deliver a message is clearly bounded to
a constant number of CAS operations. □

Definition 2.4. Unregister. For a Task 𝑡 that has a set of
accesses 𝐴𝑡 , the unregister operation on a Task is defined
as delivering a specific message𝑀 to each access 𝑎 so that
𝑎 ∈ 𝐴𝑡 .

A task is unregistered once it finishes its execution, and
the message delivered to the access indicates this condition.
An unregister operation will thus do |𝐴𝑡 | delivery operations.
As we have proved that a delivery is wait-free, the unregister
operation will be wait-free because it does a finite and known
number of delivery operations.

3 Task Scheduling System
The scheduling system orchestrates the execution of ready
tasks on worker threads. Throughout this section, we assume
that exactly one worker thread is bound to each CPU for
simplicity but without loss of generality. When a task be-
comes ready, it is forwarded to the scheduling system. Then,
when a core becomes idle, it calls the scheduler to ask for
more work. If there are ready tasks, the scheduling system
will determine the best task that can be executed on this
specific core. It is worth noting that multiple ready tasks
can be added to the scheduler concurrently and that several
worker threads can simultaneously call the scheduler. Thus,
it becomes mandatory to add some kind of synchronization
on the scheduler to prevent data-races.
Most task-based runtime systems rely on multiple ready

task queues combined with work-stealing to mitigate the
above-mentioned problems. However, on the typical applica-
tion design pattern in which a single thread creates all tasks,
work-stealing behaves similarly to the global lock approach
because most threads need to steal work from a single creator
queue. In contrast, the approach described in this section
adapts the global lock concept to handle both single creator
and multiple creator cases efficiently.

Usi a global lock is the most straightforward approach to
synchronize the scheduler. In this case, the lock is acquired
to add ready tasks to the scheduler and to schedule tasks
to worker threads. When task granularity is coarse enough,
this approach works well and keeps the scheduling system’s
design simple and the scheduling policies accurate.

However, when task granularity is fine-grained and the
system has many cores, the core that is creating new tasks
might not be fast enough to feed all other cores. In this sce-
nario, many worker threads will busy-wait on the global lock.
This has two adverse effects. Firstly, it increases contention
on the cache subsystem due to the additional cache coher-
ence traffic. Secondly, it prevents ready tasks from entering
the scheduler fast enough because the task creator has to
fight with all of the worker threads to get the global lock.
A well-known technique to mitigate lock contention on

the scheduler is to let the worker threads spin for a while,
and if they do not get any ready task, block its thread using a
mutex until a ready task becomes available. We avoid using
this approach because it adds extra work to the thread that is
creating tasks. When ready tasks are added to the scheduler,
it has to check if there are blocked threads and wake them
up with an expensive system call.

3.1 Optimizing task insertion
To avoid the stagnation of ready tasks in the scheduler, we
have decoupled the actions of adding and scheduling ready
tasks. When a task becomes ready, we do not directly add it
to the scheduler but a bounded wait-free single-consumer
single-producer (SPSC) queue working as a buffer.
The number of SPSC queues can be configured from a

single one to one per core. In the first case, we would need a
lock to synchronize all task additions, while in the latter, no
locking is needed at all. We use the lock to synchronize be-
tween producers, but the synchronization between producer
and consumers remains wait-free. In our experiments, we
use one SPSC queue and lock per NUMA node.

When a worker threads enters the scheduler, it first drains
all SPSC queues and inserts the ready tasks into the global
ready queue. With this approach, we ensure that any con-
tention generated by many worker threads calling the sched-
uler does not affect the performance of cores that are creating
tasks.We can implement this optimization because the actual
addition of tasks can be safely delayed until a core becomes
idle and calls the scheduler. Notice that this delegation tech-
nique is compatible with any lock implementation.

3.2 Scalable lock designs
The scheduler system has to be extensible, and adding new
scheduling policies should be easy. We have discarded a
wait-free or lock-free scheduler because of its complexity
and difficulty to maintain, as each scheduling policy would
require a new ad-hoc design and implementation.
Our scheduling system relies on a global lock to protect

its internal data structures, making it easy to develop new
scheduling policies. Ticket Locks [31] are fair and provide
strict FIFO ordering, but they have contention problems
under high-load conditions, so they are not suitable for our
centralized scheduler. Partitioned Ticket Locks [8] (PTLocks)
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extend Ticket Locks with a padded array used to do busy-
waiting by idle threads. If the size of this array is equal to
the number of CPUs, then each core will busy-wait in a
different array slot, reducing the cache coherence traffic to
the minimum. We use PTLocks as a building block of our
optimized lock design presented in the next section.

