
Relational
Extensions
Object-Relational and XML Extensions

Oscar Romero
Roberto García
Rosa M. Gil Iranzo

PID_00179808

CC-BY-NC-ND • PID_00179808 Relational Extensions

The texts and images contained in this publication are subject -except where indicated to the contrary- to an Attribution-
NonCommercial-NoDerivs license (BY-NC-ND) v.3.0 Spain by Creative Commons. You may copy, publically distribute and
transfer them as long as the author and source are credited (FUOC. Fundación para la Universitat Oberta de Catalunya (Open
University of Catalonia Foundation)), neither the work itself nor derived works may be used for commercial gain. The full terms of
the license can be viewed at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

CC-BY-NC-ND • PID_00179808 Relational Extensions

Index

Introduction... 5

Objectives... 7

1. The Object-Relational Extension... 9

1.1. Background .. 9

1.1.1. Object-Oriented Database Systems 9

1.1.2. Object-Relational Database Systems 12

1.1.3. Object-Oriented Data Model vs. Object-Relational

Data Model .. 13

1.1.4. Object-Oriented Database Systems Today 15

1.1.5. Object-Relational Database Systems Today 16

1.2. The Object-Relational Model .. 17

1.2.1. User Defined Types (UDTs) ... 18

1.2.2. References between Objects .. 26

1.2.3. Collections ... 28

2. The XML Extension... 37

2.1. XML Fundamentals ... 38

2.1.1. Well-formed XML .. 40

2.1.2. Namespaces .. 42

2.1.3. Full XML Example ... 43

2.1.4. Storing XML Documents in Oracle XML DB 45

2.2. XML Schema ... 46

2.2.1. Basic Concepts ... 47

2.2.2. XML Schema Root ... 47

2.2.3. Complex Types .. 48

2.2.4. Example .. 49

2.2.5. Simple Types .. 50

2.2.6. Registering an XML Schema in Oracle XML DB 55

2.3. XQuery .. 56

2.3.1. XPath ... 57

2.3.2. Queries ... 61

2.3.3. Comments .. 69

2.3.4. XQuery in Oracle XML DB ... 70

Summary.. 71

Self-evaluation.. 73

Answer key.. 76

CC-BY-NC-ND • PID_00179808 Relational Extensions

Glossary.. 80

Bibliography... 82

CC-BY-NC-ND • PID_00179808 5 Relational Extensions

Introduction

The relational model has shown its versatility and potential all over these

years. Indeed, it dates back to the 70s and, since then, many real scenarios

have been captured and modeled by means of this model.

For many years, any scenario demanding data persistence was properly

mapped and implemented according to the relational principles. Mainly:

• Data must be organized in tables and rows.

• Relationships between tables must be expressed with the referential in-

tegrity constraint (foreign key – candidate key relationships).

The simplicity of the relational model is complemented by a strong founda-

tion on the set theory, which provides algebraic and calculus-based techniques

for querying relational data (the core behind the SQL language).

For years, modeling business (or operational) data in tabular form (i.e., by

means of rows and columns) was proven to be natural and rather easy. For

example, we all know that users’ data can be naturally represented in a table,

representing each row a user and each column one of his/her attributes. We

can proceed similarly to capture most operational data.

Soon, the relational model succeeded as de facto standard to implement data

persistence and many people experimented implementing this model in many

other areas, such as engineering design, geographic information or, in general,

to store complex data.

At this point, some drawbacks regarding the tabular format behind the rela-

tional model arose. Indeed, it was crystal clear that the relational model did

not suit some other areas that nicely, and some reengineering and design tech-

niques had to be applied. For example, consider the two-dimensional arrays

used in many areas, like in remote sensing used in ocean and atmospheric

simulation. Mapping arrays to tabular data is not easy, and database adminis-

trators (DBAs) had to come up with ad hoc tabular array representations that

could be later easily stored in databases.

It didn't take DBAs much to realize that tabular representation was affect-

ing performance, because retrieving large amounts of data from these ad hoc

tabular representations required many joins. Around that time, object-orient-

ed programming languages (OOPLs) started to appear defining the concept

of user-defined classes, with classes’ attributes, methods and encapsulation,

which did really suit the DBAs necessities.

The relational model

The relational model was intro-
duced by E. F. Codd in 1970:
Codd,�E.�F. (June 1970). “A re-
lational model of data for large
shared data banks”. Communi-
cations ACM (13(6), pp. 377–
387). ACM.

CC-BY-NC-ND • PID_00179808 6 Relational Extensions

Two main trends dominated by this point: those claiming that the relation-

al model was not enough to model any kind of data / environment (e.g., ob-

ject-oriented applications) and new systems had to be developed, and those

saying that the relational model simply needed some extensions to nicely fit

them in. Nowadays, we can say that the second trend succeeded (mainly be-

cause of the support of major relational software vendors) and we can talk

about relational extensions to adapt other paradigms to relational. Relational

extensions mainly focus on incorporating complex objects into the database.

These objects are stored in relational tables and thus, by definition, they vi-

olate the first normal form (which states that any database field should not

be decomposable).

In this module we focus on two of these extensions: the object-oriented ex-

tension and the XML extension. The first one appeared in the 90s, whereas

the second one was introduced a bit later, at the beginning of the new century.

These two extensions are, nowadays, the most popular extensions and also

the two first widely accepted by vendors and the database community.

Although relational extensions succeeded versus native applications

that dealt with OO or XML application, there were some native propos-

als that co-existed during all this time with relational approaches. While

it is true that, in the past, these alternatives were a minority, nowadays,

this trend is increasing thanks to the NOSQL wave.

CC-BY-NC-ND • PID_00179808 7 Relational Extensions

Objectives

The main objective of this module is to get familiar with the two most popular

relational extensions; namely, object-oriented and XML relational extensions.

Specifically:

1. Explain the historical background / needs behind object data models

(ODMs) for databases.

2. Enumerate the main features an object data model must provide; similar-

ly, name the main standard object-oriented features from SQL:1999.

3. Discuss about advantages and disavantages of using a purely relational

or a purely object-oriented approach. For example, elaborate on the di-

chotomy attributes vs. methods, OIDs vs. PKs, REFs vs. FKs, etc.

4. Discuss the object-oriented layer implementation in Oracle, with regard

to the underlying relational technology.

5. Formulate simple (i.e., basic syntax), correct SQL statements (in Oracle

syntax) for the following standard object-oriented features: Row type,

UDTs, inheritance, object tables, REFs and collections.

6. Justify the suitability to store objects in columns, object tables or use ob-

ject views, for Oracle.

7. For a given specification, justify the suitability (at least, four reasons) of

using VARRAYs instead of NESTED TABLEs for modeling multi-valued at-

tributes (i.e., collections) in Oracle.

8. Understand the fundamentals of XML, its syntax, its underlying structure

and the namespaces mechanism that avoids naming clashes.

9. Know the way to add structure to XML documents using XML Schemas.

They make possible to model a domain using XML Schemas and use them

to constraint the way XML documents are created to capture data for that

domain.

10. Create XQuery requests to retrieve data from XML documents and also

to generate output XML documents meeting the requirements for those

queries.

CC-BY-NC-ND • PID_00179808 8 Relational Extensions

11. Comprehend the different clauses, functions and operators that consti-

tute a XQuery, especially XPath to build paths across XML documents to

select the relevant parts from them to the XQuery at hand.

12. Be aware of how XML data is stored in a particular database, Oracle, and

how XML Schema and XQuery can be used in the context of that partic-

ular database.

CC-BY-NC-ND • PID_00179808 9 Relational Extensions

1. The Object-Relational Extension

1.1. Background

Shortly after the introduction and wide acceptance of the relational model,

back to the 70s, databases (and the relational model) began to be used in many

other areas besides operational and business scenarios, which could not always

be easily adapted to the relational model.

When object-oriented programming languages (OOPLs) were a reality, many

people wondered why such approach could not be extended to databases and

develop an object-data model that would replace the current (and by then

already successful) relational model. During the mid-80s, the first object-ori-

ented database systems (OODBSs) were developed.

This school of thought reached its climax when the Object-Oriented Database

System Manifesto was published. This manifesto, signed by some of the most

reputed researchers of that time, claimed that OODBSs better supported the

emerging programming languages and gave support for complex structures or

objects, which were the basis of non-operational (i.e., based on complex data)

applications.

1.1.1. Object-Oriented Database Systems

Specifically, they claimed that OODBSs differ from relational databases in the

use of internal object identifiers or OIDs (instead of candidate keys) and pro-

vided a natural integration between OOPLs and stored data (i.e., the database).

At the same time, it was claimed that relational databases could not fill the

gap with the object-oriented (OO) paradigm because of the mismatch between

set-oriented data storage promoted by the relational model and the iterative

one-record-at-a-time language access (this is known as the impedance mismatch

between SQL and procedural, high-level languages). In OODBSs, the OOPL

provides a uniform yet natural way to access object-oriented data (both at

the application and database level), whereas relational databases had to devel-

op specific object-oriented interfaces to communicate with SQL, a declarative

high-level language, which was the only way to access the database.

Bibliography

The Object-Oriented Database System Manifesto:

M.�Atkinson,�F.�Bancilhon,�D.�DeWitt,�K.�Dittrich,�D.�Maier,�and�S.�Zdonik (December
1989). “The Object-Oriented Database System Manifesto”. In Proceedings of the First In-
ternational Conference on Deductive and Object-Oriented Databases (pages 223-240). Kyoto,
Japan.

Manifesto

A manifesto is a public decla-
ration of intentions, opinions,
objectives, or motives, as one
issued by a government, sover-
eign, or, as in the case of the
OODBS manifesto, by an orga-
nization.

CC-BY-NC-ND • PID_00179808 10 Relational Extensions

The manifesto organized the object-oriented features that any OODBMS

should contain in four categories:

• The Golden Rules, or core features, which were divided in two categories:

those coming from the object-oriented data model and those from the

DBMS field,

• Optional features, which advocated for advisable characteristics and

• Open issues, which embraced open problems not solved back then.

Specifically, each category can be described as follows (summarized in table 1):

• Golden Rules: These rules define an OODBS. A system that integrates the

traditional database management with the object-oriented data model.

– OO Data Model: Data must be internally organized according to the

object-oriented data model; i.e., objects as means to represent data and

universally identified by an object identifier (OID). Encapsulation, in

terms of functions, is mandatory as well as traditional object-oriented

features such as inheritance and extensibility, overriding / overloading

operators and late binding. All in all, providing computational com-

pleteness (i.e., any algorithm can be implemented following this par-

adigm).

– DBMS: A database management system should provide data persis-

tence and therefore, it must deal with issues such as secondary storage

management, concurrency, recovery and ad hoc query facilities.

Importantly, the same high-level language used to develop applications must

be used to access the database. Thus, the golden rules advocate for access uni-

formity (i.e., OOPLs as single language to access the database and implement

database applications).

• Optional features: These features are considered to be appealing, but the

manifesto acknowledges the difficulty to provide them so they are cate-

gorized as optional. It includes multiple inheritance, type checking and

type inferring, data distribution (in the sense of distributed database man-

agement systems), transactions and versioning (any modification and not

only the last version must be stored).

• Finally, open features refer to those features still representing a challenge

for the community, mainly because of the lack of standards. For example,

several object-oriented languages co-existed or were developed back then.

The manifesto claimed that it was not possible to deploy a different OOD-

BS for each existing high-level language. Thus, some agreement should be

reached to provide uniformity. In the manifesto, they identify three main

issues on which to agree; a programming paradigm, an internal represen-

CC-BY-NC-ND • PID_00179808 11 Relational Extensions

tation system and a type system. These open issues were never solved,

however, as discussed in section 1.1.4.

Table 1. The Object-Oriented Database System Manifesto in a nutshell

The Golden Rules

OO Data Model DBMS
Optional Open

Complex Objects Persistence Multiple Inheritance Programming Paradigm

Object Identity Secondary Storage Manage-
ment

Type Checking and Inferring Representation System

Encapsulation Concurrency Distribution Type System

Types / Classes Recovery Design Transactions Uniformity

Inheritance Ad hoc Query Facility Versions

Overriding,
Overloading,
Late Binding

Extensibility

Computational Completeness

Importantly, you should not think of the relational databases of the 80s

as you currently know them. Relational technology was rather primitive

back then and, for example, ODBC / JDBC interfaces were not available.

Instead, special APIs had to be developed by programmers to bridge the

OO view of data in their applications and the relational view of data

stored in the database.

As access language, relational databases already counted with SQL (a

declarative language), which was in a very primitive stage (for example,

it could not deal with primary or foreign keys until SQL-89) and for

years, it was source of many criticisms towards the relational technol-

ogy. Mainly, because of two reasons: it was not computationally com-

plete and because of the impedance mismatch with procedural high-

level languages.

SQL

SQL was developed at IBM Re-
search Laboratories in the 70s,
based on the relational data
model defined by E. F. Codd in
1970. It is a de iure internation-
al standard named Database
Language SQL.

CC-BY-NC-ND • PID_00179808 12 Relational Extensions

1.1.2. Object-Relational Database Systems

As previously discussed, the OO school of thought was not alone in their cru-

sade. In parallel, relational pundits claimed that, although the OO paradigm

provided a revolutionary concept for data modeling, all the efforts put in the

relational technology should not be put aside. Instead, relational databases

should be extended with object features to deal with OO principles but always

keeping the essence of their predecessors: data�independence�as�a�must.

Soon, they counter-attacked with the Object-Relational Database Systems (OR-

DBs) manifesto, also known as the Third Generation Database System Manifesto.

According to this manifesto, ORDBSs should provide the following features:

user-defined data types, object tables formed from user-defined types, hierar-

chies and support for OIDs (also as a mean to relate objects).

Specifically, the manifesto is structured in 3 different tenets (see table 2):

• Traditional DBMS services and support for richer object structures and

rules (i.e., integrity constraints),

• Must subsume second generation DBMSs and

• Must be open to other subsystems.

Table 2. The Third Generation Database System Manifesto in a nutshell

Object and Rule
Management

DBMS Function Towards an Open System

Rich Type System Non-procedural, high-level access language: SQL Accessible from multiple high-level languages

Multiple
Inheritance

Enhancement of DBMS – programming language
interfaces

Encapsulation

Suppport collections:
enumeration of members or using the query lan-
guage

Queries and answers as the lowest level of commu-
nication (client / server)

OIDs and PKs Updatable views

Rules Enforcement Data independence

The manifesto elaborates on each of the three tenets as follows:

• Object and rule management: These features extend the relational model

to deal with objects and rules (i.e., more expressive integrity constraints).

Basically, they combine relational and object-oriented features. For exam-

ple, they mainly talk about rich types, although objects are also support-

ed and consequently, encapsulation. Note, however, that multiple inheri-

tance is mandatory and, interestingly, object identifiers (OIDs) are allowed

as an alternative to primary keys. Rule management was dealt as a first-

class citizen in order to deal with richer semantics. Accordingly, addition-

al means (to those already provided by the relational model) to enforce

constraints are identified as mandatory (this point was the seed for trig-

Bibliography

The Third Generation Data-
base System Manifesto:
Stonebraker,�M.;�Rowe,
L.A.;�Lindsay,�B.G.;�Gray,�J.;
Carey,�M.J.;�Brodie,�M.L.;
Bernstein,�P.A.;�Beech,�D.
(September 1990). “Third-
generation database system
manifesto”. SIGMOD Record
(19(3), pages 31-44). ACM.

CC-BY-NC-ND • PID_00179808 13 Relational Extensions

gers and procedures, which were not available for relational databases at

that time).

• DBMS Function: This set of features extends those principles upon which

relational database systems were built. From the database point of view,

a non-procedural high-level language should be available to access the

database (i.e., SQL) instead of a procedural one (as claimed in the OOD-

BSs manifesto). For better or worse, they say, a non-procedural high-lev-

el access language is needed, and cannot be replaced by object-oriented

programming languages. Their ultimate objective behind this statement

was preserving data independence. However, back then, SQL was heavily

criticized for not being computationally complete. In this sense, the OR-

DBS manifesto proposed additional features to complement SQL; namely:

updatable views (in their own words, dynamic views) and collections (to

deal with procedural arrays).

• Towards an open system: By an open system they meant that any applica-

tion (i.e., high-level languages) should be able to access the database, but

always through programming interfaces (this was the seed for what nowa-

days is known as high-level language connectors; e.g., ODBC or JDBC).

SQL remains as the only access language and, again, they recall us that

high-level languages should not directly access the physical structures of

the database (to preserve data independence). Instead, they should query

the database and receive an answer by means of SQL.

1.1.3. Object-Oriented Data Model vs. Object-Relational Data

Model

What we have presented in previous sections are the essentials behind the

object-oriented data model (OODM) and the alternative object-relational da-

ta model (ORDM). In this section, we discuss the main differences and agree-

ments between both models, which can be summarized with the following

claims (A stands for agreement, for disagreement and for a partial agree-

ment):

• �Complex�Objects,�Type�Classes,�Extensibility�etc.�vs.�Rich�Type�Sys-

tem: Concepts from the ORDM parallel those in OODBs, with the notions

of user-defined data types, object tables formed from user-defined types,

hierarchies of user-defined types and object tables, rows of object tables

with internal object identifiers, and relationships between object tables

that use object identifiers as references. However, in a object-relational

database all these concepts are finally mapped to the relational structure.

Thus, they are introduced as a relational extension.

• �Inheritance�vs.�Multiple�Inheritance: Inheritance is essential for the

OODM, but the ORDM goes even further by asking for multiple inher-

CC-BY-NC-ND • PID_00179808 14 Relational Extensions

itance, whereas supporting multiple inheritance is not mandatory for

OODBS (see section 1.1.1).

• �Encapsulation: Both models fully agree on the need for encapsulation,

which refers to the fact that class methods must also be stored in the data-

base, altogether with the object itself.

• �Object�Identity�(OID)�vs.�OIDs�and�PKs: Whereas the OODM claims

for the necessity of OIDs and refer to them by means of object pointers,

the ORDM claims for the co-existence of OIDs and object references with

primary keys and foreign keys. It must be up to the database designer to

decide which mechanism better suits their necessities.

• �DBMS�main�features�(persistence,�concurrency,�recovery�etc.): There

is no argument about what a database management system means, and

both models advocate for the same principles.

• �HLLs�Computational�Complexity�vs.�SQL,�Constraints�enforcement,

updatable� views� and�HLLs� Interfaces: High-level languages (HLLs in

short) are computationally complete (i.e., you can implement any algo-

rithm), whereas SQL by itself was not. The ORDM proposes to complement

SQL with constraints enforcement (basically, triggers and procedures), up-

datable views (to support dynamic views over data) and also HLLs inter-

faces to access data (but always through a query-answer manner). Further-

more, people behind the third generation database system manifesto pro-

posed this solution because a non-procedural high-level language untied

to physical structures (such as SQL) was mandatory to preserve data inde-

pendence.

