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Abstract: Developing cost-effective, eco-friendly, efficient, stable, and unique catalytic systems
remains a crucial issue in catalysis. Due to their superior physicochemical and electrochemical
properties, exceptional structural characteristics, environmental friendliness, economic productivity,
minimal energy demand, and abundant supply, a significant amount of research has been devoted
to the development of various doped carbon materials as efficient catalysts. In addition, carbon-
based materials (CBMs) with specified doping have lately become significant members of the carbon
group, showing promise for a broad range of uses (e.g., catalysis, environmental remediation, critical
chemical production, and energy conversion and storage). This study will, therefore, pay attention to
the function of heteroatom-based doped and undoped CBMs for catalytical applications and discuss
the underlying chemistries of catalysis. According to the findings, doping CBMs may greatly improve
their catalytic activity, and heteroatom-doped CBMs may be a promising option for further metal
doping to attach them to an appropriate place. This paper also covers the potential applications of
both doped and undoped CBMs in the future.

Keywords: doping carbon materials catalyst; OER; HER; methanol oxidation; photocatalysis

1. Introduction

The incessant growth of energy demand and environmental pollution are the most
concerning current issues worldwide. The inadequate supply of fossil fuels for the rising
global population and the harmful pollution from fuel-burn discharges have compelled
researchers to find a new, sustainable way to produce energy by utilizing renewable en-
ergy sources [1,2]. In recent years, some environmentally friendly technologies such as
water splitting, fuel cells, and metal-air batteries have come to the limelight by showing
their promising energy conversion and storage efficiency as well as their sustainable per-
formances [3]. The major roadblock to the sustainable grid-scale development of these
renewable energy technologies is the requirement of noble-metal catalysts for these reac-
tions (e.g., Pt, Ru, Pd, Ir, etc.), which are highly expensive. Due to the scarcity and high cost
of these noble metal catalysts, recent research has focused on the reduction of their gross
amount in electrochemical cells. As a part of these alternative approaches, different ad-
vanced carbon-based materials (CBMs), such as graphene, graphene oxides (GO), graphitic
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carbon nitrides (GCN), carbon nanotubes (CNT), etc., have been suggested as promising
supporting materials for the conventional metal (oxide) catalysts. These carbon-based sup-
ports have gained considerable attention from researchers during the past few years due to
their several advantages, such as large surface area, good electrochemical stability, and
low cost of synthesis [4]. However, one major drawback of these supports is their surface
inertness compared to metal catalysts. It is difficult to deposit the catalytic nanoparticles on
the inert surface of these supporting materials. Thus, the poor catalyst-support interaction
restricts the development of a uniformly dispersed, efficient, and durable ideal catalyst.

Doping CBMs with various heteroatoms (e.g., N, S, P, B, etc.) is a promising solution
to this problem [5]. These heteroatoms are composed of a different number of electrons
and electronic configurations than that of C-atoms. Therefore, carbon materials must be
chemically modified when they are doped with these atoms. The tuned chemical and
electronic properties of the doped CBMs help the uniform dispersion of the catalysts on the
support and increase catalyst stability [6]. This also helps to enhance the catalytic activity
of the metal single-atom catalysts (SACs) [7]. Furthermore, heteroatom-doped CBMs
are reported as promising metal-free catalysts for water-splitting and oxygen reduction
reactions (ORR) in fuel cells [8]. Moreover, some of these metal-free catalysts increased
the power conversion efficiency of the fuel cells at a relatively lower cost compared to the
noble-metal catalyst-based fuel cells. Therefore, the heteroatom doping of CBMs is a topic
of great importance for sustainable energy production and storage technologies.

Some advanced CBMs, such as GCN, graphene, and GOs, are also used as metal-
free green catalysts for the photochemical degradation of organic pollutants from water
(Figure 1). These materials have a narrow or zero band gap between their valence band and
conduction band, and thus, are capable of producing pairs of photogenerated electrons and
holes by using renewable energies from sunlight [9]. However, the slower rate of charge
transfer and the charge-carrier recombination in pure CBMs compared to conventional
inorganic catalysts (such as TiO2, ZnO, and SnO2 nanoparticles) limits their photocatalytic
performances. To overcome these limitations, various heteroatoms are doped into these
photo-active CBMs. It has been found in many studies that the heteroatom doping of
these materials helps to increase their light absorption capacity [10], promotes charge
separation [11], differs the electron/hole recombination rate [12], and increases the rate of
charge transfer. Therefore, the heteroatom-doped CBMs are promising photocatalysts for
the decomposition of organic pollutants.

Although some existing reviews are available on the photocatalytic and electrocat-
alytic application of various doped CBMs, most of them are based on some specific CBM
(e.g., carbon dots, graphene), specific element/s doping (e.g., doping with nitrogen), or
some specific reactions (e.g., HER, ORR). For instance, recently, Salinas-Torres et al. [13]
reviewed the application of nitrogen-doped CBMs for hydrogen-generation reactions.
However, the effect of doping with other heteroatoms was not discussed in the arti-
cle. Zhang et al. [14] studied the recent advances in the application of doped carbon
dots for electrocatalytic reactions. However, the study was confined to carbon dots only.
Other heteroatom-doped CBMs, such as graphene, GCN, and CNTs, were not reviewed.
Hu et al. [15] reviewed the doped CBMs for various electrocatalysis reactions. The photo-
catalytic application of such materials was not discussed in the study. Other review articles
based on the N-doped CBMs for ORR [16], transition metals doped CBMs for HER [17],
catalytic applications of metal-N-doped CBMs [18], and electrocatalytic applications of
non-N-doped CBMs [19] are also available. However, to the best of the authors’ knowledge,
there is no review in the literature where the role and underlying chemistry of heteroatom
doping on the electrocatalytic and photocatalytic behavior of different CBMs (e.g., graphene,
carbon dots, GCN, CNTs, etc.) have been discussed together. In addition, the comparisons
between the catalytic performances of the doped CBMs and the origin of their performance
deviations have not yet been reviewed collectively in any study (Figure 1).
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Figure 1. Current status and advances of doped carbon materials for various applications.

In our study, we have reviewed the photocatalytic and electrocatalytic application of
various heteroatom-doped CBMs in the reactions, such as hydrogen evolution reaction
(HER), oxygen evolution reaction (OER), ORR, methanol oxidation, and pollutants catalysis.
In addition, the effects of various dopant elements on the performance of these CBMs and
the underlying chemistries of these effects have also been discussed in detail.

