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Artificial Intelligence-Based Material Discovery for Clean
Energy Future

Reza Maleki, Mohsen Asadnia, and Amir Razmjou*

1. Introduction on Materials Discovery for Clean
Energy

Increasing restrictions on the use of fossil fuels to mitigate the
environmental implications of air pollution and global warming
have encouraged countries around the globe to find alternative
clean energy resources.[1,2] Figure 1a shows the timeline of

the clean energies progresses worldwide.
Several new methods have been introduced
for harnessing energy resources with less
pollution and renewability. Efforts to
reduce fossil fuel consumption have led
to the development of new technologies
such as an electric vehicle (EV) powered
by lithium-ion batteries, thermoelectric
materials, fuel cells, photovoltaics (PV),
etc.[3] These technologies require a large
number of materials and minerals. For
example, a typical EV’s battery has over
6,000 individual lithium-ion cells with a
total weight of around 500 kg, which con-
sists of about 11.5 kg lithium, 27 kg nickel,
20 kg of manganese, 13.5 kg cobalt, 91 kg
copper, and 180 kg aluminum, steel, and

plastic. Extraction of one ton of lithium carbonate equivalent
(LCE) from ore (spodumene) produces at least 15.8 tons of
CO2, and for brine the value reduces to around 0.3 tons of
CO2 (33.9 kg CO2 eq. per kWh for an NMC111 chemistry
battery).[4–6] Water footprint for brine is around 470 tons of water
per ton of lithium and the value for rock mining is around 170
tons. The development of clean energy technologies and pro-
cesses requires the discovery of new materials for increasing pro-
cess efficiency, reducing carbon, water, and land footprints, as
well as minimizing capital expenditures (CAPEX) and operating
expenses (OPEX).

Discovering the new materials using conventional approaches
requires significant financial and time investments. Evaluating
patents reveals that it takes approximately 1–2 two decades from
the discovery of new material to its first commercial use.[7] The
rapidly growing demand for global clean energy has imposed sig-
nificant pressure on research institutes to accelerate the discov-
ery of advanced materials that can be used in the swift
implementation of clean energy processes.

2. Role of Artificial Intelligence

One of the best ways to speed up material discovery is through
using artificial intelligence (AI). The application of AI methods in
data analysis has increased thanks to the significant advancement
in the development of supercomputers.[8] AI has been used in
various fields such as energy, environment, material science,
management, economy, etc.[7,9–11] It is one of the most important
tools that has been recently used to study and accelerate the
deployment of clean energy technologies/materials. AI-assisted
methods are known as the fourth paradigm in the materials
design and discovery.[12] Machine learning (ML) algorithms, as
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an important group of AI-assisted methods for the prediction of
materials properties, materials design, and materials optimiza-
tion, are categorized into the four main types: supervised learn-
ing, unsupervised learning, and reinforcement learning. The
main difference between supervised and unsupervised learning
is that in the first, the data are labeled and the input and output of
each model are determined; however, in the latter, the data are
unlabeled and we have tried to find and establish a relationship
between input values. The ordinary least square regression
(OLSR), support vector regression (SVR), Gaussian process
regression (GPR), kernel ridge regression (KRR), and decision
tree (DT) are many examples of supervised learning. On the other
hand, clustering and dimensionality reduction are two common
approaches to unsupervised learning.[13] Also, other methods
such as artificial neural network (ANN) and deep learning are uti-
lized frequently as AI-based methods for materials design.[14]

Compared with traditional lab-based trial-and-error material
discovery, machine learning (ML), a branch of AI, has shown
the ability to cut short the material development time. The con-
ventional experimental measurements rely mainly on the intui-
tion of researchers over a long period, which suffers greatly from
human error. Material developments solely based on computa-
tional simulations are micro-/nanostructure dependent and
can predict the individual building block properties of materials
and are inaccurate postassembly, not to mention that the simu-
lation requires expensive computing clusters/supercomputers.
However, AI-assisted material discovery does not have the

drawbacks of traditional methods and can facilitate material
development in an unprecedented inexpensive/rapid way.

