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We study a natural question that, apparently, has not been 
well addressed in the literature. Given functions u with 
support in the unit ball B1 ⊂ Rn and with gradient in the 
Morrey space Mp,λ(B1), where 1 < p < λ < n, what is the 
largest range of exponents q for which necessarily u ∈ Lq(B1)? 
While David R. Adams proved in 1975 that this embedding 
holds for q ≤ λp/(λ − p), an article from 2011 claimed the 
embedding in the larger range q < np/(λ − p). Here we 
disprove this last statement by constructing a function that 
provides a counterexample for q > λp/(λ −p). The function is 
basically a negative power of the distance to a set of Hausdorff 
dimension n − λ. When λ /∈ Z, this set is a fractal. We 
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also make a detailed study of the radially symmetric case, 
a situation in which the exponent q can go up to np/(λ − p).

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

This article originated from the following natural question: Given functions u with 
support in the unit ball B1(0) ⊂ Rn and with gradient in the Morrey space Mp,λ(B1(0)), 
where 1 < p < λ < n, what is the optimal range of exponents q such that necessarily 
u ∈ Lq(B1(0))? Apparently, this question has not been well addressed in the literature. 
In fact, the authors of [3, Theorem 2.5] claimed a range of exponents which, as we will 
prove in the current paper, turns out to be larger than the correct one.

Our motivation came from the recent work [7] of the first author in collaboration with 
A. Figalli, X. Ros-Oton, and J. Serra, on the regularity of stable solutions to semilinear el-
liptic equations. Actually, the results of [7] are deduced from a Morrey type bound for the 
gradient of a stable solution, among other tools (see Remark 1.2 below for more details).

The following is the precise statement of the question that we are concerned with. 
Given real numbers p and λ such that

1 < p < λ < n,

we wish to know for which exponents q the inequality

‖u‖Lq(B1(0)) ≤ C ‖∇u‖Mp,λ(B1(0)) (1.1)

holds true for functions u with support in B1(0) ⊂ Rn and for a constant C independent 
of u, where

‖∇u‖p
Mp,λ(Ω) := sup

r>0, y∈Ω

(
rλ−n

∫
Ω∩Br(y)

|∇u(x)|p dx
)

is the Morrey norm of ∇u in a domain Ω ⊂ Rn. Notice that when λ equals the dimension 
n and Ω = B1(0), (1.1) corresponds to the Sobolev inequality in B1(0) ⊂ Rn.

In 1975, D.R. Adams [1, Theorem 3.1] proved the following result. Let us denote in 
the sequel

p1 := λp

λ− p
and p2 := np

λ− p
.

Observe that, clearly, p1 < p2.
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Theorem 1.1 (D.R. Adams [1]). Let p, λ ∈ R satisfy 1 < p < λ < n and let u : Rn → R

be a Lipschitz function with u ≡ 0 in Rn \B1(0). Then, for every q ≤ p1, inequality (1.1)
holds for a constant C depending only on n, p, and λ.

For the reader’s convenience, in Section 4 we will include the proof of the theorem, as 
given by Adams [1]. The case p = 1, which involves weak spaces, is also treated in [1].

In fact, Adams [1, Proposition 3.1 and Theorems 3.1 and 3.2] proved the following 
stronger embedding:

‖u‖Mp1,λ(B1(0)) ≤ C‖∇u‖Mp,λ(B1(0)). (1.2)

While inequality (1.2) is dimensionless by scaling, note that the dimensionless exponent 
for inequality (1.1) is q = p2. This suggests that (1.1) could hold with q = p2, or at least 
for q < p2. In fact, it is easy to prove that among radially symmetric functions, (1.1)
holds for every q < p2 (see [5, Proposition 1.2(i)] and also Theorem 1.5 below).

In 2011, the authors of [3, Theorem 2.5] claimed that (1.1) held for every q < p2 and 
for general functions, not necessarily radial. Some years later, we realized that the proof 
of [3, Theorem 2.5] was not correct. After that, the claim was withdrawn by the same 
authors in the Errata papers [4] and [5]. At the same time, we could not find other works 
addressing the exact question of what is the optimal exponent.

In the present paper we show that actually q = p1 is the largest possible exponent 
in (1.1). To show this, for every q > p1 we construct a non-radial function, described 
in detail below, for which ‖u‖Lq(B1(0)) = ∞ while ‖∇u‖Mp,λ(B1(0)) < ∞. An important 
feature of the function is that it depends only (up to a cutoff function) on k variables 
(x1, . . . , xk), where k is the smallest integer such that λ ≤ k. The function is basically a 
negative power of the distance to a set of Hausdorff dimension n − λ. When λ is not an 
integer this set is a fractal and, therefore, the structure of the function is not so “simple”. 
In fact, it will be rather delicate to control the Morrey norm of its gradient. We could not 
find a simpler counterexample for λ /∈ Z, although we had several candidates that finally 
did not work. The possibility of finding simpler examples remains as an open question.

In addition, we also consider a related norm, which we call the “triple norm”, given by

‖|∇u‖|pp,λ;Ω := sup
y∈Ω

∫
Ω

|∇u(x)|p |x− y|λ−n dx, (1.3)

where Ω ⊂ Rn is a domain. The article [7] on stable solutions to semilinear equations 
gives rise naturally to such a norm (see Remark 1.2 below).1 Note that, clearly, we have

‖∇u‖Mp,λ(Ω) ≤ ‖|∇u‖|p,λ;Ω (1.4)

1 The triple norm has been previously considered in the setting of the hole-filling technique for integral 
estimates; see [6, Section 1.2.3] among others. It also appears in [11], where it is called the Cordes-Nirenberg 
norm.
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for every function u. The function that we construct will also satisfy ‖ |∇u‖ |p,λ;B1(0) < ∞, 
and thus q = p1 is the largest possible exponent also for the embedding

‖u‖Lq(B1(0)) ≤ C ‖|∇u‖|p,λ;B1(0). (1.5)

Instead, among radial functions we show that inequality (1.5) holds for every q ≤ p2, in 
contrast to inequality (1.1) for radial functions, which holds only for q < p2.

Remark 1.2. The regularity results from the recent paper [7] on stable solutions to semi-
linear equations −Δu = f(u) in a domain Ω ⊂ Rn are based on bounds for a Morrey 
norm with p = 2, of ∇u or, given a point y, of the radial derivative ∇u(x) ·(x −y)/|x −y|. 
For this, see [7, Lemma 2.1, step 2 in the proof of Theorem 1.2, and proof of Theorem 
7.1], where the arguments also lead to the triple norm (1.3). The boundedness results 
from [7] up to dimension n ≤ 9 correspond to p = 2 and λ = 2, while in the Lq results 
for n ≥ 11 one has p = 2 < λ < n as in our paper. The results of the current article 
are used in [7] to determine optimally a range of exponents q for which stable solutions 
necessarily belong to Lq in dimensions n ≥ 11.

Summarizing, our main contribution is the following result. It provides a counterex-
ample to the validity of (1.1) and (1.5) for q > p1, given by a function u which is basically 
a negative power of the distance to a set of Hausdorff dimension n − λ. When λ /∈ Z, 
this set is a fractal.

Theorem 1.3. Let p, λ ∈ R satisfy 1 < p < λ < n. Then, for every q > p1 := λp/(λ −
p) there exists a function u : Rn → R with compact support in B1(0), belonging to 
Mp,λ(B1(0)), and such that

‖u‖Lq(B1(0)) = ∞ and ‖|∇u‖|p,λ;B1(0) < ∞. (1.6)

In particular, we also have

‖∇u‖Mp,λ(B1(0)) < ∞.

If λ is an integer, such function u can be taken to be

u(x) =
(
|x′|−α − 2α

)
+ ξ(|x′′|) (1.7)

where x = (x′, x′′) ∈ Rλ ×Rn−λ, the parameter α satisfies

λ

q
≤ α <

λ− p

p
, (1.8)

and ξ : R+ → [0, 1] is a cutoff function with ξ ≡ 1 in [0, 1/2) and ξ ≡ 0 in R+\ [0, 
√

3/3).
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If k − 1 < λ < k for some integer k ∈ [2, n], the function u can be taken to be

u(x) =

⎧⎨
⎩

(
dist(x, Cn,λ)−α − 4α

)
+ if k = n

(
dist(x′, Ck,λ)−α − 4α

)
+ ξ(|x′′|) if k < n,

(1.9)

where x = (x′, x′′) ∈ Rk × Rn−k, α satisfies (1.8), ξ is a cutoff function as above, and 
Ck,λ is a set of Hausdorff dimension k − λ in Rk given by

Ck,λ = {0} × Cγ ⊂ Rk−1 × [−1/2, 1/2],

where Cγ ⊂ [−1/2, 1/2] is the generalized Cantor set with parameter γ = 1 − 21− 1
k−λ

defined in the following remark.

We emphasize that the counterexample to the embedding is therefore given by a 
function that, up to a cutoff, only depends on k variables, where k is the smallest integer 
such that λ ≤ k.