2. CBMs as Catalysts in Energy Conversion and Storage
2.1. Oxygen Evolution Reaction
2.1.1. Role of CBMs in the OER

OER is a limiting process in the production of molecular oxygen by chemical reactions,
such as water electrolysis into oxygen and hydrogen, water oxidation in oxygenic photo-
synthesis, and electrocatalytic oxygen evolution from oxides and oxoacids. It can occur
either in an alkaline, acidic or neutral environment, as illustrated in Figure 2 [20,21]. The
suggested OER mechanisms use the same intermediates (i.e., OH*, OOH*, and O*) as the
ORR for both environments. However, the first step for OER is the formation of absorbed
OH* on the catalysts with the first electron transfer (Equations (1) and (5)). The transition of
OH* to O* is the next step (Equations (2) and (6)). The third step is to convert O* to OOH*
by combining it with another H2O molecule or OH− (Equations (3) and (7)). The final stage
is to release O2 (Equations (4) and (8)).

In the acidic medium, the OER reaction mechanism can be written as [22],

H2O (l) + ∗ → OH∗ + H+ + e− (1)

OH∗ → O∗ + H+ + e− (2)

O∗ + H2O (l) → OOH∗ + H+ + e− (3)

OOH∗ → ∗+ O2(g) + H+ + e− (4)

In an alkaline medium, the OER reaction mechanism can be written as [23],

OH− + ∗ → OH∗ + e− (5)
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OH∗ + OH− → O∗ + H2O(l) + e− (6)

O∗ + OH− → OOH∗ + e− (7)

OOH∗ + OH− → ∗+ O2(g) + H2O(l) + e− (8)

where (l) stands for the liquid phase; (g) for the gas phase; * for the active site on the catalyst;
and O*, OH*, and OOH* as adsorbate intermediates.
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Each stage involves the release of a single electron. Therefore, OER involves a four-
electron transfer pathway and is a much more complicated and energy-consuming pro-
cess [23–27]. The primary challenges of these multi-electron transfer systems are the high
overpotential and the energy barrier of the rate-determining phase (Figure 3a). The essen-
tial overpotential of the reaction might be avoided by stabilizing the HOO* concerning HO*
intermediate on the catalyst surface. Catalytically, precious metal complexes have a good
size-to-performance ratio, but they are also volatile organic compounds, costly, and poten-
tially toxic. Graphene, a 2D material derived from carbon, was introduced in the latter part
of the twenty-first century to alter, help, or replace these metal-based electrocatalysts [25].
Due to their adjustable molecular structures, abundance, and excellent tolerance to acidic
and alkaline environments, many carbon-based materials provide distinct advantages for
targeted catalysis. Low-dimensional carbon materials have recently demonstrated their
potential as metal-free catalysts in energy-related electrocatalytic OERs [26]. For instance,
graphene is the most effective alternative catalyst due to its sp2 carbon atoms being orga-
nized in a honeycomb shape with a π-π conjugation as well as its great mechanical strength
and electrical conductivity [27].



Catalysts 2023, 13, 823 5 of 24

2.1.2. Effect of Heteroatom Doping on OER

The OER process can be efficiently catalyzed by using CBMS catalysts. Despite their
advantageous catalytic size performance ratio, precious metal complexes are unstable,
costly, and toxic. However, pure carbon materials are often inactive for OER because
of the absence of active sites for the adsorption and stimulation of O2 and/or interme-
diates [28–32]. Therefore, doping heteroatoms (e.g., N, S, P, B, and transition metals)
on the surface of carbon-based materials causes an electron and spin density distortion,
which results in increased catalytic activity towards OER [24,29,30]. For instance, single
elements, particularly N-doped carbon material, have been extensively investigated as
bifunctional electrocatalysts for OER [24,31]. The N-atom doped CBMs show an OER
over the potential of 380 mV (current density of 10 mAcm−2 at pH 13), which are values
equivalent to those of iridium oxide and cobalt oxide as well as the platinum catalyst
(Figure 3b) [24]. In addition, as compared to the noble-metal catalyst IrO2 (η = 350 mV and
Tafel slope ~89 mVdec−1), the N-doped mesoporous carbon nanotube/carbon nanosheet
hybrid had exceptional overpotential (i.e., η = 320 mV at 10 mAcm−2 in an alkaline medium,
e.g., 0.1 M KOH) and Tafel slope of ~55 mVdec−1 with a minimal onset potential of
1.50 V, vs. RHE for OER (Figure 3c,d) [32]. Moreover, the N-atom doped mesoporous
graphene catalyst has a lower OER overpotential (324 mV at 10 mA cm−2) and a small
Tafel slope of 67 mV dec−1, which is lower than most of the previously disclosed non-
noble metal oxides and their hybrids and also comparable to the OER standard of a noble
metal or metal oxide catalysts (Ru, RuO2, Ir, and IrO2) [29]. In addition, doping multiple
heteroatoms is more likely to provide more active sites than doping single heteroatoms, re-
sulting in higher catalytic activity for OER. To explain, an N/P co-doped graphene/carbon
nanosheet catalyst presented better electrocatalytic performance with an onset potential
of 1.57 V vs. RHE and a low overpotential of 319 mV at 10 mAcm−2 (Tafel slope of
~70 mVdec−1), which is lower than a mono heteroatom, e.g., N/P doped graphene, as
well as a noble metal catalyst, e.g., RuO2, Pt/C [33] (Figure 3e). Another research group
observed that an N-P co-doped graphene catalyst had a minimum OER overpotential of
390 mV, which is lower than the best catalyst identified theoretically (420 mV for OER
in RuO2) [23]. This result is represented in Figure 3f, which is called the volcano plot.
Moreover, incorporating B into an N-doped carbon electrocatalyst for boosting OER per-
formance presented a superior onset potential of 1.46 V vs. RHE and over the potential
of 270 mV at 10 mAcm−2, which was lower than commercial 5 wt.% Ru/C (onset poten-
tial of 1.48 V vs. RHE and η = 275 mV) [34]. In addition, Zhao et al. [35] revealed that
S and N co-doped graphene/CNTs exhibit a higher negative onset potential of 0.56 V
in 0.1 M KOH (η = 510 mV) and a lower Tafel slope of 103 mV dec−1, indicating faster
OER kinetics compared to single N-doped graphene/CNTs (0.65 V, 285 mV dec−1) and
commercial Pt/C catalyst (η = 760 mV).