Among different AI-based methods, their advantages and lim-
itations should be noticed carefully. For instance, take machine
learning and deep learning as two important AI-assisted meth-
ods. Deep learning (DL) or deep materials informatics is a mod-
ern version of neural network algorithms. Thanks to the recent
development and availability of enough data and computational
infrastructures, deep learning finds promising real-world
applications (e.g., self-driving cars). Deep learning possesses
some principal advantages. First, deep learning is known as a
feature-engineering independent technique due to its potential
power in extracting related features. This point not only helps
to save time which is used for the feature engineering process
in traditional machine learning, but also provides a good oppor-
tunity to find new features. Second, since in deep learning a mas-
sive volume of datasets are trained, deep learning predictive
models are more reliable and accurate rather than traditional
machine learning models. Third, again because of using big data
in deep learning, their prediction is more accelerated than
machine learning predictive models. However, providing the
required big data for deep learning is one of the serious
challenges. Also, big data require more time to be trained.
In addition, due to the complexity of deep learning models, they
work like a black box in which there is any evidence about what
exactly happened in them.[15] In brief, some advantages and lim-
itations of AI methods are shown in Table 1.

Figure 1. a) Timeline of the contribution of clean energy in total produced energy worldwide and b) the number of published articles related to AI-based
materials discovery for clean energy.[22–26]
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As shown in Figure 1b, the number of AI-based researches on
clean energy is growing exponentially. There are many compre-
hensive case studies[16–19] and review papers that have investi-
gated the progress of using AI-assisted methods for designing
renewable materials (e.g., batteries).[20,21] For instance,
Lombardo et al.[21] focused on the advantages, and challenges
of using AI/ML in batteries. Also, based on electrochemical
results, ML would be able to identify reaction mechanisms that
lead to enhanced experimental knowledge, which is related to
batteries. However, using AI/ML in batteries confronted many
challenges, for example, unavailability of descriptors, which
can be generalized for different problems, imbalanced data
and overfitting issues, and lack of strong collaboration between
experimental and computational experts in the battery field. In
another review, Chen et al.[20] investigated the applications of
the ML as an emerged tool for use in rechargeable batteries.
In this review, they explained how ML can utilize collected infor-
mation in experimental and computational datasets. In material
science, a powerful AI tool can widely analyze and improve the
properties of different materials by analyzing previous material
characteristics obtained from various experiments and computa-
tional chemistry.

AI builds a model using data from a “limited” number of
experimental or computational studies on material properties.
The model, then, will help to predict the properties of an
“unlimited” number of materials. Thus, using AI predictions,
the need to perform experimental or computational studies will
be reduced sustainability, which in turn will accelerate the mate-
rial discovery. There are many examples of using AI in different
groups of materials in the Materials Science field such as renew-
able energy materials, silicon-based materials, PV materials, lith-
ium ions electrodes, etc.

Ho Gu et al.[26] reviewed the capabilities of AI in data analysis
of renewable energy materials and its role in reducing their pro-
duction cost by a factor of 10 for running experimental tests and
simulations. In a review article, Pollice et al.[27] proposed AI as a
useful tool to predict the properties of silicon-based materials
(such as silicon–germanium alloys and perovskite/c-silicon com-
posites) to be used in PV.Wang et al.[28] tried to overcome the two
important challenges of reducing in power generation costs of
PV materials and increasing their efficiency. One of the impor-
tant groups of PVs is chalcogenide semiconductors with photo-
electric properties. In this study, with the tackle to the wide
search space of chalcogenide semiconductor structures and via
using 1520 quaternary chalcogenide, eight quaternary chalcogen-
ide materials were screened via unsupervised learning. The
selected chalcogenide materials were simulated through quan-
tum mechanics (ab initio calculations) and the results showed
that eight PV candidates have the desired photoelectric proper-
ties. These results suggested the potential power of MLmodels in
the discovery of efficient quaternary chalcogenide semiconduc-
tors in a short period of time in comparison with the other dis-
covery methods that will take long, near 12.1 years.