Remark 1.4. The generalized Cantor set Cγ (see [9]) is obtained from the interval 
[−1/2, 1/2] by removing at iteration j = 1, 2, . . . the central interval of length γ lj−1
from each remaining segment of length lj−1 = ((1 − γ)/2)j−1; see Fig. 2 in Section 6. 
The usual Cantor set corresponds to γ = 1/3. The reason for our choice of γ is that the 
Hausdorff dimension of Cγ is

− log 2
log 1−γ

2
= k − λ ∈ (0, 1)

(see [9, Theorem 9.3]). In particular, letting λ range from k − 1 to k yields any fractal 
dimension between 0 and 1, and (1.9) somehow interpolates between the integer cases 
λ = k − 1 and λ = k.

Let us describe briefly how we found that p1 is the optimal exponent. In the case 
when λ is an integer, the hint came from the number p1 = λp/(λ − p), which can be 
thought of as the Sobolev exponent in dimension λ. It was natural then to choose the 
function (1.7), since it gives a counterexample for the Sobolev inequality in Rλ when 
q > λp/(λ − p) = p1 and the exponent α is chosen appropriately.

When λ ∈ Z, (1.7) is basically a negative power of the distance to a subspace of 
dimension n − λ. Therefore, when λ /∈ Z, a negative power of the distance to a set of 
Hausdorff dimension n −λ became a natural candidate to counterexample. This is what 
the function in (1.9) basically is, a power of the distance to Ck,λ ×Rn−k.

It may be of interest to recall here the solutions found by R. Schoen and S.-T. Yau 
in [12, Section 5] for nonlinear equations with critical exponent. They construct weak 
solutions which are singular on a Cantor set with fractional Hausdorff dimension; see [12, 
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Page 70]. Obviously, nonlinear equations with critical exponent are closely related to the 
Sobolev embedding. Another result on solutions with a singular set of Cantor type is due 
to Fonseca, Malý, and Mingione [10], a paper that concerns the minimizers of a certain 
scalar, convex, and regular Lagrangian.

The paper [2] by Adams and Lewis was brought to our attention after the completion of 
the current article. In [2], the authors proved that functions which satisfy an integrability 
condition of Morrey-Besov type belong also to a certain Lorentz space. In addition, they 
construct examples of functions to show that their embeddings are the best possible. The 
Morrey-Besov norm is a fractional Morrey-type condition involving the α-th difference 
quotients of a function, where 0 < α < 1. Thus, this concerns more exotic norms than 
the basic and standard ones that we treat. The authors of [2] mention the possibility 
that the ideas in their proof of [2, Theorem 3] could be extended from the case α ∈ (0, 1)
that they treat to the case α = 1 (and p = q in their paper). This is something that we 
have not explored. There could be the usual delicate issues taking limits of fractional 
integral norms as α → 1, or even simply the impossibility of taking this limit or adapting 
the proof for α = 1. However, if this could be done, it would show that actually q = p1
is the largest possible exponent in (1.1). On the other hand, it is not clear at all if their 
example would allow to recover our result on the optimal exponent for the embedding 
(1.5) concerning the “triple” norm.

Among radial functions, the optimal ranges of exponents in inequalities (1.1) and 
(1.5) are strictly larger than those of Theorems 1.1 and 1.3. This is the content of the 
following result, where we show that the exponent q can go up to q2. Interestingly, here 
the answer is different for the Morrey and the “triple” norms: we prove that (1.1) is false 
for q = p2 while (1.5) holds for this exponent. Here we can include the exponent p = 1.

Theorem 1.5. Let p, λ ∈ R satisfy 1 ≤ p < λ < n, and let p2 := np/(λ − p).

(a) For every 1 ≤ q < p2 and all radially symmetric C1 functions u vanishing on ∂B1(0), 
we have

‖u‖Lq(B1(0)) ≤ C ‖∇u‖Mp,λ(B1(0)), (1.10)

where C is a constant depending only on n, p, λ, and q. In addition, this embedding 
is false for q ≥ p2.

(b) For all radially symmetric C1 functions u with compact support in Rn, we have

‖u‖Lp2 (Rn) ≤ C ‖|∇u‖|p,λ;Rn , (1.11)

where C is a constant depending only on n, p, and λ. In addition, p2 is the optimal 
exponent in this inequality.

The paper is organized as follows. In Section 2, we prove a monotonicity result, 
Lemma 2.1, that we will use several times throughout the paper to optimize the lo-
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cation of the “singularities” y in the Morrey and “triple” norms, both in the radial and 
non-radial cases. In Section 3 we prove the embeddings for radial functions, Theorem 1.5. 
In Section 4 we provide for the reader’s convenience D.R. Adams’ [1] proof of Theorem 1.1
in the general case of non-radial functions. In Sections 5 and 6 we prove Theorem 1.3 on 
the optimality of the embeddings. We consider separately the case when λ is an integer 
in Section 5 (for its simplicity) and the case when λ is a non-integer in Section 6 (which 
is much more involved).

Notation. In the sequel B(m)
R (x) denotes the open ball in Rm of radius R centered at x. For 

simplicity, whenever m or x are omitted, we will consider m = n and x = 0 respectively. 
By C, we denote constants that may change from line to line. For points in Rn, we will 
write x = (x′, x′′) ∈ Rk ×Rn−k for k a positive integer specified from the context. Given 
a function u, u+ = max{u, 0} is its positive part. As mentioned before, we will denote 
p1 = λp/(λ −p) and p2 = np/(λ −p). For convenience, we will use the following standard 
notation for intervals: a(−b, b) + h = (h − ab, h + ab). Finally, dist (t, U) = infz∈U |t − z|
as usual.

2. On the location of the singularity in the “triple” norm

In this section we prove a monotonicity result that we will use several times in the 
sequel to study which locations of the “singularity” y make larger the integral in the 
“triple norm”

‖|∇u‖|pp,λ;Ω = sup
y∈Ω

∫
Ω

|∇u(x)|p |x− y|λ−n dx.

Lemma 2.1. Consider a domain Ω ⊂ Rn, convex in the e1 direction, and symmetric with 
respect to {z1 = 0}. Let J : Rn → R be given by

J(y) :=
∫
Ω

h(z)|z − y|−θ dz

with θ > 0 and h a non-negative function in Ω. Then:

(a) J is non-increasing with respect to y1 in {y1 ≥ supz∈Ω z1}, and non-decreasing with 
respect to y1 in {y1 ≤ infz∈Ω z1}.

(b1) Suppose that the non-negative function h satisfies that, for some η ∈ [0, supz∈Ω z1)
and every y1 ∈ [η, supz∈Ω z1),

h(z∗) ≥ h(z) for all z ∈ Ω ∩ {z1 ≥ y1},

where z∗ = (2y1 − z1, z′) ∈ R × Rn−1 is the reflection of z with respect to the 
hyperplane {z1 = y1}. Then, J is non-increasing with respect to y1 in {η ≤ y1 <

supz∈Ω z1}.
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Fig. 1. Monotonicity argument in the proof of Lemma 2.1.

(b2) On the other hand, if the non-negative function h is such that, for some η ∈
(infz∈Ω z1, 0] and every y1 ∈ (infz∈Ω z1, η],

h(z∗) ≥ h(z) for all z ∈ Ω ∩ {z1 ≤ y1}

with z∗ as before, then J is non-decreasing with respect to y1 in {infz∈Ω z1 < y1 ≤
η}.

Proof. Observe first that for every z ∈ Ω, the quantity |z−y| is increasing with respect to 
y1 in {y1 ≥ supz∈Ω z1}, and decreasing with respect to y1 in {y1 ≤ infz∈Ω z1}. Since h ≥ 0
and θ > 0, we deduce that J is non-increasing with respect to y1 in {y1 ≥ supz∈Ω z1}, 
and non-decreasing with respect to y1 in {y1 ≤ infz∈Ω z1}. This proves part (a).

Assume now that 0 ≤ η ≤ y1 < supz∈Ω z1 and compute

∂y1J(y) = θ

∫
Ω

h(z)(z1 − y1)|z − y|−θ−2 dz

= θ

{ ∫
Ω∩{z1≥y1}

h(z)(z1 − y1)|z − y|−θ−2 dz

+
∫

h(z)(z1 − y1)|z − y|−θ−2 dz

}
.

Ω∩{z1≤y1}
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For every z ∈ Ω ∩ {z1 ≥ y1}, let z∗ = (2y1 − z1, z′) be its reflection with respect to 
the hyperplane {z1 = y1}; see Fig. 1. Then, |z∗ − y| = |z − y|, while h(z∗) ≥ h(z) by 
hypothesis. Therefore, for every z ∈ Ω ∩ {z1 ≥ y1}, we have

h(z)(z1 − y1)|z − y|−θ−2 ≤ −h(z∗)(z∗1 − y1)|z∗ − y|−θ−2

and hence, using that h ≥ 0,

∫
Ω∩{z1≥y1}

h(z)(z1 − y1)|z − y|−θ−2 dz

≤ −
∫

(Ω∩{z1≥y1})∗
h(z)(z1 − y1)|z − y|−θ−2 dz

≤ −
∫

Ω∩{z1≤y1}

h(z)(z1 − y1)|z − y|−θ−2 dz.