1 struct PTLock {

2 // Can be a constructor parameter

3 const static int Size = 64;

4 std::atomic <uint64_t > _head = {Size};

5 uint64_t _tail = {Size + 1};

6 std::atomic <uint64_t > _waitq[Size] = {{Size }};

7
8 uint64_t _getTicket () {

9 return _head.fetch_add (1);

10 }

11 void _waitTurn(uint64_t ticket) {

12 while (_waitq[ticket % Size] < ticket) { spin(); }

13 }

14 void lock() {

15 _waitTurn(_getTicket ());

16 }

17 void unlock () {

18 uint64_t idx = _tail % Size;

19 _waitq[idx] = _tail ++;

20 }

21 };

Listing 3. Implementation of a PartitionedTicketLock

Listing 3 shows the implementation of a Partitioned Ticket
Lock. For the sake of clarity, we have omitted the padding
of the fields to prevent false sharing, and the memory order
constraints of all atomic operations. The _waitq (line 6) is
an array of unsigned 64-bit integers used to implement a
circular buffer representing an infinite virtual waiting queue.
The _head and _tail fields (lines 4 and 5) are used to index
the _waitq array. The _head represents the index of the latest
slot in the virtual waiting queue and the _tail is the index of
the next slot that will be able to acquire the lock. When the
lock is free and no thread is waiting to acquire it, _tail ==
_head+1.
We initialize the lock such that _waitq[_head%Size] ==

_head, guaranteeing that the first thread that arrives will
be able to acquire it. The lock() operation (line 14) consists
of just two calls. The first one is _getTicket() (line 8), which
performs an atomic fetch and increment of the _head field
to obtain the last ticket (line 9). The second call is _waitTurn
(line 11) that receives the ticket as a parameter. The current
thread busy-waits on the _waitq[ticket % Size] position until
it matches (or exceeds) the ticket value. The unlock operation
(line 17) calculates the next slot index that will be able to
acquire the lock. Then it increments _tail and writes _tail-1
in the computed slot to release the lock.

PTLocks perform as well as more complex designs such as
MCS [25] or Ticket Locks Augmented with a Waiting Array
(TWA) [9], however it requires more memory space.

3.3 Delegation Ticket Lock (DTLock)
Another well-known technique to improve the performance
of data structures that are not amenable to fine-grained lock-
ing is delegation [32]. The main idea behind this method is
that protected data structures are accessed only by one priv-
ileged thread, which executes all the operations on behalf
of the other threads. Delegation relies on a lightweight and
optimized communication protocol between the privileged
thread and the rest of the threads to be able to delegate opera-
tions and forward results back. A drawback of this approach
is that it requires a dedicated core for each independent set of
data structures that has to be protected, making it unpractical
in many situations.
There are variants of the delegation technique that use

queues to delegate work to the threads currently inside the
lock [21]. These are better suited to use in centralized sched-
ulers as they do not require dedicated cores for each lock.
In order to build our scalable centralized scheduler, we have
developed a novel Delegation Ticket Lock (DTLock) that
builds on state of the art delegation techniques and extends
our implementation of the PTLock with support for fine-
grained and dynamic delegation of operations. The DTLock
supports the standard lock, unlock and trylock operations, as
well as lockOrDelegate, empty, front, popFront and setItem.
The lockOrDelegate operation either acquires the lock if it is
free or delegates the operation to the current lock’s owner.
However, it is the current owner that will decide if it executes
or not the delegated operations. Suppose the current owner
releases the lock without performing a pending delegated
operation. In that case, the thread that originally delegated
that operation will eventually acquire the lock and execute
it by itself. The empty, front, popFront and setItem operations
can only be called by the thread that owns the lock and are
used to manage the threads that are waiting outside the lock.
The main advantages of the DTLock are that it does not

require a dedicated core and its additional operations can
be freely combined with traditional lock, unlock and try-
lock operations. Additionally, the DTLock allows for threads
to remain inside the critical section of the lock executing
delegated operations. This can be leveraged to minimize op-
eration latency when there is not enough work to keep all
cores busy.
Listing 4 shows the implementation of a DTLock in C++,

which inherits the PTLock’s _head, _tail and _waitq[] mem-
bers, as well as, lock, unlock and tryLock operations. The
DTLock extends the PTLock with two additional arrays. The
_logq array (line 3) is used to register waiting threads while
the _readyq array (line 4) is used to store the result of dele-
gated operations, i.e. ready tasks in our case.
The first parameter of the lockOrDelegate operation is a

unique id that identifies the thread that is calling this func-
tion. This id should be in the range 0..Size-1 as it is used to
index the _readyq array. Thus, we need to know in advance
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1 template <typename T>

2 struct DTLock : public PTLock {

3 std::atomic <uint64_t > _logq[Size] = {};

4 struct { uint64_t ticket; T item; } _readyq[Size];

5
6 bool lockOrDelegate(uint64_t const id, T &item) {

7 uint64_t const ticket = _getTicket ();