The widespread use of wind and solar energies has been lim-
ited due to some of their intrinsic issues mainly discontinuous
energy production, which requires energy storage systems such
as batteries to provide continuous energy delivery from the bat-
teries to the consumer devices. The evergrowing demand for EVs
(sales of EVs in the global market have increased by an average of
60% annually since 2014[29]) also requires a large deployment of
the batteries as they have high efficiency and energy storage
capacity.[30–32] The high level of demand has made the role of
the batteries pivotal in the transition to zero-carbon civilization.
Gao et al.[33] reviewed the use of AI as an effective method for the

Table 1. Advantages and limitations of most commonly used AI approaches.

Name of the AI-based
methods

Advantages
(In the Materials Science)

Limitations
(In the Materials Science)

Machine learning Can train on small datasets Less accuracy

Required less time to train The necessity to try different features and algorithms to
achieve the best predictionCan be done on CPU

Require highly accurate preprocessing

Deep learning Able to extract related features automatically Require big data

Computationally intensive

Time-consuming training procedure

Preprocessing is not necessary Require big computing hardware (GPU)

Building more accurate and reliable models Highly complex and not easily interpretable

Fast prediction

Artificial neural network (ANN) Good prediction capacity Hard to interpret due to its blackbox nature

Applicable for nonmathematical models

Easy to use Less accuracy

Able to model difficult functions Extreme complexity due to network structure

Able to capture the interaction between predictors Require accurate training

Require long processing time

Possibility to apply multiple different training algorithms Sustainable to overfitting (due to complexity)
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preparation of new electrodes for lithium-ion batteries such as
hollow porous carbon materials, nickel manganese, and cobalt
oxide. In addition, they emphasized the significant role of elec-
trode designing and its undeniable effect on the batteries’
performance.

One of the main challenges in discovering new materials
for batteries is a large number of proposed materials for electro-
des and electrolytes. Screening these materials is expensive, time-
consuming, and requires expensive infrastructure, which makes
the evaluation of the new materials for use in lithium batteries
impractical. Accordingly, researchers are looking for fast ways
to discover or optimize materials for energy storage
applications.[34–36] The use of AI makes it possible to consider
simultaneously a large volume of information related to material
properties and characterizations. AI also provides a chance to
screen effective parameters for determining new materials.

Zhang et al.[37] suggested AI as a way to discover new sulfur host
materials for lithium–sulfur batteries. Their technique shortened
the materials screening time by �8 years. In their study, using
2DMatPedia database, 14 new materials have been discovered
that have the potential to be utilized in lithium–sulfur batteries.
In their AI-aided material screening, the adsorption energies of
the lithium polysulfides on the materials were considered as
the main criterion. Their AI-based model has been developed
using a small dataset including 65 samples. This dataset contained
the adsorption energies of lithium polysulfides on materials
such as PdN2, TaS2, PtN2, TaSe2, AgCl2, NbSe2, TaTe2, AgF2,
NiN2, AuS2, TmI2, NbTe2, NiBi2, and AuBr2. Using the developed
model, the adsorption energies on the new materials were
predicted.

Lv et al.[38] reviewed the applications of AI in the electrolyte
(such as propylene carbonate and ethylene carbonate) and elec-
trode (such as ACoO2, ANiO2, ATiO2, etc.) materials develop-
ments for lithium-ion batteries. They studied the use of
clustering, regression, and classification methods in discovering
the new materials. By reviewing the applications of AI in battery
materials, they have concluded that AI is a promising tool to
speed up the discovery of materials for use in lithium-ion batter-
ies, especially for electrolytes and electrodes. Similarly, Liu
et al.[39] reviewed the role of AI in developing lithium-ion
batteries and highlighted that the AI models can predict the
performance of different electrolytes and electrodes materials
and suggest their optimum conditions. Xu et al.[40] emphasized
the microstructures characteristics of the lithium-ion battery as
an important factor that governs batteries’ efficacy. They showed
that AI can contribute to predicting the performance of batteries
with certain microstructure designs, so it can help select the best
design at low cost with minimal effort. To pave the way for
greater use of Zn-ion batteries, using AI, Zhou et al.[41] proposed
new cathode materials such as SnPO4, MnPO4, AgPS3, and
CoP2O7 for Zn-ion batteries.

