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A B S T R A C T   

With the gradual increase of microplastics (MPs) in water and wastewater streams, it is imperative to investigate 
their removal using tertiary treatment systems to minimize and preferably prevent their entrance into aquatic 
environments. Forward osmosis (FO) is a non-pressurized membrane process with potential applications in MPs 
removal from wastewater. However, efficient application of FO systems relies on developing high-performance 
FO membranes with low fouling tendency. MPs are proven as emerging foulants in membrane systems, dimin-
ishing their performance and lifetime and this highlights the need to consider MP fouling in developing sus-
tainable membranes. The current study focuses on a novel modification of thin film composite (TFC) FO 
membranes by MIL-53(Fe) as a water-stable and hydrophilic metal-organic framework. Experimental results 
demonstrated that the optimized FO membrane (0.2 wt% MIL-53(Fe)) achieved a significantly higher water flux 
(90% increase) with a 23% less reverse salt flux. The modified membrane also had significantly less flux decline 
in fouling experiments and higher flux recovery after physical cleaning compared to the control membrane 
affirming its higher antifouling efficiency. MIL-53(Fe) integration in the FO substrate proved to be a practical 
method for developing high-performance TFC FO membranes with improved antifouling properties against MPs 
and organic foulants.   

1. Introduction 

Microplastics (MPs), plastic particles smaller than 5 mm, have 
become a ubiquitous problem worldwide as their presence in aquatic 
systems causes health risks for animals and humans owing to their po-
tential biological toxicity at a molecular level [1,2]. MPs have been 
recognized as an urgent global problem by the World Health Organi-
zation (WHO), indicating the necessity to control their entrance into 
aquatic environments [3]. Wastewater treatment plants (WWTPs) play a 
significant role in increasing MP contamination in aquatic environments 
[4–6]; Simon et al. [7] estimated the concentration of MPs in the size 
ranges of 10–500 μm in the effluent of Danish WWTPs to be between 19 
and 447 MP/L that leads to a discharge of around 3 tons of MPs per year 
from Danish WWTPs alone. Hence, advancements in wastewater treat-
ment technologies are required to control MP entrance to waterways via 
the effluents of WWTPs. Forward osmosis (FO) has attracted attention 

from researchers to be employed as an encouraging system for treating 
complex wastewater streams [8–10]. FO process is a sustainable 
approach to removing MPs and other emerging contaminants from 
wastewater [11,12]. 

FO system uses osmotic pressure difference to drive water from the 
feed solution (FS) across a FO membrane to the draw solution (DS) 
without using hydraulic pressure [13,14]. Currently, thin film composite 
(TFC) membranes are the most common membranes used for the FO 
process. Unlike pressure-driven membrane processes, in the FO process, 
no pressure and temperature are exerted, that reduces capital expendi-
ture (CAPEX) and operating expense (OPEX) making it a suitable 
wastewater treatment method [15]. However, the technical feasibility 
and practical utility of the FO process strongly rely on the performance 
of FO membranes (i.e., high water permeability, low reverse salt flux 
(RSF), and high fouling-resistant characteristics) [16–18]. RSF is defined 
as the permeation of draw solute from the DS into the FS that results in 
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decreasing the driving force, increasing the need, and subsequently the 
cost of regenerating and replenishing the DS [9,19–22]. Moreover, the 
salt diffusion through the porous substrates causes serious internal 
concentration polarization (ICP) in the substrate layer, decreasing the 
effective osmotic driving force and subsequently reducing water flux 
[15,23]. RSF is associated with the characteristics of the DS and mem-
brane [9]. An ideal semipermeable membrane prevents the permeation 
of any dissolved draw solute into the FS. Fouling is another performance 
indicator for FO membranes. Although fouling propensity of FO mem-
branes is lower than that of the pressure-driven membranes, it can still 
be detrimental to the FO performance [24–27]. Therefore, fouling 
mitigation of FO membranes has been a key focus of recent research in 
the field. Collectively, water flux, RSF, and fouling are closely interre-
lated in the FO process [28]. Through optimizing substrate and/or active 
layer properties, TFC FO membranes with high water flux, low RSF, and 
low fouling propensity can be developed [17]. 

One of the main approaches to enhance membrane performance is 
the incorporation of nanomaterials into the membrane structure (sub-
strate or active layer). Numerous studies have modified the TFC FO 
membranes using various nanomaterials (e.g., carbon nanotubes, silica, 
graphene oxide, zwitterions) where the incorporation of the emerging 
nanomaterials into TFC FO membranes has resulted in better perfor-
mance and antifouling properties of the membranes as detailed in the 
recent review papers [29–32]. However, incorporating additives in the 
active layer of TFC FO membranes may interfere with polyamide (PA) 
formation by preventing the polymer end functional groups from 
properly reacting, resulting in the formation of some defects and per-
formance instability of the developed membranes [33,34]. Therefore, 
improving the performance of FO membranes by optimizing and 
modifying the substrate layer has been a key focus of recent studies. 
Substrate modification of TFC FO can enhance FO membrane perfor-
mance and fouling behavior through impacting structural parameter (S) 
and PA layer formation without initiating defects in the selective PA 
layer; hence, it could be a more promising way to enhance the TFC FO 
membranes performance. For instance, the recent modifications of FO 
substrates, such as using reduced aliphatic polyketone [10] and poly 
[3-(N-2-methacryloylxyethyl-N, N-dimethyl)-ammonatopropanesulfo-
nate] (PMAPS) [33], have proven to enhance the performance and 
antifouling characteristics of TFC FO membranes upon substrate 
modification. 

Metal-organic frameworks (MOFs) are emerging porous materials 
consisting of inorganic metal ions bonded with organic linkers. The 
application of MOFs in membrane development has been an area of 
rapidly growing interest owing to their unique perceptible physico-
chemical properties such as high specific surface area, high porosity, 
mild synthesis conditions, and having both organic and inorganic 
properties [35–37]. The presence of organic linkers in the structure of 
MOFs improves the affinity between MOFs and organic polymers, 
forming non-covalent bonds between them that make them more 
compatible nanomaterials to be integrated with polymeric membranes 
compared to merely inorganic nanomaterials [36,38,39]. However, the 
application of MOFs in water treatment membranes is still in its infancy 
when compared with its application in gas separation membranes [40]. 

