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Abstract 
Manipulation of the rhizosphere can improve soil health; and foster sustainable 

management of pests and diseases. Biological inputs such as spent substrates from 
edible mushrooms (e.g., Pleurotus ostreatus) gardens offer sustainable alternatives on 
that direction. This work presents a meta-analysis of major trends in knowledge 
generation on edible mushroom use in agriculture, especially to benefit the crop 
rhizosphere. It further delves into a detailed synthesis of the effects of spent mushroom 
wastes (SMW) on the physical, chemical, and biological properties of the soil 
rhizosphere and agroecosystems. The review concludes by providing an outlook on 
how SMW can potentially support the management of key soil health challenges in 
organic banana production systems. 
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INTRODUCTION 
The increasing global demand for safe and healthy foods produced using 

environmentally sound approaches has catapulted the importance of organic farming. Soil 
health, considered as the continued capacity of soils to function as a vital living ecosystem to 
sustain plants, animals, and humans (Karlen et al., 2003; Kibblewhite et al., 2008) is an 
integral component of this. Healthy soils provide regulating and supporting ecosystem 
functions such as nutrient cycling, water infiltration and retention, gas exchange, pest and 
disease suppression, biodiversity, and storage of carbon, many of which highly impact 
agricultural productivity (Lal, 2016; Barrios, 2007; Drinkwater et al., 2017). 

Management of soil health has over the past few decades received an increased 
attention in the context of sustainable agriculture. For organic systems, this requires the 
elimination or reduction of the indiscriminate use of agrochemicals for the management of 
biotic constraints and meeting plant nutrient needs. Soil management strategies that promote 
soil health include increasing crop diversity, crop rotations, avoiding mechanical soil 
disturbance, and adding organic amendments (Kibblewhite et al., 2008; Moebius-Clune et al., 
2016). These measures can be applied in combination, depending on the context of the 
farming systems. The use of organic amendments (manures, bio-pesticides, and biofertilizers) 
is constrained by challenges related to access, availability, and the tedious and often complex 
methods of preparation (Ghanghas et al., 2021). Spent wastes of edible mushrooms (SMW) 
and their composts (SMC) offer an opportunity for bridging some of the demand for soil 
organic amendments in organic banana systems. 

Edible mushroom production has increased over the past two decades (FAO, 2022), 
resulting in large quantities of waste. Mushrooms are macrofungal species with members 
falling within the phylum Basidiomycota and phylum Ascomycota (Cao et al., 2021). About 67% 
of the 3000 known edible fungal spp. are consumed by humans (Li et al., 2021). Nearly 100 
spp. are cultivated with about 30 spp. commercially cultivated for food (Chang, 1999; Li et al., 
2021). Global mushroom consumption from 1993 to 2013 increased from 1 to 4.7 kg fresh 
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weight person-1 year-1 (Royse et al., 2017). Mushrooms are also an important source of 
pharmaceutical products (Li et al., 2021). 

In 2020, global mushroom trade reached USD 54.6 billion, with production exceeding 
40 million t, a 300% increase from the year 2001 (IMARC Group, 2021; FAO, 2022). Rajavat et 
al. (2022) predict a growth in mushroom trade of over USD 87 billion by 2025. For each kg of 
mushroom, about 5 kg of SMW is produced (Prabu et al., 2014). Thus, about 200 million t of 
SMW was produced in 2020. This SMW poses a challenge of disposal due to its negative 
environmental impacts (Jasińska, 2018). However, SMS and their composts contain large 
amounts of mineral nutrients, lignocellulolytic enzymes and microbial biomass, making them 
suitable for agricultural use (Catal and Peksen, 2020). SMW have been reported to improve 
soil physical, biological and chemical parameters (Marin et al., 2014); and to suppress soil 
borne pests and diseases (Suárez-Estrella et al., 2012; Marin et al., 2014; Adedeji and 
Aduramigba, 2016; Ocimati et al., 2021). This review conducts a meta-analysis of publications 
to determine the major trends on the benefit of SMW in the rhizosphere through improvement 
of soil physical, chemical, and biological properties. The review concludes by providing an 
outlook on how SMW can potentially support the management of key soil health constraints 
in organic banana production systems. 

