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A B S T R A C T   

Subsurface geologic formations such as depleted hydrocarbon reservoirs, deep saline aquifers and shale for-
mations have been considered promising targets for carbon dioxide and hydrogen storage. A solid understanding 
of the interfacial properties of multiphase systems, including binary (pure gas-water) and ternary (gas mixtures 
and water), is vital to assess for reliability and storage capacity of the geological formations. However, most 
previous experimental and simulation studies for interfacial properties have mainly focused on binary systems at 
low-medium pressure. Only a few experimental and simulation studies investigated the interfacial tension at high 
pressure (above 20 MPa) for the CO2-CH4-H2O system, and no simulation data are available for the H2-CH4-H2O 
system. In this study, Molecular dynamics simulations were used to predict the interfacial tension (γ) for both the 
binary and ternary system at 300 K and 323 K for a wide pressure range (1.0 to 70 MPa). The study was first 
conducted for the binary systems (H2O-CO2; H2O-CH4 and H2O–H2) and then followed by the ternary systems 
(CO2-CH4-H2O and H2-CH4-H2O). The γ results were also validated with previous studies by comparing them to 
experimental and simulation data. The findings of this study indicated that γ data of binary and ternary systems 
decreased with increasing pressure and temperature. However, at high pressure (above 50 MPa), the γ data at 
300 K and 323 K showed a plateau or changed very slightly, apparently not depending significantly on tem-
perature. Furthermore, at a fixed pressure, determined γ values for the ternary system (H2-CH4-H2O) are 
constantly larger than for the CH4-H2O and CO2-CH4-H2O systems. The results provide extending or new γ data in 
simulation for the binary and ternary systems and contribute to evaluating the stability and long-term viability of 
various key Carbon Capture and Storage (CCS) and Underground Hydrocarbon Storage (UHS) related processes 
in support of the large-scale implementation of a hydrogen economy.   

1. Introduction 

With the global population and economic growth, world energy 
consumption is based mainly on fossil fuels such as coal, oil and natural 
gas [1]. However, Carbon Dioxide (CO2) emissions from fossil fuel 
consumption have been identified as the main cause of global warming 
and remain a challenge in reaching the goals of the Paris Agreement [2]. 
To deal with this problem, there are many technological solutions, 
including implementing Carbon Capture and Storage (CCS) and 
renewable energy sources [3,4]. While CCS provides an effective means 

to reduce greenhouse gas emissions in fossil fuel power plants and 
carbon-intensive industries [5,6], energy storage from renewable energy 
sources in the form of Hydrogen (H2) is considered a promising solution 
to provide clean fuel and replace traditional fossil fuels to reduce 
emissions of CO2 [7,8]. 

Depleted hydrocarbon reservoirs, deep saline aquifers and shale 
formations have been identified as potential geological targets to inject 
and store CO2 or H2 into underground formations for CCS projects and 
hydrogen geo-storage, also called Underground Hydrogen Storage 
(UHS) [9,10]. There are three main reasons for selecting subsurface 
formations for injection [11]. Firstly, subsurface data of the geological 
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formations have been collected and studied during the exploration and 
production stages. Secondly, the underground and surface infrastructure 
(wells, equipment and pipelines) already exist and could be reused for 
storage projects with minor or without modification [11]. Thirdly, the 
practice of injecting different gases into oil and gas reservoirs for 
enhanced recovery has been successfully mastered by the petroleum 
industry. Lessons learned are valuable in extending the practice to H2/ 
CO2 injection for sequestration purposes. 

The reliability and storage capacity of a storage formation or oil/gas 
field is strongly controlled by capillary pressure [12–14], as quantified 
by the Young-Laplace Eq. (1) 

Pc = Pg − Pw =
2γcosθ

r
(1)  

where Pc is the capillary pressure across the interface of two fluids as a 
function of the fluid-fluid interfacial tension γ, contact angle θ, and 
effective capillary (or pore) radius r as shown in Fig. 1. The formula 
indicates that γ is one of the key parameters determining how much gas 
can be stored and how the gas plume spreads in the subsurface [17,18]. 
It is, therefore, necessary to study the interfacial tension of such water- 
H2/CO2 gas mixtures in detail. 