8 _logq[ticket % Size] = ticket + id;

9 _waitTurn(ticket);

10 if (_readyq[id]. ticket != ticket) {

11 _tail ++;

12 return true;
13 }

14 item = _readyq[id].item;

15 return false;
16 }

17 bool empty() const {

18 return _logq[_tail % Size] < _tail;

19 }

20 uint64_t front() {

21 return _logq[_tail % Size] - _tail;

22 }

23 void popFront () {

24 unlock ();

25 }

26 void setItem(uint64_t const id, T item) {

27 _readyq[id].item = item;

28 _readyq[id]. ticket = _tail;

29 }

30 };

Listing 4. Implementation of a Delegation Ticket Lock

the maximum number of threads that can call the DTLock. If
the lockOrDelegate operation is finally delegated, the second
parameter is used to store the result.

The first thing done in lockOrDelegate is to obtain a ticket
(line 7). Then, the thread is registered on the _logq (line 8)
array with just one store operation that combines the ticket
and calling thread’s id. The values written on the _logq array
cannot be overrun because it is guaranteed that there will
be at most Size threads calling the lockOrDelegate operation,
so that each thread will have their own position. Once the
thread has been registered, it just busy-waits (line 9) until
it acquires the lock (lines 11-12), or the operation has been
delegated and the result is stored in the &item parameter
(line 14).

The empty operation (line 17) returns true if there is no
thread registered in the _logq array and false otherwise. We
check the first position of the _logq array, and if the value is
smaller than _tail, we know there is no thread waiting yet.
Otherwise we would see the value written in line 8. Notice
that this operation is intrinsically racy but harmless.

If a call to empty returns false, then the owner of the lock
can call front (line 20) to obtain the id of the thread that
is waiting. To that end, we only need to do the inverse of
the operation done on line 8, subtracting the _tail’s value to
obtain the thread id (line 21).
Then, the setItem operation assigns a result T to a regis-

tered thread using its id to index the _readyq array. First, it
sets the item field (line 27) and then the ticket to the _tail

value, marking the entry as valid. We use the ticket field in
line 10 to determine if an operation was delegated or not.
Finally, the popFront operation wakes up the first thread
busy-waiting on the _waitq by executing the unlock opera-
tion.

3.4 Synchronized Scheduler
This section presents a synchronized scheduler that leverages
the SPSC queues and the DTLock described in sections 3.1
and 3.3, respectively.

1 struct SyncScheduler {

2 DTLock <Task *> _lock;

3 UnsyncScheduler _sched;

4 PTLock _addQueueLock;

5 boost:: lockfree ::spsc_queue <Task *> _addQueue = {100};

6
7 void processReadyTasks () {

8 _addQueue.consume_all(

9 [&]( Task *t){ _sched.addReadyTask(t); });

10 }

11 void addReadyTask(Task *task) {

12 while (1) {

13 _addQueueLock.lock();

14 bool added = _addQueue.push(task);

15 _addQueueLock.unlock ();

16 if (added) break;
17 if (_lock.tryLock ()) {

18 processReadyTasks ();

19 _lock.unlock ();

20 }

21 }

22 }

23 Task *getReadyTask(uint64_t const id) {

24 Task *task;

25 if (!_lock.lockOrDelegate(id, task))

26 return task;

27 processReadyTasks ();

28 while (!_lock.empty()) {

29 uint64_t waitingId = _lock.front();

30 task = _sched.getReadyTask(waitingId);

31 if (task == nullptr) break;
32 _lock.setItem(waitingId , task);

33 _lock.popFront ();

34 }

35 task = _sched.getReadyTask(id);

36 _lock.unlock ();

37 return task;

38 }

39 };

Listing 5. Implementation of the Synchronized Scheduler
using a Delegation Ticket Lock

Listing 5 shows the implementation of a synchronized
scheduler using a DTLock (line 2) and a SPSCwait-free queue
(line 5) to synchronize the getReadyTask and addReadyTask
operations, respectively. The SyncScheduler is a wrapper of
the unsynchronized scheduler (line 3), which implements
the actual scheduling policy.

The PTLock (line 4) protects the producer side of the SPSC
queue in the addReadyTask function (line 14), while the DT-
Lock protects the consumer side in the processReadyTasks
function. In the addReadyTask function, if there is no free
space on the SPSC queue, the thread will try to acquire the
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Figure 3. Timeline of five threads using a DelegationLock
to add and get ready task into the scheduler.