Therefore, ∂y1J(y) ≤ 0 for all η ≤ y1 < supz∈Ω z1 and the conclusion in part (b1) 
follows. The statement for infz∈Ω z1 < y1 ≤ η in part (b2) follows from (b1) by reflec-
tion. �

3. The radial case: proof of Theorem 1.5

In this section we establish Theorem 1.5 on the embeddings for radial functions. In the 
proof we apply Lemma 2.1 (the monotonicity result proved in Section 2), which will also 
be used for the non-radial case in Section 6. We point out that the Sobolev inequalities 
with monomial weights established in [8] by Ros-Oton and the first author will be of 
great use.

Proof of Theorem 1.5. We structure the proof in four parts. In Part 1 we establish es-
timate (1.10), while in Part 2 we show that q < p2 is the optimal range of exponents 
for this estimate. In Part 3a we prove (1.11); here we will use the results of [8]. Part 3b 
provides an alternative proof of (1.11). Finally, we show in Part 4 that p2 is the largest 
exponent for which (1.11) holds.

Part 1. We proceed now to show estimate (1.10) for 1 ≤ q < p2. All the constants C
will depend only on n, p, λ, and q. On the one hand we have



10 X. Cabré, F. Charro / Advances in Mathematics 380 (2021) 107592
‖u‖qLq(B1(0)) = C

1∫
0

|u(r)|q rn−1 dr

≤ C

1∫
0

⎛
⎝ 1∫

r

|u′(s)| ds

⎞
⎠

q

rn−1 dr = C
∞∑
j=1

21−j∫
2−j

⎛
⎝ 1∫

r

|u′(s)| ds

⎞
⎠

q

rn−1 dr

≤ C

∞∑
j=1

21−j∫
2−j

⎛
⎝ 1∫

2−j

|u′(s)| ds

⎞
⎠

q

rn−1 dr = C
2n − 1

n

∞∑
j=1

2−jn

⎛
⎝ 1∫

2−j

|u′(s)| ds

⎞
⎠

q

.

Now, Hölder’s inequality yields

1∫
2−j

|u′(s)| ds =
j∑

i=1

21−i∫
2−i

|u′(s)| ds ≤
j∑

i=1
2−i p−1

p

⎛
⎜⎝

21−i∫
2−i

|u′(s)|p ds

⎞
⎟⎠

1
p

≤
j∑

i=1
2−i p−1

p +in−1
p

⎛
⎜⎝

21−i∫
2−i

|u′(s)|p sn−1 ds

⎞
⎟⎠

1
p

≤ C

j∑
i=1

2−i p−n
p

⎛
⎜⎝ ∫

B21−i (0)

|∇u(x)|p dx

⎞
⎟⎠

1
p

= C

j∑
i=1

2−i p−n
p +(1−i)n−λ

p

⎛
⎜⎝2(1−i)(λ−n)

∫
B21−i (0)∩B1(0)

|∇u(x)|p dx

⎞
⎟⎠

1
p

≤ C

j∑
i=1

2i
λ−p
p ‖∇u‖Mp,λ(B1(0)) ≤ C 2j

λ−p
p ‖∇u‖Mp,λ(B1(0)).

Therefore, we obtain

‖u‖qLq(B1(0)) ≤ C
∞∑
j=1

2j
q(λ−p)−np

p ‖∇u‖q
Mp,λ(B1(0)),

and the series is convergent since q < p2.

Part 2. In order to show that q < p2 is the optimal range of exponents in estimate 
(1.10), let q ≥ p2 and consider the function uα(x) = |x|−α − 1, extended by zero outside 
B1(0), with α = (λ − p)/p. Notice that uα vanishes on ∂B1(0) and that ‖uα‖Lq(B1(0)) =
∞, since n ≤ αq.
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To show that ‖∇uα‖Mp,λ(B1(0)) is finite, let y ∈ B1(0) and r > 0. Observe that we 
can write −y instead of y in the definition of the Morrey norm. Then,

∫
B1(0)∩Br(−y)

|∇uα(x)|p dx = C

∫
B1(0)∩Br(−y)

|x|−αp−p dx

≤ C

∫
Br(−y)

|x|−αp−p dx = C

∫
Br(0)

|z − y|−αp−p dz

by the change of variables z = x + y. Notice that, upon a rotation, we can assume 
y = y1e1 = (y1, 0, . . . , 0) with y1 ≥ 0. Denote

J(y1) =
∫

Br(0)

|z − y1e1|−αp−p dz.

We can now apply Lemma 2.1 (with η = 0 and h ≡ 1) and conclude that J is non-
increasing in [0, ∞). Therefore, J(y1) ≤ J(0) for all y1 ≥ 0.

As a consequence, we have that

rλ−n

∫
B1(0)∩Br(−y)

|∇uα(x)|p dx ≤ Crλ−n

r∫
0

sn−αp−p−1 ds ≤ C

independently of r, by our choice of α.

Part 3a. We give here a first proof of estimate (1.11). Recall that u has compact 
support. Since u is radial, it suffices to show that

⎛
⎝ ∞∫

0

|u(r)|
np

λ−p rn−1 dr

⎞
⎠

λ−p
np

≤ C

⎛
⎝ ∞∫

0

|u′(r)|p rλ−1 dr

⎞
⎠

1
p

. (3.1)

In fact, we are going to prove (3.1) with the best constant. For this, we perform the 
change of variables r = sa with a = p/(n − λ + p) and v(s) = u(sa) in the integrals on 
both sides of (3.1). We get

∞∫
0

|u(r)|
np

λ−p rn−1 dr = a

∞∫
0

|v(s)|
np

λ−p san−1 ds

and

∞∫
|u′(r)|p rλ−1 dr = a1−p

∞∫
|v′(s)|p san−1 ds.
0 0
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Observe that after the change of variables, both integrals are weighted by the same 
power an − 1 ≥ 0. In this way, (3.1) becomes a Bliss type inequality that was proved by 
Talenti [13]. From [13, Lemma 2] (or also from [8, Theorem 1.3] applied in dimension 1
with D = A1 + 1 = an) we obtain that

⎛
⎝ ∞∫

0

|v(s)|
np

λ−p san−1 ds

⎞
⎠

λ−p
np

≤ Cp

⎛
⎝ ∞∫

0

|v′(s)|p san−1 ds

⎞
⎠

1
p

,

with an explicit value of its best constant Cp. Inequality (3.1), and thus (1.11), is now 
established.

Moreover, it is also shown in [13, Lemma 2] (see also [8]) that when 1 < p < λ

the constant Cp is attained in W 1,p
0 (R, |s|an−1ds), the closure of C1

c (R) under the norm 
(
∫
R(|u|p + |∇u|p)|s|an−1ds)1/p, by the functions

v(s) =
(
c1 + c2|s|

p
p−1

) p−λ
n+p−λ

,

where c1, c2 > 0 are arbitrary constants. On the other hand, when p = 1, the constant 
C1 is not attained by any function in W 1,1

0 (R, |s|an−1ds). Note however, that knowing 
the best constant for (3.1) does not ensure that we know the best constant for (1.11). 
Indeed, for

uc1,c2(x) =
(
c1 + c2|x|

n+p−λ
p−1

) p−λ
n+p−λ

, c1, c2 > 0,

we have seen that

‖uc1,c2‖Lp2 (Rn) = C

∫
Rn

|∇uc1,c2(x)|p |x|λ−n dx

with the best constant C, but on the other hand we do not know if the supremum in the 
“triple norm” is attained at y = 0. That is, we do not know if

∫
Rn

|∇uc1,c2(x)|p |x|λ−n dx = ‖|∇uc1,c2‖|p,λ;Rn . (3.2)

The point here is that |∇uc1,c2 |p is zero at the origin, instead of blowing up as in the 
other cases that we consider in the paper. Therefore,

∫
|∇uc1,c2(x)|p |x− y|λ−n dx
Rn
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could perhaps be increasing in |y| in an interval near the origin, and then decrease to 0 
as |y| → ∞. In this setting, the reflection argument in the proof of Lemma 2.1 does not 
work and we cannot conclude (3.2) as before.

Part 3b. We will provide here an alternative proof of estimate (1.11). First, we establish 
the case p = 1 by proving

⎛
⎝ ∞∫

0

|u(r)| n
λ−1 rn−1 dr

⎞
⎠

λ−1
n

≤ C

∞∫
0

|u′(r)| rλ−1 dr (3.3)

for every λ ∈ (1, n). One can then deduce the general case applying (3.3) with (n(p −
1) + λ)/p instead of λ to the function ub with b = 1 + n(p − 1)/(λ − p). Note that 
1 < (n(p − 1) + λ)/p < n.

