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Training for “Worst‑Case” Scenarios 
in Sidestepping: Unifying Strength 
and Conditioning and Perception–Action 
Approaches
Daniel Kadlec1*   , Matt Miller‑Dicks2    and Sophia Nimphius1    

Abstract 

Sidesteps can impose high demands on the knee joint and lead to non-contact anterior cruciate ligament (ACL) 
injuries. Understanding how different constraints shape an athlete’s movement strategy and the associated joint 
demands can help design training interventions to increase injury resilience. Motor capacities, such as muscular 
strength and power, act as boundaries for the safe execution of perceptual–motor skills and co-determine the emer‑
gence of unique movement strategies. Increasing single- and multi-joint strength enables a broader solution space 
for movement strategies and increases load tolerance. Manipulating task constraints during sidesteps can be used in 
the training process to systematically expose athletes to increasing demands (on the knee joint or any joint or struc‑
ture) in preparation for “worst-case” scenarios. In particular, the type and timing of information available influence the 
preparation time, subsequently affecting the movement strategy and the associated magnitude of external knee joint 
loading (e.g., knee valgus moment). While an athlete’s perceptual–cognitive skills contribute to the preparation time 
during in situ scenarios, attempts to further improve those skills with the aim of increasing athlete preparation time 
prior to “worst-case” scenarios are yet to demonstrate conclusive evidence of transfer to on-field situations. Therefore, 
in the current article, we reflect on the impact of different interacting constraints that influence the execution of 
sidesteps during in situ scenarios and impose high demands on the knee joint. Subsequently, we discuss how an inte‑
grated perspective, drawing on knowledge and perspectives from strength and conditioning and perception–action, 
may enhance an athlete’s ability to withstand “worst-case” scenarios and adapt to perform varied movement execu‑
tions when sidestepping.
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Key points

1.	 Single- and multi-joint strength acts not just as a 
boundary but rather as a catalyst for distinct and 
unique movement solutions, as utilizing the “strong-
est” set of motor capacities reduces the relative 
energy systems cost and facilitates the emergence of 
dominant movement strategies that may remain con-
sistent even with variations to the task.

2.	 Exposing athletes to exploratory learning condi-
tions or variable practice may allow them to explore 
the range of their new motor capacities to translate 
improved muscular strength into calibrated move-
ment strategies.

3.	 The efficacy of training perceptual–cognitive skills in 
isolation or in non-representative settings to improve 
in situ performance with the goal to allow for more 
preparation time prior to “worst-case” scenarios 
remains questionable.

4.	 The sources of information athletes are reacting to 
(generic information [e.g., flashing arrow or light] or 
specific information [e.g., video of opponent]) affect 
the demands on the knee joint and can be used dur-
ing unplanned sidesteps to progressively overload 
knee joint tissues.

Introduction
Motor capacities are integral to motor skill and perfor-
mance from both strength and conditioning [1] and skill 
acquisition [2] perspectives (see Table 1 for definitions of 
key terms used in this article). It follows that improving 
motor capacities, often focusing on muscular strength, 
has a broad and well-supported evidence base for the 
enhancement of athletic performance and reduction in 
injury risk [1, 3]. Although increasing muscular strength 
is related to improvements in gross motor skills [4], the 
timeframe and relationship between these two facets of 
performance are not well understood, especially for more 

complex motor tasks [5]. The link between these two 
research domains has been alluded to in proposals, which 
emphasize the need to consider “learning to use one’s 
newfound strength” [1] as the critical bridge between 
motor capacity and motor skill [6, 7]. Therefore, using a 
training process that integrates motor capacity building 
in tandem with skill development to maximize the trans-
fer of training is essential for enhancing athletic perfor-
mance and mitigating injury risk.

Understanding the relationship between motor capaci-
ties and motor skills (e.g., sprinting, jumping, chang-
ing direction, throwing, striking) has become a topic of 
debate in the strength and conditioning literature empha-
sizing perception–action processes [11]. For example, 
recent strength and conditioning literature has suggested 
that movement assessments should be representative of 
sports situations and reflect sport performance contexts 
[11]. However, representative design creates challenges 
for systematic control of the experimental setting and 
the reliability of testing procedures [12]. Further, if one 
aspires to design assessment settings entirely representa-
tive of sports performance, the situations sampled should 
arguably amount to the sports themselves [13, 14]. Due to 
this methodological complexity and difficulty in (defin-
ing and) quantifying a) agility performance and b) the 
transfer to in  situ scenarios, research is lacking to pro-
vide practitioners with an actionable training framework. 
Early agility research used generic stimuli (lights on a tar-
get board) [15], before replacing the light response condi-
tions with sports-specific video [16], face-to-face human 
“opponents” [17] as well as many other variations on the 
generic stimuli such as arrows [18] or colored lights [19]. 
More recently, researchers have studied multiple changes 
of direction in response to 2D variations of sports-spe-
cific movements [20] and 3D stereoscopic images with 
one and two defenders [21]. Despite the highlighted 
development of methods, it could be argued that all these 
assessments may still fail to provide representative test-
ing conditions [22]. Sidestepping is beneficial to athletic 

