

Effectiveness of light-touch intervention at small-scale slaughterhouses and traditional pork shops in Vietnam

Hai Hoang Tuan Ngo^{1,2,3}, Sinh Dang-Xuan², Mats Målqvist³, Luong Nguyen-Thanh³, Phuc Pham-Duc^{1,4}, Phi Nguyen-Hong¹, Hang Le-Thi¹, Hung Nguyen-Viet^{2,5}, Trang Thi-Huyen Le², Delia Grace^{5,6}, Johanna Lindahl^{2,3,7}, Fred Unger²

¹ Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Hanoi, Vietnam

² International Livestock Research Institute, Hanoi, Vietnam

³ SWEDESD, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden

⁴ Institute of Environmental Health and Sustainable Development, Hanoi, Vietnam

⁵ International Livestock Research Institute, Nairobi, Kenya

⁶ Natural Resources Institute, University of Greenwich, Kent ME4 4TB, United Kingdom

⁷ Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden

SAFEPORK VIV OILL ANA I OI BAAN Com NAY ang

SafePork Conference, New Orleans, 15-17 May 2023

1. Introduction and objective

- Small-scale pork producers plays important role in Vietnam
- High risk of microbial contamination in retailed pork
- Necessary to identify low-cost and feasible interventions along pork value chain
- Aim of this study:
 - Implement light-touch intervention at small-scale slaughterhouse and traditional pork shop
 - ✓ Assess the effectiveness of intervention in reducing microbial contamination

- Study sites: 4 provinces in the North of Vietnam
- Participant recruitments:
 - Selection criteria
 - \circ Slaughterhouse:
 - Floor-based slaughtering, drainage system
 - Ability to separate clean-dirty area
 - Willingness to participate
 - Markets and pork shops
 - Linked to selected slaughterhouse
 - Specific area for animal sourced-food (only)
 - Equipped with table, water supply system
 - Having market management board

Figure 1: Study sites

Figure 2: Slaughterhouse before and after intervention

Intervention package:

- Slaughterhouse (n=10, investment: 300-1500\$)
 - o Stainless-steel grid
 - Upgrade water system
 - Food safety training
- Pork shop (n=29, investment: ~35 \$)
 - Hygiene tools: hand sanitation, sprayer, poster
 - Selling tools: apron, cloths, cutting-board
 - Food safety training

Figure 3: Pork shop before and after intervention

Sampling method

- Samples:
 - Slaughterhouse: total bacterial count (TBC)
 - Pig carcass (swab): 20 samples/round
 - Workers' hand (swab): 14 samples/round
 - Floors (swab): 10 samples/round
- Pork shops:
 - Pork (excision): 29 samples/round (Salmonella prevalence, TBC)
 - Vendor's hand (swab): 29 samples/round (TBC)
 - Cutting board (swab): 29 samples/round (TBC)
- Observe food safety practice
- Timeline: 6 weeks with 3 rounds

Figure 4: Sampling technique

Sample testing

- Salmonella detection: ISO 6579:2017 (amend)
- Salmonella concentration: 3-tube most probable number (MPN)
- TBC: ISO 4833-2: 2013

Data analysis

- Salmonella prevalence: McNemar's test
- TBC: Wilcoxon signed rank test
- Identify risk factors:
 - Univariate analysis
 - Multivariate analysis:
 - Linear mixed-effects models (for TBC in pig carcass and retailed pork)
 - Generalized linear mixed-effects models (for *Salmonella* presence in retailed pork)

3. Result

Slaughterhouses:

- Most of slaughtered pigs sourced from local farm
- Have 2-3 permanent labors, in addition to pork seller involved in slaughtering activities
- Only few slaughterhouse use electric stunning
- Number of pig slaughtered/day: 1-8 pigs/day

29 Pork shops

Figure 5&6: Slaughterhouse worker and pork seller after intervention

- Most vendors are female
- One third of shops had person to help seller
- Average sale volume: 43 kg/day
- Transportation distance: 4 km (in ~12 minutes), most by motorbike