In the application of TFC FO membranes, MOFs such as ZIF-8 [41, 
42], UiO-66-NH2 [43], MIL-53-NH2(Al) [44], MIL-53(Al) [36], 
MOF-801 [38], MIL-101(Cr) [45], UiO-66 [46], UiO-66-(COOH)2 [47] 
have been incorporated in the PA layer of TFC FO membranes with 
enhanced water permeability and antifouling resistance of the mem-
branes. However, only a few studies investigated the impact of MOFs’ 
presence in the substrates of TFC FO membranes. Ma et al. [48] incor-
porated UiO-66 in the substrate of TFC FO and reported improved water 
flux of the optimized modified membrane over the control membrane. 
Arjmandi et al. [49] applied MOF-5 to prepare TFC FO substrates and 
reported enhanced water flux of the modified TFC FO membranes. 
However, the antifouling characteristics of as-modified membranes 
were not investigated. Furthermore, as MPs are proven emerging 

foulants in wastewater affecting membrane performance and efficiency, 
exploring their impact on advanced membranes is required toward the 
sustainable development of membranes [118][5,50,51]. Previous 
studies have proven that even a small concentration of MPs (i.e., 1–10 
ppm) could have significant impacts on the performance and fouling of 
the membranes [51,52], highlighting the need to conduct further 
research to better understand the impact of MPs on membranes and 
develop sustainable membranes resistant to MPs fouling. Despite the 
prospects of MOFs to improve the performance and antifouling resis-
tance of FO membranes, no study has evaluated the modification of FO 
membranes with MOFs targeting the issue of MPs in wastewater. Hence, 
the potential of MOFs as a modifying agent in the FO substrates to 
improve membrane performance as well as antifouling characteristics 
while considering MPs as emerging pollutants in wastewater intrigued 
this study. 

Incorporation of MOFs in the membrane for water application re-
quires water-stable MOFs. Iron-based MIL-53 (MIL-53(Fe)) is a hydro-
philic and water-stable MOF with relatively higher water stability 
compared to the other common MOFs (i.e., aluminum-based and copper- 
based MOFs) [53,54]. In addition, MIL-53(Fe) has shown a good inter-
action with polymeric membranes as an additive [39,55,56]. However, 
the incorporation of MIL-53(Fe) in the substrate of TFC FO membranes 
has not been reported in the literature. Therefore, the current study is 
evolved with the vision to explore the efficiency of incorporating MIL-53 
(Fe), as a prospective additive, into the substrate layer of TFC FO 
membranes for tailoring the membranes’ performance and properties 
for the first time. Herein, the membrane chemistry, morphology, per-
formance, and antifouling behaviors were systematically evaluated. The 
synthesized MIL-53(Fe) was characterized using X-Ray diffraction 
(XRD), Fourier transform infrared spectroscopy (FTIR), scanning elec-
tron microscopy (SEM), and Brunauer-Emmett-Teller (BET). The 
developed membranes were characterized using XRD, FTIR, SEM, con-
tact angle, and atomic force microscopy (AFM). The fouling experiments 
were conducted using solutions containing polyethylene (PE) MPs as the 
most common type of MPs in WWTP effluents [4,5], bovine serum al-
bumin (BSA) as a model of organic foulants, and combined BSA and 
MPs. 

2. Materials and methods 

2.1. Materials 

For this study, polysulfone granules (PSf Udel P-3500) were pur-
chased from Solvay (Belgium). Terephthalic acid (Benzene-1,4-dicar-
boxylic acid (1,4-BDC)), analytical standard), Iron(III) chloride 
hexahydrate (FeCl3⋅6H2O, ≥97%), N, N-Dimethylformamide (DMF, 
99.8%), methanol (99.8%), 1-Methyl-2-pyrrolidinone (NMP, 99.5%), 
poly(vinylpyrrolidone) (PVP, MW: 10 kDa), M-phenylenediamine flakes 
(MPD, 99%), triethylamine (TEA, 99.5%), trimesoyl Chloride (TMC, 
98%), n-Hexane (>99%), bovine serum albumin (BSA), and sodium 
dodecylbenzene sulfonate (SDBS, technical grade) were obtained from 
Sigma Aldrich (Australia) and were used as received without further 
purification. Sodium chloride (NaCl) was sourced from Chemsupply 
(Australia). PE microspheres with the size range of 740 nm–4990 nm 
and the density of 98 g/cc, were purchased from Cospheric (USA) and 
were supplied in dry white powder form. 

2.2. MOF synthesis 

MIL-53 (with the chemical formula of M(OH) (O2C–C6H4–CO2)) is 
prepared by trans bridging of a metal corner-sharing (i.e., Fe3+, Al3+, 
Cr3+) linked by 1,4-benzene-dicarboxylate units forming a crystalline 
porous framework [36]. Briefly, 6.75 mM of FeCl3⋅6H2O and 4.5 mM of 
1,4-BDC were dissolved in 40 mL DMF solution under vigorous stirring 
for 30 min at room temperature. The resultant solution was moved into a 
Teflon-lined stainless-steel autoclave (100 mL) and placed in an oven at 
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120 
◦

C for 15 h. The autoclave was left to cool down. Then, the orange 
precipitates were collected using centrifugation at 9000 rpm for 15 min. 
Finally, the supernatant was removed, and the obtained MIL-53(Fe) was 
washed using DMF and heated methanol (40 ◦C) followed by centrifu-
gation (9000 rpm and 15 min). The methanol washing was repeated 
three times and the precipitates were dried at 60 ◦C for 24 h in a con-
ventional oven. 