Table 1  Definitions of key terms. Many terms in this manuscript are used across disciplines (e.g., strength and conditioning, motor 
learning and skill acquisition, biomechanics) and used in different contexts [8]

Therefore, the following terms include definitions aligned with their use in the current manuscript (Fig. 1)

Motor skill The ability to execute a pattern of behavioral elements in proper relation to certain environments [9]

Motor capacity Adapted from a prior definition of motor capacity as “what a person can do in a standardized, controlled environment” [10], 
in the current context, this will be delimited to one’s ability to apply force in a standardized, controlled environment or a 
measure of strength

Perceptual–cognitive skill The ability to identify and process key environmental information without the necessity to execute a motor skill for a 
particular task

Perceptual–motor skill The ability to exploit key environmental information during the coordination of motor skills for a particular task

Joint loading Joint power (W) reflects the rate of energy or work (J) generation (or absorption) over time and acts as a proxy for the term 
“joint loading” throughout this article
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performance but is a high-risk, high-reward movement 
due to its association with anterior cruciate ligament 
(ACL) injury risk [23] as evidenced by the number of 
non-contact ACL injuries experienced in team sports [24, 
25]. It is, therefore, an area of particular interest within 
sports medicine research.

In this perspective article, we will consider sidestepping 
as a practical case for describing a theoretical “worst-
case” scenario, considering task demands elicit high joint 
loads (e.g., knee valgus moment) threatening the system’s 
structural integrity. We define a “worst-case” scenario as 
the emergence of an extreme internal response threat-
ening tissue integrity due to a complex combination of 
physical/organismic and contextual factors. We reflect 
on the implication of different interacting constraints 
when executing sidesteps within in situ scenarios impos-
ing high demands, particularly on the knee joint. Since 
ACL injuries occur during instances of high accelera-
tion or deceleration of movement within brief moments 
of time, the resultant strain on the ACL or, more gener-
ally, around the knee joint is dependent upon the move-
ment velocity with respect to time [26, 27]. As such, joint 
power (W) reflects the rate of energy or work (J) genera-
tion (or absorption) over time and acts as a proxy for the 
term “joint loading” throughout this article. Further, we 
will discuss how utilizing such constraints can increase 
an athlete’s execution variability, or in other words, 

enhance the number of different executions used within 
a single movement strategy across repetitions of the same 
task and withstand “worst-case” scenarios (Fig. 1). Finally, 
we evaluate the importance of perceptual–cognitive skills 
to sidestep mechanics and review the effectiveness of 
various methods to improve perceptual–motor skills.

Implications for Different Interacting Constraints 
on Knee Joint Loading
Does Motor Capacity Influence the Movement Strategy?
Human movement is a function of the intrinsic and 
extrinsic constraints described in Newell’s theoretical 
model of constraints on developing coordination: organ-
ismic (individual), environmental, and task constraints 
[2]. A central proposal is that an athlete’s individual and 
unique movement solution emerges from the interacting 
constraints. Thus, even during pre-planned sidestepping, 
athletes execute movements differently with distinct joint 
loading profiles indicated by the magnitude and distribu-
tion of joint kinetics [28, 29, 30]. Franklyn-Miller et  al. 
[30] demonstrated three participant joint clusters based 
on joint kinematics and kinetics when sidestepping. More 
broadly, cluster 1 did more joint work at the knee, cluster 
2 at the hip, and cluster 3 did more work at the hip and 
ankle. Further, the participant cluster with greater joint 
energy absorption or joint work at the knee during the 
ground contact phase of the cutting step also had higher 

Fig. 1  Overview of key definitions based on Cowin et al. [25]. Movement strategy: The kinematically or kinetically distinct and classifiable motor 
solution used during the execution of the task. For example, kinematically or visually defined movement strategies may be categorized as a 
crossover cut or sidestep. In contrast, kinetically defined movement strategies may be described categorically as “knee-dominant” or “hip-dominant” 
as indicated by the red circles. Further, some movement strategies may be defined by clustering a combination of kinematic and kinetic variables 
depending on the author’s or practitioner’s definitions. Strategic variability: “Describes the different approaches or methods of movement used to 
complete a task.” Strategic variability is discussed and described over multiple efforts or trials of the same task or how many different movement 
strategies are used to complete the same task. Movement execution: The magnitude and distribution of joint kinetics or kinematics of a 
performed trial or effort within a movement strategy. Execution variability: “Describes the intentional and unintentional adjustments of the body 
between repetitions within the same strategy” 
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knee valgus moment and internal rotation moments. A 
lab-based surrogate of these loading patterns proposed 
that the knee-based cluster group had increased ACL 
strain [15, 31]. The “knee-dominant” groups, or groups 
with greater work done at the knee, presented signifi-
cantly altered thorax and pelvis kinematics, especially 
in the frontal plane, during the cutting step [28, 29] and 
the penultimate and ante-penultimate steps compared to 
the “non-knee-dominant” groups [28]. These studies [28, 
29, 30] were conducted with pre-planned or anticipated 
tasks, which highlights that even under no additional 
temporal or spatial constraints, athletes exhibit individ-
ual or categorical (movement strategy) patterns of joint 
loading. The emergent movement execution, or how they 
perform the motor task, directly determines the demands 
imposed on the joint(s). However, as motor capacities 
were not quantified, it remains unknown if or how the 
motor capacities of the athlete facilitate the emergence of 
specific execution clusters [28, 29, 30].

