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Abstract
In this paper, we discuss the embedding problem for centrosymmetric matrices, which
are higher order generalizations of the matrices occurring in strand symmetric models.
These models capture the substitution symmetries arising from the double helix struc-
ture of the DNA. Deciding whether a transition matrix is embeddable or not enables us
to know if the observed substitution probabilities are consistent with a homogeneous
continuous time substitution model, such as the Kimura models, the Jukes-Cantor
model or the general time-reversible model. On the other hand, the generalization to
higher order matrices is motivated by the setting of synthetic biology, which works
with different sizes of genetic alphabets.
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1 Introduction

Phylogenetics is the study of evolutionary relationships among biological entities,
also known as taxa, that aims to infer the evolutionary history among them. In order
to model evolution, we consider a directed acyclic graph, called a phylogenetic tree,
depicting the evolutionary relationships amongst a selected set of taxa. Phylogenetic
trees consist of vertices and edges. Vertices represent taxa, while edges between
vertices represent the evolutionary processes between the taxa.

In order to describe the real evolutionary process along an edge of a phylogenetic
tree, oneoften assumes that the evolutionarydata occurred following aMarkovprocess.
A Markov process is a random process in which the future is independent of the past,
given the present. Under this Markov process, transitions between n states given by
conditional probabilities are presented in a n × n Markov matrix M , that is a square
matrix whose entries are nonnegative and rows sum to one. A well-known problem
in probability theory is the so-called embedding problem which was initially posed
by Elfving (Elfving 1937). The embedding problem asks whether given a Markov
matrix M , one can find a real square matrix Q with rows summing to zero and non-
negative off-diagonal entries, such thatM = exp(Q). Thematrix Q is called aMarkov
generator.

In the complex setting, the embedding problem is completely solved by Higham
(2008); a complex matrix A is embeddable if and only if A is invertible. However,
as our motivation arises from molecular models of evolution we are interested in the
embedding problem over the real numbers, so from now on we will denote by M a real
Markov matrix. It was shown by Kingman (1962) that if an n × n real Markov matrix
M is embeddable, then the matrix M has det M > 0. Moreover, in the same work by
Kingman it was shown that det M > 0 is a necessary and sufficient condition for a 2×2
Markov matrix M to be embeddable. For 3× 3 Markov matrices a complete solution
of the embedding problem is provided in a series of papers (James 1973; Johansen
1974; Carette 1995; Chen and Chen 2011), where the characterisation of embeddable
matrices depends on the Jordan decomposition of theMarkovmatrix. For 4×4Markov
matrices the embedding problem is completely settled in a series of papers (Casanellas
et al. 2020a, 2023; Roca-Lacostena and Fernández-Sánchez 2018a), where similarly
to the 3×3 case the full characterisation of embeddable matrices is distinguished into
cases depending on the Jordan form of the Markov matrices.

For the general case of n × n Markov matrices, there are several results; some
presenting necessary conditions (Elfving 1937; Kingman 1962; Runnenberg 1962),
while others sufficient conditions (James 1973; Fuglede 1988; Goodman 1970; Davies
et al. 2010) for embeddability of Markov matrices. Moreover, the embedding problem
has been solved for special n×nmatrices with a biological interest such as equal-input
and circulant matrices (Baake and Sumner 2020), group-based models (Ardiyansyah
et al. 2021) and time-reversible models (Jia 2016). Despite the fact that there is no
theoretical explicit solution for the embeddability of general n × n Markov matrices,
there are results (Casanellas et al. 2023) that enable us to decide whether a n × n
Markov matrix with distinct eigenvalues is embeddable or not. This is achieved by
providing an algorithm that outputs all Markov generators of such a Markov matrix
(Casanellas et al. 2023; Roca-Lacostena 2021).
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In this paper, we focus on the embedding problem for n × n matrices that are sym-
metric about their center and are called centrosymmetric matrices (see Definition 2).
We also study a variation of the famous embedding problem calledmodel embeddabil-
ity, where apart from the requirement that theMarkov matrix is the matrix exponential
of a rate matrix, we additionally ask that the rate matrix follows the model structure.
For instance, for centrosymmetric matrices, model embeddability means that the rate
matrix is also centrosymmetric.

The motivation for studying centrosymmetric matrices comes from evolutionary
biology, as the most general nucleotide substitution model when considering both
DNA strands admits any n×n centrosymmetric Markov matrix as a transition matrix,
where n is the even number of nucleotides. For instance, by considering the four
natural nucleotides A-T, C-G we arrive at the strand symmetric Markov model, a
well-known phylogenetic model whose substitution probabilities reflect the symmetry
arising from the complementarity between the two strands that the DNA is composed
of (see (Casanellas and Sullivant 2005)). In particular, a strand symmetric model for
DNA must have the following equalities of probabilities in the root distribution:

πA = πT and πC = πG (1.1)

and the following equalities of probabilities in the transition matrices (θi j )

θAA = θTT, θAC = θTG, θAG = θTC, θAT = θTA,

θCA = θGT, θCC = θGG, θCG = θGC, θCT = θGA.

Therefore, the corresponding transition matrices of this model are 4×4 centrosym-
metric matrices, usually called strand symmetric Markov matrices in this context. In
this article, we will use the terminology 4 × 4 centrosymmetric Markov matrix and
strand symmetric Markov matrix interchangeably. In the strand symmetric model
there are less restrictions on the way genes mutate from ancestor to child compared to
other widely known molecular models of evolution. In fact, special cases of the strand
symmetric model are the group-based phylogenetic models such as the Jukes-Cantor
(JC) model, the Kimura 2-parameter (K2P) and Kimura 3-parameter (K3P) models.
The algebraic structure of strand symmetric models was initially studied in (Casanel-
las and Sullivant 2005), where it was argued that strand symmetric models capture
more biologically meaningful features of real DNA sequences than the commonly
used group-based models, as for instance, in any group-based model, the stationary
distribution of bases for a single species is always the uniform distribution, while com-
putational evidence in (Yap and Pachter 2004) suggests that the stationary distribution
of bases for a single species is rarely uniform, but must always satisfy the symmetries
(1.1) arising from nucleotide complementarity, as assumed by the strand symmetric
model.

In this article, we also explore higher order centrosymmetric matrices for which
n > 4, which is justified by the use of synthetic nucleotides. One of main goals of
synthetic biology is to expand the genetic alphabet to include an unnatural or synthetic
base pair. The more letters in a genetic system could possibly lead to an increased
potential for retrievable information storage and bar-coding and combinatorial tagging
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(Benner and Sismour 2005). Naturally the four-letter genetic alphabet consists of just
two pairs, A-T and G-C. In 2012, a genetic system comprising of three base pairs
was introduced in (Malyshev et al. 2012). In addition to the natural base pairs, the
third, unnatural or synthetic base pair 5SICS-MMO2 was proven to be functionally
equivalent to a natural base pair. Moreover, when it is combined with the natural base
pairs, 5SICS-MMO2 provides a fully functional six-letter genetic alphabet. Namely,
six-letter genetic alphabets can be copied (Yang et al. 2007), polymerase chain reaction
(PCR)-amplified and sequenced (Sismour et al. 2004; Yang et al. 2011), transcribed
to six-letter RNA and back to six-letter DNA (Leal et al. 2015), and used to encode
proteins with added amino acids (Bain et al. 1992). This biological importance and
relevance of the above six-letter genetic alphabets motivates us to particularly study
the 6 × 6 Markov matrices describing the probabilities of changing base pairs in
the six-letter genetic system in Sect. 6. When considering both DNA strands, each
substitution is observed twice due to the complementarity between both strands, and
hence the resulting transition matrix is centrosymmetric.

Moreover there are other synthetic analogs to natural DNA which justify studying
centrosymmetric matrices for n > 6. For instance, hachimoji DNA is a synthetic
DNA that uses four synthetic nucleotides B,Z,P,S in addition to the four natural
ones A,C,G,T. With the additional four synthetic ones, hachimoji DNA forms four
types of base pairs, two of which are unnatural: P binds with Z and B binds with S. The
complementarity between both strands of the DNA implies that the transition matrix
is centrosymmetric. Moreover, the research group responsible for the hachimoji DNA
system had also studied a synthetic DNA analog system that used twelve different
nucleotides, including the four found in DNA (see Yang et al. 2006). Although the
biological models which motivate the study of centrosymmetric matrices in this paper
require n to be an even number due to the double-helix structure of DNA, in Sect. 5,
we include the case of n being odd for completeness.

Apart from embeddability, that is existence of Markov generators, it is also natural
to ask about uniqueness of a Markov generator which is called the rate identifiability
problem. Identifiability is a property which a model must satisfy in order for precise
statistical inference to be possible. A class of phylogenetic models is identifiable if
any two models in the class produce different data distributions. In this article, we
further develop the results on rate identifiability of the Kimura two parameter model
(Casanellas et al. 2020a) to study rate identifiability for strand symmetric models.
We also show that there are embeddable strand symmetric Markov matrices with non
identifiable rates, namely theMarkov generator is not unique. Moreover, we show that
strand symmetricMarkovmatrices are not generically identifiable, that is, there exists a
positive measure subset of strand symmetric Markov matrices containing embeddable
matrices whose rates are not identifiable.

This paper is organised as follows. In Sect. 2, we introduce the basic definitions
and results on embeddability. In Sect. 3, we give a characterisation for a 4 × 4 cen-
trosymmetric Markov matrix M with four distinct real nonnegative eigenvalues to be
embeddable providing necessary and sufficient conditions in Theorem2,whilewe also
discuss their rate identifiability property in Proposition 3. Moreover in Sect. 4, using
the conditions of our main result Theorem 2, we compute the relative volume of all
4×4 centrosymmetricMarkovmatrices relative to the 4×4 centrosymmetricMarkov

123



Embeddability of centrosymmetric matrices capturing... Page 5 of 37 69

matrices with positive eigenvalues and � > 0, as well as the relative volume of all
4×4 centrosymmetricMarkovmatrices relative to the 4×4 centrosymmetricMarkov
matrices with four distinct eigenvalues and � > 0. We also compare the results on
relative volumes obtained using our method with the algorithm suggested in Casanel-
las et al. (2023) to showcase the advantages of our method. In Sect. 5, we study higher
order centrosymmetric matrices and motivate their use in Sect. 6 by exploring the case
of synthetic nucleotides where the phylogenetic models admit 6× 6 centrosymmetric
mutation matrices. Finally, Sect. 7 discusses implications and possibilities for future
work.

2 Preliminaries

In this sectionwewill introduce thedefinitions and results thatwill be required through-
out the paper. We will denote by Mn(K) the set of n×n square matrices with entries in
the field K = R or C. The subset of non-singular matrices in Mn(K) will be denoted
by GLn(K).

Definition 1 AMarkov (or transition) matrix is a non-negative real square matrix with
rows summing to one. A rate matrix is a real square matrix with rows summing to
zero and non-negative off-diagonal entries.

In this paper, we are focusing on a subset of Markov matrices called centrosym-
metric Markov matrices.

Definition 2 A real n × n matrix A = (ai, j ) is said to be centrosymmetric (CS) if

ai, j = an+1−i,n+1− j

for every 1 ≤ i, j ≤ n.