• Open Systems: By this claim, both models argue that databases must be

able to communicate with other systems or applications.

• OODBSs vs. ORDBSs: All in all, the OODM is supported by OODBSs,

whereas the ORDM is supported by ORDBSs, being incompatible with each

other.

Summing up, both models agree on the necessity to provide rich types (i.e.,

give support to define object types), encapsulation (in the form of object meth-

ods to also be stored in the database), inheritance between objects, reusability

(of objects and methods; i.e., code) and also the necessity to be open to other

systems (i.e., applications should easily access data in the database). However,

they are confronted because of their approach to model data. In other words,

it is a matter of how to implement it; OODBSs or ORDBSs.

Specifically, the ORDM is an extension of the relational model and claims to

reuse all efforts previously devoted to databases. Contrarily, the OODM claims

for a complete rewrite, because neither SQL nor the relational model properly

Note

SQL was widely criticized by
the OO community because of
the impedance mismatch be-
tween SQL and HLLs. Exchang-
ing data between a procedur-
al and a declarative language
was seen as too complex, and
they claimed it affected global
optimization. This problem is
related to the fact that SQL is
not computationally complete.

CC-BY-NC-ND • PID_00179808 15 Relational Extensions

support the OO paradigm. Consequently, they claim for native OO databases

(i.e., designed from scratch). This main disagreement has many consequences.

For example, the OODM promotes a uniform way to access data and develop

applications and, therefore, the user should be able to navigate physical struc-

tures and data in the database through a procedural, high-level OO language.

The ORDM model, however, claims for data independence and therefore, users

and applications (through HLL interfaces) must exclusively access data (in the

database) by means of a non-procedural high-level language (namely, SQL).

1.1.4. Object-Oriented Database Systems Today

During the 80s, many OODBSs were developed. The pioneer was a research

project called ORION, back to the early 80s, which gave rise to Versant, a well-

known OODBS still around as Versant Object Database.

Unfortunately, most of those DBMSs have been discontinued. With the per-

spective of time, we could identify the lack of a common data model as the

main reason for their decline. Although the OODM was shaped in the Object

Oriented Database System Manifesto, there was no consensus on how to de-

velop it mainly because:

• They lacked a strong theoretical framework (like the set theory behind the

relational model) behind the OODM,

• And because OODBSs bloomed with an incredibly strong experimental ac-

tivity, with many systems and proposals being around but with no de facto

standard (instead, relational systems were supported by major relational

vendors).

Nowadays, this movement is somehow gaining relevance with the arrival of

alternative non-relational solutions embraced under the umbrella of what is

known as NOSQL.

The NOSQL wave

The NOSQL wave is somehow repeating the same steps as the OODBSs back in the 80s,
and it claims that the relational model is not the solution to every possible scenario
(expressed with the one world does not fit all motto). However, the approach is subtly
different, as NOSQL arises as an alternative to relational databases, whereas OODBSs
claimed for replacing relational databases.

The OODBSs movement is still alive as an open source movement

whose main reference is the http://www.odbms.org/Introduction web-

site. There, you will find the Db4o project, which is an open source ob-

ject database project. As a curiosity, you are also allowed to download

and test some object databases such as Objectivity/DB, ObjectStore or

Versant’s ODBMS.

http://www.odbms.org/Introduction

CC-BY-NC-ND • PID_00179808 16 Relational Extensions

1.1.5. Object-Relational Database Systems Today

One of the people behind the Third Generation Database System Manifesto

was Michael Stonebraker, who developed Postgres, the first object-relational

database system in 1987.

However, object-relational features were not standarized (i.e., included in the

SQL standard) until SQL-99. Object-relational features included in SQL-99 are

far away from the ambitious propositions claimed in the manifesto. Indeed,

some of them, such as updatable views, are still open problems not solved and

thus, a chimera for current relational databases. The following features were

added in SQL-99 to support the ORDM:

• LOB (Binary Large Object) type: the LOB type was conceived as a “rela-

tional” feature to support object-oriented databases. Internally, LOB seri-

alizes objects as byte streams.

• Row type (ROW): The row type allows a column to contain several attrib-

utes and, thus, violates the first normal form. These attributes are accessed

by means of the dot notation (e.g., person.age). Relevantly, ROWs can-

not be references not reused externally, which makes them useless.

• User defined types (UDTs): UDTs were introduced in two different ways,

as distinct types and structured types. Importantly, both are types, not

objects. Distinct types attach semantics to already built-in datatypes (e.g.,

CREATE DISTINCT TYPE age AS Integer) but they do neither pro-

vide inheritance nor methods. Structured types (most commonly known

as user defined types in databases) were thought to support objects, as dis-

cussed later in section 1.2.

• Typed tables: Tables where each row is an object (i.e., an instance of a

UDT).

• Inheritance: Inheritance is allowed at UDT level. However, multiple inher-

itance (as claimed in the manifesto) is not supported.

• REF Type and object pointers, as an alternative to primary and foreign

keys.

• Collection type (ARRAY): This collection type implements an array that

could contain multiple values.

CC-BY-NC-ND • PID_00179808 17 Relational Extensions

SQL-99 introduced many other interesting features, although not ex-

clusively object-oriented but answering some of the problems stated

in the manifesto. For example, triggers are introduced, as well as the

DISTINCT keyword. Recursive queries were also introduced at this revi-

sion (by means of the WITH RECURSIVE keywords), which improved

SQL expressiveness.

1.2. The Object-Relational Model

A model is composed of a data structure, a set of integrity constraints and a

set of operators to handle data. As explained, the object-relational model is an

extension of the relational model and, thus, it relies on it.

Importantly, and according to the discussions undertaken in the 80s, the op-

erators used to manipulate the object-relational data are those already avail-

able in the relational model, that is the relational algebra and, at a higher level

of abstraction, SQL. In this sense, thus, there is no new contribution.

Regarding additional (object-oriented) extensions on the relational data struc-

ture and integrity constraints, the SQL-99 introduced a set of elements (see

previous section). Unfortunately, there is no RDBMS in the market that im-

plements the standard. Every system has decided to model the ORDM in its

own way and none of them is even close to what the standards states. For this

reason, we will overlook the SQL-99 standard and focus on a specific relational

system, namely Oracle, and elaborate on the object-relational features intro-

duced to extend the relational data structure.

In Oracle, the OODM mainly consists of user-defined types (UDTs), REFs and

means to implement collections. Oracle UDTs are different from the standard

in that they resemble C++ or Java classes. Thus, they are not types, as proposed

in SQL-99. REFs are rather similar to the standard concept and collections

are supported by means of VARRAYs (similar to the ARRAY concept in the

standard) and nested tables (a new concept with no correspondence in the

standard). LOBs are currently implemented in Oracle as two different types:

BLOBs and CLOBs, which replaced the deprecated LONG RAW type. They are

designed to store large objects of any kind: XML files, multimedia files etc. All

of them are up to 4 gigabytes long, and they differ from each other on the

character set used.

This section is structured as follows. Each new feature is introduced individ-

ually: user-defined types, REFs and collections, together with some examples

in Oracle syntax. For each category, we also identify some practical issues.

CC-BY-NC-ND • PID_00179808 18 Relational Extensions

1.2.1. User Defined Types (UDTs)

In Oracle, structured types (also known as user defined types) are a layer of

abstraction built on top of relational technology. Consequently, the object-re-

lational data structures and integrity constraints are eventually translated in

terms of tables and columns. As a general rule, objects are translated as rela-

tional tables (each object attribute as a column), but with the following over-

heads:

• An extra column to store the mandatory OID and

• Extra space to store NULL pointers (see section 1.2.2.).

OIDs are, by definition, 16 bytes long.

Oracle calls them object types to distinguish them from traditional basic types

and also from UDTs as described in the SQL-99 (there, they were described as

types, not objects) and therefore, they can have instances (i.e., objects).

Object types can be created from any built-in database type and / or any pre-

viously created type, object-references (i.e., REFs, see section 1.2.2.) and / or

collection types (either Nested Tables or VARRAYs, see section 1.2.3.). As pre-

sumed, they can contain methods (member, static or constructor) that are

stored with the object.

Oracle keeps track of metadata related to these types in the catalog, which can

be accessed through SQL, PL/SQL or HLLs interfaces.

UDTs syntax in Oracle is as follows1:

 CREATE TYPE name AS OBJECT (
 List of attributes,
 List of procedure specifications,
 List of function specifications
);

We introduce the syntax with an example:

 CREATE TYPE fullname AS OBJECT (
 given VARCHAR2(10),
 surname VARCHAR2(30),
 initials VARCHAR(5),
 MEMBER PROCEDURE generate_full_name
 (SELF IN OUT NOCOPY fullname),
 MAP MEMBER FUNCTION get_id RETURN VARCHAR2
);

Note

You can drop types by using a
DROP statement.

(1)This module presents a simpli-
fied syntax for UDTs and we will
proceed similarly for the rest of
concepts introduced in this mod-
ule. We recommend readers to re-
fer to Oracle manuals for a full de-
scription of the object-oriented
features syntax.

CC-BY-NC-ND • PID_00179808 19 Relational Extensions

The CREATE TYPE ... AS OBJECT syntax tells Oracle it is an object type.

Thus, besides regular attributes it contains two method headers in the form

of a function (i.e., get_id) and a procedure (i.e., generate_full_name). In

this module we do not intend to revisit the object-oriented paradigm and

thus, we will not get into details when talking about object methods and class

properties, because the mechanism is similar to the class mechanism found in

most object-oriented programming languages, such as C++ or Java.

Nevertheless, find below an example of how to define methods in Oracle.

It uses the CREATE TYPE BODY statement, which must be used to define

the member methods (i.e., procedures and functions) specified in the object

definition. The syntax is as follows:

 CREATE TYPE BODY name AS
 List of subprogram declarations
 END;

For example:

 CREATE TYPE BODY fullname AS
 MAP MEMBER FUNCTION get_id RETURN VARCHAR2 IS
 BEGIN
 RETURN given || ' ' || surname;
 END;
 MEMBER PROCEDURE generate_fullname (SELF IN OUT
 NOCOPY fullname) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(given || ' ' ||
 initials || ' ' || surname);
 END;
 END;

Note

The examples in this section
can be found in file 1.2.2.
UDTs-code.

In this example, the CREATE TYPE BODY ... AS is used to define those

type methods (i.e., functions and procedures) declared in the fullname object

type definition.

Now, we can use this type as any other type. For example:

 CREATE TYPE person AS OBJECT (
 name VARCHAR2(20),
 realName fullname);

 CREATE TYPE release AS OBJECT (
 artist person,
 title VARCHAR2(30)
);

In this example, the fullname type is nested in the person type that, in turn,

is nested in the release type.

Now, we can create a table containing such type as an attribute:

DBMS_OUTPUT

The DBMS_OUTPUT procedure
is provided by Oracle and it
is useful to print information.
Here, the put_line function
is used to print every field of
the input fullname object.

Note

By now, do not worry about
when an attribute should be
defined as a basic or an object
type. We will tackle this issue
later in this module.

CC-BY-NC-ND • PID_00179808 20 Relational Extensions

 CREATE TABLE my_songs (
 song release,
 rating NUMBER
);

This creates a relational table with an object type as a datatype of one of its

columns (this is what is known as column objects).

To insert data in such table we should proceed as follows:

 INSERT INTO my_songs VALUES (

 release (person ('Adele', fullname ('Adele','Atkins','L.B.')),'Chasing Pavements'), 10);

Note that it is mandatory to use the object type constructor in order to prop-

erly insert data.

Now, we can retrieve the id of the artist and the rating of those songs rated

better than 8, by issuing the following SQL query (which calls the get_id()

function procedure previously defined):

 SELECT s.song.artist.realname.get_id(), s.rating

 FROM my_songs s

 WHERE s.rating > 8

 ORDER BY s.rating;

Furthermore, UDTs can benefit from inheritance and type evolution as shown

in next sections.

Type inheritance

The UNDER clause can be used to define subtypes. The syntax is as follows:

 CREATE TYPE name UNDER parentType (
 List of attributes,
 List of procedure specifications,
 List of function specifications
) [NOT FINAL, NOT INSTANTIABLE];

By definition, subtypes inherit the features of the parent type and extend its

definition with new attributes and / or methods (possibly, redefining methods

inherited). Furthermore, we can define it as FINAL/NOT FINAL (so it cannot

be extended with any subclass) or INSTANTIABLE/NOT INSTANTIABLE (i.e.,

whether it is an abstract type or not). For example, suppose we want to extend

the person object type previously defined as follows:

 CREATE TYPE artist UNDER person (
 country VARCHAR2(10),
 genre VARCHAR(20)
);

Note

The examples in this sec-
tion can be found in file 1.2.
Inheritance_alter_type_code.

CC-BY-NC-ND • PID_00179808 21 Relational Extensions

Artist automatically inherits all methods and attributes from person, and

extends it with its own attributes: country and genre.

Inheritance is an interesting feature that provides more semantics than object

references or foreign keys.

Type evolution

Object types can be modified with ALTER TYPE statement which can be used

to:

• Add / drop attributes or methods from an object type,

• Modify a numeric attribute (length, precision or scale) or a varying length

character attribute length or

• Change a type's FINAL and INSTANTIABLE properties.

For example:

 ALTER TYPE artist ADD ATTRIBUTE (
 subgenre VARCHAR(20)) CASCADE;

With the cascade keyword, we automatically extend all artist objects previous-

ly defined.

Object tables

See also

For further details, see section
“Practical issues on REFs”.

In an object table each row represents an object. You could be tempted to think

on this kind of tables as a single-column table, but, as previously discussed in

section 1.2.1., they are internally implemented as a multi-column where each

object attribute plus the object OID are stored in a different column.

Object tables accept indexes, constraints and triggers (except for indexes and

constraints over unscoped REFs; see section 1.2.2.).

You can define an object table by using the following syntax:

 CREATE TABLE name OF type;

Where name is the table name and type is an already existing type. For ex-

ample:

 CREATE TYPE single UNDER release (

 album VARCHAR2(20),

 releaseDate DATE,

 chartPosition NUMBER,

 MEMBER PROCEDURE display_details

);

Note

The examples in this sec-
tion can be found in file 1.2.
objects_tables_code.

CC-BY-NC-ND • PID_00179808 22 Relational Extensions

 CREATE TABLE singles OF single;

 INSERT INTO singles VALUES

 (

 single (artist ('Adele', fullname ('Adele','Atkins',

 'L.B.')'UK','soul','none'),'Chasing Pavements', '19', '11-01-2008', 2)

);

We can now query this table by means of SQL or PL/SQL. For example:

 //SQL
 SELECT VALUE(s) FROM singles s WHERE s.artist.name = 'Adele';
 // PL/SQL block
 DECLARE song single;
 BEGIN
 SELECT VALUE(s) INTO song
 FROM singles s
 WHERE s.person.name = 'Adele';

 s.display_details;
 END;

Object views

Object views are used to access relational data using object-related features

without modifying it. In this way, we can access objects that belong to an

object view in the same way as if they were objects in an object table.

In this way, you can benefit from object-relational features without modifying

pre-existing relational data.

For example, suppose we had the following relational table:

SQL statement

In a SQL statement, the VALUE
function takes as its argument
a correlation variable (i.e., a
table alias) for an object table
or object view and returns ob-
ject instances corresponding to
rows of the table or view. The
VALUE function may return in-
stances of the declared type of
the row or any of its subtypes.

Polymorphism

Object views allow exploiting
polymorphism through type
hierarchies. Thus, a polymor-
phic expression can take the
declared type or any of its sub-
types as value.

 CREATE TABLE songs (
 artist VARCHAR2(30),
 title VARCHAR2(30),
 album VARCHAR2(30),
 length NUMBER(3,2),
 genre VARCHAR(10),
 subgenre VARCHAR(10)
);

First, we must create an object type mapping the relational data we want to

manipulate mirroring the object-oriented features. For example:

 CREATE TYPE adele_song AS OBJECT (
 title VARCHAR2(30),
 album VARCHAR2(30),
 length NUMBER(3,2)
);

We can now create an object-view mapping the desired relational data. The

general syntax is as follows:

 CREATE VIEW name OF type AS
 SELECT statement;

Note

The examples in this sec-
tion can be found in file 1.2.
object_view_code.

CC-BY-NC-ND • PID_00179808 23 Relational Extensions

Where name is the view name, type is an already existing type and the SELECT

statement maps the relational data onto the type specified. Following our ex-

ample:

 CREATE VIEW adele_songs OF adele_song WITH OBJECT IDENTIFIER (title, album) AS

 SELECT s.title, s.album, s.length

 FROM songs s

 WHERE s.artist = 'Adele';

The WITH OBJECT IDENTIFIER keywords tell us the object id. Optionally, we

can materialize this object-view by using the CREATE MATERIALIZED VIEW

statement. Now, we can query this view in an object-relational fashion hiding

the relational nature of these data.

Object types can be used in three different ways: as column objects (i.e.,

as an object attribute in a relational table), in object views (wrapping

relational data in an object-oriented fashion) or in object tables (where

the whole row is an object itself).

Practical Issues on UDTs

In this section we intend to provide some guidelines to decide whether a full

or partial object-relational approach better suits our necessities.

As introduced in section 2.2.1., objects are eventually translated to tables. One

could argue, though, that performance could be affected by this semantic lay-

er built on top of the relational engine. In practice, nowadays, many people

overlook object-relational features because of that.

In operational scenarios, the object-relational layer provides means to bridge

the impedance mismatch previously discussed. Nothing more, nothing less.

Now, you have the option to take advantage of object-oriented features within

your database. If so, you can do it in two different ways:

• You can benefit from object-oriented features while continuing to work

with most of your data relationally (object views), or

• You can entirely go over to an object-oriented approach (i.e., object tables

and object views).

On the one hand, you still benefit from key features of the relational model:

transactions and concurrency, backup and recovery, row-level locking, read

consistency, partitioned tables, parallel queries, cluster databases, etc. On the

other hand, you have means to deal with your stored data in an object-ori-

ented fashion. Thus, your data is stored as it is handled by your applications

CC-BY-NC-ND • PID_00179808 24 Relational Extensions

(e.g., purchase or customer instead of tables and columns) and, accordingly,

the object-oriented layer provides higher-level means to organize and access

data and a way to store and share code.

Although this higher level of abstraction is appealing, nowadays, most devel-

opers are used to mapping between the object-oriented and relational model

and decline to use these features.

While this is true for operational environments (which naturally suit the tab-

ular representation behind the relational model), there are many other sce-

narios where this mapping is far away from being natural (not to say rather

impossible to automate). In these scenarios, object-oriented features provide

something else than syntactic sugar.

For example, consider a data mining tool nurtured from a specific database.

Traditional data mining approaches usually extract data from the database,

format it according to their needs and batch process it. However, data mining

algorithms deal with enormous amounts of data and it is well known that

extracting data from the database (and formatting it) is a bottleneck for such

tools.