METHODSOLOGY FOR THE META-ANALYSIS 
A literature search was conducted in four available electronic databases: AGRIS, CAB 

Abstracts, SciVerse Scopus, and ProQuest. These are major comprehensive databases for 
research in agricultural and life sciences. Databases were searched from their first entries up 
to June 2022 using two search strings, one for each category (spent mushroom substrate, 
edible mushrooms) and while combining them with the Boolean operator “AND” to obtain the 
intersection. Due to limited resources for translation, publication in languages other than 
English were excluded. Duplicates were identified using queries targeting identical digital 
object identifiers, titles, authors, or first 50 characters of the abstract. Articles without an 
abstract or articles clearly indexed either as review, editorial, or errata were excluded. The 
articles were then screened to remove those not related to the theme of the study. 

The contents of the papers were first coded into broad themes of biology and genetics, 
functional food, industrial applications, environmental applications, and agricultural 
applications. Papers on agricultural applications of edible mushrooms were further 
synthesised in to use as animal feeds, biofertilizers and biocontrol of pests and diseases. 

The review then delved into agricultural uses of SMW as biocontrol agents and 
biofertilizer. Biofertilizer aspects included mushroom waste effects on soil physical, chemical 
and biological properties whereas the biocontrol aspects included mushroom effects on 
pathogenic fungi, bacteria, nematodes, and soil microbial diversity. The mechanisms of pest 
and disease suppression were also elucidated. The data were summarized and synthesised 
using MS excel and visualizations were performed using R version 4.2.1 (R Core Team, 2022). 

REVIEW FINDINGS 
A total of 1,851 publications were obtained from the period 1936 to 2022. Limited 

publications (121 publications) on edible mushrooms were observed between 1936 and 1996, 
with a predominant focus on the biology of the fungi. The period between 1985 and 2022 saw 
a proliferation in publications with additional subjects including the application of the fungi 
in agriculture, environment, functional foods, and industrial use (Figure 1A). This 
proliferation could be attributed to the increased consumption of mushrooms and the 
increased digitalization of data. 

The highest number of publications (35%) focused on the biology and genetics of the 
fungi. Mushroom use in agriculture (23%) and environment (17%) also ranked highly. 
Thirteen and 12% of the publications, respectively, focused on functional foods and industrial 
use of mushrooms. On average, approximately between 7 and 17 publications have been 
published annually on each of the five themes above over the period 1985 to 2022 (Figure 1B). 
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Figure 1. Major research themes on mushroom and spent mushroom substrate (SMS). 
Elaboration of research articles from AGRIS, CAB Abstracts, and ProQuest 
databases published (n=1,730) between 1985 and 2022 on mushroom and SMS. 
Boxplots show the upper and lower quartile, median (bold horizontal bar), mean 
(white circle), and whiskers (vertical lines). Each point corresponds to the 
cumulative number of articles related to the corresponding research theme per 
year. 

Out of 427 publications that focused on agricultural application of mushrooms or their 
wastes, 69, 16 and 15%, respectively, focused on mushroom or SMS use as biofertilizers, 
animal feed and biocontrol agents. On average, 5 manuscripts have been published annually 
on spent mushroom waste (SMW) use as biofertilizer between the period 1985 and 2022, 
while their use as animal feed and biocontrol averaged at 3 publications per annum (Figure 
1C). These findings suggest that SMS use in the field of agriculture is still new and/or 
underdeveloped. 

Interaction of edible mushrooms and their wastes with biotic constraints of various 
crops 

In the field of biocontrol, the meta-analysis revealed a diverse genus of edible 
mushrooms to be suppressive (Figure 2A) to different biotic constraints. Pleurotus and 
Lentinula were the most prevalent genera, while P. ostreatus was the most prevalent 
mushroom species reported in publications. SMS use in the management of fungal pathogens 
(58%) dominated the publications on biotic constraints (Figure 2B). Publications on SMW use 
in the management of bacterial pathogens (16%) and nematodes (12%) were also common. 
Other publications on biotic factors covered SMW use for mycotoxin degradation (9%), insect 
pest control (4%), and control of parasitic weeds (2%) (Figure 2A). Table 1 summarizes some 
of the pathogens and pests that have been reported to be suppressed by SMW in the form of 
SMS, SMC and extracts/teas. 