Definition 2 reveals that a CS matrix is nothing more than a square matrix which
is symmetric about its center. This class of matrices has been previously studied, for
instance, in (Aitken 2017, page 124) and Weaver (1985). Examples of CS matrices
for n = 5 and n = 6, are the following two matrices respectively:

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a32 a31
a25 a24 a23 a22 a21
a15 a14 a13 a12 a11

⎞
⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a36 a35 a34 a33 a32 a31
a26 a25 a24 a23 a22 a21
a16 a15 a14 a13 a12 a11

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The class of CSmatrices plays an important role in the study ofMarkov processes since
they are indeed transition matrices for some processes in evolutionary biology. For
instance, in Kimura (1957), centrosymmetric matrices are used to study the random
assortment phenomena of subunits in chromosome division. Furthermore, in Schen-
sted (1958), the same centrosymmetric matrices appear as the transition matrices in
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the model of subnuclear segregation in the macronucleus of ciliates. Finally, the work
(Iosifescu 2014) examines a special case of the random genetic drift phenomenon,
which consists of a population of individuals that are able to produce a single type of
gamete. In this case, the transition matrices of the associated Markov chain are given
by centrosymmetric matrices.

The embedding problem is directly related to the notions of matrix exponential and
logarithm which we introduce for completeness below.

Definition 3 We define the exponential exp(A) of a matrix A, using the Taylor power
series of the function f (x) = ex , as

exp(A) =
∞∑
k=0

Ak

k! ,

where A0 = In and In denotes the n × n identity matrix. If A = P diag(λ1, . . . , λn)
P−1 is an eigendecomposition of A, then exp(A) = P diag(eλ1 , . . . , eλn ) P−1.
Given a matrix A ∈ Mn(K), a matrix B ∈ Mn(K) is said to be a logarithm of A if
exp(B) = A. If v is an eigenvector corresponding to the eigenvalue λ of A, then v is
an eigenvector corresponding to the eigenvalue eλ of exp(A).

A Markov matrix M is called embeddable if it can be written as the exponential of
a rate matrix Q, namely M = exp(Q). Then any rate matrix Q satisfying the equation
M = exp(Q) is called aMarkov generator of M .

Remark 1 Embeddable Markov matrices occur when we assume a continuous time
Markov chain, in which case the Markov matrices have the form

M = exp(t Q),

where t ≥ 0 represents time and Q is a rate matrix. However, in the rest of the paper,
we assume that t is incorporated in the rate matrix Q.

The existence ofmultiple logarithms is a direct consequence of the distinct branches
of the logarithmic function in the complex field.

Definition 4 Given z ∈ C \ R≤0 and k ∈ Z, the k-th branch of the logarithm of z is
logk(z) := log |z| + (Arg(z) + 2πk)i , where log is the logarithmic function on the
real field and Arg(z) ∈ (−π, π) denotes the principal argument of z. The logarithmic
function arising from the branch log0(z) is called the principal logarithm of z and is
denoted as log(z).

It is known that if A is a matrix with no negative eigenvalues, then there is a unique
logarithm of A all of whose eigenvalues are given by the principal logarithm of the
eigenvalues of A (Higham 2008, Theorem 1.31). We refer to this unique logarithm as
the principal logarithm of A, denoted by Log(A).

By definition, the Markov generators of a Markov matrix M are those logarithms
of M that are rate matrices. In particular they are real logarithms of M . The fol-
lowing result enumerates all the real logarithms with rows summing to zero of any
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given Markov matrix with positive determinant and distinct eigenvalues. Therefore,
all Markov generators of such a matrix are necessarily of this form.

Proposition 1 (Casanellas et al. 2023, Proposition 4.3). Let M = P diag
(
1, λ1, . . . ,

λt , μ1, μ1, . . . , μs, μs
)

P−1 be an n × n Markov matrix with P ∈ GLn(C)

and distinct eigenvalues λi ∈ R>0 for i = 1, . . . , t and μ j ∈ {z ∈ C :
Im(z) > 0} for j = 1, . . . , s, all of them pairwise distinct. Then, a matrix
Q is a real logarithm of M with rows summing to zero if and only if Q =
P diag

(
0, log(λ1), . . . , log(λt ), logk1(μ1), logk1(μ1), . . . , logks (μs), logks (μs)

)

P−1 for some k1, . . . , k j ∈ Z.

Remark 2 In particular, the principal logarithm of M can be computed as

Log(M) = P diag
(
0, log(λ1), . . . , log(λt ), log(μ1), log(μ1), . . . , log(μs), log(μs)

)
P−1.

In this paper, we focus on the embedding problem for the class of centrosymmetric
matrices. In Sect. 3, we will first study the embeddability of 4 × 4 centrosymmetric
Markov matrices, which include the K3P, K2P and JC Markov matrices. In Sect. 5
and Sect. 6, we will further study the embeddability of higher order centrosymmetric
Markov matrices.

3 Embeddability of 4× 4 centrosymmetric matrices

In this section, we begin our study by analyzing the embeddability of 4×4 centrosym-
metric matrices also known as strand symmetric matrices. We will provide necessary
and sufficient conditions for 4×4 centrosymmetric matrices to be embeddable. More-
over, we will discuss their rate identifiability problem as well.

The transition matrices of 4×4 centrosymmetric matrices are assumed to have the
form

M =

⎛
⎜⎜⎝
m11 m12 m13 m14
m21 m22 m23 m24
m24 m23 m22 m21
m14 m13 m12 m11

⎞
⎟⎟⎠ ,

where

m11 + m12 + m13 + m14 = 1 = m21 + m22 + m23 + m24 and mi j ≥ 0.

Recall that the K3P matrices are assumed to have the form

M =

⎛
⎜⎜⎝
m11 m12 m13 m14
m12 m11 m14 m13
m13 m14 m11 m12
m14 m13 m12 m11

⎞
⎟⎟⎠ .
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In the case of the K2P matrices, we additionally have m12 = m13, while in the case of
JC matrices, m12 = m13 = m14. It can be easily seen that K3P, K2P, and JC Markov
(rate) matrices are centrosymmetric.

Let us define the following matrix

S =

⎛
⎜⎜⎝
1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞
⎟⎟⎠ ; (3.1)

compare (Casanellas and Kedzierska 2013, Section 6). For a 4× 4 CS Markov matrix
M , we define F(M) := S−1MS. By direct computation, it can be checked that F(M)

is a block diagonal matrix

F(M) =

⎛
⎜⎜⎝

λ 1 − λ 0 0
1 − μ μ 0 0
0 0 α α′
0 0 β ′ β

⎞
⎟⎟⎠ , (3.2)

where

λ = m11 + m14, μ = m22 + m23,

α = m22 − m23, α′ = m21 − m24,

β = m11 − m14, β ′ = m12 − m13.

(3.3)

Define twomatrices,M1 :=
(

λ 1 − λ

1 − μ μ

)
andM2 :=

(
α α′
β ′ β

)
, which are the upper

and lower block matrices in (3.2), respectively.
Similarly, the rate matrices in strand symmetric models are assumed to have the

4 × 4 centrosymmetric form

Q =

⎛
⎜⎜⎝
q11 q12 q13 q14
q21 q22 q23 q24
q24 q23 q22 q21
q14 q13 q12 q11

⎞
⎟⎟⎠ ,

where

q11 + q12 + q13 + q14 = 0 = q21 + q22 + q23 + q24 and qi j ≥ 0 for i �= j .

So, for a 4 × 4 CS rate matrix Q, we can also define F(Q) := S−1QS. By direct
computation, it can be checked that

F(Q) =

⎛
⎜⎜⎝

−ρ ρ 0 0
σ −σ 0 0
0 0 δ δ′
0 0 γ ′ γ

⎞
⎟⎟⎠ , (3.4)
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where
ρ = q12 + q13, σ = q21 + q24,

δ = q22 − q23, δ′ = q21 − q24,

γ = q11 − q14, γ ′ = q12 − q13.

Define two matrices, Q1 :=
(−ρ ρ

σ −σ

)
and Q2 :=

(
δ δ′
γ ′ γ

)
, which are the upper and

lower block matrices in (3.4), respectively.
The following results provide necessary conditions for a 4 × 4 CS Markov matrix

to be embeddable.

Lemma 1 Let M = (mi j ) be a 4 × 4 CS Markov matrix and M = exp(Q) for some
CS rate matrix Q. Then

1. m11 + m14 + m22 + m23 > 1 and
2. (m22 − m23)(m11 − m14) > (m24 − m21)(m13 − m12).

Proof We have that

F(M) = S−1MS = S−1 exp (Q)S = exp(S−1QS) = exp (F(Q)).

Then

(
M1 0
0 M2

)
= exp(F(Q)) =

(
exp(Q1) 0

0 exp(Q2)

)
.

Thus, M1 is an embeddable 2 × 2 Markov matrix. Using the embeddability criteria
of 2 × 2 Markov matrices in Kingman (1962), we have that 1 < tr(M1) = λ + μ,
which is the desired inequality. Additionally, since M2 = exp(Q2), det(M2) > 0 as
desired. �	
Lemma 2 Let M = (mi j ) be a 4 × 4 CS Markov matrix and M = exp(Q) for some
CS rate matrix Q = (qi j ). If λ + μ �= 2, then

q12 + q13 = −λ + 1

λ + μ − 2
ln(λ + μ − 1)

and

q21 + q24 = −μ + 1

λ + μ − 2
ln(λ + μ − 1).

Proof By direct computations and the proof of Lemma 1,

M1 = exp(Q1) = 1

ρ + σ

(
e−ρ−σ ρ + σ −e−ρ−σ ρ + ρ

−e−ρ−σ σ + σ e−ρ−σ σ + ρ

)
.
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We then have the following system of equations:

λ = e−ρ−σ ρ + σ

ρ + σ
and μ = e−ρ−σ σ + ρ

ρ + σ
. (3.5)

Summing the two equations, we get

λ + μ = e−ρ−σ + 1.

Note that by Lemma 1, λ + μ > 1. Therefore,

ρ + σ = − ln(λ + μ − 1). (3.6)

Using Equation (3.5) and (3.6), we obtain

ρ = −λ + 1

λ + μ − 2
ln(λ + μ − 1) and σ = −μ + 1

λ + μ − 2
ln(λ + μ − 1).

The proof is now complete. �	
Proposition 2 Given two matrices A = (ai j ), B = (bi j ) ∈ M2(R), consider the
block-diagonal matrix C = diag(A, B). Then the following statements hold:

i) F−1(C) := SCS−1 is a CS matrix.
ii) F−1(C) is a Markov matrix if and only if A is a Markov matrix and

|b22| ≤ a11, |b21| ≤ a12, |b12| ≤ a21, |b11| ≤ a22.

iii) F−1(C) is a rate matrix if and only if A is a rate matrix and

b22 ≤ a11(≤ 0), |b21| ≤ a12(= −a11), |b12| ≤ a21(= −a22), b11 ≤ a22(≤ 0).

Proof To prove i), by direct computation we obtain that

F−1(C) = SCS−1 = 1

2

⎛
⎜⎜⎝
a11 + b22 a12 + b21 a12 − b21 a11 − b22
a21 + b12 a22 + b11 a22 − b11 a21 − b12
a21 − b12 a22 − b11 a22 + b11 a21 + b12
a11 − b22 a12 − b21 a12 + b21 a11 + b22

⎞
⎟⎟⎠ .