Nevertheless, a combination of non-metal and transition metal doping in OER in-
creases the catalytic activity of carbon-based materials [36]. Examples include metal and N
co-doped CBMs such as Fe-N co-doped CBMs and Co-N co-doped CBMs, which exhibited
low overpotentials of 360 mV and 380 mV at 10 mAcm−2, respectively, which are compara-
ble with that of IrO2/C (η = 370 mV at 10 mAcm−2) [23]. Moreover, Fe on an N/S co-doped
C catalyst generated reasonably good activity for OER with an overpotential of 370 mV
at 10 mAcm−2 in an alkaline medium and a small Tafel slope of ~82 mVdec−1, which is
comparable with a Pt/C catalyst [37]. The ranges of overpotentials at 10 mAcm−2 acquired
from the literature on different techniques for OER are summarized in Table 1. It can be con-
cluded that heteroatom-doped carbon catalysts have better OER activity than metal-based
catalysts. Multiple heteroatoms doped in CBMs, on the other hand, have demonstrated
high OER catalytic activity. Co-doping with transition metals in carbon frameworks does
not appear to work on OER, as evidenced by the relatively high overpotentials.
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Figure 3. (a) Schematic energy profiles for the OER pathway; modified from [23]. (b) Compares the
OER activities of N-doped carbon material with other different catalysts; reproduced with permission
from [24], Copyright@2004, American Chemical Society. (c) LSVs and (d) Tafel plots of different
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adsorption energy of O* and OH* for N-doped, P-doped, and N, P-doped graphene OERs, modified
from [23].

Table 1. Summary of overpotentials and Tafel slope toward OER for non-metal CBMs.

CBMs Overpotential at 10 mAcm−2

in 0.1 M KOH (mV)
Tafel Slope
mVdec−1 Ref.

N doped CBMs

N-doped mesoporous carbon nanosheet/carbon
nanotube hybrid 320 55

[22–24,29,38–40]

N-doped mesoporous carbon nanosheet 400 178
N-doped Carbon Nanomaterials 380 -

Mixed N-doped mesoporous carbon nanosheet +
carbon nanotube 470 210

N-doped mesoporous graphene 324 67
N-MWCNTs 320 (1 M NaOH) 68
N-Graphene 410 -

N-CNTs 390 -
N-Graphene Nanoribbon 405 -
N-graphene/CNT hybrid <110 83
N-Graphene Nanoribbon 360 (1 M KOH) 47 [38]

N-Carbon nanosheet 410 142 [41]
N- Graphitic mesoporous C3N4 376 52.4 [42]

P-doped CBMs

P-doped graphitic carbon nitride grown on
carbon-fiber paper 391 61.6

[23,43,44]P-graphene 490 -
P-Graphene 330 (1 M KOH) 62

S-doped CBMs S-CNTs 350 (1 M KOH) 95 [45]
P-S co-doped CBMs P, S-doped carbon nitride sponge 330 64 [46]

S-N co-doped CBMs
N/S-CNTs 351(1 M KOH) 56

[35,47]
NS-graphene/CNT 510 103

N-S doped graphitic sheet 230 71 [48]
-F co-doped CBMs N-F co-doped carbon black - 69 [49]

B-N co-doped CBMs B/N-C 270 (1 M KOH) 100 [34]
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2.2. Oxygen Reduction Reaction (ORR)
2.2.1. Role of CBMs in an ORR

Highly efficient and stable electrocatalysts are required to speed up the ORR at the
cathode in proton exchange membrane fuel cells (PEMFC) or metal-air batteries (MABs).
When electrons reduce O2 molecules at the cathode of PEMFCs or MABs during the dis-
charging process, an ORR takes place (Figure 4). However, electrochemically breaking
the O=O bond is challenging due to its high bond energy of 498 kJmol−1 [50]. So, electro-
catalysts are required to reduce the energy barrier during bond activation and breaking
(Figure 5a). Due to the many adsorption/desorption and reaction mechanisms involving
separate O-containing intermediates (e.g., OOH*, OH*, and O*), the ORR at the cathode
in PEMFCs is about six orders of magnitude slower compared to hydrogen oxidation at
the anode in an aqueous medium [51]. Hence, the cathode’s catalyst consumption is often
10 times that of the anode [52]. The scarcity and expensive cost of Pt-based electrocatalysts
limit the widespread use of MABs or PEMFCs. Due to their large surface region, high
conductivity, variable shape, simplicity of fabrication, and economic feasibility, metal-free
CBMs are a unique sort of catalyst that has the potential to replace Pt in effectively cat-
alyzing the ORR in fuel cells [53]. While significant progress has been made in creating
improved carbon compounds as very stable and durable catalysts, the catalytic processes
of CBMs remain unknown.
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In general, ORR is a multistep electrochemical process (2e pathway) that can involve
the formation of H2O2 (in acidic media) or HO−2 (in alkaline media) as the intermediate
specie, or it can proceed more efficiently via a four-electron (4e) process involving the direct
reduction of O2 into H2O (in acidic media) or OH− (in alkaline media) to combine with
a proton into water.

The reactions in an acidic (Equation (9)) or an alkaline (Equation (10)) electrolyte for
a straight four-electron route are as follows:

O2 + 4H+ + 4e− → 2H2O (9)

O2 + 2H2O + 4e− → 4OH− (10)

For an indirect two-electron pathway, the reactions in alkaline (Equations (11) and (12))
or acidic (Equations (13) and (14)) electrolytes are as follows:

O2 + H2O + 2e− → HO−2 + OH− (11)
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HO−2 + H2O + 2e− → 3OH− (12)

O2 + 2H+ + 2e− → H2O2 (13)

H2O2 + 2H+ + 2e− → 2H2O (14)

Both methods depend crucially on the oxygen (O2) adsorption mode and the dissocia-
tion restriction of the O-O bond on the catalyst’s contact. In contrast, reaction-free energy
was commonly used as a descriptor to evaluate the catalytic activity or specificity of novel
electrocatalysts due to their rapid development. Two putative ORR processes are presented
in the electrochemical system created by Nrskov et al. [54] an additive mechanism that
involves a HOO* species and a direct O2 dissociation mechanism in an acid or alkaline
electrolyte, which are represented in Figure 4.

2.2.2. Effect of Heteroatom Doping on ORR

Pristine CMBs have lower performance compared to doped carbon materials. Metal-free
carbon materials, particularly after doping heteroatoms or generating defects, displayed
exceptional ORR activity and were sometimes comparable with commercial platinum-based
catalysts (Table 2). For example, nano-forests of N-doped carbon nanotubes outperformed
commercially available Pt/C electrodes in ORR [8]. Similarly, improved catalytic perfor-
mance for N/B-doped and S-doped was observed for ORR due to the redistribution of
the charge density and the spin density of adjacent C atoms [5,55]. Li et al. [32] evaluated
CNT, nanoporous carbon-nanofiber film (N-CNF), N-doped mesoporous carbon nanosheet,
and IrO2 for ORR reactions. They found an excellent ORR activity exhibition by CBMs
compared to IrO2. Similarly, Jiao et al. [56] studied the activity of ORR on graphene with
various dopants such as N, B, S, and P. Among them, N and B showed the best ORR
performance with the lowest free energy change at the equilibrium potential U0 = 0.455 V.
For both dopants, adsorption of O2 on graphene is an endothermic reaction with positive
free energy (∆G = 0.70 eV). The formation of *O and *OH is exothermic (∆G = 0.54 eV,
∆G = 0.25 eV and ∆G = 0.58 eV, ∆G = 0.30 eV, and ∆G = 0.58 eV respectively) while the
formation of OH- has a slightly positive energy which is easily surmountable [56].

