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Abstract: Recessive dystrophic epidermolysis (RDEB) is a rare, inherited, and currently incurable skin
blistering disorder characterized by cyclically recurring wounds coexisting with chronic non-healing
wounds. In a recent clinical trial, three intravenous infusions of skin-derived ABCB5+ mesenchymal
stromal cells (MSCs) to 14 patients with RDEB improved the healing of wounds that were present
at baseline. Since in RDEB even minor mechanical forces perpetually provoke the development of
new or recurrent wounds, a post-hoc analysis of patient photographs was performed to specifically
assess the effects of ABCB5+ MSCs on new or recurrent wounds by evaluating 174 wounds that
occurred after baseline. During 12 weeks of systemic treatment with ABCB5+ MSCs, the number of
newly occurring wounds declined. When compared to the previously reported healing responses of
the wounds present at baseline, the newly occurring wounds healed faster, and a greater portion of
healed wounds remained stably closed. These data suggest a previously undescribed skin-stabilizing
effect of treatment with ABCB5+ MSCs and support repeated dosing of ABCB5+ MSCs in RDEB to
continuously slow the wound development and accelerate the healing of new or recurrent wounds
before they become infected or progress to a chronic, difficult-to-heal stage.

Keywords: ABCB5; cell therapy; mesenchymal stromal cells; recessive dystrophic epidermolysis
bullosa; wound healing

1. Introduction

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin blistering
disorder in which total loss or deficiency in functional collagen VII at the dermo–epithelial
junction causes excessive skin fragility and progressive multi-organ fibrosis [1–3]. Effective
systemic curative therapies targeting this underlying genetic defect are not available for
routine clinical care so far [4,5], pointing to an urgent need for disease-modifying treatments
that effectively improve defective wound healing and alleviate severe symptoms such as
itch and pain [6]. In addition to the investigation of several small-molecule-based drug
therapy approaches [7], the association of RDEB with systemic inflammation beyond
skin-limited involvement [2,3,8] has stimulated the development of cell-based therapeutic
approaches including allo-transplantation of mesenchymal stromal cells (MSCs) such as
human bone marrow- and umbilical cord blood (UCB)-derived MSCs [9–11]. Recently, a
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skin-resident immunomodulatory MSC population, characterized by expression of the ABC
transporter ABCB5 [12,13], has facilitated the healing of acute and chronic skin wounds
after topical administration in preclinical and clinical studies [13–17]. In addition, following
systemic intravenous grafting, ABCB5+ MSCs reduced RDEB symptoms and significantly
prolonged the lifespan in a Col7a1–/– mouse model of RDEB [18]. Very recently we found
that three intravenous infusions of allogeneic skin-derived ABCB5+ MSCs to patients with
RDEB decreased disease activity, alleviated itch and pain, and facilitated the healing of the
wounds that were present at baseline [19,20].

However, unless a treatment was capable of not only healing existing wounds but also
of restoring deficient collagen VII expression at the dermo-epithelial junction, even minor
mechanical forces would continue to provoke new wound development. Consequently, in
the absence of causal RDEB cures, there exists an urgent need for maintenance therapies ca-
pable of slowing new wound development and/or accelerating new wound healing before
the onset of possible wound infection or of wound progression to chronic, more difficult-to-
heal stages. Given the pronounced anti-inflammatory and ECM-remodeling effects that
have been attributed to ABCB5+ MSCs in various preclinical and clinical settings [21], we
wondered whether these cells might be a candidate for such a preventative wound reduc-
tion maintenance treatment approach. To this end, we conducted an exploratory post-hoc
analysis of the above-referenced clinical trial in RDEB patients, specifically focusing on the
development and healing kinetics of wounds that were not present at baseline during 12
weeks of systemic treatment with ABCB5+ MSCs.

2. Materials and Methods
2.1. Clinical Trial

The clinical trial design, inclusion and exclusion criteria, and the results for all pre-
defined outcome measures have been reported previously [19]. To summarize, 16 adult and
pediatric patients with genotypically and phenotypically diagnosed RDEB were enrolled at
five study sites in Germany, Austria, France, the United Kingdom, and the United States, to
receive three intravenous infusions of 2 × 106 allogeneic ABCB5+ MSCs/kg, manufactured
as a standardized GMP-compliant advanced-therapy medicinal product [22,23] (for product
release data see [19]), on days 0, 17, and 35. The patients were followed up for 12 weeks
regarding the efficacy and for one year regarding safety.

