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Abstract

Identification of genes associated with Striga resistance is invaluable for accelerating genetic gains in breeding for Striga resistance in
maize. We conducted a genome-wide association study to identify genomic regions associated with grain yield and other agronomic traits
under artificial Striga field infestation. One hundred and forty-one extra-early quality protein maize inbred lines were phenotyped for key
agronomic traits. The inbred lines were also genotyped using 49,185 DArTseq markers from which 8,143 were retained for population
structure analysis and genome wide-association study. Cluster analysis and population structure revealed the presence of 3 well-defined
genetic groups. Using the mixed linear model, 22 SNP markers were identified to be significantly associated with grain yield, Striga dam-
age at 10 weeks after planting, number of emerged Striga plants at 8 and 10 weeks after planting and ear aspect. The identified SNP
markers would be useful for breeders for marker-assisted selection to accelerate the genetic enhancement of maize for Striga resistance in
sub-Saharan Africa after validation.
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Introduction
Striga hermonthica parasitism is fast becoming an endemic in

West Central Africa because of its increased dispersal mecha-

nisms which include wind, animals, farm implements, and sur-

face water (Ejeta 2007). The geographical distribution and the

level of infestation of this parasitic weed are steadily increasing

and more increase is expected because of the adverse effects of

climate change (Mohamed et al. 2007). Striga lacks its own root

system, and therefore depends completely on maize for nutrients

and water for survival for 6–8 weeks while still under the ground

once attached to the host plant (Bebawi and Mutwali 1991; Badu-

Apraku and Fakorede 2017). The seedling develops haustoria,

which penetrates the roots of the maize plant to syphon

nutrients and photosynthates (Badu-Apraku and Fakorede 2017).

As a result, Striga parasitism affects the crop growth, biomass

partitioning, and the nutrient status of the maize plant. Striga in-

festation in maize causes chlorotic blotches, scorching, or “firing”

of leaves particularly around the margins, wilting of foliage,

stunting, spindly stems caused by the preferential allocation of

biomass to the roots, and poor grain filling (Menkir et al. 2012;

Badu-Apraku and Fakorede 2017). These deleterious effects of

Striga are observed on the host plant even before its emergence

from the soil (Parker 2013; Badu-Apraku and Fakorede 2017).
The deleterious impact of Striga has been reported in 25 coun-

tries in Africa, the most severely affected being sub-Saharan

Africa (SSA) countries (Parker 2012). A single S. hermonthica plant

can inflict an approximately 5% loss in yield on a host plant
(Parker and Riches 1993), and high infestation can lead to total
crop failure (Badu-Apraku and Fakorede 2017). Striga has thus be-
come a major threat to food security, worsening hunger and pov-
erty, especially SSA countries (Pennisi 2010; Khan et al. 2014).
This impact of Striga is further complicated in SSA due to mois-
ture and nutrient stress caused by increased population pressure,
short land fallow periods, and minimal use of inorganic fertilizer
(De Groote et al. 2005). The severity of Striga attack increases with
the extent of the soil seed bank, existence of strain, variants and
races with different virulence, the reaction of the host cultivar,
and the environment (Babiker 2007).

Striga hermonthica is one of the most difficult parasitic weeds to
control (Nickrent and Musselman 2004). The approaches for
Striga control have been grouped into 4 independent options,
which includes cultural, chemical, genetic, that is the use of re-
sistant cultivars and biological control methods (Babiker 2007;
Sibhatu 2016). The control measures, such as hand pulling, irriga-
tion, crop rotation, herbicides, fallowing, high level of N applica-
tion, have proven ineffective in small holder farms (Gressel et al.
2004). This is primarily because of the parasite’s highly special-
ized cycle, which is synchronized with the host’s growth, ability
of the parasite to parasitize a broad host range, and longevity of
seed of the parasite in the soil (Ejeta 2007; Herne 2009). An inte-
grated management method that involves the use of a number of
individual technologies combined together to act at different
stages of the parasite’s life is sometimes employed for an
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effective Striga control (Kim 1996). However, host plant resistance
is the most effective approach against Striga damage in maize
production and reduces Striga seed bank in the soil (Badu-Apraku
2005). This method is the most economical, suitable, and envi-
ronmentally friendly approach for Striga control (Hearne 2009;
Sibhatu 2016; Mandumbu et al. 2019). Considerable progress in
breeding for Striga resistance/tolerance have been made by scien-
tists at International Institute of Tropical Agriculture (Badu-
Apraku and Lum 2007; Menkir et al. 2012; Badu-Apraku, Fakorede
et al. 2016; Badu-Apraku et al., 2016; Yallou et al. 2016; Akaogu
et al. 2019; Menkir and Meseka, 2019).