A number of experimental studies ([19–28]) and simulation studies 
([29–36]) have been carried out to measure or predict the γ data of 
various gas-water systems in the past decade. Table 1 summarizes some 

of the γ studies for binary and ternary systems and the range of thermo- 
physical conditions. It can be seen from Table 1 that most studies of the 
binary system (CO2-H2O and CH4-H2) have been conducted at 275.15 to 
398.15 K and up to 50 MPa. However, only two experimental studies 
[23,26] were performed for the H2-H2O system. Furthermore, little γ 
data [20,21,29,37] are available for the ternary system (CO2-CH4-H2O) 
at high pressure, and only γ data from experiment [38] is available for 
the (H2-CH4-H2O) system. Note that these ternary systems are of vital 
importance as gas reservoirs may also contain CO2 [39,40] and that it is 
furthermore possible that microorganisms convert the H2 into CO2 or 
CH4 [41,42]. It is also possible that CH4 is used as a cushion gas for 
maintaining reservoir pressure during storage [43], or that unprocessed 
gas, e.g., directly from steam reforming [44] is injected. 

In this study, Molecular dynamics simulation studies were used to 
predict the interfacial tension (γ) for both the binary and ternary system 
at 300 K and 323 K for a wide pressure range (1.0 to 70 MPa). Firstly, the 
simulation was conducted for the binary systems (H2O-CO2; H2O-CH4 
and H2O–H2) and then followed by the ternary systems (CO2-CH4-H2O 
and H2-CH4-H2O). The predicted γ results were also validated with 
previous studies by comparing them to experimental and simulation 
data. The obtained results provide extending or new γ data in simulation 
for both the binary and ternary systems. The benefits of this study 

contribute to evaluating the stability and long-term viability of various 
key Carbon Capture and Storage (CCS) and Underground Hydrocarbon 
Storage (UHS) and support the implementation of large-scale CCS and 
UHS to decarbonize the energy supply chain. 

This study is organized as follows: Section 2 describes the molecular 
models and MD simulation methods in detail. The simulation results are 
presented and discussed in Section 3 and a summary and conclusion can 
be found in Section 4. 

2. Simulation methods 

In this study, molecular dynamics simulation was performed using 
the open-source LAMMPS package [45] to calculate interfacial tension 
(γ), including CO2/H2O, CO2/CH4/H2O, H2/H2O and H2/CH4/H2O-γ at 
a wide pressure range (1 to 70 MPa). Simulated results are also 
compared to experimental data from previous studies. 

2.1. Force fields 

A group of mathematical functions calculating the energy for a 
specified atomic configuration is called a force field ([46,47]). A typical 
force field may have the following potential energy terms: 

Utotal = Ucoul +Uvdw +Ustretch +Ubend (2) 

Nomenclature 

γ interfacial tension 
θ contact angle 
r effective capillary (or pore) radius 
CCS Carbon Capture and Storage 
EPM2 Elementary Physical Models 
MD molecular dynamics 
NVT canonical ensemble 
NPT isothermal-isobaric ensemble 
NIST National Institute of Standard and Technology 
OPLS optimized potentials for liquid simulations 
P pressure 
Pc capillary pressure 
PPPM particle-particle-particle-mesh 
T temperature, absolute 
TIP4P transferable intermolecular potential with four points 

for water 
UHS Underground Hydrocarbon Storage  

Fig. 1. An illustration of interfacial properties impacts on reliability and storage capacity for CCS and UHS projects [15,16].  
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where Ucoul is the Coulombic interaction, Uvdw is the Van der Waals 
intermolecular potential, Ustretch is the bond stretching potential and 
Ubend is bond angle bending potential. 

