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Abstract: While sparse testing methods have been proposed by researchers to improve the efficiency
of genomic selection (GS) in breeding programs, there are several factors that can hinder this. In this
research, we evaluated four methods (M1-M4) for sparse testing allocation of lines to environments
under multi-environmental trails for genomic prediction of unobserved lines. The sparse testing
methods described in this study are applied in a two-stage analysis to build the genomic training
and testing sets in a strategy that allows each location or environment to evaluate only a subset of
all genotypes rather than all of them. To ensure a valid implementation, the sparse testing methods
presented here require BLUEs (or BLUPs) of the lines to be computed at the first stage using an
appropriate experimental design and statistical analyses in each location (or environment). The
evaluation of the four cultivar allocation methods to environments of the second stage was done with
four data sets (two large and two small) under a multi-trait and uni-trait framework. We found that
the multi-trait model produced better genomic prediction (GP) accuracy than the uni-trait model and
that methods M3 and M4 were slightly better than methods M1 and M2 for the allocation of lines to
environments. Some of the most important findings, however, were that even under a scenario where
we used a training-testing relation of 15-85%, the prediction accuracy of the four methods barely
decreased. This indicates that genomic sparse testing methods for data sets under these scenarios can
save considerable operational and financial resources with only a small loss in precision, which can
be shown in our cost-benefit analysis.

Keywords: sparse testing; wheat; maize; genomic prediction; multi-trait; and uni-trait

1. Introduction

To meet the demands of the growing global population, food production must increase,
which is challenging because of the drastic fluctuations in climatic conditions, competition
for land and deterioration of natural resources. For this reason, we must adopt novel
alternatives for genetic improvement that can increase yield productivity, yield stability,
improve disease resistance, nutrition, and the subsequent end-use quality of key crops such
as maize, wheat and rice [1].

In this vein, the genomic selection (GS) methodology uses statistical machine learning
algorithms and data focused on genomic information to improve the selection of candidate
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lines, which is key for making crop breeding processes more efficient. GS is a predictive
methodology proposed by Meuwissen [2] that trains a statistical machine learning method
with data containing phenotypic and genotypic information. This trained model then
predicts breeding values or phenotypic values of new (untested) lines that were only geno-
typed, meaning that lines can be selected earlier [3]. Successful GS methodology is found in
many crops such as wheat, maize, cassava, rice, chickpea, groundnut, etc. [4—6]. However,
the practical implementation of GS for breeders across the world is challenging because GS
methodology and genomic prediction (GP) accuracy do not always guarantee moderate to
high accuracies, as there are many other factors affecting prediction performance.

To increase genetic gain, breeders must accurately predict breeding values. This is
easy when the traits of interest have a simple genetic architecture; however, this is more
challenging in traits such as grain yield with a complex, difficult-to-understand genetic
architecture. For example, in complex trait prediction, it is difficult to accurately model
genetic interactions such as epistatic effects, which are common in plant and animal sciences,
as well as in biology [7-10]. For this reason, some model strategies are more appropriate to
capture these complex interaction effects more efficiently, quantifying the level of influence
in understanding the genetic architecture of these traits.

Part of the challenge in plant breeding is selecting candidate genotypes that work
both across and for specific environmental conditions. Genotypes were evaluated in
multi-environmental trials (METs), where the goal is to select stable genotypes across
environments and in specific environments considering the genotype x environment
(GE) interaction. Precisely evaluating all genotypes once in each environment (that is,
each environment is a complete replica of all lines) is more expensive, as it requires more
extensive field-testing evaluations [11,12].

“Sparse testing” in GS means that some lines have been evaluated in some environ-
ments and only predicted (not observed) in others. For this reason, sparse testing can save
resources and can help improve the efficiency of the GS methodology by (a) increasing the
number of lines tested and maintaining a fixed number of environments and financial costs
or (b) increasing the number of testing environments while maintaining the cost and a fixed
number of lines under evaluation. Sparse testing in plant breeding and genome prediction
implies modifying the original multi-environment breeding trial system into a testing
method where not all lines are sown in all environments because costs and availability
of seed, land and water might impede observing all genotypes in all environments. The
fundamental question is how to establish a multi-environmental trial system that will be
economically acceptable without affecting the precision with which the performance of
breeding lines is assessed, predicted, and selected.

The information provided by the molecular markers assists breeders in predicting un-
observed lines in some environments. Although, in most cases, it is impossible to evaluate
all lines in all environments, observing some of these lines offers the possibility of assessing
the marker alleles (or haplotypes) in all environments and the marker (or haplotype) x en-
vironment interaction. Therefore, the information on the response patterns of the markers
can be used to improve the predictive ability of the unobserved lines in the environments.
By using genome-enabled prediction when modeling genotype x environment, the unob-
served genotype x environment combinations can be better predicted, and thus the overall
costs of the testing can be reduced.

Recently, Jarquin [13] and Crespo [1] studied genomic sparse evaluation in the context
of maize and wheat genomic prediction, including extreme cases of (a) non-overlapping
lines between environments, all lines tested in different environments; (b) lines completely
overlapping across environments, all lines field evaluated in all the environments; and
(c) varying numbers of different overlapping/non-overlapping lines. The results obtained
by Jarquin [13] in maize and Crespo [1] in wheat multi-environment trials showed that
the genome-based model, including genomic x environment interaction (GE), captured
more portions of the total phenotypic variation than the models that did not include this
component and provided higher prediction accuracy than other genomic prediction models
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that did not include GE when applied to multiple sparse testing designs. Thus, both studies
clearly show that using sparse testing based on overlapping/non-overlapping methods can
lead to substantial savings in testing resources when using appropriate GE genome-based
models. However, the methods of Jarquin [13] in maize and Crespo [14] in wheat for
assigning lines to environments by the overlapping/non-overlapping were based on a
random assignation of lines to environments without any allocation optimization criterion.
Also, it should be noted that these studies performed only uni-trait prediction.

This study aimed to optimize allocation methods to improve the genomic prediction
accuracy of sparse testing by evaluating four genomic sparse testing strategies for allocat-
ing cultivars to environments. This study addressed four objectives that have not been
investigated in any previous studies: (1) to determine if there are differences in prediction
ability between the four genomic sparse testing allocation methods; (2) to study if there are
significant differences between the four strategies of sparse testing under a uni-trait (UT)
and multi-trait prediction framework; (3) to evaluate the performance of the four sparse
testing strategies with large and small trials; and (4) to quantify the various benefits of
implementing this genomic sparse testing allocation of lines to environments strategies.
To achieve these objectives, two real data sets from CIMMYT were used—one maize and
one wheat—with one data set containing over 450 lines and the other over 4500 lines. To
assess performance with small trial sizes from each of these two data sets, a random sample
of 250 lines in each environment was obtained, and the four sparse testing methods were
evaluated using this resulting data set.