DTLock with a tryLock operation (line 17). If it succeeds,
it will call the processReadyTasks function (line 18), which
removes all tasks from the SPSC queue and inserts them to
the unsynchronized scheduler (line 8).
We use the lockOrDelegate operation (line 25) of the DT-

Lock to synchronize getReadyTask operations. If the opera-
tion is delegated because another thread owns the DTLock,
the calling thread will busy-wait until it gets a task (lines 25-
26). Otherwise, it will eventually acquire the lock and call the
processReadyTasks (line 27) to add the tasks that are waiting
on the SPSC queue into the unsynchronized scheduler. Then,
it will try to schedule a task for each of the threads that are
waiting on the DTLock (lines 28-33) until there are no more
waiting threads (line 28) or no ready tasks are left (line 31).
At that point, it will try to get a task for him (line 35) and
then release the DTLock (line 36). In our simplified design,
the thread inside the scheduler leaves as soon as there are
no more tasks to schedule. However, it is easy to extend our
design in a way that processReadyTasks is called when no
tasks are left inside the scheduler.
Figure 3 shows a timeline of five threads creating and

scheduling tasks using the SyncScheduler and a simple FIFO
scheduling policy.𝑇ℎ0 has already created and inserted three
tasks (𝑇0 - 𝑇3) that are inside the SPSC queue before creating
and inserting four additional tasks (𝑇4 -𝑇7).𝑇ℎ1 to𝑇ℎ4 call the
getReadyTask function, one after the other, to obtain a ready
task. The call to lockOrDelegate of 𝑇ℎ1 acquires the lock,
while the other threads delegate and busy-wait. Once 𝑇ℎ1 is
inside the lock, it calls processReadyTasks and inserts tasks
𝑇0 to 𝑇3 into the actual scheduler. Then, 𝑇ℎ1 schedules one
ready task for each of the waiting threads, and finally, it gets
a ready task for itself. When𝑇ℎ3 finishes the execution of𝑇1,
it calls again to getReadyTask, and just after that, 𝑇ℎ2 does
the same. 𝑇ℎ3 acquires the lock and calls processReadyTasks,
moving the tasks from the SPSC queue (𝑇4 and 𝑇5) to the
actual scheduler. Finally, 𝑇ℎ3 schedules 𝑇4 for 𝑇ℎ2, and then,
it executes 𝑇5.

In microbenchmarks, we found a fourfold speedup on task
scheduling using a DTLock compared to a PTLock, and a

twelvefold speedup compared to serial task insertion thanks
to the SPSC queues.

4 Memory management
When optimizing a runtime to achieve the lowest overhead,
every operation that requires synchronization between thre-
ads quickly becomes a bottleneck. This is the case for mem-
ory allocation. Some general-purpose allocators are not well
suited to handle a high volume of memory requests in many-
core systems. Many implementations require the serializa-
tion of every allocation in the system. Additionally, the op-
erating system may introduce even more overhead when
allocators request more memory areas through system calls.
In the Nanos6 runtime case, removing contention from

the scheduler and dependencies caused an even more signifi-
cant bottleneck on memory allocation. However, the current
state of the art techniques for scalable memory allocation
can be applied to any software [2, 12], solving most of the
contention problems. To solve this bottleneck and achieve
the performance presented in this article, we had to substi-
tute the default allocator in Nanos6 for Jemalloc, a widely
used scalable memory allocator.

5 Instrumentation
Analyzing runtime performance and finding problems or bot-
tlenecks in the different component requires a mechanism
to collect fine-grained instrumentation data. This instrumen-
tation must have a very low overhead, which is difficult to
achieve on a very optimized runtime. Additionally, runtime
systems are sensitive to OS noise (such as thread preemp-
tions), making exploiting kernel internals particularly useful
when evaluating latency-critical features, such as those pre-
sented in this article. For this reason, we have developed a
new tracing backend aiming at minimum overhead and with
both runtime and kernel tracing capabilities.
The backend generates traces in the Common Trace For-

mat (CTF) [7], which strives for fast data writes. Instrumen-
tation overhead is minimized by storing events on lock-free
NUMA-aware per-core circular buffers. Each buffer is divided
into page-aligned sub-buffers that, when full, are periodically
flushed to a tmpfs backed file by Nanos6 threads between
tasks execution. Each file contains a time-ordered event sub-
set of the final trace, with either kernel or user events.
Nanos6 threads write events on the lock-free per-core

buffer they are pinned to. User-selected Kernel events are
obtained from a per-core memory-mapped circular buffer
exported by the Linux Kernel through the perf_event_open()
system call. Between task executions, Nanos6 threads read
and format the kernel events according to the CTF specifica-
tion and move them to an exclusive kernel-events Nanos6
per-core circular buffer.
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6 Evaluation
In this section, we evaluate the effects of the different op-
timizations that we present in this paper. To evaluate their
impact, we have prepared different versions of the Nanos6
runtime system, where each one removes one of the three
optimizations. This methodology allows for a better under-
standing of which optimizations have the most significant
impact on runtime performance. To prove that these opti-
mizations make Nanos6 one of the lowest-overhead task
runtimes, we also compare our most optimized version with
the most relevant OpenMP implementations. We conduct
our experiments on three HPC machines.