The Coulombic interactions are calculated according to Coulomb's 
law [47]: 

Ucoul =
qiqj

4πεor2
ij

(3)  

where qi and qj are the partial charges of atoms i and j, εo is the 
permittivity of free space, and rij is the distance between the atoms. 

The van der Waals intermolecular potential force (non-bonded) can 
be described by the Lenard-Jones (L-J) potential [48], 

Uvdw = 4εij

[(
σij

rij

)12

−

(
σij

rij

)6
]

(4)  

where εij is the well depth for short-range interactions, σij are core 
diameter for the L-J potential and rij is the distance between atoms. 

For the van der Waals interaction parameters between unlike atoms, 
the Lorentz Berthelot mixing rule was applied as follows [47] 

σij =
(
σij + σij

)/
2 and εij =

̅̅̅̅̅̅̅̅̅εijεij
√ (5) 

The intramolecular interactions contain bond stretching and bond 
angle bending defined by a harmonic potential. The bond stretching 
potential is given by: 

Ustretch = Kr(r − r0)
2 (6) 

And the bond angle bending potential is defined by the following: 

Ubend = Kθ(Ф − Ф0)
2 (7)  

where r, r0, Ф and Ф0 represent the measured bond length, the equi-
librium bond length, the measured angle and the equilibrium angle. Kr 
and Kθ are the bond stretching and angle bending force constants, 
respectively [29]. 

In this study, the TIP4P/2005 force field [49] was used to model 
water, while the EPM2 force field [50] was selected for the CO2 model; 
the OPLS force-field [51] was used for CH4 and H2 models using the 
parameters proposed by Yang and Zhong [52]. The force-field parame-
ters used are given in Table 2. 

2.2. Simulation methodology 

The simulation approach in previous studies was followed [53,54] by 
equilibrating the simulation boxes separately before combining them, as 
shown in Fig. 2. In the first step, a simulation cell size of 3.2 nm × 3.2 
nm × 3.2 nm was generated through a bulk phase MD simulation at 300 
K and 323 K, and the gas (CO2, CH4 and H2) pressure was modified by 
varying the number of gas molecules in the box. A total of 1088 water 
molecules were used for each simulation. Periodic boundary conditions 
were applied in three dimensions in all simulations [29,55], and energy 
minimization was performed prior to the simulations [29,53]. The initial 
velocity distribution of the molecules used the Maxwell-Boltzmann 
distribution [29]. The cut-off radius was set to 10 Å (less than half of 
the minimum three-dimensional size) for both the Lennard-Jones and 
long-range non-bonded electrostatic interactions. For the long-range 
Coulombic interactions, a particle-particle-particle-mesh (PPPM) 
method was applied with an expected relative error in forces of 0.0001 
[29]. For the force field TIP4P/2005, the SHAKE [56,57] algorithm was 
used with a relative tolerance of 0.0001, to constrain the bond length 
and angle of water molecules, allowing a longer time step. The timestep 
was 0.5 fs to calculate the nonbonded interactions. The temperature and 
pressure were fixed using a Nose-Hoover thermostat and barostat. The 
simulations were run under an NPT ensemble for 5 ns to obtain density 
values close to the experimental values from NIST database [58]. In 
particular, the NPzT ensemble was used to allow simulation box 
expansion or contraction [29,54], limited to the z-direction (x-length 
and the y-length were held constant). As a result, the z-length of the gas 
box changed in a range of 3.2 nm to 4.1 nm depending on pressure, 
while the z-length of the H2O box changed slightly to around 3.2 nm. In 
the second step, a rectangular box with H2O in the middle and gas (CO2, 

Table 1 
Experimental and simulation data for water-gas interfacial tension of studied 
binary and ternary systems.  