An individual’s motor capacities, such as strength and 
power, influence the emergence of movement and, there-
fore, the associated joint loading pattern [32, 33, 34]. 
Manipulating any constraint consequently affects the ath-
lete’s movement strategy. Single- and multi-joint strength 
changes after training interventions, such as resistance 
or plyometric [32]. Muscular strength often differenti-
ates athletes of various playing levels and shares a mod-
erate-to-strong relationship with motor skill and injury 
risk [35, 36]. Increased single- and multi-joint strength 
theoretically allows the athlete to express a greater solu-
tion space of movement strategies for a given task [2] 
and maintain a greater strategic variability when task 
demands increase [37]. Alternatively, increased single- 
and multi-joint strength may require higher eccentric 

demands before shifting to a strategy that results in 
greater net energy absorption at the knee [33]. In Fig. 2, 
it is noted that higher strength (> ~ 1.6 × bodyweight) 
was associated with higher eccentric demands (height 
of drop jump) before negative net work was done at the 
knee. Therefore, the evidence supports the proposition 
that developing motor capacities may facilitate changes 
in movement strategy. However, it is noted that having 
adequate strength or motor capacity does not guarantee 
coordination and control [38], and therefore, other fac-
tors interact with motor capacity to determine move-
ment strategy.

What are We Preparing Athletes for?
The information outlined above indicates that athletes 
may have a preferred movement strategy for sidestep-
ping, which is in accordance with theories from ecologi-
cal dynamics (for further reading, see Warren [40] and 
Yamamoto et al. [41]). The emergent movement solution 
is affected by the demand of the task and constrained 
by the motor capacity and control of the athlete. How-
ever, a single movement solution is not advantageous for 
sports or for a motor skill that varies relative to unpre-
dictable game demands, such as unplanned sidestepping. 
Being adaptable as a means to solve a motor task, or to 
have adequate execution variability [8], increases the 
likelihood that athletes succeed “despite” the scenario or 
position they are in at a given moment. Lacking motor 
capacity (e.g., strength) in a particular segment may 
reduce the execution variability. Specifically, leg strength 
and trunk control may affect the strategy and execution 
during more demanding sidestepping (e.g., increasing 
angle or velocity of performance) [20, 42, 43].

Fig. 2  Comparison of net work (J) for the hip, knee and ankle between A higher strength (HS), B moderate strength (MS) and C lower strength 
(LS) groups for the countermovement jump (CMJ) and drop jumps (DJ) from 15, 30, 45, 60 and 75 cm. Significances indicated at p ≤ 0.05. H > K, 
A > K, A > H, H > A, K > A, K > H significances indicated at p ≤ 0.05. *Indicates the knee net work (J) was significantly great in LS in comparison with 
HS at p ≤ 0.05. The size of the circles at each joint is a scaled quantitative representation of the relative amount of net work (J) performed by that 
respective joint.  Reproduced from McBride and Nimphius [39], with permission
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Inconsistent results [44, 45, 46] concerning the influ-
ence of isolated parameters (e.g., knee valgus angles or 
moments at specific time points during athletic tasks) 
on injury risk highlight the need to identify underly-
ing movement strategies to increase the understanding 
of the magnitude and distribution of joint loading and 
their association with injury risk [47]. For example, quan-
tifying knee valgus moments in isolation in a particular 
task provides insufficient predictive information regard-
ing injury risk [47]. Consequently, individual movement 
strategies for a given task can differ between athletes and 
impose distinct demands on the system. Understanding 
how modifiable constraints (e.g., single or multi-joint 
strength) influence the emergence of movement execu-
tions can help the practitioner design effective drills or 
individualized exercises to increase an athlete’s tolerance 
to “worst-case” scenarios. In our understanding, such 
“worst-case” scenarios accompanied by biomechani-
cally compromised positions during in  situ scenarios 
may eventually happen. Hence, preparing an athlete for 
such “worst-case” scenarios is more sport relevant than a 
“movement solution avoidance” approach commonly rec-
ommended in the literature (e.g., minimize the distance 
between plant foot and center of mass (COM), reduce 
lateral trunk flexion, or increase knee flexion at initial 
contact) [48].