The advancement in molecular breeding through rapid geno-
typing and next-generation sequencing technologies has enabled
the use of genome-wide association study (GWAS) to be used as a
tool for revealing genotype–phenotype associations in crop spe-
cies (Liu and Yan 2019). GWAS has been found to be a powerful
approach for identifying functional genes and alleles that are as-
sociated with complex traits in certain environments (Li et al.
2016; Zhu et al. 2018). This association is based on linkage dis-
equilibrium which is a result of association of a particular trait
with a neighboring genetic variation of another trait (Liu and Yan
2019). Unlike quantitative trait locus (QTL) mapping which
results in a relatively low-resolution map, genome-wide se-
quence association mapping gives a relatively high-resolution
mapping for identifying genes or regions associated with a partic-
ular trait (Xue et al. 2013; Liu and Yan 2019). Several studies have
employed GWAS to detect QTLs and genomic regions associated
with biotic and abiotic stresses (Shikha et al. 2021). Wang et al.
(2012) identified 18 novel candidate genes associated with head
smut resistance in maize, 22 QTLs were revealed for gray leaf
spot among biparental populations and association mapping
panel of 410 tropical/subtropical inbred lines (Kibe et al. 2020).
Adewale et al. (2020) conducted GWAS on Striga resistance traits
with 132 early maturing inbred lines. Two putative genes
(ZmCCD1 and amt5) located on chromosome 9 and 10 were
found to

be linked to plant defense mechanism against Striga. In an-
other study involving 380 diverse tropical inbred lines, Gowda
et al. (2021) identified a set of 32 candidate genes physically near
the significant SNPs with varying roles in plant defense against
biotic stresses. Although some GWAS studies have been con-
ducted to detect candidate genes for Striga resistance, none of the
QTLs detected have been employed in Striga resistance breeding.
Therefore, there is a need to conduct additional studies using dif-
ferent genotypes to detect more QTL so as to facilitate the intro-
gression of novel Striga resistant genes into maize breeding
programs in SSA. The objectives of this research were to (1) deter-
mine the genetic structure of a panel of 141 diverse extra-early
maturing white quality protein maize (QPM) inbred lines with
varying levels of resistance to S. hermonthica parasitism and (2)
identify significant SNPs and putative genes associated with grain
yield and other Striga adaptive traits under Striga-infested condi-
tions.

Materials and methods
Genetic materials
One hundred and sixty-nine extra-early QPM inbred lines from
the International Institute of Tropical Agriculture (IITA) Maize
improvement program (MIP) were used for this study. The inbred
lines comprised 163 S8 inbred lines, 4 standard IITA testers
(TZEEQI 294, TZEEQI 321, TZEEQI 7, and TZEEQI 134), and 2 in-
bred checks (TZEEQI 11 and TZEEQI 60) with combined resistance

to Striga, tolerance to drought and low soil N. The 163 inbred lines
were extracted from the F1 maize hybrids of 9 biparental crosses
involving crosses among extra-early white QPM inbred testers
and early maturing white QPM inbred testers. The testers and the
checks were extracted from Striga-resistant populations. The F1
hybrids were taken through a cycle of backcrossing to the extra-
early inbred testers to recover the earliness. The BC1F1 with desir-
able agronomic characteristics were selected using the pedigree
selection method from each backcrossed population, and ad-
vanced through repeated inbreeding to the S8 generation.