Authors Year Method Systems Pressure, 
MPa 

Temperature, K 

Naeiji et al. 2020 Simulation CO2/ 
CH4/H2O 

4–10 275.15 and 
298.15 

Chen et al. 2019 Simulation CO2/ 
CH4/H2O 

3–20 323.15 

Yang et al. 2019 Simulation CO2/ 
CH4/H2O 
(Brine)c 

Up to 60 348 

Yang et al. 2017 Simulation CO2/ 
CH4/H2O 
(Brine)a 

Up to 60 311–473 

Nair et al. 2022 Simulation CO2/ 
CH4/H2O 
(Brine)c 

Up to 100 311–473 

Lui et al. 2016 Experiment CO2/ 
CH4/H2O 
(Brine)b 

0.1–34.7 298.15 and 
398.15 

Ren et al. 2000 Experiment CO2/ 
CH4/H2O 

1–3 298–373 

Chow et al. 2020 Experiment H2/H2O 0.5–45 298 to 448 
Massoudi 

et al. 
1974 Experiment H2/H2O 7.6 298.15 

Silvestri 
et al. 

2019 Simulation CO2/H2O 1–50 308, 323 and 
383 

Li et al. 2013 Simulation CO2/H2O 
(Brine)b 

2–50 303 and 393 

Stefan et al. 2012 Simulation CO2/H2O 1–20 300, 343 and 
350 

Nielsen 
et al. 

2012 Simulation CO2/H2O 3–30 300–383 

Georgiadis 
et al. 

2010 Experiment CO2/H2O 1–60 298–374 

Chiquet 
et al. 

2007 Experiment CO2/H2O 5–45 308–383 

Kvamme 
et al. 

2007 Experiment CO2/H2O 0.1–20 278–335 

Hebach 
et al. 

2002 Experiment CO2/H2O 0.1–20 278–335 

Naeiji et al. 2019 Simulation CH4/H2O Up to 10 275.15 and 
298.15 

Khosharay 
et al. 

2014 Experiment CH4/H2O 
& CO2/ 
H2O 

0.1–6 284.15–312.15 

Sachs et al. 1995 Experiment CH4/H2O 0.5–46.8 298.15 
Mirchi et al. 2022 Experiment H2/CH4/ 

H2O 
(Brine)a 

6.9 295.15, 313.15 
and 333.15  

a Brine is from NaCl. 
b Brine including Na+, Ca2+ and Cl− . 
c Brine includes NaCl or CaCl2. 

Table 2 
Lennard Jones and Coulombic interaction parameters.  

Molecule model Atom Mass 
(g/mol) 

ε (kcal/mol) σ (Å) q (e) 

H2O H  1.00800  0.0000  0.000  0.520 
(TIP4P/2005) O  15.9994  0.1852  3.159  − 1.040 
CO2 C  12.0110  0.0559  2.757  0.651 
(EPM2) O  15.9994  0.1597  3.033  − 0.326 
CH4 C  12.0110  0.0660  3.500  − 0.240 
(OPLS) H  1.00800  0.0300  2.500  0.060 
H2

a H  1.00800  0.0198  0.272  0.740  

a [52]. 
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CH4 and H2) on both sides were combined, ready to determine interfa-
cial properties. The number of gas molecules ranged from 8 to 515, 
depending on pressure, while the number of water particles was fixed at 
1088 molecules. The system equilibrated at 300 K and 5 MPa for 5.5 ns 
under the NVT ensemble. The last 5 ns of simulations was considered a 
production step to collect data to calculate the results, see Fig. 3. Pro-
duction steps were applied to five blocks for calculating interfacial 
tension (γ), including error bars. 

2.3. Interfacial tension 

The surface/interfacial tension, γ, for the water and gas/water sys-
tems can be obtained by the following equation. 

γ = γsim + γtc (8)  

where γsim is the surface/interfacial tension calculated using the me-
chanical approach [59], with the diagonal components of the pressure 
tensor normal to the surface given by: 

Fig. 2. An example of the initial configuration for individual simulation boxes; a) bulk CO2, b) bulk H2O, and c) a mixed CO2-H2O system.  