2.3. Membrane fabrication 

Flat sheet PSf substrates were fabricated by the phase inversion 
method explained elsewhere [57]. Briefly, 16 wt% PSf granules and 2 wt 
% PVP were dissolved in an NMP solution. The solution was placed on a 
magnetic stirrer for 24 h and then kept unstirred for 10 h at room 
temperature for the degassing process. The solutions were cast on a 
non-woven PET fabric using a casting knife (Elcometer 3530) with 200 
μm thickness followed by immediately immersing the in DI water for 10 
min. The modified PSf substrate layers were prepared through the same 
approach with the addition of various MIL-53(Fe) concentrations (0.05, 
0.1, 0.2, and 0.5 wt%) in the NMP solution followed by 30 min of son-
ication prior to the addition of PSf and PVP. Finally, the resulting 
membranes were washed with and stored in DI water at 4 ◦C to be used 
for the fabrication of the active layer of the TFC FO membranes. The 
prepared substrates in this manuscript are denoted as PSf0, PSf1, PSf2, 
PSf3, and PSf4 corresponding to the MIL-53(Fe) concentrations of 0, 
0.05, 0.1, 0.2, and 0.5 wt% for the PSf layers, respectively. 

The active layer of the TFC FO membrane was prepared by interfacial 
polymerization on the surface of the PSf substrate [58,59]. The fabri-
cated PSf substrate was clamped inside a frame (made of two acrylic 
plates and a rubber gasket). Then, the membrane surface was soaked in 
an aqueous solution of MPD (2 wt%) and TEA (1 wt%) for 2 min, fol-
lowed by the careful removal of the excessive solution on the substrate 
surface with an air knife until no water droplets were observed on the 
membrane surface. Subsequently, a TMC in n-hexane solution (0.15 wt 
%) was gently poured onto the MPD-soaked substrate for 1 min forming 
a PA layer. The excess solution was drained off and the membrane was 
air-dried for 2 min. The membrane was then placed in an oven at 60 ◦C 
for 3 min. Finally, the as-prepared membranes were washed thoroughly 
with 500 mL DI water at room temperature and stored in DI water at 4 ◦C 
for further use. The prepared TFC membranes in this manuscript are 
denoted as TFC0, TFC1, TFC2, TFC3, and TFC4 corresponding to the 
MIL-53(Fe) concentrations of 0, 0.05, 0.1, 0.2, and 0.5 wt% in the PSf 
substrate layers, respectively. 

2.4. MOF characterizations 

X-ray diffraction (XRD) was performed using a PANalytical Empy-
rean diffractometer operated at a voltage of 40 kV and a current of 40 
mA with the Co-kα radiation (λ = 0.1789 nm). A PerkinElmer spec-
trometer was used to perform Fourier transform infrared spectroscopy 
(FTIR) in the range of 450–4000 cm− 1. Micromeritics Tristar II Plus was 
used to obtain the N2 adsorption-desorption isotherms and to analyze 
the specific surface area and pore size distribution. The samples were 
degassed for 5 h in a vacuum (at 110 ◦C) before the BET analysis. SEM 
images of the coated sample (a 10 nm layer of platinum) were obtained 
by using field emission scanning electron microscopy (FESEM, FEI 
Verios 460). 

2.5. Membrane characterization 

The functional groups of membrane surfaces were determined by 
attenuated total reflectance Fourier transform infrared spectroscopy 
(ATR-FTIR Spectrometer, PerkinElmer). The ATR sensor was cleaned 
with ethanol prior to each test. XRD patterns of the membranes were 
obtained at a rate of 0.01◦/s using a PANalytical EMPYREAN diffrac-
tometer. The surface and cross-sectional morphology and topography of 

the membranes) were examined using the FESEM (FEI Verios 460). 
Cross-section samples were prepared by peeling the membranes from 
the PET supports followed by submerging the peeled samples in a 
container of liquid nitrogen using a tweezer for a few seconds. The 
frozen membranes were then taken out and immediately fractured. All 
membrane samples were then dried for a few hours, mounted on 
aluminum stubs, and sputter coated with platinum (10 nm) using 
Polaron SC7640 sputter coater. SEM images were obtained at a voltage 
of 3–5 kV and a working distance of 5–7 mm. Energy-dispersive X-ray 
(EDX) spectroscope was used to acquire the elemental composition of 
the membranes with a voltage of 20 kV, and a working distance of 5.5 
mm. Atomic force microscopy (AFM, Nanosurf model C3000) was used 
to explore the roughness and 3D morphology of the membrane surfaces 
with a scanning area of 5 μm × 5 μm. Membrane samples were air-dried 
in a protected sample box (to avoid any contamination) for a few hours 
before analysis. Three replicates were done where the average results 
were reported. The contact angles of membranes were measured by an 
Attention Theta Optical tensiometer. At least five different points of each 
sample were measured, and the results were averaged. The porosity (ε) 
of the PSf substrates was calculated using: 

ε= (Ww − Wd)/ρw

(Ww − Wd)
/

ρw + Wd/ρp

∗ 100 (Equation 1)  

where Ww is the weight of the wet membrane with no excess water on 
the surfaces, Wd is the dry membrane after overnight drying at 60 ◦C, ρw 
is the density of water and ρp is the density of the polymer [60]. Three 
samples were measured, and the average results were reported. 

2.6. FO performance evaluation 

A laboratory-scale crossflow FO filtration system was used to 
conduct the performance analysis and fouling tests. The FO system 
included a membrane cell (CF016, Sterlitech), two gear pumps (Mas-
terflex, Sterlitech) for the circulation of FS and DS, two flowmeters (Site 
read panel mount flowmeter, Sterlitech) for controlling the flow rates (at 
0.5 L/min on both sides), and two pressure gauges to observe and 
control the zero hydraulic pressures on both sides. The mass change of 
DS (2 M NaCl with an initial volume of 2 L) was recorded using a balance 
(Ohaus) connected to a computer equipped with recording software. A 
schematic of the FO system used in this work is presented in Fig. S1. The 
RSF was measured by placing a conductivity meter (WTW multi-3430, 
Xylem Analytics) in the FS. Membrane water flux (liters per square 
meter hour (LMH)) was calculated using: 

Jw =
Vd,t − Vd,0

A.t
(Equation 2)  

where Jw is the water flux, Vd is the volume of the DS, A is the surface of 
the membrane and t is the measurement time. 

The RSF (g/m2h) was calculated using: 

Js =
CtVf ,t − C0Vf ,0

A.t
(Equation 3)  

where Js is the RSF, Vf is the volume and C is the salt concentration of the 
FS. The specific salt flux was determined as the ratio of RSF and water 

flux 
(

Js
Jw

)
. 