Field trials
The experiments were conducted under Striga-infested condi-
tions at Mokwa (9� 180N and 5� 040E, 457 m asl, 1,100 mm annual
rainfall) in 2019 and 2020 and Abuja (9� 150N and 7� 200E, 300 m
asl, 1,700 mm annual rainfall) in 2020. At all locations, the experi-
ments were laid out using a 13 � 13 lattice design with 2 repli-
cates and single row plots each 3-m long, spaced 0.75 m apart
with 0.4 m between plants in each row. Three seeds were sown
per hill, and later thinned to 2 plants per hill at 2 weeks after
planting (WAP) to obtain a plant population density of 66,000-
plants ha�1.

Each plot was artificially infested with about 5,000 germinable
S. hermonthica seeds/hill. The Striga infestation method developed
by IITA-MIP was adopted to ensure uniform Striga infestation
with no escapes (Kim 1991; Kim and Winslow 1991). The amount
of fertilizer applied was about 30 kg ha�1 and was split applied.
The time of first application was delayed to 21 days after planting
so as to subject the maize plants to stress to stimulate the pro-
duction of strigolactones in an effort to enhance good germina-
tion of Striga seeds, and the attachment of the Striga plants to the
roots of the maize plants. Top dressing was done at about 35 days
after planting. Weeds other than Striga were constantly removed
by hand to ensure good weed control.

Data collection
Data were collected on the number of emerged Striga plants at 8
and 10 WAP and host plant damage syndrome rating at 10 WAP.
The host plant damage syndrome rating was recorded on a scale
of 1–9 (1¼normal plant growth, no visible symptoms, and
9¼ complete scorching of all leaves, causing premature death or
collapse of host plant and no ear formation; Kim 1991). Data were
also collected on ear aspect, number of ears per plant, and grain
yield (Badu-Apraku et al. 2011).

Data analysis
Analysis of variance was performed for the inbreds evaluated in
Striga-infested environments using the PROC GLM in SAS 2014.
The entry means were adjusted for block effects, according to the
lattice design. Each year–location combination was considered as
a test environment. The environments, replications, and blocks
were treated as random factors. Data on the number of emerged
Striga plants were transformed as [log (countsþ 1)] to reduce the
heterogeneity of variance for Striga counts. Restricted maximum
likelihood estimates of the genetic and phenotypic variances of
the inbreds were obtained with SAS PROC Varcomp and used to
compute the broad-sense heritability for each trait. Correlation
analysis was done using the performance analytics package in R.
The phenotypic data across environments were collapsed to a
single best linear unbiased estimate (BLUE) value using the linear
mixed models in META—R (Bates et al. 2015; Alvarado et al. 2020)
as follows:
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YIJKL ¼ lþ BðEÞJðiÞ þ Gk þ GEij þ eijkl;

where Yijkl ¼ phenotypic observation for a trait, l ¼ grand mean,
E ¼ environmental effect (location), B(E) ¼ replication effects
nested in location, G ¼ genotypic effect, GE ¼ genotype by envi-
ronment interaction, e ¼ random residual error. Broad sense heri-
tability (H2) estimates were calculated from the phenotypic
variance (r2p) and the genotypic variance (r2g) (Hallauer et al.
2010).

Genotyping and genotypic data analysis
One leaf per plant was collected from 15 representative plants to
form a bulk of each of 141 inbred lines 2 WAP in the IITA maize
breeding nursery in Ibadan. The leaf tissues were placed in jute
bags and freeze-dried using FreeZone Freeze Dryer (Labconco,
USA) following the recommendations of the manufacturer’s
manual. Genomic DNA was isolated from freeze-dried leaf tis-
sues of each inbred line following the modified Cetyl-trimethyl
ammonium bromide (CTAB) protocol as described by Azmach
et al. (2013). The DNA quality and quantity analysis were per-
formed using the UV/Vis Absorbance protocol in the FlUOstar
Omega microplate reader (BMG LABTECH) following the manu-
facturer’s manual. Genotyping analysis of the inbred lines was
performed using the high-density whole-genome profiling of
Diversity Arrays Technology sequencing (DArTseq). The
extracted genomic DNA samples were sent to DArT Pty Ltd,
Australia (https://www.diversityarrays.com) for DArTseq analysis
following the protocol described by Jaccoud et al. (2001).