Fig. 3. Final snapshot of the CO2/water system simulation box at 300 K and 7 MPa.  
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γsim =
Lz

2

(

Pzz −
Pxx + Pyy

2

)

(9)  

where Lz is the system length along the z-axis, and Pxx, Pyy and Pzz are the 
components of the pressure tensor. 

γtc is the tail correction, which accounts for the effect of truncating 
intermolecular potentials. γtc is calculated [60] as follows: 

γtc = 12π
∑N

a

∑N

b
εab σ6

ab x
∫ +∞

− ∞

∫ 1

− 1

∫ ∞

rc

ρa(z1)ρb(zr − 1)
1 − 3s2

r4 drdsdz1

(10)  

where ρa(z) is the density profile of molecule a along the z-direction, rc is 
the cut-off radius, N is the number of distinct molecule types in the 
simulation, z1 and z2 are the z-axis coordinates of molecules 1 and 2, 
respectively, and s = (z1 − z1)/r. 

Table 3 
γ(CO2-water), γ(CH4-water) and γ(H2-water) at 300 K and 323 K as a function of 
pressure. The standard error is shown in parentheses.  

Temperature Pressure γ (mN/m) 

(K) (MPa) CO2-H2O CH4-H2O H2-H2O 

300  1 62.1 (0.6) 64.3 (0.7) 62.8 (0.4)  
5 55.5 (0.9) 59.5 (0.8) 63.8 (0.4)  

10 38.0 (1.1) 58.4 (0.9) 64.1 (0.3)  
20 36.7 (1.0) 55.9 (0.9) 62.4 (1.1)  
50 34.6 (0.9) 54.0 (1.1) 62.3 (0.6)  
70 34.0 (0.7) 53.1 (0.3) 62.2 (0.9) 

323  1 58.3 (0.3) 59.6 (0.5) 60.3 (0.6)  
5 52.6 (0.4) 57.1 (0.7) 59.6 (0.8)  

10 43.5 (0.6) 56.8 (0.9) 59.5 (0.5)  
20 36.4 (1.0) 53.8 (1.0) 59.7 (0.6)  
50 34.2 (0.7) 50.6 (0.4) 60.7 (0.7)  
70 32.2 (0.6) 50.9 (1.1) 59.6 (0.5)  

Fig. 4. γ((CO2-H2O) as a function of pressure and temperature, experimental and simulation data.  
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3. Results and discussion 

3.1. Interfacial tension for binary systems (H2O-CO2, H2O-CH4 and 
H2O–H2) 

The calculated interfacial tension of pure carbon dioxide-, methane- 
and hydrogen-water systems under different 300 K and 323 K and a wide 
range of pressures of 1 MPa to 70 MPa are summarized in Table 3. The 
calculated results are compared to experimental and molecular dy-
namics simulation. The results of the simulations presented in this study 
agree with previous studies and are documented experimental errors. 

γ (CO2-H2O) as a function of pressure and temperature is shown in 
Fig. 4, where it is also compared with experimental results ([19,24]; and 
[25]) and previous simulation results [30]. The simulated results (with a 
standard error of around 1.0) are in good agreement with previous 
simulation data in low and high-pressure regions. In contrast, with 
pressure below the critical pressure (around 7.0 MPa), there is a 

significant difference with experiment data (around 9 mN/m), which 
can be caused by selecting forefield models [33], using the Lorentz- 
Berthelot combining rules [30] and the size of simulation box [31]. At 
high pressure (above 50 MPa), the γ data at 300 K and 323 K are constant 
or changed very slightly, indicating no or little dependence on 
temperature. 

γ(CH4-H2O) results of this study, as a function of pressure and tem-
perature, are shown in Fig. 5, indicating good agreement with the pre-
vious simulation studies [32]. However, the simulated γ(CH4-H2O) was 
lower than experimental values at lower pressure (by less than 10 %), 
although the agreement improved as pressure increased above 20 MPa. 
At high pressure (above 50 MPa), the γ data at 300 K and 323 K reaches a 
constant value or plateau, behaving similar to the CO2-H2O system. 
However, at the same pressure, the γ(CH4-H2O) requires higher pressure 
to reach a constant value when compared to the γ(CO2-H2O). 

