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A B S T R A C T   

Grain legumes are key components of sustainable production systems in sub-Saharan Africa, but wide-spread 
nutrient deficiencies severely restrict yields. Whereas legumes can meet a large part of their nitrogen (N) 
requirement through symbiosis with N2-fixing bacteria, elements such as phosphorus (P), potassium (K) and 
secondary and micronutrients may still be limiting and require supplementation. Responses to P are generally 
strong but variable, while evidence for other nutrients tends to show weak or highly localised effects. Here we 
present the results of a joint statistical analysis of a series of on-farm nutrient addition trials, implemented across 
four legumes in four countries over two years. Linear mixed models were used to quantify both mean nutrient 
responses and their variability, followed by a random forest analysis to determine the extent to which such 
variability can be explained or predicted by geographic, environmental or farm survey data. Legume response to 
P was indeed variable, but consistently positive and we predicted application to be profitable for 67% of farms in 
any given year, based on prevailing input costs and grain prices. Other nutrients did not show significant mean 
effects, but considerable response variation was found. This response heterogeneity was mostly associated with 
local or temporary factors and could not be explained or predicted by spatial, biophysical or management factors. 
An exception was K response, which displayed appreciable spatial variation that could be partly accounted for by 
spatial and environmental covariables. While of apparent relevance for targeted recommendations, the minor 
amplitude of expected response, the large proportion of unexplained variation and the unreliability of the pre-
dicted spatial patterns suggests that such data-driven targeting is unlikely to be effective with current data.   

1. Introduction 

Grain legumes are important for sustainable intensification of agri-
culture, particularly on small farms in sub-Saharan Africa (SSA) 
(Droppelmann et al., 2017; Snapp et al., 2019; Vanlauwe et al., 2019b). 
They fit into a diversity of farming systems as monocrop, in rotation or 
as relay- or intercrop (Snapp et al., 2019; Thierfelder et al., 2012; 
Vanlauwe et al., 2019b) and provide benefits in terms of soil fertility, 
soil cover, pest and disease control and as source of food, feed and 

income (Franke et al., 2018; Muoni et al., 2019; Snapp et al., 2019). A 
unique advantage is their ability to obtain between 10% and 90% of 
nitrogen demand through symbiosis with nitrogen fixing rhizobia 
(Franke et al., 2018), reducing the need for nitrogen (N) fertiliser. Un-
fortunately, productivity of legumes in SSA remains constrained by low 
soil fertility (Kermah et al., 2018; Ojiem et al., 2007; Wortmann et al., 
2019), on top of other problems like biotic stresses, poor seed quality 
and drought (Giller, 2001; Waddington et al., 2010). As a result, yields 
in SSA often remain below 25% of their water limited potential (van 
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Loon et al., 2018). 
The application of nutrients such as phosphorus (P), potassium (K), 

secondary (Ca, Mg, S) and micronutrients (B, Zn, Mo) has been proposed 
as a solution to soil fertility constraints in SSA (Kihara et al., 2017; 
Vanlauwe et al., 2019a; Wortmann et al., 2019), as has the use of 
rhizobium inoculants (Vanlauwe et al., 2019a). For inoculants, yield 
gains of about 100 kg ha− 1 and cost-effectiveness for over 90% of 
farmers was recently found for soybean across SSA (van Heerwaarden 
et al., 2018). Evidence for other legumes is less clear-cut but positive 
responses have been reported in common bean (Amijee and Giller, 1998; 
Ndakidemi et al., 2006), chickpea (Wondwosen et al., 2016) and cowpea 
(Boddey et al., 2017; Kyei-Boahen et al., 2017). Since inoculants tend to 
be cheap they may be considered a low-risk recommendation, unlike 
mineral fertilisers, whose high purchase costs require distinct yield 
benefits to be offset. 

In that regard, it is worth noting that despite well-documented 
legume responses to phosphorus (Mucheru-Muna et al., 2010; Vester-
ager et al., 2008; Wolde-meskel et al., 2018), particularly in soybean 
(Kamara et al., 2007; Kolawole, 2012; Zingore et al., 2008), most reports 
only cover individual regions, with considerable variation among 
studies and locations (Ronner et al., 2016; Ulzen et al., 2018). Such 
inconsistent responses have implications for the cost-effectiveness and 
risk of nutrient application and deserve further investigation, ideally 
across different regions and years. Evidence for benefits of other nutri-
ents such as potassium are scarce by comparison (Kihara et al., 2017), 
and the few published studies tend to include only a small number of 
locations, predominantly in pot trials or on-station (Bado et al., 2006; 
Keino et al., 2015). A recent exception describing on-farm and on-station 
responses to combined application of Mg, S, Zn and B across SSA 
(Wortmann et al., 2019) found that among crop types, legumes had the 
smallest relative increases in yield. Similar small and non-consistent 
effects were found across different countries for S and micronutrients 
in soybean and cowpea (Kaizzi et al., 2012; Kihara et al., 2017) and for K 
in common bean (Kaizzi et al., 2018), suggesting limited potential for a 
profitable return to the investment. Hence, the magnitude and consis-
tency of agronomic and/or economic benefits of the addition of P, K and 
other nutrients in smallholder legume production remains an important 
topic for research. 