6.1 Methodology
To evaluate the task-based runtimes and check the capability
of scaling to more finely partitioned work, we will use the
following benchmarks, running constant problem sizes and
varying the task granularity. These are (1) a Dot product
between two arrays that uses a task reduction to aggregate
the results from each block, (2) an iterative Gauss-Seidel
method solving the heat equation of a 2-D matrix in blocks
and task reductions to calculate the residual of each time step,
(3) a taskified HPCCG with with several kernels using task
reductions and multi-dependencies, (4) a taskified version of
Lulesh 2.0 [20], (5) a taskified miniAMR that mimics the
different patterns of Adaptive Mesh Refinement applications
[33, 34], (6) a classic parallel blockedMatmul, (7) anNBody
benchmark that mimics dynamic particle system simulations,
and (8) a blocked Cholesky decomposition that is generally
compute bound.

We ran our experiments on various HPC platforms featur-
ing very different architectures: (1) the Intel Xeon with 2x
Intel Xeon Platinum 8160 (Sky-lake) for a total of 48 cores, (2)
the ARM Graviton2 with 64 ARM Neoverse N1 cores, and
(3) the AMD Rome with 2x AMD EPYC 7H12 processors
for a total of 128 cores and 256 hardware threads.
For all benchmarks, the parallelization is implemented

using tasks with OpenMP and OmpSs-2 versions that fea-
ture the same amount of parallelism. However, the kernels
used inside each task are sourced from the best available
vendor library for each machine, to guarantee competitive
performance. In the AMD and Intel machines this library
was Intel MKL, and on the ARM Graviton2 we used the ARM
Performance Libraries. We ran each benchmark a minimum
of five times to extract each measurement.

Following this evaluation, we will compare our optimized
Nanos6 runtime with the most relevant OpenMP implemen-
tations for each machine, including GOMP 9.2.0 [17], LLVM
10 [23], Intel OpenMP and the AMD AOCC depending on
availability for each platform. It is worth noting that both the
LLVM, AMD AOCC and Intel OpenMP runtime are based
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Figure 4. Efficiency vs task granularity of the Nanos6 run-
time with and without the described optimizations on Intel
Xeon (higher is better)

on a work-stealing scheduler, which will allow us to deter-
mine if our centralized delegation-based implementation can
outperform work-stealing runtimes.
Note that some combinations might not be available de-

pending on the platform because of incompatibilities, non-
implemented OpenMP features or compiler bugs. For brevity,
we only show the four most relevant benchmarks for each
machine.

6.2 Results
The best way we found to evaluate objectively how each
component of the runtime affects the overall performance is
to remove the optimizations we have described selectively.
To present the results, we use a metric [35] we will refer
to as efficiency. It is calculated by dividing the performance
of a specific run of a benchmark by the peak performance
obtained across all executions. This efficiency provides a view
of how close to peak performance is a specific run while
being agnostic to benchmark specific units. Combining this
metric with varying task granularity [15, 24] gives a good
view of each runtime version’s scalability. The granularity is
expressed in instructions executed per task, which gives an
approximation of the task’s size. We chose this unit instead
of using time or cycles because the scheduling policies used
by each of the runtimes can affect the execution time of a
task, and thus it could result in unfair comparisons.

The runtime version without the wait-free dependencies
uses the previous dependency implementation based on fine-
grained locking. The variant without the DTLock has a sim-
ple mutual exclusion mechanism (based on the PTLock) pro-
tecting the scheduler. Finally, the version without jemalloc
uses the standard system allocator for each of the machines.
Figure 4 displays our benchmarks running in the Intel

Xeon platform. The different versions allow us to explore
precisely how each optimization affects the scalability for
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time with and without the described optimizations on AMD
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Figure 6. Efficiency vs task granularity of the Nanos6 run-
time with and without the described optimizations on ARM
Graviton2 (higher is better)

different benchmarks. The results also confirm that for every
benchmark at least one optimization greatly increases the
performance for fine-grained tasks.

Figure 5 shows a similar picture on the AMD Rome system.
This system has a much larger number of CPUs, which can
increase the performance degradation caused by heavily con-
tended locks. Illustrating this point, we see that the scheduler
optimization is much more relevant than in the Intel Xeon.
The clearest example is seen on the miniAMR benchmark,
which we analyze with detailed traces in subsection 6.4.

Finally, Figure 6 shows the same benchmarks running on
an ARM Graviton2 system. Results are similar to our Intel
Xeon evaluation, although some benchmarks have different
behaviors due to the lack of NUMA effects on this platform.