3. Limitations of Artificial Intelligence

One of the limitations of AI for studying battery exploration
materials and other technologies is the low size of datasets.
AI models require large amounts of data and extensive data
banks to work properly.[42] With the launch of the Materials

Genome Initiative (MGI) in 2011 and the coming of the “big
data” era,[43] several publicly available datasets were initiated,
which provide researchers with access to the properties of known
and hybrid materials. A few examples of data banks are Harvard
Clean Energy Project (HCEP),[44] Cambridge Structural
Databases,[45] inorganic crystal structure database (ICSD),[46]

Materials Project (MP),[47] Materials Data Facility,[48] and open
quantum materials database (OQMD).[49] A comprehensive list
of many examples of materials datasets which are used in the
renewable energy applications is summarized in Table 2.

Apart from using available materials database for materials
design and discovery, there are other kinds of data capturing
methods such as natural language processing (NLP) and text
mining, which are used in different areas of materials discovery,
for example, design of battery materials.[58] Text mining techni-
ques can extract unstructured data hidden in published docu-
ments (e.g., papers, patents, datasheets, and reports) and turn
them into structured materials data.[77] This extraction procedure
can be done via different chemistry-aware NLP toolkits such as
OSCAR4,[78] tmChem,[79] and ChemDataExtractor.[80] Huang
et al.[81] via using ChemDataExtractor on 229 061 academic docu-
ments extracted a battery database that contained 292 313 data.
This huge amount of data is public and can be used for predic-
tion properties in the field of batteries. Another case study, which
was done by Kononova et al.,[82] extracted and collected a dataset
of 19 488 solid-state synthesis recipes (codified recipes) from sci-
entific documents via using ChemDataExtractor. This dataset
contains a wide range of information (e.g., kinds of operation
and related experimental conditions, initializing compounds, tar-
get structure) that can be used widely in the field of inorganic
materials.

Since batteries and other clean energy systems are relatively
new technologies, there are no related data banks nor enough
experimental data to train and test the AI models. Fortunately,
the advent of supercomputers has provided a great opportunity
for advanced computational chemistry and quantum mechanics
such as molecular dynamics (MD), coarse-grained MD, and den-
sity functional theory (DFT) to predict precisely material proper-
ties at the molecular/atom level.[83] As presented in Figure 2,
computational chemistry and quantum mechanics can generate
synthetic data that is complementary to the available experimen-
tal data that AI needs for testing and training its models. Jha
et al.[84] compared the mean absolute error (MAE) of two differ-
ent ML models for the prediction of materials formation energy.
These deep learning models (OQMD-Scratch and transfer learn-
ing) are trained via four different datasets that three of them,
OQMD, Materials Project, and JARVIS, were properties that
were computed via DFT-based methods and one experimental
dataset (formation energies of the 1643 samples). They compared
the MAE of the deep transfer learning and MAE of OQMD-
Scratch with the experimental dataset, which was 0.07 and
�0.15 eV atom�1, respectively. Their results suggested the
advantage of using deep transfer learning for predicting proper-
ties, which are closer to their values that are obtained via experi-
mental investigation.

These deep level computations can create suitable databases
for AI-based discovery of newmaterials and develop technologies
for the production of clean energy.[85] AI itself can also assist
computational chemistry and quantum mechanics by predicting
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Table 2. Some of the materials databases with detailed information.