In such scenario, object-oriented features have been successfully proven to

outperform a classical relational approach. To tackle this problem, novel ap-

proaches proposed to move the data mining algorithms within the database,

instead of moving data out of the database. By means of UDTs, data mining

algorithms can be encapsulated as object methods and efficiently handle data

within the database. Some tests show a gain of several orders of magnitude

between both approaches.

Thus, you should be able to analyze your scenario and consider if object-ori-

ented features might facilitate your task. In general, object types are efficient,

because types and methods are stored altogether with data (thus, programmers

can benefit from reusability). In this way, a set of objects can be fetched from

disk as a single I/O operation.

Do not underestimate object-relational features. In most cases, it is true

that they do not provide anything else but syntactic sugar. However,

they have been proved to be of great value in some scenarios where

relational approaches do not naturally fit.

Suppose you decide to go for an object-relational implementation. Yet, there

are many issues to be considered. For example:

Data Mappers

Nowadays we can find some
advanced tools, such as Hiber-
nate, which automatically map
objects defined in HLLs to rela-
tional.

CC-BY-NC-ND • PID_00179808 25 Relational Extensions

1) Objects are provided with an OID by default. If you implement object ta-

bles, the only available identifier will be the object OID. Oracle OIDs, though,

are 16 bytes long and therefore, can affect performance due to its size. Alter-

natively, you can store the object as an object column within a relational ta-

ble, and better use the table primary key for your queries. Which approach is

better? It depends on the following criteria:

• The OID is always 16 bytes long. The primary key has an ad hoc size de-

pending on the built-in type used to implement it. For example, an inte-

ger is usually 4 bytes long.

• The primary key provides semantics regarding the scenario. For example,

an ID card has clear semantics. However, an OID is an artificial identifier,

with no semantics at all.

• The OID is guaranteed to be unique. The primary key, however, could just

be unique in terms of our database. For example, the uniqueness of a given

ID card from Spain cannot be guaranteed if other countries are considered

(i.e., another country could have issued the same ID number).

If you decide to go for primary keys, be sure it is unique not only internally

in the table but at the domain level.

2) You can decide to materialize derived attributes or use methods to compute

them. Materializing them you gain query efficiency but it may result in data

inconsistencies, whereas methods are slower but guarantee data consistency.

3) As middle ground solution, you might go for object views, which provide

both models advantages (your data is still relational but your applications

communicate with the database in an object-oriented fashion), but also dis-

advantages (for better or worse, an object view suffers from the same problems

as any other view and thus, well-known problems related to views, such as

view updating and query rewriting, also hold for them).

4) As a drawback to bear in mind, object types cannot benefit from parallelism

unless you provide the map member function, which tells Oracle how to com-

pare objects.

Summing up, you should go for an object-relational approach (i.e., use object

types) whenever you are interested in hiding the relational layer to your ap-

plications or whenever the object-relational features might improve your sys-

tem performance (either because your data structures cannot be easily mapped

to relational or because you can better benefit from the object-oriented par-

adigm). As always, a middle ground solution mixing both approaches is an

alternative to assess.

See also

See the fullname type defini-
tion at the beginning of sec-
tion 1.2.

CC-BY-NC-ND • PID_00179808 26 Relational Extensions

1.2.2. References between Objects

The REF type allows referencing objects and it is implemented as an object

pointer. This type contains:

• The OID of the referenced object (16 bytes long) and

• The OID of the table or view containing that object (16 bytes long).

Optionally, it can also contain the rowid value (10 bytes long) for the refer-

enced object.

REFs can be defined as scoped or unscoped ones. Scoped REFs are strongly

typed and point to an object table. Therefore, the object type referred is known

beforehand. Note that a scoped REF can point to an object of the scope type

or to any of its subtypes.

RowlD

The Oracle rowid value returns
the row physical address.

Oppositely, the pointed object type is unknown for unscoped REFs. For this

reason, scoped REFs are, in principle, more efficient, since the optimizer can

get into play. Furthermore, unscoped REFs neither accept constraints nor in-

dexes.

For example, consider yet another possibility to model the song and artist

types:

See also

See section “Practical issues on
REFs” for further details.

 CREATE TYPE artist UNDER person (
 country VARCHAR2(10),
 genre VARCHAR(20)
);
 CREATE TABLE artists OF artist;

 CREATE TABLE single (
 artist_ref REF artist SCOPE IS artists,
 title VARCHAR2(20),
 album VARCHAR2(20)
);

 INSERT INTO single SELECT REF(a),'Chasing Pavements','19'
 FROM artists a
 WHERE a.name = 'Adele';

In this example, a type artist is created and referred from the relational table

storing singles. Thus, to fill the REF attribute properly, we use the REF keyword.

An alternative to obtain a REF is the following example in PL/SQL:

 DECLARE artist_ref REF artist;
 BEGIN
 SELECT REF(a) INTO artist_ref
 FROM artists a
 WHERE a.name = 'Adele';
 END;

Note

The examples in this sec-
tion can be found in file 1.2.
REFs_code.

CC-BY-NC-ND • PID_00179808 27 Relational Extensions

Additionally, REFs can be deferenced and therefore, navigate through them to

the object containing the REF type. Following with our example:

 SELECT DEREF(s.artist_ref), s.title
 FROM single s;

Indeed, implicit deferences are possible, as shown below:

 SELECT s.artist_ref.name, s.title
 FROM singles s
 WHERE s.album = '19';

In the example, s.artist_ref.name follows the pointer from the single’s

artist, and retrieves the artist name. Note, however, that implicit deferences

are allowed in SQL but not in PL/SQL.

Finally, we call a dangling pointer to those REFs storing a value no longer point-

ing to an object. An OID stored by a REF is no longer available if:

• The referred object has been deleted from the database (this is possible

because REFs only guarantee that the referenced table does exist) or

• By revoking privileges.

We can check if a REF is dangling by means of the IS DANGLING keywords. As

said, REFs only guarantee that the pointed table does exist, but allows deleting

the object pointed. If we want to enforce that the object exists, we can add

the referential integrity to REFs (whenever it is not defined in a nested table).

For example, we could redefine the previous single table as follows:

 CREATE TABLE single (
 artist_ref REF artist REFERENCES artists,
 title VARCHAR2(20),
 album VARCHAR2(20)
);

REF cannot be used to point at column objects.

Practical issues on REFs

REFs are an essential mechanism to reference objects and therefore, a basic

tool to enforce integrity constraints, like foreign keys in the relational mod-

el. Remember, though, that REFs co-exist in the object-relational model with

foreign keys. So, we should deal with the main differences between both con-

cepts.

See also

See section “Nested Tables”.

CC-BY-NC-ND • PID_00179808 28 Relational Extensions

Foreign keys point to candidate keys (i.e., UNIQUE NOT NULL), whereas REFs

point to objects. In the object-relational model, though, dangling REFs are

allowed (it means that the pointed object could no longer exist). However, a

foreign key is never dangling and guarantees that the candidate key pointed

does exist.

Anyway, as previously discussed, we can enforce the referential constraint in

a REF and therefore, note that it is exactly the same notion as the foreign key

but for the object-oriented paradigm. It means that still some differences exist;

for example, a REF is an object type and it has some available pre-defined

methods and, importantly, a foreign key NULL value (i.e., a bit) is dealt with

in a different way than NULL pointers for REFs (i.e., it is treated as an object

pointer).

Finally, note that, although scoped REFs are intended to be more efficient (the

optimizer can be used as well as indexing techniques), they do not exploit the

rowid attribute. The Oracle rowid value is a physical pointer to the tuple and

therefore, unscoped REFs can outperform scoped ones by using the rowid for

traversal searches.

Note that foreign keys have been traditionally used in relational data-

bases to simulate hierarchies (i.e., generalizations / specializations).

However, foreign keys (or REFs) do not provide as much semantics as

inheritance, but just referential integrity (indeed, in the relational mod-

el, specializations did not inherit the parents’ attributes at all, but we

were able to reach them by navigating the mandatory foreign key be-

tween both relations).

Oppositely, the object-relational inheritance provides real inheritance

of both attributes and methods.

1.2.3. Collections

NULL object pointers

Oracle distinguishes between
two kind of NULL object point-
ers: objects whose values are
NULL and those whose at-
tributes are all NULL. For the
second kind, space is allocat-
ed and set to NULL for each
of their attributes. In the first
case, Oracle does not allocate
space and stores the NULL val-
ue in a bit.

Oracle provides two types to support collections: the VARRAY and nested ta-

bles. While the first one nicely suits the ARRAY type defined in the SQL-99

standard, nested tables happen to be much more interesting and provide new

and powerful alternatives.

VARRAY

A VARRAY is an ordered collection of elements where each element is associ-

ated to an index. In other words, it maps the traditional array concept of ob-

ject-oriented programming languages. VARRAYs demand to specify, at design

time, the maximum number of elements they can store (however, note that

it can be modified later, as shown below).

Note

The examples in this section
can be found in file 1.2.3.
VARRAYs_code.

CC-BY-NC-ND • PID_00179808 29 Relational Extensions

The general syntax to define VARRAYs is as follows:

 CREATE TYPE name AS VARRAY(limit) OF datatype | type;

Where name is the name of the new VARRAY type, limit is the number of

elements this collection can contain and finally, after the OF keyword, we must

specify a built-in datatype or user-defined type this collection is made of.

For example:

 CREATE TYPE list_of_songs AS VARRAY(100) OF VARCHAR2(30);
 CREATE TABLE adele_fans (
 fan_name VARCHAR2(30),
 favourite_songs list_of_songs
);

Alternatively, we could create the song object type and declare a VARRAY of

songs:

 CREATE TYPE song AS OBJECT (
 artist VARCHAR2(30),
 title VARCHAR2(30),
 rating NUMBER(2)
);
 CREATE TYPE array_of_songs AS VARRAY(100) OF song;
 CREATE TABLE adele_fans (
 fan_name VARCHAR(30),
 favourite_songs array_of_songs
);

We can now insert data in this table by properly calling the type constructor.

For example:

 INSERT INTO adele_fans VALUES ('John Smith',
 array_of_songs(
 song ('Adele', 'Chasing Pavements', 8),
 song ('Creedence Clearwater Revival ', 'Susie Q', 9),
 song ('The Eagles', 'Hotel California', 10))
);

Importantly, note that VARRAYs require, at definition time, the maximum

number of elements they can store. However, this limit can be replaced by a

greater number by means of the ALTER TYPE ... MODIFY LIMIT statement:

 ALTER TYPE array_of_songs MODIFY LIMIT 200 CASCADE;

Importantly, VARRAYs are stored inline (that is, as any other attribute, within

the row). If the VARRAY happens to be too large (more than 4000 bytes), it is

internally stored as a LOB attribute. VARRAYs of nested tables are immediately

considered as LOBs.

CC-BY-NC-ND • PID_00179808 30 Relational Extensions

Note that VARRAYs provide a set of interesting pre-defined methods you can

use for your convenience. For example: EXISTS (to know if an element is

already in the collection), COUNT, FIRST, or LAST (to respectively get the

first / last element of the collection).

Nested Tables

A nice feature of the Oracle ORDM is that the type of a column can be a

table-type. That is, the value of an attribute in one tuple can be an entire

relation. Nested tables are defined as follows:

 CREATE TYPE object table name AS TABLE OF type;
 CREATE TABLE name (
 List of attributes,
 List of nested tables,
)
 NESTED TABLE nested table column STORE AS nested table name;

Where name is the name of the table containing the NESTED TABLE columns.

This table defined a set of attributes (some of them being nested tables). To

define a nested table we need to previously create an object table. Now, we

simply have to provide a column name of that object table type (i.e., the object

table type previously defined). Later, we must specify that this NESTED TABLE

column is stored in a relation whose name is provided after the STORE AS

keywords. For example:

 CREATE TYPE single AS OBJECT (
 title VARCHAR2(30),
 album VARCHAR2(20),
);
 CREATE TYPE single_table AS TABLE OF single;

 CREATE TABLE singers (
 name VARCHAR2(30),
 releasedSingles single_table
)
 NESTED TABLE releasedSingles STORE AS single_nt;

To better understand how it works, figure 1 (left-side) sketches the nested ta-

ble introduced in the example above. Furthermore, figure 1 confronts nested

tables and VARRAYs. On its right side you can see the sketched representation

of an alternative implementation of the above example by using VARRAYs.

Nested tables can have any number of elements (unlike VARRAYs, which re-

quire a maximum number of elements at definition time) and interestingly,

they are handled as an ordinary table. Thus, we can insert tuples in it, index

it, create triggers, enforce integrity constraints, etc.

NESTED TABLE

Be careful with the syntax of
nested tables. Note that there
is just one semicolon in the de-
finition of the singers table and
it goes after both the paren-
thesized list of attributes and
the NESTED TABLE column).

Nota

The examples in this section
can be found in file 1.2.3.
nested_tables.

CC-BY-NC-ND • PID_00179808 31 Relational Extensions

Figure 1. Implementing collections in the object-relational model.

Relevantly, nested tables are not stored inline. Instead, they are stored as in-

dividual relations, whose name must be declared at definition time (after the

STORE AS keywords). In our example above, sketched in figure 1, the whole

nested table (i.e., single_nt) is stored in a relation apart. For example, con-

sider two different singer names (e.g., Adele and The Eagles). All their singles

(stored in the nested table in the releasedSingles) are stored in the same

relation (single_nt) that is stored outside the singers table. Thus, there

would not be two different tables, one for Adele singles and another one for

The Eagles singles, but just one.

However, we cannot refer to this relation in any sense. When inserting data in

a nested table, note that we use the nested relation type constructor (similarly

to previous examples). For example:

 INSERT INTO singers (name) VALUES ('Adele');
 UPDATE singers SET releasedSingles = single_table (
 single('Chasing Pavements', '19'),
 single('Daydreamer', '19'),
 single('Cold Shoulder', '19')
)
 WHERE name = 'Adele';

Optionally, when defining the nested table, we can use the DEFAULT keyword

to automatically call the single_table constructor. For example:

CC-BY-NC-ND • PID_00179808 32 Relational Extensions

 CREATE TYPE single (
 title VARCHAR2(30),
 album VARCHAR2(20),
);
 CREATE TYPE single_table AS TABLE OF single;

 CREATE TABLE singers (
 name VARCHAR2(30),
 releasedSingles single_table DEFAULT single_table()
)
 NESTED TABLE releasedSingles STORE AS single_nt;

 INSERT INTO singers (name) VALUES ('Adele');

This way, after just inserting the name, the single_table constructor is au-

tomatically called.

Since nested tables are relations. We can use triggers, checks or any other state-

ment available for regular tables. For example, we can create indexes over it:

 CREATE INDEX album_idx ON single_nt(album);

Importantly, note that we refer to the name provided in the NESTED TABLE

statement to create the index.

All in all, nested tables represent a powerful tool and provide an alternative

to store objects (until now, we have only seen object tables), which open a

whole new bunch of alternatives. For example, note that we can think of nest-

ed tables as attribute grouping and therefore, use them to simulate vertical

fragmentation (not supported by Oracle natively). For example:

 CREATE TYPE single (
 title VARCHAR2(30),
 album VARCHAR2(20),
);
 CREATE TYPE single_table AS TABLE OF single;
 CREATE TYPE award (
 name VARCHAR2(30),
 category VARCHAR2(5),
);
 CREATE TYPE award_table AS TABLE OF award;

 CREATE TABLE singer (
 name VARCHAR2(25),
 singles single_table,
 awards award_table
)
 NESTED TABLE singles STORE AS singer_singles_nt
 NESTED TABLE awards STORE AS singer_awards_nt;

Each nested table is stored independently and therefore, by definition, we are

performing a vertical fragmentation (whenever we access the singles nested

table, we are accessing data related to singles and only that data).

Nested table

A table can contain as many
nested tables as desired. Fur-
thermore, nesting several ta-
bles is also allowed.

CC-BY-NC-ND • PID_00179808 33 Relational Extensions

Practical Issues on Collections

Collections are useful to implement multi-valued attributes. VARRAYs store

multi-valued attributes column-wise (i.e., as an attribute in a relational row),

while nested tables do it row-wise (i.e., store each element in a row).

Regarding design considerations, consider the following storage features for

VARRRAYs:

• The VARRAY size depends on the number of elements it can hold (specif-

ically, number of elements * size + overhead, where overhead are NULL

values) and it is always stored as RAW data.

• According to the LIMIT value defined, the VARRAY is either stored inline

or in LOBs.

• If the whole collection is manipulated at once, it behaves much better

than nested tables (it is fetched at once, unlike rows in a nested table).

With regard to nested tables, the following considerations hold:

• It is exactly stored as a relation.

• If the nested table has a primary key, it is organized as an index-organized

table (IOT).

As a common storage feature, none of them allocate memory at defin-

ition time.

Nevertheless, we can also implement collections in a fully relational fashion.

The next table summarizes the options we have and the features provided by

each solution. The table is structured as follows; we distinguish between rela-

tional and object-relational solutions and, within them, between column-wise

or row-wise collections (see figure 2).

For example, the first column proposes to implement the collection col-

umn-wise within a relational table. The second one also goes for a relation-

al solution, but storing it row-wise. The two last columns implement collec-

tions taking advantage of object-relational features and they correspond to

the VARRAY and nested table types we have already been discussing at the

beginning of this section.

IOT

An IOT is the Oracle version
for clustered indexes.

CC-BY-NC-ND • PID_00179808 34 Relational Extensions

Table 3. Alternatives to implement collections in both the relational and the object-oriented
model.

Relational Object-relational

Per�column Per�row VARRAY Nested�Tables

Fixed number of values Variable number of values Fixed number of values Variable number of values

Few values Many values Many values (LIMIT required) Many values

Generates nulls There are no null values One null There are no null values

One I/O Many I/O One I/O Many I/O

Global processing Partial processing Global processing Partial processing

Natural PK Artificial PK Natural PK + Indexes OIDs

Less space More space Less space More space

Hard to aggregate Easy to aggregate Hard to aggregate (Meth-
ods/Extensibility)

Easy to aggregate

Many CHECKs One CHECK No CHECKs One CHECK (not for REFs)

Lower concurrency Higher concurrency Lower concurrency Higher concurrency

Each row must be read as follows:

• The first one tells us whether the chosen implementation accepts a vari-

able number of values or not. For example, a column-oriented relational

implementation and VARRAYs need to know, at design time, the number

of elements to be stored as maximum. We can obviously modify it later

(by means of an ALTER TABLE and an ALTER TYPE, respectively) but the

other two options can handle this issue dynamically.

• The second row tells us if, compared to the other approaches, that imple-

mentation can store a few or many values. The relational column-oriented

solution is clearly the less flexible according to this criterion, because we

need to define as many columns as elements in the collection. VARRAYs

could eventually store large numbers of values, but the maximum number

of values to store have to be expressed at definition time by means of the

LIMIT keyword.