Moreover, based on diffusion limiting current density (JL) and onset potential (Eonset),
N, S, B, and P-doped CBMs also improve ORR activity compared to the undoped coun-
terparts. N-doped CNTs, for example, showed a higher limiting current density of three
times compared to undoped CNTs, which indicates a significant increase in catalytic ac-
tivity (Figure 5b) [57]. Furthermore, compared to the non-doped graphene, the reduction
potential of S-doped graphene shows a positive shift of 40 and 60 mV and higher current
density, which indicates an electrocatalytic site towards ORR [58]. Similarly, compared to
the pristine CBMs, B-doped CNTs or graphene and P-doped graphene also demonstrated
superior ORR activity, but it was inferior to that of the commercial Pt/C, unlike N-doped
CBMs [55,59]. In contrast, F-doped Carbon Blacks with higher electronegativity (XF = 3.98)
demonstrated unique catalytic activity, with higher positive Eonset and half-wave potential
(E1/2) values than Pt/C [60].

On the other hand, co-doped CBMs such as N with another heteroatom exhibit bet-
ter electrocatalytic activity toward ORR than the single heteroatom-doped CBMS. N, B
co-doped graphene, for example, demonstrated better electrocatalytic ORR performance
than the commercial Pt/C (Figure 5c) [61]. A group of researchers determined the best
ORR catalyst by calculating the overpotential, , a key measure of catalytic activity, for each
active site on N and P co-doped graphene structures in alkaline environments [23]. The
result, depicted in a “volcano plot” showed that the N and P co-doping generated syner-
getic effects, leading to a minimum ORR overpotential of 0.44 V, outperforming the best
catalyst (0.45 V for ORR on Pt) (Figure 5d). The N and P co-doping proved to be a catalyst
with superior electrocatalytic activity for ORR. In addition, N, S co-doped graphene
demonstrated more positive Eonset (−0.06 V vs. Ag/AgCl) than that of N-graphene,
S-graphene, or pristine graphene, which was comparable to commercial Pt/C (−0.03 V vs.
Ag/AgCl) [62]. However, N, S, and P co-doped CBMs with porous structures carbonized
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from metal-organic frameworks also exhibited similar performances to that of commercial
Pt/C e [63]. At low overpotential, N, S, and P co-doped graphene showed a Tafel slope
of 72 mVdec−1, which was closer to that of commercial Pt/C (69 mVdec−1) [64]. The low
Tafel slope indicates a faster catalytic activity toward ORR in the N, S, and P co-doped
graphene catalyst surfaces.
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Figure 5. (a) Schematic energy profiles for the ORR pathway; modified from [23]. (b) LSV curves of
Pt/C, pristine-CNT, and N-doped CNT catalyst samples at a rotation speed of 1600 rpm; reproduced
with permission from [57], Copyright@2020, American Chemical Society. (c) LSV curves of ORR on
BCN graphene with different compositions in oxygen-saturated 0.1 m KOH solution at 10 mVs−1

and compared with the commercial Pt/C electrocatalyst; reproduced with permission from [61],
Copyright@2012, John Wiley and Sons License. (d) ORR volcano plots of overpotential η versus
adsorption energy of O* and the difference between the adsorption energy of O* and OH*, respectively,
for N-doped, P-doped, and N, P-doped graphene; modified from [23].

Table 2. Comparison of specific performance of the heteroatom-doped CBMs ORR catalysts.

Electrocatalyst for ORR No. of Electrons
Transferred

On-Set Potential
(Eonset) (V)

Half-Wave
Potential(E1/2) (V)

Limiting Current
Density (mA/cm2) Ref.

Pt/C 3.99 1.00 0.86 −5.24
[57]pristine

CNT - 0.80 0.61 −2.62

N-doped CBMs N-CNT 3.92 0.96 0.78 −5.82

N-mesoporous carbon 4.02 0.949 lesser as compared to
Pt/C ~−4.9 [65]

Pt/C - 0.95 - -

[59]Pristine Graphene - 0.82 - -

P-doped CBMs P-graphene 3.8 0.92 - −3.63
P-graphene/carbon black 3.8 0.92 - −4.18

N, P-co-doped
CBMs

N, P doped graphene 0.88 0.774 - [64]
N, P-doped mesoporous

carbon ∼4.0 0.94 0.85 comparable to that of
Pt/C [23]

N, O-doped mesoporous carbon 3.78–4 0.5–0.7 - ~−5.3 [66]
N, S, P co-doped graphene >3.8 0.96 0.857 - [64]

All these electrocatalysts were tested in 0.1 M KOH electrolyte solution at 1600 rpm.
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2.3. Hydrogen Evolution Reaction (HER)
2.3.1. Role of CBMs in a HER

Hydrogen, as a clean source of renewable energy, may be the key to addressing
challenges of energy sustainability as well as the environment. It is possible to produce
hydrogen at room temperature by a process called water electrolysis, which is one of
the most efficient techniques. As compared to other catalysts, Pt and its alloys have the
greatest electrocatalytic activity and a very high exchange current density [67]. However, its
high cost and lack of available sources provide significant barriers to large-scale hydrogen
generation [68]. As a result, significant efforts have been devoted to producing non-Pt
electrocatalysts, such as metal alloys [69], carbides [68], phosphides [70], borides [71],
sulfides, and nitrides [72]. Along with significant research efforts in generating non-Pt
electrochemical catalysts, a novel class of catalysts based on carbon materials has been
discovered, which might drastically cut costs while providing excellent efficiency and
stability. When compared to metal-based catalysts, carbon-based, metal-free alternatives
have been shown to offer several benefits, including high electrical conductivities, flexible
molecular architectures, abundance, and good tolerance to acidic/alkaline conditions.
The current availability of carbon materials opens new avenues for creating sophisticated
metal-free catalysts with outstanding catalytic activity.

Knowledge of the HER mechanism is vital to building the next generation of HER
catalysts. HER occurs through the reduction of protons (H+) or water (H2O) molecules,
followed by the generation of gaseous hydrogen depending on the pH of the electrolyte
solution (Figure 6).
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In acidic media, the overall HER follows the general Equation (15).

2H+ (aq) + 2e− → H2 (g) (15)

In alkaline media, the overall HER reaction is described in Equation (16).