High-throughput genotyping was carried out in 96 plex follow-
ing the DArTseq protocol. The 49,184 DArTseq markers obtained
as raw SNPs were filtered to eliminate SNPs with missing rate
greater than 10%, heterozygosity greater than 20%, and minor al-
lele frequency (MAF) less than 5%. SNPs with unknown or multi-
ple chromosome locations were also eliminated. After quality
filtering, a total of 8,144 DArTseq markers distributed across the
10 maize chromosomes were retained for the population struc-
ture and for GWAS analyses.

Population structure and kinship analysis
Population structure and kinship analyses were conducted to de-
termine the extent of genetic diversity among the inbred lines.
Structure software version 2.3.3 (Pritchard et al. 2000) was used to
cluster the 141 inbred lines into populations. Structure simula-
tions were carried out using an admixture model with a burning
period of 10,000 iterations, followed by Markov chain Monte
Carlo set at 10,000. The assumed number of subpopulations was
simulated from k¼ 1 to k¼ 10 for an initial assessment of the
most likely number of subpopulations, each K was run 10 times.
The ideal number of sub-populations (K) was found by examining
the optimal DK value (Evanno et al. 2005) in STRUCTURE
Harvester (Earl and von Holdt 2012). Structure population was
then plotted using barplot function implemented in R. The phy-
logeny tree was constructed using ape version 5.0 implemented
in R (Paradis and Schliep 2019). The marker-based kinship matrix
K was calculated with the same genotypes using the VanRaden
method, and then used to create a clustering heat map of the as-
sociation mapping panel in the GAPIT (Lipka et al. 2012).

Association analysis
The association between SNP genotypes and the phenotypes was
determined using a compressed linear model implemented in
GAPIT (Genome Association and Prediction Integrated Tool)—R
package (Lipka et al. 2012). Mixed linear method (MLM) and

SUPER (Tang et al. 2016) were tested for association analysis. The
MLM adopted was proposed by Yu et al. (2006) with each molecu-
lar marker considered a fixed effect and evaluated individually: Y
¼ Xb þ Wa þ Qv þ Zu þ e; where Y is the observed vector of
means; b is the fixed effect vector (p� 1) other than molecular
marker effects and population structure; a is the fixed-effect vec-
tor of the molecular markers; � is the fixed-effect vector from the
population structure; u is the random effect vector from the poly-
genic background effect; X, W, and Z are the incidence matrice
from the associated b, a, �, and u parameters; e is the residual ef-
fect vector. Quantile–quantile (Q–Q) plots were generated by plot-
ting the negative logarithms (�log10) of the P-values against their
expected P-values to fit the appropriateness of the GWAS model
with the null hypothesis of no association and to determine how
well the models accounted for the population structure. The
Manhattan plot was generated for visualizing GWAS on the entire
genome and zoom mapping was performed on a particular chro-
mosome after identifying a significant SNP marker. The marker
effect or SNP contribution was estimated for the significant SNPs
using multiple regression analysis using lme4 function imple-
mented in R where the trait was considered as a response vari-
able while the SNP markers above the Bonferroni threshold for
the trait was the independent variable. A threshold of –log (p) ¼ 3
was used to declare significant marker–trait associations, which
were determined based on the Q–Q plots and distribution of P-
values for all the measured traits (Gao et al. 2016; Sukumaran
et al. 2018; Mogga et al. 2018).