Here, we analyse a recently compiled dataset of on-farm nutrient 
addition trials that were set up to evaluate the additive effects of 
phosphorus (P), potassium (K), and a variety of secondary and micro-
nutrients (abbreviated as SMN here) in four legume crops: soybean 
(Glycine max), groundnut (Arachis hypogaea), cowpea (Vigna unguicu-
lata), and climbing bean (Phaseolus vulgaris), across four countries in 
East and West Africa (Tanzania, Uganda, Nigeria and Ghana) with the 
purpose of assessing the general response to these nutrients and to 
describe the magnitude and patterns of variation. We thereby distin-
guish different types of variation of contrasting agronomic relevance. 
The first distinction is between systematic and non-systematic variation. 
Non-systematic variation is the component of observed variability due 
to random effects of sampling and experimental error at the experi-
mental plot level which is highly localised, non-repeatable and hence of 
limited relevance (van Heerwaarden et al., 2018; Vanlauwe et al., 
2019a). Systematic variation, on the other hand, reflects differences in 
growing conditions at the field level and above. This type of response 
variation is experienced by farmers across locations and time points and 
is therefore of direct agronomic importance. A second distinction is 
made between explainable and predictable systematic variation. 
Explainable variation is associated with known climatic, edaphic, 
weather, biotic stress or crop management conditions and offers op-
portunities for adapting the amount and composition of inputs to local 
circumstances. Such adaptation is only possible when responses are also 
predictable, i.e., calculated before the growing season starts. In practice, 
much of the explainable variation is likely to be due to unpredictable 
growing conditions and constitutes production risk that may negatively 
affect farmer’s willingness to invest in inputs. 

In summary, the present study aims to establish the main effects of 
nutrient application in grain legumes and to dissect the different types of 
systematic response variation that are relevant for understanding pro-
duction risks and potential for tailored application (i.e. predictable 
variation). We address the following research questions: First, what are 
the average summative effects of P, K and secondary and micronutrient 
application in the studied areas? Second, what is the magnitude of 
systematic response variation and how is this variation distributed in 
space and time? Third, is the economic risk associated with systematic 
variation in nutrient response small enough to permit general nutrient 
recommendations? Finally, can variation in response to nutrients be 
predicted from geographical and environmental data, to allow site- 
specific recommendations? By answering these questions, we evaluate 
the potential to raise yields and to mitigate production risk using 
available knowledge, which is of general interest to similar systems 
elsewhere. 

2. Methods 

2.1. Data 

The data was taken from a total of 399 on-farm trials performed in 
Ghana, Nigeria, Uganda and Tanzania (Fig. 1) from 2015 to 2017 and 
covering the crops soybean, groundnut, cowpea and climbing bean, 
yielding a total of 2523 data points. Rainfall in Uganda and Tanzania is 
bimodal, which in the case of Uganda translated into a wide range of 
planting dates within a year. Although trials in different countries 
differed in exact treatment structure, varieties, agronomic practices and 
nutrient formulations, all were researcher-managed, non-replicated, on- 
farm experiments which included a zero-input control and at least three 
plots with cumulative additions of phosphorus, potassium and second-
ary and micronutrients (of various kinds, Table S1). Phosphorus was 
applied at an average rate of 15 kg P ha− 1 across fields (10–30 kg P ha− 1, 
18 kg P ha− 1 averaged across experiments) as either single super 
phosphate (SSP) or triple super phosphate (TSP) and potassium was 
applied at 32 kg K ha− 1 (17–60 kg K ha− 1, 27 kg K ha− 1 averaged across 
experiments) as muriate of potash (MOP). The structure of the treat-
ments did not allow an assessment of the effects of individual secondary 
and micronutrients which is why they are treated as single treatment 
(SMN). 

For each on-farm trial, household survey data was available from 
which agronomically relevant variables were obtained to be used as co- 
variates. Digital maps with weather, climatic and soil variables were also 
compiled for this purpose. Weather variables consisted of monthly 
satellite-based rainfall data (rain) for the relevant growing seasons, 
climatic variables were so-called bioclimatic variables derived from 
long-term temperature (temp) and precipitation (prec) data (Fick and 
Hijmans, 2017). Soil variables (soil) consisted of predicted physical and 
chemical properties (see Table S2 for full details on all variables). 

2.2. Statistical methods 

Using the combined data across countries, crops and years, a statis-
tical model was implemented that allowed: 1) the estimation and testing 
of mean effects of the different types of nutrients and 2) the quantifi-
cation and dissection of random response variation into different com-
ponents of variation. To this aim, linear mixed models were used. This 
type of model contains fixed effect terms to represent factors for which 
the means of the individual levels are of direct interest, as well as 
random effects to represent the variation around the estimated means. 
Random effect terms can be specified to account for different sources of 
variation. Variance components are estimated for each term, quanti-
fying the associated variance, and random effect estimates for each in-
dividual factor level. The latter estimates are known as linear unbiased 
predictors (BLUPs) and their inspection provides insights on which 
specific factor levels contribute most to the random variation. 
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Specifically, the following model was fitted:  

(1) yield~crop* (p + k + smn)+experiment/(p + k + smn)+ crop: 
district/(p + k + smn)+ crop:district:year/(p + k + smn)+
field/(p + k + smn)+ om+n + i + g+l+error 

The terms p, k and smn represent phosphorus, potassium, and 
secondary and micronutrients, respectively, which are the main 
treatments of interest. Other, non-standard, treatments applied in 
subsets of experiments were corrected for by including them as 
random effects with om, n, i, g and l indicating the application of 
manure, nitrogen, inoculant, gypsum or lime respectively. The “* 
symbol indicates that both main effects and interactions are 
considered. 

