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Abstract  
This paper combines panel data from nationally representative household-level surveys in Nigeria with 

long-term satellite-based spatial data on temperature and precipitation using geo-referenced information 

related to households. It aims to quantify the impacts of climate change on agricultural productivity, income 

shares, crop mix, and input use decisions. We measure climate change in harmful degree days, growing 

degree days, and changes in precipitation using long-term (30 year) changes in temperature and 

precipitation anomalies during the crop calendars. We find that, controlling for other factors, a 15 percent 

(one standard deviation) increase in change in harmful degree days leads to a decrease in agricultural 

productivity of 5.22 percent on average. Similarly, precipitation change has resulted in a significant and 

negative impact on agricultural productivity. Our results further show that the change in harmful degree 

days decreases the income share from crops and nonfarm self-employment, while it increases the income 

share from livestock and wage employment. Examining possible transmission channels for this effect, we 

find that farmers change their crop mix and input use to respond to climate changes, for instance reducing 

fertilizer use and seed purchases as a response to increases in extreme heat. Based on our findings, we 

suggest policy interventions that incentivize adoption of climate-resilient agriculture, such as small-scale 

irrigation and livelihood diversification. We also propose targeted pro-poor interventions, such as low-cost 

financing options for improving smallholders’ access to climate-proof agricultural inputs and technologies, 

and policy measures to reduce the inequality of access to livelihood capital such as land and other 

productive assets.    

 

Key Words: Climate change, Income sources, Crop mix, Input use.  
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1. Introduction 

Climate variability and extreme weather events, including unpredictable and irregular rainfall, 

drought, and rising temperatures, threaten the food production, livelihoods, and food security of 

farm households in sub-Saharan Africa (SSA) (Di Falco et al., 2011; Di Falco and Veronesi, 2013). 

Such climatic shocks are expected to increase in frequency and intensity, and their impacts are 

projected to increase over time (IPCC, 2012). Smallholder farm households with fewer livelihood 

assets, limited coping strategies, and adaptation deficits are most vulnerable to climatic shocks 

(Calzadilla et al., 2013; Fankhauser and McDermott, 2014; Asfaw et al., 2018). The interactions 

between climatic and non-climatic factors, such as lack of access to productive assets and markets, 

reduce the resilience capacity of poor households and exacerbate their food insecurity. Within this 

context, an understanding of the effects of alternative adaptation strategies for coping with extreme 

climate events is crucial for developing interventions to mitigate the adverse impacts of climate 

shocks. 

The rainfed agriculture that smallholders rely on is inherently exposed to risks of climate 

variability and change. These risks have significant economic implications because agriculture 

accounts for over 65 percent of the labor force in SSA countries and approximately three-fourths 

of total household income (Gollin et al., 2002; World Bank, 2007). Thus, various adaptation 

strategies are needed to mitigate the effects of climate change on agricultural productivity and 

household food insecurity. Engaging in activities that are less susceptible to the disruptions of 

climate change is one way for rural households to manage uncertainties surrounding agricultural 

production (Newsham and Thomas, 2009).  

Smallholders may adopt livelihood diversifications as effective adaptation strategies to 

mitigate the effects of climate variability and climate change. Past studies document a range of 

livelihood diversification strategies, including diversification of crop portfolios (Barrett and 

Carter, 2013; Asfaw et al., 2018); livestock diversification (FAO, 2016); diversification of income 

sources (Minot et al., 2006; FAO, 2016); adjustment in agricultural input usage (Jagnani et al., 

20201; Aragón et al., 2021); and labor diversification (FAO, 2016; Asfaw et al., 2018).  

However, the nature and extent of these livelihood diversifications as ex ante climate risk 

mitigation strategies (Smit and Wandel, 2006) or ex post risk coping strategies (Murdoch, 1995; 

FAO, 2016) depend on households’ risk-bearing capacity. This capacity reflects a household’s 



2 
 

asset endowments, human capital, and the climate risk perceptions of the household (Dercon and 

Christiaensen, 2011). 

Regarding the choice of a specific diversification strategy, empirical evidence in SSA 

suggests that poverty is correlated with greater crop diversification, but with less income and labor 

diversification (Barrett et al., 2001; Babatunde and Qaim, 2009). For poor farmers who have the 

lowest capacity to effectively manage risk, crop diversification may be a response to the constraints 

imposed by climate risk (Howden et al., 2007). In this sense, a lack of alternative economic 

opportunities pushes them into crop diversification. In contrast, wealthier and more educated 

households are likely to be pulled into adopting income and labor diversification strategies because 

these households have greater access to productive assets (Ellis, 2000; Barrett et al., 2001). In the 

context of developing countries, however, climate variability and climate change can be seen in 

general as push factors to diversification, as risk-averse farmers implement ex ante risk 

management strategies to reduce their vulnerability to extreme climatic events (Barrett et al., 

2001). In addition to endowments and poverty levels, heterogeneities in spatial conditions, such as 

market access, missing or imperfect credit, and insurance markets, can also play a significant role 

in farmers’ diversification decisions (Jalan and Ravallion, 2002). Regardless of the different 

drivers of diversification (pull or push factors), empirical evidence suggests that more diversified 

households have better livelihood outcomes (Babatunde and Qaim, 2009).  

This paper aims to quantify the impacts of climate change on agricultural productivity, 

income diversification, crop mix, and input use decisions. We measure agricultural productivity 

by the real net crop income per unit of land per hectare, and income diversification by the income 

share of the main income sources of the farm household. In addition to examining the overall 

impact of climate change on agricultural productivity and income sources, this research also aims 

to shed light on some of the specific pathways that mediate agricultural productivity and household 

income diversification, focusing on farmers’ crop mix and input use decisions. 

To address these questions, we use panel data from nationally representative household-

level surveys for Nigeria that contain rich socioeconomic and demographic information. We 

combine these data with long-term satellite-based spatial data on temperature and precipitation 

using geo-referenced information related to households and farm plots. Satellite-based long-term 

precipitation data are less likely to suffer from the classic measurement errors of gauge 

measurements (Brückner and Ciccone, 2011; Amare et al., 2021a). 
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Our study contributes to the climate adaptive agriculture and livelihood strategies 

transformation literature in several important ways. First, using long-term temporal variabilities in 

precipitation and temperature indicators to measure climate change, we explore the impact of 

climate change on several outcome variables such as households’ income sources, agricultural 

productivity, crop mix and input use decisions. Second, we explore the nonlinear effects of changes 

in precipitation and temperature on agricultural productivity and other outcome variables. To the 

best of our knowledge, we have not come across past studies in agricultural economics literature 

that explicitly model the nonlinear effects of these climatic factors, although it has been described 

in agricultural sciences (see, for example Schlenker and Roberts, 2006, 2009; Kawasaki and 

Uchida, 2016; Lesk et al., 2016). Third, this study examines the long-term combined effects of 

precipitation and temperature on outcome variables of our interest. We also examine the 

differential impacts of climate change on relatively poor and nonpoor groups of households. The 

findings of this paper thus provide key decision-support evidence to better understand the impacts 

of climate change on agricultural productivity and livelihoods of smallholder farm households and 

identify different adaptation strategies aimed at reducing climatic risks and enhancing adoption of 

climate-resilient practices to ensure agricultural sustainability, livelihoods, and food security. 

We find that climate change, measured through harmful degree days, growing degree days, 

and changes in precipitation, exerts significant impacts on agricultural productivity, crop mix, and 

input uses. The change in harmful degree days has a negative effect on agricultural productivity. 

Controlling for other factors, a 15 percent (one standard deviation) increase in change in harmful 

degree days leads to a 5.22 percent decrease in agricultural productivity on average. The change 

in harmful degree days also decreases the income share of crops and non-farm self-employment, 

while it increases the income share of livestock and wage employment. Similarly, our estimates 

confirm that precipitation change has a significant and negative impact on agricultural 

productivity. Examining possible transmission channels, we find that farmers adopt changes in 

crop mixes and input use as adaptation strategies to respond to climate changes. We show that 

increases in extreme heat days increase area planted, decrease fertilizer use, and decrease seed 

purchases. For instance, we find that a one standard deviation increase in harmful degree days 

leads to a 1.17 percent increase in area planted. 

The remainder of the paper is organized as follows: Sections 2 and 3 present the conceptual 

framework and hypotheses and the Nigerian context respectively. The data and measurement of 
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variables, empirical model, and identification strategies are presented in sections 4 and 5. The 

empirical results are presented in section 6, and section 7 concludes with the main findings and 

policy implications. 

 

2. Conceptual Framework and Hypotheses    

This section presents the conceptual basis and the hypotheses that underpin our empirical analyses. 