To show (3.3), notice that we can assume u ≥ 0. Furthermore, we can also assume 
that u is radially decreasing. This follows from [8, Proposition 4.2] (see also [14]) applied 
to inequality (3.3) after changing variables as in Part 3 in order to guarantee that both 
sides of the inequality are weighted by the same power. Now, on the one hand, the change 
of variables t = u(r) yields

∞∫
0

|u′(r)| rλ−1 dr = −
∞∫
0

u′(r) rλ−1 dr =
max(u)∫

0

ϕ(t)
λ−1
n dt (3.4)

for ϕ(t) =
∣∣{r : u(r) > t}

∣∣n. On the other hand, by Cavalieri’s principle

∞∫
0

u(r)
n

λ−1 rn−1 dr = 1
n

∞∫
0

n

λ− 1 t
n

λ−1−1ϕ(t) dt. (3.5)

We conclude by proving that

∞∫
0

q tq−1 ϕ(t) dt ≤

⎛
⎝ ∞∫

0

ϕ(t)
1
q dt

⎞
⎠

q

(3.6)

for every non-increasing function ϕ = ϕ(t) and every q > 1. Consequently, (3.3) will 
follow from (3.4), (3.5), and (3.6). To prove inequality (3.6), denote

F1(s) =
s∫

0

q tq−1 ϕ(t) dt and F2(s) =

⎛
⎝ s∫

0

ϕ(t)
1
q dt

⎞
⎠

q

,

and notice that F1(0) = F2(0), while
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F ′
2(s) = qϕ(s)

1
q

⎛
⎝ s∫

0

ϕ(t)
1
q dt

⎞
⎠

q−1

≥ qϕ(s)
1
q

(
sϕ(s)

1
q

)q−1
= q sq−1 ϕ(s) = F ′

1(s).

This establishes (3.6) and hence concludes the proof of (1.11).

Part 4. Finally, we show that p2 is the largest exponent for which (1.11) holds. Let 
q > p2 and consider the function uα(x) = (|x|−α − 1)+ with n/q ≤ α < (λ −p)/p. Notice 
that

‖uα‖qLq(Rn) =
∫

B1(0)

(
|x|−α − 1

)q
dx = C

1∫
0

(1 − rα)q rn−αq−1 dr = ∞,

by our choice of α.
On the other hand, we are going to see that ‖ |∇uα‖ |p,λ;Rn < ∞, thus contradicting 

the inequality. To prove this, we claim that y = 0 realizes the supremum in the definition 
of ‖ |∇uα‖ |p,λ;Rn , and hence

‖|∇uα‖|pp,λ;Rn =
∫

B1(0)

|∇uα(x)|p |x|λ−n dx = C

1∫
0

rλ−αp−p−1 dr < ∞,

since λ − αp − p > 0.
We conclude proving the claim by monotonicity. For y ∈ Rn, we have that

∫
B1(0)

|∇uα(x)|p |x− y|λ−n dx = αp

∫
B1(0)

|x|−αp−p |x− y|λ−n dx.

Notice that, upon a rotation, we can assume y = y1e1 = (y1, 0, . . . , 0). Denote

J(y1) =
∫

B1(0)

|x|−αp−p |x− y1e1|λ−n dx.

Since the function J is under the hypotheses of Lemma 2.1 (with η = 0), we conclude 
that J is non-increasing in [0, ∞), and therefore that J(y1) ≤ J(0) for all y1 ≥ 0. �
4. Embeddings in the general case: proof of Theorem 1.1

For the reader’s convenience, we provide in this section D.R. Adams’ proof of Theo-
rem 1.1, see [1, Theorem 3.1]. Recall that we consider a Lipschitz function u : Rn → R

with u ≡ 0 in Rn \B1(0), so that integrals in Rn and integrals in B1(0) coincide.
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Proof of Theorem 1.1. The proof is based on the following two claims,

|u(x)| ≤ C(I1|∇u|)(x), a.e. x. (4.1)

and

∣∣I1|∇u|
∣∣(x) ≤ C

(
Mλ/p|∇u|(x)

) p
λ
(
M0|∇u|(x)

)1− p
λ , (4.2)

where

I1f(x) :=
∫
Rn

f(y) |y − x|1−n dy

is the Riesz potential of f , and

Mβf(x) := sup
r>0

⎛
⎜⎝rβ−n

∫
Br(x)

|f(z)| dz

⎞
⎟⎠ , 0 ≤ β ≤ n

is the maximal function with parameter β.
Once (4.1) and (4.2) are established, we can finish the proof as follows. By Hölder’s 

inequality, we have

Mλ/p|∇u|(x) = sup
r>0

⎛
⎜⎝r

λ
p−n

∫
Br(x)

|∇u(z)| dz

⎞
⎟⎠

≤ C sup
r>0

⎛
⎜⎝rλ−n

∫
B1(0)∩Br(x)

|∇u(z)|p dz

⎞
⎟⎠

1
p

≤ C‖∇u‖Mp,λ(B1(0)).

(recall that u ≡ 0 in Rn \B1(0)). Then, (4.1) and (4.2) give

|u(x)| ≤ C
(
Mλ/p|∇u|(x)

) p
λ
(
M0|∇u|(x)

)1− p
λ ≤ C‖∇u‖

p
λ

Mp,λ(B1(0))
(
M0|∇u|(x)

)1− p
λ

almost everywhere. It follows that

‖u‖qLq(B1(0)) ≤ Cq ‖∇u‖
pq
λ

Mp,λ(B1(0))

∫
B1(0)

(
M0|∇u|(x)

) pq
p1 dx

≤ Cq ‖∇u‖
pq
λ

Mp,λ(B1(0)) |B1(0)|1−
q
p1 ‖M0|∇u|‖

pq
p1
Lp(B1(0)),

where we have applied Hölder’s inequality with exponents p1/(p1 − q) and p1/q.
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By the well-known Lp estimate for the maximal function M0 when p > 1, there exists 
a constant C depending only on n and p such that

‖M0|∇u|‖Lp(B1(0)) ≤ C‖∇u‖Lp(B1(0)),

and therefore

‖u‖Lq(B1(0)) ≤ C |B1(0)|
1
q− 1

p1 ‖∇u‖
p
λ+ p

p1
Mp,λ(B1(0)) ≤ C ‖∇u‖Mp,λ(B1(0))

with C depending only on n, p, and λ as desired.
Therefore, it remains to prove claims (4.1) and (4.2).
Consider first estimate (4.1). To prove it, notice that for σ ∈ Rn with |σ| = 1

|u(x)| =

∣∣∣∣∣∣−
∞∫
0

d

dr
u(x + rσ) dr

∣∣∣∣∣∣ ≤
∞∫
0

|∇u(x + rσ)| dr.

Then, integrating on σ we get

|u(x)| ≤ C

∞∫
0

∫
∂B1(0)

(
|∇u(x + rσ)|r1−n

)
rn−1 dσdr = C (I1|∇u|)(x)

and (4.1) is proved.
Next, consider estimate (4.2). We reproduce the argument in [1] to show that for a 

given function f with compact support in Rn, we have
∣∣I1f(x)

∣∣ ≤ C
(
Mλ/pf(x)

) p
λ
(
M0f(x)

)1− p
λ , (4.3)

where C depends only on n, p, and λ.
For f 
≡ 0, let δ > 0 to be determined later and set

I1f(x) =
∫
Rn

f(y) |y − x|1−n dy

=
∫

{y: |x−y|<δ}

f(y) |y − x|1−n dy +
∫

{y: |x−y|≥δ}

f(y) |y − x|1−n dy

= I + I ′.

Let

ak(x) = {y : 2kδ ≤ |x− y| < 2k+1δ} for k ∈ Z.

Then,
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|I| ≤
∞∑
k=1

∫
a−k(x)

|f(y)| |x− y|1−n dy

≤
∞∑
k=1

(
2−kδ

)1−n(2−k+1δ
)n

M0f(x) = 2nδM0f(x).

Similarly,

|I ′| ≤
∞∑
k=0

∫
ak(x)

|f(y)| |x− y|1−n dy

≤
∞∑
k=0

(
2kδ

)1−n(2k+1δ
)n−λ

p Mλ/pf(x) = Cδ1−λ
p Mλ/pf(x),

since p < λ. The choice

δ = δ(x) =
(
Mλ/pf(x)
M0f(x)

) p
λ

finally gives (4.3). �
5. Proof of Theorem 1.3 in the case when λ is an integer

In this section we prove Theorem 1.3 when λ is an integer. The argument is very 
simple. The case λ /∈ Z is the core of our paper and will be considered in Section 6.

As mentioned in the introduction, the choice of the counterexample when λ ∈ Z was 
hinted by the number p1 = λp/(λ −p), which can be thought of as the Sobolev exponent 
in dimension λ. Then, it is natural to choose a function that provides a counterexample 
for the Sobolev inequality in dimension λ and then look at this function embedded in 
the n-dimensional space. Namely, we take

u(x) =
(
|x′|−α − 2α

)
+ ξ(|x′′|), (5.1)

where x = (x′, x′′) ∈ Rλ × Rn−λ and ξ : R+ → [0, 1] is a cutoff function with ξ ≡ 1 in 
[0, 1/2) and ξ ≡ 0 in R+ \ [0, 

√
3/3). Note that clearly u has support in B1(0) ⊂ Rn.

The rest of the section is devoted to show the following result, which proves Theo-
rem 1.3 when λ is an integer.