2. Material and Methods
2.1. Data Sets
2.1.1. Wheat Data

The original data set contains 4536 lines evaluated in four environments (B2IR, B5IR,
BDRT, BLHT). The experimental design employed for arranging all the lines in each
environment was an augmented row-column design [14,15] established using the DiGGeR
package [16]. Due to some missing plots, only 4464 lines were ultimately evaluated in four
environments (B2IR, B5IR, BDRT, BLHT). Four traits were evaluated: grain yield (ton per
hectare), days to germination (Germination), days to heading (Heading) and plant height
(cm). Since all lines were evaluated in each environment, the total number of observations
in this data set is 17,856. This data set was used for the univariate implementation of
the models but presented a high unbalance for the multi-trait implementation; hence, we
implemented the multi-trait model with a subset of this original data set and guaranteed
the presence of the response variables (traits) of all lines and environments. This subset
contains 4437 lines, three environments (B2IR, B5IR, BDRT) and the same four traits.

We performed a mixed model spatial analysis for grain yield in each environment
and thus adjusted the data for local and overall spatial variability by spatial adjustment
(autoregressive in the directions of rows and columns, AR1 x AR1) using ASReml-R [17].
The weighted BLUEs for each location were used to implement the prediction model
described in the next statistical model section. When the complete data were used, this was
denominated as the big wheat data set, but when only the sample of 250 lines was, this was
called the small wheat data set.

2.1.2. Maize Data

This data set contains 484 lines evaluated in locations within three major environ-
ments: drought stress environment (WS), low nitrogen environment (LN) and well water
environment (WW). The traits evaluated were grain yield and plant height. Since all lines
were evaluated in each environment, the total number of observations was 1452. The
experimental design at each location for each major environment (WW, WS, and LN) was
an «-lattice design with two replications.

For the maize data, we used the two-stage analysis to initially account for the within-
environmental variance in the first stage and to assess the genomic and genomic x envi-
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ronment effect in the second stage. The first-stage analysis consisted in computing the best
linear unbiased estimates (BLUESs) of the maize testcrosses across locations for each major
environment (WW, WS, LN) using the following linear mixed model:

Yije= p + R, 4B [Rr]+Gitejr

where Y is the response variable of testcross i at replicate r within the incomplete block k;
u is the general mean; R, is the fixed effect of the replicate 7; Bx[R,] is the random effect
of the incomplete block k within replicate r assumed to be independently and identically
normally distributed with mean zero and variance (7123( R)’ G,; is the fixed effect of genotype
i; and g;, is the random residual error assumed independent and identically normally
distributed with mean zero and variance 2.

This weighted BLUE data set in each major environment WW, WS, and LN was used
for the evaluation of the uni-trait and multi-trait methods. From this data, a smaller data set
with 250 lines was created to evaluate the performance of the four sparse methods under
both the uni-trait and multi-trait frameworks. When we aggregate the summaries of the
prediction performance of the two big (wheat and maize) and two small (wheat and maize)
data sets, we call this across data sets.

2.2. Statistical Model

This model was used for the training process of the sparse testing designs:
Y=1p" + XePr+Z1g+Zp1gE+ € @

where Y is the matrix of phenotypic response variables of order n x nr, ordered first by
environments and then by lines; 7 denotes the number of traits, 1, is a matrix of ones of
order n x nt, p! is a vector of intercepts for each trait of length ny, T denotes the transpose
of a vector or matrix, thatis, u = [p1,.. ., pin] T, X is the design matrix of environments of
order n x I, I denotes the number of environments, Br is the matrix of beta coefficients for
environments with a dimension of I x nt, Z; is the design matrix of lines of order n x ],
J denotes the number of lines, g is the matrix of random effects of lines of order | x nt
distributed as g ~ MNjy,, (0, G, Z7), thatis, with a matrix-variate normal distribution with
parameters M = 0, U = G and V = I, G is the genomic relationship matrix [18] built with
marker data of order | x | and X is the variance-covariance matrix of traits of order ny X ny.
Zr; is the design matrix of the genotype x environment interaction of order n x [I, gE
is the matrix of genotype x environment interaction random effects distributed as gE ~

MNj1xn; (0, Z EZ£ OZ GZ;, ZTQ) , Where L, is the variance-covariance matrix of traits of

order nt x nt, (© denotes the Hadamard product. € is the residual matrix of dimension
n x nr distributed as € ~ MNy xp; (0, I, R), where R is the residual variance-covariance
matrix of order nt X ny. This model was conducted in the BGLR library [19]. Moreover, a
uni-trait version of this model given in equation (1) was implemented, assuming that the
response variable (Y) was a vector, that is, training the model with only one trait at a time.

2.3. Sparse Testing Methods for the Allocation of Lines to Environments

We used the notation | as the number of lines, k as the number of lines per location, I
as the number of environments (locations) and r as the number of replications for the jth
line in the entire design. It should be noted that since the four methods are based on the
incomplete block principle, k is less than ], since not all lines in each environment can be
assigned. An equal concurrence of entries by location is the best way to ensure minimum
variance when making all pair-wise comparisons. Therefore, since r; = r for all lines, the
total number of observations in the experiment is N, where N = | x r = I x k.
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2.3.1. Method 1 (M1)-Allocation of Fraction of Lines in All Locations

This was the simplest allocation method where a fraction (subset) of lines is selected
and then allocated in all locations as a training set where the remaining lines are used as
the testing set. In Figure 1A, we see how the partition is formed with this method; blue
represents the lines used as the training set, and white represents the lines used as the
testing set. Training lines are grouped at the beginning of Figure 1A, but the lines are not in
numerical order, indicating they were randomly selected.