Climate change poses serious challenges for farming households, affecting their food production, 

planning capacity, and livelihood outcomes like food security and household income (Barrios et 

al., 2008; Arslan et al., 2017; Hochman et al., 2017; Nguyen et al., 2020). For example, a study 

based on crop modeling in Nigeria finds that a 5–25 percent loss of yield in sorghum in the northern 

Sahelian zone is likely related to temperature increases (Hassan et al., 2013). Crop mix and input 

use decisions are important considerations in response to climatic factors among smallholders in 

SSA (Bert et al., 2006; Mertz et al., 2009; Yang et al., 2016; Roberts et al., 2017). Hassan et al. 

(2013) project an increase in the production of cassava, sweet potatoes, yams, and other root and 

tuber crops in Nigeria in response to climate risk implying that farmers may shift their land from 

climate-sensitive crops to crops that are resilient to climate variability. Similarly, farmers may 

adapt to drought by abandoning farming, reducing or expanding the land area cultivated, and/or 

changing crop types or mixes to mitigate climate risks to agricultural production (Yang et al., 

2016).Thus, climate-related information on the magnitude, timing, and distribution of precipitation 

and temperature changes can have a significant effect on the farmers’ crop mix decisions and their 

adoption of sustainable agricultural practices (Bezabih and Di Falco, 2012; Teklewold et al., 2013). 

Climate-related information can prompt farmers to reduce the effects of climate shocks by 

allocating their farmland into more than one cropping season, particularly for crops with a shorter 

growing period, and improve their farm income earnings (Howden et al., 2007; Barrett and Carter, 

2013). Climate changes also affect farmers’ decisions about input use, including decisions related 

to fertilizer, pesticides, hired labor, and seeds (Jagnani et al., 2021). The nature and extent of such 

decisions are usually motivated by the objectives of the farming household and the environmental 

constraints, including those outside the farmers’ control (Wallace and Moss, 2002).  

Climate variability and change may also affect a household’s off-farm income source 

diversification, including through participation in wage employment on other farms or in other 

sectors, starting one’s own business, or migrating to towns and cities (FAO, 2016; Asfaw et al., 
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2018). Ersado (2003) shows that households in Zimbabwe pursued income diversification to 

reduce their vulnerability to weather shocks; Newsham and Thomas (2009) demonstrate that 

climate change pushed farmers into income diversification in Namibia.  

In a nutshell, a farm household’s livelihood diversification can take different forms —

diversification of crops, income sources, or use of labor on wage employment and the farm. 

Farmers diversify their crops to protect themselves against total crop failure or the effects of 

reduced crop yields. They respond to climate change by adopting multiple cropping systems — 

growing two or more crops on the same field either at the same time or one after the other (Waha 

et al., 2013). This strategy reduces the threat of climate change to various facets of household food 

security. The conceptual framework that underpins the relationship between livelihood 

diversification and vulnerability implies that vulnerability should decline as diversification 

increases (Ersado, 2003; Babatunde and Qaim, 2009; FAO, 2016; Nguyen et al., 2020). Against 

this backdrop, we propose three hypotheses to guide our empirical investigation. 

  

Hypothesis 1. Several studies in SSA show that smallholders prioritize the cultivation of staple 

crops in the face of unpredictable weather shocks, for example, growing subsistence maize in 

Zambia (FAO, 2016), root crops such as cassava and yams in Nigeria (Hassan et al., 2013), and 

less risky crop portfolios in Ethiopia (Bezabih and Di Falco, 2012). We argue that, in the context 

of imperfect or missing credit, insurance, and labor markets, food security will be the primary 

objective of farm households (Wheeler and von Braun, 2013). Farmers may mitigate the risks of 

food insecurity caused by climate change by changing crop mixes, that is, allocating farmland to 

crops that are less susceptible to climate shocks (Bezabih and Di Falco, 2012).  

 

Hypothesis 2. Existing evidence confirms that poor farmers are more vulnerable to the impacts of 

climate change and extreme weather events (World Bank, 2013). We hypothesize that adverse 

climate change pushes vulnerable farm households to diversify off-farm activities and thus to 

decrease their income share from crop and livestock but increase their income share from off-farm 

sources.  

 

Hypothesis 3. Investments in agricultural productivity have been shown to reduce poverty and 

foster economic growth (Gollin et al., 2002; Irz and Tiffin, 2006). However, uptake of modern 
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agricultural technologies is low in many SSA countries (Amare et al., 2018; Sheahan and Barrett, 

2017; Binswanger-Mkhize and Savastano, 2017). Climate changes may limit uptake of new farm 

technology (Barrett and Carter, 2013; Dercon and Christiaensen, 2011, Amare et al., 2022). 

Following findings on input use decisions among Kenyan farmers (Jagnani et al., 2021; Amare et 

al., 2022), we hypothesize that climatic factors led farmers to shift from purchasing productivity-

enhancing inputs such as fertilizer to loss-reducing inputs such as pesticides to protect their crops 

from pests, crop diseases, and weeds. 

 

3. The Nigerian Context  

Nigeria provides an interesting case study in SSA to examine the effects of climate change on 

agriculture and rural livelihoods. With over 207 million people, Nigeria is the most populous 

country in Africa. Like most SSA countries, agriculture is a major source of employment and 

economic development, accounting for about 23 percent of GDP and a 70 percent share of the 

labor force (World Bank, 2018). Unfortunately, about 40 percent of Nigeria’s population lives 

below the international poverty line of $1.90 per day (World Bank, 2018). Food insecurity and a 

shortage of energy and nutrient-rich foods remain the country’s major challenges (FMARD, 2016; 

NPC and IFC, 2019). Agricultural productivity remains low due to factors such as inadequate use 

of yield-enhancing agricultural inputs and technologies. Yields of staple cereals and root crops in 

Nigeria are less than half the world average, for example the average yield gaps for Nigeria’s three 

major staple crops — rice, maize, and cassava — are more than 75 percent; 84 percent; and 25 

percent respectively (World Bank, 2018). Adverse climatic changes exacerbate the challenges in 

the agriculture sector, which is already performing well below its potential.  

According to the Nigerian Meteorological Agency’s assessment of the 60-year period from 

1941 to 2000, annual rainfall decreased by 2–8 mm across most parts of the country, and the length 

of the growing season decreased due to a later onset and earlier cessation of rainfall (NIMET, 

2008). The assessment further shows a long-term temperature increase in most parts of the country 

and significant increases (a rise of average temperature by 1.4° to1.9°C) in the extreme northeast, 

extreme northwest, and extreme southwest of the country. Simulations of future climate conditions 

based on various scenarios show a warmer and drier climate (BNRCC, 2011). Recent climate 

projections for the country indicate a temperature increase of between 1° and 4°C for all ecological 

zones in the coming decades (Cervigni, et al., 2013; Hassan et al., 2013). According to the BNRCC 



7 
 

report1, in the absence of adaptation measures, climate change could reduce GDP by 6 and 30 

percent by 2050.  

Nigerian agriculture is highly vulnerable to changes in climate factors, especially in terms 

of production losses, income losses, and household food insecurity. Because of Nigeria’s 

dependence on rainfed agriculture, anomalies in precipitation such as long dry spells and a late 

onset and short duration of the growing season have significant impacts on agricultural production.  

Crop modeling studies comparing crop yields in 2050 with climate change and the yields with the 

2000 climate predict yield losses of 5 to 25 percent in areas planted with sorghum in the northern 

Sahelian zone of Nigeria (Hassan et al., 2013). On the other hand, there may be future increases in 

the production of millet, cassava, sweet potatoes, yams, and other root and tuber crops (Hassan et 

al., 2013). Results from a World Bank study (Cervigni et al., 2013) also predict a high probability 

of lower yields for all crops in 2050 in all agroecological zones of Nigeria except the outlook for 

yams, cassava and millet is uncertain. The study highlights the vulnerability of rice in northern 

parts of the country, where yields are predicted to decline by about 20–30 percent in the longer 

term (2050).  

In 2011, as a policy response to the effects of climate change, the country produced the 

National Adaptation Strategy and Plan of Action on Climate Change for Nigeria (NASPA-CCN) 

(BNRCC, 2011). The document identified agriculture as a key sector in which to develop 

adaptation strategies and implement climate-resilient practices. In 2014, Nigeria produced a sector-

specific policy document to foster adaptation strategies in the agriculture sector specifically — the 

National Agricultural Resilience Framework (NARF) (FMARD, 2015).2 The NARF is Nigeria’s 

first sector-specific climate adaptation and risk mitigation program. It includes a plan of action for 

innovative agricultural production strategies and risk management mechanisms that promote 

resilience in the agriculture sector. These adaptation strategies are intended to reduce the impacts 

of climate change, or even turn some aspects into advantages. For instance, higher temperatures 

might permit higher yields for some crops in some areas. Thus, it is important to understand the 

type of adaptation strategies adopted by farmers and how these vary spatially and temporally in 

order to promote context-specific strategies that ensure production sustainability and enhance 

livelihood outcomes.  