Do Athletes Use the Same Strategy Repeatedly?
If a movement strategy is repeated consistently, this will 
strain certain tissues dictated by the movement strategy, 
implying that a subset of tissues will not be strained [49]. 
Motor capacities act as boundaries that co-determine 
the safe execution of motor skills relative to changing 
environmental demands. The inherent between-subject 
difference in specific motor capacities [50] and the abil-
ity to utilize them within a particular task dictates the 
movement execution [51]. Thus, single- and multi-joint 
strength acts not just as a boundary but rather as a cata-
lyst for distinct and unique movement solutions. Utiliz-
ing the “strongest” set of motor capacities may reduce 
the relative energy systems cost and facilitate the emer-
gence of dominant movement strategies [7, 34, 39]. 
These may remain consistent even with variations to the 
task [52]. Complementary to this view is an affordance-
based control framework, proposing that skilled perfor-
mance necessitates that an individual’s motor capacities 
are scaled or calibrated relative to environmental fea-
tures [53, 54, 55]. Hence, insufficient muscular strength 
may limit the possible number of movement strategies 
and enforce a repetitive straining pattern on the system. 
Reduced execution variability represents a less adapt-
able system, which can either contribute to an increased 
injury risk due to an accumulation of chronic local tissue 

strain exceeding tissue tolerance thresholds over time 
[56, 57] or the results of a previously suffered injury [58, 
59, 60]. Repeated loadings of sufficient magnitude and 
frequency can disturb physiological repair mechanisms 
and cause pathological tissue degeneration. One single 
loading exceeding the failure threshold applied over a 
short timeframe can result in a traumatic injury [49, 61]. 
This is particularly the case when executing a repetitive 
“knee-dominant” strategy, which can increase injury risk, 
as evidenced by the number of non-contact ACL injuries 
experienced during sidestepping [24, 25].

Task demands also play a crucial role in the emergence 
of possible movement solutions. The utilized movement 
strategy combined with the task demands determine the 
resultant loading on the system as quantified by ground 
reaction forces (GRF) and the magnitude and distribu-
tion of intra-individual joint loading [62]. Alteration 
of the task demand or the movement strategy can elicit 
changes in GRF and joint-specific loading strategies in 
different motor tasks [63, 64, 65]. When sidestepping, 
factors such as the entry velocity, the change of direc-
tion angle, trunk alignment, and the time to anticipate 
the cutting direction dictate the task intensity and affect 
knee joint loading (e.g., knee valgus moment) [66]. Such 
changes in the demands imposed may be further affected 
by fatigue, postural variation, and previous injuries [62, 
63, 64, 65]. However, adequately distributing the imposed 
demands across several joints can be compromised by 
increasing task intensities. Various measures of trial-to-
trial execution variability, including kinematic, kinetic, 
and electrical muscle activity, decrease with a concomi-
tant reduction in the number of available movement 
strategies with increasing task demands (e.g., drop height 
with single leg landings) [64, 65].

During unplanned sidesteps, the execution variability 
of kinematic variables increases, as all degrees of free-
dom must be coordinated and integrated to achieve the 
desired outcome under high demands, compared to pre-
planned sidestepping [67]. However, as quantified via 
knee valgus moment, the knee joint loading only differs 
significantly in ~ 10% of the stance phase in the frontal 
plane between pre-planned and unplanned actions [67]. 
Therefore, despite significant increases in execution vari-
ability of kinematic variables, minimal differences in knee 
joint kinetics occurred. This creates a unique dichotomy 
that requires further research to elucidate whether the 
emergent movement execution variability in kinematics 
has minimal influence on changing the kinetically defined 
movement strategy. Or, in other words, is an athlete with 
a “knee-dominant” strategy more likely to solve many 
motor tasks with the same kinetically defined movement 
strategy? If what a practitioner sees (kinematics) has a 
lesser impact than what the athlete withstands (kinetics), 
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this may explain research demonstrating that kinematic-
focused screens for “ideal” movement have limited utility 
in predicting injury [68].

The relative task demands dictate the solution space 
of possible movement solutions across sports situations, 
including sidestepping (Fig. 3). However, drawing impli-
cations from the mechanical task demand as described 
by GRF or segmental kinetics (i.e., joint moment or 
power) is insufficient to determine the demand for an 
individual athlete. The demand of a task for an individ-
ual is influenced by their motor capacities and control 
and subsequently determines the magnitude and distri-
bution of joint loading [7, 32, 33, 34, 64, 65]. Hence, it is 
not the absolute load but the load relative to the athlete’s 
motor capacity and control that dictates how the system 
responds – either via adaptation or injury [69]. When 
executing the same task, athletes with differences in 
motor capacity or control can display unique execution 
strategies with distinct biomechanical or physiological 
responses [33, 70]. Athletes with less flexible movement 
solutions [71] exhibit higher GRFs during a bilateral 
jump-landing task in different conditions and a height-
ened acute physiological stress response than skillful 
movers [72]. Similarly, weaker athletes experience greater 
knee joint loading when performing drop jumps from 
increasing drop heights than stronger athletes (Fig.  2). 
Therefore, lacking sufficient motor capacities reduces 
the ability of the system to modulate the energy during 
the task and, therefore, may increase the demands on 
the knee when performing the athletic task [33, 70, 71]. 
While the movement outcome is a combination of the 

task, environment, and the individual, lacking muscular 
strength inevitably limits the solution space of possible 
movement strategies and reduces execution variability, 
thus potentially facilitating a repetitive straining of cer-
tain tissues.