2H2O (l) + 2e− → 2OH− (aq) + H2 (g) (16)

The following sections describe the progress made in the development of metal-free
heteroatom-doped carbon-based catalysts for the HER.
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2.3.2. Effect of Heteroatom Doping on HER

Though pristine carbon materials show very poor catalytic activity, a slight chemical
modification of the material via doping of some heteroatoms can significantly increase the
electrocatalytic nature of CBMs in the case of HER [73]. Because heteroatoms differ in size
and electron negativity from carbon atoms, the introduction of heteroatoms may cause
electron modulation to change the charge distribution and electronic properties of carbon
skeletons, affecting their interaction with hydrogen intermediates and, ultimately, their
electrocatalytic activities for the HER [74]. This, together with the doping-induced flaws,
has the potential to modify the chemical activity of carbon materials resulting in increased
electrocatalytic activity, notably in water splitting.

For example, O-doped CNTs showed an onset over the potential of 100 mV, a Tafel
slope of 82 mV dec−1, and required an overpotential of 220 mV to reach 10 mAcm−2 [75].
A similar result is also shown by N and B single heteroatom-doped CBMs [76]. Moreover, S-
doped graphene demonstrated an enhanced HER activity with an overpotential of 178 mV
at a current density of 10 mA cm−2 [77]. On the other hand, Chen et al. [78] found that
N/S co-doped graphene could exhibit better HER performance, having an overpotential of
280 mV at a current density of 10 mA cm−2 with a Tafel slope of 80.5 mV dec−1. Another
study found that N/P co-doped showed much lower overpotential and Tafel slope (420 mV
at 10 mA cm−2 and 91 mV dec−1, respectively) than pristine graphene [26].

DFT calculations are performed by different researchers to elucidate the underlying
mechanism of HER activity of CBMs. In theory, the HER pathway can be depicted as
a three-state diagram containing an initial state of H+ + e−, an intermediate state of ad-
sorbed H (as H* denotes an adsorption site), and a final state of 1/2 the H2 product. Doping
graphene with a heteroatom such as N can generate asymmetrical charge distributions
on neighboring carbon atoms, resulting in bigger polarizations and increased affinities
for H atoms [79]. Calculations using spin-unrestricted DFT found that interactions be-
tween H* and N-doped graphene were stronger than those between H* and graphene.
Furthermore, doping with heteroatoms, for example, N atoms can affect the energy levels
of the graphene matrix’s valence orbitals. This can speed up the flow of electrons from
graphene to catalytically active regions, resulting in the fast conversion of adsorbed H*
species to molecular hydrogen [80]. Generally, a good hydrogen evolution catalyst should
have a free energy of adsorbed H of approximately zero (*E0), which can provide a fast
proton/electron-transfer step as well as a fast hydrogen release process [81,82]. According
to the computational results, pristine graphene has an endothermic DGH* of 1.82 eV, imply-
ing an energetically unfavorable interaction with hydrogen. The HER can barely proceed
on pristine graphene because of the slow proton/electron transfer. Therefore, doping of
graphene is commonly used. For example, graphitic N-doped graphene provides a large
surface area and multi-electron transfer channel, which is exceptionally favorable for charge
transport; in other words, HER supports achieving a DGH* of −0.55 eV, which is much
lower than the Pt catalyst. The same goes for graphitic S-doped graphene which poses
a DGH* of −0.3 eV. However, N, S co-doped graphene produces a synergistic effect that is
more favorable to HER for both absorbing and desorbing the hydrogen atom, and it exhibits
a DGH* of −0.12 eV, which is much close to the Pt catalyst (−0.09 eV) [78]. Therefore,
the doping of CBMs has a great influence on their potential to work as catalytic materials;
however, without knowing the fundamental of carbon doping chemistries, it is very tough
to understand the overall activity of the materials. Additionally, in an N2-saturated 0.5 M
H2SO4 electrolyte, Jiang et al. [41] noted the exciting HER activity of the N-doped ultra-
thin carbon nanosheets (NCN). Compared to the pristine carbon blocks and glass carbon
(GC), the NCN samples show significantly increased HER activity. Surprisingly, NCN
exhibits superior HER performance with about the same positive Eonset as Pt/C (0.03 V),
which is significantly more favorable than that of the other as-prepared NCN samples
in our work. The obtained potential for NCN-1000-5 (−0.09 V) at a current density of
10 mA cm−2 (Ej = 10) is only 51 mV more negative than that of Pt/C. The NCN’s tiny Tafel
slope of 43 mV dec−1 is evidence of its good kinetic properties. The HER performance
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of NCN is also superior to that of several other reported carbon materials. Similar LSV
curves for NCN were obtained at sweep rates ranging from 5 to 100 mV s−1, indicating
the substance’s strong stability for extremely active electrochemical processes. The nearly
unchanged LSV curves after 500 CV cycles and the steady HER current after 12,000 s of
continuous operation at −0.15 V provided additional evidence of the NCN’s remarkable
stability. (All data show in Table 3).

Table 3. Comparison of specific performance of the heteroatom-doped CBMs HER catalysts.

CBMs Onset Potential (V) Potential at 10 mAcm−2 (V) Tafel Slope (mVdec−1) Ref.

Single heteroatom
doped CBMs

N-doped mesoporous
graphene −0.15 −0.24 109 [79]

B-doped
graphene −0.22 −0.47 99 [83]

O-doped CNTs −0.05 −0.22 71.3 [75]

Co-heteroatom
doped CBMs

N, S co-doped porous
carbons −0.012 −0.097 57.4 [84]

N, S co-doped CNTs −0.05 −0.12 67.8 [85]
N, S co-doped nanoporous

Graphene −0.14 −0.39 80.5 [78]

N, P co-doped nanoporous
carbon −0.076 −0.204 58.4 [86]

N, P co-doped graphene −0.2 −0.42 91 [26]
N, P co-doped nanoporous

Graphene −0.12 −0.213 79 [87]

All these electrocatalysts were tested in 0.5 M H2SO4 electrolyte solution.

2.4. Methanol Oxidation
2.4.1. Role of CBMs in Methanol Oxidation

Direct methanol fuel cells (DMFC) pose a promising track for the huge global demand
for clean energy due to their low-cost, high-energy efficiency, low operation temperature,
and easily transportable facilities in comparison with hydrogen fuel cells. The mechanism
of DMFC comprises multiple elementary reactions that gradually end up with the final
product of CO2 [88]. The reaction detailed below involves a total transfer of six electrons
and several possible intermediates in several reaction pathways: [89]

Anode Reaction: CH3OH + H2O→ CO2 + 6H+ + 6e−

Cathode Reaction: 3/2 O2 + 6H+ + 6 e−→ 2H2O
Overall Reaction: CH3OH + 3/2 O2 → CO2 + 2H2O
Although there are lots of complications that DMFCs are facing (e.g., high manufactur-

ing cost, methanol crossover issues, low stability, and durability) that need to be addressed
before successful commercialization. The sluggish reaction rate that occurs in the anode
remains the main obstacle of DMFCs till now [90]. Electrocatalysts are mostly used to
overcome these problems that contribute to the reliability of DMFCs, which is the key
parameter to quantify the performance as well as the cost of the cell. In this case, various
precious metals, such as platinum, rhodium, palladium, etc., and non-noble metals, such as
nickel, copper, cobalt, etc., are being used as electrocatalysts [91].