 
1 Building Nigeria's Response to Climate Change (BNRCC) project (http://csdevnet.org/wp-content/uploads/NATIONAL-
ADAPTATION-STRATEGY-AND-PLAN-OF-ACTION.pdf) 
2 National Agricultural Resilience Framework (https://boris.unibe.ch/62564/1/Nigeria%27s%20Changing%20Cliamte.pdf) 

http://csdevnet.org/wp-content/uploads/NATIONAL-ADAPTATION-STRATEGY-AND-PLAN-OF-ACTION.pdf
http://csdevnet.org/wp-content/uploads/NATIONAL-ADAPTATION-STRATEGY-AND-PLAN-OF-ACTION.pdf
https://boris.unibe.ch/62564/1/Nigeria%27s%20Changing%20Cliamte.pdf
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4. Data Sources and Variable Measurement  

4.1.  Data sources 

This study uses three wave panel datasets from the Living Standards Measurement Study–

Integrated Surveys on Agriculture (LSMS-ISA) from Nigeria. These nationally representative 

datasets include detailed information on demographic and household characteristics, assets, 

agricultural production, nonfarm income and other sources of income, allocation of family labor, 

hiring of labor, and access to services. The agriculture module, among others, contains information 

on agricultural and livestock production, farm technology, use of modern inputs, and productivity 

of crops. The LSMS–ISA includes geo-referenced information related to household and plot data 

that allows us to link satellite-based datasets to households. Thus, we combine the survey panel 

data with long-term satellite-based spatial data on temperature and precipitation.  

Since our objective is to explore how climate change affects agricultural productivity, crop 

mix, and input use decisions in Nigeria, we restrict the data to farm households that planted crops 

and for which data on temperature and rainfall is available at the household level. This procedure 

results in a balanced panel of 2129 farm households for three waves of panel data and a total of 

6387 samples in all three waves.  Our key variables of interest are climate changes, growing degree 

days (GDD) and harmful degree days (HDD): precipitation fluctuations, agricultural productivity, 

crop mix, income share and input use. 

The temperature data are extracted from NASA MERRA-2 (Modern-Era Retrospective 

Analysis for Research and Application) (Wan et al., 2015). We use daily average temperatures in 

degrees Celsius over a 30-year period (1986 to 2015) at a spatial resolution of 0.05° x 0.05° (~ 5 

km x 5 km). Similarly, we extract monthly precipitation data over a 30-year period at a spatial 

resolution of 0.05° x 0.05° (~ 5 km x 5 km) from the Climate Hazards Group InfraRed Precipitation 

Station (CHIRPS) archives provided by the Climate Hazard Group (Funk et al., 2015; Novella and 

Thiaw, 2013). We use satellite-based long-term precipitation data instead of gauge measurements 

(Brückner and Ciccone, 2011; Amare et al., 2021a). Satellite-based precipitation data are less 

likely to suffer from measurement errors as well as errors that may arise because of the sparseness 

and limited number of operating gauge stations in SSA countries. We restricted the data to farm 

households that planted croplands and for which data on temperature and precipitation at the 

household level are available.  
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4.2.  Variable measurement 

Climate changes: We use growing season to define the relevant period for the construction of our 

temperature and precipitation variables. Because Nigeria has a diverse agroecological landscape 

which a mix of tropical and drier rainfed regions (Benson et al., 2021; Amare et al., 2021b) The 

length of the growing season generally decreases from southern to northern Nigeria. We then 

capture this regional difference. The crop calendar for northern Nigeria typically extends from 

early May through late October, while for southern Nigeria it lasts from early March through 

October. 

 

Growing degree days (GDD) and harmful degree days (HDD):  We use daily average 

temperatures to calculate the number of days each household is exposed. We follow the standard 

convention of agronomic literature that converts daily mean temperatures into growing degree 

days (GDD) to estimate the effect of temperature on agricultural productivity, income share, and 

input use (Lobell et al., 2011; Lobell et al., 2013; Deryng et al., 2014; Hendricks and Peterson, 

2014; Jessoe et al., 2018; Jagnani et al., 2021; Aragón et al., 2021). Growing degree days (GDD) 

are calculated using the cumulative exposure to temperatures between a lower bound (the standard 

base temperature of 8°C) up to an upper threshold of 32°C (Schlenker and Roberts, 2009). All 

temperatures above 32◦C also contribute 24-degree days (Schlenker and Roberts, 2006; Schlenker 

and Roberts, 2009). Degree days are then summed over the entire growing season. We convert 

daily temperatures into growing degree days (GDD) using the following formula:  

𝐺𝐺𝐺𝐺𝐺𝐺 = �
0                   𝑖𝑖𝑖𝑖   𝑇𝑇 ≤ 8𝐶𝐶      

𝑇𝑇 − 8                 𝑖𝑖𝑖𝑖  8𝐶𝐶 < 𝑇𝑇 ≤ 32𝐶𝐶
       24                𝑖𝑖𝑖𝑖    𝑇𝑇 >  32𝐶𝐶         

                                                                                                                  (1) 

In analyses of the effect of climate changes, we focus on the deviation of temperature from the 

norm (e.g., Macinni and Yang, 2009; Björkman-Nyqvist, 2013; Rocha and Soares, 2015). 

Specifically, we subtract the average growing season GDD for the last 30 years for growing season 

from the GDD for each of the waves of data collected in the previous year. Thereby, we derive the 

GDD deviation for each wave during the respective crop cycles for each survey household as:  

 ΔGDD𝑖𝑖𝑖𝑖 = ln (GDD𝑖𝑖𝑖𝑖) − ln( GDD������𝑖𝑖)                                                                                                                              (2) 
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Because agricultural production declines physiologically due to heat stress above 32°C (Jessoe et 

al., 2018; Jagnani et al., 2021; Aragón et al., 2021), we defined degree days above 32°C (GDD>32) 

as harmful degree days (HDD). In essence, HDDs are anomalies relative to the mean of HDDs 

over the 30-year period:  

ΔHDD𝑖𝑖𝑖𝑖 = ln (HDD𝑖𝑖𝑖𝑖) − ln( HDD������𝑖𝑖)                                                                                                                              (3) 

Precipitation fluctuations: We construct the change in precipitation variable as the deviation of a 

given year’s precipitation during the growing season from the historical averages (over the 1986–

2015 period) during the growing season for the same locality. The change in precipitation variable 

is defined as deviation of log rainfall from the norm using: 

 ΔR𝑖𝑖𝑖𝑖 = ln (R𝑖𝑖𝑖𝑖) − ln( R�𝑖𝑖)                   (4) 

where R𝑖𝑖𝑖𝑖 indicates the precipitation during the growing season in the previous year at the location 

of household 𝑖𝑖 for year 𝑡𝑡.  R𝚤𝚤���  is the historical average precipitation (over the 1987–2016 period) 

during the growing season at the location of household i. Weather deviations are interpreted as the 

percentage deviation from the mean. For example, a value of 0.10 indicates precipitation was 

approximately 10 percent higher than normal.  

 

Agricultural productivity: We measure agricultural (land) productivity as the real net crop income 

per hectare. Net crop income is calculated as gross crop income minus variable crop production 

costs. Net real crop income is adjusted to 2010 purchasing power parity (PPP) using the regional 

consumer price index.  

 

Crop mix: We measure a farmer’s crop mix using the share of area planted in major crops to total 

land area cultivated. To do so, we divide the total farmland area of a household into five crop 

categories: (1) cereal crops (maize, sorghum, millet, and rice); (2) pulses and legumes (bean, 

cowpeas, and chickpeas); (3) roots and tubers (cassava and yam); (4) tree crops (cocoa, oil palm, 

and banana); and (5) other uses, such as fishponds or own businesses. 

 

Income share: We break down household income into five different sources: (1) crop income; (2) 

income from livestock; (3) nonfarm self-employment; (4) wages; (5) and other sources, which 

include transfer income, pensions, and rents or income from properties. Total real income 
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computed from these sources is adjusted to 2010 purchasing power parity (PPP) using the regional 

consumer price index. We measure the income share from each source by dividing that income by 

the total real income.  

 

Input use: We measure input use including fertilizer, purchased seeds, and pesticides used in 

production. We define indicator variables for fertilizer use, purchased seeds, and pesticide use, 

which take the value of 1 if the farmer used these inputs and 0 otherwise.   