• The third row reflects if NULLs are generated. The relational row-oriented

implementation and nested tables do not generate NULLs at all, but the

first one does, if we do not straightforward fill the whole collection.

• The fourth row accounts for the number of I/O operations needed to re-

trieve the whole collection. Column-oriented solutions are able to read

the whole collection with one I/O. If the collection is stored as row-ori-

ented, we might need to read many blocks to retrieve all the rows. Note,

however, that the VARRAY type is moved out of the table when it gets too

CC-BY-NC-ND • PID_00179808 35 Relational Extensions

large and needs to be stored as a LOB. Therefore, it is not true anymore

that a single I/O operation retrieves the whole collection.

• The fifth row tells us if this solution is appropriate to deal with all the

elements at the same time or if it is better suited for dealing with partial

collections. Column-oriented solutions perform better when reading the

whole collection at once, and row-oriented solutions deal better with par-

tial processing.

• The sixth row tells us what kind of identifier we can use in each solution.

In the first case, nothing prevents us to add a new column containing a

natural primary key for such collection. Later, we can access each element

according to its own name, which is, again a natural identifier. VARRAYs

behave similarly, except for the use of indexes to access the elements. Im-

plementing the collection per rows in a relational table means that we

need to come up with an artificial primary key (for example, surrogates)

to identify each element. Nested tables, however, use OIDs.

• The seventh row tells us the amount of space to be used: inline solutions

(i.e., column-oriented) are cheaper, because no extra space is needed.

• The eighth row tells us whether performing aggregations over the collec-

tion is easy or not. Row-oriented solutions behave better in this case, be-

cause we can solve the aggregation by means of a SQL statement. In col-

umn-oriented ones we should iterate the collection over instead.

Figure 2. Implementing collections in the relational model.

...V0 V1 V2 V3 VN

...

... ...

... ...

V0PK V1 V2 V3 VN

0 1 2 3 N

0

1

2

3

N

V0

V1

V2

V3

VN

Id CV0 CV1 CV2 CV3 CVN Id Value

Column-oriented Row-oriented

CC-BY-NC-ND • PID_00179808 36 Relational Extensions

• The ninth row focuses on enforcing constraints. Thus, it tells us how many

CHECKs we do need to enforce a constraint over all the elements of the

collection. In row-oriented approaches we can use a single CHECK to be

enforced in all rows, whereas column-oriented ones require a CHECK for

each element in the collection.

• Finally, the last row tells us the degree of concurrency provided by such

solution. In this sense, row-oriented solutions benefit from row-locking

(thus, we only lock one element of the collection). Column-oriented ones

block the whole collection when accessing a single element, because the

whole collection is retrieved at once.

In general, if you need to store a fixed number of items, loop through the el-

ements in order or you (usually) retrieve and manipulate the entire collection

as a value then, use a VARRAY (or a column-oriented relational approach).

However, if you need to run efficient queries on a collection, handle arbitrary

numbers of elements, or perform mass insert, update, or delete operations,

then use a nested table (or its row-oriented relational counterpart).

CC-BY-NC-ND • PID_00179808 37 Relational Extensions

2. The XML Extension

Thanks to the emergence of telecommunications and computer networks, in-

formation systems have evolved from quiet islands, usually just connected to

other systems in the same organizations or in tightly related ones, to highly

connected systems.

Lately, the scope for these information systems has become even planetary

as a result of their integration into the World Wide Web (WWW). This is a

great opportunity but also carries one a great challenge. Until recently, all

data in and out these systems were generated inside and under the control of

the IT department of the organization. Consequently, it was easier to define

a common schema for the data.

However, when operating at a global scale, the sources of data to be integrat-

ed are no longer under your control. In this context, the rigid schema of a

relational database does not seem appropriate to store data. Something more

flexible was needed.

The proposal here was to go from the table-based model of relational databas-

es to a more flexible tree-based model. This model is enhanced with a flexible

schema language, XML Schema, which integrates reuse by extension and re-

striction mechanisms, so it is easier to share and reuse schemas, anticipate the

structure of input data and accommodate it into existing schemas.

Another key element are namespaces, that allow partitioning the names used

in these schemas into naming spaces controlled by the data publisher so nam-

ing clashes can be more easily avoided.

Finally, there is the XQuery query language that leverages all the flexibility

of the underlying data model and schemas using an SQL-shaped syntax that

makes the transition from relational databases easier. XQuery allows selecting

the required information from XML documents while reducing the commit-

ment to a pre-established structure of the data. Moreover, it also allows gen-

erating XML as output, enabling an XML-based pipeline-oriented processing

engine that can be even used to implement a whole WWW application.

The drawback of XML and related technologies is that though more flexible,

they are less efficient. They require more storage space, which becomes un-

sustainable for binary data, and more processing time due to less mature tech-

nologies and the increased complexity of the involved data structures and

schemas.

CC-BY-NC-ND • PID_00179808 38 Relational Extensions

2.1. XML Fundamentals

XML stands for eXtensible Markup Language and it is a very flexible text for-

mat derived from SGML (ISO 8879). It provides a set of rules for encoding

documents in a machine-readable form. Thus, each individual piece of infor-

mation is ‘marked up’ (a marker shows the meaning of the associated data)

with a tag attached that is called an element.

This element consists of a start tag, text, and an end tag, like in HTML (Hy-

perText Markup Language). When required, attributes can be associated to the

start tag of an element, allowing more detailed information to be assigned to

the data. This basic syntax is illustrated in figure 3.

Figure 3.The basic XML structure

Inside a tag, the element name for the start and end tags must match and low-

er case/upper case characters are differentiated in element names. Moreover,

blank spaces, tabs, carriage returns, or line feeds cannot be included between

the '<' character and the element name. The same restrictions apply to the '/'

character immediately following the end tag '<' character, as well as to the '/'

character and the element name immediately following. No spaces may exist

between characters in an element name.

Attributes are properties that provide additional information about the

element they are associated to. They are always marked with sin-

gle or double quotes and stand as an additional value to a label . For the same element, attribute names

are unique, so no more than one attribute with the same name can be attached

to the same element.

Based on these building blocks, different combinations of them can be made.

For instance:

• Elements with just text:

 <a> Text

• Elements containing other elements and attributes:

• Elements with attributes, text and subelements:

Note

The XML Specification is avail-
able from http://www.w3.org/
TR/REC-xml

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

CC-BY-NC-ND • PID_00179808 39 Relational Extensions

 text

• Empty elements, which can be written down in compact form like:

 <a/>

However, with so much freedom, as shown in Code 1, when should we use an

attribute and when an element to model a piece of information?

Code 1. Two choices for modeling an artist with two properties, his/her type and name

 <artist type="Person" name="Adele">
 </artist>

or

 <artist>
 <type>Person</type>
 <name>Adele</name>
 </artist>

Two complementary guidelines can be used to help making this kind of choic-

es in a more systematic and consistent way:

1) Conceptual guideline, choose:

• Attribute for values without their own identity, for instance age, or

• Subelement for values with their own identity, for instance date of birth.

2) Content vs. Metadata guideline, choose:

• Attribute for metadata or descriptive information about content. For in-

stance the length of a piece of content or its language, or

• Subelement for content, for instance a title.

The two guidelines can be combined to help decide how to model type and

name in the example in Code 1. For type, though the category of things called

Person might have its own identity, in this case the attribute type is used to

characterize the entity artist being modeled so the best choice seems to fol-

low the second guideline and model type as and attribute because it is pro-

viding metadata for the main content. Similarly, the choice for name seems

clearer following the second guideline though in this case, as a piece of fun-

damental content, it seems more convenient to model name as a subelement.

The result after applying the guidelines is shown in Code 2.

Code 2. Chosen syntax after applying modeling guidelines for the alternatives in Code 1

 <artist type="Person">
 <name>Adele</name>
 </artist>

CC-BY-NC-ND • PID_00179808 40 Relational Extensions

Some additional notes about XML syntax:

• A piece of XML is marked as such by starting with the following expres-

sion:

<?xml version="1.0" encoding="UTF-8"?>

• In addition to the XML version, it also specifies the encoding used to cod-

ify characters, which is especially relevant for those specific to a particular

language. XML supports the following codification schemes:

UTF-8, UTF-16, ISO-10646-UCS-2, ISO-10646-UCS-4, from ISO-8859-1 to

ISO-8859-9, ISO-2022-JP, Shift_JIS and EUC-JP. ISO-8859-1 is the typical

choice for “Western European” languages. However for broader coverage

XML defaults to UTF-8, which is the common choice.

2.1.1. Well-formed XML

Following with this basic syntax, the XML specification defines an XML doc-

ument as a text that is well formed, i.e. it satisfies a list of syntax rules pro-

vided in the specification. The main rules that a well-formed XML document

should satisfy are:

• It contains only properly encoded legal Unicode characters.

• None of the special syntax characters such as '<' and '&' appear except

when performing their mark-up delineation roles.

When you need any of these special characters but you do not want them

to be interpreted as part of the XML syntax, as part of the content you

put between tags or in attributes, use the corresponding entities as shown

in Code 3. They are replaced with their corresponding character after the

XML syntax has been processed.

For instance, if you want to include a piece of XML inside the content of

an element but it should not be interpreted as XML, you can replace all

special characters with the corresponding entities, like in Code 4.

Another alternative is to use the <![CDATA[…]]> construct to mark a set

of characters that should not be interpreted as XML markup. An alterna-

tive to Code 4 based on this option is shown in Code 5.

Code 3. XML entities for XML special characters

 Character Entity
 & &
 < <
 > >
 ' '
 " "

Unicode

Unicode is a computing indus-
try standard for the consistent
encoding, representation and
handling of text. Unicode can
be implemented by different
character encodings being the
most common UTF-8.

CC-BY-NC-ND • PID_00179808 41 Relational Extensions

Code 4. Encoding XML syntax to include it in element content

 <example>
 <artist
 type="Person">
 Adele
 </artist>
 </example>

Code 5. Encoding XML syntax to include it in element content using CDATA region

 <example>
 <![CDATA[
 <artist
 type="Person">
 Adele
 </artist>]>
 </example>

• The beginning, end and empty-element tags that mark the elements are

correctly nested, with none missing and none overlapping, i.e. not as

shown in Code 6.

Code 6. Examples of missing name closing element and overlapping artist and name
elements

 <artist><name>Adele</artist>
 <artist><name>Adele</artist></name>

• The element tags are case-sensitive; the beginning and end tags must

match exactly.

• Tag names cannot contain any of the characters " # $ % & ' () * + , / ; < = > ?

@ [\] ̂ ̀ { | } ~, nor a space character, and cannot start with - . or a numeral.

• There is a single root element that contains all the other elements, which

might be nested. Altogether, the XML syntax encodes an underlying tree

data structure, as shown in Figure 2 for the XML syntax in Code 7.

Codi 7. A piece of XML syntax that corresponds to the tree structure in Figure 4

 <metadata>
 <artist type="Person">
 <name>Adele</name>
 <full-name>
 Adele<initials>L.B.</initials>Adkins
 </full-name>
 </artist>
 <release>
 <title>Rolling in the Deep</title>
 </release>
 </metadata>

CC-BY-NC-ND • PID_00179808 42 Relational Extensions

Figure 4. Tree structure for the XML example in Code 7

< >

< >

< > < >

< >

< >

< >

Txt
TxtTxt

Txt

Txt

metadata

release

title

"Rolling in
the Deep"“Adkins”

full-name

artist
type: Person

name

“Adele” “Adele” initials

“L.B.”

2.1.2. Namespaces

Now, continuing with the example in Code 7, let’s imagine that you want to

combine that piece of XML with another piece you have generated. Unfortu-

nately, you have also used the element name metadata in your XML but for

a different purpose and thus with a different structure. In order to avoid these

name clashes, XML incorporates naming spaces.

A namespace is identified by a URI and as long as you define a unique URI

for your namespace, you can then use whatever element and attribute names

inside it. The best way to get a unique URI is to use part of your organization or

own domain name to build a custom URL for your namespace. For instance,

for someone at the UOC it is possible to pick the uoc.edu domain name and

build a URI for the namespace like http://www.uoc.edu/subjects/adb/

ns/custom#.

As shown in Code 8, it is possible to combine the namespaces for the original

data, defined in a MusicBrainz namespace, and the custom XML data without

clashes by defining the namespace each element name or attribute belongs

to. In order to avoid typing the whole namespace URI each time, it is possible

to define aliases, short names for the namespaces that are prepended to the

element and attribute names together with ':'.

These alias are usually defined at the beginning of the XML document,

thought they can be defined for any element and then apply to that ele-

ment and all its subelements. Aliases are defined using a special attribute that

starts with xmlns: and then the alias. The value of the attribute is the URI it

refers to. Finally, there is the default namespace, which is defined using the

xmlns attribute and applies to all elements that do not explicitly define their

namespace. Elements and attributes define their namespace by prepending

the namespace alias plus ':' to the element or attribute name.

To conclude the scenario posed at the beginning of this section, Code 8 shows

the piece of XML in Code 7 plus a piece of custom XML that provides addition-

al metadata for the release. To avoid name clashes, the original XML from Mu-

sicBrainz is defined in the http://musicbrainz.org/ns/mmd-2.0#, which

Uniform Resource
Identifier

A Uniform Resource Identi-
fier (URI) is a string of char-
acters used to identify some-
thing on the Internet. URIs
include names (URNs) and
locators (URLs). A URN is a
URI that works as a identifi-
er, like the ISBN of a book
that can be used to build the
URN urn:isbn:0-486-27557-4.
This URN just identifies
a book while a URL al-
so provides access to it,
like the HTTP URL http://
www.bookfinder.com/dir/i/
Romeo_and_Juliet/0486275574.

Attribute

Attributes without an explic-
it namespace are not in the
default one, they simply do
not have one. In other words,
an attribute is only in a name-
space if it has a proper prefix
declared as an alias for an XML
namespace. Attribute-name
clashes are only relevant in the
rare case when attributes with
the same name appear for the
same element; consequently
it is very uncommon to define
namespaces for attributes.

http://www.uoc.edu/subjects/adb/ns/custom#
http://www.uoc.edu/subjects/adb/ns/custom#
http://musicbrainz.org/ns/mmd-2.0#
http://www.bookfinder.com/dir/i/Romeo_and_Juliet/0486275574/
http://www.bookfinder.com/dir/i/Romeo_and_Juliet/0486275574/
http://www.bookfinder.com/dir/i/Romeo_and_Juliet/0486275574/

CC-BY-NC-ND • PID_00179808 43 Relational Extensions

is the default namespace, so it applies to every element that does not specify

an alias. The custom XML is in the http://www.uoc.edu/subjects/adb/

ns/custom# namespace, which is linked to the custom alias. Consequently,

the elements in this namespace have their names prepended with custom:.

Code 8. A piece of XML that combines elements from different namespaces

 <metadata
 xmlns="http://musicbrainz.org/ns/mmd-2.0#"
 xmlns:custom="http://www.uoc.edu/subjects/adb/ns/custom#">
 <artist type="Person">
 <name>Adele</name>
 <full-name>
 Adele<initials>L.B.</initials>Adkins
 </full-name>
 </artist>
 <release>
 <title>Rolling in the Deep</title>
 <custom:metadata>Must buy</custom:metadata>
 </release>
 </metadata>

2.1.3. Full XML Example

This section introduces the first full XML example. This is a real piece of XML

that can be obtained from the MusicBrainz online service using a simple link.

The link encodes a call to the MusicBrainz API asking for data about a partic-

ular music release including information about the release artist and the in-

cluded recordings.

The response from this service is an XML document representing the data

MusicBrainz has about the release, titled Rolling in the Deep, plus information

about the artist, called Adele, and the two tracks contained in the release.

The first line in the document indicates that it is an XML file and that the

UTF-8 encoding is used. Then, the root element metadata, introduces a pair of

namespace definitions. The first one to the default namespace used by the Mu-

sicBrainz XML data. The second one is for a standard namespace from which

the schemaLocation attribute is used.

Bibliography

Web recommended
This piece of XML data
is available from: http://
musicbrainz.org/ws/2/
release/79ef6f41-51a3-3ee5-
8b2f-7347de023e30?inc=
artist-credits%2Brecordings

This attribute is used to point to the namespace and location of the schema

that the XML document instantiates, i.e., points to the schema defining the

structure of the XML document. In this case, it is the one for the vocabulary

used by the MusicBrainz service. More details about schemas are provided in

the next section.

 <?xml version="1.0" encoding="UTF-8"?>

 <metadata xmlns="http://musicbrainz.org/ns/mmd-2.0#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://musicbrainz.org/ns/mmd-2.0#

 musicbrainz_mmd-2.0.xsd">

 <release id="79ef6f41-51a3-3ee5-8b2f-7347de023e30">

Note

XML document from the Mu-
sicBrainz service for the Rolling
in the Deep music release by
Adele. This example is avail-
able as file “Adele.xml”.

http://www.uoc.edu/subjects/adb/ns/custom#
http://www.uoc.edu/subjects/adb/ns/custom#
http://musicbrainz.org/ws/2/release/79ef6f41-51a3-3ee5-8b2f-7347de023e30?inc=artist-credits%2Brecordings
http://musicbrainz.org/ws/2/release/79ef6f41-51a3-3ee5-8b2f-7347de023e30?inc=artist-credits%2Brecordings
http://musicbrainz.org/ws/2/release/79ef6f41-51a3-3ee5-8b2f-7347de023e30?inc=artist-credits%2Brecordings
http://musicbrainz.org/ws/2/release/79ef6f41-51a3-3ee5-8b2f-7347de023e30?inc=artist-credits%2Brecordings
http://musicbrainz.org/ws/2/release/79ef6f41-51a3-3ee5-8b2f-7347de023e30?inc=artist-credits%2Brecordings

CC-BY-NC-ND • PID_00179808 44 Relational Extensions

 <title>Rolling in the Deep</title>

 <status>Official</status>

 <quality>normal</quality>

 <text-representation>

 <language>eng</language>

 <script>Latn</script>

 </text-representation>

 <artist-credit>

 <name-credit>

 <artist id="cC2c9c3c-b7bc-4b8b-84d8-4fbd8779e493">

 <name>Adele</name>

 <sort-name>Adele</sort-name>

 <disambiguation>UK Soul/Jazz singer</disambiguation>

 </artist>

 </name-credit>

 </artist-credit>

 <date>2011-01-17</date>

 <country>GB</country>

 <barcode>634904152123</barcode>

 <asin>B004DK49WI</asin>

 <medium-list count="1">

 <medium>

 <position>1</position>

 <track-list count="2" offset="0">

 <track>

 <position>1</position>

 <length>229706</length>

 <recording

 id="1a13c710-4b7e-4701-8968-cd61f2e58110">

 <title>Rolling in the Deep</title>

 <length>229000</length>

 </recording>

 </track>

 <track>

 <position>2</position>

 <title>If It Hadn't Been For Love</title>

 <length>186933</length>

 <recording

 id="addd7af6-36c5-4626-a623-aC23b8bc3d2e">

 <title>If It Hadn't Been for Love</title>

 <length>188000</length>

 </recording>

 </track>

 </track-list>

 </medium>

 </medium-list>

 </release>

CC-BY-NC-ND • PID_00179808 45 Relational Extensions

 </metadata>

2.1.4. Storing XML Documents in Oracle XML DB

Oracle XML DB is the name for a set of Oracle Database technologies that

provide XML support by encompassing both SQL and XML data models in an

interoperable manner. The Oracle XML DB Repository is the component of

Oracle Database that handles XML data. It contains resources, which can be

either folders or files. Each resource is identified by a path and name. In the

case of files, their content can be XML data but need not be.