Name of
database

Website Free/
purchasable

Related
description

Reference[s]

ZINC https://zinc.docking.org/ Purchasable 230 million compounds: 3D formats,
genes, and chemical compounds

[50]

Materials Project (MP) https://materialsproject.org/ Free Inorganic compounds Elastic tensors [47]

Band structures Piezoelectric

Molecules tensors

Nanoporous materials Intercalation electrodes

Conversion electrodes

AFLOWLIB http://aflowlib.org/ Free Elastic properties Band structures [51]

Thermal properties Binary, ternary, quaternary
systemsSuperalloys

Novel materials discovery
(NOMAD)

https://nomad-lab.eu/about/scope Free Computational materials: input and
output files from more than
100 million calculations

[52]

Computational materials
repository (CMR)

https://cmr.fysik.dtu.dk/ Free Monolayer transition metal
dichalcogenides and oxides

ABSe3 materials [53]

van der Waals heterostructures 2D materials

Organometal halide perovskites A2BCX4 materials

ABS3 materials

Inorganic crystal structure
database (ICSD)

https://icsd.products.fiz-
karlsruhe.de/

Free Inorganic crystal structures [54]

Harvard clean energy
project (HCEP)

https://dash.harvard.edu/handle/1/
8364968

Purchasable Power conversion efficiency [44]

Energy of the highest occupied molecular orbital

Energy of the lowest occupied molecular orbital

Harvard organic photovoltaic
dataset (HOPV15)

https://dash.harvard.edu/handle/1/
29408375

– Experimental PV data [55]

Pauling file database https://paulingfile.com/ Purchasable Electronic and electrical properties Phase transitions [56]

Ferroelectric properties Superconductor properties

Magnetic properties Thermal and thermodynamic
properties

Mechanical properties Optical properties

Citrination https://citrination.com/ Free Materials Data Platform [57]

Quantum Machines 9
(QM9 database)/ GDB-13,

http://quantum-machine.org/
datasets/

N/A Computed geometric [58,59]

Energetic, electronic, and thermodynamic properties

134 k stable small organic molecules

1 billion stable and synthetically accessible
organic molecules

Crystallographic open database
(COD)

http://www.crystallography.net/
cod/

Free Crystal structures [56]

Organic, inorganic, metal-organics
compounds

Joint automated repository for
various integrated simulations
(JARVIS)

https://jarvis.nist.gov/ Free 40 000 materials [60]

1 million calculated properties

500 materials

110 force-fields

25ML models for material-property predictions

Polymer Genome (PG) https://www.polymergenome.org/ Free Polymers [61-63]

ASM Alloy phase diagram database https://www.asminternational.org/ Purchasable 40 300 binary and ternary
alloy phase diagrams

[64]

ChemSpider http://www.chemspider.com/ Free Chemical structure database [65]
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the result of the simulation before it has been performed. Using
the previous result of similar simulations, AI can predict the
result of the simulations to select the best simulation conditions,
which reduce the DFT and MD time and errors.[86] Lv et al.[38]

obtained a sufficient dataset of materials properties using
DFT andMD. They have identified these databases as an effective
factor in developing the use of AI in the discovery of new mate-
rials for developing clean energy applications. With AI/DFT,

Table 2. Continued.

Name of
database

Website Free/
purchasable

Related
description

Reference[s]

High Performance Alloy
D atabase (HPAD)

https://cindasdata.com/products/
hpad

Purchasable 46 900 curves on 137 alloys [66]

SpringerMaterials https://materials.springer.com/ Purchasable Inorganic solid phases [67]

Metal foam

Polymer thermodynamics

Open quantum materials database
(OQMD)

https://oqmd.org/ Free Database of DFT calculated thermodynamic
and structural properties of 815 654 materials

[49,68]

Materials Cloud www.materialscloud.org Free 22’145’443 crystal structures [69]

Materials Platform for Data Science
(MPDS)

https://www.mpds.io/ Purchasable Optical properties Magnetic properties [70]

Phase transitions Electronic and electrical
properties

Superconductivity Thermal and thermodynamic
properties

Mechanical properties

Material Properties Open
Database (MPOD)

http://mpod.cimav.edu.mx/ Free Physical properties of crystalline materials [70]

American Mineralogist Crystal
Structure Database (AMCSD)

http://rruff.geo.arizona.edu/AMS/
amcsd.php

Free Mineral structures [70]

Bilbao server http://www.cryst.ehu.es Free Structural and magnetic properties [71]

IZA Zeolite database http://www.iza-structure.org/
databases/

Free Structural information of Zeolite Framework types [72]