 

A description of the variables and summary statistics used in subsequent regression 

analyses are presented in Table 1 and Table 2. Table 1 reports the deviation from the long-term 

mean of climate change variables (fluctuations in temperature and precipitation). The deviation 

from the long-term mean for GDD and for HDD is 0.07and 0.02, respectively. All sampled 

households received 4% less precipitation than normal during the survey years. Table 2 reports the 

mean values for agricultural productivity and input use; income share; crop mix income; 

demographic characteristics; wealth indicators including land, livestock, and the value of total 

assets. The average agricultural productivity, measured in term of net crop income per hectare (ha), 

is USD 3,425 per ha in Nigeria. 

Figure 1 portrays the spatial variabilities of the GDDs and HDDs across Nigeria. The maps 

in panels (a) and (b) show the spatial distribution of GDDs and HDDs respectively; panels (c) and 

(d) present the distributions of differences in GDDs and HDDs over time. All four maps show the 

north–south differences in GDDs and HDDs in the country. Over the period of three decades 

(1985–2016), northern Nigeria generally experienced significant climatic fluctuations — from 

GDDs as low as 11oC in states including Taraba and Adamawa to extremely high in states 

including Borono, Yobe, Sokoto, and Katsina. This implies the unpredictability of climatic factors 

in northern Nigeria, with a consequent negative effect on crop growth. Though Nigeria’s northern 

region appears to experience warmer temperatures that favor fast crop development in some years, 

the extreme heats measured as HDDs above certain threshold that hinder plant growth were also 

recorded in the northern states. On the other hand, the southern region, with a growing season from 

March through October, had more stable GDDs over the three decades and no extreme HDDs were 

registered. This observed spatial climatic variability mirrors the geography of the country: northern 

Nigeria is part of the dry Sudan-savanna zones, while the southern region is mainly characterized 
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by humid coastal weather conditions. In general, temperature decreases, and the length of the crop 

growing season increases in Nigeria from north to south.    

 

5. Empirical Estimation Strategy 

Building on the previous section, we investigate the effect of climate changes (temperature and 

precipitation fluctuations) on farmers’ crop mix decisions and income share from different sources. 

We allow for nonlinearities of climate changes in our estimations by including both HDD and 

GDD change, and precipitation and precipitation change squared. We estimate the effect of 

farmers’ crop mix decisions and income share from different sources using equ. 5:  

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾1∆GDD𝑖𝑖𝑖𝑖 + 𝛾𝛾2∆HDD𝑖𝑖𝑖𝑖 + 𝛾𝛾3∆R𝑖𝑖𝑖𝑖 + 𝛾𝛾4∆R𝑖𝑖𝑖𝑖
2 + γ5𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖+ 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 ,          (5)  

where 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 is farmers’ crop mix decision of crop categories k or income share of main sources k 

by household 𝑖𝑖 in year 𝑡𝑡. ∆𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 is deviation of log growing degree days from long-term average 

at household level 𝑖𝑖 in year 𝑡𝑡. ∆𝐻𝐻𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 is deviation of log harmful degree days from long-term 

average at household level 𝑖𝑖 in year 𝑡𝑡. ∆𝑃𝑃𝑖𝑖𝑖𝑖 is deviation of log precipitation from long-term average 

at household level 𝑖𝑖 in year 𝑡𝑡. Similarly, 𝑋𝑋 is a vector of household and community characteristics, 

including household size, age, gender of the household head, and household assets. State-year (𝜂𝜂𝑖𝑖𝑖𝑖) 

captures aggregate shocks impacting the entire state and secular trends in outcome variables and 

individual (𝜇𝜇𝑖𝑖) fixed effects. 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the error term for which a strict exogeneity condition is 

assumed to hold; errors are independently and normally distributed with zero mean and constant 

variance and are assumed to be uncorrelated to all the explanatory variables. 

However, factors affecting the intensity of a specific crop area planted could also affect the 

intensity of an area planted with other crop types, as well as cross-equation error terms, which may 

likely be correlated for the same household because the area planted with a specific crop by a 

household in a particular year is fixed. Similarly, factors affecting crop income share may affect 

the income share of livestock, nonfarm self-employment, wage employment, and income from 

other sources, as well as cross-equation error terms that may likely be correlated for the same 

household. Thus, a seemingly unrelated regression (SUR) model was developed to include joint 

estimates from several regression models, where the error terms associated with the dependent 

variables are assumed to be correlated across the equations (equ. 6). Therefore, the empirical model 
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of farmers’ crop mix decisions and income share from different sources is a set of five 

simultaneous equations as specified in equ. 6.  

⎩
⎪
⎨

⎪
⎧  𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖1 = 𝛾𝛾11∆GDD𝑖𝑖𝑖𝑖 + 𝛾𝛾12∆HDD𝑖𝑖𝑖𝑖 + 𝛾𝛾13∆R𝑖𝑖𝑖𝑖 + 𝛾𝛾14∆R𝑖𝑖𝑖𝑖

2 + γ15𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖1 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖1
 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖2 = 𝛾𝛾21∆GDD𝑖𝑖𝑖𝑖 + 𝛾𝛾21∆HDD𝑖𝑖𝑖𝑖 + 𝛾𝛾23∆R𝑖𝑖𝑖𝑖 + 𝛾𝛾24∆R𝑖𝑖𝑖𝑖

2 + γ25𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖2 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖2
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖3 = 𝛾𝛾31∆GDD𝑖𝑖𝑖𝑖 + 𝛾𝛾32∆HDD𝑖𝑖𝑖𝑖 + 𝛾𝛾33∆R𝑖𝑖𝑖𝑖 + 𝛾𝛾34∆R𝑖𝑖𝑖𝑖

2 + γ35𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖3 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖3
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖4 = 𝛾𝛾41∆GDD𝑖𝑖𝑖𝑖 + 𝛾𝛾42∆HDD𝑖𝑖𝑖𝑖 + 𝛾𝛾43∆R𝑖𝑖𝑖𝑖 + 𝛾𝛾44∆R𝑖𝑖𝑖𝑖

2 + γ45𝑋𝑋𝑖𝑖𝑖𝑖 +𝜂𝜂𝑖𝑖𝑖𝑖4 +   𝜇𝜇𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖4
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖5 = 𝛾𝛾51∆GDD𝑖𝑖𝑖𝑖 + 𝛾𝛾52∆HDD𝑖𝑖𝑖𝑖 + 𝛾𝛾53∆R𝑖𝑖𝑖𝑖 + 𝛾𝛾54∆R𝑖𝑖𝑖𝑖

2 + γ55𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖5 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖5

            (6)  

where 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖1, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖2, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖3, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖4, and 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖5 are crop mixes of major crop categories to total area planted 

(of cereal crops, pulses, roots/tubers, tree crops, and other uses, respectively) or income share (of 

income share of crops, livestock, nonfarm self-employment, wage employment, and income from 

other sources, respectively) of household 𝑖𝑖 in year 𝑡𝑡. As the sum of all areas planted and income 

share of household 𝑖𝑖 is up to 100 percent at each household and the same regressors were used in 

each equation, the covariance matrix of the residuals becomes singular. Thus, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖5 is dropped 

during the estimation procedure.  

Second, we estimate the effect of climate changes on agricultural productivity. Given that 

factor markets are absent or imperfect in our rural settings, we employ a non-separable (between 

production and consumption decisions) farm household model (de Janvry et al., 1991; Singh et al., 

1986) as the key conceptual framework. We measure agricultural productivity through analysis of 

the productivity of land. Application of inputs (e.g., seeds and fertilizer) is important for increasing 

productivity of land as land scarcity increases. We measure agricultural productivity (𝑃𝑃𝑖𝑖𝑖𝑖) as the 

real net crop income per hectare. We use a Cobb-Douglas production function as in (equ. 7): 

𝑙𝑙𝑙𝑙(𝑃𝑃𝑖𝑖𝑖𝑖) = 𝛼𝛼1∆GDD𝑖𝑖𝑖𝑖 + 𝛼𝛼2 ∆HDD𝑖𝑖𝑖𝑖 + 𝛼𝛼3RD𝑖𝑖𝑖𝑖 + 𝛼𝛼4RD𝑖𝑖𝑖𝑖
2 + α5ln (𝑍𝑍𝑖𝑖𝑖𝑖) + 𝜂𝜂𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 ,             (7)  

where Z𝑖𝑖𝑖𝑖 is an agricultural input, including area planted, seeds, fertilizer, herbicides, and pesticides 

used at household level 𝑖𝑖 in year t. We capture the nonlinear impacts of temperature by separately 

including ∆HDDs and ∆GDDs and allowing for nonlinear precipitation effects by including 

precipitation and precipitation squared (Schlenker and Roberts, 2006). We estimate a log-log linear 

fixed effects regression model. Thus, the coefficients 𝛼𝛼 can be interpreted as elasticities for the 

agricultural productivity.  