A B

Loc 1 Loc 2 Loc 3 Loc 4 Loc 1 Loc 2 Loc 3 Loca
Line 1 Line s
Line 4 Line 7

Uine 8 Line 3

Uine 2 Line 2

Line 3 Line 1

Line s Line 4

Line 6 Line 6

Uine 7 Line 8

Loc 1 Loc 2 Loc 3 Loc 4 Loc 1 Loc 2 Loc 3 Loc 4
Line 8 Line 1
Line 7 Uine 2
Uine 4 Uine s

Line 3 Uine 6

Uine 1 Line 3

Line 2 Line 4

Uine s Uine 7

Uine 6 Une s

Training Testing

I

Figure 1. Allocation methods with eight lines and four locations for a partition, with 50% of lines
as training and 50% of lines as testing. (A) M1 denotes the allocation of some lines in all locations,
(B) M2 denotes the allocation of a subset of lines with some shared lines in locations, (C) M3 denotes
the random allocation of some lines to locations under incomplete locations, and (D) M4 denotes the
allocation of a fraction of lines to locations using the IBD method.

2.3.2. Method 2 (M2)-Allocation of Fraction of Lines with Some Shared Lines in Locations

M2 took a fraction (subset) of lines to be used as a training set and the remaining as
a testing set in one location. For the other locations, the testing lines were divided into a
number of locations—one part that is ideally the same size and one part that is interchanged
from testing to training for each location. In this way, each location shared most of the
training lines but contained some lines only in testing, as shown in Figure 1B.

2.3.3. Method 3 (M3)-Random Allocation of Fraction of Lines to Locations under
Incomplete Locations

Starting from a balanced data set with | lines and I locations, the conformation of
the random allocation of lines to locations was done in such a way that each line will be
repeated (approximately) in r out of I locations, and all locations will be of the same size
(k). The algorithm of this random allocation is [20]:

First, we computed k = I—?r (least integer greater than or equal to k = ]—?r). Then k
lines out of | lines were randomly allocated to the first location. For the second location, k
out of the | lines were once again randomly allocated. This process is repeated until the Ith
location is completed, with the caveat that the lines allocated to a particular location are
only present in less than or equal to r locations, ideally in exactly r locations. The lines that
do not satisfy this restriction are not candidates for being allocated to a particular location.

An example of this method with eight lines and four locations is shown in Figure 1C.
Note that some locations appear up to three times in each line, while others appear only
twice because it is a random process.
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2.3.4. Method 4 (M4)-Allocation of Lines to Locations Using the IBD Principle

This method of allocation of lines to environments is based on a balanced incomplete
block design (IBD) principle, that is, when all pairs of lines occur together within a location
an equal number of times (A). In general, we specified A;; as the number of times line j
occurs within a location. To generate this sparse allocation of lines to locations [20], we used
the function find.BIB() in the R package crossdes. Supposing there were | = 8 lines and
I = 4locations, this means that we need 8 x 4 = 32 plots to allocate the eight lines to the four
locations. However, we used an IBD and a training set of size Nrrny = 32 x 0.5 = 16, which
accounts for (50%) of the total plots required under a randomized complete block design.
Therefore, the number of lines by locations can be obtained by solving (kI = N_TRN) for
k, which results in k = N_TRN/I. This results in k = 16/4 = 4 lines per location. The
corresponding elements for the training set were obtained with the function find.BIB(8, 4, 4)
using the package crossdes. The numbers used in the function find.BIB() denote the lines,
the locations, and the lines per location, respectively. Figure 1D shows how a particular
allocation for eight lines in four locations may appear. An important aspect to consider
is that both lines are used at the same time, and all locations contain four lines. The final
allocations of M3 and M4 in many cases look similar, with the relevant difference that M4 is
allocated under the IBD principles, while M3 is under a kind of stratified random sampling.

Since not all lines (treatment structure) will be allocated to each environment (plot
structure), the four allocation methods described are sparse allocation methods. Each
of these methods allocates lines to environments (locations) under different approaches,
and some of them guarantee better connectivity of lines between environments, and for
this reason, they provide different prediction performances. However, as pointed out by
Montesinos-Lopez [20], implementing the sparse allocation methods for genomic prediction
is done in two stages, so each stage should be optimized. The four methods of allocation
(M1 to M4) belong to the second stage, and these four allocation methods attempt to
optimize the prediction performance of untested lines in tested environments.

To obtain valid results in the second stage, we used valid BLUEs or best linear unbiased
predictions (BLUPs) for each line. An optimal experimental design should be used in the
first stage for allocating the lines that were allocated for each environment with any of the
four methods of the second stage, in each environment to plots. Our two-stage approach
of analysis is valid since it is like the BLUEs or BLUPs estimation in two stages, and there
is strong empirical evidence that two-stage analysis produces similar outputs when the
appropriate weighting methods are used [21,22].

2.4. Cross-Validation Strategy

To evaluate and compare the predictive performance of the allocation methods, we
used cross-validation with 10 partitions and 15, 25, 50, 75 and 85% of the data for training
and 85, 75, 50, 25 and 15% for testing, respectively. The Pearson’s correlation and the
Normalized Root Mean Squared Error (NRMSE) were computed using the observed and
predicted values [23] in each of the 10 random partitions with the testing sets. These metrics
were then used to assess the predictive performance in each data set for each allocation
method. The average of the NRMSEs and Average Pearson’s correlations (APC) of the
10 partitions was reported as prediction accuracy in each data set. Since the allocation
methods were evaluated under uni-trait and multi-trait frameworks, both metrics were
computed for each trait separately, and then, the average of the 10 folds in the testing
sets was reported as prediction performance. It is important to point out that we used
different proportions of the testing set (15, 25, 50, 75 and 85%) to study that even with a
small proportion of training sets, it is feasible to predict the testing set with reasonable
accuracy.

3. Results

The results are provided in four sections; one for each complete (big) data set in maize
and wheat, one for the results across data sets (summary of aggregating the four data sets:
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two big data sets and two small data sets) and one that illustrates the quantitative benefits
of sparse testing methods when using all data. Figures and tables for the results obtained
for the small data sets of maize and wheat (random selection of only 250 lines for each
data set) are provided in the Supplementary Material (Figures S1 and S2 and Table S1 for
Maize_250 small data set and Figures S3 and 54 and Table S2 for Wheat_250 small data set).