Then ii) follows from the above expression of F−1(Q) and the fact that rows ofMarkov
matrices add to 1 and the entries are non-negative, while iii) similarly follows from
the fact that the rows of rate matrices add to zero and the off-diagonal entries are
non-negative. �	

For any 4 × 4 CS Markov matrix M = (mi j ), let us recall that by (3.2), M is
block-diagonalizable via the matrix S. In the rest of this section, we will study both
the upper and the lower block matrices of F(M) more closely. Studying the upper
and lower blocks allows us to establish the main result of the embeddability criteria
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for 4 × 4 CS Markov matrices. This block-diagonalization reduces our analysis to
studying the logarithms of both the upper and the lower block matrices which have
size 2 × 2. This result will be presented in Theorem 2.

Upper block

As we have seen in (3.2), the upper block of F(M) is given by the 2 × 2 matrix

M1 =
(

λ 1 − λ

1 − μ μ

)
, which is a Markov matrix. If P1 =

(
1 1 − λ

1 μ − 1

)
, then

P−1
1 M1P1 =

(
1 0
0 λ + μ − 1

)
.

Hence, by Proposition 1, any logarithm of M1 can be written as

LM1
k1,k2

:= P1

(
2k1π i 0
0 log(λ + μ − 1) + 2k2π i

)
P−1
1 ,

for some integers k1 and k2. Let p = log(λ+μ−1), q = 1−λ, and r = 1−μ. Then

LM1
k1,k2

= 1

2 − λ − μ

(
qp + 2π(rk1 + qk2)i −qp + 2πq(k1 − k2)i
−rp + 2πr(k1 − k2)i r p + 2π(qk1 + rk2)i

)
. (3.7)

Lemma 3 If λ + μ �= 2, then LM1
k1,k2

is a real matrix if and only if k1 = k2 = 0 and
λ + μ > 1. In this case, the only real logarithm of M1 is the principal logarithm

1

2 − λ − μ

(
qp −qp

−rp rp

)
.

Proof For fixed k1 and k2, the eigenvalues of L
M1
k1,k2

are λ1 = 2k1π i and λ2 = p +
2k2π i . Then LM1

k1,k2
is a real matrix if and only if λ1, λ2 ∈ R or λ2 = λ1. Since

λ + μ �= 2, λ2 �= λ1. Thus, L
M1
k1,k2

is a real matrix if and only if λ1, λ2 ∈ R. Finally,
λ1 ∈ R if and only if k1 = 0 and λ2 ∈ R if and only if k2 = 0 and λ + μ > 1. �	

Lower block

The lower block of F(M) is given by the matrix M2 =
(

α α′
β ′ β

)
. Unlike M1, the

matrix M2 is generally not a Markov matrix. The discriminant of the characteristic
polynomial of M2 is given by

� := (α − β)2 + 4α′β ′ (3.8)

withα, β, α′, β ′ defined as in (3.3). If� > 0, thenM2 has two distinct real eigenvalues
and if � < 0, then M2 has a pair of conjugated complex eigenvalues. Moreover, if
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� = 0, then M2 has either 2 × 2 Jordan block or a repeated real eigenvalue. We will
assume that � �= 0 so that M2 diagonalizes into two distinct eigenvalues.

Let P2 =
(√

�+(α−β)
2

√
�−(α−β)

2
β ′ −β ′

)
. Then

P−1
2 M2P2 =

(
(α+β)+√

�
2 0

0 (α+β)−√
�

2

)
.

Let us now define

l3 := log(
(α + β) + √

�

2
) + 2k3π i and l4 := log(

(α + β) − √
�

2
) + 2k4π i,

where k3 and k4 are integers. Therefore, any logarithm of M2 can be written as

LM2
k3,k4

:=
(

ε φ

γ η

)
(3.9)

where

ε := 1

2
((l3 + l4) + (α − β)

(l3 − l4)√
�

),

φ := α′ (l3 − l4)√
�

,

γ := β ′ (l3 − l4)√
�

and

η := 1

2
((l3 + l4) − (α − β)

(l3 − l4)√
�

).

Lemma 4 1. If � > 0, then LM2
k3,k4

is a real matrix if and only if α + β >
√

� and
k3 = k4 = 0.

2. If � < 0, then LM2
k3,k4

is a real matrix if and only if k4 = −k3.

Proof 1. If � > 0, then Im(l3) = 2k3π and Im(l4) = 2k4π . Moreover, Re(l3) �=
Re(l4). Since l3 and l4 are the eigenvalues of LM2

k3,k4
, this implies that l3 �= l4. In

particular, LM2
k3,k4

is a real matrix if and only if both l3 and l4 are real.

2. Let us assume � < 0 and take z = (α+β)+√
�

2 . Fixing k3, k4 ∈ Z, the eigenvalues

of LM2
k3,k4

are l3 = log(z) + 2k3π i and l4 = log(z) + 2k4π i = log(z) + 2k4π i ,

which are both complex numbers. Thus, LM2
k3,k4

is real if and only if l3 = l4.
Hence, k4 = −k3. Conversely, k4 = −k3 implies that l3 + l4 = 2Re(l3) ∈ R and
l3−l4√

�
= 2Im(l3)i√

�
∈ R. Thus, all entries of LM2

k3,k4
are real.

�	
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Logarithms of 4× 4 CSMarkovmatrices

Let M be a 4 × 4 CS Markov matrix. Using the values defined in (3.3) and (3.8), we
can now label up its four eigenvalues as following,

1, λ1 := λ + μ − 1, λ2 := (α + β) + √
�

2
and λ3 = (α + β) − √

�

2
.

(3.10)

We note that the subset of 4 × 4 CS Markov matrix with repeated eigenvalues
(diagonalizing matrix with repeated eigenvalues or a Jordan block of size greater than
1) have zero measure. Therefore generic 4 × 4 Markov matrices have no repeated
eigenvalues, and hence we are going to assume the eigenvalues to be distinct. In
particular, we are assuming that M diagonalizes. Furthermore, since we want M to
have real logarithms and have no repeated eigenvalues, we need the real eigenvalues
to be positive.

The following theorem characterizes the embeddability of a 4 × 4 CS Markov
matrix with positive and distinct eigenvalues. Furthermore, the theorem guarantees
that a 4 × 4 CS Markov matrix is embeddable if and only if it admits a CS Markov
generator. In particular, the characterization of the embeddability of a CS matrix is
equivalent when restricting to rate matrices satisfying the symmetries imposed by
the model (model embeddability) than when restricting to all possible rate matrices
(embedding problem).

Theorem 1 Let M be a diagonalizable 4 × 4 CS Markov matrix with positive and
distinct eigenvalues λ1, λ2, λ3 defined as in (3.10). Let us define

x = log(λ1), yk = log(λ2) + 2kπ i, zk = log(λ3) − 2kπ i,

where k = 0 if � > 0 and k ∈ Z if � < 0. Then any real logarithm of M is given by

S

⎛
⎜⎜⎝

α1 −α1 0 0
−β1 β1 0 0
0 0 δ(k) ε(k)
0 0 φ(k) γ (k)

⎞
⎟⎟⎠ S−1,

where

α1 = 1 − λ

2 − λ − μ
x, β1 = 1 − μ

2 − λ − μ
x,

δ(k) = 1

2
((yk + zk) + (α − β)

(yk − zk)√
�

), ε(k) = α′ (yk − zk)√
�

,

φ(k) = β ′ (yk − zk)√
�

, γ (k) = 1

2
((yk + zk) − (α − β)

(yk − zk)√
�

).

with λ, μ, α, β, α′ and β ′ defined as in (3.3) and � as in (3.8).
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In particular, any real logarithm of M is also a 4 × 4 CS matrix whose entries
q11, . . . , q24 are given by:

q11 = α1 + γ (k)

2
, q12 = −α1 + φ(k)

2
, q13 = −α1 − φ(k)

2
, q14 = α1 − γ (k)

2
,

q21 = −β1 + ε(k)

2
, q22 = β1 + δ(k)

2
, q23 = β1 − δ(k)

2
, q24 = −β1 − ε(k)

2
.

Proof Let us note that

M = S · diag(P1, P2) · diag(1, λ1, λ2, λ3) · diag(P−1
1 , P−1

2 ) · S−1.

Since we assume that the eigenvalues of M are distinct, according to Proposition 1,
any logarithm of M can be written as

Q = S · diag(P1, P2) · diag(logk1 (1), logk2 (λ1), logk3 (λ2), logk4 (λ3)) · diag(P−1
1 , P−1

2 ) · S−1

= S · diag(LM1
k1,k2

, LM2
k3,k4

) · S−1,

The last equation and the fact that S and S−1 are real matrices imply that Q will be
real if and only if both LM1

k1,k2
and LM2

k3,k4
are real. Here LM1

k1,k2
is the upper block given

in (3.7) and LM2
k3,k4

is the lower block defined in (3.9). By Lemma 3, LM1
k1,k2

being a real

logarithm implies that k1 = k2 = 0 and λ + μ > 1. Then LM2
k3,k4

being a real matrix,
according to Lemma 4, implies that k3 = k4 = 0 if � > 0, while k4 = −k3 if � < 0.
Therefore, the upper block is LM1

0,0 and the lower block will be LM2
k,−k, for k = k3

completing the proof. �	

Now we are interested in knowing when the real logarithm of a 4 × 4 CS Markov
matrix is a rate matrix. Using the same notation as in Theorem 1 we get the following
result.

Theorem 2 A diagonalizable 4 × 4 CS Markov matrix M with distinct eigenvalues is
embeddable if and only if the following conditions hold for k = 0 if � > 0 or for
some k ∈ Z if � < 0:

λ1 > 0, (α + β)2 > �, |φ(k)| ≤ −α1, |ε(k)| ≤ −β1, γ (k) ≤ α1, δ(k) ≤ β1.

Proof The logarithm of a 4 × 4 CS Markov matrix will depend on whether � > 0 or
� < 0. In particular, it will depend on whether the eigenvalues λ2 and λ3 are real and
positive or whether they are conjugated complex numbers.

1. If � > 0, then both λ2 and λ3 are real and λ2 > λ3. Hence, z < y < 0. Moreover,
Lemma 4 implies that λ3 > 0 and hence λ2λ3 > 0.

2. If � < 0, then λ2, λ3 ∈ C \R and λ2 = λ3. Hence, y + z > 0 and y − z = 4πki .
Moreover, λ2λ3 = |λ3|2 > 0 since λ3 �= 0.
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Thus, in both cases, α1, β1, δ(k), ε(k), φ(k), γ (k) ∈ R. Moreover, α1 and β1 are both
non-positive. In particular, Theorem 1 together with Proposition 2 imply that a real
logarithm of M is a rate matrix if and only if

|φ(k)| ≤ −α1, |ε(k)| ≤ −β1, γ (k) ≤ α1, δ(k) ≤ β1.

Furthermore, the conditions λ1 > 0 comes fromLemma 3. The proof is now complete.
�	

Remark 3 According to Theorem 2 the embeddability of a 4×4 CSMarkov matrix M
with distinct positive eigenvalues can be decided by checking six inequalities depend-
ing on the entries of M . However, if M has non-real eigenvalues then one has to
check infinitely many groups of inequalities, one for each value of k ∈ Z. It is enough
that one of those systems is consistent to guarantee that M is embeddable. Theorem
5.5 in Casanellas et al. (2023) provides boundaries for the values of k for which the
corresponding inequalities may hold.