In addition to examining the impact of climate changes on agricultural productivity, we 

aim to examine the specific pathways that mediate such agricultural productivity, focusing on the 

impact of climate changes on input use. Climate changes are widely understood to have potentially 

serious adverse effects on agricultural productivity through reduced productivity-enhancing 
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external input use. This is mainly because weather shocks increase the risk of farm technology 

adoption, particularly in rainfed, liquidity-constrained, and imperfect market settings (Barrios et 

al., 2010; Dercon and Christiaensen, 2011; Di Falco and Chavas, 2009). We specifically estimate 

a fixed effects specification (equ. 8) to investigate the effect of climate changes on input use: 

𝑍𝑍𝑖𝑖𝑖𝑖 = 𝛽𝛽1∆GDD𝑖𝑖𝑖𝑖 + 𝛽𝛽2∆HDD𝑖𝑖𝑖𝑖 + 𝛽𝛽3∆RD𝑖𝑖𝑖𝑖 + 𝛽𝛽4∆RD𝑖𝑖𝑖𝑖
2 + β5𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 ,                  (8)  

where 𝑍𝑍𝑖𝑖𝑖𝑖 stands for input use, such as area planted, fertilizer application, purchased seed, and 

pesticide use for each household i and year t. The estimate for the area planted is carried out using 

a linear fixed effects regression model. Fertilizer use, purchased seed, and pesticide use are 

estimated using linear probability models. The coefficients 𝛽𝛽 can be interpreted as the change in 

probability of fertilizer use, purchased seed, and pesticide use to relative changes in the 

corresponding weather variables. 

The effects of climate changes are likely to vary with households’ socioeconomic status, 

including differences in their underlying vulnerabilities. For instance, poorer households are likely 

to bear the consequences of climate changes, as they are likely to rely on rainfed agriculture and 

have limited access to farm technologies. We therefore estimate the main specification in equations 

(7) and (8) across several sample splits. In such circumstances, resource-poor farmers bear the high 

cost of climate changes and may find it difficult to adopt productivity-enhancing technologies and 

inputs or to diversify into high-value commodities (Shiferaw et al., 2015; Anderson and Feder, 

2007). Thus, the effect of climate changes on farmers’ crop mix decisions, income shares, input 

use, and agricultural productivity depend on households’ risk-bearing capacities, level of assets, 

and perceptions of climate changes (Dercon and Christiaensen, 2011; Amare et al., 2021a). We 

use the first round (wave 1) value of assets, livestock ownership, and farm size as a proxy for 

wealth. We separate the sample by terciles and denote households in the bottom tercile as relatively 

“poor.” We define binary wealth variables that take value 1 if value of assets, livestock holdings 

(TLU), and farm size for household 𝑖𝑖 is in the bottom tercile based on wave 1 data, that is if the 

2010/11 total value of household assets is less than US$175.51 in PPP, and livestock holdings are 

less than 0.08 TLU and 0 otherwise. We then estimate separately if the magnitude of the coefficient 

of changes in temperature and precipitation over time varies on agricultural productivity and 

farmers’ input use decisions by initial wealth indicators.  
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6. Results and Discussions  

In this section we report the main estimation results based on equations (6–8). Although some of 

the relationships we discuss may carry causal interpretations, we refrain from claiming clean 

causality. We first present estimation results based on the effect of climate changes on agricultural 

productivity in section 6.1 and on households’ income sources in section 6.2. We then present the 

estimation results of the specific pathways that mediate agricultural productivity, focusing on the 

effect of climate changes on farmers’ crop mix decisions (section 6.3) and input use (section 6.4). 

Estimation results of heterogeneous impact of climate changes is presented in section 6.5.  

 

6.1.  The effect of climate changes on agricultural productivity  

We employ fixed effects regression models to estimate the effect of climate changes on agricultural 

productivity using both unconditional and conditional relationships. The estimated coefficients on 

climate changes remain sizable and strongly statistically significant even after controlling for these 

characteristics (Table 3). We focus on and report results from models controlling for covariates. 

The results in Table 3 show that the change in HDD has a negative effect on agricultural 

productivity.  

The estimates confirm that the change in HDD has a significant and negative impact on 

agricultural productivity. Controlling for other factors, we find that a 15 percent (one standard 

deviation) increase in change in HDD leads to a decrease in agricultural productivity of 5.22 

percent on average. Similarly, the estimates confirm that precipitation change has a significant and 

negative impact on agricultural productivity. A one standard deviation increases in precipitation 

change leads to a decrease in agricultural productivity of 1.23 percent on average. Similarly, 

several regression coefficients are statistically significant, and the signs of the estimated 

coefficients are in line with a priori theoretical expectations. Comparing the relative effects of the 

change in HDD and that of precipitation, we find that changes in HDD have a much larger effect 

on agricultural productivity than changes in precipitation. This may indicate that, in the context of 

our data in the study country, temperature variability plays a stronger role in influencing 

agricultural production and productivity. 

 

 

 



16 
 

6.2. The effect of climate changes on income sources  

We now turn to an exploration of the effect of climate changes on farmers’ income shares from 

their main income sources. We estimate the effect of climate changes on farmers’ income shares 

with and without covariates. The effect of climate changes is substantially reduced when we 

control for household characteristics, but the estimated coefficients on climate changes remain 

sizable and strongly statistically significant (Table 4). The Breusch-Pagan (BP) test verifies the 

use of the SUR model, as it is statistically significant at the 1 percent level. The coefficients 

associated with extreme heat and second-order polynomial terms of precipitation show substantial 

nonlinearity in the relationship between climate changes and income shares.   

The results indicate that the change in HDD decreases the income share from crops and 

nonfarm self-employment, while it increases the income share from livestock and non-agricultural 

wage income. A 15 percent (one standard deviation) increase in change in HDD leads to a 

reduction of 0.52 percentage points in the income share from crops, an increase of 0.19 in the 

income share from livestock, and an increase of 0.28 points in the income share from wage 

employment. Similarly, precipitation change decreases the income share from crops while it 

increases income shares from livestock and wage employment. A one standard deviation increase 

in change in rainfall leads to an increase of 0.97 percentage points in the income share from 

livestock and 0.62 percentage points in the income share from wages. 

 

6.3.  The effect of climate changes on farmers’ crop mix decisions  

We first report on the results of the effect of climate changes on farmers’ crop mix decisions. We 

estimate the effect of climate changes on crop mix decisions with and without covariates. The fixed 

effect results control for household and year fixed effects, which can capture time-invariant 

community-level heterogeneity across households and time. Our results show that the effect of 

climate changes is substantially reduced when we control for household characteristics, suggesting 

that the effect of climate changes on farmers’ crop mix decisions are mediated through these 

channels. Nevertheless, the estimated coefficients on climate changes remain sizable and strongly 

statistically significant even after controlling for these characteristics. We focus on and report 

results for models controlling for covariates. The coefficients associated with extreme heat and 

second-order polynomial terms of precipitation show substantial nonlinearity in the relationship 

between climate changes and farmers’ crop mix decisions.   
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Table 5 reports the fixed effects estimates for effects of climate changes on farmers’ crop 

mix decisions. The Breusch-Pagan (BP) test verifies the use of the SUR model, as it is statistically 

significant at the 1 percent level. We find that farmers use crop mix to respond to climate changes. 

This shows that the set of available adaptations differs by crop categories and there could be 

additional scope for adaptation with the “other crops” category, such as fishponds. This finding 

suggests that the capacity of the “other crops” category to absorb fluctuations may play an 

important role in mitigating the consequences of weather-driven changes in agricultural 

productivity. This is consistent with the literature, which indicates that changes in crop mix are as 

a possible way to increase food security and adapt to climate change (Harvey et al., 2014; Burke 

and Emerick, 2016). 

The results indicate that the change in HDD reduces the share of land allocated to cereals 

and tree crops, while it increases the share of land allocated to legumes and tubers. For example, 

a 15 percent (one standard deviation) increase in change in HDD leads to a reduction of 1.16 

percentage points in the land share of cereals and 0.28 percentage points in the land share of tree 

crops; it also leads to increases of 0.33 and 0.36 percentage points in the land share of legumes 

and tubers, respectively. The results indicate that farmers respond to extreme heat by making 

changes in crop choices, switching from cereals and tree crops to legumes and tubers. This finding 

may indicate that legumes and tubers are affected less by extreme heat. But farmers could prefer 

legumes and tubers for several reasons other than heat tolerance. Studies on food security highlight 

several advantages of tubers (like potatoes, cassava, and sweet potatoes) over other crops, as they 

have short maturity, sequential harvesting, low water and fertilizer requirements, more reliability, 

and high nutritional content (Devaux et al., 2014). 