3.1. Complete Maize Data Set (Big Maize Data Set)

In terms of APC, in all scenarios of testing proportions, the best prediction performance
was observed under a multi-trait framework and the worst under a uni-trait framework
(Figure 2, Table Al). Under the scenario with 85% (0.85) of testing, the GP accuracy does
not deteriorate and is only slightly worse than under the scenario of predicting 15% testing.
Between the four sparse testing methods, we observed no significant differences between
them. Instead, we saw a relevant difference of 15% (0.15), 75% (0.75) and 85% (0.85) of
testing M4 under the uni-trait framework. For example, under the 15% (0.15) of testing
set uni-trait framework, M4 outperformed M1, M2 and M3 by 12.89, 7.08 and 7.33%,
respectively. Under the 85% (0.85) testing uni-trait framework, M4 only outperformed
methods M1 and M2 by 1.6% and 4.9%, respectively, but no difference was observed
between methods in most of the proportion of testing evaluated (Figure 2, Table A1).

0.15 0.25 0.5
IIII IIII IIII Type
0.75 0.85 = £ 2 =

0.001
] ! = [ Muttitrait
B unitrait
- o™ @ =< - o~ ™ =<
= = = = = = = =
cvV

Figure 2. Prediction performance for the complete (big) maize data set in terms of average Pearson’s
correlation (APC) of the four methods of sparse testing (M1, M2, M3 and M4) under unit-trait and

0.001
multi-trait models for 5 percentages of testing: 15% (0.1), 25% (0.25), 50% (0.5), 75% (0.75) and
85% (0.85).

0.7

(4]

0.50

0.2

w

APC

0.75

0.5

o

0.2

(6]

In terms of NRMSE, we observed the best predictions in a multi-trait model and the
worst in a uni-trait model (Figure 3, Table A1). In general, we also observed that the best
predictions in terms of NRMSE were under methods M3 and M4. When the percentages of
testing were 15% (0.15), 25% (0.25) and 50% (0.5), small differences were found between the
four sparse testing methods; however, under 75% (0.75), methods M1 and M2 were worse
than M3 by 2.3% and 56.33% (multi-trait) and by 4.6% and 31.6% (uni-trait). Under 85%
(0.85), method M4 outperformed methods M1 and M2 by 5% and 60.6% (multi-trait) and
by 3.7% and 30.5% (uni-trait) (Figure 3, Table A1l).
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0.15 0.25 0.5
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Ccv

Figure 3. Prediction performance for the complete (big) maize data set in terms of normalized root
mean square error (NRMSE) of the four methods of sparse testing (M1, M2, M3 and M4) under
unit-trait and multi-trait models for 5 percentages of testing: 15% (0.1), 25% (0.25), 50% (0.5), 75%
(0.75) and 85% (0.85).

Type
I Multitrait
B Unitrait

3.2. Complete Wheat Data Set (Big Wheat Data Set)

In this data set in terms of APC, the multi-trait method was better than the uni-trait
framework (Figure 4, Table A2). While we did not observe a superiority in all percentages
of testing of a particular method, we noted that in all scenarios of percentages of testing,
the prediction accuracies are quite similar; that is, the prediction performance does not
decrease as the percentage of testing increases. Regarding the comparison between the four
sparse methods, we observed that in some scenarios of percentage of testing, M4 was better
than the remaining methods. For example, under 15% (0.15) of the uni-trait model, testing
set M4 outperformed M1 and M2 by 24.13 and 24.08, respectively, but did not outperform
M3, while under the 25% (0.25) uni-trait testing, M4, M1 and M3 outperformed method
M2 around 25%. In the remaining cases, no relevant differences were observed between
methods in most of the proportion of testing evaluated (Figure 4, Table A2). It is important
to note that for some scenarios, we were unable to estimate the prediction performance for
methods M3 and M4 due to a lack of positive definite matrices for multi-trait models.

0.15 0.25 0.5
075
0.50
0.25
0.00 Type
0.75 0.85 s £ 2 =2 I Muttitrait
075
0.50
0.25
0.00
= o @D = = o~ @ =
= = = = = = = =
cVv

M unitrait
Figure 4. Prediction performance for the complete (big) wheat data set in terms of average Pearson’s
correlation (APC) of the four methods of sparse testing (M1, M2, M3 and M4) under unit-trait and
multi-trait models for 5 percentages of testing: 15% (0.1), 25% (0.25), 50% (0.5), 75% (0.75) and
85% (0.85).

APC
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In terms of NRMSE, the best predictions were obtained under a multi-trait method
and the worst under a uni-trait method (Figure 5, Table A2). We also observed that under
the 15% (0.15) and 25% (0.25) multi-trait framework, M3 was slightly better than the others.
While under the 50% (0.50) multi-trait framework, M3 and M4 were slightly better than
M1 and M2. In a small number of cases in the uni-trait model, M1 was better than the
remaining methods (Figure 5, Table A2).

l Type

0.15 0.25 0.5
0.075
0.050-
0.025
0.000
0.75 0.85 = £ 2 2 W mutitait
B unitrait
0.0751
0.050
0.025-
0.000
T & o = T 4 & =
= = = = = = = =
CcVv

Figure 5. Prediction performance for the complete wheat data set in terms of normalized root mean
square error (NRMSE) of the four methods of sparse testing (M1, M2, M3 and M4) under unit-trait
and multi-trait models for 5 percentages of testing: 15% (0.1), 25% (0.25), 50% (0.5), 75% (0.75) and
85% (0.85).

NRMSE

3.3. Across Data Sets

Across data sets, the best predictions were observed under the multi-trait model in
terms of APC (Figure 6, Table A3). In most percentages of testing, there were no relevant
differences among the four methods. For example, when the percentage of testing was 15%
(0.15) in the uni-trait model, methods M3 and M4 outperformed methods M1 and M2 by
8.6 and 3.9%, respectively. However, when the percentage of testing was 25% (0.25) in the
uni-trait model, methods M3 and M4 outperformed methods M1 and M2 by 3.6 and 2.4%,
respectively. Similar performance was observed in the other percentages of testing.
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Figure 6. Prediction performance across data sets in terms of average Pearson’s correlation (APC) of
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the four methods of sparse testing (M1, M2, M3 and M4) under unit-trait and multi-trait models for
5 percentages of testing: 15% (0.1), 25% (0.25), 50% (0.5), 75% (0.75) and 85% (0.85).
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We saw a clear superiority in the multi-trait model across data sets in terms of NRMSE
in all percentages of testing (Figure 7, Table A3). In the uni-trait context, we observed that
within testing 15% (0.15), M4 outperformed M1 and M2 by 8.0 and 5.8%, respectively, but
M4 was worse than M3 by 1.7%. While within testing 25% (0.25), M4 outperformed M1
and M2 by 5.8 and 0.9%, respectively, and M4 was worse than M3 by 2.3%. Under the 50%
(0.50) percentage of testing, M4 outperformed M1 and M2 by 3.9 and 0.6%, respectively, but
M3 was better than M4 by 2.3%. Within testing 75% (0.75), M4 outperformed M1 and M2
by 2.6 and 7.5%, respectively, but M4 was worse than M3 by 0.3%. Finally, within testing
85% (0.85), M4 outperformed M1 and M2 by 0.6 and 4.9%, respectively, but M4 was worse
than M3 by 1.6%. In the case of the uni-trait method, similar performance was observed
among the four methods (Figure 7, Table A3).
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Figure 7. Prediction performance across data sets in terms of normalized root mean square error
(NRMSE) of the four methods of sparse testing (M1, M2, M3 and M4) under unit-trait and multi-trait
models for 5 percentages of testing: 15% (0.1), 25% (0.25), 50% (0.5), 75% (0.75) and 85% (0.85).