The trial was conducted according to the guidelines of the Declaration of Helsinki.
The protocol and all other relevant documents had been approved by the relevant drug
regulatory authorities and the local independent ethics committees/institutional review
boards. Prior to any trial-related procedures, written informed consent was obtained from
all patients or, in the case of minors, their parents.

2.2. Photograph Assessments

At each efficacy visit (day 0, day 17, day 35, week 12), photographs of the affected body
regions were taken for documentary purposes. In situations where this would have imposed
undue stress on the patient, the investigator was allowed to desist from photographing
the respective body area(s) at any visit. In the present post-hoc analysis, all wounds in all
body regions of which photographs were taken at all four efficacy visits were included. The
photographs were independently assessed by three reviewers to record the number of new
wounds, defined as wounds that were open at any post-baseline visit but had not been open
at day 0. Exemplary series of evaluated photographs are shown in Figure 1.
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Figure 1. Sample series of patient photographs. New wounds, defined as wounds that were not
present at baseline (day 0), were marked on the day they first occurred, and the wound areas were
followed up to week 12. Wounds that first occurred on day 17 are circled in white, wounds that
first occurred on day 35 are circled in blue, and wounds that first occurred on week 12 are circled in
orange. Upper panel: Female patient, 36 years. Lower panel: Male patient, 9 years. The patients or
their parents consented to the publication of their photographs.

2.3. Calculations

The numbers of the observed new wounds were summed up over all patients, and
grouped according to the time point of their first observation (designated as “day-17”, “day-
35” and “week-12 new wounds”). For the day-17 and day-35 new wounds, the following
outcome parameters were calculated, as applicable: healing ratio, defined as the percentage
of wounds that had healed until each of the subsequent visits; median time to wound closure;
and proportion of durably healed wounds, defined as the percentage of closed wounds that
remained closed over a period that exceeded the typical time to recurrence, determined in
natural-history studies on RDEB as about 3 weeks on average [24] (in the present analysis at
least 7 weeks). Where possible, the results were compared to the corresponding, previously
published results for the wounds that were present at baseline [20]. Descriptive statistics were
employed to summarize the data of this post-hoc analysis.

3. Results
3.1. Incidence of New Wounds

Photograph series covering all four efficacy visits were available from 14 patients
(6 male, 8 female, age 6–36 years). In total, 174 wounds that were not present at the baseline
visit could be followed up. Of these, 77 wounds (44%) developed over the first 17 days
(“day-17 new wounds”), whereas only 48 wounds (28%) occurred over a further 18 days
(until day 35, “day-35 new wounds”). The remaining 49 wounds (again 28%) were observed
only at week 12 (“week-12 new wounds”), which means that they developed over a period
(from day 35 till week 12) that was almost three times as long (49 days as compared to
17 days for the day-17 wounds and 18 days for the day-35 wounds) (Figure 2).
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Figure 2. Sankey diagram indicating the occurrence and outcome of 174 wounds that had not been
present at baseline (“new wounds”) in 14 RDEB patients during treatment with ABCB5+ MSCs. For
each time point, red nodes represent open wounds and blue nodes represent healed wounds.

3.2. Outcomes of the New Wounds

Of the 77 wounds that occurred for the first time on day 17 (“day-17 new wounds”),
43 wounds (56%) had already closed again by day 35. This means that more than half of
these wounds had healed within a maximum of 18 days (the period between day 17 and
day 35), which translates into a median time to first wound closure of 18 days. Remarkably,
a very large portion (88%, 38 wounds) out of the 43 wounds that had closed again already
by day 35 was still closed at the week-12 visit, i.e., remained closed over at least 7 weeks.
A further 12 wounds of the day-17 new wounds closed between day 35 and week 12, so
that in total approximately two-thirds (50 out of 77) of day-17 new wounds had closed by
week 12 (Figure 2).

The 48 wounds that occurred for the first time on day 35 (“day-35 new wounds”) were
followed up only at one subsequent visit, i.e., at week 12. Of these wounds, three-quarters
(36 wounds, 75%) were closed at week 12, i.e., had healed within 7 weeks or less (Figure 2).