Similarly, precipitation change decreases the land share of cereals and legumes, while it 

increases the land share of tubers and tree crops. A 15 percent (one standard deviation) increase in 

precipitation leads to reductions of 16.46 and 5.34 percentage points in the land share of cereals 

and legumes, respectively, and to increases of 18.09 and 2.79 percentage points in the land share 

of legumes and tubers, respectively. This is consistent with the literature, which indicates that 

farmers tend to allocate land to crops that are comparatively less impacted by precipitation change 

(Ebanyat et al., 2010; Chalise and Naranpanawa, 2016; Asante et al., 2017). 
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6.4.  The effect of climate changes on input use  

To address the effect of climate changes on input use, we employ linear and probability fixed 

effects regression models. We estimate both unconditional and conditional relationships between 

climate changes and input use. The estimated coefficients on climate changes remain sizable and 

strongly statistically significant even after controlling for these characteristics. We focus on results 

for models controlling for covariates (Table 6). The estimated coefficients associated with extreme 

heat and second-order polynomial terms of precipitation show substantial nonlinearity in the 

relationship between climate changes and input use.  

 

Area planted: The results show a positive and statistically significant effect of HDD on area 

planted. Controlling for other factors, we find that a 15 percent (one standard deviation) increase 

in HDD change leads to an increase in area planted of 1.17 percent on average. The results further 

show that a 15 percent (one standard deviation) increase in rainfall change leads to a decrease in 

area planted of 6.12 percent on average. The explanation for this may be related to the farmers’ 

risk-aversion behavior and adaptation to climate shocks. With an increase in change in HDD, 

farmers may anticipate failures of crops that are susceptible to climate changes. So, to protect 

against such potential crop failures, farmers may cultivate more areas (possibly with diverse crops) 

so that households can minimize income losses and food insecurity. 

 

Fertilizer, purchased seed, and pesticide use: We find that the change in HDD has a negative and 

significant effect on fertilizer use. Change in extreme heat also seems to decrease the likelihood of 

purchased seed use. The negative and statistically significant point estimate is consistent with the 

hypothesis that farmers reduce input expenditures. Controlling for other factors, we find that a 15 

percent (one standard deviation) increase change in HDD decreases the probability of fertilizer use 

by roughly 3 percent. Our finding is consistent with the recent finding by Jagnani et al. (2021), 

who show that Kenyan farmers shift from productivity-enhancing fertilizer inputs to loss-reducing 

inputs such as pesticides as a response to temperature anomalies. Our results also show that a one 

standard deviation increase change in HDD decrease the probability of purchased seed use by 18 

percent. This might suggest that, as liquidity constraints begin to bind for farmers, expenditure on 

loss-reducing adaptive inputs necessitates reduction in fertilizer use. This last result is consistent 
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with findings in the literature on fertilizer use showing that households reduce fertilizer use when 

subject to negative income shocks (Bandara et al., 2015).  

We also find that farmers increase pesticide use in response to extreme heat change. The 

increase suggests that farmers exposed to temperature shock may need to resort to more intensive 

land use and pesticide use to offset undesirable drops in output (Jagnani et al., 2021). In this sense, 

changes in input use are akin to other consumption-smoothing mechanisms, such as selling 

disposable assets or increasing off-farm work (Zimmerman et al., 2003). However, farmers may 

also be responding to changes in output risk from an increased incidence of pests, crop diseases, 

and weeds (Mubiru et al., 2018). 

 

6.5. Heterogeneous effects by wealth 

We hypothesize that farmers’ wealth differential has led to heterogeneous effects (Asfaw et al., 

2019) from climate changes on the outcome variables considered in the study. Poor households 

are more likely to face binding financial liquidity constraints and are more likely to be risk averse 

for a given increase in biotic risk exposure. This is due to farmers’ differing ability and willingness 

to cope with weather-induced reductions in agricultural productivity and input use. We examine 

whether the magnitude of the coefficient of changes in temperature and precipitation over time 

varies by initial wealth indictors (asset holdings and livestock holdings) by estimating the 

agricultural productivity and input use model separately for “poor” and “non-poor” households. 

We define a binary variable (a 0–1 binary wealth variable). This variable takes the value of 1 if 

the value of assets and livestock (TLU) for a household is in the bottom tercile, that is if the 

2010/11 total value of household assets is less than US$175.51 in PPP and livestock holdings is 

less than 0.08 TLU. If not, the variable takes the value of 0. 

The results on the effect of climate changes on agricultural productivity by wealth 

indicators are reported in Table 7. Our findings highlight the importance of understanding the 

heterogeneity effect of change in heat stress and precipitation on agricultural productivity based 

on household assets and livestock holdings. We observe that change in HDD and precipitation 

have a negative effect on agricultural productivity for both asset poor and non-poor, and TLU poor 

and non-poor households, but it has a stronger impact for the poor households. 

We also allow for heterogeneity in the impact of climate changes on input use by initial 

wealth indicators. The results are reported in Tables 8 and 9. The results in Table 8 show that 
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extreme heat and precipitation have a significant effect only on area planted for non-poor 

households. In column (2), controlling for other factors, a one standard deviation increase change 

in HDD increases the area planted by 1.9 percent while a one standard deviation increases in 

precipitation would decrease the area planted by 6.5 percent, on average for non-poor households. 

The results in columns (3) and (4) show that the change in HDD and precipitation have a significant 

effect on fertilizer use for both poor and non-poor households. However, when we compare poor 

with non-poor households, the coefficients for the change in HDD and precipitation are higher for 

the poor households than the non-poor. The results in columns (5) and (6) show that changes in 

HDD have a significant effect only on purchased seed for poor households. The results in columns 

(7) and (8) show that changes in HDD have a significant effect only on pesticide use for non-poor 

households. These results indicate that poorer households are less likely to adapt to change in 

HDD. These effects are consistent with the binding liquidity constraints hypothesis, but less so 

with a risk-aversion story if pesticide purchases reduce risk and farmers exhibit constant or 

decreasing absolute risk aversion (Jagnani et al., 2021; Aragón et al., 2021). In Table 9, we further 

allow for heterogeneity in the impact of climate changes on input use by household livestock 

holdings. The results show that extreme heat and precipitation change have a significant effect 

only on areas planted for non-poor households. The results in columns (3)–(6) show that change 

in HDD and precipitation have a significant effect on fertilizer use for both poor and non-poor 

households. The results in columns (7) and (8) show that change in HDD has a significant effect 

only on pesticide use for TLU non-poor households.  

 

7. Conclusions and Implications  

This paper combines panel data from nationally representative household-level surveys in Nigeria 

with long-term satellite-based spatial data on temperature and precipitation using geo-referenced 

information related to households. The paper aims to quantify the effects of climate change on 

agricultural productivity and shares from sources of household income. The paper further explores 

the specific pathways that mediate changes in agricultural productivity and income sources, 

focusing on farmers’ crop mix and input use decisions in response to climatic factors. We measure 

climate changes using long-term temperature and precipitation anomalies during the crop calendar 

months using 30 years of geo-referenced temperature and precipitation data. We employ fixed 

effects regression models to estimate the effect of climate changes on our outcome variables using 
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both unconditional and conditional relationships. Our analysis results in several important 

findings.   

First, we find that the change in HDDs has a negative effect on agricultural productivity. 

Controlling for other factors, we find that a 15 percent (one standard deviation) increase in change 

in HDDs leads to a decrease in agricultural productivity of 5.22 percent on average. Second, our 

estimates confirm that precipitation change has a significant and negative impact on agricultural 

productivity. Third, we find that the change in HDDs decreases the income share from crops and 

non-farm self-employment, while it increases the income share from livestock and non-agricultural 

wage employment.  

Examining possible transmission channels for these effects, we find that farmers use crop 

mix to respond to climate changes, which means that crop diversification could be one potential 

adaptation strategy to climatic factors. Furthermore, the paper shows that changes in extreme heat 

led to an increase in the area planted, a decrease in fertilizer use, and a decrease in purchased seed. 

For instance, we find that a one standard deviation increases in HDD change leads to a 1.17 percent 

increase in area planted. 

We also examine whether the magnitude of the coefficient of changes in climatic factors 

over time varies by initial wealth indicators (measured by asset and livestock holdings) by 

estimating agricultural productivity and the input use models separately for “poor” and “non-poor” 

households. We also allow for heterogeneity in the impact of climate changes on input use by 

initial wealth indicators. Our findings highlight the importance of understanding the heterogeneity 

effect of changes in heat stress and precipitation on agricultural productivity and input use based 

on initial wealth indicators. For example, we observe that changes in HDDs and precipitation have 

a negative effect on agricultural productivity for both poor and non-poor households but have a 

stronger impact for the poor households.  