Let us take a look at the class of K3P matrices which is a special case of strand
symmetric matrices. Indeed, for a K3P matrix M = (mi j ), we have that

m11 = m22, m12 = m21, m13 = m24 and m14 = m23.

Suppose that a K3P-Markov matrix M = (mi j ) is K3P-embeddable, i.e. M = exp(Q)

for some K3P-rate matrix Q. Recall that the eigenvalues of M are

1, p := m11 + m12 − m13 − m14,

q := m11 − m12 + m13 − m14 and r := m11 − m12 − m13 + m14.

In this case, we have that

λ = μ = m11 + m14, α = β = m11 − m14, α′ = β ′ = m13 − m12,

λ1 = r and � = 4(m13 − m12)
2.

In particular, we see that � > 0 unless m12 = m13. Moreover,

x = log r , y = log q, z = log p, α1 = β1 = 1

2
log r ,

δ(0) = γ (0) = 1

2
log pq, |ε(0)| = |φ(0)| = 1

2
log

q

p
.

The inequalities in Theorem 2 can be spelled out as follows:

r > 0, pq > 0, | log q

p
| ≤ − log r and log pq ≤ log r .

These inequalities are equivalent to theK3P-embeddability criteria presented in (Roca-
Lacostena and Fernández-Sánchez 2018b, Theorem 3.1) and (Ardiyansyah et al. 2021,
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69 Page 16 of 37 M. Ardiyansyah et al.

Theorem 1). Moreover, they are also equivalent to the restriction to centrosymmetric-
matrices of the embeddability criteria for 4 × 4 Markov matrices with different
eigenvalues given in (Casanellas et al. 2023, Theorem 1.1)

In the last part of this section, we discuss the rate identifiability problem for
4 × 4 centrosymmetric matrices. If a centrosymmetric Markov matrix arises from
a continuous-time model, then we want to determine its corresponding substitution
rates. In other words, given an embeddable 4 × 4 CS matrix, we want to know if we
can uniquely identify its Markov generator.

It is worth noting that Markov matrices with repeated real eigenvalues may admit
more than oneMarkov generator (e.g. examples 4.2 and 4.3 in (Casanellas et al. 2020a)
show embeddable K2P matrices with more than one Markov generator). Nonetheless,
this is not possible if the Markov matrix has distinct eigenvalues, because in this case
its only possible real logarithmwould be the principal logarithm (Culver 1966). As one
considers less restrictions in a model, the measure of the set of matrices with repeated
real eigenvalues decreases, eventually becoming a measure zero set. For example, this
is the case within the K3Pmodel, where both its submodels (the K2Pmodel and the JC
model) consist ofmatriceswith repeated eigenvalues andhavepositivemeasure subsets
of embeddable matrices with non-identifiable rates. However, when considering the
whole set of K3PMarkov matrices, the subset of embeddable matrices with more than
one Markov generator has measure zero (see Chapter 4 in (Roca-Lacostena 2021)).
Nevertheless, this behaviour only holds if the Markov matrices within the model have
real eigenvalues.

Proposition 3 There is a positive measure subset of 4×4CSMarkov matrices that are
embeddable and whose rates are not identifiable. Moreover, all theMarkov generators
of the matrices in this set are also CS matrices.

Proof Given

P =

⎛
⎜⎜⎝
1 −5 1 − i 1 + i
1 2 −i i
1 2 i −i
1 −5 −1 + i −1 − i

⎞
⎟⎟⎠ ,

let us consider the following matrices

M = P diag(1, e−7π , e−4π i, −e−4π i) P−1, Q = P diag(0, −7π,−4π − 3π

2
i, −4π + 3π

2
i) P−1.

A straightforward computation shows that M is a CS Markov matrix and Q is a CS
rate matrix. Moreover they both have non-zero entries. By applying the exponential
series to Q, we get that exp(Q) = M . This means that M is embeddable and Q is a
Markov generator of M .

Since Q is a rate matrix, so is Qt for any t ∈ R≥0. Therefore, exp(Qt) is an
embeddable Markov matrix, because the exponential of any rate matrix is necessarily
a Markov matrix. See (Pachter and Sturmfels 2005, Theorem 4.19) for more details.
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Moreover, we have that

S−1P =

⎛
⎜⎜⎝
1 −5 0 0
1 2 0 0
0 0 −i i
0 0 1 − i 1 + i

⎞
⎟⎟⎠ ,

so S−1 exp(Qt)S is a 2-block diagonal matrix. Hence, by Proposition 2 we have that
exp(Qt) is an embeddable strand symmetric Markov matrix for all t ∈ R>0.

Now, let us define V = P diag(0, 0, 2π i,−2π i) P−1. Note that Q and V diago-
nalize simultaneously via P and hence they commute. Therefore,

exp(Q + V ) = exp(Q) exp(V ) = MI4 = M

by the Baker-Campbell-Haussdorff formula. Moreover,

exp(Qt + kV ) = exp(Qt) exp(kV ) = exp(Qt)I4 = exp(Qt)

for all k ∈ Z. Note that kV is a bounded matrix for any given k and hence, given t
large enough, it holds that Qt + mV is a rate matrix for any m between 0 and k.

This shows that, for t large enough, exp(Qt) is an embeddable CS Markov matrix
with at least k + 1 different CS Markov generators. Moreover, exp(Qt) and all its
generators have no null entries by construction and they can therefore be perturbed
as in Theorem 3.3 in Casanellas et al. (2020b) to obtain a positive measure subset of
embeddable CS Markov matrices that have k + 1 CS Markov generators. �	
Remark 4 The perturbation presented in Theorem 3.3 in Casanellas et al. (2020b)
consists of small changes on the real and complex parts of the eigenvalues and eigen-
vectors of M other than the eigenvector (1, . . . , 1) and its corresponding eigenvalue
1. If those changes are small enough then the resulting transition matrix and all its
generators still satisfy the stochastic constraints of Markov/rate matrices.

Remark 5 Using the same notation as in the proposition above and givenC ∈ GL2(C),
let us define

Q(C) = P diag(I2,C) diag

(
1,−7π,−4π − 3π

2
i,−4π + 3π

2
i

)
diag(I2,C

−1) P−1.

Since Q(I2) = Q is a CS rate matrix with no null entries, so is Q(C) for C ∈
GL2(C) close enough to I2. Moreover, by construction we have that exp(2t Q(C)) =
exp(2t Q) for all t ∈ N. Therefore, for t ∈ N we have that exp(2t Q) has uncountably
many Markov generators (i.e. 2t Q(C) with C close to I2) and all of them are CS
matrices (Culver 1966, Corollary 1). It is worth noting that according to (Culver 1966,
Corollary 1), if a matrix has uncountably many logarithms, then it necessarily has
repeated real eigenvalues. Therefore, the subset of embeddable CS Markov matrices
with uncountably many generators has measure zero within the set of all matrices.
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4 Volumes of 4× 4 CSMarkovmatrices

In this section, we compute the relative volumes of embeddable 4 × 4 CS Markov
matrices within some meaningful subsets of Markov matrices. The aim of this section
is to describe how large the different sets of matrices are compared to each other.

Let V Markov
4 be the set of all 4 × 4 CS Markov matrices. We use the following

description

V Markov
4 = {(b, c, d, e, g, h)T ∈ R

6 : b, c, d, e, g, h ≥ 0, 1 − b − c − d ≥ 0,

1 − e − g − h ≥ 0}.

More explicitly, we identify the 4 × 4 CS Markov matrix

⎛
⎜⎜⎝
1 − b − c − d b c d

e 1 − e − g − h g h
h g 1 − e − g − h e
d c b 1 − b − c − d

⎞
⎟⎟⎠

with a point (b, c, d, e, g, h) ∈ V Markov
4 . Let V+ be the set of all CS Markov matrices

having real positive eigenvalues, where

� = ((1 − e − 2g − h) − (1 − b − c − 2d))2 + 4(e − h)(b − c),

is the discriminant of the matrix M2 as stated in Sect. 3. We have V+ ⊆ V Markov
4 .

More explicitly,

V+ = {(b, c, d, e, g, h) ∈ R
6 : b, c, d, e, g, h ≥ 0,

1 − b − c − d ≥ 0, 1 − e − g − h ≥ 0, 1 − b − c − e − h > 0,

(2 − b − c − 2d − e − 2g − h) + � > 0, (2 − b − c − 2d − e − 2g − h) − � > 0, � > 0}.

Let Vem+ be the set of all embeddable 4 × 4 CS Markov matrices with four distinct
real positive eigenvalues. We have Vem+ ⊆ V+. Therefore, by Theorem 2,

Vem+ = {(b, c, d, e, g, h) ∈ R
6 : b, c, d, e, g, h ≥ 0, 1 − b − c − d ≥ 0, 1 − e − g − h ≥ 0,

1 − b − c − e − h > 0,

(2 − b − c − 2d − e − 2g − h) + � > 0, (2 − b − c − 2d − e − 2g − h) − � > 0, � > 0,

|φ(0)| ≤ −α1, |ε(0)| ≤ −β1, δ(0) ≤ β1, γ (0) ≤ α1}.

Finally, we consider the following two biologically relevant subsets of V Markov
4 .

Let VDLC be the set of diagonally largest in column (DLC) Markov matrices, which
is the subset of V Markov

4 containing all CS Markov matrices such that the diagonal
element is the largest element in each column. These matrices are related to matrix
parameter identifiability in phylogenetics (Chang 1996). Secondly, we let VDD be the
set of diagonally dominant (DD) Markov matrices, which is the subset of V Markov

4
matrices containing all CSMarkovmatrices such that in each row the diagonal element
is at least the sum of all the other elements in the row. Biologically, the subspace VDD
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consists of matrices with probability of not mutating at least as large as the probability
of mutating. If a diagonally dominant matrix is embeddable, it has an identifiable
rate matrix (Cuthbert 1972; James 1973). By the definition of each set, we have the
inclusion VDD ⊆ VDLC.

Remark 6 The sets V+, Vem+, VDLC, VDD thatwe consider in this section are all subsets
of the set V Markov

4 of all 4×4 CSMarkov matrices, but we can use the same definition
to refer to the equivalent subsets of n×n CSMarkov matrices. Therefore, we will use
the same notation V+, Vem+, VDLC, VDD to refer to the equivalent subsets of the set
V Markov
n of n × n CS Markov matrices without confusion in the following sections.

In the rest of this section, the number v(A) denotes the Euclidean volume of the
set A. By definition, V Markov

4 , VDLC and VDD are polytopes, since they are defined by
the linear inequalities in R

6. Hence, we can use Polymake (Gawrilow and Joswig
2000) to compute their exact volumes and obtain that

v(V Markov
4 ) = 1

36
, v(VDLC) = 1

576
and v(VDD) = 1

2304
.