Microbial analysis

	Round 1 (baseline)	Round 2 (Follow up)	Round 3 (End line)
Slaughterhouse (TBC)			
Pig carcass (log ₁₀ CFU/cm ²)	4.46 (3.48-6.64)	4.23 ^a (2.75-5.6)	4.37 (3.05-5.74)
Floor (log ₁₀ CFU/cm ²)	6.01 (5.38-7.06)	4.41 ^{a**} (3.31-6.12)	4.61 ^{a*} (2.87-7.12)
Worker hand (log ₁₀ CFU/hand)	7.09 (5.33-8.54)	7.07 (4.57-8.65)	7.04 (5.83-8.85)
Pork shop (TBC or Salmonella)			
Pork (log ₁₀ CFU/g)	5.47 (3.26-7.18)	5.34 (4.17-6.81)	5.36 (4.35-6.34)
Cutting board (log ₁₀ CFU/cm ²)	7.69 (5.87-10.31)	7.55 (5.75-8.94)	7.40 (6.20-9.38)
Seller's hand (log ₁₀ CFU/hand)	6.47 (3.41-8.33)	6.36 (4.77-8.38)	6.97 (4.73-8.33)
Salmonella prevalence on pork	52%	28% ^b	24% ^b

^{*, **} p-value: 0.05 and 0.01, respectively- compared to Round 1. ^{a,b}: Wilcoxon's test and McNemar's test

• 41.6% of retailed pork meets Vietnamese standard for TBC (<5.7 log10 CFU/g)

Food safety practice

Slaughterhouses and pork shops:

Improved in frequency of cleaning tools/surfaces

3. Result Factors associated with microbial contamination (Multivariable analysis)

Variables	Coefficient	95% CI	<i>p</i> -value
Slaughterhouse (TBC)			
Workers wore boots while slaughtering	-0.78	-1.330.27	0.004
Workers cleaned floors after slaughtering	-0.49	-0.860.07	0.02
Workers smoked cigarettes or ate while slaughtering	0.66	0.24 - 1.09	0.005
Pork shop (TBC)			
Sellers cleaned knives while selling	-0.38	-0.700.04	0.04
Tables were covered with rough material that was difficult to clean	0.32	0.001 - 0.61	0.02
Pork shop (<i>Salmonella</i> presence)	Odds ratio	95% CI	<i>p</i> -value
Having helpers at shop	0.14	0.04 – 0.46	0.02
Sellers wore aprons	0.17	0.05 – 0.51	0.02

CGIAR

INSTITUTE

4. Discussion

- **41.6% of retailed pork meets Vietnamese standard** for TBC (<5.7 log₁₀ CFU/g)
- Salmonella prevalence at retail after intervention was reduce compared to before intervention
- Improved food safety practices with provision of appropriate tools can reduce microbial contamination in pork

Conclusions

- Piloted light-touch intervention can make pork safer at traditional slaughter and retail
- Important for success was the participatory approach and compliance of involved VC actors and stakeholders
- Larger scale testing recommended to further consolidate results, e.g., current implemented
- Consumers involvement required as incentive for changes and sustainability

Figure 7: Vendors participated in the FS training/intervention

Acknowledgements

- The SafePORK project was supported by ACIAR.
- Partners:
 - ✓ International Livestock Research Institute (ILRI)
 - ✓ Hanoi University of Public Health
 - ✓ Vietnam National University of Agriculture
 - ✓ National Institute of Animal Science, University of Sydney
 - ✓ Thai Nguyen University of Agriculture and Forestry
 - ✓ National Institute of Veterinary Research.
 - $\checkmark\,$ Local authorities and value chain actors

The International Livestock Research Institute (ILRI) is a non-profit institution helping people in low- and middle-income countries to improve their lives, livelihoods and lands through the animals that remain the backbone of small-scale agriculture and enterprise across the developing world. ILRI belongs to CGIAR, a global research-for-development partnership working for a food-secure future. ILRI's funders, through the <u>CGIAR Trust Fund</u>, and its many partners make ILRI's work possible and its mission a reality. Australian animal scientist and Nobel Laureate Peter Doherty serves as ILRI's patron. You are free to use and share this material under the Creative Commons Attribution 4.0 International Licence @①.

better lives through livestock

ilri.org