To determine the transport and structural parameters of the mem-
branes, the method developed by Tiraferri et al. [61] was followed. The 
method involved conducting a FO experiment in four stages using 
different concentrations of DS in each stage (i.e., 0.5, 1, 1.5 and 2 M 
NaCl). The water flux and RSF were measured in each step and these 
values were then used to fit the corresponding FO transport equations 
proposed in the method which gives the water permeability coefficient 
(A), the solute permeability coefficient (B), and the structural parameter 
(S) of the fabricated membranes. 
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2.7. Fouling analysis 

Three different solutions containing foulants (i.e., BSA, MPs, and 
combined BSA and MPs) were prepared to perform fouling experiments. 
Synthetic wastewater of 30 mM NaCl and 1 mM CaCl2 was used as the 
background solution that represents the similar ionic strength and ratio 
of Na/Ca in secondary wastewater effluents of WWTPs [62]. Humic 
substances and proteins were proven to cause irreversible fouling in FO 
systems treating secondary wastewater [63]. Here, BSA was selected as 
the model organic foulant to represent proteins in this study. The BSA 
solution was prepared by dissolving 100 ppm BSA in the background 
solution. This concentration was selected as the concentration of organic 
foulants in real wastewater are normally between 40 and 140 ppm [64]. 
The FS containing MPs was prepared by 10 ppm of PE MPs (740 
nm–4990 nm) and 0.1% SDBS surfactant in the background solution. PE 
MPs were used as a model of MP foulants as they are the most abundant 
type of MPs in the effluent of WWTPs [4,5]. SEM image (Fig. S2), FTIR 
spectra (Fig. S3) and the zeta potential measurement data of the MPs are 
presented in the Supplementary Information file. The 10 ppm concen-
tration of MPs was used in this work as per the data reported in a recent 
study exploring MPs in different stages of three WWTPs [65]. The 
calculation of MPs’ concentration based on the adapted date from the 
reference study is presented in the Supplementary Information file. The 
SDBS surfactant was used to form a more uniform suspension of MPs 
simulating their presence in real wastewater [66]. The FSs containing 
BSA, and MPs were used to study the combined fouling of organic fou-
lants and MPs. Each fouling test was run for 22 h at a crossflow velocity 
of 8 cm/s. The normalized flux J* was calculated from: 

J∗ =
J
J0

(Equation 4)  

where J0 was the initial permeate flux. 
The physical cleaning of membranes was performed using DI water 

on both sides of the FO system with a crossflow velocity of 16 cm/s for 
30 min [63]. Then, refreshed DS and DI water were used to determine 

the water flux under the same initial conditions (i.e., 2 L of 2 M NaCl as 
the DS, 4 L of DI water as the FS, and a crossflow velocity of 8 cm/s on 
both sides). The flux recovery rate was measured using: 

Flux Recovery Rate (%)=
Jc

J0
× 100 (Equation 5)  

where Jc and J0 are the water flux after the physical cleaning (LMH) and 
the initial water flux of the membrane (LMH), respectively. 

3. Results and discussion 

3.1. MOF characterization 

The X-Ray diffraction (XRD) patterns were collected to confirm the 
crystallinity of the synthesized MOFs. Fig. 1A depicts the sharp and clear 
X-ray diffraction pattern (10.8, 14.5, 21.9, highlighted peaks) of the as- 
synthesized MIL-53(Fe) confirming the formation of a crystalline MOF 
structure consistent with the literature [39,54]. FTIR spectrum of the 
MIL-53(Fe) is presented in Fig. 1B. The respective peaks at 749 and 547 
cm− 1 are related to the C–H band stretching of the benzene ring struc-
ture of terephthalic acid, and Fe–O band vibrations, respectively [54]. 
One absorption band at 1595 cm− 1, and two sharp vibrational modes at 
1507, and 1388 cm− 1 are ascribed to the typical C––O, and C–O band 
stretching, respectively confirming the presence of the BDC organic 
linker in the MOF structure [67]. Furthermore, the wide band vibration 
at 3390 cm− 1 is assigned to the typical O–H stretching, ascribing to the 
adsorbed water molecules on the MOF surface [39]. Specific surface area 
(SSA) and porosity are critical factors in the application of porous ma-
terials in different fields. Therefore, the textural properties and porosity 
of the as-synthesized MIL-53(Fe) were investigated through N2 
adsorption-desorption analysis. The MIL-53(Fe) particles reflected a 
specific surface area of 603.75 m2/g, and an average pore size of 2.26 
nm. Fig. 1D presents the SEM image of the MIL-53(Fe) that depicts a 
polygonal structure with a smooth surface and cornered edges. The 
particles had a size range of 500–2500 nm as per the dynamic light 

Fig. 1. (A) XRD pattern, (B) FTIR spectra, (C) N2 adsorption-desorption isotherms and pore-size distributions, and (D) SEM image of the as-prepared MIL-53(Fe) at a 
magnification of 35 kx. 
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scattering (DLS) data reported in Fig. S4. 