3.4. Assessing the Benefits of Sparse Testing Methods

In Table 1, we provide the comparison of two scenarios of breeding experiments:
scenario 1 with 250 lines in each of the four environments (225 new lines + 25 checks)
and 1000 plots available, and scenario 2 with 4500 lines in each of the four environments
(4450 new lines + 50 checks) and 18,000 plots available. Each of these scenarios was
compared with sparse designs with the following percentage of training data: 85, 75, 50, 25
and 15%. The standard is defined as the conventional breeding strategy, where all lines are
evaluated in each environment.

Table 1. Gains or loss of using sparse methods (Incomplete designs) regarding conventional method
(Standard) with different % of training sets (trn) using 4500 and 250 lines.

Sparse Designs with Different % of trn Data Gains (or Loss) of Sparse Designs for Each % of trn

Concept Standard 85 75 50 25 15 85 75 50 25 15
Scenario 1
Total trts 250 294 333 500 1000 1667 17.60 33.20 100.00 300.00 566.80
New lines 225 269 308 475 975 1642 19.56 36.89 111.11 333.33 629.78
Checks 25 25 25 25 25 25 0.00 0.00 0.00 0.00 0.00
Reps 1 0.85 0.75 0.5 0.25 0.15 —15.00 —25.00 —50.00 —75.00 —85.00
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Table 1. Cont.
Sparse Designs with Different % of trn Data Gains (or Loss) of Sparse Designs for Each % of trn
Concept Standard 85 75 50 25 15 85 75 50 25 15
Locs 4 4 4 4 4 4 0.00 0.00 0.00 0.00 0.00
R 4 3.4 3 2 1 0.6 —15.00 —25.00 —50.00 —75.00 —85.00
Total_plots 1000 1000 1000 1000 1000 1000 0.00 0.00 0.00 0.00 0.00
Total trts 250 294 333 500 1000 1667 17.60 33.20 100.00 300.00 566.80
Plots/trt 4.44 3.72 3.25 2.11 1.03 0.61 —16.36 —26.95 —52.63 —76.92 —86.30
Scenario 2
Total trts 4500 5294 6000 9000 18000 30000 17.64 33.33 100.00 300.00 566.67
New lines 4450 5244 5950 8950 17950 29950 17.84 33.71 101.12 303.37 573.03
Checks 50 50 50 50 50 50 0.00 0.00 0.00 0.00 0.00
Reps 1 0.85 0.75 0.5 0.25 0.15 —15.00 —25.00 —50.00 —75.00 —85.00
Locs 4 4 4 4 4 4 0.00 0.00 0.00 0.00 0.00
R 4 3.4 3 2 1 0.6 —15.00 —25.00 —50.00 —75.00 —85.00
Tot_Plots 18000 18000 18000 18000 18000 18000 0.00 0.00 0.00 0.00 0.00
Total trts 4500 5294 6000 9000 18000 30000 17.64 33.33 100.00 300.00 566.67
Plots/trt 4.04 3.43 3.03 2.01 1.00 0.60 —15.14 —25.21 —50.28 —75.21 —85.14

Under scenario 1 we observed that the number of new lines for evaluation could
be increased without a relevant increase in the budget, from 225 (Standard) to 269 (85%
of training), 308 (75% of training), 475 (50% of training), 975 (25% of training) and 1624
(15% of training), which means increasing the new lines to be evaluated by 19.56% (85%
training), 36.89% (75% of training), 111.11% (50% training), 333.33% (25% of training) and
628.78% (15% training). While we reach these increases without increasing the number of
plots, instead of being replicated four times (one in each environment), each of the lines
is now replicated 3.4 (85% training), 3 (75% training), 2 (50% training), 1 (25% training)
and 0.6 (15% training) times, respectively. This means that the reduction in replication of
lines is 15% (85% training), 25% (75% training), 50% (50% training), 75% (25% training)
and 85% (15% training). Table 1 shows the comparison between the standard design and
each percentage of sparse testing for other parameters (each row of Table 1 represents a
different parameter).

For scenario two, we observed (Table 1) that new lines can be evaluated without a
relevant increase in the budget, from 4450 (Standard) to 5244 (85% of training), 5950 (75%
of training), 8950 (50% of training), 17,950 (25% of training) and 29,950 (15% of training),
which implies increasing the new lines to be evaluated by 17.84% (85% training), 33.71%
(75% of training), 101.12% (50% training), 303.37% (25% of training) and 573.03% (15%
training). While we reach these increases with no increase in the number of plots, instead
of replicating four times (one in each environment), each of the lines is now replicated 3.4
(85% training), 3 (75% training), 2 (50% training), 1 (25% training) and 0.6 (15% training)
times. This indicates that the reduction in replication of lines is 15% (85% training), 25%
(75% training), 50% (50% training), 75% (25% training) and 85% (15% training).

4. Discussion

Currently, GS methodology is being explored for its potential benefits, but its accuracy
is influenced by many factors, making it difficult to optimize all of them simultaneously.
As such, GS predictions are not yet accurate enough to be used routinely by plant and
animal breeders.

In this vein, sparse testing methods are being studied to save significant resources in
implementing GS methodology; however, it is still unclear which sparse testing methods
are most efficient. The objective of this study was to better understand the efficiency of
sparse testing with two large data sets and with two smaller data sets. These methods
were implemented under a multi-trait and uni-trait framework to study their behavior in
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prediction accuracy. Additionally, we provided a cost-benefit analysis of implementing
sparse testing methods.