Table 1. Examples of different mushroom species and their mechanisms of suppressing 
different target organisms. 

Mushroom spp. Mechanism(s) of suppression Target organism Citation 
Pleurotus pulmonarius - Nematicidal metabolites: S-coriolic acid, 

linoleic acid, p-anisaldehyde, p-anisyl 
alcohol, 1-(4-methoxyphenyl)-1,2-
propanediol, and 2-hydroxy-(4'-methoxy)-
propiophenone 

- Predation 

Nematodes  
(C. elegans) 

Stadler et al., 
1994 

Hericium coralloides - Repellent and nematicidal compounds: 
linoleic acid, oleic acid, and palmitic acid 

Nematodes  
(C. elegans) 

Stadler et al., 
1994 

Pleurotus ostreatus - Nematicidal compound - trans-2-decenoic 
acid, a derivative of linoleic acid 

Nematodes  
(Panagrellus redivivus) 

Kwok et al., 
1992 
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Table 1. Continued. 
Mushroom spp. Mechanism(s) of suppression Target organism Citation 
P. ostreatus - Nematicidal activity of proteases 

- Predation 
- 95% reduction in nematodes 

Nematode  
(Panagrellus sp.) 

Genier et al., 
2015 

P. sajor-caju - Nematicidal activity on all nematodes 
- Predation 
- 80-86% reduction in nematode egg 

masses, galling and population 

Root-knot nematodes,  
(Meloidogyne incognita) 

Mostafa et 
al., 2019 

P. ostreatus - Antifungal activity of a peptide Pleurostrin F. oxysporum, Physalospora 
piricola, Mycosphaerella 

arachidicola 

Chu et al., 
2005 

Lactarius rufus - Antifungal activity of sesquiterpene, 
Rufuslactone 

Alternaria alternata,  
A. brassicae, Botrytis cinerea,  

F. graminearum 

Luo et al., 
2005; 

SMS - Inhibition by metabolites 
- Plant growth promotion 
- Reduced disease severity 

Phytophthora capsici and  
P. parasitica 

Marin et al., 
2014 

P. ostreatus (SMS and 
SMS extract) 

- Antifungal compounds 
- 44-69% inhibition of the disease 

Basal rot disease  
(F. oxysporum f. sp. cepae) 

Istifadah, 
2018 

P. ostreatus - Antifungal compounds 
- Promotion of beneficial microbes 
- Plant growth promotion 
- In vitro inhibition 
- Reduced disease severity in pots 

F. oxysporum f. sp musacearum  
(race 1) 

Ocimati et 
al., 2021 

Lentinula edodes, 
Grifola frondosa, H. 
erinaceus, Hypsizygus 
marmoreus 

- Antibacterial activity of metabolites in 
culture filtrates 

Ralstonia solanacearum  
in tomato 

Kwak et al., 
2015 

H. erinaceus - Antibacterial activity of water, n-butanol, 
and ethyl acetate extracts. 

- Induced expressions of plant defence 
genes encoding β-1,3-glucanase (GluA) 
and pathogenesis-related protein-1a (PR-
1a)-associated with systemic acquired 
resistance 

- Plant growth promotion 
- 85% suppression of R. solanacearum 

Phytopathogenic bacteria: 
Pectobacterium carotovorum 

subsp. carotovorum, 
Xanthomonas oryzae pv. 
oryzae, X. campestris pv. 

campestris, X. axonopodis pv. 
vesicatoria, X. axonopodis pv. 
citiri, and X. axonopodis pv. 

glycine, Agrobacterium 
tumefaciens, R. solanacearum 

Kwak et al., 
2015 

P. eryngii - Enhanced plant defence factors 
- Plant growth promotion 
- 70% disease suppression 

R. solanacearum Kwak et al., 
2016 

A diverse range of mechanism of suppression of plant pathogens and pests by SMW have 
been proposed in literature (Table 1; Figure 2C). Suppression through secondary metabolites 
or enzymes (33% of publications), was the predominantly reported mechanism of 
suppression by SMW (Figure 2C). Modulation of plant defence responses (16%), promotion 
of secondary metabolites (13%) and plant growth promotion are other highly reported 
mechanisms. Other mechanisms of pest and disease suppression in publications included, 
modification of the soil environment, predation, mycotoxin degradation, and competition for 
resources (Figure 2C). 
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Figure 2. Proportion (%) of publications reporting on different A) mushroom species with 
pest and disease suppressive effects, B) biotic constraints of crops suppressed by 
spent mushroom wastes, and C) mechanisms of crop pest and disease suppression. 
The publications (48) cover the period between 1985 and 2022. 