3.2. Membrane characterization 

3.2.1. Substrate characterization 
Fig. 2A shows XRD patterns of the control and modified PSf sub-

strates. The three broad peaks in the membrane patterns are related to 
the ordered entanglement regions of polysulfone chains [68]. The 
appearance of the characteristic peak (9.9◦) of MIL-53(Fe) in the 
modified substrates (PSf3 and PSf4) confirmed the successful incorpo-
ration of MIL-53 in the substrate matrix [69,70], however, the peak was 
indiscernible in PSf1 and PSf2 substrate owing to the low content of 
MIL-53(Fe) (i.e., 0.05% and 0.1%) in the casting solution. The incor-
poration of MIL-53(Fe) in PSf substrates is due to the hydrogen bonding 
and π-π interactions. Since MIL-53(Fe) consists of hydrogen bond 
acceptor sites (-OH), there is a possibility of hydrogen bond formation 
between the MIL-53(Fe) and PSf. Moreover, there are π-π interactions 
between aromatic groups of PSf and MIL-53(Fe) as illustrated in Fig. 2C 
[71,72]. The FTIR analysis of the substrates is presented in Fig. 2B. The 
FTIR spectra of all substrates showed the characteristic bands of poly-
sulfone (PSf): i.e., 1095 cm− 1 (skeletal aliphatic C–C/aromatic hydrogen 
bending/rocking), 1243 cm− 1 (C–O–C stretching, aromatic ether 
stretching), 1489 cm− 1 (C–C bond stretching), and 1583 cm− 1 (S––O 
stretching) [73–77]. The appearance of new peaks at 1507 cm− 1 and 
1595 cm− 1 (asymmetric carbonyl stretch) in the modified substrates are 
related to the BDC carboxylate groups of the MIL-53(Fe) (Dashed orange 
lines in Fig. 2B) [55]. Moreover, the new peaks observed at the wave-
lengths below 1300 cm− 1 (i.e., 1287, 1150, 841, 689, and 630 cm− 1) can 
be related to the vibrations of the BDC ligand (Dashed blue lines in 
Fig. 2B) [67]. 

The surface and cross-section morphologies of the control and 
modified substrates were characterized by SEM (Fig. 3). The top surface 
of the modified substrates (Fig. 3A) confirmed the integration of MIL-53 
(Fe) in PSf membranes. The cross-section images of the substrates 
(Fig. 3B) confirmed that all substrates had a typical asymmetric porous 
structure with a porous top layer and a finger-like pore structure across 
the membranes. It is evident that the modified substrates have several 
microcellular-like structures (Fig. S6) due to the rapid solvent/non- 
solvent exchange during the phase inversion because of the hydrophil-
ic nature of MIL-53(Fe) particles [78]. Furthermore, the MIL-53(Fe) 
particles observed on the surface of the modified membranes (Fig. 3) 

were smaller compared to those incorporated in the cross-section of the 
membranes as evidenced by the cross-sectional SEM images shown in 
Fig. S7. This phenomenon can be attributed to the fact that the larger 
particles, being heavier, tend to precipitate through the support material 
during the phase inversion process. As a result, the larger MOF particles 
end up being embedded within the membrane structure, thereby leading 
to the observed difference in the size distribution of MOFs on the surface 
and within the support layer. This finding aligns with a previous study 
[79] investigating the incorporation of metal oxides as hydrophilic ad-
ditives in polyethersulfone (PES) membranes, which also observed 
distinct distribution patterns of particles with different weights along 
the membrane structure. That was attributed to the tendency of heavier 
particles to precipitate towards the polyester support. The AFM images 
and roughness data of the PSf substrates are presented in Fig. 3C and D, 
respectively. The MIL-53(Fe) incorporation increased the surface 
roughness of the modified membranes (from 5.25 nm for PSf0 to 21.86 
nm for PSf4) due to the exposure of some particles to the surface that 
increased by the increased concentration of the particles [80]. The 
porosity data are presented in Fig. 3E. The porosity of the modified 
substrates increased resulting from the integration of the hydrophilic 
MIL-53(Fe) in the polymer solution as hydrophilic additives can enhance 
the exchange rate between NMP (solvent) and water (non-solvent) 
during the phase inversion and increase the porosity of the developed 
membranes [81–85]. However, at the highest content of MIL-53(Fe) 
(PSf4, 0.5%), the porosity decreased compared to the PSf3 (0.2%) 
which can be correlated to the higher viscosity of the casting solution at 
higher additive concentrations. That causes more severe kinetic hin-
drance during phase inversion and results in lower porosity of mem-
branes containing more additives [86]. That can be also attributed to the 
aggregation of particles at higher concentrations creating more mass 
transfer resistance resulting in a slower exchange rate between solvent 
and non-solvent during polymeric membrane formation as reported in 
the literature [87]. The hydrophilicity of the membranes was deter-
mined by measuring the water contact angle where data are reported in 
Fig. 3F. The contact angle decreases (from 64.74◦ for PSf0 to 50.27◦ for 
PSf4 (P < 0.05)) gradually with the increase of MIL-53(Fe) loading in the 
PSf layer due to the hydrophilic groups of MIL-53(Fe) (i.e., O–H, Fe–O, 
O–C––O groups) that is in agreement with the results reported in other 
studies integrating MOFs in polymeric membranes [54,69,88]. In addi-
tion, the contact angle is influenced by membrane porosity where can be 
defined by Washburn equation that is presented in the Supplementary 

Fig. 2. (A) XRD patterns and (B) FTIR spectra of 
control PSf and modified PSf substrates integrated 
with MIL-53(Fe), (C) Schematic illustration of the 
interaction between PSf and MIL-53(Fe), (D) Optical 
images of PSf0 and PSf4, and (E) Zoomed-in view of 
FTIR spectra over 500- 2000 cm− 1. (For the color 
indications, please refer to the online version of the 
manuscript). (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
Web version of this article.)   
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Fig. 3. (A) SEM images of top surfaces at a magnification of 6.5 kx (B) SEM images of cross-sections at a magnification of 1.2 kx (C) AFM images at a scan area of 5 
μm by 5 μm (D) Roughness data, (E) Contact angle data, and (F) Porosity data of the control (PSf0) and modified PSf substrates (PSf1, PSf2, PSf3, and PSf4) with 
various loading of MIL-53(Fe) (0.05, 0.1, 0.2, 0.5 wt%). Standard deviations are the average of at least three replicates for roughness, seven replicates for contact 
angle, and three replicates for porosity. 
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Information file [89]. Generally, the higher porosity of the membrane 
results in the lower contact angle [90]. That is also the case for modified 
substrates (PSf1, PSf2, and PSf3) in this work, while for the PSf4 with a 
lower porosity compared to PSf3, the contact angle is lower. This can be 
attributed to the presence of more hydrophilic functional groups of 
MIL-53(Fe) that can significantly impact the contact angle and result in a 
lower contact angle despite the lower porosity of the membrane. The 
EDX elemental mapping of the top surface and the cross-section of the 
PSf4 substrate as a representative for the modified substrates is pre-
sented in Fig. S8. The EDX data confirm the presence of Fe element 
(hence MIL-53(Fe)) across the modified membrane. 