Thanks to the Oracle XML DB Repository, Oracle provides a hierarchically

organized repository that can be queried and through which XML content

can be managed. A hierarchical index speeds up folder and path traversals.

A URL is used to locate an XML document and XPath is used to access and

update content contained within XML documents. Both URLs and XPath ex-

pressions are based on hierarchical metaphors. A URL uses a path through a

folder hierarchy to identify a document, whereas XPath uses a path through

the node hierarchy of an XML document to access part of an XML document.

One key decision to make when using Oracle XML DB for persisting XML

documents is whether to use structured or unstructured storage:

• Unstructured storage provides highest throughput when inserting and re-

trieving entire XML documents. It also provides the greatest degree of

flexibility in terms of the structure of the XML that can be stored. These

throughput and flexibility benefits come at the expense of less perfor-

mance when working with documents at a finer granularity level. There

is little the database can do to optimize queries or updates on XML stored

using a Character Large Object (CLOB), Binary Large Object (BLOB), Bina-

ry File (BFILE), or VARCHAR column.

• Structured storage is based on the XMLType, a new datatype that makes

the database aware that XML is being stored. It has a number of ad-

vantages, including optimized memory management, reduced storage re-

quirements, B-tree indexing that optimize XPath queries and in-place up-

dates. These advantages are at a cost of a greater processing overhead dur-

ing ingestion and retrieval and reduced flexibility in terms of the structure

of the XML.

Bibliography

Shreding is the process of
mapping the data in an XML
document to table rows and
columns in a relational data-
base. More details are avail-
able from:
Ethan�V.�Munson (Springer,
2009). “Document Repre-
sentations (Inclusive Na-
tive and Relational)”. In:
Ling Liu and M. Tamer Özsu
(Eds.). Encyclopedia of Data-
base Systems (pp. 942-946;
ISBN 978-0-387-35544-3).

See also

XPath is described in Section
3.1.

CC-BY-NC-ND • PID_00179808 46 Relational Extensions

Each of these approaches implies different procedures to load XML data in-

to Oracle. For instance, we will consider the piece of XML corresponding to

Adele’s basic information and the list of all her release groups, which, in Mu-

sicBrainz terms, means the list of all her singles, albums and live recordings.

Each one of them is a group of releases because it might have one or more

actual releases, where each release might have different format, release coun-

try or label.

To load it into Oracle XML DB using an unstructured approach:

Web recommended

This piece of XML data
is available from: http://
musicbrainz.org/ws/2/artist/
cc2c9c3c-b7bc-4b8b-84d8-
4fbd8779e493?inc=release-
groups+releases

 DECLARE
 res BOOLEAN;
 BEGIN
 res := DBMS_XDB.createResource('adele-releasegroups.xml',
 HTTPURITYPE.createuri(
 'http://musicbrainz.org/ws/2/artist/cC2c9c3c-b7bc-4b8b-84d8-
 4fbd8779e493?inc=release-groups').getClob());
 END;
 /

To load it into Oracle XML DB using the structured approach:

Note

This code is available as file
1.4a.txt.

 CREATE TABLE table1 OF XMLType;
 INSERT INTO table1 VALUES (XMLType(HTTPURITYPE.createuri(
 'http://musicbrainz.org/ws/2/artist/cC2c9c3c-b7bc-4b8b-84d8-
 4fbd8779e493?inc=release-groups').getXML()));

2.2. XML Schema

As we have seen in section 1.1., a XML document is well formed if it follows

some syntactic rules. However, this is just a small constraint on the structure

of XML documents that makes them processable but allows building quite

meaningless documents because these rules say nothing specific about the

structure of the document; they do not define a schema.

The main purpose of XML is to provide a way to make applications commu-

nicate and in order to attain this, there should be some sort of understanding,

some way of being able to anticipate the structure of the document and know

how to interpret the pieces of data in that structure. In other words, there is

a need for some sort of shared vocabulary for that particular communication

context.

For this purpose, when dealing with XML, it is necessary to define all the ele-

ment and attribute names that may be used. Moreover, to define the structure:

what values an attribute may take, which elements must occur within other

elements, how many times, in which order etc.

If a XML document is well formed and it is structured following one of these

XML vocabularies, it is said to be a valid XML document. There are two main

ways of defining XML vocabularies:

Note

This code is available as file
1.4b.txt.

Web recommended

For a detailed description of
Oracle’s XML storage features
see http://docs.oracle.com/
cd/B19306_01/appdev.102/
b14259/xdb03usg.htm

http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4c 93?inc=release-groups+releases
http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4c 93?inc=release-groups+releases
http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4c 93?inc=release-groups+releases
http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4c 93?inc=release-groups+releases
http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4c 93?inc=release-groups+releases
http://docs.oracle.com/cd/B19306_01/appdev.102/b14259/xdb03usg.htm
http://docs.oracle.com/cd/B19306_01/appdev.102/b14259/xdb03usg.htm
http://docs.oracle.com/cd/B19306_01/appdev.102/b14259/xdb03usg.htm

CC-BY-NC-ND • PID_00179808 47 Relational Extensions

• DTD (Document Type Definition): this is the first standardized way of do-

ing so. It is simpler but less expressive so most of the modern standards

based on XML, which define a XML vocabulary to build meaningful doc-

uments in the particular application domain of the standard, use the next

alternative instead.

• XML�Schema: this second option is more complex than DTD but it is

more expressive and thus allows defining vocabularies that better capture

the particularities of the application domain. We will concentrate on this

alternative, which is detailed in the next section.

2.2.1. Basic Concepts

As we have seen, XML Schema offers a richer language for defining XML vo-

cabularies than DTD. The syntax of XML Schema is based on XML itself, which

means that there is a XML Schema that defines the XML Schema vocabulary.

This is the set of elements and attributes, plus the way of combining them,

to define a XML vocabulary.

This is the first advantage over DTD, which is not based on XML, because

this approach provides a significant improvement in readability, and, most

importantly, it allows significant reuse of existing XML technology and refin-

ing schemas.

However, the fundamental advantage of a XML Schema over a DTD is that in

addition to the element and attribute names and their structure, a schema can

specify more sophisticated rules for the content of elements and attributes.

Any XML Schema builds on top of a set of built-in datatypes, called simple

types, like string, boolean or integer. These primitives can be combined to

build complex types, which can be then assigned as the content of an ele-

ment-containing subelement. Simple types can be also restricted to derive new

custom simple types. For example, the schema can restrict dates to those af-

ter the year 2000. Therefore, users can derive their own data types from the

built-in data types or other derived types to define new types that meet the

requirements of the vocabulary modeling process.

2.2.2. XML Schema Root

An XML schema is a document with an opening root element like:

Web recommended

The XML Schema Speci-
fication is available from
http://www.w3.org/TR/
xmlschema-0

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://musicbrainz.org/ns/mmd-2.0#"
 xmlns:ext="http://musicbrainz.org/ns/ext#-2.0"
 xmlns:mmd-2.0="http://musicbrainz.org/ns/mmd-2.0#">

Note

The MusicBrainz XML Schema,
used in the examples in this
section, is available as file
musicbrainz_mmd-2.0.xsd.

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

CC-BY-NC-ND • PID_00179808 48 Relational Extensions

The element defines the namespace of XML Schema, found at the W3C web

site. It is common practice to use the xsd extension to denote the namespace

of that schema. It is the foundation on which new schemas can be built.

The new XML Schema is created in the context of the namespace set by the

targetNamespace attribute. This means that all the elements and types de-

fined by the new schema are placed in that namespace. Consequently, as seen

in XML example2, an instance XML document based on this schema will use

as the first part of the schemaLocation attribute that namespace. The second

part corresponds to a path or URL pointing to the file where the schema is

stored.

Just after the XML Schema root element, it is possible to define other XML

Schemas to be imported. This way, it is possible to reuse the types, elements

and attributes defined by them for the current schema and derive new types,

elements or attributes from them. This is done using the import element that

specifies the schema location and optionally the namespace for the imported

schema.

 <xsd:import schemaLocation="local.xsd"/>
 <xsd:import namespace="http://musicbrainz.org/ns/ext#-2.0"
 schemaLocation="extensions.xsd"/>

The XML Schema document starts from this point to provide definitions and

declarations for the vocabulary terms to be defined. Definitions create new

types. These can be complex types, which allow elements in their content and

may carry attributes, and simple types, which cannot have element content

or attributes. On the other hand, declarations enable elements and attributes

with specific names and types, both simple and complex, to appear in docu-

ment instances.

2.2.3. Complex Types

Complex types are defined using the complexType element, and their defin-

itions contain a set of element declarations, element references and attribute

declarations.

The declarations are associations between an element name and the complex

type, which defines the constraints that govern the content of the element,

the subelements and attributes, in documents instantiating the schema. Ele-

ments are declared using the element element, and attributes are declared

using the attribute element.

Complex types are defined from existing data types combining them using

one of the following primitives:

(2)XML document from the Mu-
sicBrainz service for the Rolling in
the Deep music release by Adele.
This example is available as file
Adele.xml.

Note

If an XML schema does not
specify a targetNamespace,
elements and types defined by
the XML schema are associat-
ed with the NULL namespace.

CC-BY-NC-ND • PID_00179808 49 Relational Extensions

• Sequence: the subelements for the complex type structure defined inside

of a sequence should appear in the appearing order in instance XML doc-

uments.

• All: the collection of subelements must appear, but the order is not rele-

vant, they might appear in the instance XML documents in a order differ-

ent from the order they appear in the XML Schema complex type.

• Choice: from the collection of subelements in the choice just one will be

chosen in the instance XML documents.

By default, the elements defined in a complex type are required to appear just

one time. However, it is possible to define their cardinality. The minOccurs

attribute sets the minimum number of times that the element should appear

and the maximum number of times an element may appear is determined by

the value of the maxOccurs attribute.

This value must be a positive integer or the term unbounded to indicate there

is not a maximum number of occurrences. The default value for both the

minOccurs and the maxOccurs attributes is 1.

Attributes may appear once or not at all. Consequently, the syntax for attrib-

utes cardinality is different from the syntax for elements. Attributes can be

declared with a use attribute to indicate whether the attribute is required or

optional. Attributes are optional by default and to make them mandatory

their declaration should have the use attribute with its value set to required.

Moreover, if they are optional, they can have a default value defined using

the default attribute. Finally, attribute content is a simple type, which is set

using the type attribute.

2.2.4. Example

For example, in the MusicBrainz case the intended vocabulary should define

references to the artists associated to a recording. To this end, a complex type

is defined, which can be later associated to a new element like name-credit.

The structure defined by the complex type is a sequence of an optional name

subelement followed by a mandatory artist subelement.

The subelements are referenced using the name or the ref attributes. The for-

mer means that the subelement is declared at that point so it is also necessary

to define its content using the type attribute. The latter means that the ele-

ment is declared elsewhere in the schema (or imported schemas) and reused

here. Finally, there is also an attribute declaration.

CC-BY-NC-ND • PID_00179808 50 Relational Extensions

 <xsd:complexType name="name-creditType">
 <xsd:sequence>
 <xsd:element minOccurs="0" name="name" type="xsd:string"/>
 <xsd:element ref="mmd-2.0:artist"/>
 </xsd:sequence>
 <xsd:attribute name="joinphrase"
 type="xsd:string" default=" & "/>
 </xsd:complexType>

As a result of this definition, any element whose type is declared to be name-

creditType, such as name-credit in the following example, will optionally

contain a name subelement but allways preceding the artist subelement.

The element will optionally also have the joinphrase attribute.

 <xsd:element name="artist-credit">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded"
 name="mmd-2.0:name-credit"
 type="mmd-2.0:name-creditType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

2.2.5. Simple Types

As we have seen in the previous section, elements can be declared to have

content constrained to a defined complex type. The complex type defines the

element subelements and attributes. The subelements, in turn, can also be

constrained to complex types or to simple types.

In any case, at last, all complex types are rooted in simple types, which also

define attributes content. The simple types can be those built into the XML

Schema, shown in Table 4, or be derived from these built-ins, as detailed next.

Table 4. The simple types built-in the XML Schema standard

Simple Types Examples (delimited by commas) Notes

string Confirm this is electric --

normalizedString Confirm this is electric Newline, tab and carriage-return characters are con-
verted to space characters

token Confirm this is electric As normalizedString, and adjacent space characters
are collapsed to a single space character, and leading
and trailing spaces are removed.

byte -1, 126

unsignedByte 0, 126

base64Binary GpM7

hexBinary 0FB7

integer, int -126789, -1, 0, 1, 126789

positiveInteger 1, 126789

negativeInteger -126789, -1

CC-BY-NC-ND • PID_00179808 51 Relational Extensions

Simple Types Examples (delimited by commas) Notes

nonNegativeInteger 0, 1, 126789

nonPositiveInteger -126789, -1, 0

unsignedInt 0, 1267896754

long -1, 12678967543233

unsignedLong 0, 12678967543233

short -1, 12678

unsignedShort 0, 12678

decimal -1.23, 0, 123.4, 1000.00

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN equivalent to single-precision 32-bit floating
point, NaN is Not a Number

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN equivalent to double-precision 64-bit floating point

Boolean true, false 1, 0

time 13:20:00.000, 13:20:00.000-05:00

dateTime 1999-05-31T13:20:00.000-05:00 May 31st 1999 at 1.20pm Eastern Standard Time
which is 5 hours behind Co-Ordinated Universal Time

duration P1Y2M3DT10H30M12.3S 1 year, 2 months, 3 days, 10 hours, 30 minutes, and
12.3 seconds

date 1999-05-31

gMonth --05-- May

gYear 1999 1999

gYearMonth 1999-02 the month of February 1999, regardless of the num-
ber of days

gDay ---31 the 31st day

gMonthDay --05-31 every May 31st

Name shipTo XML 1.0 Name type

QName po:USAddress XML namespace QName

NCName USAddress XML namespace NCName, that is, QName without
the prefix and colon

anyURI http://example.com/doc.html#ID5

language en-GB, en-US, fr valid values for xml:lang as defined in XML 1.0 that
specify the language

ID, IDREF, IDREFS,
ENTITY, ENTITIES, NOTATION

XML 1.0 ID attribute type

NMTOKEN US, Canada XML 1.0 NMTOKEN attribute type, a normalised
string without spaces

CC-BY-NC-ND • PID_00179808 52 Relational Extensions

Simple Types Examples (delimited by commas) Notes

NMTOKENS US UK, Canada Mexique XML 1.0 NMTOKENS attribute type, that is, a white-
space separated list of NMTOKEN values

New simple types are defined by deriving them from existing built-in or pre-

viously derived simple types. The derivation is based on restricting the range

of values of the derived simple type to a smaller set of intended values for the

new simple type.

The definition is built using the simpleType element that sets the name for

the new simple type. Then, the restriction subelement indicates the exist-

ing base simple type. Finally, there is a set of subelements that allow specify-

ing in what way the base simple type set of values is restricted. XML Schema

defines restriction facets. The main ones are:

• Range: this restriction can be applied to simple types derived from nu-

meric or temporal types. The lower limit of the range is defined using the

minInclusive or minExclusive subelement and the value attribute,

whose value is included in the range if inclusive or not if exclusive. For

the upper limit the subelements are maxInclusive and maxExclusive.

For instance, to define a new simple type for the range of integers between

10 and 99, both included in the range, the new simple type is derived from

integer and the minInclusive facet is set to 10 while the maxInclu-

sive one is set to 99:

 <xsd:simpleType name="myInteger">

 <xsd:restriction base="xsd:integer">

 <xsd:minInclusive value="10"/>

 <xsd:maxInclusive value="99"/>

 </xsd:restriction>

 </xsd:simpleType>

Web recommended

For an exhaustive list of re-
striction facets, refer to Ap-
pendix B of the specification
at http://www.w3.org/TR/
xmlschema-0

• Pattern: this restriction allows defining a regular expression that con-

straints the desired combinations of characters from the simple type

string. The constraint is set using a facet called pattern in conjunction

with the regular expression [A-Z]{2} that is read "from the range of up-

per-case letters between A and Z, take two of them".

 <!-- A two-letter country code like 'DE', 'UK',... so

 it does not include 'SPA' or 'USA' -->

 <xsd:simpleType name="def_iso-3166">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[A-Z]{2}"/>

 </xsd:restriction>

 </xsd:simpleType>

Bibliography

For a complete reference for
regular expressions:
Stubblebine,�T. (2007). Regu-
lar expression pocket reference.
O’Reilly Media, Inc.

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

CC-BY-NC-ND • PID_00179808 53 Relational Extensions

Another example of pattern restriction from the MusicBrainz schema is

about defining a simple type for ISWC (the international standard for

identifying music creations):

 <!-- An ISWC code:

 C - single-letter prefix character

 NNN.NNN.NNN - 9-digits separated by "." grouped 3x3

 C - check digit

 -->

 <xsd:simpleType name="def_iswc">

 <xsd:restriction base="xsd:string">

 <xsd:pattern

 value="[A-Z]-[0-9]{3}\.[0-9]{3}\.[0-9]{3}-[0-9]"/>

 </xsd:restriction>

 </xsd:simpleType>

• Enumeration: it can be used to constrain the values of almost every sim-

ple type, except the boolean type. The enumeration facet limits the new

type to a set of distinct values. For example, the quality levels, derived

from NMTOKEN (a normalized string without spaces), whose value must

be low, normal or high:

 <xsd:simpleType name="def_quality">

 <xsd:restriction base="xsd:NMTOKEN">

 <xsd:enumeration value="low"/>

 <xsd:enumeration value="normal"/>

 <xsd:enumeration value="high"/>

 </xsd:restriction>

 </xsd:simpleType>

• Length: another way to limit the set of possible values for a simple type

is by restricting their length to a particular quantity or to define a min-

imum or maximum length. This is done using the length, minLength

and maxLength restriction facet elements.

 <xsd:element name="password">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:minLength value="5"/>

 <xsd:maxLength value="8"/>

 </xs:restriction>

 </xsd:simpleType>

 </xsd:element>

CC-BY-NC-ND • PID_00179808 54 Relational Extensions

The previous method allows for defining atomic simple types, which are sim-

ple type whose values are indivisible. Another option is to define compound

simple types using lists or unions.