Hence, we see that VDLC and VDD constitute roughly only 6.25% and 1.56% of
V Markov
4 , respectively.
On the other hand, we will estimate the volume of the sets V+, Vem+, VDLC ∩

V+, VDLC ∩ Vem+, VDD ∩ V+, and VDD ∩ Vem+ using the hit-and-miss Monte Carlo
integration method (Hammersley 2013) with sufficiently many sample points in
Mathematica (Inc. 2022). Theoretically, Theorem 2 enables us to compute the
exact volume of these relevant sets. For example in the case of K3P matrices, such
exact computation of volumes has been feasible in Roca-Lacostena and Fernández-
Sánchez (2018b). However, while for the K3P matrices, the embeddability criterion is
given by three quadratic polynomial inequalities, in the case of CS matrices the pres-
ence of nonlinear and nonpolynomial constraints imposed on each set, makes the exact
computation of the volume of these sets intractable. Therefore, we need to approxi-
mate the volume of these sets. Given a subset A ⊆ V Markov

4 , the volume estimate of
v(A) computed using the hit-and-miss Monte Carlo integration method with n sample
points is given by the number of points belonging to A out of n sample points. For
computational purposes, in the formula of φ(0) and ε(0), we use the fact that

y − z = log

(
(2 − b − c − 2d − e − 2g − h) + √

�

(2 − b − c − 2d − e − 2g − h) − √
�

)
.

= log

(
((2 − b − c − 2d − e − 2g − h) + √

�)2

(2 − b − c − 2d − e − 2g − h)2 − �

)
.

= log

(
((2 − b − c − 2d − e − 2g − h) + √

(b + c + 2d − e − 2g − h)2 + 4(e − h)(b − c))2

(2 − b − c − 2d − e − 2g − h)2 − ((b + c + 2d − e − 2g − h)2 + 4(e − h)(b − c))

)

All codes for the computations implemented Mathematica and Polymake can
be found at the following address: https://github.com/ardiyam1/Embeddability-and-
rate-identifiability-of-centrosymmetric-matrices.
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Table 1 Number of samples in
the sets

n 104 105 106 107

Samples in V Markov
4 280 2767 27829 277628

Samples V+ 23 192 1999 20601

Samples in Vem+ 3 34 359 3511

Samples in VDLC ∩ V+ 19 154 1541 15830

Samples in VDD ∩ V+ 3 31 262 2889

Samples in VDLC ∩ Vem+ 3 34 357 3503

Samples in VDD ∩ Vem+ 1 15 105 1011

V+, Vem+, VDLC ∩ V+, VDLC ∩ Vem+, VDD ∩ V+ and VDD ∩ Vem+
using hit-and-miss methods and Theorem 2.

Table 2 Relative volumes ratio between the relevant subsets obtained using hit-and-miss method and
Theorem 2. The volumes were estimated as the quotient of the sample sizes in Table 1

n 104 105 106 107

v(Vem+)
v(V+)

0.130435 0.177083 0.17959 0.170429

v(VDLC∩Vem+)
v(VDLC∩V+)

0.157895 0.220779 0.231668 0.221289

v(VDLC∩Vem+)
v(V+)

0.130435 0.177083 0.178589 0.17004

v(VDLC∩Vem+)
v(Vem+)

1 1 0.994429 0.997721

v(VDD∩Vem+)
v(VDD∩V+)

0.333333 0.483871 0.400763 0.349948

v(VDD∩Vem+)
v(V+)

0.0434783 0.078125 0.052563 0.0490753

v(VDD∩Vem+)
v(Vem+)

0.333333 0.441176 0.292479 0.287952

The results of these estimations using the hit-and-miss Monte Carlo integration
implemented in Mathematica with n sample points are presented in Table 1, while
Table 2 provides an estimated volume ratio between relevant subsets of centrosym-
metric Markov matrices using again the hit-and-miss Monte Carlo integration with n
sample points. In Table 1, we firstly generate n centrosymmetric matrices whose off-
diagonal entries were sampled uniformly in [0, 1] and forced the rows of the matrix to
sum to one. Out of these n matrices, we test how many of them are actually Markov
matrices (i.e. the diagonal entries are non-negative) and then out of these how many
have positive eigenvalues. In particular, for n = 107 sample points containing 277628
centrosymmetricMarkovmatrices, Table 2 suggests that there are approximately 1.7%
of centrosymmetricMarkovmatriceswith distinct positive eigenvalues that are embed-
dable. Moreover, we can see that for n = 107, out of all embeddable centrosymmetric
Markov matrices with distinct positive eigenvalues, almost all are diagonally largest
in column, while only 28% are diagonally dominant.

An alternative approach for approximating the number of embeddable matrices
within the model is to use Algorithm 5.8 in Casanellas et al. (2023) to test the embed-
dability of the sample points. Tables 4 and 5 below are analogous to Tables 1 and 2, but
Table 4 was obtained using the sampling method in (Roca-Lacostena 2021, Appendix
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Table 3 Number of samples in V+, VDLC ∩ V+, and VDD ∩ V+ obtained by using the sampling method
in (Roca-Lacostena 2021, Appendix A)

Samples in V+ 104 105 106 107

Samples in VDLC ∩ V+ 8531 85446 854709 8549100

Samples in VDD ∩ V+ 1464 14538 144546 1448720

Table 4 Number of samples in Vem+, VDLC ∩ Vem+ and VDD ∩ Vem+ obtained by applying either The-
orem 2 or the results in Casanellas et al. (2023) on the sample set in Table 3

Samples in Vem+ 1877 18663 185357 1862413

Samples in VDLC ∩ Vem+ 1869 18586 184555 1854592

Samples in VDD ∩ Vem+ 516 5164 50058 504304

Table 5 Relative volumes ratio
between the relevant subsets
obtained using hit-and-miss
method and either Algorithm 5.8
in Casanellas et al. (2023) or
Theorem 2. The volumes were
estimated as the quotient of the
sample sizes in Tables 3 and 4

n 104 105 106 107

v(Vem+)
v(V+)

0.1877 0.18663 0.185357 0.1862413

v(VDLC∩Vem+)
v(VDLC∩V+)

0.2191 0.2175 0.2159 0.2169

v(VDLC∩Vem+)
v(V+)

0.1869 0.18586 0.184555 0.1854592

v(VDLC∩Vem+)
v(Vem+)

0.9957 0.9959 0.99567 0.99580

v(VDD∩Vem+)
v(VDD∩V+)

0.3524 0.3552 0.3463 0.3481

v(VDD∩Vem+)
v(V+)

0.0516 0.05164 0.050058 0.0504

v(VDD∩Vem+)
v(Vem+)

0.2749 0.2767 0.2701 0.2708

A), while using either Algorithm 5.8 in Casanellas et al. (2023) or the inequalities in
Theorem 2 yields identical results which are provided in Tables 4 and 5.

We used the python implementation of Algorithm 5.8 in Casanellas et al. (2023)
provided in (Roca-Lacostena 2021, Appendix A) and modified it to sample on the set
of 4×4 CSMarkov matrices with positive eigenvalues. The original sampling method
used in (Roca-Lacostena 2021, Appendix A) consisted of sampling uniformly on the
set of 4 × 4 centrosymmetric-Markov matrices until we obtained n samples (or as
many samples as we require) with positive eigenvalues.

Despite the fact that Theorem 2 and Algorithm 5.8 in Casanellas et al. (2023) were
originally implemented using different programming languages (WolframMathemat-
ica and Python respectively) and were tested with different sample sets, the results
obtained are quite similar as illustrated by Tables 2 and 5. In fact, when we apply both
Algorithm 5.8 in Casanellas et al. (2023) and Theorem 2 on the same sample set in
Table 3, we obtain identical results which are displayed in Tables 4 and 5.

It is worth noting that the embeddability criteria given in Theorem 2 use inequal-
ities depending on the entries of the matrix, whereas Algorithm 5.8 in Casanellas
et al. (2023) relies on the computation of its principal logarithm and its eigenvalues
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Table 6 Running times for the Python implementation of the embeddability criterion arising from Theorem
2 and from Algorithm 5.8 in Casanellas et al. (2023). The simulations were run using a computer with 8GB
of memory

104 105 106 107

Sampling time 12.5s 121.5s (2 min) 1222s (20min) 12141.8s (3h 22min)

Embedding criteria (Theorem 2) 28.3s 273.2s (4min 30s) 2703s (45min) 27413s (7h 37min)

Embedding criteria (Algorithm 5.8) 84.2s 840.5s (15 min) 8358 (2h 19min) 83786s (23h 16min)

Table 7 Embeddable matrices within 4 × 4 CS Markov matrices and its intersection with DLC matrices
and DD matrices

Samples Embeddable samples Proportion of embeddable

V Markov
4 107 173455 0.0173455

VDLC 1021195 172380 0.1688022

VDD 156637 49471 0.3158321

and eigenvector, which may cause numerical issues when working with matrices with
determinant close to 0. Moreover, the computation of logarithms can be computa-
tionally expensive. As a consequence, the algorithm implementing the criterion for
embeddability arising from Theorem 2 is faster. Table 6 shows the running times for
the implementation of both embeddability criteria used to obtain Table 5.

The Python implementation of Algorithm 5.8 in Casanellas et al. (2023) provided
in (Roca-Lacostena 2021, Appendix A) can also be used to test the embeddability
of any 4 × 4 CS Markov matrix (including those with non-real eigenvalues) without
modifying the embeddability criteria. To do so, it is enough to apply the algorithm to
a set of Markov matrices with different eigenvalues sampled uniformly from the set of
all 4×4 CSMarkov matrix. As hinted in Remark 3, this would also be possible using
the embedability criterion in Theorem 2 together with the boundaries for k provided
in (Casanellas et al. 2023, Theorem 5.5). Table 7 shows the results obtained when
applying Algorithm 5.8 in Casanellas et al. (2023) to a set of 107 4 × 4 CS Markov
matrices sampled uniformly.

Asmost DLC and DDmatrices have positive eigenvalues, the proportion of embed-
dable matrices within these subsets is almost the same when admitting matrices with
non-positive eigenvalues (as in Table 7 instead of only considering matrices with pos-
itive eigenvalues as we did in Tables 2 and 5. On the other hand, the proportion of
4 × 4 embeddable CS matrices is much smaller in this case.

5 Centrosymmetric matrices and generalized Fourier transformation

In Sects. 3 and 4 we have seen the embeddability criteria for 4 × 4 centrosymmet-
ric Markov matrices and the volume of their relevant subsets. In this section, we are
extending this framework to larger matrices. The importance of this extension is rel-
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evant to the goal of synthetic biology which aims to expand the genetic alphabet. For
several decades, scientists have been cultivating ways to create novel forms of life
with basic biochemical components and properties far removed from anything found
in nature. In particular, they are working to expand the number of amino acids which is
only possible if they are able to expand the genetic alphabet (see for example (Hoshika
et al. 2019)).

5.1 Properties of centrosymmetric matrices

For a fixed n ∈ N, let Vn denote the set of all centrosymmetric matrices of order
n. Moreover, let V Markov

n and V rate
n denote the set of all centrosymmetric Markov

and rate matrices of order n, respectively. As a subspace of the set of all n × n real
matrices, for n even, dim(Vn) = n2

2 while for n odd, dim(Vn) = 
 n
2 �(n+1)+1.Wewill

now mention some geometric properties of the sets V Markov
n and V rate

n . Furthermore,
for any real number x , 
x� and �x� denote the floor and the ceiling function of x ,
respectively.