As expected, we found that the best performance of the sparse testing methods was
observed under a multi-trait model, and M3 and M4 were slightly better than sparse M1
and M2. However, we found that M3 was more consistent and robust, in addition to
being efficient from a computational point of view. Although M4 and M3 were the best in
terms of prediction performance, it is important to note that for larger training and testing
sets, M4 was computationally inefficient, and since M3 displayed similar performance, it
provides a better alternative to M4. However, when possible, M4 is the preferred option
because the machinery of IBD and comparing treatments (genotypes) under more uniform
conditions also reduces experimental error and increases precision. The primary factor in
explaining the better performance of M3 and M4 compared to M1 and M2 is that M3 and
M4 guarantee better connectivity between training and testing sets. However, M4 does not
always outperform M3, as we observed that the larger the data set, the less difference there
is in prediction performance between M3 and M4.

However, in the allocation of lines to environments, M4 is different from methods M1,
M2 and M3 since M4 is based on the balanced incomplete block experimental design that
uses a criterion of optimality to perform the allocation of lines to locations, thus potentially
increasing efficiency. However, the nature of the data sets used for implementation plays
an important role in the similar performance between M3 and M4 and among the four
methods since the material (lines) of these data sets are homogeneous and possess a strong
degree of relatedness. We also expect less differences in terms of prediction performance
between methods M3 and M4 when the number of lines (treatments) increase because the
numbers are large, making any randomization relatively good. The good performance of
M3 is because it is also a type of incomplete block design but with not an optimal allocation
as is done under an IBD experimental design providing less biased estimates.

It is important to be aware that for the successful implementation of the sparse testing
methods evaluated in this research, the analyses of data in two stages is required because
these sparse testing methods are applied in a second stage for evaluating the prediction
performance of untested lines in tested environments which, as illustrated in this research,
can save significant resources as only a subset of lines are evaluated in each location
(environments), and the remaining lines are predicted. However, the second stage requires
valid BLUEs (or BLUPs) that should be computed considering the experimental design in
which the lines were evaluated in each location (environment). Note that since a two-stage
process was performed, those lines allocated to a location (environment) can be evaluated in
any experimental design, and after harvesting the traits of interest, this experimental design
should be used for computing the BLUEs (BLUPs) of the lines evaluated in each location.

For this reason, when method M4 is used in the second stage, the implication is that a
valid and efficient experimental design was already used in the first stage to estimate the
appropriate BLUEs (or BLUPs) that consider the spatial variability of the field in which
the cultivar was evaluated. In the second stage, we built the genomic training-testing with
the aim of improving the prediction of the untested line in tested environments. However,
in the second stage, when method M4 is used, the goal is to efficiently allocate the lines
to locations to guarantee good connectivity between the lines in different locations, thus
improving the prediction accuracy of the cultivar to be predicted.

However, under the cost-benefits analysis (see Table 1), we clearly observed the savings
breeders could achieved using a sparse genomic testing approach. For example, in a sparse
testing design with a training-testing scenario of 85-15%, under a fixed budget, we can
increase the number of lines under evaluation by at least 17%. Under a sparse testing
scenario of 50-50% for training-testing, the same fixed budget increased the lines under
evaluation by at least 101.12%. Certainly, the larger the percentage of testing regarding the
percentage of training, the larger the benefits of the sparse testing method; however, we do
not expect these scenarios to be successful in all breeding programs. Nevertheless, in the
four data sets evaluated, even in the scenario of training-testing of 15-85%, we observed a
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strong prediction performance, and the percentage of increase of new lines evaluated was
at least 573%. While this scenario is not practical because it implies a fraction of replicates
(0.6) of each line in the experiment, it does illustrate the benefits that can be obtained using
a sparse testing methodology.

5. Conclusions

Using four data sets, we evaluated the prediction performance of four sparse testing
methods (M1, M2, M3 and M4) under multi-trait and uni-trait models and under various
scenarios of training-testing partitions. We found that the best accuracies were observed
under a multi-trait model and the worst under a uni-trait model. We also observed
that sparse testing methods M3 and M4 were slightly better than methods M1 and M2.
Additionally, we found that the prediction accuracy, even in the more extreme scenario of
training-testing (15-85%), is still competitive with the more relaxed scenario of training-
testing (85-15%), which is of paramount importance since under this scenario the efficiency
of the sparse testing methodology is very high. Even under a less extreme scenario of
training-testing, 50-50% for training-testing, we increased the lines under evaluation by
101.12% with the same fixed budget, which helps to significantly increase the efficiency of
the GS methodology. While these findings cannot be easily extrapolated for other data sets,
they illustrate the great benefits that plant breeders can obtain from implementing sparse
testing designs for genomic prediction.

Supplementary Materials: The following supporting information contains results from the small
maize and wheat data sets (having 250 cultivars each) and can be downloaded at: https://www.mdpi.
com/article/10.3390/genes14040927 /s1, Figure S1. Prediction performance for small maize_250 data
set in terms of average Pearson’s correlation (APC) of the four methods of sparse testing (M1, M2, M3
and M4) under unit-trait and multi-trait models for five percentages of testing 15% (0.1), 25% (0.25),
50% (0.5), 75% (0.75) and 85% (0.85). Figure S2. Prediction performance for small maize_250 data
set in terms of normalized root mean square error (NRMSE) of the four methods of sparse testing
(M1, M2, M3 and M4) under unit-trait and multi-trait models for five percentages of testing 15% (0.1),
25% (0.25), 50% (0.5), 75% (0.75) and 85% (0.85). Figure S3. Prediction performance for wheat_250
small data set in terms of average Pearson’s correlation (APC) of the four methods of sparse testing
(M1, M2, M3 and M4) under unit-trait and multi-trait models for five percentages of testing 15% (0.1),
25% (0.25), 50% (0.5), 75% (0.75) and 85% (0.85). Figure S4. Prediction performance for wheat_250
small data set in terms of normalized root mean square error (NRMSE) of the four methods of sparse
testing (M1, M2, M3 and M4) under unit-trait and multi-trait models for five percentages of testing
15% (0.1), 25% (0.25), 50% (0.5), 75% (0.75) and 85% (0.85). Table S1. Prediction performance for
the small maize_250 data in terms of normalized root mean square error (NRMSE) and Average
Pearson’s correlation (APC) of the four sparse testing methods (CV) under the following proportion
of testing (Prop_testing): 15% (0.15), 25% (0.2), 50% (0.5), 75% (0.75) and 85% (0.85). NRMSE_SE
denotes the standard error of NRMSE and APC_SE denotes the standard error of APC. Table S2.
Prediction performance for the wheat_250 small data in terms of normalized root mean square error
(NRMSE) and Average Pearson’s correlation (APC) of the four sparse testing methods (CV) under the
following proportion of testing (Prop_testing): 15% (0.15), 25% (0.2), 50% (0.5), 75% (0.75) and 85%
(0.85). NRMSE_SE denotes the standard error of NRMSE and APC_SE denotes the standard error of
APC. Another Supplementary Material has the files with the R codes for fitting the four models plus
other required R codes necessary to run the models.