Random terms in the model are underlined and represent 
different components of spatial and temporal variation. The “/” 
symbol is a nesting operator which ensures that random variation 
for control yield and nutrient responses is modelled individually 
for each component of random spatial and temporal variation. 
The error term is the plot-level residual, representing non- 
systematic variation due to within-field heterogeneity and 
experimental error. The remaining random terms correspond to 
different sources of systematic variation in control yield and 
nutrient response. The following sources of systematic random 
variation are represented in the model: 1) “experiment”, which is 
the combination country, year and crop, and represents groups of 
on-farm trials with an identical set-up and treatment structure, 2) 
district within crop (district:crop), 3) year within district within 
crop (district:crop:year), and 4) field, where individual fields are 
not replicated and are unique to a specific year. 

This model specification allows year-to-year variation to be 
separated from spatial differences between districts, some of 
which were only sampled in a single year. Fields were not repli-
cated, so the field random term would normally represent the 
residual error in the statistical model. Estimation of residual 

within-field variation therefore required some simplifying model 
assumptions; by assuming a single effect across fields for non- 
standard treatments (om, n, i, g and l), plots with such treat-
ments could be used as de facto within-field replicates to obtain an 
approximate estimate of residual within-field variation. 

To gain insight into the contribution of individual random 
factor levels (e.g. specific districts, fields) to random variation in 
yield and nutrient responses, principal component analysis (PCA) 
was applied to the BLUPs (i.e. random effect estimates) corre-
sponding to the different components of random variation, and 
the first two components were visualised with biplots. Where 
relevant, data subsets for specific countries or experiments were 
further analysed with simplified mixed models with field as 
random effect and year or district as fixed effects, to look more in 
depth into specific interactions associated with patterns observed 
in the biplots. 

Among the random terms in the mixed model, only districts 
had replicates in time which means that, in contrast to the other 
terms, this component (district:crop) represents variation that 
can be predicted and managed in theory. Variation associated 
with the remaining components (experiment, district:crop:year, 
field) are unpredictable without additional knowledge and may 
therefore be considered representative of the production risk that 
farmers face. One step to reducing such production risk is to use a 
statistical model that predicts random nutrient response variation 
as a function of underlying climatic, soil or agronomic conditions. 

We explored such an approach here in an attempt to explain 
and predict a maximum amount of the total field-level variation 
in control yield and nutrient responses. As a first step we fitted the 
following, simplified mixed effects model:  

(2) yield~ p + k + smn + (p + k + smn|crop:country) 
+ (p + k + smn|field)+om+ n + i + g+l+error 

to allocate all random response variation below the crop: 
country level to a fieldlevel random effects term. The operator “|” 

Fig. 1. Map showing trial sites used in this study (black dots). Coloured shading marks different agro-ecological zones (Harvest choice, https://doi.org/10.7910/ 
DVN/M7XIUB). 
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indicates that for each crop:country and field, specific random 
effects and interactions were estimated for the three types of 
nutrients. The BLUPs extracted from this model, representing the 
field-level deviations for control yield and P, K and SMN 
response, were saved and merged with the corresponding 
household survey, weather, climatic and soil data described 
above (Table S2). 

All variables were categorised as either explanatory or predictive. 
Predictive variables are defined as those whose values are known before 
the season in which yield was measured, such as climatic and soil 
properties and farm and field characteristics such as farm size, land 
ownership and perceived soil fertility. Explanatory variables alsoen-
compass information which is only known after planting and harvest, 
such as rainfall, agronomic management and pest and disease 
occurrence. 

Subsequently, a random forest (Breiman, 2001) machine learning 
algorithm was implemented to model the field-level random variation in 
yield and response as a function of these predictive and explanatory 
variables, either together or as subsets. Goodness of fit of the random 
forest models was summarised by out of bag (OOB) R squared, which 
should avoid overfitting. It is becoming common to use machine 
learning models such as these to map the spatial distribution of pre-
dicted yield and response (Bonilla-Cedrez et al., 2021; Cao et al., 2021; 
Kinane et al., 2021) and we used the same approach here. While 
attractive as a way of identifying potential recommendation domains, 
such spatial predictions may be subject to large prediction uncertainty 
and spatial biases, specifically when data is not sampled randomly, as is 
often the case with on-farm data. 

We tackle these limitations in two ways. First, we used a statistical 
approach to delineate the spatial area for which the on-farm locations 
are considered to be representative (Nziguheba et al., 2021). A random 
forest model was trained to distinguish between trial locations and 
random map coordinates, based on the set of predictive geospatial 
variables used for the yield and response predictions. Using this model, 
the probability of representing a potential trial location was calculated 
for each pixel on the map, with pixels having higher probabilities being 
most like the sampled on-farm locations. A representative area was then 
defined as the set of pixels for which the probability was larger than the 
lowest 1% of site probabilities found among the original on-farm trial 
locations, which corresponded to a probability of 0.53 in this case. 
Second, since explanatory variables tend to be spatially correlated, 
predicted patterns may inadvertently reflect unobserved heterogeneity 
in local conditions and trial implementation rather than true environ-
mental contrasts. We therefore compare spatial predictions based on a 
full set of environmental variables to those based on coordinates only. A 
large part of the variation explained by geographic coordinates alone 
suggests that the predictive power of environmental variables may be 
partially related to the unobserved heterogeneity instead of having 
actual predictive value. In such cases, evaluating the consistency be-
tween the two spatial models can provide a further indication of the 
reliability of the site-specific predictions. 