3.2.2. TFC characterization 
Fig. 4A and B presents the surface SEM images of the fabricated PA 

layer on the as-prepared substrates. All the TFC FO membranes showed 
typical ridge-and-valley surface topographies that affirmed the suc-
cessful formation of the PA layer on the PSf and PSf/MIL-53(Fe) sub-
strates by interfacial polymerization. SEM images of the TFC membranes 
illustrated that the PA layer on the modified substrates has a more 
nodular structure compared to the PA layer on the control substrate 
(Fig. 4B) where yellow arrows indicate the leaf-like and red arrows 
indicate nodular structures in the SEM images. That is related to the 
change of PA morphology owing to the change of the reaction rate 
during the interfacial polymerization. The higher porosity and hydro-
philicity of the modified substrates increase the reaction rate of MPD/ 
TEA with TMC which resulted in a more nodular structure [91]. The 
AFM images and surface roughness data of the TFC membranes are 
presented in Figs.. 4C and 4D, respectively. The surface roughness of the 
TFC membranes was reduced by increasing the MIL-53(Fe) loading in 
the substrates. These changes can be related to the morphology change 
of the PA layer having more nodular structure (as confirmed by SEM 
images) resulting in the formation of a smoother PA layer [81,92,93]. 
The average roughness (Ra) decreased from 31.21 nm for TFC0 to 19.06 
nm for TFC3 while the roughness increased from 19.06 nm for TFC3 to 
25.08 nm for TFC4. The change in the roughness trend is related to the 
fact that the substrate of TFC4 (PSf4) had lower porosity compared to 
that of the TFC3 (PSf3) as confirmed by the substrate characterizations 
(Section 3.2.1). 

The surface hydrophilicity of the TFC membranes is presented in 
Fig. 4E. The TFC membranes made by the modified substrates showed 
higher hydrophilicity as compared to the control TFC membrane due to 
the presence of hydrophilic groups of MIL-53(Fe) on the modified sub-
strates. This is related to the fact that a hydrophilic support layer fa-
cilitates the formation of a smoother PA layer with higher ability to swell 
and absorb water on its surface [94]. Therefore, the presence of hy-
drophilic groups of MIL-53 (Fe) on the substrate leads to the formation 
of a more hydrophilic PA layer. Yang et al. coated tannic acid (TA)-Fe 
nanoscaffold onto a PSf substrate and reported higher hydrophilicity of 
the formed PA layer on the coated substrate due to the presence of hy-
drophilic groups on the substrate [95]. Likewise, Pendergast et al. [96] 
reported higher hydrophilicity of TFC membranes upon integration of 
zeolite in the substrate. In addition, surface roughness can affect the 
contact angle of a liquid on a solid surface, according to the Wenzel and 
Cassie models. The Wenzel model applies to homogeneous surfaces, 
while the Cassie model considers heterogeneous surfaces composed of 
solid and air pockets. In the Cassie model, increasing solid roughness can 
lead to a higher contact angle due to the formation of air pockets within 
the peaks of surface features, which is consistent with the results of this 
study [39,97–99]. 

3.3. FO performance evaluation 

The presence of MIL-53(Fe) in the substrates significantly impacts 
the performance of the resultant TFC membranes. Fig. 5 indicates the 
water flux, RSF, and the specific salt flux (the ratio of RSF per water flux) 
of the TFC FO membranes with substrates loaded with various 

concentrations of MIL-53(Fe). All modified membranes had higher 
water flux compared to the control membrane with a significant statis-
tical difference (p < 0.05). The flux improvement of the modified 
membranes can be attributed to the modified substrate and thereby, the 
PA layer structure. The incorporation of MIL-53(Fe) increased the 
porosity and hydrophilicity of the substrates as confirmed by the data 
reported in Fig. 3E and F; which have been reported as effective methods 
in mitigating ICP in TFC FO membranes in the literature [100–102]. This 
increase in hydrophilicity and porosity allows for more effective trans-
port of water and solute molecules in the substrate, reducing air 
entrapment in the membrane pores and resulting in a smaller structural 
parameter (S) of the substrate leading to lower ICP and higher water flux 
[86]. The decrease of the structural parameter (S) of the modified 
membranes was confirmed by the experimental results presented in 
Table 1. Similarly, research studies modifying the substrates of the FO 
membranes by the incorporation of other additives such as TiO2 [103], 
halloysite nanotubes [104], poly(2-dimethylaminoethyl methacrylate) 
[85] and silicene nanosheets [87] reported the enhanced water flux of 
FO membranes upon nanomaterials integration in the FO substrate 
layers. In addition, the improved hydrophilicity of the TFC membranes 
is also a critical factor in increasing the diffusion rate of water molecules 
through the modified membranes increasing the water flux [105]. 
Among the developed TFC membranes, the optimal water flux was 
achieved for the TFC3 (0.2 wt% of MIL-53(Fe) incorporated into the 
substrate), with the water flux increasing from 6.0 LMH for the control 
membrane to 11.4 LMH for the TFC3. At the concentration of 0.5 wt% 
MIL-53(Fe) (TFC4), water flux decreased owing to the lower porosity of 
the substrate (PSf4) as explained and confirmed in the substrate char-
acterization (Section 3.2.1). Hence, in this study, 0.2 wt% was identified 
as the optimum concentration of MIL-53(Fe) as an additive in the PSf 
substrate of FO membranes. 