Proposition 4 1. For n even, V Markov
n ⊆ R

n(n−1)
2≥0 is a Cartesian product of n2 standard

(n − 1)-simplices and its volume is 1

(n−1)! n2
. For n odd, V Markov

n ⊆ R

 n
2 �n

≥0 is a

Cartesian product of 
 n
2 � standard (n − 1)-simplices and the 
 n

2 �-simplex with
vertices {0, ei

2 }1≤i≤
 n
2 � ∪ {e
 n

2 �+1}, where ei is the i-th standard unit vector in Rn.

Hence, the volume of V Markov
n is 1

2
 n2 �
(
 n

2 �)!(n−1)!
 n2 � .

2. For n even, V rate
n = R

n(n−1)
2≥0 and for n odd, V rate

n = R

 n
2 �n

≥0 .

Proof Here we consider the following identification for an n × n centrosymmetric
matrix M . For n even, M can be thought as a point (M1, . . . , Mn

2
) ∈ (Rn≥0)

n
2 where

the point Mi ∈ R
n≥0 corresponds to the i-th row of M . Similarly, for n odd, we

identify M as a point in (Rn≥0)

 n
2 � × R


 n
2 �+1

≥0 . Since M is a Markov matrix, under
this identification, each point Mi lies in some simplices. Therefore, V Markov

n is a
Cartesian product of some simplices. For n even, these simplices are the standard
(n − 1)-dimensional simplex:

{
x1 + · · · + xn = 1,
xi ≥ 0, 1 ≤ i ≤ n

⇔
{
x1 + · · · + xn−1 ≤ 1,
xi ≥ 0, 1 ≤ i ≤ n − 1

(5.1)

For n odd and 1 ≤ i ≤ 
 n
2 �, the point Mi belongs to standard (n − 1)-simplex above

and the point M
 n
2 �+1 belongs to the simplex

{
2x1 + · · · + 2x
 n

2 � + x
 n
2 �+1 = 1

xi ≥ 0, 1 ≤ i ≤ 
 n
2 � + 1

⇔
{
x1 + · · · + x
 n

2 � ≤ 1
2 ,

xi ≥ 0, 1 ≤ i ≤ 
 n
2 � (5.2)

We now compute the volume of V Markov
n . Let us recall the fact that the volume

of the Cartesian product of spaces is equal to the product of volumes of each factor

123



69 Page 24 of 37 M. Ardiyansyah et al.

space if the volume of each factor space is bounded.Moreover, the (n−1)-dimensional
volume of the standard simplex in Eq. (5.1) inRn−1 is 1

(n−1)! . For n even, the statement
follows immediately. For n odd, we use the fact that the 
 n

2 �-dimensional volume of
the simplex in Eq. (5.2) is 1

2
 n2 �
(
 n

2 �)!
. We refer the reader to Stein (1966) for an

introductory text on the volume of simplices.
For the second statement, we use the fact that if Q is a rate matrix, then qii =

−∑
j �=i qi j where qi j ≥ 0 for i �= j . �	

In the rest of this section, let Jn be the n × n anti-diagonal matrix, i.e. the (i, j)-
entries are one if i+ j = n+1 and zero otherwise. The following proposition provides
some properties of the matrix Jn that can be checked easily.

Proposition 5 Let A = (ai j ) ∈ Mn(R). Then

1. (AJn)i j = ai,n+1− j and (Jn A)i j = an+1−i, j .

2. A is a centrosymmetric matrix if only if Jn AJn = A.

In Sect. 3, we have seen that 4× 4 CS matrices can be block-diagonalized through
the matrix S. Now we will present a construction of generalized Fourier matrices
to block-diagonalize any centrosymmetric matrices. Let us consider the following
recursive construction of the n × n matrix Sn :

S1 = (
1
)
, S2 =

(
1 1
1 −1

)
and Sn :=

⎛
⎝
1 0 1
0 Sn−2 0
1 0 −1

⎞
⎠ , for n ≥ 3. (5.3)

Proposition 6 For each natural number n ≥ 3, Sn is invertible and its inverse is given
by

S−1
n =

⎛
⎝

1
2 0 1

2
0 S−1

n−2 0
1
2 0 − 1

2

⎞
⎠ .

Proof The proposition easily follows from the definition of Sn . Indeed, we have

⎛
⎝

1
2 0 1

2
0 S−1

n−2 0
1
2 0 − 1

2

⎞
⎠ Sn =

⎛
⎝

1
2 0 1

2
0 S−1

n−2 0
1
2 0 − 1

2

⎞
⎠

⎛
⎝
1 0 1
0 Sn−2 0
1 0 −1

⎞
⎠ = In .

�	
The following proposition provides another block decomposition of the matrix Sn

and its inverse.

Proposition 7 Let n ≥ 2.

1. For n even, Sn =
(
I n
2

Jn
2

Jn
2

−I n
2

)
, while for n odd, Sn =

⎛
⎝
I
 n

2 � 0 J
 n
2 �

0 1 0
J
 n

2 � 0 −I
 n
2 �

⎞
⎠ .
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2. Using these block partitions, S−1
n = 1

2 Sn for n even,while S−1
n =

⎛
⎜⎝

1
2 I
 n2 � 0 1

2 J
 n2 �
0 1 0

1
2 J
 n2 � 0 − 1

2 I
 n2 �

⎞
⎟⎠

for n odd.

Proof The proof follows from induction on n and the fact that J 2n = In . �	
We will call a vector v ∈ R

n symmetric if vi = vn+1−i for every 1 ≤ i ≤ n, i.e.
Jnv = v. Moreover, we call a vector w ∈ R

n anti-symmetric if vi = −vn+1−i for
every 1 ≤ i ≤ n, i.e. Jnv = −v. The following technical proposition will be used in
what follows in order to simplify a centrosymmetric matrix.

Proposition 8 Let n ≥ 2. Let v ∈ R
n be a symmetric vector and w ∈ R

n be an
anti-symmetric vector.

1. The last 
 n
2 � entries of Snv and vT Sn are zero. Similarly, the last 
 n

2 � entries of
S−1
n v and vT S−1

n are zero.
2. The first 
 n

2 � entries of Snw and wT Sn are zero. Similarly, the first 
 n
2 � entries of

S−1
n w and wT S−1

n are zero.
3. Then the sum of the entries of Snv and vT Sn is the sum of the entries of v.
4. Then the sum of the entries of S−1

n v and vT S−1
n is the sum of the first � n

2 � entries
of v.

Proof Wewill only prove the first part of item (1) in the proposition usingmathematical
induction on n. The base case for n = 2 can be easily obtained. Suppose now that the

proposition holds for all k < n. Let v =
⎛
⎝

v1
v′
v1

⎞
⎠ ∈ R

n be a symmetric element. Then

v′ ∈ R
n−2 is also symmetric. By direct computation we obtain

Snv =
⎛
⎝
1 0 1
0 Sn−2 0
1 0 −1

⎞
⎠

⎛
⎝

v1
v′
v1

⎞
⎠ =

⎛
⎝

2v1
Sn−2v

′
0

⎞
⎠ .

The last 
 n−2
2 � entries of Sn−2v

′ are zero. Thus, the last 
 n−2
2 � + 1 = 
 n

2 � entries of
Snv are zero as well. The proof of the other statements can be obtained analogously
using induction. In particular, let us note that the proof given for item (1) directly
implies item (3). �	

For a fixed number n, let us define the following map:

Fn : Mn(R) → Mn(R)

A �→ Fn(A) := S−1
n ASn .

For n = 4, we have seen that if A is a CS matrix, then F4(A) is a block-diagonal
matrix where each block is of size 2 × 2 and is given by A1 and A2. Moreover, the
upper block is a Markov matrix. The following lemma provides a generalization to
these results.
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Lemma 5 Let n ≥ 2. Given an n × n CS matrix A, Fn(A) is the following block-
diagonal matrix

Fn(A) = diag(A1, A2),

where A1 is a matrix of size � n
2 � × � n

2 �. Furthermore, if A is a Markov (rate) matrix,
then A1 is also a Markov (rate) matrix.

Proof First suppose that n is even. By (Cantoni and Butler 1976, Lemma 2), we can
partition A into the following block matrices:

A =
(

B1 B2
Jn
2
B2 Jn

2
Jn
2
B1 Jn

2

)
,

where B1 and B2 are of size 
 n
2 � × 
 n

2 �. By Proposition 7, we have

S−1
n ASn = 1

2

(
I n
2

Jn
2

Jn
2

−I n
2

)(
B1 B2

Jn
2
B2 Jn

2
Jn
2
B1 Jn

2

) (
I n
2

Jn
2

Jn
2

−I n
2

)

=
(
B1 + B2 Jn

2
0

0 Jn
2
B1 Jn

2
− Jn

2
B2

)
.

Choose A1 = B1 + B2 Jn
2
. Now suppose that A is a Markov matrix. This means that

each row of A sums to 1 and A has non-negative entries. Therefore, for 1 ≤ k ≤ n
2 ,

we have

n
2∑

j=1

(A1)k j =
n
2∑

j=1

(B1 + B2 Jn
2
)k j =

n
2∑

j=1

(akj + ak, n2+ j ) =
n∑
j=1

akj = 1

and for 1 ≤ j ≤ n
2 , (B1 + B2 Jn

2
)k j = akj + ak, n2+ j ≥ 0.

Now we consider the case when n is odd. Again by (Cantoni and Butler 1976,
Lemma 2), we can partition A into the following block matrices:

A =
⎛
⎝

B1 p B2
q r q J
 n

2 �
J
 n

2 �B2 J
 n
2 � J
 n

2 � p J
 n
2 �B1 J
 n

2 �

⎞
⎠ ,

where B1, B2 ∈ M
 n
2 �×
 n

2 �(R), p and q ∈ M1×
 n
2 �(R) and r ∈ M1×1(R). By Propo-

sition 7, we have

S−1
n ASn =

⎛
⎝

1
2 I
 n

2 � 0 1
2 J
 n

2 �
0 1 0

1
2 J
 n

2 � 0 − 1
2 I
 n

2 �

⎞
⎠

⎛
⎝

B1 p B2
q r q J
 n

2 �
J
 n

2 �B2 J
 n
2 � J
 n

2 � p J
 n
2 �B1 J
 n

2 �

⎞
⎠

⎛
⎝
I
 n

2 � 0 J
 n
2 �

0 1 0
J
 n

2 � 0 −I
 n
2 �

⎞
⎠
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=
⎛
⎝
B1 + B2 J
 n

2 � p 0
2q r 0
0 0 J
 n

2 �B1 J
 n
2 � − J
 n

2 �B2

⎞
⎠ .

In this case, choose A1 =
(
B1 + B2 J
 n

2 � p
2q r

)
. Suppose that A is a Markov matrix.

Since each row of A sums to 1, we have


 n
2 �∑

j=1

2q1 j + r =
n∑
j=1

a
 n
2 �+1, j = 1

and for 1 ≤ k ≤ 
 n
2 �,


 n
2 �∑

j=1

(B1 + B2 J
 n
2 �)k j + pk1 =


 n
2 �∑

j=1

(akj + ak,
 n
2 �+ j+1) + ak,
 n

2 �+1 =
n∑
j=1

akj = 1.

From the fact that the entries of A are non-negative, for 1 ≤ k, j ≤ 
 n
2 �, we obtain

that

(B1 + B2 J
 n
2 �)k j = ak, j + ak,
 n

2 �+ j ≥ 0.