Practitioners should consider that athletes may have 
dominant movement strategies when planning training 
and designing drills. Unless task or environmental con-
straints alter the movement strategy, it is plausible that 
athletes utilize a dominant movement strategy inde-
pendent of the task demands [70]. However, even with 
increased muscular strength, as seen after resistance or 
plyometric training interventions, athletes need to learn 
to utilize the now-improved motor capacities. This pro-
cess may be mainly facilitated through exploratory learn-
ing conditions [73]. In other words, athletes may need 
to be exposed to variable practices that allow them to 
explore the range of their new motor capacities to trans-
late improved muscular strength into calibrated move-
ment strategies [74]. Without adequate practice, athletes 
may fail to broaden the solution space and, therefore, 
may not (re)calibrate to their newfound strength and fail 
to adequately adopt new movement strategies and execu-
tions within a motor task [1, 74, 75]. This perspective 
implies that sufficient motor capacities are not enough 
if coaches want to adequately prepare athletes for in situ 
demands (Fig. 4).

Athletes should be prepared for possible “worst-case” 
scenarios to minimize injury risk. Preparation is essen-
tial since an athlete can be forced into situations where 
the dominant or trained movement strategy, and related 
tissues accustomed to tolerating the demand of the strat-
egy, may not be a viable or desired solution. In such 
“worst-case” scenarios, an underused movement strat-
egy must be executed, placing demand on potentially 
under-trained joints and tissues. Further, athletic success 
is desirable despite the scenario and position the athlete 
is exposed to. The process outlined in Fig. 4 enables the 
physiological development of tissues or structures and 
the enhancement of coordination and control to execute 
various movement strategies.

Constraints as a Tool to Increase Movement 
Solutions
How Does the Anticipatory Information Available 
to an Athlete Affect Joint Loading?
Variation in the stimuli or available information pro-
vides different spatiotemporal conditions for coordinat-
ing movements during sidestepping. The information 
(i.e., lights, video, or another athlete) and the subsequent 
response of an athlete have frequently been termed per-
ception–action coupling. The origin of this proposal is 
attributed to Gibson’s [76] ecological approach, which 

Fig. 3  The theoretical relationship between task demands and the 
number of possible movement strategies with increasing motor 
capacities
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proposes that the perceptual systems are active, ena-
bling the detection and creation of information, which 
is used in the control of movement in an ongoing, 
cyclical manner [77]. Considered practically, percep-
tion–action is exemplified by an athlete sidestepping to 
displace the positioning of an opposing defender to cre-
ate the time and space needed to run past the defender. 
Thus, attempts to quantify an athlete’s (passive) response 
to a video or light stimulus are arguably not an accu-
rate translation of Gibson’s [76] ecological approach, as 
the actions of performers relative to a light or a video do 
not enable the generation of new information in a cycli-
cal perception–action manner. Therefore, the action in a 
“lab-based” response lacks any consequences for the ath-
lete, inviting them to “gamble” their motor response due 
to the absence of an interaction or consequence. Hence, 
unless the athlete coordinates their actions relative to 
at least another athlete who actively engages in a repre-
sentative (sport-specific) setting, the perception–action 
processes underpinning movement strategies may not 
represent in situ demands [78, 79]. However, anticipatory 
information and timing can be considered for a different 
reason than enhancing representativeness.

Sidestepping in a laboratory setting can be executed as 
pre-planned movements (the athlete knows in advance 
the desired cutting direction) or unplanned movements 
(the athlete has to act relative to a sudden change in infor-
mation). The sources of information in unplanned drills 
can be considered either generic or specific. Generic 
information comprises flashing arrows or lights indi-
cating the required direction of movement. In contrast, 

specific information includes either a video or a three-
dimensional (3D) projection (i.e., virtual reality) of one or 
more “opponents” presented in a simulated sport context. 
Each of these experimental settings elicits distinct load-
ing profiles of the knee joint (e.g., knee valgus moment) 
[21]. Sidestepping within unplanned conditions elicits 
different kinematics of the lower limbs and trunk during 
the ground contact phase than in a pre-planned condi-
tion [66, 80]. More importantly, individuals experience 
greater peak knee valgus moments during unplanned 
conditions than during pre-planned conditions [21, 66]. 
Although the magnitude of ACL strain increases, it is 
currently not clear whether the movement execution var-
ies enough to be considered a different movement strat-
egy defined by the distribution of kinetics (i.e., shifting 
from “hip” to “knee-dominant”) and this requires further 
investigation.