Overall, we have seen that our optimizations achieve sig-
nificant performance gains, especially on small task granular-
ities. Depending on the benchmark, the wait-free dependen-
cies or the scheduler are the most important optimizations.
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Figure 7. Comparison of performance between the current
Nanos6 version and the main OpenMP runtimes on Intel
Xeon (higher is better)

However, the scalable memory allocator also delivers some
notable performance improvements, especially on the Intel
Xeon and AMD Rome machines.

6.3 Comparison versus OpenMP
To give context to the results, we compare the optimized
Nanos6 runtime to current state-of-the-art OpenMP run-
times on the same three systems. Our baseline for every
benchmark will be the GOMP runtime, distributed with the
GCC Compiler, and the LLVM OpenMP Runtime. However,
on Intel Xeon we use the Intel OpenMP runtime, and on
AMD Rome the runtime provided by the AMD AOCC, as
long as they implement all the features needed by the bench-
mark. To ensure a fair comparison, we expressed the same
parallelism in the OmpSs-2 and OpenMP versions of the
benchmarks. We also used available kernels in Intel MKL or
the ARM Performace Libraries, to prevent noise introduced
by the compilers to alter the results.

Figures 7, 8 and 9 feature the results of comparing the cur-
rent OpenMP implementation versus the optimized variant
of the Nanos6 runtime. The results are really positive, as
in all of the machines, and all of the benchmarks, the best
performance in small granularity tasks is provided by the
Nanos6 runtime. In some cases, a higher peak performance
is also achieved. This happens when the ideal block size for
a specific benchmark is small enough that performs better
in one runtime than another.

As for the other runtimes, the LLVM OpenMP implemen-
tation comes second in most benchmarks in terms of scal-
ability, and ties on AMD Rome with the runtime provided
with the AOCC compiler. However, this is expected because
the AOCC compiler is based on LLVM 10.
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Figure 8. Comparison of performance between the current
Nanos6 version and the main OpenMP runtimes on AMD
Rome (higher is better)
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Figure 9. Comparison of performance between the current
Nanos6 version and the main OpenMP runtimes on ARM
Graviton2 (higher is better)

6.4 Detailed traces
Figure 10 shows two miniAMR traces obtained with the
new Nanos6 CTF instrumentation backend comparing the
Partitioned Ticket Lock (PTlock) and the combination of
wait-free queues with the Delegation Ticket Lock (DTLock).
The view displays running tasks (in red), specific runtime
subsystems such as task creation (in cyan), or other generic
runtime parts (in deep blue) along time (X axis) for a number
of cores (Y axis). The total length is 500us and the zoomed
areas (black rectangles) are 10us long, approximately. Hint A
points to cores running a "task creation" task. The wait-free
version (above) allows created tasks to be queued indepen-
dently of other cores requesting ready tasks to run. Instead,
in the PTLock version (below), adding and getting a ready
task requires obtaining a shared lock which leads the "task
creation" task to undergo heavy pressure as other cores re-
questing a ready task also attempt to acquire the same lock.

Consequently, the number of available ready tasks cannot
match the task completion rate and most cores starve (in
khaki green).
Hint B points to DTLock task serving periods. Yellow ar-

rows depict single tasks being served by the delegation lock
owner to waiting cores. When no more ready tasks left, the
lock owner moves ready tasks from the wait-free queues (in
green) and continues serving tasks.
Figure 11 exemplifies the effect that the operating sys-

tem noise can incur on the runtime system. The upper trace
displays runtime threads (in deep blue) and hardware inter-
ruptions (purple). The trace below shows a view similar to
Figure 10, where a considerable delay is introduced in the
server which causes all cores to stall but the "task creator"
core. Note the yellow lines pattern difference before (irregu-
lar) and after (regular) the interrupt.While the serving thread
was stalled in the interrupt, a provision of ready tasks was
accumulated. The surplus of tasks is enough to feed all cores
leading to long periods of red (tasks) without yellow lines.
As the extra reserve of tasks lowers, the chances of at least
two idle cores requesting a task simultaneously increase,
and extra yellow lines appear. In conclusion, combining OS
events with runtime events allows us to complete the whole
picture and to identify the source of problems better.

7 Related work
Other dependency system implementations have been de-
scribed in previous literature, such as the implementation for
the OpenUH compiler [16]. The GOMP library and LLVM’s
OpenMP runtime are also available online as Open Source
software [17][23]. The topic of overhead in dependency res-
olution has also been tackled from other angles, such as the
TurboBLYSK framework, to create dependency patterns [29].