γ(H2-H2O) was found to generally decrease slightly with increasing 
pressure but was found to decrease strongly with increasing 

Fig. 5. γ(CH4-H2O) as a function of pressure and temperature, experimental and simulation data.  
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temperature, as shown in Fig. 6. Simulated results show a similar trend 
in comparison with the experimental results [23], but γ simulated values 
are underestimated by about 10–14 % when compared with experi-
mental data [23]. At present there is no published information for 
simulation data of γ(H2-H2O) for validation. The differences between 
simulated and experiment results in γ(H2-H2O) may possibly be 
explained by the degree of accuracy in the description of the force field 
[33] or using the Lorentz-Berthelot combining rules [30]. Besides, [31] 
mentioned that the difference can be due to other simulation parameters 
such as the size of simulation box. 

γ of the binary systems decreases with increasing pressure and 
temperature, Fig. 7. At constant pressure, H2 exhibited the highest γ 
value, while CO2 had the lowest γ. This result can be explained by 
presenting the number of molecules adsorbed (or intermolecular forces) 
at the interface [36]. At the same temperature, the γ(CH4-H2O) requires 
higher pressure to reach a constant value or plateau compared to the 
γ(CO2-H2O), attributed to a rate of increased adsorption of CO2 

molecules at the surface, higher when compared with CH4 [36]. 

3.2. Interfacial tension of ternary systems (CO2-CH4-H2O and H2-CH4- 
H2O) 

The simulated interfacial tension of CO2-CH4-H2O and H2-CH4-H2O 
under different thermodynamic conditions is listed in Table 4. The gas 
mixture composition was chosen to give an approximate 60:40 mol ratio 
for CO2:CH4 and H2:CH4 as this composition is comparable to that used 
in experiments [21] and also simulations [32,61]. However, for the H2- 
CH4-H2O system, no published simulation data could be found and only 
experiment data [38] at P = 6.9 MPa. 

Interfacial tension calculated for the carbon dioxide-methane-water 
system is shown in Fig. 8. The results agree with previous simulation 
work [32]. Simulated results are lower than experimental values [21] by 
about 10 % when the pressure is at 10 MPa. The agreement improves as 
increasing pressures above 10 MPa. At high pressures (above 50 MPa), γ 

Fig. 6. γ(H2-H2O) as a function of pressure and temperature, experimental and simulation data.  
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remained unchanged. Furthermore, γ decreased with increasing pres-
sure, Fig. 9. However, the γ values of the CO2-CH4-H2O system are lower 
than the CH4-H2O system at fixed pressure or temperature. The lower γ 
values are caused by the presence of CO2 in the CO2-CH4-H2O system, 
consistent with previous studies [32,34]. The cause is due to stronger 
intermolecular interaction of CO2 molecules with the H2O molecules at 
the interface. 

As expected, γ(H2-CH4-water) decreased with increasing pressure, 
similar to γ(CH4-H2O). The γ result is in good agreement in comparison 
with previous experimental study at P = 6.9 MPa [38] At high pressure 
(above 50 MPa), γ(H2-CH4-water) remained unchanged, similar to re-
sults for the CO2-CH4-H2O system. Furthermore, at constant pressure, 
the predicted γ was higher than the γ for the CH4-H2O and CO2-CH4-H2O 
systems, as shown in Fig. 10 and Fig. 11. Results show that γ increased 
with the presence of H2, which leads to a decrease in the number of 
absorbed CH4 molecules at the surface [41], and also intermolecular 
interactions of H2 with H2O molecules at the surface are less strong 
when compared with CO2 or CH4. 