For example, the NMTOKEN low value is indivisible in the sense that no part

of it, such as the character l, has any meaning by itself. In contrast, list types

are comprised of sequences of atomic types and consequently the parts of a

sequence (the atoms) themselves are meaningful. For example, NMTOKENS

is a list type, and an element of this type would be a white-space delimited

list of NMTOKEN values, such as low normal. XML Schema has three built-

in list types:

• NMTOKENS

• IDREFS

• ENTITIES

In addition to using the built-in list types, you can create new list types by

derivation from existing atomic types. You cannot create list types from exist-

ing list types, nor from complex types. For example, to create a list of lengths

based on a list of integers:

 <xsd:element name="listOfLengths">
 <xsd:simpleType>
 <xsd:list itemType="myInteger"/>
 </xsd:simpleType>
 </xsd:element>

An instance XML document including a listOfLenghts element based on

the previous definition can be:

 <listOfLengths>189 187 191</listOfMyInt>

Several of the previous simple types restriction facets can be applied to list

types: length, minLength, maxLength and enumeration.

In addition to atomic types and list types, which enable an element or an

attribute value to be one or more instances of one atomic type, there are also

union-based simple types. The union operation enables element or attribute

values to be from the union of multiple atomic and list types.

For instance, it is possible to define a union type for country codes that com-

bines the two-letters and two-letters plus subdivision simple types:

CC-BY-NC-ND • PID_00179808 55 Relational Extensions

 <!-- Two-letter country code like 'DE', 'UK', 'FR' etc. -->
 <xsd:simpleType name="def_iso-3166">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{2}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- Two-letter country code followed by a 3 letter subdivision -->
 <xsd:simpleType name="def_iso-3166-2">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{2}\-[A-Z]{2}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- The union of the previous simple types -->
 <xsd:simpleType name="countryCodes">
 <xsd:union memberTypes="def_iso-3166 def_iso-3166-2"/>
 </xsd:simpleType>

2.2.6. Registering an XML Schema in Oracle XML DB

An XML Schema must be registered with the Oracle XML DB before it can

make use of it. To register an XML Schema, the user should call PL/SQL proce-

dure DBMS_XMLSCHEMA.register_schema, like shown in the following ex-

ample that loads the file containing the MusicBrainz schema from the exam-

ples directory:

 BEGIN
 DBMS_XMLSCHEMA.registerSchema(
 SCHEMAURL => 'http://musicbrainz.org/ns/mmd-2.0#',
 SCHEMADOC => bfilename('examplesDir',
 'musicbrainz_mmd-2.0.xsd'));
 END;
 /

When XML schemas are registered with Oracle XML DB, a set of default tables

are created and used to store XML instance documents associated with the

schemas. These documents can be viewed and accessed in Oracle XML DB

Repository.

XMLType is a native server datatype that lets the database understand that

a column or table contains XML. This is similar to the way that date and

timestamp datatypes let the database understand that a column contains a

date. Datatype XMLType also provides methods that allow common opera-

tions such as XML schema validation.

XMLType tables or columns can be constrained and conform to an XML

schema. This has several advantages:

• The database will ensure that only XML documents that validate against

the XML schema can be stored in the column or table.

• Since the contents of the table or column conform to a known XML

structure, Oracle XML DB can use the information contained in the XML

schema to provide more intelligent query and update processing of the

XML.

• Constraining the XMLType to an XML schema provides the option of

storing the content of the document using structured-storage techniques.

Note

This code is available as file
2.5.txt.

CC-BY-NC-ND • PID_00179808 56 Relational Extensions

Structured storage decomposes the content of the XML document and

stores it as a set of SQL objects rather than simply storing the document

in an unstructured way, such as text in a CLOB.

The main reason for using XML schemas with Oracle XML DB is to validate

that instance documents conform to a given XML Schema. The XMLType

datatype methods isSchemaValid() and schemaValidate() allow Oracle

XML DB to validate the contents of an instance document stored in an XML-

Type.

The XML schema is registered under a URL. This URL is meant to identify the

XML Schema internally. Oracle XML DB does not require access to the target of

the URL when registering an XML Schema or when validating documents that

conform to the schema. It is assumed that any instance document associated

with the XML schema will provide the URL used to register the XML schema

as the way to identify the schema.

2.3. XQuery

In the context of this module, the easiest way to introduce XQuery might be to

say that it is to XML what SQL is to relational databases. Like SQL, XQuery is a

query language but in this case it lets you define queries or complex traversals

on collections of XML data and return the pieces of those XML documents

that meet the query conditions.

XQuery is also a declarative language, so it is independent from the way XML

data are traversed or where they are stored. Consequently, the same XQuery

can work with different XML sources, like a XML file or a relational database

that features a mechanism to provide an XML view of its records.

However, despite similarities between XQuery and SQL, the data model that

supports XQuery is very different from the relational data model on which

SQL is based. XML includes concepts like hierarchy and data order that are

not present in the relational model.

In XQuery, the order in which data appear is important and decisive, because

it is not the same to look for a tag in an <A> tag, like <A>, than

to look for all tags anywhere in the document. XQuery has been built on

the basis of XPath, which is a declarative language for the location of nodes

and pieces of information in XML trees. XQuery is based on this language for

information selection and iteration through an XML-based data set.

Bibliography

For a detailed description of
XPath:
Kay,�M. (2004). XPath 2.0
programmer’s reference. John
Wiley and Sons.

CC-BY-NC-ND • PID_00179808 57 Relational Extensions

2.3.1. XPath

XPath is a standard for accessing and obtaining data from XML documents. It

takes into account that they are structured hierarchically as a tree. By defining

paths across the tree, it allows identifying specific parts of an XML document.

It includes:

• A syntax for defining the parts of an XML document.

• A set of expressions that select parts of an XML document.

• A set of standard functions for manipulating strings, numbers, dates etc.

In general, depending on what it selects, an XPath expression can return:

• A sequence of nodes

• A boolean value, true or false

• A number

• A string of characters

Path Expressions

A path expression locates nodes inside the hierarchical structure of an XML

document. Each expression includes one or more steps across the tree, each

one connected with '/'.

 step1/step2/...

If the path expression starts with '/', then its evaluation starts from the root

element of the XML document.

 /step1/step2/...

Each step might include one axe, one node test and one or more predicates

(axes, node tests and predicates are described in the next sections):

 axe::nodetest[predicate1][predicate2]...

Steps are evaluated in relation to the set of nodes produced by the previous

step in the expression, the one on the left of the current one. For instance,

the following expression selects, from the specified XML document, the text

content of the name elements inside artist elements that are children of

the metadata root element:

 $doc/child::mmd:metadata/child::mmd:artist/
 child::mmd:name/child::text()

Node

A node can be an element
node, an attribute node, a
text node, or any other of the
Node Types. More definitions
are available from the glos-
sary included at the end of this
module.

CC-BY-NC-ND • PID_00179808 58 Relational Extensions

It is important to note that for all the XPath and XQuery examples in this

section, it is necessary to define both the mmd namespace (this is where all

the MusicBrainz schema elements are defined) and the $doc variable, which

points to the XML document we are working with. Consequently, all the ex-

amples should start with the following two lines:

 declare namespace mmd="http://musicbrainz.org/ns/mmd-2.0#";
 declare variable $doc := doc("http://musicbrainz.org/ws/2/artist/
 cC2c9c3c-b7bc-4b8b-84d8-4fbd8779e493?inc=release-groups+releases");

Axes

The axes in a path expression step specify the direction in which the evalua-

tion is going to proceed, this might be up or down in the hierarchy, whether

it is going to include the current node or not etc. The axes are presented next

and their application illustrated in figure 4 (except for attribute and name-

space nodes and axes):

• ancestor: selects all ancestors (parent, grandparent etc.) of the current

node.

• ancestor-or-self: selects all ancestors (parent, grandparent etc.) of the cur-

rent node and the current node itself.

• attribute: selects all attribute nodes of the current node.

• child: selects all children of the current node.

• descendant: selects all descendants (children, grandchildren etc.) of the

current node.

• descendant-or-self: selects all descendants (children, grandchildren etc.)

of the current node and the current node itself.

• following: selects everything in the document after the closing tag of the

current node.

• following-sibling: selects all siblings after the current node.

• namespace: selects all namespace nodes of the current node.

• parent: selects the parent of the current node.

• preceding: selects everything in the document that is before the start tag

of the current node.

• preceding-sibling: selects all siblings before the current node.

• self: selects the current node.

CC-BY-NC-ND • PID_00179808 59 Relational Extensions

Figure 5. Application of axes in relation to the current node, the one selected by self

The more common axes can be abbreviated or, in some cases, omitted:

• child: this is the default axis so it can be omitted.

For instance, to get just the text contained in all name elements inside

an artist node inside the metadata root element of the specified XML

documents, it is possible to just build the expression:

 $doc/mmd:metadata/mmd:artist/mmd:name/text()

• attribute: it can be abbreviated as '@'.

For instance, to get the attribute named type for all artists in the XML

document:

 $doc/mmd:metadata/mmd:artist/@type

• self::node(): is equivalent to a point ('.').

• parent::node(): can be replaced with two points ('..').

• descendant-or-self::node(): is equivalent to '//'.

For instance, to get the attribute named count for the parent node of any

release element, wherever in the XML document:

 $doc//mmd:release/../@count

CC-BY-NC-ND • PID_00179808 60 Relational Extensions

Node Tests

These test are used to include or exclude nodes selected by an axe. The result

after applying a node test is a subset of the nodes selected by the axe, those

that satisfy the test. The available tests are:

• node-name: where node-name is the actual name of the nodes to be se-

lected. For instance release-group will select all nodes names like that.

• node(): matches any node. It can be abbreviated using '*', for instance

child::*.

• text(): matches any text node.

• comment(): matches any comment node.

• element(): matches any element node.

• attribute(): matches any attribute node.

• attribute(price): matches any attribute whose name is price.

Predicates

A predicate further restricts the set of nodes selected by the combination of

an axe and a node-test it is attached to. It sets the conditions that should be

evaluated true by the set of nodes selected by the axe and the node-test. The

predicates are included in the expression between '[' and ']'. In order to build

the logical expressions in predicates, it is possible to combine axes and node-

test with operators and functions defined by the XPath specification. Table 5

presents a subset of the operators and functions provided by XPath.

Table 5. A subset of the operator and functions defined by XPath

Operator Description Example

| Computes two node-sets //release | //release-group

+ Addition 6 + 4

- Subtraction 6 – 4

* Multiplication 6 * 4

div Division 8 div 4

= Equal count = 9

!= Not equal count != 9

< Less than count < 9

<= Less than or equal to count <= 9

> Greater than count > 9

>= Greater than or equal to count >= 9

or Or count < 8 or count > 10

and And count > 8 and count < 10

Web recommended

For and exhaustive list of
operators refer to the spec-
ification: World Wide Web
Consortium. XQuery 1.0 and
XPath 2.0 Functions and
Operators (Second Edition)
W3C Recommendation, 14
December 2010.
http://www.w3.org/TR/
xpath-functions

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/

CC-BY-NC-ND • PID_00179808 61 Relational Extensions

Operator Description Example

mod Modulus (division remainder) 5 mod 2

For instance, the following two expressions restrict the set of nodes selected

by the axes plus node-tests to just those with the attribute type valued Album

or the attribute count valued greater than 10.

 $doc//mmd:release-group[@type="Album"]
 $doc//mmd:release-list[@count>10]

2.3.2. Queries

A query in XQuery is an expression that reads a sequence of data as XML and

returns as a result another sequence of data in XML. In XQuery, expressions

and returned values are dependent on the context. For example, the nodes of

the result depend on the namespaces, the position inside the document when

evaluating the query expression, etc.

XQuery queries are composed of five different kinds of clauses that are called

FLWOR (pronounced flower) that stands for for, let, where, order�by and

return. Each FLWOR expression is generating a tuple stream:

• for: it links one or more variables to expressions written in XPath, creating

a flow of tuples (rows) where each tuple contains the values for all the

variables defined by the for.

• let: it binds a variable to the result of an expression, which might involve

variables defined by a for. There might be more than one let in an

XQuery. The variable values are added to the tuples generated by a for

clause or, if there is no for clause, creating a unique tuple containing

these links.

• where: it filters the tuples by removing all those that do not meet the

conditions.

• order�by: it sorts the tuple stream according to the given criterion.

• return: it is evaluated for each tuple in previously filtered and reordered

stream. It builds the result XML of the query by concatenating the results

of all return evaluations. It can combine XML code with XPath expres-

sions, the latter are surrounded with '{' and '}' if mixed with XML.

The XQuery syntax defines that each query must have at least one for or let

clause. The query may optionally have where and order by clauses, but it

must end with a return.

Simple For Expression Example

In the following for clause example, the variable $rg will go through all the

release-group elements in the XML document.

tuple stream

A tuple stream is an ordered
sequence of zero or more tu-
ples. Each tuple is a set of zero
or more named variables, each
of which is bound to a value.
More definitions are available
from the glossary at the end of
this module.

CC-BY-NC-ND • PID_00179808 62 Relational Extensions

 for $rg in $doc//mmd:release-group
 return <release-group id="{$rg/@id}"/>

Query details:

• The for clause iterates over all release-group elements in adele-

releasegroups.xml, loaded in Section 1.4, binding variable $rg to

the value of each such element, in turn. That is, it iterates over re-

lease-group elements, binding $rg to each release-group, indepen-

dently of where they appear in the XML. The result at this stage of query

evaluation is:

 <release-group type='Single' id='29716e9a-4496-4d3f-8570-
 2833001cdd9e'>
 <title>Cold Shoulder</title>
 <first-release-date>2008-04-21</first-release-date>
 </release-group>
 <release-group type='Live' id='36e41dc0-2a0c-4ff7-b043-
 097534d52bf6'>
 <title>Adele Live at the Royal Albert Hall</title>
 <first-release-date>2011-11-28</first-release-date>
 </release-group>
 ...
 <release-group type='Album' id='e4174758-d333-4a8e-a31f-
 dd0edd51518e'>
 <title>21</title>
 <first-release-date>2011-01-19</first-release-date>
 </release-group>

• The return clause constructs release-group elements, one for each tu-

ple. Attribute id of these elements is constructed using attribute id from

the input, resulting in the following output from the query:

 <release-group id='29716e9a-4496-4d3f-8570-2833001cdd9e'/>
 <release-group id='36e41dc0-2a0c-4ff7-b043-097534d52bf6'/>
 ...
 <release-group id='e4174758-d333-4a8e-a31f-dd0edd51518e'/>

Conditional Expression Example

The following query returns the titles of the Adele release groups that were

first released during the second half of 2011 ordered by title.

Note

This XQuery is available as file
3.2.1.txt.

 for $rg in $doc//mmd:release-group
 where $rg/mmd:first-release-date>="2011-07-01" and
 $rg/mmd:first-release-date<"2012-01-01"
 order by $rg/mmd:title
 return $rg/mmd:title

Query details:

• The for clause iterates over all release-group elements in adele-

releasegroups.xml, loaded in Section 1.4, binding variable $rg to the value

of each such element, in turn and independently of where they appear in

the XML. The results is:

Note

This XQuery is available as file
3.2.2.txt.

CC-BY-NC-ND • PID_00179808 63 Relational Extensions

 <release-group type='Single' id='29716e9a-4496-4d3f-8570-
 2833001cdd9e'>
 <title>Cold Shoulder</title>
 <first-release-date>2008-04-21</first-release-date>
 </release-group>
 <release-group type='Live' id='36e41dc0-2a0c-4ff7-b043-
 097534d52bf6'>
 <title>Adele Live at the Royal Albert Hall</title>
 <first-release-date>2011-11-28</first-release-date>
 </release-group>
 ...
 <release-group type='Album' id='e4174758-d333-4a8e-a31f-
 dd0edd51518e'>
 <title>21</title>
 <first-release-date>2011-01-19</first-release-date>
 </release-group>

• The where clause filters the tuple stream of release groups, keeping on-

ly tuples with a subelement first-release-date greater or equal than

2011-07-01 and smaller than 2012-01-01. The result after filtering is:

 <release-group type='Live' id='36e41dc0-2a0c-4ff7-b043-
 097534d52bf6'>
 <title>Adele Live at the Royal Albert Hall</title>
 <first-release-date>2011-11-28</first-release-date>
 </release-group>
 <release-group type='Live' id='763f800f-4284-432b-b056-
 7f6e0aa26bfe'>
 <title>iTunes Festival: London 2011</title>
 <first-release-date>2011-07-13</first-release-date>
 </release-group>
 <release-group type='Single' id='7C2071cb-598d-4a0c-b1d5-
 a53e2cb9b5f8'>
 <title>Set Fire to the Rain</title>
 <first-release-date>2011-07-04</first-release-date>
 </release-group>

• The order by clause sorts the filtered tuple stream by the value of the

subelement title in ascending order, the default, and upper-case before

lower-case. The previous output is consequently ordered resuting in:

 <release-group type='Live' id='36e41dc0-2a0c-4ff7-b043-
 097534d52bf6'>
 <title>Adele Live at the Royal Albert Hall</title>
 <first-release-date>2011-11-28</first-release-date>
 </release-group>
 <release-group type='Single' id='7C2071cb-598d-4a0c-b1d5-
 a53e2cb9b5f8'>
 <title>Set Fire to the Rain</title>
 <first-release-date>2011-07-04</first-release-date>
 </release-group>
 <release-group type='Live' id='763f800f-4284-432b-b056-
 7f6e0aa26bfe'>
 <title>iTunes Festival: London 2011</title>
 <first-release-date>2011-07-13</first-release-date>
 </release-group>

• Finally, the return clause concatenates at the output the title elements

for all the filtered tuples and in the appropriate order. The final output

for the query is:

CC-BY-NC-ND • PID_00179808 64 Relational Extensions

 <title>Adele Live at the Royal Albert Hall</title>
 <title>Set Fire to the Rain</title>
 <title>iTunes Festival: London 2011</title>

Differences Between For and Let Clauses

To first view for and let clauses may seem equal but, although their aim is

in both cases to link variables to values, they do so differently. For the query:

 for $t in $doc//mmd:release-group/mmd:title
 return <titles>{$t}</titles>

The for clause assigns each of the release title nodes that appear anywhere in

the XML document to the $t variable. The result is repeated as many times

as title elements so the result is:

 <titles><title>Cold Shoulder</title></titles>
 <titles><title>Adele Live at the Royal Albert Hall</title>
 </titles>
 ...
 <titles><title>Data on the Web</title></titles>

On the other hand, the let clause binds a variable to the whole results of

evaluating an expression. Consequently, if we replace the for clause with a

let one in the previous query:

Note

This XQuery is available as file
3.2.3a.txt.

 let $t:=$doc//mmd:release-group/mmd:title
 return <titles>{$t}</titles>

 The result obtained is:
 <titles>
 <title>Cold Shoulder</title>
 <title>Adele Live at the Royal Albert Hall</title>
 ...
 <title>Data on the Web</title>
 </titles>

In this case, the $t variable is linked only once to all titles of all release groups

so the <titles> tag appears just once.