Proposition 5.1. Let λ be an integer such that 1 < p < λ < n and assume that q > p1 :=
λp/(λ − p). Then, for u given by (5.1), we have that ‖u‖Lq(B1) = ∞ and ‖ |∇u‖ |p,λ;B1 <

∞ if

λ ≤ α <
λ− p

.

q p
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This proves the optimality of the range q ≤ p1 for (1.5) when λ ∈ Z, and in turn also 
for (1.1).

Proof. For every y ∈ B
(n)
1 we have that

∫
B

(n)
1

|∇u(x)|p |x− y|λ−n dx

≤ C

∫
B

(λ)
1

∫
B

(n−λ)
1

|x′|−αp−p |x− y|λ−n dx′′dx′

= C

∫
B

(λ)
1

|x′|−αp−p

∫
B

(n−λ)
1

(
1 +

(
|x′′ − y′′|
|x′ − y′|

)2
)λ−n

2

|x′ − y′|λ−n dx′′dx′,

for some constant C independent of y. The change of variables z = x′′−y′′

|x′−y′| yields

∫
B

(n−λ)
1

(
1 +

(
|x′′ − y′′|
|x′ − y′|

)2
)λ−n

2

|x′ − y′|λ−n dx′′

≤
∫

B
(n−λ)
2/|x′−y′|

(
1 + |z|2

)λ−n
2 dz = C

2
|x′−y′|∫
0

(
1 + r2)λ−n

2 rn−λ−1 dr

≤ C

2
|x′−y′|∫
0

max{1, r}λ−nrn−λ−1 dr ≤ C (1 + |log |x′ − y′||) .

Therefore, we have

∫
B

(n)
1

|∇u(x)|p |x− y|λ−n dx ≤ C

∫
B

(λ)
1

|x′|−αp−p (1 + |log |x′ − y′||) dx′.

We claim that the last integral is bounded uniformly in y′ ∈ B
(λ)
1 . To verify this, since 

|log |x′ − y′|| ≤ log 2 for x′ ∈ B
(λ)
1 \B1(y′) and λ − αp − p > 0, it suffices to control the 

integral over B1(y′). But then, calling z := y′ − x′, the integral becomes
∫
(λ)

h(z)|z − y′|−αp−p dz
B1
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with h(z) = 1 +|log |z|| = 1 −log |z| for z ∈ B
(λ)
1 . Now, since h is non-negative and radially 

decreasing in B(λ)
1 , we can apply Lemma 2.1 with η = 0 and conclude that the largest 

value of the integral corresponds to y′ = 0. But since we have assumed λ − αp − p > 0, 
the integral with y′ = 0 is finite.

On the other hand,

‖u‖qLq(B1) ≥
∫

B
(λ)
1/2

∫
B

(n−λ)
1/2

uq dx′′dx′

= C

∫
B

(λ)
1/2

(
|x′|−α − 2α

)q
dx′ = C

1
2∫

0

(
r−α − 2α

)q
rλ−1 dr

and the last integral is divergent since λ ≤ αq by hypothesis. �
6. Proof of Theorem 1.3 in the general case

In this section we conclude the proof of Theorem 1.3 by considering the case when λ
is not an integer.

Let us motivate first the case n − 1 < λ < n. As we have seen in Section 5, when λ is 
equal to n − 1 expression (5.1) provides a counterexample to the embedding (1.5) when 
q > p1, and therefore also to (1.1) in view of (1.4). On the other hand, when λ is equal to 
n the Morrey and triple norms coincide with the Sobolev norm and u(x) = (|x|−α − 2α)+
provides a counterexample to embedding (1.5) for q > p1 = p∗ (in this case (1.5) is simply 
the Sobolev embedding). In both cases the function that yields the counterexample is 
basically a negative power of the distance function, either to the origin in the case λ = n, 
or to a line when λ = n −1. Therefore, when λ is strictly between n −1 and n, a negative 
power of the distance to a fractal set of non-integer dimension n −λ is a natural candidate 
to be a counterexample to inequality (1.5).

Let us describe precisely the functions that provide the counterexample. When n −1 <
λ < n, we consider

uα,n(x) =
(
dist(x, Cn,λ)−α − 4α

)
+ (6.1)

for Cn,λ = {0} × Cγ ⊂ Rn−1 × [−1/2, 1/2], where Cγ is a generalized Cantor set with 
parameter

γ = 1 − 21− 1
n−λ ∈ (0, 1). (6.2)

The generalized Cantor set Cγ (see [9]) is obtained from the interval [−1/2, 1/2] by 
removing at iteration j = 1, 2, . . . the central interval of length γ lj−1 from each remaining 
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−1
2

1
2−γ

2
γ
2

Fig. 2. Construction of the generalized Cantor set Cγ .

segment of length lj−1 =
(
(1 − γ)/2

)j−1; see Fig. 2. A precise expression for Cγ is given 
later in (6.8), (6.9), and (6.10). The usual Cantor set corresponds to γ = 1/3.

The reason for our choice of γ in (6.2) is that the Hausdorff dimension of Cγ is

− log 2
log 1−γ

2
= n− λ

(see [9, Theorem 9.3]). Thus, letting λ vary between n − 1 and n yields any fractal 
dimension between 0 and 1. In particular, (6.1) somehow interpolates the integer cases 
λ = n − 1 and λ = n.

Note that uα,n has support in B(n)
3/4(0). Indeed, if y ∈ Cn,λ then |y| ≤ 1/2, and thus 

|x − y| ≥ 1/4 if |x| ≥ 3/4; in particular dist(x, Cn,λ) ≥ 1/4 and uα,n(x) = 0.
In the case when k− 1 < λ < k for some integer k ∈ {2, . . . , n − 1} we embed into Rn

the counterexample in Rk by means of an appropriate cutoff function (as we did in the 
previous section when λ ∈ Z). In this way, we reduce the proof to the case n −1 < λ < n. 
More precisely, we consider

uα(x) = uα,k(x′) ξ(|x′′|) if k < n, (6.3)

where x = (x′, x′′) ∈ Rk ×Rn−k, uα,k is given by (6.1) with n replaced by k, i.e.,

uα,k(x′) =
(
dist(x′, Ck,λ)−α − 4α

)
+ , (6.4)

and ξ : R+ → [0, 1] is a cutoff function with ξ ≡ 1 in [0, 1/2) and ξ ≡ 0 in R+ \ [0, 
√

3/3). 
Note that if uα(x) 
= 0 then necessarily |x′| ≤ 3/4 and |x′′| ≤

√
3/3; thus |x| < 1.

The rest of the section is devoted to proving the following result, which together with 
Proposition 5.1 completes the proof of Theorem 1.3.
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Theorem 6.1. Let p, λ, q ∈ R be such that 1 < p < λ < n, k− 1 < λ < k for some integer 
k ∈ {2, . . . , n}, and q ≥ 1. Consider

uα(x) =

⎧⎨
⎩

(
dist(x, Cn,λ)−α − 4α

)
+ if k = n

(
dist(x′, Ck,λ)−α − 4α

)
+ ξ(|x′′|) if k ∈ {2, . . . , n− 1},

with x = (x′, x′′) ∈ Rk ×Rn−k, ξ : R+ → [0, 1] a cutoff function as described after (6.4), 
and Ck,λ a set of Hausdorff dimension k − λ given by

Ck,λ = {0} × Cγ ⊂ Rk−1 × [−1/2, 1/2],

where Cγ ⊂ [−1/2, 1/2] is a generalized Cantor set with parameter γ = 1 − 21− 1
k−λ . 

Then,

‖uα‖Lq(B(n)
1 ) = ∞ and ‖|∇uα‖|p,λ;B(n)

1
< ∞

if

λ

q
≤ α <

λ− p

p
. (6.5)

This proves the optimality of the range q ≤ p1 = λp/(λ − p) for inequality (1.5), and in 
turn also for (1.1).

The proof of Theorem 6.1 is divided into two parts. In the first part we reduce the 
computations from dimension n to dimension k with a similar argument to the one in 
the proof of Proposition 5.1. More precisely we will show, for uα,k given by (6.4), that

‖|∇uα‖|p,λ;B(n)
1

≤ C ‖|∇uα,k‖|p,λ;B(k)
1

and

‖uα‖Lq(B(n)
1 ) ≥ C−1‖uα,k‖Lq(B(k)

1 ),

for some constant C, and hence that it is enough to study the case k = n taking 
uα = uα,n. In the second part of the proof we will show that (6.5) leads to

‖uα,n‖Lq(B(n)
1 ) = ∞ and ‖|∇uα,n‖|p,λ;B(n)

1
< ∞,

as desired; this part is the content of the following two propositions.

Proposition 6.2. Let λ, q ∈ R be such that λ > n − 1 and q ≥ 1. Consider uα,n given by 
(6.1) with α such that λ ≤ αq. Then, ‖uα,n‖ q (n) = ∞.
L (B1 )
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Proposition 6.3. Let λ, p ∈ R be such that n − 1 < λ < n, p > 1 and consider uα,n given 
by (6.1) with α > 0 satisfying

α <
λ− p

p
. (6.6)

Then,

‖|∇uα,n‖|p
p,λ;B(n)

1
:= sup

y∈B
(n)
1

∫
B

(n)
1

|∇uα,n(x)|p |x− y|λ−n dx < ∞.