Author Contributions: Conceptualization O.A.M.-L., AM.-L., ].C. and S.A.G.; Methodology B.A.M.-
G.,0.AM-L,AM-L,].C,S.AG.,LC.-H. and Fv.E, investigation and validation C.S.P, AR.B., Y.B.,
KG,GSG,;0.AM.-L,AM-L,]C,SAG,LC-H. and EvE. formal analyses, O.AM.-L., AM.-L.
and B.A.M.-G.; data curation C.S.P, ].C., L.C.-H., Y.B. and M.G. All authors have read and revised the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: Open Access fees were received from the Bill & Melinda Gates Foundation. We ac-
knowledge the financial support provided by the Bill & Melinda Gates Foundation (INV-003439
BMGF/FCDO Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG))
as well as the USAID projects (Amend. No. 9 MTO 069033, USAID-CIMMYT Wheat/ AGGMW,


https://www.mdpi.com/article/10.3390/genes14040927/s1
https://www.mdpi.com/article/10.3390/genes14040927/s1

Genes 2023, 14, 927

14 0f 18

AGG-Maize Supplementary Project, AGG (Stress Tolerant Maize for Africa)) which generated the
CIMMYT data analyzed in this study. We are also thankful for the financial support provided by
the Foundation for Research Levy on Agricultural Products (FFL) and the Agricultural Agreement
Research Fund (JA) through the Research Council of Norway for grants 301835 (Sustainable Manage-
ment of Rust Diseases in Wheat) and 320090 (Phenotyping for Healthier and more Productive Wheat
Crops). We acknowledge the support of the Window 1 and 2 funders to the Accelerated Breeding
Initiative (ABI).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The phenotypic and genomic maize and wheat data employed in this
study for the complete (Big) data and for the small data comprising only 250 lines can be downloaded
from the following link https://hdl.handle.net/11529/10548813.

Acknowledgments: We thank all CIMMYT scientists, field workers, and lab assistants who collected
the real data used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1l. Prediction performance for the complete maize data in terms of normalized root mean
square error (NRMSE) and Average Pearson’s correlation (APC) of the four sparse testing methods
(CV) under the following proportion of testing (Prop_testing): 15% (0.15), 25% (0.25), 50% (0.5), 75%
(0.75) and 85% (0.85). NRMSE_SE denotes the standard error of NRMSE, and APC_SE denotes the
standard error of APC.

Data Set Ccv Prop_Testing Trait Type NRMSE NRMSE_SE APC APC_SE
Maize M1 0.15 Multi 0.040 0.001 0.894 0.007
Maize M1 0.15 Uni 0.052 0.002 0.767 0.009
Maize M1 0.25 Multi 0.041 0.000 0.886 0.003
Maize M1 0.25 Uni 0.052 0.001 0.758 0.004
Maize M1 0.50 Multi 0.043 0.000 0.876 0.002
Maize M1 0.50 Uni 0.052 0.001 0.761 0.002
Maize M1 0.75 Multi 0.044 0.000 0.867 0.001
Maize M1 0.75 Uni 0.055 0.000 0.746 0.002
Maize M1 0.85 Multi 0.047 0.000 0.848 0.003
Maize M1 0.85 Uni 0.056 0.000 0.736 0.002
Maize M2 0.15 Multi 0.039 0.001 0.910 0.004
Maize M2 0.15 Uni 0.052 0.001 0.808 0.007
Maize M2 0.25 Multi 0.039 0.001 0.910 0.002
Maize M2 0.25 Uni 0.052 0.001 0.816 0.004
Maize M2 0.50 Multi 0.041 0.000 0.901 0.002
Maize M2 0.50 Uni 0.053 0.001 0.809 0.003
Maize M2 0.75 Multi 0.067 0.000 0.720 0.005
Maize M2 0.75 Uni 0.069 0.000 0.714 0.003
Maize M2 0.85 Multi 0.068 0.000 0.716 0.004
Maize M2 0.85 Uni 0.070 0.000 0.713 0.004
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Table Al. Cont.

Data Set Cv Prop_Testing Trait Type NRMSE NRMSE_SE APC APC_SE
Maize M3 0.15 Multi 0.038 0.001 0.902 0.006
Maize M3 0.15 Uni 0.048 0.001 0.807 0.007
Maize M3 0.25 Multi 0.038 0.001 0.900 0.004
Maize M3 0.25 Uni 0.049 0.001 0.801 0.003
Maize M3 0.50 Multi 0.040 0.000 0.891 0.002
Maize M3 0.50 Uni 0.050 0.000 0.791 0.003
Maize M3 0.75 Multi 0.043 0.000 0.874 0.002
Maize M3 0.75 Uni 0.053 0.000 0.771 0.002
Maize M3 0.85 Multi 0.046 0.001 0.853 0.003
Maize M3 0.85 Uni 0.055 0.000 0.750 0.003
Maize M4 0.15 Multi 0.040 0.000 0.896 0.003
Maize M4 0.15 Uni 0.045 0.006 0.866 0.038
Maize M4 0.25 Multi 0.039 0.001 0.889 0.005
Maize M4 0.25 Uni 0.049 0.001 0.783 0.004
Maize M4 0.50 Multi 0.041 0.001 0.887 0.004
Maize M4 0.50 Uni 0.051 0.001 0.782 0.002
Maize M4 0.75 Multi 0.042 0.001 0.877 0.003
Maize M4 0.75 Uni 0.053 0.001 0.759 0.003
Maize M4 0.85 Multi 0.054 0.001 0.789 0.007
Maize M4 0.85 Uni 0.054 0.000 0.748 0.001
Wheat M1 0.15 Multi 0.064 0.001 0.774 0.004
Wheat M1 0.15 Uni 0.087 0.001 0.744 0.004
Wheat M1 0.25 Multi 0.064 0.000 0.775 0.002
Wheat M1 0.25 Uni 0.091 0.001 0.924 0.001
Wheat M1 0.50 Multi 0.064 0.000 0.775 0.001
Wheat M1 0.50 Uni 0.093 0.000 0.922 0.000
Wheat M1 0.75 Multi 0.064 0.000 0.774 0.001
Wheat M1 0.75 Uni 0.094 0.000 0.919 0.000
Wheat M1 0.85 Multi 0.064 0.000 0.772 0.001
Wheat M1 0.85 Uni 0.095 0.000 0.917 0.000
Wheat M2 0.15 Multi 0.060 0.001 0.805 0.004
Wheat M2 0.15 Uni 0.088 0.001 0.740 0.005
Wheat M2 0.25 Multi 0.059 0.000 0.809 0.002
Wheat M2 0.25 Uni 0.088 0.001 0.735 0.002
Wheat M2 0.50 Multi 0.060 0.000 0.802 0.001
Wheat M2 0.50 Uni 0.089 0.000 0.734 0.001
Wheat M2 0.75 Multi 0.062 0.000 0.787 0.001
Wheat M2 0.75 Uni 0.090 0.000 0.730 0.001
Wheat M2 0.85 Multi 0.062 0.000 0.780 0.001
Wheat M2 0.85 Uni 0.089 0.000 0.727 0.000
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Table A2. Prediction performance for the complete wheat data in terms of normalized root mean