2.3. Analysis of economic benefit and risk 

The BLUPs representing the field-level deviations in P response 
derived from the second mixed model were combined with input and 
grain price information to perform an analysis of economic benefits and 
risks. Costs for the different types of phosphorus fertiliser (SSP, DAP or 
TSP) were collected from www.Africafertilizer.org for Nigeria, Tanzania 
and Uganda, based on the availability of data between 1-1–2015 and 
31–12–2017 (the study period). For Ghana, costs for TSP were derived 
from IFDC (2019). As much as possible, regional retail prices for the 
different types of fertilisers were considered and expected to represent 
the spatial variation in fertiliser prices as described by Bonilla Cedrez 
et al. (2020). For Ghana, only a national average retail price for TSP was 

available. Costs for transport from the point of sale to the homestead 
were assumed to be 0.05 USD per kg of fertilizer, the average transport 
cost found by Bonilla Cedrez et al. (2020). 

Legume grain prices were derived from national market information 
systems (www.tridge.com for Nigeria, www.esoko.com for Ghana, 
www.agmis.infotradeuganda.com for Uganda) and Temu et al. (2014) 
for Tanzania. These prices represent wholesale market prices found on 
urban markets. Regional information was often missing, and therefore 
we considered an average annual price per country, per legume. The 
wholesale market prices were converted to farm gate prices for a better 
comparison with fertiliser costs. On average, farm gate prices were 
found to be 40–70% of wholesale market prices for different legumes 
assessed in studies in Rwanda, DR Congo, Malawi and Tanzania (Birachi, 
2012; Langyintuo et al., 2003; Rusike et al., 2013). An overall average of 
60% was applied across countries to convert market prices to farm gate 
prices. 

Fertiliser costs and legume grain prices were converted from national 
currency to inflation-adjusted purchasing power parity in US dollars 
(Bonilla Cedrez et al., 2020). National currencies from different years 
were first divided by the consumer price index (CPI) to adjust for 
inflation, with 2017 as a reference year. Values were then multiplied 
with the purchasing power parity (PPP) dollar value for 2017 (World 
Bank, 2020). Cost benefit analyses were based on crop specific grain 
price averages and country specific input prices in addition overall 
averages. 

3. Results 

3.1. Nutrient main effects 

The overall mean effect of P was found to be highly significant 
(p < 1e− 6) with an average yield gain of 251 kg ha− 1 at an average rate 
of 15 kg P ha− 1. The average effects of K and SMN were estimated at 15 
and 49 kg ha− 1 respectively, and were not significant (p > 0.1). The 
estimated means for yield with and without inputs in the four crops are 
given in Table 1. Most of the extra yield achieved with inputs was due to 
the addition of phosphorus. In terms of overall grain yield, it seems that 
cowpea lagged the other three crops, while climbing bean produced the 
largest yields. The main effect of crop or the interaction with crop and 
any of the nutrients was not significant however, possibly due to the 
large degree of confounding between crop and country, which is an 
intrinsic feature of the data. 

3.2. Yield and nutrient response variation 

Considerable variability was observed for yield and nutrient re-
sponses. Summing over all hierarchical variance components (experi-
ment, district, district/year and farm), the standard deviations 
associated with control yield, P, K and SMN response were 683, 190, 115 
and 125 kg ha− 1, respectively. 

Breakdown into hierarchical components (Fig. 2) shows that in 
general, only a small amount of variation is associated with the pre-
dictable district level, with most variation found at the district/year, 
farm and to a lesser extent the experiment level. Only 2%, 6%, 13% and 
8% of total variance, excluding residual variation, was found at the 
district level for control yield, P, K and SMN response. In terms of 

Table 1 
Estimated means for yields (kg ha− 1) of grain legumes in control plots and with 
application of P, K and SMN (i.e. secondary and micro-nutrients).  

Crop no inputs P only P þ K P þ KþSMN Max. SE 

Soybean 1446 1746 1748 1800 240 
Groundnut 1259 1477 1512 1531 255 
Cowpea 945 1184 1068 1161 292 
Climbing bean 1657 1905 2045 2076 315  
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nutrient responses, 80% of districts are expected to have yield gains 
falling within 193–309, -37–67 and 5–93 kg ha− 1 for P, K and SMN 
respectively, suggesting that there is little to be gained from district- 
specific recommendations. 

Regarding the unpredictable components of variation, the first thing 
to notice is that despite substantial variation in control yield between 
experiments, there is very little variation at this level for any of the 
nutrient responses. This suggests that the effects of P, K and SMN are 
relatively stable across experiments performed with different crops over 
different countries and years, at least when similar procedures are fol-
lowed as was the case here. Second, whereas the district/year and farm 
level represent similar amounts of variation in the case of control yield 
and P response, there is no variance associated with the farm level for K 
response and only a negligible amount of variance at the district/year 
level for SMN response. While theoretically, this could be due to large- 
scale and seasonal differences affecting K response and variation in 
secondary and micronutrients reflecting local deficiencies, it could also 
be an artefact of the overall small degree of variation in response for 
these two types of nutrients. 

Dissecting the observed variability by principal component analysis 
of the random effects (BLUPs) at different hierarchical levels revealed 
that at the level of experiment, the 2016 Nigeria groundnut trial projects 
strongly on the K and SMN vectors (Fig. 3). This is confirmed by sig-
nificant main effects for K and SMN in these trials, with 88 and 
118 kg ha− 1 of additional yield respectively (Ca, Mg, Zn, S, B). At the 
other extreme, the 2015 Ugandan climbing bean trials saw negative 
responses across all districts, leading to a significant negative main ef-
fect of the combination of Mg, Zn, Mo. The strong projection of the 2016 
Nigeria soybean study on the P response vector corresponds to an esti-
mated response of 456 kg ha− 1. 