Based on our findings we suggest four key policy interventions. First, our empirical 

findings indicate the negative impacts of climatic factors on agricultural productivity. In the 

context of smallholders in SSA, who are already experiencing low agricultural productivity, 

climate change exacerbates the burden and tends to worsen livelihoods. Thus, targeted 

interventions that promote climate-resilient agricultural practices, for instance investment in water-

storage infrastructure and small-scale irrigation systems, are imperative to mitigate the effects of 

climate change on poorer smallholder farmers. In the context of Nigeria, such measures focusing 
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on agricultural water management align well with the country’s National Agricultural Resilience 

Framework (NARF), which outlines sector-specific climate adaptation and innovative agricultural 

production strategies to enhance resilience in the agriculture sector. Second, our results suggest 

the changes in crop mix and agricultural input use are potential adaptation methods in response to 

climatic factors. However, smallholders often lack access to climate-resistant varieties and yield-

enhancing agricultural inputs. Policy interventions that enhance access to these inputs are 

warranted in order to ensure crop diversification is a viable coping strategy for climate anomalies. 

Third, we found that the income shares from livestock and nonfarm activities increase with 

increases in climate shocks. Thus, we suggest that policy consider the development of the livestock 

sector and micro/small enterprises as a potential strategy for mitigating the impacts of climate 

change on farming communities. And finally, our analysis shows that climate change has 

heterogenous effects on poor compared with relatively non-poor households, measured in terms 

of differences in endowments of productive assets and livestock holdings. Accordingly, alongside 

national and regional climate-related policies, we suggest pro-poor interventions that specifically 

target disadvantaged households. These interventions should include low-cost financing options 

for climate-proof agricultural technologies and measures to reduce the inequality of access to 

livelihood capital, including land and other productive assets.  
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Table 1: Summary Statistics on Climate Changes (Temperature and Precipitation Change)  

Variable Mean Std. Dev. Min Max 
Temperature and precipitation      
ΔHDD 0.02 0.02 -0.04 0.08 

ΔGDD 0.07 0.33 -0.78 3.06 

Total precipitation 1185.20 495.04 309.40 3416.18 

ΔP -0.04 0.09 -0.44 0.24 
 
Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
Note: ΔHDD is deviation of log HDD from long-term average. ΔGDD is deviation of log GDD from long-term 

average. ΔP is deviation of log precipitation from norm.  
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Table 2: Summary Statistics on Crop Mix, Income Share, Input Use, and Agricultural Productivity 
Variable Mean Std. Dev. 
Agricultural productivity and input use 

  

Agricultural productivity (Output per ha $US PPP)  3425.95 4756.65 
Area planted (ha) 0.91 1.27 
Fertilizer use (yes=1) 0.45 0.50 
Purchased seed (yes=1) 0.32 0.47 
Purchased pesticide (yes=1) 0.43 0.50 
Income share   
Income shares of crop (%) 57.09 38.88 
Income shares of livestock (%)  4.10 14.19 
Income shares of self-employment (%) 26.91 34.37 
Income shares of wage employment (%) 6.70 21.35 
Other sources of income (%) 5.20 -8.79 
Crop mix    
Area shares of cereals  36.03 41.48 
Area shares of legumes  12.10 20.94 
Area shares of tubers  32.79 42.27 
Area shares of trees  4.75 12.42 
Other crops  14.33 17.12 
Control variables    
Household size (ha) 6.64 3.24 
Female-headed (yes=1)   0.11 0.31 
Household head age  49.25 14.63 
Value assets ($US PPP)   621.46 906.26 
Livestock (TLU)  1.78 17.48 
Farm area  1.12 1.14 
Distance to market (km) 74.25 38.95 

Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
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Table 3: Impact of Climate Changes on Agricultural Productivity  
 (1) (2) 
 Agricultural Productivity 
ΔHDD  -0.391*** -0.348*** 
 (0.092) (0.088) 
ΔGDD 6.196*** 6.360*** 
 (1.421) (1.434) 
ΔP -0.087*** -0.082*** 
 (0.002) (0.003) 
ΔP sqr -2.120 -2.273 
 (1.582) (1.601) 
Household size  -0.001 
  (0.051) 
Female-headed  0.112 
  (0.078) 
Household head age  0.124 
  (0.077) 
Value of assets   0.051*** 
  (0.019) 
Livestock (TLU)  0.027 
  (0.060) 
Distance to market   -0.240*** 
  (0.074) 
HH fixed effect  Yes Yes 
Year Fixed Effect  Yes Yes 
N 6387 6387 

Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
Note: ΔHDD is deviation of log HDD from long-term average. ΔGDD is deviation of log GDD from long-term 

average. ΔP is deviation of log precipitation from norm. Standard errors, clustered at household level, are given 
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 4: Impact of Climate Changes on Farmers’ Main Income Sources    
 Income share from crops Income share from 

livestock 
Income share from self-

employment 
Income share from 
wage employment 

 (1) (2) (3) (4) (1) (2) (3) (4) 
ΔHDD  -0.233* -0.343** 0.150** 0.125** -0.034 -0.054 0.203** 0.190** 
 (0.145) (0.142) (0.059) (0.582) (0.139) (0.143) (0.081) (0.083) 
ΔGDD 5.567*** -5.354*** 0.458 0.670*** -2.169** -2.841*** 2.131*** 2.453** 
 (1.198) (1.329) (0.268) (0.213) (0.801) (0.935) (0.552) (1.172) 
ΔP 1.130* -2.045*** 0.461* 0.643** 0.383* 0.413** 0.432 0.188 
 (0.678) (0.606) (0.253) (0.254) (0.210) (0.211) (0.308) (0.318) 
ΔP sqr -1.764 -2.524*** 1.371** 1.232** 3.386** 3.020** 0.9.00 0.717 
 0.834) (0.713) (0.503) (0.556) (1.431) (1.420) (0.630) (0.601) 
Household size  -0.472***  0.470  0.731***  0.251*** 
  (0.103)  (0.034)  (0.094)  (0.058) 
Female-headed  -0.659***  0.171***  0.256  0.066 
  (0.185)  (0.063)  (0.166)  (0.101) 
Household head age  1.488***  0.036  -0.071  -0.070 
  (0.107)  (0.034)  (0.098)  (0.063) 
Value of assets   -0.334***  -0.034***  0.289***  0.179*** 
  (0.037)  (0.013)  (0.033)  (0.019) 
Livestock (TLU)  -0.336***  1.009***  -0.484***  -0.151** 
  (0.112)  (0.043)  (0.109)  (0.064) 
Distance to market   0.884***  -0.027  -0.110  -0.131** 
  (0.084)  (0.026)  (0.078)  (0.051) 
HH fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 
Year Fixed Effect  Yes Yes Yes Yes Yes Yes Yes Yes 
N 6387 6387 6387 6387 

Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
Note: ΔHDD is deviation of log HDD from long-term average. ΔGDD is deviation of log GDD from long-term 

average. ΔP is deviation of log precipitation from norm. Standard errors, clustered at household level, are given 
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 5: Impact of Climate Changes on Farmers’ Crop Mix Decisions  
 Area shares of cereals  Area shares of legumes  Area shares of Tubers  Area shares of  

trees   
 (1) (2) (3) (4) (5) (6) (7) (8) 
ΔHDD  -2.121*** -0.771*** 0.535*** .2.179** 0.334** 0.243** -0.189*** -0.191*** 
 (0.195) (0.165) (0.087) (0.088) (0.131) (0.114) (0.048) (0.051) 
ΔGDD 1.540 2.307*** -8.057*** -13.339*** 11.966*** 9.383*** 9.183*** 8.376*** 
 (2.559) (0.241) (1.137) (1.293) (2.085) (2.222) (0.633) (0.757) 
ΔP -8.646*** -10.971*** -2.932*** -3.559*** 15.471*** 12.060*** 1.991*** 1.861*** 
 (0.762) (0.708) (0.375) (0.0382) (0.635) (0.629) (0.220) (0.227) 
ΔP sqr -8.747*** -3.505 -1.22 -1.644 24.178*** 11.907*** 4.223*** 3.719*** 
 (3.184) (3.228) (1.632) (1.744) (2.747) (2.831) (0.959) (1.041) 
Household size  0.883***  0.254***  -0.587***  -0.187*** 
  (0.098)  (0.052)  (0.098)  (0.029) 
Female-headed  -0.638***  -0.075  0.963***  -0.213*** 
  (0.181)  (0.096)  (0.176)  (0.055) 
HH age  0.283***  0.032  0.845***  0.059** 
  (0.100)  (0.053)  (0.101)  (0.029) 
Value of assets   -0.066*  -0.024  0.212***  -0.004 
  (0.038)  (0.020)  (0.036)  (0.011) 
Livestock (TLU)  0.776***  -0.050  -0.910***  -0.055 
  (0.125)  (0.067)  (0.118)  (0.038) 
Distance to market   0.346***  0.142**  0.058  0.054** 
  (0.773)  (0.040)  (0.079)  (0.022) 
HH Fixed Effect  Yes Yes Yes Yes Yes Yes Yes Yes 
Year Fixed Effect  Yes Yes Yes Yes Yes Yes Yes Yes 
N 6387 6387 6387 6387 

Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
Note: ΔHDD is deviation of log HDD from long-term average. ΔGDD is deviation of log GDD from long-term 

average. ΔP is deviation of log precipitation from norm. Standard errors, clustered at household level, are given 
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  
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Table 6: Impact of Climate Changes on Input Use 
 Area planted Fertilizer use Purchased seed Pesticide Use 
 (1) (2) (3) (4) (5) (6) (7) (8) 
ΔHDD  0.096*** 0.078*** -0.050** -0.021** -0.135*** -0.122*** 0.104*** 0.087** 
 (0.033) (0.030) (0.021) (0.010) (0.031) (0.024) (0.036) (0.036) 
ΔGDD -2.710*** -2.154*** -3.543*** -2.514*** 0.640 0.591** -2.758*** -2.278*** 
 (0.468) (0.480) (0.575) (0.542) (0.517) (0.299) (0.508) (0.496) 
ΔP -0.515*** -0.408*** -0.778*** -0.604*** 0.184* 0.174** -0.360** -0.275** 
 (0.136) (0.137) (0.158) (0.151) (0.101) (0.083) (0.142) (0.138) 
ΔP sqr -1.140** -1.012** -1.104* -0.961 0.279 0.250 -0.585 -0.531 
 (0.512) (0.513) (0.630) (0.621) (0.555) (0.384) (0.673) (0.645) 
Household size  0.107***  0.136***  0.020  0.091*** 
  (0.022)  (0.018)  (0.012)  (0.017) 
Female-headed  -0.176***  -0.046*  0.060***  -0.127*** 
  (0.023)  (0.026)  (0.021)  (0.025) 
Household head age  -0.082***  -0.110***  0.005  -0.143*** 
  (0.030)  (0.031)  (0.021)  (0.030) 
Value of assets   0.011*  0.029***  0.006  0.028*** 
  (0.006)  (0.007)  (0.005)  (0.007) 
Livestock (TLU)  0.095***  0.045*  -0.062***  0.056** 
  (0.023)  (0.027)  (0.017)  (0.024) 
Distance to market   0.104***  -0.135***  -0.075***  0.075*** 
  (0.025)  (0.026)  (0.010)  (0.025) 
HH fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 
Year Fixed Effect  Yes Yes Yes Yes Yes Yes Yes Yes 
N 6387 6387 6387 6387 

Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
Note: ΔHDD is deviation of log HDD from long-term average. ΔGDD is deviation of log GDD from long-term 

average. ΔP is deviation of log precipitation from norm. Standard errors, clustered at household level, are given 
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 7: Impact of Climate Changes on Agricultural Productivity, by Asset and TLU  
 (1) (2) (3) (4) 
 Asset poor Asset non-poor TLU poor TLU non-poor 
ΔHDD  -0.358*** -0.281*** -0.202 -0.358*** 
 (0.110) (0.105) (0.145) (0.093) 
ΔGDD 6.591*** 6.105*** 8.784*** 5.823*** 
 (2.035) (1.656) (2.147) (1.528) 
ΔP -0.434** -0.213 -0.397** -0.340** 
 (0.213) (0.434) (0.201) (0.179) 
ΔP sqr -3.621 -1.151 -4.886* 0.069 
 (2.752) (1.654) (2.496) (1.859) 
Control variables Yes Yes Yes Yes 
HH fixed effect Yes Yes Yes Yes 
Year fixed effect Yes Yes Yes Yes 
N 2129 4258 2129 4258 

Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
Note: ΔHDD is deviation of log HDD from long-term average. ΔGDD is deviation of log GDD from long-term 

average. ΔP is deviation of log precipitation from norm. We define a binary variable (a 0-1 binary wealth 
variable) which takes value 1 if value of assets, livestock (TLU) and farm size for household is in the bottom 
tercile, that is if the 2010-11 total value of household assets is less than 175.51 $US in PPP; livestock holdings 
(TLU) are less than 0.08 TLU; and 0 otherwise. Standard errors, clustered at household level, are given in 
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  
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Table 8: Impact of Climate Changes on Input use, by Asset Holdings   
 Area plated Fertilizer use Purchased seed Pesticide use 
 Asset-

Poor  
Asset 

Non-poor 
Asset-
Poor  

Asset 
Non-poor 

Asset-
Poor  

Asset 
Non-poor 

Asset-
Poor  

Asset 
Non-poor 

 (1) (2) (3) (4) (5) (6) (7) (8) 
ΔHDD  0.050 0.126*** -0.024** -0.017** -0.056 -0.183*** 0.066 0.104*** 
 (0.033) (0.034) (0.011) (0.008) (0.048) (0.040) (0.047) (0.038) 
ΔGDD -1.939*** -2.652*** -2.090*** -3.230*** 1.131* 0.231 -1.627** -3.131*** 
 (0.614) (0.565) (0.688) (0.615) (0.647) (0.601) (0.725) (0.615) 
ΔP -0.312 -0.434*** -0.940*** -0.593*** 0.270 0.098 0.049 -0.454*** 
 (0.206) (0.158) (0.232) (0.171) (0.199) (0.137) (0.224) (0.153) 
ΔP sqr -0.698 -1.307** -1.986 -0.822 0.666 0.115 0.201 -0.886 
 (0.861) (0.576) (1.247) (0.683) (0.852) (0.571) (0.995) (0.741) 
Control variables  Yes Yes Yes Yes Yes Yes Yes Yes 
HH fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 
Year fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 
N 2129 4258 2129 4258 2129 4258 2129 4258 

Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
Note: ΔHDD is deviation of log HDD from long-term average. ΔGDD is deviation of log GDD from long-term 

average. ΔP is deviation of log precipitation from norm. We define a binary variable (a 0-1 binary wealth 
variable) which takes value 1 if value of assets household is in the bottom tercile, that is if the 2010-11 total 
value of household assets is less than 175.51 $US in PPP and 0 otherwise. Standard errors, clustered at 
household level, are given in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 9: Impact of Climate Changes on Input Use, by TLU   
 Area plated Fertilizer use Purchased seed Pesticide use 
 TLU-

Poor  
TLU 

Non-poor 
TLU-
Poor  

TLU 
Non-poor 

TLU-
Poor  

TLU 
Non-poor 

TLU-
Poor  

TLU 
Non-poor 

 (1) (2) (3) (4) (5) (6) (7) (8) 
ΔHDD  0.080 0.105*** -0.009** -0.008** -0.118* -0.140*** 0.018 0.141*** 
 (0.057) (0.032) (0.004) (0.003) (0.068) (0.036) (0.054) (0.041) 
ΔGDD -2.933*** -2.348*** -2.261*** -3.211*** 1.955*** 0.174 -4.015*** -2.065*** 
 (0.597) (0.568) (0.725) (0.652) (0.752) (0.555) (0.641) (0.638) 
ΔP -0.208 -0.440** -0.758*** -0.638*** 0.090 0.228 -0.380** -0.135 
 (0.173) (0.200) (0.192) (0.192) (0.159) (0.169) (0.162) (0.193) 
ΔP sqr 0.029 -1.560** -0.237 -1.370* 0.132 0.590 0.026 -0.410 
 (0.557) (0.706) (0.896) (0.745) (0.852) (0.628) (0.739) (0.887) 
Control variables  Yes Yes Yes Yes Yes Yes Yes Yes 
HH fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 
Year fixed effect  Yes Yes Yes Yes Yes Yes Yes Yes 
N 2129 4258 2129 4258 2129 4258 2129 4258 

Source: Authors’ calculations based on Uganda LSMS-ISA 2010, 2012, and 2015.  
Note: ΔHDD is deviation of log HDD from long-term average. ΔGDD is deviation of log GDD from long-term 

average. ΔP is deviation of log precipitation from norm. We define a binary variable (a 0-1 binary wealth 
variable) which takes value 1 if livestock (TLU) for household is in the bottom tercile, that is if the 2010-11 
household livestock holdings (TLU) are less than 0.08 TLU and 0 otherwise. Standard errors, clustered at 
household level, are given in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Figure 1: Distribution of Historical Average Growing Degree Days and Harmful Degree Days  
a) Growing Degree Days b) Harmful Degree Days 

  
c) Difference Growing Degree Days d) Difference Harmful Degree Days 
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