Let us now prove Theorem 6.1 assuming Propositions 6.2 and 6.3, which will be 
established afterwards.

Proof of Theorem 6.1. Since Propositions 6.2 and 6.3 yield the result when k = n, let 
us assume k < n. Let y ∈ B

(n)
1 . By (6.3) and (6.4) we have

|∇uα(x)| ≤ C
(
|∇uα,k(x′)| + uα,k(x′)

)
≤ C|∇uα,k(x′)|

for almost every x ∈ B
(n)
1 , where we have used that the modulus of the gradient of a 

distance function is equal to 1 a.e. Therefore,

∫
B

(n)
1

|∇uα(x)|p |x− y|λ−n dx ≤ C

∫
B

(k)
1

∫
B

(n−k)
1

|∇uα,k(x′)|p |x− y|λ−n dx′′dx′

= C

∫
B

(k)
1

|∇uα,k(x′)|p |x′ − y′|λ−k

∫
B

(n−k)
1

(
1 +

(
|x′′ − y′′|
|x′ − y′|

)2
)λ−n

2

|x′ − y′|k−n dx′′dx′.

The change of variables z = x′′−y′′

|x′−y′| yields

∫
B

(n−k)
1

(
1 +

(
|x′′ − y′′|
|x′ − y′|

)2
)λ−n

2

|x′ − y′|k−n dx′′ ≤
∫

B
(n−k)
2/|x′−y′|

(
1 + |z|2

)λ−n
2 dz

= C

2
|x′−y′|∫
0

(
1 + r2)λ−n

2 rn−k−1 dr ≤ C

2
|x′−y′|∫
0

max{1, r}λ−n rn−k−1 dr

= C

⎛
⎜⎝

1∫
0

rn−k−1 dr +

2
|x′−y′|∫
1

rλ−k−1 dr

⎞
⎟⎠ ≤ C
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independently of y. Therefore,∫
B

(n)
1

|∇uα(x)|p |x− y|λ−n dx

≤ C sup
y′∈B

(k)
1

∫
B

(k)
1

|∇uα,k(x′)|p |x′ − y′|λ−k dx′ = C ‖|∇uα,k‖|p,λ;B(k)
1

,

and Proposition 6.3 applied in Rk, i.e., with n replaced by k, yields ‖ |∇uα‖ |
p,λ;B(n)

1
< ∞.

On the other hand,

‖uα‖q
Lq(B(n)

1 )
=

∫
B

(k)
3/4

uq
α,k(x

′)
∫

B
(n−k)√

3/3

ξq(|x′′|) dx′′dx′ = C ‖uα,k‖q
Lq(B(k)

3/4)
,

which is infinite by Proposition 6.2 applied with n = k, since (as we pointed out) uα,k

given by (6.4) has support in B
(k)
3/4. �

We devote the rest of the section to the proofs of Propositions 6.2 and 6.3. In the 
sequel we assume

n− 1 < λ < n.

Recall that

uα,n(x) =
(
dist(x, Cn,λ)−α − 4α

)
+ (6.7)

for Cn,λ = {0} × Cγ ⊂ Rn−1 × [−1/2, 1/2], where Cγ is the generalized Cantor set with 
parameter γ = 1 − 21− 1

n−λ defined in the beginning of this section. We have

[
−1

2 ,
1
2

]
\ Cγ :=

∞⋃
l=1

2l−1⋃
m=1

Gl,m, (6.8)

where the union is disjoint and Gl,m are the 2l−1 gap-intervals introduced in generation l, 
namely2

Gl,m =
(

1 − γ

2

)l−1 (
−γ

2 ,
γ

2

)
+ hl,m

=
(
hl,m − γ

2

(
1 − γ

2

)l−1

, hl,m + γ

2

(
1 − γ

2

)l−1
)
,

(6.9)

2 We will not need the following precise expression for the gaps, but only to understand their size and 
self-similar structure.
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where

hl,m = −1
2 + 1

2

(
1 − γ

2

)l−1

+ 1 + γ

2

l−1∑
j=1

cj

(
1 − γ

2

)j−1

. (6.10)

Here cj ∈ {0, 1} for all j = 1, . . . , l − 1, and the index m ∈ {1, 2, . . . , 2l−1} runs through 
all possible choices of the coefficients c1c2 . . . cl−1; see Fig. 2 above.

As a consequence of (6.8), we have that Cγ is a compact set of Lebesgue mea-
sure 0. In addition, the set Cγ is self-similar, that is, Cγ = S1(Cγ) ∪ S2(Cγ) where 
S1(t) = (1 − γ)t/2 − (1 +γ)/4 and S2(t) = (1 −γ)t/2 +(1 +γ)/4. Finally, the Hausdorff 
dimension of Cγ is − log 2/ log((1 − γ)/2)), see [9, Theorem 9.3]. Notice that we have 
chosen γ = 1 − 21− 1

n−λ such that the Hausdorff dimension of Cγ is n − λ.

6.1. Proof of Proposition 6.2: computation of the Lq norm

In this subsection we provide the proof of Proposition 6.2.

Proof of Proposition 6.2. Recall that Cn,λ = {0} × Cγ ⊂ Rn−1 × [−1/2, 1/2]. We will 
denote x = (x′, x′′) ∈ Rn−1 ×R. Since Cγ has zero Lebesgue measure, (6.8) leads to

‖uα,n‖q
Lq(B(n)

1 )
≥

1
2∫

− 1
2

∫
B

(n−1)
1/4

(
dist(x, Cn,λ)−α − 4α

)q
+ dx′dx′′

=
∞∑
l=1

2l−1∑
m=1

∫
Gl,m

∫
B

(n−1)
1/4

(
dist(x, Cn,λ)−α − 4α

)q
+ dx′dx′′,

where Gl,m are given by (6.9) and (6.10).
An affine change of variables x′ =

( 1−γ
2

)l−1
t′, x′′ =

( 1−γ
2

)l−1
t′′ + hl,m and the 

self-similarity of Cn,λ yield
∫

Gl,m

∫
B

(n−1)
1/4

(
dist(x, Cn,λ)−α − 4α

)q
+ dx′dx′′

=
(

1 − γ

2

)(n−αq)(l−1)
γ
2∫

− γ
2

∫
{
|t′|≤ 1

4

(
2

1−γ

)l−1
}

(
dist(t, Cn,λ)−α −

(
1 − γ

2

)α (l−1)

4α
)q

+

dt′dt′′

≥
(

1 − γ

2

)(n−αq)(l−1)
γ
2∫

− γ
2

∫
B

(n−1)

(
dist(t, Cn,λ)−α − 4α

)q
+ dt′dt′′
1/4
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for each m ∈ {1, . . . , 2l−1}. Therefore, adding these 2l−1 integrals of generation l, and 
then summing in l, we have

‖uα,n‖q
Lq(B(n)

1 )
≥

∞∑
l=1

(
2
(

1 − γ

2

)n−αq
)l−1

γ
2∫

− γ
2

∫
B

(n−1)
1/4

(
dist(t, Cn,λ)−α − 4α

)q
+ dt′dt′′.

Since the integral on the right-hand side is positive, it is enough to show that the series 
diverges. This happens whenever

2
(

1 − γ

2

)n−αq

≥ 1,

which by our choice of γ is equivalent to

n− αq ≤ − log 2
log 1−γ

2
= n− λ.

This inequality holds by hypothesis. �
6.2. Proof of Proposition 6.3: bound for the “triple norm”

The proof of Proposition 6.3 has two parts. The first one (Lemma 6.6 below) shows 
that in order to bound the triple norm of ∇uα,n, it suffices to only consider points 
y ∈ {0} × [−1/2, 1/2], instead of the full B1

(n). More precisely, we prove that

‖|∇uα,n‖|p
p,λ;B(n)

1
≤ C sup

y′=0,|y′′|≤ 1
2

1
2∫

− 1
2

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′.

(6.11)

Since Cγ has zero Lebesgue measure, by (6.8) we can write the outer integral on the 
right-hand side of (6.11) as an infinite sum of integrals over the disjoint gap-intervals 
Gl,m of decreasing size.

The second part of the proof of Proposition 6.3, and crucial point in the argument, is 
how to estimate these integrals in terms of the size of the gaps in such a way that the 
series converges. Here, there are two cases to be considered according to the position of 
the singularity y relative to a given gap: the case when y lies on the closure of a gap (and 
hence the function x �→ |x − y|λ−n is singular), and the case when the gap is uniformly 
away from y (and hence |x − y|λ−n can be bounded above and factored out from the 
integral). We deal with these two cases in Lemmas 6.4 and 6.5 respectively.
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Lemma 6.4. Let G = ((1 − γ)/2)l−1 (−γ/2, γ/2) + h for some l ≥ 1 and h ∈ R of the 
form (6.10) (i.e. G is a gap-interval introduced in generation l). Assume y ∈ {0} × G

and λ − αp − p > 0. Then, we have that
∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C

((
1 − γ

2

)(λ−αp−p)(l−1)

+ l

(
1 − γ

2

)l−1
) (6.12)

for a constant C depending only on n, p, λ, and α.