Combining For and Let

If a let clause appears in a query that already has one or more for clauses,

the values of the variable bound by the let clause are added to each of the

rows generated by the for clause.

For instance, the following query returns the titles of the release groups that

have more than seven releases with the same title than the release group.

Release group, in MusicBrainz terms, means the list of all her singles, albums

and live recordings.

Note

This XQuery is available as file
3.2.3b.txt.

CC-BY-NC-ND • PID_00179808 65 Relational Extensions

 for $rg in $doc//mmd:release-group
 let $r:=//mmd:release[mmd:title=$rg/mmd:title]
 let $c:=count($r)
 where $c>7
 return
 <release-count count="{$c}">
 {$rg/mmd:title/text()}
 </release-count>

Query details:

• The for clause iterates over all release-group elements in adele-

releasegroups.xml, loaded in Section 1.4, binding variable $rg to the val-

ue of each such element, in turn and independently of where they appear

in the XML. The result at this stage of query evaluation is:

 <release-group type='Single' id='29716e9a-4496-4d3f-8570-2833001cdd9e'>

 <title>Cold Shoulder</title>

 <first-release-date>2008-04-21</first-release-date>

 </release-group>

 ...

 <release-group type='Album' id='e4174758-d333-4a8e-a31f-dd0edd51518e'>

 <title>21</title>

 <first-release-date>2011-01-19</first-release-date>

 </release-group>

• The let clause binds variable $r to the sequence of all of the releases

whose title is equal to the title of the release group associated for that

tuple to $rg (this is a join operation). Note that, unlike for, let does

not iterate over values, $r is bound once per $rg value. Consequently, for

each release-group in the output there is a set of release, as shown in

the next table:

Note

This XQuery is available as file
3.2.4a.txt.

CC-BY-NC-ND • PID_00179808 66 Relational Extensions

5�-��7��@������	��'���9���.�������������8��.9����:\�
@�\�;@�<7����\�

��9����	�������'�	��B
��!���	��\����9����	��������8��7�����������<��7��7�

������������7�	�\�
@�8������7�\�
�

B 57��F9�������.��� 8������� �7��� �.9���������@�,��9�	-��	�0��.9����<��7�\�
7�3�	-�#��������������	���

B '�	���0@� �7�� ���!��� ���.��� ��	����	����� �7�� �.�9.�� 8��� ���7� ���!��
���.��@�<7��7������	�����������<��7�����7���9������	�����������<��7

�7�������������.	���	���7�����������������K.����7����������-��.9�8����7�����.�

�������"$�7���������7�	�#����������<��7��7������������@�����7���.�9.��8���

�7��9��3��.��D.��0���A

 I8��7��D.��0���	���	��������7�	��	���������.�������������.����<��7�����

 than one variable, the result is the Cartesian product of the involved vari-

 ables. For instance, the following query explores all the combinations of

 release groups and releases, though just those whose titles do not match

 are picked.

 The result contains all the combinations of titles among release groups

 and releases that do not have the same title:

���J��'�	��B#�!���#�!��DM<M;,AJ?��'�	��B#�!��;

�������\�
����\$�#??��$S��'�	��B
��!�"�\�����\$�#??��$S��'�	��
���F9����\�
?��$S���'��OD�\�?��$S���'�
������!���J$��������;Y\�
?��$S���'�"�\�?��$S���'�ZJ?$��������;

CC-BY-NC-ND • PID_00179808 67 Relational Extensions

 <different>
 <title>Cold Shoulder</title>
 <title>Adele Live at the Royal Albert Hall</title>
 </different>
 <different>
 <title>Cold Shoulder</title>
 <title>Adele Live at the Royal Albert Hall</title>
 </different>
 ...
 <different>
 <title>21</title>
 <title>Make You Feel My Love</title>
 </different>
 <different>
 <title>21</title>
 <title>Chasing Pavements</title>
 </different>

Additional Conditional Expressions

In addition to the where clause, XQuery also supports conditional expression

of the form if-then-else with the same behavior than similar expressions in

most common programming languages.

The where part in FLWOR expressions allows filtering the rows that will ap-

pear in the result, whereas a conditional expression allows creating alterna-

tive outputs depending on how the boolean part of the expression, the if, is

evaluated.

For instance, it is possible to process all release groups and generate one kind

of output if they are albums and another one if they are not.

Note

This XQuery is available as file
3.2.4b.txt.

 for $rg in $doc//mmd:release-group
 return
 if ($rg/@type = "Album") then
 <album>{$rg/mmd:title/text()}</album>
 else
 <other>{$rg/mmd:title/text()}</other>

We get the following result:

 <other>Cold Shoulder</other>
 <other>Adele Live at the Royal Albert Hall</other>
 ...
 <album>21</album>

Existential Quantifiers

XQuery supports two existential quantifiers: some and every. These quanti-

fiers allow defining queries that filter just the tuples for which the stated con-

dition is met for all the specified nodes, this is the case for every, or that is

met by at least one of the specified nodes, this is the case for some.

For instance, with every it is possible to define a XQuery that selects those

release groups whose releases with the same title are all with status set to Of-

ficial.

Note

This XQuery is available as file
3.2.5.txt.

CC-BY-NC-ND • PID_00179808 68 Relational Extensions

 for $rg in $doc//mmd:release-group
 where every $r in $doc//mmd:release[mmd:title=$rg/mmd:title]
 satisfies ($r/mmd:status = "Official")
 return <all-official>{$rg/mmd:title/text()}</all-official>

We get the following result:

 <all-official>Adele Live at the Royal Albert Hall</all-official>
 <all-official>2011-02-25: Morning Becomes Eclectic, KCRW-FM, Santa
 Monica, CA, USA</all-official>
 ...
 <all-official>21</all-official>

Alternatively, we can broaden the query to select those release groups for

which there is at least one release with the same title and status set to Offi-

cial.

Note

This XQuery is available as file
3.2.6a.txt.

 for $rg in $doc//mmd:release-group
 where some $r in $doc//mmd:release[mmd:title=$rg/mmd:title]
 satisfies ($r/mmd:status = "Official")
 return <some-official>{$rg/mmd:title/text()}</some-official>

 We get the following result:
 <some-official>Cold Shoulder</some-official>
 <some-official>Make You Feel My Love</some-official>
 <some-official>Chasing Pavements</some-official>
 <some-official>iTunes Live From SoHo</some-official>
 <some-official>19</some-official>
 <some-official>Hometown Glory</some-official>

Operators and Functions

Note

This XQuery is available as file
3.2.6b.txt.

XQuery supports different kinds of operators and functions. The set of stan-

dard operations and functions is shared between XPath and XQuery. Conse-

quently, some of them where already introduced together with XPath in Sec-

tion 3.1.4. Here, a more detailed overview of these operators and functions

is provided, though, for the full set, the reference is the corresponding W3C

standard document:

• Mathematical: +, –, ∗ , div(), mod(),…

• Comparison: =, !=, <, >, <=, >=

• Boolean: not(), true(), false()

• Rounding: round(), floor(), ceiling(),…

• Aggregate functions: count(), min(), max(), avg(), sum()

• String functions: concat(), string-length (), startswith(), ends-with (), sub-

string(), upper-case (), lower-case, string(),…

• Context functions: position(), last(), current-time(),…

• Date, time and duration: duration-equal(), time-equal(), hours-from-dura-

tion(), day-from-date(),…

• Sequence: union (|), intersect, except, distinct-values…

• Etc.

Web recommended

For and exhaustive list of op-
erators and functions refer
to the specification: World
Wide Web Consortium.
XQuery 1.0 and XPath 2.0
Functions and Operators (Se-
cond Edition) W3C Recom-
mendation, 14 December
2010.
http://www.w3.org/TR/
xpath-functions

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/

CC-BY-NC-ND • PID_00179808 69 Relational Extensions

For instance, using the operator on sequences distinct-values, it is possi-

ble to get the list of all the releases titles without repeated values.

 for $t in
 distinct-values($doc//mmd:release/mmd:title/text())
 return <distinct-title>{$t}</distinct-title>

We get the following result:

 <distinct-title>19</distinct-title>
 <distinct-title>Hometown Glory</distinct-title>
 ...
 <distinct-title>iTunes Live From SoHo</distinct-title>

Another interesting function is except, which allows getting a release node

with all its children nodes except for the barcode node. In this case, the $r/

@* construct retrieves all attributes of the original release node to pass them to

the new output release-without-barcode node. On the other hand, $r/

* retrieves the set of all child nodes of the original release node, from where

the barcode node is removed using except.

Note

This XQuery is available as file
3.2.7a.txt.

 for $r in $doc//mmd:release
 return
 <release-without-barcode>
 {$r/@* }
 {$r/* except $r/mmd:barcode}
 </release-without-barcode>

The previous XQuery, for each release node, obtains first all its attributes and

then all the child nodes except for the barcode one. The result of this query

is like this:

 <release-without-barcode
 id='1596501c-e332-366d-9ad5-b1923bab1005'>
 <title>19</title>
 <status>Official</status>
 <quality>high</quality>
 <text-representation>
 <language>eng</language>
 <script>Latn</script>
 </text-representation>
 <date>2008-11-17</date>
 <country>FR</country>
 </release-without-barcode>

2.3.3. Comments

The comments in XQuery, unlike in XML, are enclosed between smiling faces,

as it is shown below.

 (: this is a comment :)

Note

This XQuery is available as file
3.2.7b.txt.

CC-BY-NC-ND • PID_00179808 70 Relational Extensions

2.3.4. XQuery in Oracle XML DB

When performing XPath queries in Oracle, on XML stored using an unstruc-

tured approach, queries are evaluated by parsing the XML documents from

CLOBs, BLOBs, BFILEs or VARCHARs. This can be very expensive when per-

forming operations on large collections of documents. For structured storage,

XPath operations may be evaluated using XPath rewrite, leading to significant-

ly improved performance, particularly with large collections of documents.

Oracle XML DB can rewrite SQL statements that contain XPath expressions

to purely relational SQL statements, which can be processed more efficient-

ly. In this way, the rewrite insulates the database optimizer from having to

understand XPath/XQuery and the XML data model. The database optimizer

simply processes the rewritten SQL statement in the same manner as other

SQL statements.

This means that the database optimizer can derive an execution plan based on

conventional relational algebra. Consequently, there is little overhead and Or-

acle XML DB can execute XPath-based queries at near-relational speed, while

preserving the XML abstraction. In certain cases, the rewrite is not possible

because there is no SQL equivalent of parts of the XQuery. In this situation

Oracle XML DB performs a functional evaluation like in the case of unstruc-

tured storage.

In general, functional evaluation of a SQL statement is more expensive than

XPath rewrite, particularly if the number of documents that needs to be

processed is large. However the major advantage of functional evaluation is

that it is always possible, regardless of the complexity of the XPath expression.

This is an example of an XMLQuery performed on a XML document previ-

ously loaded into Oracle XML DB. The evaluation is conduced differently de-

pending on how the document was stored. If it was stored in an unstructured

way, it is parsed and then the XQuery is evaluated using a functional XQuery

interpreter or evaluation engine, which itself has been compiled into the data-

base. Otherwise, an XQuery rewrite is conduced. The procedure is transparent

to the user, who will never need to change the code in any way to take advan-

tage of available XQuery optimizations.

 SELECT XMLQuery('
 for $rg in doc("adele-releasegroups.xml")//release-group
 return <release-group id="{$rg/@id}"/>
 'RETURNING CONTENT) FROM DUAL;

Note

This code is available as file
3.4.txt.

CC-BY-NC-ND • PID_00179808 71 Relational Extensions

Summary

In this module we have introduced two relational extensions; object-relational

and XML. Each of these extensions tackles a precise problem but in essence,

both pursue the same objective: extend the relational model to other areas

where the relational model does not naturally fit in.

On the one hand, we have seen that the object-relational data model suc-

ceeded in its confrontation, back in the 80s, with the object-oriented data

model. After a long debate, major relational software vendors tip the balance

and, nowadays, most relational databases follow this paradigm, whereas most

OODBSs have been discontinued.

However, it was not until SQL-99 that object-oriented features were included

in the standard. Unfortunately, this release was not only late, but also short

in terms of features. Many of the propositions claimed in the third generation

database systems manifesto have never been included in the standard.

Current software products, alternatively, have developed their own object-ori-

ented data model. All of them substantially differ from each other, but they

keep a common feature: the object-relational layer is built on top of the un-

derlying relational engine. About features provided, we can mostly talk about

user-defined types, object tables, inheritance, REFs and support to collections.

In this module, we have introduced them in terms of Oracle.

All in all, the object-oriented layer is an interesting extension that can help to

bridge the gap between the relational model and the object-oriented paradigm

most HLLs follow.

On the other hand, the XML extension is based on a tree data structure that is

serialized using the XML syntax. This syntax is based on tags, with open and

close tags, which capture the tree structure through their nesting and each one

corresponds to a tree node. Consequently, as trees have just one root node,

XML documents start with an open tag and the corresponding close tag is at

the end of the document, thus enclosing all the rest of the tags.

Tags can contain other tags or text, which also correspond to nodes of the

tree. The other main components of XML documents are attributes. They are

name-value pairs that are attached to tags and thus to non-textual tree nodes.

A XML document that follows the XML syntax rules is said to be well formed.

However, XML on its own is of little help because it does not put any con-

straints on how tags, text and attributes are combined, neither on which tag

or attribute names to use. The XML Schema language allows creating domain

CC-BY-NC-ND • PID_00179808 72 Relational Extensions

specific vocabularies defining tag and attribute names, how they are com-

bined, their allowd values etc. so any XML-based tool can easily check if a

XML document based on a schema conforms to its constraints and can be

thus considered valid.

XML Schema also provides reuse mechanisms by extension or restriction of

existing schema elements. This is combined with namespaces, which define

naming contexts that avoid the ambiguities of tags with the same name, thus

facilitating the reuse of existing XML Schemas at a global scale.

A set of XML documents can be queried using XQuery, the XML query lan-

guage standard. It allows retrieving data from XML documents and also gen-

erating output XML documents meeting the requirements for those queries.

An XQuery is based on the FLWOR structure, where each letter stands for one

of the query parts:

• For: links variables to expressions written in XPath and creates a tuple

stream where each tuple is composed by variable values.

• Let: binds a variable to the result of an expression.

• Where: filters the tuples by removing all those that do not meet the con-

ditions.

• Order�by: sorts the tuple stream according to the given criterion.

• Return: builds the output XML of the query, combining XML templates

and variable values.

XPath is the XML standard to build paths across XML documents to select

the relevant parts from them. Its syntax defines the steps to follow to find the

tags, attributes or values to be retrieved. 

CC-BY-NC-ND • PID_00179808 73 Relational Extensions

Self-evaluation

Object-relational

1. Give two reasons why object methods may suit better than using attributes.

2. Enumerate two pros and cons of choosing OIDs instead of PKs in Oracle.

3. Consider the following relational tables:

 CREATE TABLE airport (
 IATA CHAR(3) PRIMARY KEY,
 city VARCHAR2(25) NOT NULL,
 country VARCHAR2(20) NOT NULL,
 region VARCHAR2(14) NOT NULL
);

 CREATE TABLE passenger (
 id CHAR(10) PRIMARY KEY,
 EUcitizen CHAR NOT NULL CHECK (EUcitizen = 'Y' OR EUcitizen = 'N'),
 membership VARCHAR2(9) NOT NULL CHECK (membership IN ('none',
 'frequent', 'business', 'gold', 'vip'))
);

 CREATE TABLE ticket (
 IATA1 CHAR(3) CONSTRAINT ticket_FK_origin REFERENCES airport,
 IATA2 CHAR(3) CONSTRAINT ticket_FK_destination REFERENCES airport,
 id CHAR(10) CONSTRAINT ticket_FK_passenger REFERENCES passenger,
 price NUMBER(9,2) NOT NULL,
 discount INTEGER NOT NULL,
 PRIMARY KEY (IATA1, IATA2, id)
);

And the following (already available) type:

 CREATE TYPE travel AS OBJECT (
 departureAirport CHAR(3),
 destinationAirport CHAR(3),
 idPassenger CHAR(10),
 passengerMembership VARCHAR2(9),
 price NUMBER(9,2),
 discount INTEGER);

Create an object view to allow external applications to access your relational data according
to the type travel.

4. Suppose you are asked to design a database to contain the following data: for each school
in Barcelona, its name, code (provided by the Generalitat) and list of students. For each
student, in turn, we want to know their name, current course and average mark.

You know that your database will be accessed by an application defining the following class-
es:

 CLASS centre
 Name VARCHAR2(20)
 Code INTEGER
 List of students

 CLASS student
 Name VARCHAR2(30),
 Surname1 VARCHAR2(30),
 Surname2 VARCHAR2(30),
 Course VARCHAR2(30),
 AverageMark INTEGER

You are asked to:

Create the UDTs to map both classes but:

• First, think of a solution where the list of students is described as a VARRAY.
• Then, provide a solution where the list of students is a NESTED TABLE.

CC-BY-NC-ND • PID_00179808 74 Relational Extensions

• Briefly discuss which solution would be better for this scenario.

XML

We recommend you now to try to develop the XQueries for the following exercises. You can
test your solutions using different XQuery tools before looking at the solutions we propose
for them in the next section. By testing your solutions before looking at the proposed one,
you can get a better idea of the effects of your changes and get a deeper understanding of
how XQuery works.

The input XML for these exercises is the same XML document from MusicBrainz than the
one used along this module. To test your solutions, you can use Oracle XML DB, as detailed
in the corresponding sections, or use an online service that allows you to load the XML input
and perform your queries interactively.

For instance, the XQuery Demo is a web page that allows testing XQueries and defining
a custom input XML document against which the queries will operate. The custom XML
document is defined using the “Load a context document input”, where the URL pointing
to the MusicBrainz XML document should be placed. Then, the XQuery text area can be
used to write the XQueries.

In any case, whatever the XQuery tool you use, do not forget to define the $doc variable
pointing to the input XML document and the MusicBrainz XML Schema namespace:

 declare namespace mmd="http://musicbrainz.org/ns/mmd-2.0#";
 declare variable $doc :=
 doc("http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-
 4fbd8779e493?inc=release-groups+releases");

This is the list of proposed exercises:

5. Modify the part of the MusicBrainz schema related to the release-group element so it
also incorporates a mandatory quality-list subelement that point to a list of qualities,
based on the already defined quality simple type. The release-group element and qual-
ity definitions are included here for convenience.