Bagotski et al. presented the generally acknowledged premise of methanol oxidation
via catalysis in 1977. He pointed out that methanol molecules are chemisorbed on the
catalyst surface with the direct result of dehydrogenation forming C***−OH and 3Hads
(*** indicates three valence bonds with the surface). Step-by-step, partially dehydrogenated
chemisorbed particles, such as C*H2OH, and C**HOH, are formed in the middle of the
dehydrogenation (Figure 7). Thus, the electro-oxidation of methanol on platinum proceeds
via the interaction of adsorbed radicals OHads with chemisorbed C*−OH. Finally, CO2 is
produced with intermediate products such as C**=O and OH−C*=OH. However, catalysts
have their issues, such as platinum getting poisoned by CO, which is an intermediate
product of the methanol oxidation reaction [92]. An advanced supporting material could
be an effective solution to these types of problems which offers an increment of stability
and durability, morphology, and amplified electrical conductivity. The intrinsic properties
of CBMs have helped them to attain most of these qualities; however, they can be greatly
increased by doping different heteroatoms.
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2.4.2. Effect of Heteroatom Doping on Methanol Oxidation

Different types of carbon-based support materials such as carbon black, carbon
nanofiber, mesoporous carbon, carbon nanotubes, and graphene are being used as elec-
trocatalysts for methanol-based fuel cells [91]. Doping of these CBMs with different het-
eroatoms would significantly alter various characteristics that have a distinct effect on
the overall catalysis process as well as the enhancement of better electrochemical stabil-
ity of the cell. For instance, nitrogen is the closest member of carbon on the periodic
table and is considered one of the most significant dopant atoms of carbon-based ma-
terials for various applications. The doping of N atoms in CBMs can act as an active
site that promotes the catalytic process of the reaction. Su et al. [93] reported that a plat-
inum catalyst supported by an N-doped porous carbon nanosphere (PCN) could boost
the methanol oxidation peak current to 343 mA mg−1, which is significantly higher than
the PCN-supported Pt of 297 mA mg−1. Kou and Hsu (2010) reported that the N-doped
porous carbon layer surrounding the CNTs-supported Pt hybrid (Pt/NC-25 CNT) received
excellent electrocatalytic capabilities as Pt nanoparticles were properly embedded in the
pores of CNTs, which boosted the methanol oxidation process significantly [94]. N-doped
graphene-supported Pt-Au nanoparticles were also reported to enhance methanol oxida-
tion catalytic activity appreciably (417 mA mg−1), which is much higher than its undoped
counterpart (186 mA mg−1) [95]. B and S have been reported to have sounder dopant atom
characteristics for application in the methanol oxidation reaction catalysis. B is affirmed
to have strong interaction with the Pt nanoparticles hybridization between platinum d
orbitals and boron p orbitals, indicating a direct bond between Pt and boron for a stable
dispersion. B-doped CBMs are also reported to adsorb more oxygen which significantly
improved the CO tolerance of Pt atoms [96]. Ahmadi et al. [97] used S as a dopant and
found that the S-doped CNT-supported catalyst obtained an oxidation peak current of
862.8 mA mg−1, which is much higher than the undoped catalyst (133.2 mA mg−1). The
difference between the electronegativity of S and C atoms could play an influential role in
this case. Other non-metallic atoms such as O, Cl, Si, etc., and some metallic atoms such as
Sn were also reported to have significantly improved the catalytic activity of methanol
oxidation reaction. Furthermore, LV et al. studied the performance of an N-doped carbon
nanotube-graphene hybrid nanostructure (NCNT-GHN) in which the graphene layers are
distributed inside the CNT inner cavities and were designed to efficiently support noble
metal (e.g., PtRu) nanoparticles with DMFC [98]. Figure 8 depicts the relationship between
voltage and power density as measured at 30, 60, and 90 ◦C at various current densities.
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Figure 8a–d shows that as the operating temperature rises from 30 to 90 ◦C, the output
voltage and power density increase correspondingly. Peak power densities at 30, 60, and
90 ◦C, respectively, for the PtRu/NCNT-GHN catalyst are 195.3, 546.9, and 781.3 mA cm−2.
These values surpass both those of PtRu/CNT, which are 156.3, 429.7, and 664.1 mA cm−2

at 30, 60, and 90 ◦C, respectively, and those of commercial catalysts by a wide margin. The
results and their methanol oxidation activities are well-congruent.
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3. CBMs in Photocatalytic Decomposition of Organic Pollutants
3.1. Role of CBMs in the Photocatalysis Process

Water pollution is one of the most crucial global environmental problems these days.
Amongst different water treatment methods, the photocatalytic degradation process has
gained immense attention from researchers as it can remove different harmful organic
pollutants by utilizing inexhaustible sunlight. However, a significant problem of this
method is the requirement of various inorganic photocatalysts (e.g., TiO2, ZnO, SnO2
nanoparticles, etc.) which are toxic to many living species. On the other hand, carbon
materials are relatively less toxic and environmentally friendly, and researchers found some
CBMs performing outstandingly as catalysts for the photo-assisted degradation reactions
of various harmful organic pollutants (e.g., different pharmaceutically active compounds,
dyes, insecticides, etc.). Therefore, metal-free carbon-based photocatalysts are getting more
attention day by day.

The involving mechanism of the photocatalytic process is quite simple. The carbon
matrix, which acts as the catalyst, first adsorbs O2 molecules from the atmosphere [99].
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After obtaining a certain energy level from the irradiation, some exciton pairs (i.e., pairs of
photo-induced electrons and holes) are generated. The photogenerated electrons, which
have already undergone the “valence band to conduction band” transition, react with the
adsorbed O2 molecules and convert them into active ·O2

− species (Figure 9). In addition,
the photogenerated protons may convert the hydroxyl ions of the water molecules to
secondary reactive radical ·OH [100]. The generated secondary reactive radicals then react
with the pollutant molecules and degrade them to either lower molecular compounds or
mineralize to CO2 and H2O [101]. Other side reactions may also occur between the reactive
·O2
− species and the produced H+ ions (reactions 20 to 26). The plausible degradation

process can be described with the following reactions and is schematically shown in
Figure 9 [100,102–104].