Previous research has also aimed at applying a lock-free
approach to dependency resolution, with [37] analyzing sev-
eral generic dependency resolution schemes and concluding
that a ticket-based lockless scheme provided the best per-
formance in their benchmarks. On the same line, another
lock-free dependency system was implemented for the OMPi
OpenMP/C Compiler [1], which supported OpenMP 4.0 and
was based on the same patterns as lock-free lists. However,
our implementation offers a stronger wait-free guarantee.
Regarding task scheduling, there are several studies on

alternatives to centralized lock-based scheduling. Many have
studied work-stealing techniques for hierarchical and par-
titioned schedulers in shared-memory systems [18, 30, 39].
Olivier et al. [27] proposed a hierarchical scheduler featuring
a lock-free ready task queue per socket. Once the socket’s
queue is empty, only one of the threads in that queue can
try to steal tasks from other sockets, while the others wait.
Similarly, Muddukrishna et al. [26] proposed a lock-based
queue per NUMA node, but in this case, workers from the
same NUMA can steal at the same time. In contrast, Vikranth
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Figure 10. Scheduler lock comparison

Figure 11. Operating System noise effect on Scheduler

et al. [38] implemented a task queue per thread, grouped into
stealing domains (e.g., one per socket). Workers always first
try to steal from queues in the local domain before trying
in the rest. However, all these approaches can suffer the
same bottlenecks as centralized schedulers when running
in modern many-core systems. The ready task queues of
consumer threads tend to be empty, so they steal tasks from
the creator’s queues (usually few), producing contention
in those sections. Also, hierarchical schedulers often have
complicated implementations, so developing new scheduling
policies becomes an arduous task.
Even though, notice that these hierarchical approaches

with work-stealing could use our DTLock (Section 3.3) to
protect the access to task queues.
The Linux Kernel static tracing infrastructure is used by

several backends such as LTTng, ftrace, perf, SystemTap or
eBPF. Yet, only LTTng focuses on efficient user and kernel
correlated static tracing [14]. When tracing on the context of
runtime systems for HPC, LTTng has two main drawbacks.
On the one hand, tracing the kernel requires installing an
out-of-tree Linux Kernel module that usually clashes with
operating policies of data centers and supercomputing facil-
ities. On the other hand, LTTng relies on server daemons
to collect and write tracepoints from both user and kernel
space. Such daemons might oversubscribe runtime threads

leading to undesired noise. Therefore, we concluded that our
particular case needed an ad-hoc tracing solution.

8 Conclusion and Future Work
The proliferation of many-core architectures and workloads
with irregular parallelism and load imbalance have shifted
the focus from traditional fork-join parallelism to task-based
parallelism. Nevertheless, task management costs are still
an important source of overhead, especially when using fine
granularities. Throughout this paper, we enhance two critical
components that bound the ability of runtime systems to
manage fine-grained tasks: the dependency system and the
scheduler. We combine both with a state of the art memory
allocator to achieve very competitive performance.

We have introduced a novel wait-free approach to imple-
menting dependency management inside a parallel runtime.
We have also defined the Atomic State Machine concept and
its restrictions and formalized its wait-freedom. We believe
the ASM concept is applicable to similar models and runtimes
that use a data-flow execution model.

Additionally, we proposed a novel Delegation Ticket Lock
that delivers very good performance compared to other state-
of-the-art locks, while keeping the simplicity in the develop-
ment of scheduling internals and policies.

We also identified the critical contention bottleneck caused
by memory management and tackled the problem by leverag-
ing the jemalloc state-of-the-art scalable memory allocator.
Finally, we implemented a highly-detailed instrumenta-

tion to provide information from both application and kernel
level, while introducing minimal overhead. Such a tool is cru-
cial to identify and analyze bottlenecks in modern runtime
systems.
Our evaluation assesses the performance of the different

components separately and together, showing important
performance improvements compared to (1) the previous
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version of the runtime system, and (2) state-of-the-art run-
time systems such as Intel OpenMP, GNU GOMP and LLVM
OpenMP.
As future work, we plan to investigate extensions of the

DTLock interface to support flat combining [19]. This inter-
face will require the ability to access and unblock several
waiting threads simultaneously to be able to combine their
operations.
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A Artifacts Appendix
A.1 Getting Started
The artifacts of this paper are provided as a docker image
and can be found at the Zenodo archive:
https://doi.org/10.5281/zenodo.4290558

To run the image, the only prerequisite is to have docker
installed in your local machine. To download and run the
image, the following commands can be used:

1 $ wget \

2 https:// zenodo.org/record /4290558/ files/ppopp.tar

3 $ docker load --input ppopp.tar

4 $ docker run -h debian --name artifact \

5 -it artifacts/ppopp :1.0.0

After running the earlier commands, you will be presented
with an interactive prompt in an image with all the prereq-
uisites to run the benchmarks installed.

The full suite of benchmarks can take several hours to
run completely, and requires a system with a large amount
of main memory (+ 32 GB), as some problem sizes are big.
To test the functionality of the artifacts, a small suite of
benchmarks is provided, which will generate the granularity
scaling plots with smaller problem sizes, and can be run in
a few minutes. The small suite also does only one execu-
tion of each benchmark, providing no standard deviation
information.