3.3. Comparison of New versus Baseline Wounds

The outcomes of the new wounds were compared with those of the baseline wounds
previously reported in the same patient population [20], taking into account that the
different groups of wounds, depending on the time point at which they were detected,
were monitored over time intervals with different lengths (baseline wounds, 12 weeks;
day-17 new wounds, 9.5 weeks; day-35 new wounds, 7 weeks) (Table 1). The comparison
showed that more than twice the proportion of day-17 new wounds (56%) as compared
to the baseline wounds (27%) healed in the short time (18 days and 17 days, respectively;
Table 1). In line, the median time to first wound closure for the day-17 new wounds
(18 days) was only half that of the baseline wounds (35 days). Furthermore, follow-up
of these rapidly healing day-17 new wounds revealed that a greater portion of (i.e., 88%)
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remained closed over at least 7 weeks after closure compared to the 74% proportion of the
baseline wounds (Table 1).

Table 1. Healing parameters of the new wounds that occurred on day 17 (“day-17 new wounds”) or
day 35 (“day-35 new wounds) as compared to the wounds that were present at baseline.

Parameter Day-17 New Wounds
N = 77

Day-35 New Wounds
N = 48

Baseline Wounds 1

N = 168

Healing ratio within:

17 days 45/168 (27%)
18 days 43/77 (56%)
35 days
7 weeks 36/48 (75%)

9.5 weeks
12 weeks 109/168 (65%)

Median time to first wound closure 18 days 2 35 days

The proportion of durably (≥7 weeks) healed wounds 3 38/43 4 (88%) 69/93 5 (74%)

1 The results for the baseline wounds have been published previously [20]. 2 Inferred from the observation that
>50% of the day-17 new wounds healed within 18 days. 3 Refers to the wounds that have remained closed for
significantly longer than the typical time to recurrence, which natural history studies of RDEB have shown to be
an average of 3 weeks [24]. 4 Due to the trial visit schedule, the proportion of durably closed wounds could only
be determined for wounds that were closed by day 35 (n = 43). 5 Due to the trial visit schedule, the proportion of
durably closed wounds could only be determined for wounds that were closed by day 17 and/or day 35 (n = 93).

4. Discussion

Even though RDEB has been recognized to display features of systemic inflammation
leading to progressive multi-organ fibrosis [2,3,8], skin wound closure is consistently identi-
fied among the most desired outcomes of disease-modifying treatment [25,26]. As recently
reported, systemically administered allogeneic ABCB5+ MSCs have emerged as capable
of facilitating complete and durable wound closure in patients with RDEB [20]. However,
in view of the complex and highly dynamic RDEB skin wound evolution composed of
chronic persistent and recurrent healing/re-opening wounds [24,27], an ideal wound clo-
sure strategy would not only target already existing wounds but also induce slowing of
the occurrence of newly developing or recurring wounds and/or facilitate and accelerate
healing once such wounds have developed before they enlarge, become infected or become
chronic.

An indication that treatment with ABCB5+ MSCs might indeed have been capable of
delaying the occurrence of new (i.e., not present at baseline) wounds is provided by the
distribution of the newly occurred wounds over the different time points of observation:
After nearly half of these wounds (44%) had occurred already by day 17, only 28% of
wounds occurred after another 18 days (on day 35), whereas another 28% of wounds
developed only over a comparatively long period of a further 7-week time interval (until
week 12) (Figure 2).

Moreover, when compared to the previously reported healing responses of the baseline
wounds to treatment with ABCB5+ MSCs [20], the new wounds displayed improved
outcomes. Most strikingly, day-17 wounds showed an approximately two-fold proportion
of rapidly healing wounds (56% within 18 days) compared to baseline wounds (27% within
17 days), which corresponded to approximately half the median time to first wound closure
(18 days versus 35 days for baseline wounds) (Table 1). In addition, a greater proportion
(88%) of these early-healing new wounds, compared to 74% of early-healing baseline
wounds [20], remained stably closed over at least 7 weeks (Figure 2), i.e., they remained
closed at least two-fold longer than the typical average time observed for closed wounds
to reopen in RDEB (3 weeks) [24]. For the day-35 wounds, a direct comparison of the
wound healing parameters with those of the baseline wounds was impeded by the different
lengths of the follow-up periods (see Table 1), owing to the varying intervals between the
trial visits. Nevertheless, while 65% of the baseline wounds were closed at the end of the
12-week treatment and efficacy phase, 75% of the day-35 wounds were closed after just
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over half the time (7 weeks) (Table 1). This might indicate an earlier treatment response
also in the day-35 wounds compared to baseline wounds.