Results
Evaluation of phenotypic traits
The combined analysis of variance of the 169 inbred lines (includ-
ing the 2 checks) across Striga-infested environments is presented
in Table 1. The results revealed significant (P < 0.05) environment
(E) and genotype mean squares for measured traits. Genotype �
environment interactions were not significant (P < 0.05) for the
number of emerged Striga plants at 8WAP and 10 WAP. Broad
sense heritability (h2) estimates on plot mean basis ranged from
46% for Striga damage at 10 WAP to 69% for ear aspect.
Moderately high broad sense heritability was observed for the
measured traits.

The phenotypic correlations among grain yield and other mea-
sured Striga adaptive traits differed under artificial Striga infesta-
tion (Fig. 1). Grain yield had significant negative correlation with
Striga damage at 8 WAP (r¼�0.58**) and 10 WAP (r¼� 0.71**), ear
aspect (r¼�0.85**). Significant and positive correlations were
obtained between Striga damage at 8 WAP and Striga damage at
10 WAP (r¼ 0.56**), number of emerged Striga plants at 8 WAP
and number of emerged Striga plants at 10 WAP (r¼ 0.72**), ear
aspect and Striga damage at 8 WAP (r¼ 0.67**), and Striga damage
at 10 WAP (r¼ 0.78**).

Population stratification and genetic diversity
The results revealed that PIC ranged from 0.09 to 0.37 with an av-
erage of 0.24 whereas the heterozygosity averaged 0.08 and var-
ied from 0.00 to 0.50 (Supplementary Fig. 1). The mean of the
minor allele frequencies of the 8,145 primers was 0.14 with mini-
mum and maximum minor allele frequencies of 0.04 and 0.5, re-
spectively. Gene diversity varied from 0.10 to 0.50 with an
average of 0.33.

The population structure analysis of the inbred lines showed
that delta K values from the mean log-likelihood probabilities
peaked at k¼ 3. At k¼ 3, 84% of the inbred lines were assigned to
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Table 1. Mean squares of grain yield and other agronomic traits of 169 extra early maturing QPM inbred lines evaluated across Striga-
infested conditions in Mokwa 2019 and 2020, and Abuja 2020.

Source DF Yield,
kg/ha

Striga damage
ratings at 10WAP

Emerged Striga
plants at 8 WAP

Emerged Striga
plants at 10 WAP

Ear
aspect

Ears per
plants

Environment (E) 2 24,506,574** 324.87** 95.80** 62.48** 182.17** 20.11**
Replicate (ENV) 3 7,491,412** 41.38** 1.77** 1.11** 16.17** 1.21**
Block (ENV*Rep) 74 2,071,579** 2.29** 0.11** 0.13** 1.84** 0.19*
Genotype 168 2,178,729** 2.47** 0.12** 0.15** 4.23** 0.19**
Env*Genotype 336 1,041,579* 1.44** 0.08 0.08 1.39** 0.25**
Error 43 865,017 0.78 0.07 0.07 0.84 0.14
Heritability 65 46 48 47 69 —

*, **Significant at 0.05 and 0.01probability levels, respectively.

Fig. 1. Correlation coefficients between Striga resistance indicator traits and other agronomic traits of early maturing QPM inbred lines under artificial
Striga infestation at Mokwa and Abuja 2019 and 2020. SR 8WAP ¼ Striga damage symptoms rating at 8WAP, SR 10WAP ¼ Striga damage symptoms
rating at 10 WAP, SC 8WAP¼ number of emerged Striga plants at 8 WAP, SC 10WAP ¼ number of emerged Striga plants at 10 WAP, YIELD ¼ grain yield,
EPP—number of ears per plant, and Ear Aspect ¼ ear aspect.
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3 groups, with only 16% of the lines assigned to the mixed group.
A total of 98 inbred lines were placed in group 1, 13 in group 2, 7
in group 3, and 23 in the mixed group. The 3 groups comprised in-
bred lines derived from 2 or more germplasm sources. The phy-
logeny tree displayed 3 genetic groups and was aligned with the
kinship population structure (Fig. 2). The heat map of the values
in the kinship matrix created from the 141 inbred lines also
revealed 3 groups which showed relatedness with a few large
blocks in the population (Supplementary Fig. 2).