Since different stimuli or information reduce or 
increase the time available to prepare for sidestepping, 
the result is a change in the demands on the knee joint 
within the same broadly categorized movement strategy 
of sidestepping (Fig. 5). Therefore, a spatiotemporal con-
tinuum is one way to consider the relationship between 
time available and knee joint loading (e.g., knee valgus 
moment). Pre-planned sidestepping can be regarded as 
at one end of the continuum with minimal spatiotempo-
ral restriction and contrasts with unplanned sidestepping 
in response to generic information with no anticipatory 
cues to draw from to increase the opportunity for ear-
lier anticipation. When specific information, such as a 
3D projection of one or more opponents, is exploited, 

Fig. 4  Continuous iterative (re)calibration framework of learning to transfer and express strength gains in movement
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the opportunity to anticipate increases, providing more 
time to prepare for the upcoming sidestepping [21]. In 
such situations, when the opponents are not attempting 
to deceive, athletes tend to have relatively good anticipa-
tion accuracies with few response corrections [81], which 

translates to reduced ACL strain compared to move-
ment adaptations following generic information (Fig. 6). 
Despite such biomechanical insights, researchers have 
suggested periodizing training from unplanned scenar-
ios to generic information and specific information [82]. 
This suggests the previous order of progression could be 
questioned when a progressive exposure joint loading is 
necessary to minimize injury risk or return an athlete to 
performance following injury and is contrary to the load-
ing continuum.

What are Additional Considerations for Using Anticipatory 
Information as a Constraint for a Loading Continuum?
Although the opportunity to anticipate from the infor-
mation provided decreases the demands on the knee 
joint at a group level, this does not guarantee that injury 
risk reduction occurs at an individual level as the skill of 
anticipation differs between athletes. This heterogene-
ity in the skill of anticipation, which is associated with 
decision-making processes [83, 84], is not only apparent 
between different amounts of sport-specific expertise 
[85, 86] but also present within groups of elite athletes 
[87]. In general, athletes with poorer anticipation skills 
have less time to prepare for sidestepping, placing them 
more likely in “worst-case” scenarios with concomitant 
high-impact demands on the knee joint [21]. However, 

Fig. 5  Knee valgus moments in response to 4 different sidestep 
conditions. AP = Arrow planned (pre-planned); 1DS = One-defender 
scenario (specific information); 2DS = Two-defender scenario (specific 
information); AUNP = Arrow unplanned (generic information). * 
Significantly different at p ≤ 0.05. Data from Lee et al. [18]

Fig. 6  Knee joint loading continuum in response to different information sources. Data from Lee et al. [18]
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while “early” anticipation and decision-making might be 
considered beneficial, earlier response actions have been 
found to increase the likelihood of being deceived [81, 88] 
while giving the opponent to the opportunity to change 
their movement [89]. Therefore, it appears to be particu-
larly beneficial to execute movements at the last moment 
possible, so one can acquire as much information as 
possible while tolerating the demands imposed or force 
expressed to execute a successful performance. Moving 
at the right time is much more important than moving as 
early as possible. Skilled athletes initiate their movements 
later, which increases the outcome accuracy and success 
as there is less susceptibility to deception and superior 
motor capacities enable them to tolerate the imposing 
demands [81, 90]. Further, evidence suggests that skilled 
athletes seem to make better choices rather later, instead 
of earlier, when tested with representative task designs 
[88, 91, 92], indicating that the quality of a decision might 
be of higher relevance than the required time to decide 
[93]. This is in accordance with the speed–accuracy 
trade-off paradigm, suggesting that a more time-con-
suming evaluation of a situation can lead to higher suc-
cess rates and fewer errors [88, 91, 92, 94, 95]. However, 
even athletes with well-trained anticipation and decision-
making skills may experience in situ scenarios where they 
cannot rely on those skills (i.e., due to obscured vision, 
an opponent’s use of deception and disguise, or stochas-
tic ball bounce) and therefore experience “worst-case” 
scenarios. Thus, exposing athletes to unplanned side-
stepping situations that include generic information may 
further increase their load tolerance or provide specific 
development of motor capacity. In contrast, practice con-
ditions with an opponent not using deception or disguise 
might not result in tissue strain sufficient to elicit adapta-
tion, especially in athletes already skilled in anticipation 
and decision-making [85, 86]. In such scenarios, reacting 
to generic information (i.e., flashing lights or verbal cues) 
may provide an appropriate overload to further increase 
motor capacities.