Photocatalyst hϑ→ e− + h+ (17)

h+VB + H2O→ HO
◦
+ H+ (18)

e−CB + O2 → O−2 (19)

O−2 + H+ → HO2
◦

(20)

HO2
◦
+ HO2

◦ → H2O2 (21)

O−2 + HO2
◦ → O2 + HO−2 (22)

HO−2 + H+ → H2O2 (23)

H2O2 + hv→ 2HO
◦

(24)

H2O2 + O−2 → HO
◦
+ OH− + O2 (25)

e−CB + H2O2 → HO
◦
+ OH− (26)

O−2 + Pollutant→ Degradation products (27)

Or, HO
◦
+ Pollutant→ Degradation products (28)

Or, h+ + Pollutant→ Degradation products (29)
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The active catalytic species for the system (i.e., photogenerated secondary catalysts
such as ·OH, O2

−, e−, or h+) are evaluated by electron paramagnetic resonance and scav-
enger trapping experiments in the photocatalytic solution [99,105]. They may vary accord-
ing to the chemical composition of the pollutants and the nature of the irradiation.

3.2. Research Progress of Heteroatom-Doped CBMs in Photocatalysis

Some advanced CBMs are promising candidates for the photocatalytic degradation re-
actions of various complex organic pollutants. However, one major drawback of these pure
CBMs is their inherent low charge conductivity [106], which results in the recombination
of some photogenerated electron/hole pairs. Consequently, the overall process efficiency
is decreased. Different heteroatoms are doped with these pure CBMs to resolve this prob-
lem [100,107,108]. The dopant elements are composed of different electronic configurations
compared to the regular C-atoms of the pristine CBMs. Therefore, p-type or n-type elec-
tronic properties can be induced into these materials by doping with various heteroatoms,
and thus, the electronic conductivity of the pristine CBMs is improved. As a consequence,
the rate of transfer of the photogenerated charge (electrons and holes) is increased, and the
recombination of the electron/hole pairs is different [12]. Jourshabani et al. [107] described
the effect of doping of mesoporous sulfur in graphitic carbon nitride (GCN) photocatalysts.
The electrochemical impedance spectroscopy profile of the S-doped and undoped GCN
showed a dramatic decrease in the charge transfer resistance of the photocatalysts after
S-doping (Figure 10a). The delocalized lone pair electrons of the S-atom on the π-conjugated
tri-s-triazine units were attributed to this extensive conductivity. A similar effect was ob-
served in N-doped carbon nanosphere (CNS)-GCN composites [12]. Furthermore, the light
absorption capacity of the doped CBMs is also increased due to the induced semiconducting
properties [10]. Hu et al. [104] investigated the doping effect of phosphorous on the pho-
tocatalytic activity of mesoporous GCN. The catalytic activity of the pristine mesoporous
GCN increased about 31.1 times after doping with phosphorous atoms. The synergistic
effect of the higher light absorption in the visible range, faster separation, and conduction
of photogenerated charges and the differed electron/hole pair recombination improves
the catalytic performances of the doped CBMs [100,104,107]. However, the dopant con-
centration is an important factor to consider. Liu et al. [12] showed that the N-doping of
a CNS-GCN composite decreases its electron transfer barrier. However, over dosage of
dopant elements alleviates light absorption as well as resists electron transfer (Figure 10b).

The effect of heteroatom doping can also be explained by the band gap tuning prin-
ciple of CBMs. For instance, Yan et al. [10] and Chai et al. [9] showed that the band gap
of GCN (2.7 eV) is decreased to 2.66 eV after doping with boron, which was beneficial
for its catalytic activity for pollutant degradation. Yan et al. [10] reported the band gap
narrowing of GCN after boron doping at different temperatures. The fabrication tempera-
ture during doping may affect the surface morphology and, consequently, the absorption
of light. Thereafter, the photocatalytic efficiency depends upon the doping temperature
(Figure 10c). Liu et al. [96] reported that the self-narrowing of the band gap of sulfur
and oxygen-co-doped carbon nitrides is responsible for the higher rate of photocatalytic
decomposition of different organic neonicotinoids. The degradation efficiency of the system
increased up to 57.6% by using the doped CBMs instead of the pristine pure carbon nitrides.
A similar effect was also observed in another study, where the phosphorous doping in
GCN prompted their catalytic activity for the mineralization of rhodamine B (RhB) and
methyl orange dyes [108] (Figure 10d). In that study, the researchers obtained about 80–85%
better degradation of methylene blue while using P-doped carbon nitrides instead of pure
ones. Liu et al. [109] obtained about 65.2 times and 4.9 times higher degradation rates
of methyl orange by using N-doped CNT/mpg-C3N4 as a photocatalyst than that of the
pure CNTs and mpg-C3N4, respectively. So, the heteroatom-doped carbon-based catalysts
can be a good option for the photocatalytic degradation reactions of organic pollutants,
and they require more research attention soon. However, the presence of multiple organic
pollutants in water bodies can be a major drawback of these catalysts for their practical
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applications. Additionally, concentration variation of the pollutants in water, stability of
surface morphology of the catalysts, temperature, and the pH of the contaminated solution
as well as the presence of some inorganic oxidants may also affect the degradation effi-
ciency of the photocatalysts [100,107]. Therefore, the development of a metal-free universal
carbon-based catalyst is in great demand. Some outperforming works based on the doped
CBMs have been summarized in Table 4.
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Table 4. Photocatalytic performances of heteroatom-doped CBMs for pollutants degradation.

Catalysts Experimental Conditions (Catalyst Dosage, Pollutant conc. and
Irradiation Source) Degradation Efficiency Ref.

Carbon dots
(undoped)

15 g/L catalyst
10 mg/L MB
10 mg/L RhB

310 W Hg-Xe lamp
with a UV cutoff filter (λ < 420 nm)

90% MB in 60 min

[110]
50% RhB in 60 min

B-doped carbon dots

2.5 mg/L MB
0.5 mg/L RhB

310 W Hg-Xe lamp
(UV-Visible light irradiation)

99.9% MB in 170 min
99.9% RhB in 170 min [111]
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Table 4. Cont.

Catalysts Experimental Conditions (Catalyst Dosage, Pollutant conc. and
Irradiation Source) Degradation Efficiency Ref.