Proof. Denote a = (γ/2) ((1 − γ)/2)l−1 so that G = (−a, a) + h. To relate dist(x, Cn,λ)
and |x − y| we consider the midpoints between y′′ and h + a, and between y′′ and h − a. 
In this way, we have the bound

∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤
h+a∫

y′′+h+a
2

∫
B

(n−1)
1/4

dist(x, Cn,λ)λ−n−αp−p dx′dx′′

+

y′′+h+a
2∫

y′′+h−a
2

∫
B

(n−1)
1/4

|x− y|λ−n−αp−p dx′dx′′ (6.13)

+

y′′+h−a
2∫

h−a

∫
B

(n−1)
1/4

dist(x, Cn,λ)λ−n−αp−p dx′dx′′ = I1 + I2 + I3.

Let us estimate I1 first. For this, notice that whenever x′′ ∈ G, we have

dist(x, Cn,λ)2 = |x′|2 + min
{
(h + a− x′′)2, (x′′ − h + a)2

}
. (6.14)

Therefore,

I1 =
h+a∫

y′′+h+a
2

∫
B

(n−1)
1/4

(
|x′|2 + (h + a− x′′)2

)λ−n−αp−p
2 dx′dx′′

and a change to cylindrical coordinates and the change of variables t = h + a − x′′ yield
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I1 = C

h+a−y′′
2∫

0

1
4∫

0

(
r2 + t2

)λ−n−αp−p
2 rn−2 drdt. (6.15)

Similarly,

I3 = C

0∫
h−a−y′′

2

1
4∫

0

(
r2 + t2

)λ−n−αp−p
2 rn−2 drdt. (6.16)

On the other hand, since y′ = 0, we have

I2 =

y′′+h+a
2∫

y′′+h−a
2

∫
B

(n−1)
1/4

(
|x′|2 + (x′′ − y′′)2

)λ−n−αp−p
2 dx′dx′′

= C

y′′+h+a
2∫

y′′+h−a
2

1
4∫

0

(
r2 + (x′′ − y′′)2

)λ−n−αp−p
2 rn−2 drdx′′ (6.17)

= C

h+a−y′′
2∫

h−a−y′′
2

1
4∫

0

(
r2 + t2

)λ−n−αp−p
2 rn−2 drdt,

after applying a change to cylindrical coordinates and the change of variables t = x′′−y′′.
Then, (6.13) and (6.15)–(6.17), and the change of variables z1 = 2t − h + y′′, z2 = 2r

give

∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ 2C

h+a−y′′
2∫

h−a−y′′
2

1
4∫

0

(
r2 + t2

)λ−n−αp−p
2 rn−2 drdt

= C 21−λ+αp+p

a∫
−a

1
2∫

0

(
(z1 + h− y′′)2 + z2

2
)λ−n−αp−p

2 zn−2
2 dz2dz1

= C 21−λ+αp+p J(y′′ − h, 0),

for
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J(y) =
a∫

−a

1
2∫

0

|z − y|λ−n−αp−pzn−2
2 dz2dz1.

Here we can apply Lemma 2.1 in dimension 2, with Ω = [−a, a] ×[0, 1/2], θ = n −λ +αp +p, 
h(z) = zn−2

2 , and η = 0. Therefore, J is non-increasing with respect to y1 in [0, ∞), and 
non-decreasing with respect to y1 in (−∞, 0]. In particular, J(y′′−h, 0) ≤ J(0), with an 
equality for y′′ = h. We conclude

∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C 21−λ+αp+p

a∫
−a

1
2∫

0

(
z2
1 + z2

2
)λ−n−αp−p

2 zn−2
2 dz2dz1

(6.18)

independently of y.
We estimate now the integral on the right-hand side of (6.18) by applying the change 

of variables x1 = z1, z2 = |x1|x2

a∫
−a

1
2∫

0

(
z2
1 + z2

2
)λ−n−αp−p

2 zn−2
2 dz2dz1

=
a∫

−a

|x1|λ−αp−p−1

1
2|x1|∫
0

(
1 + x2

2
)λ−n−αp−p

2 xn−2
2 dx2dx1.

Notice that |x1| < a < 1/2, and therefore we can use 1 + x2
2 ≥ max{1, x2

2} to show that

1
2|x1|∫
0

(
1 + x2

2
)λ−n−αp−p

2 xn−2
2 dx2 ≤

1∫
0

xn−2
2 dx2 +

1
2|x1|∫
1

xλ−αp−p−2
2 dx2.

Assume first that λ − αp − p 
= 1 and recall that λ − αp − p > 0 by hypothesis. Then,
∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C

a∫
0

xλ−αp−p−1
1

(
1 + x−λ+αp+p+1

1

)
dx1 ≤ C

(
aλ−αp−p + a

)
.

On the other hand, if λ − αp − p = 1, then



X. Cabré, F. Charro / Advances in Mathematics 380 (2021) 107592 29
∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C

a∫
0

(1 − log 2x1) dx1 ≤ C (a + a| log a|) .

In both cases,

∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′ ≤ C
(
aλ−αp−p + a(1 + | log a|)

)

and the lemma is proved. �

The following lemma will allow us to control the triple norm when y belongs to a gap 
different from G. Notice that the exponents on the right-hand side of the estimate are 
different in Lemmas 6.4 and 6.5.

Lemma 6.5. Let G = ((1 − γ)/2)l−1 (−γ/2, γ/2) + h for some l ≥ 1 and h ∈ R of the 
form (6.10) (i.e. G is a gap-interval introduced in generation l). Assume n −αp − p > 0. 
Then, we have that

∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p dx′dx′′

≤ C

((
1 − γ

2

)(n−αp−p)(l−1)

+ l

(
1 − γ

2

)l−1
)

for a constant C depending only on n, p, and α.

Proof. Let a = (γ/2) ((1 − γ)/2)l−1 so that G = (−a, a) + h. Using cylindrical coordi-
nates and (6.14), we have
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∫
G

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p dx′dx′′

= C

( h+a∫
h

1
4∫

0

(
r2 + (h + a− x′′)2

)−αp−p
2

rn−2 drdx′′

+
h∫

h−a

1
4∫

0

(
r2 + (x′′ − h + a)2

)−αp−p
2

rn−2 drdx′′
)

= 2C
a∫

0

1
4∫

0

(
r2 + (z′′)2

)−αp−p
2

rn−2 drdz′′.

Notice that this integral is of the same type as the one in the right-hand side of (6.18), 
taking λ = n there. It is now easy to check that one can proceed as in the final part of 
Lemma 6.4 (taking λ = n there) and complete the proof. �

As mentioned before, the following lemma will also be used in the first part of the 
proof of Proposition 6.3 in order to show that to bound the supremum in the definition 
of ‖ |∇uα,n‖ |

p,λ;B(n)
1

, it suffices to take y ∈ {0} × [−1/2, 1/2].

Lemma 6.6. Let uα,n be given by (6.7). Then,

‖|∇uα,n‖|p
p,λ;B(n)

1
= sup

y∈B
(n)
1

∫
B

(n)
1

|∇uα,n(x)|p |x− y|λ−n dx

≤ C sup
y′=0,|y′′|≤ 1

2

1
2∫

− 1
2

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′ (6.19)

for some constant C depending only on n, p, and α.

We postpone the proof of Lemma 6.6 until the end of the section and proceed instead 
with the proof of Proposition 6.3. The idea is to “cluster” the gaps according to their 
distance from y, and then use Lemmas 6.4 and 6.5.

Proof of Proposition 6.3. As a result of Lemma 6.6 we can assume that y′ = 0 and 
y′′ ∈ [−1/2, 1/2]. To simplify the argument below, by Fatou’s lemma we may assume 
that y′′ is not the midpoint of any gap Gl,m given by (6.9) and (6.10).
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y′′

G1,1 G2,1G3,1

j = 0 j = 1j = 2

Fig. 3. Gaps up to generation l = 4, classified according to (6.21).

Each generation l ≥ 1 introduces 2l−1 gaps Gl,m, and we can write

1
2∫

− 1
2

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

=
∞∑
l=1

2l−1∑
m=1

∫
Gl,m

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′.

(6.20)

Recall that the length of the gap Gl,m is γ ((1 − γ)/2)l−1.
We classify the 2l−1 gaps of generation l ≥ 2 according to their distance from y′′ as 

follows (see Figs. 2 and 3):

(1) We split (−1/2, 1/2) into two halves, and notice that there are exactly 2l−2 gaps of 
generation l in each half. We denote the gaps on the half-interval which does not 
contain y′′ by G0

l,m, with m = 1, 2, . . . , 2l−2. Since half of G1,1 = (−γ/2, γ/2) lies 
between any of these gaps and y′′, and the length of G1,1 is γ, we have that

dist(y′′, G0
l,m) ≥ γ

2 .