Genome-wide association analysis
Under artificial Striga infestation, a total of 22 significant SNPs
were associated with 5 different traits at a GWAS threshold of –
log (p) ¼ 3 (Table 2). The trait variation explained by individual
marker (R2) varied from 14% to 22%. Five SNP markers were sig-
nificantly associated with grain yield (Fig. 3). These markers were
located on chromosomes 1, 5, 8, and 9, with the phenotypic varia-
tion explained by these markers ranging from 20% to 21%. Four
of these markers had negative quantitative trait nucleotide (QTN)
effects with the MAF ranging from 0.05 to 0.13. Striga damage rat-
ings at 10 WAP was associated with 8 markers (Fig. 3). These
markers were located on chromosomes 1, 3, 5, 6, 7, 8, 10, and
they explained 14–17% phenotypic variation. Four of the associ-
ated markers had negative QTN effects with the MAF ranging
from 0.05 to 0.12. Six markers located in chromosomes 4, 9, and
10 were detected for emerged Striga plants at 8 WAP (Fig. 4).

These markers accounted for 14–15% of the phenotypic variation.
Four of these associated markers had negative QTN effects with
the MAF ranging from 0.06 to 0.48. Two markers located on chro-
mosomes 8 and 10 were associated with the number of emerged
Striga plants at 10 WAP (Fig. 4) and explained 21% of the pheno-
typic variation. One of the SNP markers had MAF varying from
0.13 to 0.48. One SNP marker located on chromosome 8 was asso-
ciated with ear aspect (Fig. 5) and explained 22% of the pheno-
typic variation. The MAF of this marker was 0.50. Marker
S1_163520946 located on chromosome 1 was repeatedly found to
be associated with grain yield and Striga damage ratings at 10
WAP.

Discussion
Phenotypic variation
The significant genotypic variation observed among the inbred
lines for grain yield and other measured traits in our study indi-
cated the existence of genetic variability among the extra-early
maturing QPM inbred lines. The significant environmental effects
for measured traits indicated that the research conditions were
unique and provided distinct information on the QPM inbred
lines. The differential response of the genotypes for grain yield
and other measured traits suggested that the inbred lines per-
formed differently under the research condition. This differential
performance could be attributed to variation in environmental

Fig. 2. Graphical representation of the population structure of 141 maize inbred lines. a) Phylogeny tree showing the 3 sub-populations. The colors
represent each sub-population. b) Plot of mean likelihood of delta K against the number of K groups. The highest peak observed at K¼3 signified the
grouping of the accessions into 3 groups. c) Population structure originated from the STRUCTURE based on K¼ 3. Each vertical barplot represented a
single maize inbred.
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Table 2. Summary of SNP markers associated with Striga-adaptive traits evaluated under Striga-infested conditions.

Traits SNP maker Chr Position MAF -log10(P)’ P-value r2 (%) Effect

Grain yield chr8_328928 8 328928 0.13 3.55 2.82 � 10�4 21.38 �390.03
chr8_135475183 8 135475183 0.07 3.42 3.80 � 10�4 20.99 �325.99
chr5_210580022 5 210580022 0.12 3.36 4.41 � 10�4 20.79 �409.87
chr9_23155189 9 23155189 0.10 3.35 4.47 � 10�4 20.77 254.16
chr1_163520946 1 163520946 0.05 3.24 5.76 � 10�4 20.44 �334.13

Striga damage ratings at 10 WAP chr6_79398477 6 79398477 0.09 3.73 1.8 � 10�4 17.17 0.48
chr8_17232945 8 17232945 0.48 3.71 1.96 � 10�4 17.08 �0.24
chr5_194107033 5 194107033 0.09 3.67 2.14 � 10�4 16.96 �0.68
chr10_112661466 10 112661466 0.12 3.50 3.17 � 10�4 16.41 0.38
chr1_163520946 1 163520946 0.05 3.47 3.38 � 10�4 16.32 0.51
chr3_135777833 3 135777833 0.06 3.31 4.85- � 10�4 15.81 �0.46
chr6_79656637 6 79656637 0.07 3.20 6.30 � 10�4 15.45 �0.44
chr7_14310701 7 14310701 0.07 3.04 9.07 � 10�4 14.95 0.42