At the district level, a few districts show a strong positive projection 
on the K and SMN vectors, Kwayakusar (Nigeria, soybean) and Kajuru 
(Nigeria, soybean and groundnut), in particular. For the latter district 
this corresponds to random effects of more than 20 kg ha− 1 above the 
means of 15 and 49 kg ha− 1 for K and SMN, respectively. Random effects 
for district level P responses range from − 17 kg ha− 1 (Apac, Uganda, 
soybean) to 37 kg ha− 1 (Kajuru, Nigeria soybean), with respect to the 
overall mean of 251 kg ha− 1. For all three types of nutrients, the abso-
lute deviations from the mean are minor, reflecting the limited level of 
variation at this level of hierarchy. In contrast, variation in P and K 
response at the district/year level is much more pronounced, with 
random effects for P and K ranging from -117–246 and 
-107–140 kg ha− 1 respectively. This translates into several significant 
interactions between P and district, namely in Nigerian groundnut trials 
in 2015 and 2016 and Ugandan soybean trials in 2017, and between K 
and district in Ugandan bean trials in 2016 and Ugandan soybean trials 
in 2017. Similar variation in P response is found at the farm level, with 
random effects ranging from -237–2011 kg ha− 1 above the mean. It is 
also at this level that the largest variation for response to SMN is 
observed with random effects from -110–81 kg ha− 1 with respect to the 
mean. 

3.3. Economic benefits 

The considerable response variation for P has direct economic rele-
vance to farmers: although the application of P-fertiliser increased 
legume yields consistently, the observed variation at the farm level will 
translate in unpredictable economic benefits. Fig. 4 summarises the total 
variation in P response at the farm level and its relation to profitability. 
The left panel shows the variation in absolute agronomic response with 
respect to the minimum response required to be profitable given a mean 
application of 15 kg ha− 1 of P with average costs and grain prices across 
countries and legumes. Out of all fields, 96% showed an increase in yield 
in response to the application of P and 67% of fields had responses above 
the average economic minimum, meaning that a third of fields would 
fail to benefit from P application at the tested rates. Similarly, the actual 
distribution of estimated profits, using country and legume specific 
prices, is shown in the right panel. Average profit from P application was 
137 USD ha− 1, and on only 30% of fields application was unprofitable, 
with 11% posting losses greater than 100 USD ha− 1 against 48% having 
gains in excess of 100 USD ha− 1. The lack of significant yield responses 

Table 2 
Effect of different subsets of variables on OOB R2.  

Type control P K SMN 

All explanatory  0.39  0.06  0.33  0.14 
Coordinates only  0.23  0.05  0.20  0.09 
Explanatory survey  0.35  0.11  0.30  0.17 
Explanatory remote sensing  0.25  0.04  0.23  0.13 
All predictive  0.31  0.04  0.28  0.13 
Predictive survey  0.23  0.04  0.18  0.08 
Predictive remote sensing  0.26  0.04  0.24  0.14  
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Fig. 2. Left panel: breakdown of random variation at different strata (expressed as standard deviation) for control yield, P, K and SMN. Right panel: variance 
components expressed as proportions of total variance (excluding residual variance). 
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to K and SMN means that their application is unlikely to be profitable, 
which is why we did not include them here. 

3.4. Patterns and predictability in yield and effect variation 

Random forest was used to model farm-level variation in control 
yields and nutrient responses as a function of explanatory and predictive 
soil, climatic and agronomically relevant survey variables (Table S2). 
We were interested in the capacity of the total set of variables to explain 
and predict patterns of variation. Apart from the general question of how 
much variation could be either predicted or explained, the contribution 
of different types of variables to predictive and explanatory ability was 
also of interest, particularly the contribution of the survey variables, 

which are costly to collect compared to remote sensing data. 
Only a small proportion of variation was accounted for by the total 

set of variables (Fig. 5, Table 1) but overall, model accuracy was slightly 
higher for explanatory than for predictive models, indicating that 
season-specific information holds explanatory value. For both explana-
tory and predictive variables, model fits were particularly poor for 
response to P and SMN (with values of out-of-bag R squared below 0.15) 
and were better for control yield and response to K (R-squared above 
0.33). It is worth mentioning that models with all variables included 
were only moderately better compared with a model with geographic 
coordinates only. Particularly in the case of response to P and SMN, 
adding variables other than latitude and longitude did not improve the 
model substantially. Although this suggests that individual variable 

Fig. 3. Biplots showing the principal components (PCs) and loadings corresponding to the first PCs calculated for the matrix of BLUPs for the response to P, K, and 
SNM. Panel a: experiment level, b: district level, c: district.year level and d: field level. 
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importance should be interpreted with caution, the fact that reported 
soil fertility and drought severity were found among the three most 
important explanatory variables for both control yield and K response 
(Fig. 5) could point to water and nutrient availability as potential shared 
constraints. Survey and remote sensing variables were found to be 
complementary for control yield and K response, with models contain-
ing both having higher accuracies than those with only a single type of 
variable. This was the case for both explanatory and predictive models 
but, in case of the former, survey variables seemed to contribute more 
information while in the latter models using remote sensing variables 
were more accurate than those containing only survey variables. In all 
cases, however, their accuracy was only marginally better compared to 
those with coordinates only. 