(2) The 2l−2 gaps remaining from step 1 are contained in an interval I of length (1 −γ)/2. 
To this interval we apply the procedure in step 1, splitting I into two halves. Notice 
that there are exactly 2l−3 gaps of generation l in each half. We denote the gaps on 
the half-interval that is farthest from y′′ by G1

l,m (recall that y′′ is not the center of 
the full interval I), with m = 1, 2, . . . , 2l−3. These gaps satisfy

dist(y′′, G1
l,m) ≥ γ

2
1 − γ

2 .

(3) Iterating this procedure, at each step j we find exactly 2l−2−j gaps of generation l, 
denoted by Gj

l,m with m = 1, 2, . . . , 2l−2−j . They satisfy

dist(y′′, Gj
l,m) ≥ γ

(
1 − γ

)j

. (6.21)
2 2
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(4) We continue the iteration until j = l−2, which starts with only two gaps of generation 
l left. The farthest from y′′, denoted by Gl−2

l,1 , satisfies (6.21) with j = l− 2. On the 
other hand, we denote the gap closest to y′′ by Gl,1.

Summarizing, among the 2l−1 gaps of generation l we have selected one, called Gl,1, in 
step 4. The gap Gl,1 is the closest to y′′ among those in generation l. The remaining 2l−1−
1 gaps have been clustered into l−1 families {G0

l,m}m, . . . , {Gj
l,m}m, . . . , {Gl−2

l,m}m, where 
the j-th family contains 2l−2−j gaps of generation l which, in addition, satisfy (6.21).

With this classification, we have

∞∑
l=1

2l−1∑
m=1

∫
Gl,m

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

=
∞∑
l=1

∫
Gl,1

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

+
∞∑
l=2

l−2∑
j=0

2l−2−j∑
m=1

∫
Gj

l,m

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′.

(6.22)

There are two cases to study in the sequel since integrals over Gl,1 and Gj
l,m are 

qualitatively different. The key difference is that (6.21) allows us to control |x − y|
from below and the integrals over Gj

l,m become independent of y. Thus, we can apply 
Lemma 6.5 to them. This is not possible for integrals over the gaps Gl,1.

For the integrals over a gap Gl,1, if y′′ ∈ Gl,1 then we can apply Lemma 6.4 directly. 
Instead, if y′′ /∈ Gl,1, we move y′′ to the closest boundary point of Gl,1 from y′′, and 
with this procedure the integral becomes larger (since all the distances from points in 
B

(n−1)
1/4 × Gl,1 decrease). With this new point y′′ the integral can be bounded using 

Lemma 6.4.
In fact, when we assume y′′ ∈ Gl,1 Lemma 6.4 yields

∞∑
l=1

∫
Gl,1

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C
∞∑
l=1

((
1 − γ

2

)(λ−αp−p)(l−1)

+ l

(
1 − γ

2

)l−1
)

≤ C,

(6.23)

uniformly in y, since (1 − γ)/2 < 1 and λ − αp − p > 0 by hypothesis (6.6).
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On the other hand, given a gap Gj
l,m, by (6.21) we have

∫
Gj

l,m

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C

(
1 − γ

2

)(λ−n) j ∫
Gj

l,m

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p dx′dx′′.

Then, Lemma 6.5 leads to
∫

Gj
l,m

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C

((
1 − γ

2

)(λ−n) j+(n−αp−p)(l−1)

+ l

(
1 − γ

2

)(λ−n) j+l−1
)

uniformly in m. Observe that by our choice of γ, we have 
(1−γ

2
)λ−n = 2 and thus

∞∑
l=2

l−2∑
j=0

2l−2−j∑
m=1

∫
Gj

l,m

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C
∞∑
l=2

l−2∑
j=0

2l−2−j

((
1 − γ

2

)(λ−n) j+(n−αp−p)(l−1)

+ l

(
1 − γ

2

)(λ−n) j+l−1
)

= C

2

∞∑
l=2

l−2∑
j=0

((
1 − γ

2

)(λ−αp−p)(l−1)

+ l

(
1 − γ

2

)(λ−n+1) (l−1)
)

= C

2

∞∑
l=2

(
(l − 1)

(
1 − γ

2

)(λ−αp−p)(l−1)

+ l(l − 1)
(

1 − γ

2

)(λ−n+1) (l−1)
)

≤ C,

(6.24)

uniformly in y, since (1 − γ)/2 < 1, λ − αp − p > 0, and λ > n − 1 by hypothesis.
Then, (6.20), (6.22), (6.23), and (6.24) give

1
2∫

− 1
2

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′ ≤ C

uniformly in y, and the proof is complete. �
We conclude the article with the proof of Lemma 6.6.
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Proof of Lemma 6.6. Note first that the support of uα,n, given by (6.7), is included in 

B
(n−1)
1/4 × [−1, 1]. Hence, for any given y ∈ B

(n)
1 we have

∫
B

(n)
1

|∇uα,n(x)|p |x− y|λ−n dx ≤ C

1∫
−1

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′,

where we have used that the modulus of the gradient of a distance function is equal to 
1 a.e. Then, our goal is to show that

sup
y∈B

(n)
1

1∫
−1

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤ C sup
y′=0,|y′′|≤ 1

2

1
2∫

− 1
2

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′,

from which (6.19) follows.
First we will prove that the supremum over y ∈ B

(n)
1 is bounded by the supremum 

over the axis, i.e., y ∈ {0} × [−1, 1]. Then, that it actually suffices that |y′′| ≤ 1/2 instead 
of |y′′| ≤ 1, and finally that it is enough to integrate x′′ over [−1/2, 1/2] instead of the 
whole [−1, 1]. In doing these we will use twice the monotonicity result in Lemma 2.1.

Therefore, consider y ∈ B
(n)
1 , and let us show that

J1(y) :=
1∫

−1

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′ ≤ J1(0, y′′),

where y = (y′, y′′) ∈ B
(n)
1 , and thus y′′ ∈ [−1, 1]. In fact, upon a rotation in the x′

variables, we can assume that y′ = (y1, 0) ∈ R × Rn−2 with y1 ≥ 0. Hence, we are 
under the hypotheses of Lemma 2.1 with Ω = B

(n−1)
1/4 × [−1, 1], h(z) = dist(z, Cn,λ)−αp−p

(which is non-increasing with respect to z1 in {z1 ≥ 0}), θ = n −λ, and η = 0. Therefore, 
Lemma 2.1 gives that J1 is non-increasing with respect to y1 in [0, ∞). Hence we conclude 
that J1(y) ≤ J1(0, y′′), as desired.

A similar argument shows that we just need to consider the case |y′′| ≤ 1/2 instead 
of |y′′| ≤ 1. In fact, define

J2(y′′) :=
1∫

−1

∫
B

(n−1)

dist(x, Cn,λ)−αp−p
(
|x′|2 + (x′′ − y′′)2

)λ−n
2

dx′dx′′
1/4



X. Cabré, F. Charro / Advances in Mathematics 380 (2021) 107592 35
�

�

���
����

�

�

x′′

|x′|

x

x∗

y′′
1

1
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−1

Fig. 4. Monotonicity argument for J2 in the proof of Lemma 6.6.

and assume |y′′| ≥ 1/2. By symmetry, we can assume y′′ ≥ 1/2. In order to apply 
Lemma 2.1, we take x′′ as the direction e1 which is “privileged” in the lemma, while 
the rest of the hypotheses are fulfilled for (z′′, z′) ∈ Ω = [−1, 1] × B

(n−1)
1/4 , h(z′′, z′) =

dist((z′, z′′), Cn,λ)−αp−p (which is non-increasing with respect to z′′ in {z′′ ≥ 1/2}), 
θ = n − λ, and η = 1/2, since the set Cn,λ is contained in {0} × [−1/2, 1/2] (see Fig. 4). 
Then, Lemma 2.1 gives that J2(y′′) is non-increasing with respect to y′′ in [1/2, ∞), and 
therefore it is enough to study the case y′′ ≤ 1/2. The case y′′ ≤ −1/2 follows similarly 
by taking η = −1/2 in the lemma.

Finally, let y = (0, y′′) with |y′′| ≤ 1/2. Notice that for every x ∈ B
(n−1)
1/4 × [1/2, 1] and 

its reflected x∗ with respect to {x′′ = 1/2}, we have |x∗−y| ≤ |x −y| and dist(x∗, Cn,λ) ≤
dist(x, Cn,λ), which give

dist(x, Cn,λ)−αp−p |x− y|λ−n ≤ dist(x∗, Cn,λ)−αp−p |x∗ − y|λ−n.

This leads to

1∫
1
2

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′

≤

1
2∫

0

∫
B

(n−1)

dist(x, Cn,λ)−αp−p |x− y|λ−n dx′dx′′,
1/4
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and similarly for the integral over B(n−1)
1/4 × [−1, −1

2 ]. Therefore,

1∫
−1

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p
(
|x′|2 + (x′′ − y′′)2

)λ−n
2

dx′dx′′

≤ 2

1
2∫

− 1
2

∫
B

(n−1)
1/4

dist(x, Cn,λ)−αp−p
(
|x′|2 + (x′′ − y′′)2

)λ−n
2

dx′dx′′,

which completes the proof of the lemma. �
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