The presence of MIL-53(Fe) in the substrates caused a statistically 
significant decrease (P < 0.05) in the RSF of the modified membranes 
compared to the control membrane (from 6.3 g/m2h for the control 
membrane to 5.08 g/m2h for the TFC3 membrane). This can be attrib-
uted to the change of PA layer formation upon the integration of MIL-53 
(Fe) in the substrates. The presence of hydrophilic functional groups on 
the substrate has been reported to promote the formation of a more 
uniform and defect-free/less defective PA layer due to the more uniform 
distribution of the amine aqueous solution on more hydrophilic sub-
strates [106,107]. That can be the reason why in this study, the presence 
of MIL-53 (Fe) with hydrophilic functional groups has resulted in the 
reduction of RSF for the modified TFC FO membranes compared to the 
control one. In a recent study, She et al. [107], modified the substrate of 
nanofiltration (NF) membranes that resulted in higher hydrophilicity of 
the substrate. The improved hydrophilicity of the substrate favored the 
formation of a uniform defect-free PA layer that led to a better salt 
rejection of the modified membranes. However, it is worth noting that in 
the previous studies, a lower RSF was observed upon the integration of 
MOFs in the PA layer of TFC FO membranes that was attributed to the 
presence of MOFs with small pore size that could create tight pathways 
decreasing the diffusion of ions through the membrane [41]. For 
instance, Bayrami et al. incorporated MIL-53 (Al) in the PA layer of TFC 
FO membranes and also reported a reduction of the RSF owing to the 
small pore size of the incorporated MOFs [44]. Similarly, Samsami et al. 
reported lower RSF upon integration of MIL-53 (Al) in the PA layer of 
TFC FO membranes as the presence of MIL-53 (Al) makes tortuous and 
tight channels that reduce the diffusion path of ions resulting in lower 
RSF [36]. However, in this study, the reason behind this phenomenon is 
different as the MOFs have been integrated in the substrate. Addition-
ally, the pore size of the integrated MIL-53 (Fe) (i.e., 2.25 nm) in this 
work is larger than the hydrated size of Na+ and Cl− ions, and hence it 
does not hinder their transport in the substrate. Moreover, the lower 
specific reverse salt flux (Js/Jw) of the modified membranes indicates a 
higher FO selectivity [108]. Table 1 presents the transport parameters of 
the membranes which are water permeability coefficient (A), solute 
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Fig. 4. (A) SEM surface images at a magnification of 20 kx, (B) Zoomed-in SEM surface images at a magnification of 65 kx, yellow arrows indicate the leaf-like and 
red arrows indicate nodular structures (C) AFM 3D images at a scan area of 5 μm by 5 μm, (D) Roughness data and (E) Contact angle data of fabricated TFC 
membranes (TFC0, TFC1, TFC2, TFC3, and TFC4) on control and modified PSf substrates by various loading of MIL-53(Fe) (0.05,0.1, 0.2, 0.5 wt%). Standard de-
viations are the average of three replicates for roughness and five replicates for contact angle measurements. (For the color indications, please refer to the online 
version of the manuscript). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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permeability coefficient (B) and structural parameter (S). The results 
showed that the control sample (TFC0) had a lower water permeability 
coefficient (A) and a higher solute permeability coefficient (B) compared 
to the modified membranes which are consistent with the water flux and 
RSF trends of membranes (Fig. 5). In summary, the improved water flux, 
decreased RSF and the low specific reverse salt flux of the modified 
membranes suggest that the incorporation of MIL-53(Fe) in FO sub-
strates is an effective approach to improve the performance of FO 
membranes. 

3.4. Fouling analysis 

Fouling experiments were conducted to evaluate the antifouling 

Fig. 5. Performance evaluation of prepared TFC 
membranes (TFC0, TFC1, TFC2, TFC3, and TFC4) on 
control and modified PSf substrates by various 
loading of MIL-53(Fe) (0.05, 0.1, 0.2, 0.5 wt%) (a) 
Water flux, (b) RSF, and (c) RSF/Flux. Error bars 
represent standard deviation from triplicate experi-
ments. Dashed lines indicate the trendline of each 
parameter. Experimental conditions: DI water as the 
FS and 2 M NaCl as the DS; with a crossflow velocity 
of 8 cm/s on both sides. (For the color indications, 
please refer to the online version of the manuscript). 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.)   

Table 1 
The transport parameters of TFC membranes (TFC0, TFC1, TFC2, TFC3, and 
TFC4) on control and modified PSf substrates by various loading concentrations 
of MIL-53(Fe) (0.05, 0.1, 0.2, 0.5 wt%).  

Membrane A (L m− 2 h− 1 bar− 1) B (L m− 2 h− 1) B/A (bar) S (μm) 

TFC0 0.297 0.271 0.91 1490 
TFC1 0.359 0.269 0.75 1130 
TFC2 0.453 0.283 0.62 1110 
TFC3 0.615 0.228 0.37 822 
TFC4 0.405 0.283 0.70 1350  

Fig. 6. (A) Normalized flux trend for TFC0 (the 
control membrane) and TFC3 (the optimized modi-
fied membrane with 0.2 wt% loading of MIL-53(Fe)) 
using three different FS containing BSA, MPs, com-
bined BSA and MPs, Experimental conditions: 2 M 
NaCl as the DS; with a crossflow velocity of 8 cm/s on 
both sides; Fouling experiments were repeated twice 
and the normalized flux data were averaged and re-
ported here. (B) Schematic illustration of MP-BSA 
complex formation owing to electrostatic forces. 
SEM images of (C) TFC0 and (D) TFC3 at magnifica-
tions of 1 kx after fouling experiments using com-
bined BSA and MPs as FS for 22 h followed by a 
physical cleaning; yellow arrows indicate foulants (i. 
e., MP, BSA and MP-BSA complex) on the surface of 
TFC0; Physical cleaning condition: using DI water 
with a crossflow velocity of 16 cm/s on both sides. 
(For the color indications, please refer to the online 
version of the manuscript). (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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performance of the TFC0 (TFC membrane fabricated on control PSf) and 
TFC3 (TFC membrane fabricated on the PSf substrate with 0.2 wt% 
loading of MIL-53(Fe)). The normalized water flux J/J0 of both mem-
branes over time using different solutions containing foulants (i.e., BSA, 
MPs, and combined BSA and MPs) is illustrated in Fig. 6A. Initial water 
flux data for each group of foulants (i.e., MPs, BSA and combined BSA 
and MPs) are presented in Table S2. TFC0 and TFC3 membranes 
demonstrated flux decline of 36% and 16% against MPs, 45% and 24% 
against BSA, and 60% and 29% against combined BSA and MPs, 
respectively. Therefore, TFC3 showed lower flux decline against all 
foulants compared to TFC0 thus indicating the lower fouling propensity 
of TFC3. The better antifouling characteristic of the modified membrane 
can be attributed to the lower surface roughness and the higher hy-
drophilicity of the PA layer. The intrinsic ridge-and-valley structure of 
the PA layer strongly impacts the fouling propensity of the TFC mem-
branes as the higher roughness of the PA layer (more leaf-like features 
on the surface) provides a larger surface for the attachment of foulants. 
Further, the higher roughness facilitates foulant deposition on the valley 
features of the rough PA surfaces [93,109]. Furthermore, the surface 
hydrophilicity of the PA layer also impacts the antifouling property 
since, in the case of the membrane with higher surface hydrophilicity, 
the surface gets wet quickly owing to its higher affinity toward water 
molecules [110]; this tendency results in adsorbing water on the sur-
faces and subsequently decreasing the possibility of absorbing foulants 
(majority of them being hydrophobic), and thereby, improving the 
antifouling property of the membrane. The other determining factor in 
the fouling of FO membranes is the RSF that causes ICP in the substrate 
resulting in a higher fouling rate [15,23]. Moreover, RSF aggregates the 
fouling due to the diffusion of salt ions to the FS, which promotes fouling 
[111]. Here, since the modified TFC (TFC3) showed a lower RSF than 
the TFC0, it has a lower tendency to fouling, as confirmed by the 
experiments. 