In theory, predictive models such as those evaluated above could 
contribute to the development of context-specific nutrient recommen-
dations, in which nutrients are targeted to areas where they are pre-
dicted to be most effective. While attractive, such an approach has 
important caveats and requires spatial predictions to be accurate, reli-
able and of sufficient amplitude. We use the predictive model for K 
response, which had relatively good accuracy, as an opportunity to 
evaluate the potential and limitations for site-specific predictions.  
Fig. 6a shows what a map of predicted K response looks like, based on 
the model with all predictive geospatial variables, within the areas for 
which the trials were considered environmentally representative. The 
map shows quite distinct areas of stronger and weaker response, but the 
magnitude and amplitude of yield response variation is limited, with the 
upper 5% predicted K responses being 63 kg ha− 1 compared to a median 
value of 22 kg ha− 1 respectively. In addition, the reliability of the spatial 
predictions seems questionable. While the predictive model with co-
ordinates alone explains almost as much variation as the full model, the 
spatial patterns of predictions differ substantially from those predicted 
by the full set of variables (Fig. 6b). This demonstrates that prediction 
accuracy cannot be credited to the environmental variables included in 
the model and suggests that spatial predictions probably vary depending 
on the available data. 

4. Discussion 

4.1. General response and profitability of P, K and SMN 

Consistent and profitable nutrient responses are important if general 
recommendations are to be made. Among the three types of nutrients 
tested, only P was found to have a substantial and significant main ef-
fect, with a mean response of 251 kg ha− 1. Neither K nor secondary and 
micronutrients were found to have substantial positive effects on 
average. At the same time, considerable variation in response was 
observed for all three types of nutrients, which reflects earlier findings in 
literature. For P, most published estimates of response in soybean, 
common bean, cowpea and groundnut tend to be between 150 and 
500 kg ha− 1 (Chekanai et al., 2018; Giller et al., 1998; Kaizzi et al., 
2018, 2012; Maman et al., 2017; Ronner et al., 2016; Serme et al., 2018; 
Tarfa et al., 2017; Ulzen et al., 2018; Zingore et al., 2008) and can be 
considered consistent with the 250 kg ha− 1 found in our study, although 
responses below 100 kg ha− 1 (Ikeogu and Nwofia, 2013; Mabapa et al., 
2010; Serme et al., 2018; Smithson et al., 1993) and above 500 kg ha− 1 

(Kaizzi et al., 2018; Kamara et al., 2007; Moses et al., 2018; Tarfa et al., 
2017) have also been reported. 

At the tested application rate of 15 kg ha− 1 on average, and 
considering only input costs, P application was profitable in terms of 
immediate response in almost 70% of cases, at a yield response of about 
200 kg ha− 1 (Fig. 4), an outcome which in the absence of systematic 
spatial variation can be considered representative for the study area. 
While such cost-benefit analyses need to be treated with caution, the 
present result suggests that the application of P could be generally 
beneficial but also highlights that economic risks may still be an issue to 
farmers, although losses in excess of 100 USD/ha were estimated to be 
rare. Most of the earlier published studies applied larger rates of 30 or 
40 kg ha− 1 P in soybean, and 15–20 kg ha− 1 in groundnut, common 
bean and cowpea. No effect of larger application rates emerges from 
literature (for instance, Tarfa et al. (2017) reported an average response 
of 590 kg ha− 1 to 15 kg P ha− 1 in soybean, while Kaizzi et al. (2012) 
found a response of 180 kg ha− 1 to 37.5 kg P ha− 1. Moreover, it is likely 
that P addition beyond 20 kg ha− 1 will be less profitable than what we 
report here, given that nutrient use efficiencies tend to decrease at 
higher rates. 

Fig. 4. Cumulative densities of absolute response (left) and profitability (right) of P application. Vertical lines mark economical minimum rate (average prices across 
countries and legumes) and 0 profit (country- and legume-specific prices) respectively. 
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For K, the insignificant average response reported here is consistent 
with other reports of responses below 100 kg ha− 1, or even negative 
responses, in soybean, cowpea and groundnut (Kihara et al., 2017; 
Maman et al., 2017; Moses et al., 2018; Serme et al., 2018; Tarfa et al., 
2017). Negative responses seem to occur in cases where K is not limiting, 
caused by a damage to plant roots (Kihara et al., 2017). Still, recent pot 
experiments in soybean (Baijukya et al., 2021) identified K as being 
potentially limiting on a number of soils collected in East and West Af-
rica and there are several field studies reporting grain yield responses 
between 100 and 300 kg ha− 1 for groundnut, common bean and cowpea 
(Moses et al., 2018; Serme et al., 2018; Smithson et al., 1993; Tarfa et al., 
2017) and even an exceptional 700 kg ha− 1 in common bean (Kaizzi, 
2018). Such studies may allude to either localised deficiency of K (cf. 
Smithson et al., 1993), though in our study we did not find consistent 
responses at the location level (see also 4.2), or to weather dependent 
effects (Martineau et al., 2017), creating exceptional circumstances. 

Similarly, other nutrients affected yields in particular cases, but not 
consistently, in line with the limited response to S and micronutrients 
(Kihara et al., 2017) and to Mg-S-Zn-B (Serme et al., 2018; Wortmann 
et al., 2019). Where responses to K and SMN were larger than average, 
the magnitude was still small compared with the response to P. 

4.2. Variability and predictability of nutrient response variation 

Variability of control yields and nutrient responses represent pro-
duction risk that may hamper investment in nutrient inputs, unless this 
variability can be predicted. Our results suggest that only a relatively 
small part of variation can be explained or predicted by geographic, 
environmental or survey variables that are commonly collected. This 
confirms earlier results showing the lack of explainable patterns in 
agronomic outcomes (Ronner et al., 2016). In terms of geography, 
variation in nutrient response in our study was predominantly 

af
_S

N
D

P
P

T
_T

__
M

_s
d1

_2
50

m
w

c2
.1

_3
0s

_b
io

_3
ch

ir
ps

.v
2.