Therefore, all entries of A1 sum to 1 and are non-negative meaning that A1 is aMarkov
matrix as well. We can proceed similarly for the case when A is a rate matrix. �	
Lemma 6 For any natural number n, let A1 = (αi, j ), A2 = (βi, j ) ∈ M� n

2 �×� n
2 �(R).

Suppose that Q = diag(A1, A2) is a block diagonal matrix. Then

1. F−1
n (Q) := SnQS−1

n is a CS matrix.
2. F−1

n (Q) is a Markov matrix if and only if A1 is a Markov matrix and for any
1 ≤ i, j ≤ 
 n

2 �,

αi j + β
 n
2 �+1−i,
 n

2 �+1− j ≥ 0 and αi,
 n
2 �+1− j − β
 n

2 �+1−i, j ≥ 0.

3. F−1
n (Q) is a ratematrix if andonly if A1 is a ratematrix and for any1 ≤ i, j ≤ 
 n

2 �,
such that for i = j , αi i + β
 n

2 �+1−i,
 n
2 �+1−i ≤ 0 and for i �= j ,

αi j + β
 n
2 �+1−i,
 n

2 �+1− j ≥ 0 and αi,
 n
2 �+1− j − β
 n

2 �+1−i, j ≥ 0.

Proof We will only prove the lemma for n even. Similar arguments will work for n
odd as well. By Proposition 7,

F−1
n (Q) = 1

2

(
I n
2

J n
2

J n
2

−I n
2

) (
A1 0
0 A2

) (
I n
2

J n
2

J n
2

−I n
2

)
= 1

2

(
A1 + J n

2
A2 J n

2
A1 J n

2
− J n

2
A2

J n
2
A1 − A2 J n

2
J n
2
A1 J n

2
+ A2

)
.
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Since Jn
2
(A1 + Jn

2
A2 Jn

2
)Jn

2
= Jn

2
A1 Jn

2
+ A2 and Jn

2
(A1 Jn

2
− Jn

2
A2)Jn

2
= Jn

2
A1 −

A2 Jn
2
, then by (Cantoni and Butler 1976, Lemma 2), F−1

n (Q) is centrosymmetric
which proves (1). For 1 ≤ i ≤ n

2 ,

n∑
j=1

(F−1
n (Q))i j = 1

2

n∑
j=1

(αi, j + β n
2+1−i, n2+1− j + αi, n2+1− j − β n

2+1−i, j ) =
n∑
j=1

αi j .

The above equality means that for 1 ≤ i ≤ n
2 , the i-th row sum of F−1

n (Q) and A1

coincide. This implies that if F−1
n (Q) is a Markov (rate) matrix, then A1 is a Markov

(rate) matrix as well. Additionally, note that

(A1 + J n
2
A2 J n

2
)i j = αi, j + β n

2 +1−i, n2 +1− j and (A1 J n
2

− J n
2
A2)i j = αi, n2 +1− j − β n

2 +1−i, j .

Hence, (2) and (3) will follow immediately. �	

5.2 Logarithms of centrosymmetric matrices

For the special structure encoded by the centrosymmetric matrices, one may ask
whether they have logarithms which are also centrosymmetric. In this section, we
provide some answers to this question.

Theorem 3 Let A ∈ Mn(R) be a CS matrix. Then A has a CS logarithm if and only
if both the upper block matrix A1 and the lower block matrix A2 in Lemma 5 admit a
logarithm.

Proof Suppose that A has a centrosymmetric logarithm Q. By Lemma 5, Fn(A) =
diag(A1, A2) and Fn(Q) = diag(Q1, Q2).Then exp(Q) = A implies that exp(Q1) =
A1 and exp(Q2) = A2.Hence, A1 and A2 admit a logarithm. Conversely, suppose that
A1 and A2 admit a logarithm Q1 and Q2, respectively. Then thematrix diag(Q1, Q2) is
a logarithm of the matrix diag(A1, A2). By Lemma 6, the matrix F−1

n (diag(Q1, Q2))

is a centrosymmetric logarithm of A. �	
Proposition 9 Let A ∈ Mn(R) be a CS matrix. If A is invertible, then it has infinitely
many CS logarithms.

Proof The assumptions imply that the matrices A1 and A2 in Lemma 5 are invertible.
By (Higham 2008, Theorem 1.28), each A1 and A2 has infinitely many logarithms.
Hence, Theorem 3 implies that A has infinitely many centrosymmetric logarithms. �	
Proposition 10 Let A ∈ Mn(R) be a CS matrix such that Log(A) is well-defined.
Then Log(A) is again centrosymmetric.

Proof Let us suppose that Log(A) is not centrosymmetric matrix. Define the matrix
Q = Jn(Log(A))Jn . Then Q �= Log(A) since Log(A) is not centrosymmetric. It is
also clear that exp(Q) = A.Moreover, since J 2n = In , thematrices Log(A) and Q have
the same eigenvalues. Therefore, Q is also a principal logarithm of A, a contradiction
to the uniqueness of principal logarithm. Hence, Log(A) must be centrosymmetric. �	
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The following theorem characterizes the logarithms of any invertible CS Markov
matrices.

Theorem 4 Let A ∈ Mn(R) be an invertible CS Markov matrix. Let A1 = N1D1N
−1
1

where D1 = diag(R1, R2, . . . , Rl) is a Jordan form of the upper block matrix in
Lemma 5. Similarly, let A2 = N2D2N

−1
2 where D2 = diag(T1, T2, . . . , Tl) is a

Jordan form of the lower block matrix in Lemma 5. Then A has a countable infinitely
many logarithms given by

Q := SnN DN−1S−1
n ,

where

N := diag(N1, N2) and D := diag(D′
1, D

′
2),

and D′
i denotes a logarithm of Di . In particular, these logarithms of A are primary

functions of A.

Proof The theorem follows immediately from (Higham 2008, Theorem 1.28). �	
For the definition of primary function of amatrix,we refer the reader toHigham (2008).
The above theorem says that the logarithms of a nonsingular centrosymmetric matrix
contains a countable infinitely many primary logarithms and they are centrosymmetric
matrices as well.

Finally, we will present a necessary condition for embeddability of CS Markov
matrices in higher dimensions.

Lemma 7 Let n ≥ 2. Suppose that A = (ai j ) is an embeddable CS Markov matrix of
size n × n with a CS logarithm. Then for n even,

n
2∑

j=1

(a j j + a j,n− j+1) > 1,

while for n odd,


 n
2 �∑

j=1

(a j j + a j,n− j+1) + a
 n
2 �+1,
 n

2 �+1 > 1.

Proof Since A is an embeddable matrix with CS logarithm, we write A = exp(Q) for
some CS rate matrix Q, and then

Fn(A) = Fn(exp(Q)) = exp(Fn(Q)).

By Lemma 5, for the centrosymmetric matrices A, Q, we have Fn(A) = diag(A1, A2)

and Fn(Q) = diag(Q1, Q2) where A1 is a Markov matrix and Q1 is a rate matrix
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Table 8 The exact volume v(Yn), n ∈ {4, 5, 6} computed using Polymake

Dimension of V Markov
n v(Yn) v(V Markov

n )

n = 4 6 1
72 ≈ 1.39 × 10−2 1

36 ≈ 2.78 × 10−2

n = 5 10 653
4838400 ≈ 1.35 × 10−4 1

4608 ≈ 2.17 × 10−4

n = 6 15 433
653837184000 ≈ 6.22 × 10−10 1

1728000 ≈ 5.79 × 10−7

of size � n
2 � × � n

2 �. Therefore, A1 = exp(Q1). If λ1, · · · , λ� n
2 � are the eigenvalues,

perhaps not distinct, of Q1, then the eigenvalues of A1 are eλ1 , · · · , e
λ� n2 � . Since one

of λi ’s is zero, then the trace of A1 which is the sum of its eigenvalues is equal to

tr(A1) =
� n
2 �∑

j=1

eλ j > 1.

We now need to show that trace of A1 has the form written in the lemma. Suppose
that n is even. By the proof of Lemma 5, then

tr(A1) =
n
2∑

j=1

(B1 + B2 Jn
2
) j j =

n
2∑

j=1

(a j j + a j, n2+ j ) =
n
2∑

j=1

(a j j + a j,n− j+1).

The proof for odd n can be obtained similarly. �	
Let Xn ⊆ V Markov

n be the subset containing all centrosymmetric-embeddable
Markov matrices. We want to obtain an upper bound of the volume of Xn using
Lemma 7. Let Yn ⊆ V Markov

n be the subset containing all centrosymmetric Markov
matrices such that after applying the generalized Fourier transformation, the trace of
the upper blockmatrix is greater than 1. The previous lemma implies that Xn ⊆ Yn and
hence, v(Xn) ≤ v(Yn). Moreover, the upper bound v(Yn) is easy to compute as Yn is a
polytope and for some values of n, these volumes are presented in Table 8.We see from
Table 8, there are at most 50% of matrices in V Markov

4 that are centrosymmetically-
embeddable and hence this upper bound v(Y4) is not good. For n = 5, approximately,
there are at most 62% in V Markov

4 that are centrosymmetrically-embeddable but for
n = 6, this upper bound gives a better proportion, which is approximately 0.1%.

6 Embeddability of 6× 6 centrosymmetric matrices

Throughout this section we shall consider A to be a 6 × 6 centrosymmetric Markov
matrix with distinct eigenvalues. In particular, the matrices considered in this section
are diagonalizable and are a dense subset of all 6×6 centrosymetric Markov matrices.
Note that this notation differs from the notation for Markov matrices used in previous
sections in order to make it consistent with the notation used in the results presented
for generic centrosymmetric matrices.

123



Embeddability of centrosymmetric matrices capturing... Page 31 of 37 69

In the previous section, we showed that F(A) is a block-diagonal real matrix com-
posed of two3×3blocks denoted by A1 and A2. Since both A1 and A2 have real entries,
each of thesematrices has atmost one conjugate pair of eigenvalues.Adapting the nota-
tion introduced in Theorem 4 to diagonalizable matrices we have N1, N2 ∈ GL3(C)

such that A1 = N1diag(1, λ1, λ2)N
−1
1 and A2 = N2diag(μ, γ1, γ2)N

−1
2 with

μ ∈ R>0 and λi , γi ∈ C\R≥0. Moreover, we can assume that Im(λ1) > 0 with-
out loss of generality (this can be achieved by permuting the second and third columns
of N1 if necessary). For ease of reading, we will define as P := S6diag(N1, N2),
where S6 is the matrix used to obtain the Fourier transform F(A) and was introduced
in Sect. (5.3).

Next we give a criterion for the embeddability of A for each of the following cases:

γi ∈ R>0 γi ∈ C \ R
λi ∈ R>0 case 1 case 2
λi ∈ C \ R case 3 case 4

(6.1)

Proposition 11 If a 6× 6 cetrosymmetric Markov matrix A does not belong to any of
the cases in Table 6.1, then it is not embeddable.

Proof If A satifies the hypothesis of the proposition then either it has a null eigenvalue
or it has a simple negative eigenvalue. In the former case A is a singular matrix and
hence it has no logarithm. If A had a simple negative eigenvalue, then all its logarithms
would have a non-real eigenvalue whose complementary pair is not an eigenvalue of A
(otherwise M would have a repeated eigenvalues). Therefore, A has no real logarithm.