Emerged Striga plants at 8WAP chr4_18563948 4 18563948 0.20 3.14 7.22 � 10�4 16.16 �0.08
chr4_240388223 4 240388223 0.13 3.11 7.80 � 10�4 16.06 0.10
chr9_156894729 9 156894729 0.06 3.08 8.31 � 10�4 15.97 0.19
chr10_134476659 10 134476659 0.07 3.02 9.57 � 10�4 15.78 �0.12
chr4_238158257 4 238158257 0.17 3.01 9.74 � 10�4 15.75 �0.09
chr4_183275539 4 183275539 0.10 3.00 9.96 � 10�4 15.72 �0.15

Emerged Striga plants at 10WAP chr10_85787634 10 85787634 0.48 3.83 1.50 � 10�4 21.86 1.65
chr8_180192054 8 180192054 0.13 3.80 1.58 � 10�4 21.79 �2.99

Ear aspect chr6_125302216 6 125302216 0.50 3.35 4.49 � 10�4 22.38 0.23

Fig. 3. The Manhattan and Q–Q plots of the SNP-based association mapping for (a) grain yield and (b) Striga damage at 10 WAP under artificial Striga
infestation.
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factors such as temperature, rainfall, and soil types in the differ-
ent test environments (Badu-Apraku and Lum 2007; Badu-
Apraku et al. 2010).

The moderate to high heritability estimates observed for grain
yield and other Striga adaptive traits implied the efficiency of SNP
in the maize panel in the identification of true associations be-
tween the markers and putative genes (Adewale et al. 2020). The
inverse relationship between grain yield and number of emerged
Striga plants and Striga damage syndrome ratings implied that in-
creased number of emerged Striga plants led to a lower grain yield
(Menkir et al. 2012) and that lower Striga damage syndrome rat-
ings led to an increased grain yield (Gowda et al. 2021). Previous
studies recommended the simultaneous selection of reduced
Striga damage syndrome ratings and the number of emerged
Striga plants as indicators for Striga resistance under field infesta-
tion (Menkir and Kling 2007; Kim 1994; Kling et al. 2000).

Genome-wide association studies
In the GWAS analysis, the population structure information was
used to correct possible false discovery. Q–Q plots were generated
by comparing the observed and expected P-values under the null
hypothesis of no associations to determine how well the models
accounted for the population structure. The results revealed that
majority of points in the Q–Q plots were aligned on the diagonal
line for all the measured traits indicating that the model success-
fully accounted for population structure and familiar relation-
ships in the GWAS analysis. The whole-genome scan for
phenotypic and allelic variation in Maize Striga resistance identi-
fied 9 genomic regions on chromosomes 10, 9, 8, 7, 5, 4, 3, and 1
with significant �log10 values. At a threshold of –log (p) ¼ 3, a to-
tal of 22 markers were identified to be significantly associated
with Striga damage, number of emerged Striga plants, ear aspect,
and grain yield under Striga infestation. Information on the SNP

Fig. 4. The Manhattan and Q–Q plots of the SNP-based association mapping for (a) number of emerged Striga plants at 8 WAP (b) number of emerged
Striga plants at 10 WAP under artificial Striga infestation.
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markers from this study could accelerate the use of genomics-
informed selection techniques in breeding Striga resistant maize
cultivars.