It is important to note that by specifically monitoring the wounds that developed
during the treatment period, the present analysis was able to distinguish between the two
types of wounds, i.e., chronic persistent and recurrent healing/re-opening wounds, which
typically co-exist in RDEB patients [24,27]. While the baseline wounds included both types
of wounds, including a significant proportion of chronic wounds, the newly developed
wounds displayed exclusively the non-chronic, recurrent wound type. The herein observed
faster and greater healing successes of new wounds compared to baseline wounds might
be explained by the fact that with repeated cell dosing, successive MSCs delivered after the
first dosing had homed to new wounds at earlier time points following their first occurrence
and before sufficient time had elapsed for such new wounds to significantly increase in
size or become chronic. The benefit of repeated dosing to treat wounds as early as possible
after they occur is supported by the proportions of wounds that had healed at week 12:
while 65% (109/168) of baseline wounds healed over 12 weeks, an equal proportion of 65%
(50/77) of day-17 wounds healed from day 17 to week 12 (i.e., in only 9.5 weeks) and even
75% of day-35 wounds healed from day 35 to week 12 (in only 7 weeks). This suggests that
the closer a wound gets to becoming chronic (i.e., lasting 12 weeks or more), the harder
and longer it will take to heal.

Additionally, the herein observed delay in the development of new wounds (i.e.,
77 wounds/17 days, 48 wounds/18 days, and 49 wounds/49 days for day-17, day-35,
and week-12 wounds, respectively) (Figure 2) under a regime of repeated ABCB5+ MSC
treatments was noteworthy. Crucial prerequisites for successful local anti-inflammatory
and repair-promoting effects by systemically administered cells are efficient recruitment,
migration, and homing of therapeutically grafted cells in response to chemokine gradients
released from sites of injury [28,29]. In this regard, for the herein studied skin-derived
human ABCB5+ MSC populations, in-vivo skin homing and engraftment capabilities
have already previously been demonstrated in pre-clinical studies in recipient NSG mice:
Systemically grafted human ABCB5+ MSCs homed to skin wounds and were detectable for
at least 14 days, demonstrating a superior engraftment potential compared to side-by-side
evaluated bone-marrow-derived MSCs [30]. Moreover, ABCB5+ MSC engraftment into
uninjured skin has also been demonstrated in mice: Intravenously infused mouse ABCB5+

MSCs homed to the skin and survived for at least 17 days against a fully allogeneic barrier
(BALB/c ABCB5+ MSCs grafted into C57/BL6 mice) [12]. These findings, together with
the consideration that the permanent, intrinsic inflammatory environment in RDEB skin is
associated with increased expression of genes related to immune system activation [31],
increased neutrophil and CD38+ (M1) pro-inflammatory macrophage infiltration with
high MHC II expression, and defective macrophage phenotype switching [32], potentially
explain why RDEB skin might be prone to preferentially recruit systemically administered
ABCB5+ MSCs to skin sites even before open wound manifestation, and hence our current
clinical observation of inhibitory effects on new wound formation by systemically grafted
allogeneic ABCB5+ MSCs.

This possibility is further supported by previous findings that ABCB5+ MSCs possess the
potential to ameliorate neutrophil overactivation [33] and to abrogate M1 macrophage persis-
tence while inducing transition to anti-inflammatory, healing-promoting M2 macrophages [13].
Interestingly, M2 (CD206+) macrophage polarization in skin samples was found to be asso-
ciated with improved wound healing and symptom relief in RDEB patients following three
intravenous infusions of human UCB-MSCs [11]. It is noteworthy in this context that ABCB5+