Perceptual–Cognitive Skill and Improving 
Perceptual–Motor Skill
Will Improvements in Perceptual–Cognitive Skill Facilitate 
Perceptual–Motor Performance?
Understanding the isolated and interacting intrinsic and 
extrinsic constraints is crucial when attempting to alter 
an athlete’s movement, enhance athletic performance, 
and reduce injury risk, especially during “worst-case” sce-
narios. As sidestepping is ultimately a perceptual–motor 
skill, research efforts have aimed to improve percep-
tual–cognitive skills and motor capacities with targeted 
interventions. Specific to the former, an extensive body 
of literature has demonstrated that elite athletes perform 

better than sub-elite athletes on tests of perceptual–cog-
nitive skills [96]. It follows that improving the interrelated 
perceptual–cognitive skills such as gaze control, anticipa-
tion, and decision-making may enable athletes to better 
adapt to the demanding spatiotemporal constraints that 
are replete in elite sports, often with the goal of providing 
athletes with more preparation time prior to “worst-case” 
scenarios. However, the efficacy of training perceptual–
cognitive skills in isolation in non-representative settings 
to improve in situ performance remains questionable [78, 
97, 98].

The continuum of sidestepping situations described in 
the previous section also reflects a continuum of training 
practices, which can be further considered in the context 
of extant perceptual–cognitive training frameworks [79, 
99]. To this end, in the perceptual–cognitive skill litera-
ture, there has been an increased tendency for research-
ers to emphasize that if a training environment does not 
adequately sample characteristics from the sport perfor-
mance environment, this may have a limiting impact on 
the efficacy of perceptual–cognitive skill interventions. 
For instance, in the representative learning design frame-
work of Pinder et al. [100], these authors emphasized two 
considerations when evaluating the suitability of train-
ing conditions, namely functionality and action fidelity. 
Functionality emphasizes that performers should regu-
late their actions in learning contexts relative to informa-
tion in the performance environment. By way of example, 
researchers have questioned the suitability of ball-projec-
tion machines to create training conditions for athletes 
in fast-ball interception sports such as cricket [100] and 
tennis [101]. Further, action fidelity considers whether 
a performer’s responses (e.g., actions or decisions) are 
equivalent between the training environment and the 
performance setting. For instance, Maloney et  al. [102] 
demonstrated that motor actions in the sport of taek-
wondo differ between training and competition, as the 
former failed to adequately create the pressure, arousal, 
and mental challenge associated with competition [103]. 
This highlights that training any perceptual–motor skills 
without adequately facilitating an appropriate level of 
functionality and action fidelity that resemble those expe-
rienced in  situ inhibits how an individual perceives and 
acts and thus fundamentally limits a transfer to in  situ 
scenarios.

Video training is a particular mode of perceptual–cog-
nitive training that is critiqued for lacking a representa-
tive learning design [100]. This mode of practice has 
commonly been studied in the literature, partly because 
video training may enhance an athlete’s perceptual–
cognitive skill without placing any additional physical 
stressor on an athlete beyond regular training and com-
petition [16]. However, the potential benefits of video 
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training have been questioned [97] as evidence points to 
the fact that video and field-based measures of anticipa-
tion and decision-making appear to capture different 
elements of these respective skills [104]. For example, in 
a study of skilled football players, van Maarseveen et al. 
[105] reported that on-field anticipation and decision-
making performances were not predicted by video-based 
tests designed to measure the equivalent perceptual–cog-
nitive skills. These findings lend support to the perspec-
tive of van der Kamp et  al. [106]. They integrated the 
ecological approach with the visual perception of Gibson 
[76] alongside the neuro-anatomical perspective of Mil-
ner and Goodale [107, 108]. In short, van der Kamp et al. 
[108] and colleagues emphasized that to study the com-
plementary perception–action (i.e., ventral and dorsal 
systems [108]:) process that is critical to perceptual–cog-
nitive skill, it is essential for researchers to study the con-
trol of movements in real time relative to game context 
(e.g., the actions of an opponent and ball-flight) instead 
of asking participants to make simulated responses to 
a video. The implication for training is that while the 
video may enable the systematic control of information, 
such training design does not allow athletes to inter-
act with and influence the ever-changing environment 
of real-time sports situations [97]. Thus, although some 
evidence indicates that high-skilled athletes may benefit 
from video-only training [109, 110], questions about the 
efficacy of this training mode for improving perceptual–
cognitive skills that are transferred to in  situ scenarios 
remain largely unanswered [97].