Several QTL associated with various Striga resistance indicator
traits have been reported in earlier studies. For example, Badu-
Apraku et al. (2020) identified 116 QTLs associated with 4 Striga re-
sistance traits using biparental population derived from 2 early
maturing maize lines. A similar study by Badu-Apraku et al.
(2020) revealed 14 QTLs associated with 3 Striga resistance traits.
Adewale et al. (2020) reported 24 markers significantly associated
with Striga damage, number of emerged Striga plants, number of
ears per plant, ear aspect, and grain yield. Also, Gowda et al.
(2021) identified a total of 57 significant markers for Striga resis-
tant traits and yield distributed across the maize genome and
controlled by a few major and many minor genes. Stanley et al.
(2021) identified 30 significant SNPs that were significantly asso-
ciated with 3 Striga resistance trait. Among these studies,
S8_17232945 which was detected for Striga damage syndrome rat-
ing in this study was found to overlap with 1 QTL reported by
Badu-Apraku et al. (2020). The differential QTL mappings ob-
served in these experiments could be attributed to differences in
the genetic materials used for the studies (Kaur et al. 2021).

The QTL analysis in this study, and previous studies provided in-
formation on the chromosonal regions controlling Striga resistance,
which can be crucial to breeding Striga resistance cultivars through
marker-assisted breeding. However, these QTLs have not been uti-
lized in maize Striga resistance breeding due to factors, such as lim-
ited marker–trait association, a low number of markers used in
mapping, small phenotypic variance explained, differences in the
genetic backgrounds, and environmental effects (William et al.
2007; Tuberosa 2012). A meta-QTL analysis of the results of these
findings can be employed to refine the number and position of the
QTLs to identify stable QTLs (Sheoran et al. 2022). Meta-QTL

analysis has been conducted to successfully locate the regions in
the genomes of various traits in different crops. In maize, Chen et al.
(2017) subjected 999 QTLs to meta-QTL analysis and obtained a to-
tal of 76 MQTLs across the maize genome. Three potential candi-
date genes (GRMZM2G359974, GRMZM2G301884, and GRMZM2
G083894) were associated with kernel size and weight within 3
MQTL using regional association mapping. Guo et al. (2018) using a
total of 428 individual QTLs for 23 root-related traits identified 53
Meta-QTLs (MQTLs) retrieved over 10 maize chromosomes. Three
maize genes (GRMZM5G813206, GRMZM2G167220, and GRMZ
M2G467069) that could play important roles on lateral root and
crown root development of maize were also identified. Wang et al.
(2022) carried out MQTL analysis using 282 QTLs from 25 experi-
ments and identified 11 and 34 MQTLs associated with grain dry
matter and low grain water content, respectively. Sheoran et al.
(2022) using a total of 542 QTLs, detected 32 mfeta-QTL possessing
1,907 candidate genes for different abiotic (drought, water logging,
heat, and cold) stresses. Furthermore, MQTL 2.1, 5.1, 5.2, 5.6, 7.1,
9.1, and 9.2 were found to control different stress-related traits for
combined abiotic stress tolerance. Meta-QTL analyses have also
been conducted in crops such as Barley (Zhang et al. 2017; Khahani
et al. 2019), Wheat (Soriano et al. 2021; Venske et al. 2019), Rice
(Sandhu et al. 2021; Prakash et al. 2022), and Cotton (Said et al. 2013;
Xu et al. 2020).

Conclusion
The 141 QPM inbred lines used for this study displayed high ge-
netic variability in response to the Striga-related traits. The
GWASs conducted in this research revealed 22 SNPs that were
significantly associated with Striga resistance adaptive traits. The
identified SNP markers after validation would be invaluable for
molecular breeding for maize Striga resistance in SSA. A meta-

Fig. 5. The Manhattan and Q–Q plots of the SNP-based association mapping of ear aspect under artificial Striga infestation.
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QTL analysis should be employed for the identification of stable
QTLs from existing genomic regions that have been associated
with yield and other Striga resistance traits. This will facilitate
the detection of putative genes underlying Striga resistance in
maize.

Data availability
The datasets used in the present study are available at the IITA
CKAN repository. Genotypic data of 141 extra-early maturing
quality protein maize inbred lines: https://doi.org/10.25502/k6f5-
t130/d. Phenotypic data of 169 extra-early maturing quality pro-
tein maize evaluated under Striga conditions across 3 environ-
ments, 2019–2020: https://doi.org/10.25502/14yp-5w46/d.

Supplemental material is available at G3 online.
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