MSCs-mediated induction of M2 macrophage phenotype switching has been shown to be associ-
ated with a significant reduction of tumor necrosis factor-alpha (TNF-α) signaling in the skin [13],
while conversely, TNF-α is upregulated and pathophysiologically involved in RDEB [34–36].
Therefore, the current observations raise the possibility that systemically grafted ABCB5+ MSCs,
beyond their known wound healing-promoting effects on established wounds [15,17,20], are
also recruited to RDEB inflamed skin prior to wound formation and at such sites alleviate
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inherent M1 macrophage-driven inflammation, with concomitant improvements in extracellular
matrix organization and tissue stabilization, and enhancement of damage resistance of RDEB
skin [32] (Figure 3).
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Figure 3. Hypothetical mechanisms of ABCB5+ MSCs to reduce inflammation and enhance stability
in RDEB skin. Intravenously administered ABCB5+ MSCs migrate and home to the inflamed skin to
induce a shift from pro-inflammatory M1 macrophages to pro-regenerative M2 macrophages. The
resulting suppression of TNF-α signaling is expected to improve extracellular matrix organization. In
addition, ABCB5+ MSCs can secrete collagen VII, the major component of the anchoring fibrils that
attach the epidermis to the dermis within the basement membrane zone, which might contribute to
further improving the structural integrity of the skin. ECM, extracellular matrix; IL-1RA, interleukin-1
receptor antagonist; M1, M1 macrophage; M2, M2 macrophage, TNF-α, tumor necrosis factor-alpha.
Created with BioRender.com.

Finally, ABCB5+ MSCs are also capable of secreting type VII collagen [30], which
raises the possibility that repeatedly grafted allogeneic ABCB5+ MSCs could additionally
contribute to skin integrity improvements also through the provision of functional type
VII collagen, lack of which is the primary cause of skin fragility in RDEB. In healthy skin,
collagen VII trimerizes to form anchoring fibrils that connect the epidermal basement mem-
brane with the dermal extracellular matrix [37] (Figure 3). In a collagen VII-hypomorphic
mouse model of RDEB [38], intradermally injected human bone marrow-derived MSCs
were capable of depositing collagen VII at the dermal-epidermal junction and enhancing
skin resistance to shear forces through the de-novo formation of immature anchoring
fibrils [39]. Intravenous MSC administration, as performed in the present trial, would
hereby spare patients the discomfort of multiple intradermal injections while at the same
time allowing for systemic treatment effects. While it has been postulated that, at least
for bone marrow-derived MSCs, intravenous administration might not deliver sufficient
numbers of cells to the skin [39], it is noteworthy that skin-derived ABCB5+ MSCs home
in greater numbers to the skin upon intravenous infusion and possess superior collagen
VII secretion capacity compared to bone marrow-derived MSCs [30]. Notably, increased
collagen VII expression at the dermo-epidermal junction observed in an RDEB patient
receiving three intravenous infusions of UCB-MSCs [11] supports the possibility of collagen
VII delivery by systemic MSC treatment. Thus, further studies are warranted to determine
whether intravenously infused ABCB5+ MSCs, at currently explored doses, are indeed
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capable of replacing defective collagen VII in RDEB skin at rates that could potentially
confer therapeutic benefits.

5. Conclusions

Given the post-hoc nature of this analysis, the use of documentary, non-standardized
photographs, and the lack of a control group, the findings reported herein should be con-
sidered hypothesis-generating, requiring further demonstration of validity in subsequent
placebo-controlled trials. Under this premise, the identified therapeutic effects, which
manifested themselves in decelerated RDEB cutaneous wound formation rates and acceler-
ated and more stable healing of newly developed RDEB wounds, suggest a therapeutic
advantage of repeated dosing of systemically administered ABCB5+ MSCs to patients with
RDEB. Benefits were observed after both the first repeat infusion (18 days after the first
infusion) and the second repeat infusion (7 weeks after the second infusion), which appears
to support a strategy that combines induction therapy (with shorter intervals between
infusions) with subsequent maintenance therapy (with longer intervals between infusions).
In conclusion, this analysis suggests a systemic healing-promoting and skin-stabilizing
effect of treatment with allogeneic ABCB5+ MSCs and provides valuable information for the
identification of optimal dosing schemes as a further step on the way to efficient treatment
strategies to respond to the urgent needs of patients suffering from RDEB.
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