In the control membrane, the combined BSA and MPs caused a 
higher flux decline compared to BSA and MPs alone (Fig. 6A) which is 
related to the synergistic effect of foulants copresence in the FS [12, 
112–114]. When BSA and MPs were present in the FS, BSA could be 
adsorbed on the surface of MPs forming a MP-BSA complex due to the 
electrostatic forces [2] that is illustrated in Fig. 6B. The complex has a 
higher tendency to adhere to the membrane surface due to its hydro-
phobic nature [115]. Several studies have shown that the presence of 
multiple types of foulants in a feed solution can lead to a synergistic 
effect that causes a faster decline in membrane flux compared to indi-
vidual foulants. For instance, Li and Elimelech [114] found that foulant 
accumulation on the NF membrane surface was faster in the presence of 
combined organic foulants and colloidal particles than when each fou-
lant was present alone. Similarly, Li et al. [112] investigated the syn-
ergistic fouling effects of silica and humic acid (HA) in the reverse 
osmosis (RO) process and reported higher fouling effects of combined 
silica and HA. The copresence of protein and silica particles synergisti-
cally increased the flux decline of RO membranes in another study 
conducted by Quay et al. [113]. Similarly, the combined fouling impact 
of alginate and silica colloids was reported in FO membranes [116]. 
Hence, the presence of multiple types of foulants in FS can aggravate 
fouling causing a faster decline in membrane flux compared to indi-
vidual foulants. However, when considering the modified membrane 
(TFC03), the difference between BSA alone and combined BSA and MPs 
was lower than their difference in TFC0. This can be attributed to higher 
hydrophilicity of modified membrane that reduces the adsorption of 
MPs and BSA and subsequently their complex leading to a lower flux 
decline. 

In addition, flux recovery rates of both membranes after fouling 
experiments were measured to determine the irreversibility of the 
fouling. Both control and modified membranes showed high flux re-
covery after MP fouling, indicating the low irreversible fouling that is 
related to the low concentration of MPs (i.e., 10 ppm). TFC0 showed flux 
recoveries of 82% after BSA fouling and 73% after fouling of combined 

BSA and MPs while TFC3 showed almost full flux recoveries for both 
foulants. The modified membrane (TFC3) had a smoother and more 
hydrophilic surface that decreased the adhesion area for the foulants 
[44]. SEM images of the TFC0 and TFC3 after fouling experiments of 
combined BSA and MPs followed by physical cleaning are presented in 
Fig. 6C and D, respectively. As evident, a foulant layer of BSA and MPs 
covered the surface of TFC0 (Fig. 6C) (yellow arrows indicate foulants 
on the membrane surface) while this foulant layer was not found on the 
TFC3 (Fig. 6D). This is related to the fact that an increase in the hy-
drophilicity of the membrane surface significantly reduces the protein 
fouling owing to unfavorable polar interactions as protein molecules 
cannot displace the bound of the hydration layer to get adsorbed on the 
membrane [74]. That is in agreement with the flux recovery data. 
Overall, the modified TFC membrane demonstrated a lower fouling 
tendency and higher flux recovery than the control TFC membrane 
affirming the promise of integrating MIL-53(Fe) in TFC substrate layers 
for developing efficient TFC FO membranes for MPs treatment. 

4. Conclusion 

This research developed novel TFC FO membranes by incorporating 
various concentrations of as-synthesized MIL-53(Fe) into PSf substrates. 
The PSf characterizations showed higher hydrophilicity, roughness, and 
porosity of the modified substrates. The optimized TFC FO membrane 
(with 0.2 wt% MIL-53(Fe) loading rate in PSf substrate) indicated a 
smoother and more hydrophilic surface having a more nodular struc-
ture. The presence of MIL-53(Fe) increased the porosity and hydrophi-
licity of the substrates leading to a higher water flux (e.g., 11.4 LMH for 
the optimum modified FO membrane compared to 6 LMH for the control 
FO membrane). In addition, modified TFC FO membranes showed lower 
RSF (e.g., RSF of 5.08 g/m2h for the optimum modified FO membrane 
compared to RSF of 6.30 g/m2h for the control FO membrane). More-
over, the antifouling property of the control and optimum modified 
membranes against organic foulants (i.e., BSA), MPs, and combined BSA 
and MPs were investigated. The results indicated that the control and 
modified membranes had a flux decline of 60% and 29% for FS con-
taining combined BSA and MPs, respectively. In addition, the control 
membrane had a flux recovery of 73%, while the modified membrane 
had a full flux recovery after the physical cleaning. The better anti-
fouling characteristics can be attributed to the formation of a smoother 
and more hydrophilic PA layer on its surface, lower RSF, and lower ICP. 
The significant improvements in the performance and antifouling 
behavior of the developed membranes confirm that MIL-53(Fe) is a 
promising additive for modifying TFC FO membranes for high- 
performance membranes that are also robust against MPs and organic 
foulants. 
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