Small-sided games (SSG) reflect another popular train-
ing method that has the potential to not only improve 
perceptual–cognitive skill—due to the perception–action 
processes involved—in tandem with physical and techni-
cal qualities. Variations of SSG, such as modifying pitch 
dimensions and player numbers, can increase spatiotem-
poral demands and the frequency of opportunities for 
anticipation and decision-making. Indeed, the reactive 
agility test (RAT) performance, which aims to quantify 
the decision-making time and change of direction speed, 
has been shown to increase after interventions with SSG 
[111, 112, 113]. However, while these results appear to 
be beneficial at first glance, the RAT is reliant on video-
based tests. Responses to video-based tests differ from 
on-field decision-making [105] and elicit a different 
action than an equivalent on-field condition of the same 
situation [104]. Therefore, it remains speculative whether 
improvements in RAT are a valid and reliable surrogate 
of in  situ anticipation and decision-making. Since per-
ceptual–cognitive skills are suggested to be task and 
environment-specific [114, 115], and variations of SSG 
setup affect divergence in player actions and positioning 
[116], practitioners need to be mindful when designing 

SSG to improve specific in  situ perceptual–cognitive 
skills. Future research is required to elaborate on how 
different methods like video training and SSG protocols 
develop in  situ perceptual–cognitive skills and support 
anticipation performance in “worst-case” scenarios. For 
example, it has been proposed that practitioners may 
benefit from adapting strategies nested in the ecological 
dynamics and constraints-led frameworks to help facili-
tate technical-tactical development [117]. As such, con-
ceptualizing drills within sports-specific practice that 
promote movement adaptability (degeneracy) within rep-
resentative learning environments may offer more poten-
tial to develop perceptual–cognitive skills that transfer 
to in  situ scenarios. While research is needed to sup-
port such suggestions, designing technical-tactical train-
ing in the above way could mean that the allocated time 
for strength and conditioning practice should prioritize 
physical preparedness.

Conclusion and Practical Applications
Individual constraints, such as motor capacity (i.e., 
strength), dexterity, or available range of motion, dic-
tate the available solution space and affect the emergent 
movement strategy when sidestepping. With increasing 
task demands, fewer movement strategies are available 
to athletes, potentially catalyzing a repeated utilization 
of the same dominant movement strategies. Therefore, 
having the motor capacity to adapt and utilize different 
movement strategies increases the likelihood of suc-
cess “despite” the scenario or position that the athlete 
is in. When increasing motor capacities, practitioners 
need to concomitantly facilitate the (re)calibration to 
the newfound strength through explorative practice to 
adequately adopt new movement solutions for a motor 
task. In the current article, we have proposed that the 
ability to adapt is especially pertinent during “worst-case” 
scenarios, where the imposed demands can surpass an 
individual’s load tolerance and increase injury risk. Train-
ing for such “worst-case” scenarios can be facilitated 
when the time available to anticipate and prepare for 
sidestepping is insufficient, such as when acting relative 
to generic information, including the sudden onset of a 
flashing light or verbal cues. Despite attempts to improve 
perceptual–cognitive skills, which enable better antici-
pation and decision-making, conclusive evidence is still 
lacking on whether a transfer to in situ scenarios is fully 
supported. Consequently, practitioners should strive to 
increase an athlete’s load tolerance and broaden the pos-
sible solution space to minimize injury risk, particularly 
in “worst-case” scenarios. Traditional resistance and 
plyometric training methods can thereby increase single- 
and multi-joint strength and facilitate load tolerance and 
injury resiliency. However, further research is needed to 
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evaluate the efficacy of deliberately imposing task con-
straints to alter an athlete’s habitual execution strategy 
execution variability.

Understanding how constraints influence an athlete’s 
movement strategies and the associated demands on the 
joint(s) can help practitioners design appropriate practice 
conditions to prepare athletes for “worst-case” scenar-
ios (see Additional file  1: video). Changing the practice 
conditions will require the athlete to explore different 
movement strategies and change the magnitude and dis-
tribution of joint loading. Knee joint loading (e.g., knee 
valgus moment) increases with decreasing preparation 
time. While preparation time is dictated by an athlete’s 
anticipation and decision-making qualities, future work 
is still needed to fully understand how to improve off or 
on-field-based perceptual–cognitive skills that transfer 
to in  situ scenarios. Developing single- and multi-joint 
strength facilitates a broad base of execution strategies 
and ensures an increased tolerance threshold against 
imposing loads. Since different tissues adapt at different 
rates, we recommend practitioners  progressively intro-
duce more demanding drills and incorporate appropriate 
deload phases to allow for musculoskeletal adaptations to 
manifest. Creating variable practice conditions encour-
ages exploration and enables athletes to (re)calibrate and 
learn how to use their improved motor capacity.

When implementing perception–action practice con-
ditions, practitioners will be affecting an athlete’s prepa-
ration time and therefore changing the imposed demand. 
This becomes the ideological shift for practitioners on 
the purpose of perception–action practice. There is more 
evidence to understand that perception–action train-
ing affects the demands on the joint(s) than it being a 
method of perceptual–cognitive skill training that trans-
fers to in situ performance. Therefore, practice conditions 
should be implemented using a task-constraint contin-
uum with the source of information dictating the amount 
of time available to the athlete and consequently chang-
ing the imposed loading. A reduction to the “worst-case” 
scenario or no preparatory timing elicits high demands 
on the knee joint, building an athlete’s physical load tol-
erance if done systematically and progressively.
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