Carbon dots (undoped) 0.001 g/L catalyst
10 mg/L RhB

500 W Xe lamp with a cutoff filter (λ > 420 nm)

0% in 60 min
[112]

Carbon dots/TNS 95% in 60 min

Carbon dots
(undoped)

0.001 g/L catalyst
1 × 10−5 mol/L RhB

500 W Xe lamp with a cutoff filter (λ > 400 nm)

0% in 30 min
[113]

Carbon dots/TiO2 95% in 30 min

Pristine g-C3N4
(undoped)

0.01 g/L catalyst
10 mg/L methyl orange 300 W halogen lamp

(λ > 400 nm)

8.8% in 210 min
[107]

S doped g-C3N4 82.7% in 210 min

MoS2/ZnS embedded N, S co-doped
graphitic carbon

Dicofol pesticide
Visible light irradiation lamp 84.5% in 90 min [105]

S, O co-doped g-C3N4

150 g/L catalyst
2 mg/L nitenpyram

300 W Xe lamp (λ > 400 nm)
91.4% in 30 min [100]

P-doped carbon nitride (HPCN0.5)
2 mg/L dinotefuran
300 W halogen lamp

(λ > 400 nm)
40.59% in 5 h [102]

S doped rGO/S- g-C3N4/Ag3VO3

5 mg/L catalyst
10 mg/L methylene oxide

20 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D)
UV-Visible irradiation source

(λ = 464–664 nm)

90.1% 2,4-D in 80 min
90.3% MO in 12 min [114]

N,P co-doped carbon nanodots
(CNDs)@ TiO2

0.2 g/L catalyst
0.025 mmol/L 2,4-dichlorophenol

Hg lamp with a cutoff filter (λ < 400 nm)
40% in 2 h [101]

Exfoliated graphitic carbon nitride

0.5 g/L catalyst
2 mg/L Bisphenol A

300 W Xe lamp
(λ > 420 nm)

99.9% in 90 min [115]

TiO2@activated carbon
1.2 g/L catalyst

100 mg/L phenol
Natural sunlight

100% in 120 min [116]

N, P co-doped carbon quantum dots @
TiO2

1 g/L catalyst
20 mg/L MB

300 W Xe lamp
(λ > 420 nm)

100% in 15 min [117]

S, N co-doped carbon quantum dots @
TiO2

1 g/L catalyst
50 mg/L Acid red 88

Osram lamp
(Visible light irradiation)

77.29% in 120 min [118]

Polyaniline @N-doped carbon
nanodots (N/CNDs)

0.5 g/L catalyst
0.1 g/L congo red
White LED lamp

(combination of λ = 450 nm and 550 nm)

100% in 20 min [103]

P-doped mesoporous graphitic C3N4

0.4 g/L catalyst
25 mg/L Brilliant ponceau-5R

500 W Xe lamp with a cutoff filter (λ > 420 nm)
94.5% in 30 min [104]

O-doped carbon nitride

0.5 g/L catalyst
10 mg/L RhB

5 mg/L Tetracycline hydrochloride (TC-HCl)
300 W Xe lamp
(λ > 420 nm)

95% RhB in 6 h
70% TC-HCl in 6 h [119]

S-doped carbon nitride polymeric
micro rods

0.25 g/L catalyst
1 × 10−5 mol/L RhB

300 W Xe lamp with a cutoff filter (λ > 420 nm)
97% in 15 min [99]

N-doped CNT/mpg-C3N4

0.5 g/L catalyst
10 mg/L RhB

300 W Xe lamp with a cutoff filter (λ > 400 nm)
95% in 30 min [109]

S-doped carbon quantum dots
10 mg/L crystal violet

100 W UV-lamp
(λ = 395 nm)

99.7% in 200 min [120]

N, S co-doped carbon quantum dots @
ZnO

0.4 g/L catalyst
2 × 10−5 mol/L ciprofloxacin

Natural sunlight
85.8% in 50 min [121]

N, P co-doped graphene quantum
dots @ g-C3N4

1 g/L catalyst
10 mg/L MO

300 W Xe lamp (λ > 420 nm)
97.0% in 8 min [122]
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Table 4. Cont.

Catalysts Experimental Conditions (Catalyst Dosage, Pollutant conc. and
Irradiation Source) Degradation Efficiency Ref.

N-doped g-C3N4

1 g/L catalyst
Methylene blue

Sunlight
90.0% in 3 h [123]

N, S-doped carbon quantum
dot-modified MIL-101(Fe)

heterostructure

0.4 g/L catalyst
Bisphenol A

Visible light irradiation
100% in 60 min [124]

4. Conclusions and Future Perspectives

Catalysts are typically made of metals or metal oxides; however, heteroatom-doped
carbon materials have many favorable circumstances over these more traditional catalysts,
including earth-abundance, competitive prices, a high degree of specific surface areas
and pore volumes, enormous quantities of surface defects, strong tolerance to acidic or
alkaline environments, and structural tenability on both the morphological and molecular
scales. Thus, they are superior replacements for metal catalysts. Because of the cova-
lent chemical connections created between both the carbon and the heteroatom, most
heteroatom-doped carbons have outstanding operational durability in contrast to metal
alloys, which commonly struggle with separation difficulties. Because of their wide avail-
ability, low environmental impact, and absence of contamination by heavy metals, carbon
catalysts are promising choices for green and sustainable chemistry. Overall, metal-free,
heteroatom-doped carbon materials pose higher catalytic activity compared to pristine
carbon materials. Moreover, this performance can be further enhanced through specific
metal doping. Co-doping even results in better performance in catalytic applications. The
introduction of heteroatoms into carbon structures brings about modifications to both the
chemical and physical properties of those structures. As a consequence of these modifica-
tions, heteroatom-doped carbons perform far better in catalytic processes than un-doped
carbon materials do.

The following are some of the upcoming difficulties and opportunities:

i. There is still a lack of understanding about the specific location of heteroatoms, the
nature of their catalytic site in carbon materials and how they are doped. Combining
experimental studies, state-of-the-art characterizations, and robust computational
simulations is essential to a deeper understanding of the structure, mechanism, and
thermodynamics of the catalytic core.

ii. While N-doped CBMS has been extensively researched as catalysts in several organic
transformations, it is evident from this work that there are other dopants with suitable
physicochemical properties, such as B, P, and S, that may be included in the carbon
core. Additionally, future research should investigate the usage of heteroatoms,
including tellurium, selenium, and others.

iii. Despite progress, controlling the number of heteroatoms, distributional homogeneity,
bonding forms, and other aspects remains difficult. This is particularly true in situa-
tions where co-doping is involved. All of these factors influence the characteristics of
doped carbons in catalytic processes, either directly or indirectly.

iv. It is still difficult to accurately adjust the location and quantity of heteroatoms in the
carbon basal plane as well as to establish a clear connection between both the doped
structure and catalytic performance.

v. Most of the research has focused on graphene and its derivatives (e.g., rGO, GCN, etc.)
for evaluating the doping effects on their photocatalytic activity. The effect of het-
eroatom doping on other CBMs (such as CNT, activated carbon, and biochar) should
also be studied.

vi. More research is required to develop universal carbon-based photocatalysts that
will be capable of degrading multiple types of pollutants (e.g., dyes, pesticides,
surfactants, etc.) present in bodies of water.
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