Application of spent mushroom substrates as biofertilizers 
Use of SMW of different edible mushroom spp. as biofertilizers have been reported in 

literature, with A. bisporus and P. ostreatus, predominating (Figure 3A). Publications on SMW 
use as biofertilizers covered different biological, physical, and chemical soil properties (Figure 
3B). Themes on SMW use as biofertilizers covered SMW effects on crop growth attributes 
(vigor, yield, and nutritional quality), soil nitrogen, soil organic matter (SOM), phosphorus, 
soil pH and potassium (Figure 3B). Edible mushrooms are grown on agricultural by-products 
and lignocellulosic wastes such as coffee husks, corn cobs, rice husks and cotton seeds 
(Sánchez, 2010). SMW thus contain diverse and high levels of SOM, macro- and micro-
nutrients, and are suitable for improving soil pH, SOM and soil nutrient levels. For example, 
soil pH, SOM, total N, total P, total K, total Ca and Mg levels in SMS varying respectively from 
6.0 to 8.25, 407-740 g kg-1, 17-28 g kg-1, 7-38 g kg-1, 11-34 g kg-1, 3-101 g kg-1, and 0.6-39 g kg-1 
have been reported (Jordan et al., 2008; Paredes et al., 2016). Unlike inorganic fertilizers, SMW 
have a slow mineralization and release nutrients slowly, making them a suitable source for 
these nutrients. The SMW can be used immediately after mushrooms harvesting or after 
composting/ vermicomposting to homogenize and stabilize it (Marı́n-Benito et al., 2016). 
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Figure 3. Publications showing A) different mushroom species evaluated for their effects as 
biofertilizer, and B) different study themes related to SMW use as biofertilizer. The 
publications (255) cover the period between 1985 and 2022. 

Other themes in literature included SMW effects on soil structure, microbial diversity, 
micro elements, soil moisture, temperature, soil macrofauna and degradation of pollutants. 
Table 2 summarizes some of the benefits of using SMW as biofertilizers in different crop 
species. 

Table 2. Summary of findings on the biofertilizer related benefits arising from the use of 
spent edible mushroom waste from some sampled publications. 

Benefits in the soil rhizosphere Citation 
Improvement of crop growth (high vigor), and yield 
attributes 

Kadiri and Mustapha, 2010 

Improvement of soil organic carbon and matter Li et al., 2020; Becher et al., 2021 
Enhanced soil nitrogen, phosphorus, and potassium Lou et al., 2017; Ma et al., 2021 
Regulation and maintenance of soil pH in range of 
agricultural production 

Majchrowska-Safaryan et al., 2020;  
Lipiec et al., 2021 

Has a low bulk density which helps maintain a good soil 
structure, thus a higher and balanced air porosity 

Courtney et al., 2009; Lipiec et al., 2021 

Increased availability of micro-nutrients (e.g., iron, zinc) Medina et al., 2009; Jonathan et al., 2011 
Increased microbial biomass and functional diversity Li et al., 2020; Frąc et al., 2021 
Regulates soil moisture and temperature Ma et al., 2021 

POTENTIAL APPLICATIONS OF MUSHROOM WASTES TO ADDRESS SOIL HEALTH 
CHALLENGES WITHIN ORGANIC BANANA PRODUCTION SYSTEMS 

Soil health management is a core challenge for organic production systems due to the 
heavy reliance on inorganic chemicals for improving soil nutrient availability, and managing 
weeds, pests, and diseases. Key soil health challenges in banana systems include the banana 
parasitic nematodes; soil borne pathogens, mainly Fusarium oxysporum f. sp. cubense (Foc) 
and low soil fertility (Dita et al., 2020; Blomme et al., 2020). 