�	

Remark 7 All the results in this section can be adapted to 5 × 5 centrosymmetric
Markov matrices by not considering the eigenvalue μ and modifying the forthcoming
definitions of the matrices Log−1(A) and V accordingly (i.e. removing the fourth row
and column in the corresponding diagonal matrix). In addition, these results still hold
if the eigenvalue 1 of the Markov matrix has multiplicity 2.

Case 1

The results for this case are not restricted to centrosymmetric matrices but can be
applied to decide the embeddability of any suitable Markov matrix.

Proposition 12 If all the eigenvalues of a Markov matrix A are distinct and positive,
then A is embeddable if and only if Log(A) is a rate matrix.

Proof If A has distinct real eigenvalues then it has only one real logarithm, which is
Log(A) (see (Culver 1966)). �	
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Case 2

In this case A has exactly one conjugate pair of complex eigenvalues and we obtain
the following criterion by adapting Corollary 5.6 in Casanellas et al. (2023) to our
framework:

Proposition 13 Given the matrix V := P diag(0, 0, 0, 0, 2π i,−2π i) P−1 define:

L := max
(i, j): i �= j, Vi, j>0

⌈
− Log(A)i, j

Vi, j

⌉
, U := min

(i, j): i �= j, Vi, j<0

⌊
− Log(A)i, j

Vi, j

⌋

and set N := {(i, j) : i �= j, Vi, j = 0 and Log(A)i, j < 0}. Then,
1. A is embeddable if and only if N = ∅ and L ≤ U .
2. the set of Markov generators for A is

{
Q = Log(A) + kV : k ∈ Z such that

L ≤ k ≤ U
}
.

Proof The proof of this theorem is analogous to the proof of Theorem 5.5 in Casanellas
et al. (2020a) but considering thematrix V as defined here. According to Proposition 1,
any Markov generator of A is of the form

Logk(A) = Pdiag(0, log(λ1), log(λ2), log(μ), logk(γ1), logk(γ1))P
−1

= Pdiag(0, log(λ1), log(λ2), log(μ), logk(γ1) + 2πki, logk(γ1) − 2πki)P−1.

Such a logarithm can be rewritten as Log(A) + kV . Using this, we will prove that
Logk(A) = Log(A) + kV is a rate matrix if and only if N = ∅ and L ≤ k ≤ U .

Suppose that there exists k ∈ Z such that Logk(A) is a rate matrix. Hence,
Log(A)i, j + kVi, j ≥ 0 for all i �= j . For i �= j , we have:

(a) Log(A)i, j ≥ 0 for all i �= j such that Vi, j = 0. This means that N = ∅.

(b) − Log(A)i, j
Vi, j

≤ k for all i �= j such that Vi, j > 0. This means that L ≤ k.

(c) − Log(A)i, j
Vi, j

≥ k for all i �= j such that Vi, j < 0. This means that k ≤ U .
Conversely, suppose thatN = ∅ and and that there is k ∈ Z such that L ≤ k ≤ U . We
want to check that Logk(A) is a rate matrix. According to Proposition 1, each row of
Logk(A) sums to 0. Moreover, for i �= j , we have:

(a) if Vi, j =0, then Logk(A)i, j = Log(A)i, j . Since N =∅, Logk(A)i, j = Log(A)i, j
≥ 0.

(b) if Vi, j >0, then Logk(A)i, j =Log(A)i, j+kVi, j ≥ Log(A)i, j+LVi, j ≥ Log(A)i, j

+ (− Log(A)i, j
Vi, j

)Vi, j = 0.
(c) if Vi, j < 0, then −Logk(A)i, j = −Log(A)i, j − kVi, j ≤ −Log(A)i, j − UVi, j

≤ −Log(A)i, j − (− Log(A)i, j
Vi, j

)Vi, j = 0.

The proof is now complete. �	
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Case 3

As in Case 2, A has exactly one conjugate pair of eigenvalues and hence its embed-
dability (and all its generators) can be determined by using Proposition 13 but defining
the matrix V as V = P diag(0, 0, 0, 0, 2π i,−2π i) P−1. However in Case 3 the con-
jugate pair of eigenvalues lie in A1 which is aMarkov matrix. This allows us to use the
results regarding the embeddability of 3× 3 Markov matrices to obtain an alternative
criterion to test the embeddability of A. To this end we define

Log−1(A) := P diag(0, z, z, log(μ), log(γ1) log(γ2)) P−1 (6.2)

where z := log−1(λ1).

Proposition 14 The matrix A is embeddable if and only if Log(A) or Log−1(A) are
rate matrices.

Proof Note that exp(Log(A)) = exp(Log−1(A)) = A so one of the implications is
immediate to prove. To prove the other implication, we assume that A is embeddable
and let Q be a Markov generator for it. Proposition 1 yields that

Q = Pdiag(0, logk1(λ1), logk2(λ2), logk3(μ), logk4(γ1), logk5(γ2)) P−1,

for some integers k1, . . . , k5 ∈ Z. Therefore, F(Q) =
(
Q1 0
0 Q2

)
where Q1 and Q2

are real logarithms of A1 and A2 respectively.
Since A2 is a real matrix with distinct positive eigenvalues, its only real logarithm is

its principal logarithm. This implies that k3 = k4 = k5 = 0 (so that Q2 = Log(A2)).
Now, recall that A1 is a Markov matrix (see Lemma 5). Using Proposition 1 again,

we obtain that Q1 is a rate matrix, thus A1 is embeddable. To conclude the proof it is
enough to recall Theorem 4 in James (1973), which yields that A1 is embeddable if
and only if Log(A1) or P1 diag(0, z, z) P−1

1 is a rate matrix. �	

Case 4

In this case, the solution to the embedding problem can be obtained as a byproduct of
the results for the previous cases:

Proposition 15 Let Log0,0(A) denote the principal logarithm of A and Log−1,0(A)

denote the matrix in (6.2). Given the matrix V := P diag(0, 0, 0, 0, 2π i,−2π i) P−1

and k ∈ {0,−1} define:

Lk := max
(i, j): i �= j, Vi, j>0

⌈
− Logk,0(A)i, j

Vi, j

⌉
, Uk := min

(i, j): i �= j, Vi, j<0

⌊
− Logk,0(A)i, j

Vi, j

⌋

and set Nk := {(i, j) : i �= j, Vi, j = 0 and Logk,0(A)i, j < 0}. Then,
1. A is embeddable if and only if Nk = ∅ and Lk ≤ Uk for k = 0 or k = −1.

123



69 Page 34 of 37 M. Ardiyansyah et al.

2. If A is embeddable, then at least one of its Markov generator can be written as

Logk,k2(A) := P diag(0, logk(λ1), logk(λ1), log(μ), logk2(γ1), logk2(γ1)) P−1

with k ∈ {0,−1} and k2 ∈ Z such that Lk ≤ k2 ≤ Uk .

Proof Thematrix A is embeddable if and only if it admits aMarkov generator. Accord-
ing to Proposition 1, if such a generator Q exists then it can be written as Logk1,k2(A)

for some k1, k2 ∈ Z. Therefore, Lemma 5 implies that F(A) =
(
A1 0
0 A2

)
for some

matrices A1 and A2. Moreover, F(Q) =
(
Q1 0
0 Q2

)
where Q1 and Q2 are real loga-

rithms of A1 and A2 respectively.
As shown in the proof of Proposition 14, A1 is actually a Markov matrix and Q1

is a Markov generator for it (see also Lemma 5). Moreover, by Theorem 4 in James
(1973), A1 is embeddable if and only if Log(A1) or Log−1(A1) are rate matrices. This
implies that Logk1,k2(A) is a rate matrix if and only if Log0,k2(A) or Log−1,k2 are rate
matrices. To conclude the proof we proceed as in the proof of Proposition 13. Indeed,
note that for k ∈ {0,−1}, Logk,k2(A) = Logk,0(A)+ k2V . Using this, it is immediate
to check that Logk,k2(A) is a rate matrix if and only if Nk = ∅ and Lk ≤ k2 ≤ Uk . �	

7 Discussion

The central symmetry ismotivated by the complementarity between both strands of the
DNA. When a nucleotide substitution occurs in one strand, there is also a substitution
between the corresponding complementary nucleotides on the other strand. Therefore,
working with centrosymmetric Markov matrices is the most general approach when
considering both DNA strands.

In this paper, we have discussed the embedding problem for centrosymmetric
Markov matrices. In Theorem 2, we have obtained a characterization of the embed-
dabilty of 4 × 4 centrosymmetric Markov matrices which are exactly the strand
symmetric Markov matrices. In particular, we have also shown that if a 4 × 4 CS
Markov matrix is embeddable, then any of its Markov generators is also a CS matrix.
Furthermore, In Sect. 6, we have discussed the embeddability criteria for larger cen-
trosymmetric matrices.

As a consequence of the characterization of Theorem 2, we have been able to
compute and compare the volume of the embeddable 4 × 4 CS Markov matrices
within some subspaces of 4 × 4 CS Markov matrices. These volume comparisons
can be seen in Table 2 and Table 7. For larger matrices, using the results in Sect. 6,
we have estimated the proportion of embeddable matrices within the set of all 6 × 6
centrosymmetric Markov matrices and within the subsets of DLC and DD matrices.
This is summarized in Table 9 below. The computations were repeated several times
obtaining results with small differences in the values but the same order of magnitude
and starting digits.
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Table 9 Relative volume of embeddable matrices within relevant subsets of 6×6 centrosymmetric Markov
matrices. The results were obtained using the hit-and-miss Monte Carlo integration with 107 sample points

Set Sample points Embeddable sample points Rel. vol. of embeddable matrices

V Markov
6 108 1370 0.0000137

VDLC 1034607 1362 0.0013164

VDD 3048 84 0.0275590

Aswehave seen inSect. 3 and6,wehaveonly considered in detail the embeddability
of CS Markov matrices of size n = 4 and n = 6. We expect that the proportion of
the embeddable CS Markov matrices within the subset of Markov matrices in larger
dimension tends to zero as n grows larger as indicated by Tables 2, 7, 8, and 9.

These results together with the results obtained for the strand symmetric model (see
Table 7) indicate that restricting to homogeneous Markov processes in continuous-
time is a very strong restriction because non-embeddable matrices are discarded and
their proportion is much larger than that of embeddable matrices. For instance, in
the 2 × 2 case exactly 50% of the matrices are discarded (Ardiyansyah et al. 2021,
Table 5), while in the case of 4 × 4 matrices up to 98.26545% of the matrices are
discarded (see Table 7) and in the case of 6 × 6 matrices the amount of discarded
matrices is about 99.99863% as indicated in Table 9. However, when restricting to
subsets of Markov matrices which are mathematically more meaningful in biological
terms, such as DD or DLC matrices, the proportion of embeddable matrices is much
higher so that we are discarding less matrices (e.g. for DD we discard 68.41679% of
4 × 4 matrices and 97.2441% of 6 × 6 matrices). This is not to say that it makes no
sense to use continuous-time models but to highlight that one should take the above
restrictions into consideration when working with these models. Conversely, when
working with the whole set of Markov matrices one has to be aware that they might
end up considering lots of non-meaningful matrices.
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