0.
20

17
.0

8
w

c2
.1

_3
0s

_b
io

_1
8

w
c2

.1
_3

0s
_b

io
_1

4
ch

ir
ps

.v
2.

0.
20

17
.0

5
af

_O
R

C
D

R
C

_T
__

M
_s

d1
_2

50
m

w
c2

.1
_3

0s
_b

io
_6

w
c2

.1
_3

0s
_b

io
_1

6
af

25
0m

_n
ut

rie
nt

_c
u_

m
_a

gg
30

cm
af

25
0m

_n
ut

rie
nt

_m
n_

m
_a

gg
30

cm
af

25
0m

_n
ut

rie
nt

_p
_m

_a
gg

30
cm

af
25

0m
_n

ut
rie

nt
_n

_m
_a

gg
30

cm
ch

ir
ps

.v
2.

0.
20

15
.0

7
da

y.
pl

an
tin

g
af

_S
LT

P
P

T
_T

__
M

_s
d1

_2
50

m
ch

ir
ps

.v
2.

0.
20

15
.0

9
da

y.
w

ee
di

ng
1

se
ve

rit
y_

dr
ou

gh
t

re
la

tiv
e_

fe
rt

ili
ty

control yield, r2: 0.39/0.23

0.0

0.2

0.4

0.6

0.8

1.0

w
c2

.1
_3

0s
_b

io
_7

re
la

tiv
e_

fe
rt

ili
ty

ch
ir

ps
.v

2.
0.

20
17

.0
8

af
_C

E
C

_T
__

M
_s

d1
_2

50
m

af
_C

LY
P

P
T

_T
__

M
_s

d1
_2

50
m

w
c2

.1
_3

0s
_b

io
_1

5
ch

ir
ps

.v
2.

0.
20

17
.0

9
w

c2
.1

_3
0s

_b
io

_1
9

gy
ga

_a
f_

ag
g_

er
zd

_t
et

as
__

m
_1

km
ch

ir
ps

.v
2.

0.
20

15
.0

4
da

y.
w

ee
di

ng
1

w
c2

.1
_3

0s
_b

io
_1

3
ch

ir
ps

.v
2.

0.
20

15
.0

9
se

ve
rit

y_
dr

ou
gh

t
ch

ir
ps

.v
2.

0.
20

15
.0

7
af

_B
LD

_T
__

M
_s

d1
_2

50
m

gy
ga

_a
f_

ag
g_

er
zd

_a
w

cp
f2

3_
_m

_1
km

fa
rm

er
_p

er
ce

pt
io

n_
fe

rt
ili

ty
af

25
0m

_n
ut

rie
nt

_p
_m

_a
gg

30
cm

FA
R

M
S

IZ
E

_h
a

P response, r2: 0.05/0.05

0.0

0.2

0.4

0.6

0.8

1.0

af
_S

LT
P

P
T

_T
__

M
_s

d1
_2

50
m

gy
ga

_a
f_

ag
g_

30
cm

_p
w

p_
_m

_1
km

lo
ng

itu
de

w
c2

.1
_3

0s
_b

io
_9

af
25

0m
_n

ut
rie

nt
_p

_m
_a

gg
30

cm
se

ve
rit

y_
w

ee
ds

af
_P

H
IH

O
X

_T
__

M
_s

d1
_2

50
m

w
c2

.1
_3

0s
_b

io
_8

ch
ir

ps
.v

2.
0.

20
15

.0
9

w
c2

.1
_3

0s
_b

io
_1

1
w

c2
.1

_3
0s

_b
io

_6
w

c2
.1

_3
0s

_b
io

_1
8

af
_O

R
C

D
R

C
_T

__
M

_s
d1

_2
50

m
af

25
0m

_n
ut

rie
nt

_n
_m

_a
gg

30
cm

da
y.

pl
an

tin
g

da
y.

w
ee

di
ng

1
ch

ir
ps

.v
2.

0.
20

15
.0

7
se

ve
rit

y_
dr

ou
gh

t
af

_B
LD

_T
__

M
_s

d1
_2

50
m

re
la

tiv
e_

fe
rt

ili
ty

K response, r2: 0.33/0.2

0.0

0.2

0.4

0.6

0.8

1.0

w
c2

.1
_3

0s
_b

io
_1

5
ch

ir
ps

.v
2.

0.
20

15
.0

9
w

c2
.1

_3
0s

_b
io

_1
6

se
ve

rit
y_

dr
ou

gh
t

gy
ga

_a
f_

ag
g_

er
zd

_t
et

as
__

m
_1

km
ch

ir
ps

.v
2.

0.
20

15
.0

7
af

25
0m

_n
ut

rie
nt

_n
_m

_a
gg

30
cm

af
_O

R
C

D
R

C
_T

__
M

_s
d1

_2
50

m
ch

ir
ps

.v
2.

0.
20

15
.0

3
w

c2
.1

_3
0s

_b
io

_1
9

ch
ir

ps
.v

2.
0.

20
17

.0
9

FA
R

M
S

IZ
E

_h
a

ch
ir

ps
.v

2.
0.

20
17

.0
3

ch
ir

ps
.v

2.
0.