To run the reduced set of benchmarks, the following script
is provided which can be executed from /home/user:

1 user@debian :~$ ./run -small -suite.sh

After running the benchmarks, the results corresponding
to the comparison between the optimized Nanos6 runtime
compared with GNU OpenMP and LLVM OpenMP will be
stored in the /home/user/output/ folder. To retrieve the
results back to the local machine, the following command
can be used outside the container:

1 $ docker cp artifact :/home/user/output .

Which will create a folder named output in the current
path and retrieve the plots in pdf format.

A.2 Step by step
The artifact is prepared to be flexible and all the sources as
well as scripts to re-build all of the software are included.
In this section we will explain the structure of the image,
how to run the full benchmark suite, and how to change and
re-build the experiments and software.

In case it is needed to install more software on the docker
image, the password for the user of the machine is user.

A.2.1 Full benchmark suite. It is possible to run the full
benchmark suite with the same parameters that were used
on the original paper. However, be warned that the expected
runtime is several hours, and that not all machines may be
able to handle the input sizes due to lack of memory. To do
so, run the following command:

1 user@debian :~$ ./run -full -suite.sh

A.2.2 Directory structure. The image has the following
structure on which the relevant files can be found:

• Sources: Contains the source code for the Nanos6 run-
time as well as its dependencies (Mercurium, Jemalloc
and TAMPI), and GCC 9.3.0 for the benchmarks.

• Benchmarks: Contains the source code and binaries
for the benchmarks, each one in a separate folder with
a standalone (and working) Makefile.

• Install: Contains the built binaries for Nanos6 and
its dependencies.

• Automate: Contains the Pyhton scripts and JSON con-
figuration files that are used to execute the bench-
marks.

https://doi.org/10.1145/359060.359076
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• output: Output directory, where the plots of granu-
larity and efficiency for each of the benchmarks are
saved after running the benchmark suite.

A.2.3 Nanos6 Sources. Although the sources used in the
article evaluation are included in the docker image, Nanos6 is
free software and the most up-to-date version of the sources
is publicly available on the following GitHub repository:
https://github.com/bsc-pm/nanos6

We suggest using the last version from git if you want use
Nanos6 in your research.

A.2.4 Rebuilding the software. In the root folder, an
install-all.sh script is provided which will re-extract
all the sources and re-build Nanos6, its dependencies, and
the GCC 9.3.0 toolchain. This is provided as a way to make
the image re-usable, as it is possible to change the sources
and re-build the whole stack.

In case youwant to install Nanos6 bare-metal in amachine,
we suggest to refer to the official Nanos6 documentation
which can be found on the GitHub repository or inside the
included source tarball, which will guide you through all the
configuration and building process.

A.2.5 TheOmpSs-2 ProgrammingModel. The BSC Pro-
gramming Models research group routinely supports other
researchers that want to use or improve the OmpSs-2 pro-
gramming model, the Nanos6 runtime or any of our tools.
The specification for the OmpSs-2 programming model can
be found online at https://pm.bsc.es/ompss-2, and you can
reach us by email at pm-tools@bsc.es.

A.3 Supported claims
This artifact is designed to support the claims done in Sec-
tion 6 of the paper, specifically the performance comparison
between the Nanos6 runtime, containing all of the novelties
presented on the paper, and other state of the art OpenMP
runtimes.
The goal of the artifacts is to facilitate the reuse of our

research by others, and allow access to a functional and
reusable version of the sources and benchmarks referenced
in the paper. Reproducing exactly the results obtained in
the paper would require access to the exact same machines
and software that was used, which is not in the scope of the
artifact.
Running the benchmark suite will generate the perfor-

mance plots based on task granularity, using the samemethod
that was used to generate the original plots. Raw results are
also extractable, and are available on the Automate/scaling
folder (or the Automate/scaling_small/ for the small suite).
However, there are some caveats and claims that are not sup-
ported by the artifacts:

• The artifacts do not include non-free software that was
used during the evaluation. Specifically, the following

software is not included and thus not evaluated in the
comparison:
– The Intel MKL library. Instead, the BLAS and LA-
PACK kernels used in the benchmarks have been
linked against the OpenBLAS library, which may
affect the results. If desired, the user can download
the Intel MKL libraries from debian’s non-free repos-
itories and link the benchmarks against them.

– The Intel Compiler and OpenMP runtimes, which
require Intel licenses to use.

– The AMDOptimizing C/C++ Compiler and OpenMP
runtime, which is available on AMD’s website.

– The ARM Performance Libraries, which were used
on the Graviton2 machine.

• Performance evaluation was done bare-metal in all
the machines, without container overhead and always
on exclusive nodes. Caution is advised when drawing
conclusions from the results obtained running the ar-
tifacts, as similar conditions need to be achieved for
the results to be valid.
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