NanoHUB https://nanohub.org/ Free Nanoelectronics Photonics

Materials

MAGNDATA http://webbdcrista1.ehu.es/
magndata/

Free Magnetic structures [73,74]

Predicted Crystallography
Open Database (PCOD)

http://www.crystallography.net/
pcod/

Free Inorganic compounds [75]

Theoretical Crystallography
Open Database (TCOD)

http://www.crystallography.net/
tcod/

Free Theoretically calculated or refined crystal
structures of: organic, inorganic, metal-organic

compounds and minerals, excluding biopolymers

[75]

Cambridge crystallographic
data center (CCDC)

https://www.ccdc.cam.ac./uk Purchasable Organic structures [64]

Metal-organic structures

Biological Macromolecule
Crystallization Database (BMCD)

http://bmcd.ibbr.umd.edu/ Free Molecule [76]

Crystal

Crystallization data for macromolecules

Figure 2. Computational chemistry and quantum mechanics can provide missing data or complete the available datasets for training and testing AI
models for material discovery.
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Park et al.[87] introduced P 03-type K0.3Mn0.9Cu0.1O2 (KMCO) as
an electrode for potassium-ion batteries (KIBs).

Thermoelectric materials are another group of materials with
wide potential application in the clean energy applications. In
thermoelectric materials, via applying the electrical current flow,
temperature difference and heat creates. This mechanismmakes
them suitable for recovery of the waste heat as well as refrigera-
tion application. AI-assisted materials design and discovery
methods are applied on thermoelectric materials, too.[88–90]

Since the dopants have a significant role in improving thermo-
electric performance, Na et al.[90] suggested a specific neural net-
work (DopNet) for the prediction of the thermoelectric properties
in the doped materials. In this study, they measured the effects of
different dopants on the five thermoelectric properties (e.g.,
Seebeck coefficient, thermal conductivity, electrical conductivity,
power factor, and figure of merit). For instance, the MAE of 0.06
for the figure of merit prediction indicated that DopNet could be
a successful model in the prediction of efficient thermoelectric
materials.

4. Challenges and Future Outlook

We are living in an era where global warming and climate change
has already impacted the Earth. Urgent short- and long-term
actions must be taken into consideration to mitigate the environ-
mental implications. Abandoning fuel-based economy and tran-
siting to a mineral-based one and clean energy future require
widespread commercial implementation of green technologies
and processes that can harness energy from nonfossil fuel-based
energy resources. This urgent transition cannot be achieved with-
out the rapid discovery of new materials that serves the technol-
ogies/process. AI can catalyze the material development and
optimization which facilitates the transition to industry
4.0.[3,91,92] It seems that the main obstacle to AI-assisted material
discovery is the lack of datasets and accurate models that can pre-
dict and suggest new materials.[93–95] Advanced computational
chemistry and quantum mechanics can assist in addressing
the bottleneck by creating synthetic data. We believe research
needs to be directed in the following areas. 1) Developing new
AI models that can predict a broad range of organic and inor-
ganic materials as well as hybrid/composite materials.
2) Creating publicly available material data sets that can be used
as the main source of model training and testing. 3) There is an
urgent need in creating a bridge language that facilitates commu-
nication between the computer and material scientists. 4) AI-
assisted material discovery requires a well-defined model input
and output parameters which require a scientific consensus
among the researchers to report their results under a universal
framework systematically and consistently. 5) MD and DFT sim-
ulations are currently based on predicting the properties of mate-
rials at the atom/molecular level which might be enough to
suggest building blocks/starting materials. However, they
become inaccurate in predicting the bulk of materials or after
assembling the building blocks in the desired morphology.
There is a need in developing MD-/DFT-like approaches that
can predict the building block properties, postassembly. 6) To
achieve sustainability for technology materials production, AI
material discovery models should consider the environmental

impact as an important contributory factor. This will provide a
chance for the new material to be linked with life cycle assess-
ments (LCAs) performance data, and good quality social and gov-
ernance data within the supply chains.
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