20
16

.0
3

af
25

0m
_n

ut
rie

nt
_p

_m
_a

gg
30

cm
w

c2
.1

_3
0s

_b
io

_1
3

se
ve

rit
y_

w
at

er
_l

og
gi

ng
af

_B
LD

_T
__

M
_s

d1
_2

50
m

fa
rm

er
_p

er
ce

pt
io

n_
fe

rt
ili

ty
af

_P
H

IH
O

X
_T

__
M

_s
d1

_2
50

m

SMN response, r2: 0.15/0.09

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Histograms showing the distribution of relative variable importance (top 20 remote sensing and survey variables, Table S2) of random forest predictions of 
control yield and P, K and SMN response, using the full set of variables. The corresponding out of bag R squared values for the full model / model with coordinates 
only are shown in the plot titles. 
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associated with the non-predictable levels of district/year and field, 
rather than at the predictable district level. The relatively limited vari-
ability in nutrient response at the level of experiment suggests that 
strong differences between the published studies are not explained by 
random trial-to-trial variation but rather reflect systematic differences in 
implementation (e.g., addition of manure or other nutrients, differences 
between varieties, plant densities, etc.), or could be due to studies 
reporting on a limited number of locations. 

Similarly, we found that relatively little variation in nutrient 
response could be explained by our total set of covariables. Only K 
response could be modelled reasonably well, although the maximum 
proportion of variation explained was still limited and considerably 
below the 40% observed for control yield. Still, the result is indicative of 
relatively strong influence of geography and/or environment on 
observed response variation. Interpretation of such patterns is not 

straightforward, however. The relatively large variance component for 
district/year and the strong contribution of precipitation and drought 
related variables to variation suggest that seasonal effects play an 
important role. Since seasonal effects are unpredictable, they are of little 
relevance for local nutrient adjustments. In this regard the amount of 
variation that can be predicted from time independent covariates such 
as climatic and soil parameters are more important. We found K 
response to be relatively well predicted by those variables, which in 
theory could help in generating regional recommendations on K use. Our 
exploration of the patterns and stability of spatial predictions highlights 
the limitations of such an approach, however. The fact that maps of 
spatial predictions based on a full set of variables and on geographic 
coordinates alone differ substantially, while explaining similar amounts 
of variation, suggested that large-scale spatial patterns predicted from 
on-farm trials are not necessarily reliable and should not be taken at face 

Fig. 6. Two maps of the predicted absolute response to K (in kg/ha) showing the different spatial patterns produced by a Random Forest model using all remote 
sensing variables (a., 24% of variation explained, rmse of 62 kg/ha), and geographic coordinates only (b., 20% of variation explained, rmse of 64 kg/ha). Trial sites 
are shown in red. Predictions for representative areas (i.e., those with a predicted probability of representing a potential trial site of >0.53) are highlighted in full 
colour. The grayscale background shows predictions for non-representative areas and is included for appreciation of spatial structure of predictions only. 

J. van Heerwaarden et al.                                                                                                                                                                                                                     



Field Crops Research 299 (2023) 108975

10

value. In addition, regardless of the reliability of spatial patterns, only 
5% of sites had predicted yield response of more than 63 kg ha− 1, an 
outcome that is unlikely to justify any adjustment from general recom-
mendations. Combined with the limited accuracy, i.e. 20% of variance 
explained, it seems that effective tailored recommendations (Abera 
et al., 2022; Chivenge et al., 2022; Ebanyat et al., 2010; Vanlauwe et al., 
2015; Zingore et al., 2008) are not warranted based on our data and may 
be difficult to achieve in practice (van Heerwaarden, 2022). 

In terms of the contribution of different types of variables to the 
explanation and prediction of yield and response variation, several 
things are worth noting. First, as concluded above, our selected set of 
remote sensing variables seemed to add little information to that rep-
resented by geographic coordinates alone. While adding such variables 
produced distinct and perhaps more realistic-looking spatial prediction 
patterns, no superiority for such predictions can be claimed if they do 
not explain substantial amounts of additional variation. This was the 
case for control yield as well as for the three types of nutrient responses 
and may indicate that available remote sensing data lacks resolution and 
accuracy to be of value or, alternatively, that we have failed to identify 
more relevant covariates that are available through remote sensing. 
Second, none of the covariates, be it remote sensing or survey variables, 
had much predictive power over geographic coordinates alone. This 
demonstrates the difficulty in predicting yields and crop responses based 
on prior information. Finally, in terms of explanatory power, survey 
variables contributed most of the relevant information. This suggests 
that information obtained directly from farmers helps to explain 
observed agronomic outcomes better than remote sensing information 
alone, although researchers should decide if the added benefit in 
explanatory power outweighs investments in on-site data collection. 

5. Conclusion 

Our results confirm the general cost-effectiveness of P application in 
legumes, although with some economic risk. We did not find consistent 
evidence of a general positive response to either K or secondary and 
micronutrients but did observe substantial spatio-temporal response 
variation for these inputs. Limited predictability and low magnitude of 
predicted variation mean that effective tailored recommendations are 
not warranted based on our data. Therefore, it appears that nutrient use 
efficiency could be increased more effectively by investing in research 
on improved timing, placement and composition of fertilizer (van 
Heerwaarden, 2022). We demonstrate that despite limited ability to 
statistically model yield and response, the inclusion of selected survey 
questions improved our ability to explain the observed variation, sug-
gesting that they may add valuable agronomic information that is not 
captured by geographic and remote sensing data. Future research should 
determine wether more informative on-farm variables and more 
cost-effective ways of obtaining these at scale can help understand and 
manage variability and risk in smallholder agriculture. 
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