square error (NRMSE) and Average Pearson’s correlation (APC) of the four sparse testing methods
(CV) under the following proportion of testing (Prop_testing): 15% (0.15), 25% (0.25), 50% (0.5), 75%
(0.75) and 85% (0.85). NRMSE_SE denotes the standard error of NRMSE, and APC_SE denotes the

standard error of APC.

Data Set Ccv Prop_Testing Trait Type NRMSE NRMSE_SE APC APC_SE
Wheat M3 0.15 Multi 0.058 0.001 0.820 0.003
Wheat M3 0.15 Uni 0.091 0.001 0.924 0.001
Wheat M3 0.25 Multi 0.058 0.000 0.817 0.001
Wheat M3 0.25 Uni 0.091 0.001 0.925 0.001
Wheat M3 0.50 Multi 0.059 0.000 0.809 0.001
Wheat M3 0.50 Uni 0.092 0.000 0.923 0.000
Wheat M3 0.75 Multi 0.061 0.000 0.794 0.001
Wheat M3 0.75 Uni 0.093 0.000 0.921 0.000
Wheat M3 0.85 Multi 0.062 0.000 0.787 0.001
Wheat M4 0.15 Multi 0.064 0.000 0.768 0.001
Wheat M4 0.15 Uni 0.091 0.001 0.924 0.001
Wheat M4 0.25 Multi 0.060 0.000 0.818 0.001
Wheat M4 0.25 Uni 0.091 0.001 0.925 0.001
Wheat M4 0.50 Multi 0.059 0.000 0.810 0.001
Wheat M4 0.75 Multi 0.061 0.000 0.794 0.001
Wheat M4 0.85 Multi 0.062 0.000 0.785 0.001

Table A3. Prediction performance across data sets in terms of normalized root mean square error
(NRMSE) and Average Pearson’s correlation (APC) of the four sparse testing methods (CV) under the
following proportion of testing (Prop_testing): 15% (0.15), 25% (0.25), 50% (0.5), 75% (0.75) and 85%
(0.85). NRMSE_SE denotes the standard error of NRMSE, and APC_SE denotes the standard error

of APC.
Ccv Prop_Testing Trait Type NRMSE NRMSE_SE APC APC_SE
M1 0.15 Multi 0.060 0.001 0.773 0.010
M2 0.15 Multi 0.058 0.001 0.808 0.009
M3 0.15 Multi 0.055 0.001 0.818 0.008
M4 0.15 Multi 0.059 0.001 0.787 0.005
M1 0.15 Uni 0.067 0.002 0.737 0.012
M2 0.15 Uni 0.065 0.002 0.770 0.011
M3 0.15 Uni 0.061 0.002 0.803 0.009
M4 0.15 Uni 0.062 0.003 0.800 0.020
M1 0.25 Multi 0.061 0.001 0.773 0.005
M2 0.25 Multi 0.058 0.001 0.806 0.004
M3 0.25 Multi 0.056 0.001 0.811 0.004
M4 0.25 Multi 0.057 0.001 0.808 0.004
M1 0.25 Uni 0.064 0.001 0.757 0.007
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Table A3. Cont.

Ccv Prop_Testing Trait Type NRMSE NRMSE_SE APC APC_SE
M2 0.25 Uni 0.066 0.001 0.766 0.006
M3 0.25 Uni 0.061 0.001 0.791 0.005
M4 0.25 Uni 0.062 0.001 0.785 0.004
M1 0.50 Multi 0.061 0.000 0.770 0.003
M2 0.50 Multi 0.059 0.000 0.799 0.002
M3 0.50 Multi 0.057 0.000 0.803 0.003
M4 0.50 Multi 0.059 0.000 0.794 0.003
M1 0.50 Uni 0.065 0.001 0.752 0.004
M2 0.50 Uni 0.066 0.001 0.767 0.003
M3 0.50 Uni 0.062 0.001 0.786 0.004
M4 0.50 Uni 0.059 0.000 0.773 0.004
M1 0.75 Multi 0.062 0.000 0.766 0.002
M2 0.75 Multi 0.065 0.000 0.756 0.002
M3 0.75 Multi 0.060 0.000 0.782 0.002
M4 0.75 Multi 0.060 0.001 0.783 0.003
M1 0.75 Uni 0.067 0.000 0.746 0.003
M2 0.75 Uni 0.071 0.000 0.735 0.003
M3 0.75 Uni 0.065 0.000 0.765 0.003
M4 0.75 Uni 0.065 0.001 0.726 0.005
M1 0.85 Multi 0.063 0.000 0.761 0.002
M2 0.85 Multi 0.065 0.000 0.748 0.002
M3 0.85 Multi 0.061 0.000 0.772 0.002
M4 0.85 Multi 0.062 0.000 0.751 0.004
M1 0.85 Uni 0.067 0.000 0.744 0.003
M2 0.85 Uni 0.071 0.000 0.731 0.003
M3 0.85 Uni 0.063 0.000 0.736 0.003
M4 0.85 Uni 0.064 0.001 0.725 0.010
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