Here, although the extended and new γ data results from this study 
conducted at a wider range of pressure (1.0 MPa to 70 MPa) and showed 
a similar trend in comparison with previous experimental and simula-
tion studies for the binary and ternary system. But there is limited data 
available on the system of H2-H2O and H2-CH4-H2O for validating the 
predicted results and significant differences between this study's simu-
lation data and previous experimental data. Therefore, further im-
provements in the future may be conducted by using different force field 
models (CO2, CH4, H2) when combing with the water model or varying 

Fig. 7. Interfacial tension γ of the (H2O-CO2, H2O-CH4 and H2-H2O systems at 300 K and 323 K as a function of pressure, simulation data.  

Table 4 
Predicted γ(CO2-CH4-water) at 323 K and γ(H2-CH4-water) at 300 K as a function 
of pressure. The standard error is shown in parentheses.  

P γ (mN/m) at T = 323 K P γ (mN/m) at T = 300 K 

(MPa) CH4-H2O CO2-CH4-H2O (MPa) CH4-H2O H2-CH4-H2O  

1  59.6 58.7 (0.5)  1  64.3 63.9 (1.1)  
5  57.1 54.7 (0.6)  5  59.5 62.8 (0.7)  
10  56.8 52.9 (0.6)  10  58.4 61.7 (1.0)  
20  53.8 48.0 (0.8)  20  55.9 59.0 (0.9)  
50  50.6 43.9 (0.6)  50  54.0 55.8 (1.1)  
70  50.9 43.1 (0.8)  70  53.1 55.9 (0.8)  
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Fig. 8. γ(CO2-CH4-H2O), experimental and simulation data.  

Fig. 9. A comparison of γ(CH4/H2O) and γ(CO2/CH4/H2O).  

Fig. 10. γ(H2-CH4-H2O) predicted as a function of pressure (at 300 K).  
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sizes of simulation boxes to investigate impacts on the γ data and also 
expect to reduce the gap of the differences. 

4. Summary and conclusions  

1. The interfacial tension (γ) of the binary (pure gas-water) and ternary 
(gas mixtures and water) systems is vital for the evaluation of the 
storage capacity of CO2 or H2 in depleted hydrocarbon reservoirs, 
deep saline aquifers and shale formations.  

2. This study summaries methodologies and a workflow for deriving 
values for γ, the key parameter required for various CCS- and UHS- 
related processes, in support for the implementation of a large- 
scale hydrogen economy.  

3. In reviewing prior publications relevant to the presented study, 
several shortcomings were identified. Firstly, experimental and 
simulated results for the determination of γ have been limited to 
pressure levels above 20 MPa for the CO2-CH4-H2O system. Sec-
ondly, for the H2-CH4-H2O system no published γ data could be 
found. 

4. To extend the applicability of diverse gas injection scenarios re-
ported previously, simulations of this study were aimed at validating 
previous experimental and simulation results and developing previ-
ous work. Molecular dynamics simulations were performed to pre-
dict interfacial tension (γ) for various binary (H2O-CO2; H2O-CH4 
and H2O–H2) and ternary (CO2-CH4-H2O and H2-CH4-H2O) systems 
at 300 K and 323 K and a wide pressure range (1.0 to 70 MPa).  

5. For binary and ternary systems, γ values were generally found to 
decrease with both, increasing pressure and temperature. However, 
at high pressure (above 50 MPa), γ data at 300 K and 323 K indicated 
an unchanged or very weakly fluctuating response, with temperature 
change having little influence. Furthermore, at the same pressure, 
the γ value of the ternary system (H2-CH4-H2O) in the presence of H2 
is improved or increased compared with the binary system (CH4- 
H2O) and also the ternary system (CO2-CH4-H2O).  

6. The results provide extending or new γ data in simulation for the 
binary and ternary systems and contribute to evaluating the stability 
and long-term viability of various key Carbon Capture and Storage 
(CCS) and Underground Hydrocarbon Storage (UHS) related pro-
cesses in support of the large-scale implementation of a hydrogen 
economy. 
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