Plant parasitic nematodes (PPN) affect banana production globally. The most important 
banana nematode species include Radopholus similis, Pratylenchus spp., Meloidogyne spp., and 
Helicotylenchus multicinctus (Gaidashova et al., 2009; Lara Posadas et al., 2016). These PPN 
damage plant roots affecting their ability to take up water and nutrients from the soil reducing 
plant vigour and yield. Plants with heavily damaged roots become vulnerable to toppling. The 
damaged roots also become entry points for soil borne pathogens such as Foc. Yield losses of 
up to 51% have been reported for East African highland banana cultivars due to nematode 
damage (Speijer and Kajumba, 2000). The management of PPN is challenging due to their 



 
 

 113 

rapid population build-up and the presence of multiple alternative host plants (Atolani and 
Fabiyi, 2020). Use of nematicides, though effective, has potential negative environmental and 
health effects (Gowen, 1997) and are prohibited for organic systems. The above findings show 
SMW to have nematicidal effects on different nematode spp. in other crops (Table 1). Thus, 
SMW could potentially be beneficial for the management of banana nematodes. 

Fusarium wilt caused by Foc is the main soil borne threat to banana production. Foc that 
is mainly spread through the infected planting materials and contaminated soil and water, has 
significantly impacted the banana industry and livelihoods of smallholder farmers (Ploetz, 
2015; Dita et al., 2020). Banana production is especially threatened by the more recent 
outbreaks and spread of the Foc TR4 strain that has caused yield losses of up to 100% in 
Cavendish banana that currently dominates the banana export market (Dita et al., 2020). Foc 
has a long survival/residence time in soil and can survive on alternative hosts making fields 
unsuitable for susceptible banana cultivars for decades (Dita et al., 2020), thus complicating 
its management. This study shows (Table 1) SMW to suppress fungal pathogens including the 
genus Fusarium. Ocimati et al. (2021) also showed SMS of P. ostreatus to suppress Foc in-vitro 
and under screenhouse conditions using both sterile and naturally infested field soils. 
Assessing the potential of SMW of a wider range of edible mushroom species to suppress Foc 
(including Foc TR4) under field conditions is recommended. In addition, studies to elucidate 
the mechanisms of Foc suppression by SMW are also needed. 

Wastes from different species of edible mushrooms have been shown to suppress a 
diverse range of bacterial pathogens (Table 1). In banana, important bacterial pathogens 
include Xanthomonas vasicola pv. musacearum (Xvm), Ralstonia solanacearum and R. syzygii 
subsp. celebesensis (Blomme et al., 2017). Though the rhizosphere is not a major route for Xvm 
spread, it is important for Ralstonia spp. Existing literature already shows the suppression of 
Xanthomonas spp. and Ralstonia spp. by SMW in other crop species. The integration of SMS as 
part of the current cultural control packages could potentially help in reducing or eliminating 
soil inoculum, thus in turn limiting the entry of these bacterial pathogens through wounds on 
roots or the corms. 

Low soil moisture content and deficiency in soil nutrients, especially potassium (K) and 
nitrogen (N) have been reported as major yield limiting factors for the banana crop (Nyombi 
et al., 2010; Taulya, 2013). Deficiency in soil nutrients also affects the ability of the plants to 
withstand harsh environmental conditions, and pests and diseases. Soil K is for example, 
crucial for the uptake of soil water (Taulya, 2013) while K also enhances plant resistance to 
pests and diseases (Wang et al., 2013). Strategies for ensuring a balanced soil nutrient 
composition to meet crop nutrient needs is thus crucial for a sound soil health status. Studies 
above show SMW to improve soil structure, soil pH, levels of macro- and micro-elements that 
could be crucial for improving the performance of the banana crop in organic systems. 

These findings reveal a huge potential for the improvement of soil health and 
management of key biotic and abiotic constraints of organic banana production systems using 
of SMW. In a cyclic farming, the residues from banana and other crops could be used as 
substrates for growing mushrooms and the resultant SMW subsequently returned to these 
fields to improve the soil health and key pests and diseases. Studies to explore the highlighted 
benefits above on organic banana systems is recommended. Exploration of other models for 
delivering the services provided SMW where it is not feasible to access SMW is also 
recommended. 
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