 <xsd:element name="release-group">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" ref="mmd-2.0:title"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:disambiguation"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:comment"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:first-release-date"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:artist-credit"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:release-list"/>
 <xsd:element minOccurs="0" maxOccurs="unbounded"
 ref="mmd-2.0:relation-list"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:tag-list"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:user-tag-list"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:rating"/>
 <xsd:element minOccurs="0" ref="mmd-2.0:user-rating"/>
 <xsd:group ref="mmd-2.0:def_release-group-element_extension"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:anyURI"/>
 <xsd:attribute name="type" type="xsd:anyURI"/>
 <xsd:attributeGroup ref="mmd-2.0:def_release-group-
 attribute_extension"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:simpleType name="def_quality">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="low"/>
 <xsd:enumeration value="normal"/>
 <xsd:enumeration value="high"/>
 </xsd:restriction>
 </xsd:simpleType>

6. List the release title and release date for those releases dated before 2008.

7. Get the amount of releases for each country, taking into account the country where each
release has happened, but just considering those releases before 2008-06-01. The output

XML document from
MusicBrainz

The XML document for Adele
containing all her releases and
groups of releases is available
from: http://musicbrainz.org/
ws/2/artist/cc2c9c3c-
b7bc-4b8b-84d8-4fbd8779e49
3?inc=release-groups+releases

XQuery Demo

The XQuery Demo web
page is available at: http://
www.semwebtech.org/
xquery-demo/

http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4 93?inc=release-groups+releases
http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4 93?inc=release-groups+releases
http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4 93?inc=release-groups+releases
http://musicbrainz.org/ws/2/artist/cc2c9c3c-b7bc-4b8b-84d8-4fbd8779e4 93?inc=release-groups+releases
http://www.semwebtech.org/xquery-demo/
http://www.semwebtech.org/xquery-demo/
http://www.semwebtech.org/xquery-demo/

CC-BY-NC-ND • PID_00179808 75 Relational Extensions

should be a list of country tags with an attribute name and a text subelement with the
number of releases in that country, sorted in descending order by number.

8. List all release groups that have an empty first-release-date.

9. Get all the release groups that have a first-release-date that do not follow the YYYY-
MM-DD format.

10. Fix all release groups that have a date that does not follow the YYYY-MM-DD format. If
the format is YYYY, make it the first day of the corresponding year using the YYYY-MM-DD
format. If the first-release-date does not follow the YYYY format, remove the element
completely.

CC-BY-NC-ND • PID_00179808 76 Relational Extensions

Answer key

Object-relational

1. Object methods can be used to replace derived attributes (i.e., attributes whose value is
derived from other attributes). In such scenarios:

• object methods provide up-to-date data (if the base attributes upon which the derived
attribute is built change we must refresh the derived attribute and while it is not done,
we would access and old value),

• we save space, as we do not materialize this data but compute it on-the-fly whenever
the method is called.

These exercises can be found in the exs_solution_3 and exs_solution_4 files, respectively.

2. We can spot out the following main differences between OIDs and PKs:

• The primary key has an ad hoc size depending on the built-in type used to implement
it. For example, an integer is usually 4 bytes long. On the contrary, OIDs are always 16
bytes long. This can affect performance (for example, when building indexes).

• The primary key provides semantics regarding the scenario. However, an OID is an arti-
ficial identifier, with no semantics at all.

• The OID is guaranteed to be unique. The primary key, however, could just be unique in
terms of our database.

3. The object-view must fill all the ticket attributes properly. In this case, the solution would
look like this:

 CREATE VIEW travels OF travel WITH OBJECT IDENTIFIER (departureAirport, destinationAirport,
 idPassenger ID) AS
 SELECT t.IATA1, t.IATA2, t.id, p.membership, t.price, t.discount
 FROM ticket t, passenger p
 WHERE t.id = p.id;

4. Solution with VARRAY:

 CREATE TYPE student AS OBJECT (
 Name VARCHAR2(30),
 Surname1 VARCHAR2(30),
 Surname2 VARCHAR2(30),
 Course VARCHAR2(30),
 AverageMark INTEGER);

 CREATE TYPE list_of_students AS VARRAY(5000) OF student;

 CREATE TYPE centre AS OBJECT (
 Name VARCHAR2(20),
 Code INTEGER,
 Students list_of_students);

Solution with NESTED TABLE:

 CREATE TYPE student AS OBJECT (
 Name VARCHAR2(30),
 Surname1 VARCHAR2(30),
 Surname2 VARCHAR2(30),
 Course VARCHAR2(30),
 AverageMark INTEGER);

 CREATE TYPE students_t AS TABLE OF student;

 CREATE TABLE centre AS OBJECT (
 Name VARCHAR2(20),
 Code INTEGER,
 Students students_t)
 NESTED TABLE Students STORE AS students_nt;

Discussion:

According to table 4 (discussed in section “Practical Issues on Collections”), nested tables do
not require specifying the number of elements beforehand and in this case, the variation
between different centers might be too high. Furthermore, we will mostly access students

CC-BY-NC-ND • PID_00179808 77 Relational Extensions

according to which center they belong to (i.e., we mostly will partially access the collection)
and nested tables also allow higher concurrency. Furthermore, with nested tables we can
easily answer questions of the kind: count the number of students with an average mark
higher than X per center and it is also easier to declare CHECKs, if needed.

XML

These are the proposed solutions for the previous exercises. Note that each solution is just
one among many different ways to solve the same problem.

The solutions for these exercises are available as files Solution2a.txt, Solution2b.txt,
Solution3.txt, Solution4a.txt, Solution4b.txt, Solution4c.txt, Solution5.txt and Solution6.txt.

5. The release group element is modified to add a new entry for the quality-list element.
This is a just a reference because the element is defined below, in a separate definition. The
reference does not include any occurrence attribute because the default is a minimum car-
dinality of one. The added line is highlighted in bold.

The previous addition is just a reference to the quality-list element. It is defined in its
own, on top of the existing quality simple type that it reuses.

 <xsd:element name="quality-list">
 <xsd:simpleType>
 <xsd:list itemType="mmd-2.0:def_quality"/>
 </xsd:simpleType>
 </xsd:element>

6.

 for $r in $doc//mmd:release
 where $r/mmd:date<"2008"
 order by $r/mmd:date
 return <release>{$r/mmd:title,$r/mmd:date}</release>

The proposed solution uses 2008 instead of 2008-01-01 because there are some entries in the
input XML data that do not follow the YYYY-MM-DD format for dates. This causes that when
filtering for dates before 2008-01-01, releases that have just the year 2008 are also included
in the output, as shown below.

 for $r in $doc//mmd:release
 where $r/mmd:date>"2008-01-01"
 order by $r/mmd:date
 return $r/mmd:title

If 2008-01-01 is used for filtering in the where clause, the output is the following, which
includes the releases that just specify the year 2008 as their date.

CC-BY-NC-ND • PID_00179808 78 Relational Extensions

 <release>
 <title>Hometown Glory</title>
 <date>2007-10-29</date> </release>
 <release>
 <title>2008-09-22: BBC Radio 1's Live Lounge: London, UK </title>
 <date>2008</date>
 </release>
 <release>
 <title>Hometown Glory</title>
 <date>2008</date>
 </release>

7.

 for $c in distinct-values($doc//mmd:country)
 let $rc := $doc//mmd:release[mmd:country=$c and mmd:date<
 "2008-06-01"]
 let $nc := count($rc)
 where $nc > 0
 order by $nc descending
 return <country name="{$c}">{$nc}</country>

The query has a pair of particularities. First of all, the use of the distinct values function
in the for clause to avoid as many occurrences of the same country in the output as its
appearances in the input. The other one is the where clause. It is necessary to avoid that
countries without any release appear in the output. The output of the query is:

 <country name="GB">12</country>
 <country name="FR">1</country>
 <country name="JP">1</country>
 <country name="DE">1</country>

8.

 for $rg in $doc//mmd:release-group
 where not(exists($rg/mmd:first-release-date/text()))
 return $rg

The same result can be obtained omitting the exists function, because the not operator
also operates on sequences being the empty one equivalent to false.

 for $rg in $doc//mmd:release-group
 where not($rg/mmd:first-release-date/text())
 return $rg

It is even possible to reduce the query to just the XPath expression.

 $doc//mmd:release-group[not(mmd:first-release-date/text())]

In all cases we obtain the same result.

 <release-group type="Live" id="37367c39-1c91-4a8c-baa7-0a09c3df4b6b">
 <title>2011-02-25: Morning Becomes Eclectic, KCRW-FM,
 Santa Monica, CA, USA</title>
 <first-release-date/>
 </release-group>

9.

 for $rg in $doc//mmd:release-group
 where not(matches($rg/mmd:first-release-date,"\d{4}-\d{2}-\d{2}"))
 return $rg

The proposed solution uses a regular expression matching function called matches. It match-
es the value to be checked against the provided regular expression. In this case, the regular
expression is four digits followed by a hyphen ('-') followed by two digits another hyphen
('-') character and two final digits. The result from the matches function is negated and the
result includes release groups whose first release date does not follow this format, which in-
cludes those that do not have a value for this element.

 <release-group type="Live" id="11ce3c93-0325-439e-8de7-fab397ba839c">
 <title>2008-09-22: BBC Radio 1's Live Lounge: London, UK </title>
 <first-release-date>2008</first-release-date>

CC-BY-NC-ND • PID_00179808 79 Relational Extensions

 </release-group>

 <release-group type="Live" id="37367c39-1c91-4a8c-baa7-0a09c3df4b6b">
 <title>2011-02-25: Morning Becomes Eclectic, KCRW-FM,
 Santa Monica, CA, USA</title>
 <first-release-date/>
 </release-group>

10.

 for $rg in $doc//mmd:release-group
 where not(matches($rg/mmd:first-release-date,"\d{4}-\d{2}-\d{2}"))
 return
 <mmd:release-group>
 {$rg/@* }
 {$rg/* except $rg/mmd:first-release-date}
 {if ($rg/mmd:first-release-date/text() and matches())
 then <mmd:first-release-date>
 {$rg/mmd:first-release-date/text()}-01-01
 </mmd:first-release-date>
 else ()}
 </mmd:release-group>

The proposed solution is built on the proposed one for Exercise 4. For each of the releases
that do not follow the YYYY-MM-DD format, all the attributes and subelements are copied
in the output except for the first-release-date one.

For that particular case an if-then-else conditional is defined. If the first release date follows
the YYYY format, the first-release-date element is generated and its text subelement is the
result of concatenating the year and the string 01-01. This way, the output date is the first
day of the corresponding year. Otherwise, the else part of the conditional clause, which is
mandatory, returns the empty sequence. Consequently, there is no first-release-date
element in the output because it was previously omitted using the except operator and it
has not been generated in the if-then-else conditional.

The result of this query is:

 <mmd:release-group type="Live" id="11ce3c93-0325-439e-8de7-fab397ba839c">
 <mmd:title>2008-09-22: BBC Radio 1's Live Lounge:
 London, UK </mmd:title>
 <mmd:first-release-date>2008-01-01</mmd:first-release-date>
 </mmd:release-group>

 <mmd:release-group type="Live" id="37367c39-1c91-4a8c-baa7-0a09c3df4b6b">
 <mmd:title>2011-02-25: Morning Becomes Eclectic, KCRW-FM,
 Santa Monica, CA, USA</mmd:title>
 </mmd:release-group>

CC-BY-NC-ND • PID_00179808 80 Relational Extensions

Glossary

API  Application Programming Interface.

Attribute  A characteristic or property of an element. Attributes are represented as name
value pairs on an element tag.

DBA  Database Administrator.

DBMS  Database Management System.

Document Object Model (DOM)  An API that provides an object representation of an
XML document. The DOM API represents an XML document as a tree of nodes. Nodes may
be created, queried, updated and deleted.

Document Type Definition (DTD)  Describes the structure of XML documents.

Document  An XML structure containing a root element and its subelements.

Element  A component of the tree structure defined in a Document Type Definition (DTD)
or Schema. An element may be composed of text, attributes and other elements.

Final  In Object-Oriented programming languages, a final class is that which cannot be
extended.

Instantiable  In Object-Oriented programming languages, a class which can be instantiat-
ed and, therefore, creates an object of that kind.

Item  An item is either an atomic Value or a Node.

JDBC  Java Database Connectivity.

Metadata  Metadata are data about data or data that describe other data.

Namespace  A feature of XML for using multiple vocabularies in a single XML document
and avoid name clashes.

Node Type  The types of nodes are, in addition to Element, Attribute and Text, Document,
DocumentFragment, DocumentType, ProcessingInstruction, EntityReference, CDATASec-
tion, Comment, Entity and Notation.

Node  A node can be an element node, an attribute node, a text node or any other of the
Node Types.

ODBC  Open Database Connectivity.

OO  Object-Oriented.

OODBS  Object-Oriented Database System.

OODM  Object-Oriented Data Model.

OOPL  Object-Oriented Programming Language.

ORDBS  Object-Relational Database System.

ORDM  Object-Relational Data Model.

Parser  A tool that reads XML data and breaks it up into elements and attributes, usually
structured as a Document Object Model (DOM).

PL/SQL  Procedural Language/Structured Query Language.

Root  The outermost element in an XML document that contains all other elements. It is
the top node in a tree structure.

Schema  Defines the structure of XML documents. Schemas address deficiencies in DTDs
such as specifying data types.

Sequence  A sequence is an ordered collection of zero or more Items.

CC-BY-NC-ND • PID_00179808 81 Relational Extensions

Shred  The process of mapping the data in an XML document to table rows and columns
in a relational database.

Surrogate  An artificial primary key created and maintained by the system with no seman-
tics extracted from the domain.

Tag  The markup language used to describe an XML element. An XML tag is represented by
the element name enclosed by angle brackets.

Tuple Stream  A tuple stream is an ordered sequence of zero or more tuples.

Tuple  It is a set of zero or more named variables, each of which is bound to a Value.

Value  In the XQuery data model, a value is always a Sequence.

Vertical Fragmentation  The problem of breaking a relation into smaller pieces by group-
ing attributes.

Vocabulary  A dialect or set of XML tags used to describe a particular data structure. A
vocabulary is defined using a DTD or Schema.

CC-BY-NC-ND • PID_00179808 82 Relational Extensions

Bibliography

Object-Oriented

Atkinson M.; Bancilhon F.; DeWitt D.; Dittrich K.; Maier D.; Zdonik S. (1990).
The Object-Oriented Database System Manifesto. In Proc. 1st Int. Conf. on Deductive and Ob-
ject-Oriented Databases, North Holland.

Stonebraker M.; Rowe L.; Lindsay B.; Gray J.; Carey M.; Brodie M.; Bernstein P.;
Beech D. (1990). “Third generation database system manifesto”.ACM SIGMOD Rec., 19(3).

Rowe L.; Stonebraker M. (1987). The Postgres Data Model. In Proc. 13th Int. Conf. on Very
Large Data Bases.

Dietrich S.W.; Urban S.D. (2005). An Advanced Course in Database Systems: Beyond Rela-
tional Databases. Prentice Hall, Upper Saddle River, NJ.

Liu, L.; Ozsu, M. T. (Eds.) (2009). Encyclopedia of Database Systems. Springer.

XML

Ray, E.T. (2003). Learning XML (2nd Edition). Sebastopol, CA: O'Reilly Media.

Harold, E. R.; Jeans, W. S. (2004). XML in a Nutshell, 3rd Edition. Sebastopol, CA: O'Reilly
Media.

Hunter, D.; Rafter, J.; Fawcett, J.; Vlist, E. van der; Ayers, D.; Duckett, J.; Watt,
A., et al. (2007). Beginning XML, 4th Edition. Indianapolis, IN: Wrox.

Vlist, E. van der. (2002). XML Schema: The W3C’s Object-Oriented Descriptions for XML.
Sebastopol, CA: O’Reilly Media.

Walmsley, P. (2002). Definitive XML Schema. Upper Saddle River, NJ: Prentice Hall.

Walmsley, P. (2007). XQuery. Sebastopol, CA: O’Reilly Media.

Brundage, M. (2004). XQuery: the XML query language. Boston, MA: Addison-Wesley Pro-
fessional.

Additional references available on-line

Object Database Management Systems: The Resource Portal for Education and Research,
http://odbms.org

http://www.mulberrytech.com/quickref/XMLquickref.pdf

http://odbms.org
http://www.mulberrytech.com/quickref/XMLquickref.pdf

	Relational Extensions
	Introduction
	Objectives
	Index
	1. The Object-Relational Extension
	1.1. Background
	1.1.1. Object-Oriented Database Systems
	1.1.2. Object-Relational Database Systems
	1.1.3. Object-Oriented Data Model vs. Object-Relational Data Model
	1.1.4. Object-Oriented Database Systems Today
	1.1.5. Object-Relational Database Systems Today

	1.2. The Object-Relational Model
	1.2.1. User Defined Types (UDTs)
	1.2.2. References between Objects
	1.2.3. Collections

	2. The XML Extension
	2.1. XML Fundamentals
	2.1.1. Well-formed XML
	2.1.2. Namespaces
	2.1.3. Full XML Example
	2.1.4. Storing XML Documents in Oracle XML DB

	2.2. XML Schema
	2.2.1. Basic Concepts
	2.2.2. XML Schema Root
	2.2.3. Complex Types
	2.2.4. Example
	2.2.5. Simple Types
	2.2.6. Registering an XML Schema in Oracle XML DB

	2.3. XQuery
	2.3.1. XPath
	2.3.2. Queries
	2.3.3. Comments
	2.3.4. XQuery in Oracle XML DB

	Summary
	Self-evaluation
	Answer key
	Glossary
	Bibliography

	PID_00179800-2b1.pdf
	Relational Extensions
	Introduction
	Objectives
	Index
	1. The Object-Relational Extension
	1.1. Background
	1.1.1. Object-Oriented Database Systems
	1.1.2. Object-Relational Database Systems
	1.1.3. Object-Oriented Data Model vs. Object-Relational Data Model
	1.1.4. Object-Oriented Database Systems Today
	1.1.5. Object-Relational Database Systems Today

	1.2. The Object-Relational Model
	1.2.1. User Defined Types (UDTs)
	1.2.2. References between Objects
	1.2.3. Collections

	2. The XML Extension
	2.1. XML Fundamentals
	2.1.1. Well-formed XML
	2.1.2. Namespaces
	2.1.3. Full XML Example
	2.1.4. Storing XML Documents in Oracle XML DB

	2.2. XML Schema
	2.2.1. Basic Concepts
	2.2.2. XML Schema Root
	2.2.3. Complex Types
	2.2.4. Example
	2.2.5. Simple Types
	2.2.6. Registering an XML Schema in Oracle XML DB

	2.3. XQuery
	2.3.1. XPath
	2.3.2. Queries
	2.3.3. Comments
	2.3.4. XQuery in Oracle XML DB

	Summary
	Self-evaluation
	Answer key
	Glossary
	Bibliography

