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Abstract: There is limited research on metastable pitting corrosion in an acidic environment, and acid
is a major challenge for material corrosion. Therefore, this work investigated the metastable pitting
corrosion of laser powder bed fusion (LPBF)-produced Ti–6Al–4V, in Hank’s solution, at different pH
values (pH = 3, 5, and 7). This work investigated the effect of acid on the characteristics of passive
films, as well as the change in metastable pitting behavior. Based on the results of electrochemical
impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS), the passive film will
be inhibited and dissolved under the influence of H+. The higher the concentration of H+, the
thinner the passive film. Potentiodynamic polarization tests reveal that LPBFed Ti–6Al–4V in Hank’s
solution, at pH 3, has more obvious metastable pitting corrosion. This is because the higher the H+

concentration, the more Cl- is adsorbed on the surface of the passive film, which is prone to generate
soluble chlorides by competitive adsorption with oxygen atoms and thus develop into metastable
pitting corrosion.

Keywords: laser powder bed fusion; Ti–6Al–4V; metastable pitting corrosion; passive film;
competitive adsorption

1. Introduction

Pitting corrosion exists in various fields, and frequently occurs on the surface of easily
passivated metals [1–3]. As a complex corrosion process, pitting corrosion is influenced by
many factors, including temperature, aggressive ions, applied potential, and so on [1,4].
Many years have passed since relative pitting corrosion research began, with a large portion
of this research focusing on the characteristics of the passive film and metastable pitting
corrosion (the transition state before stable pitting corrosion) [4–7]. The passive film, as a
protective layer, and the initiation site of pitting corrosion on the metal surface, need to
be understood to work out the corresponding mechanism response to pitting corrosion.
Three principal mechanisms around the passive film response to pit initiation have been
categorized: the breakdown mechanism of the passive film, the penetration mechanism
of the passive film, and the adsorption mechanism [8–10]. Metastable pitting corrosion is
regarded as the next stage of pit initiation, which determines the formation of stable pitting
corrosion. The passive film has the potential to repair itself during pit nucleation, while if
metastable pitting corrosion develops fast, stable pitting is still unavoidable. Metastable
means unstable, and indicates the possibility of inhibiting the formation of the pit by
elucidating the mechanics of metastable pitting corrosion.

Previously, our work has studied related research on metastable pitting [6]. That
work found that the semiconductive property of the passive film has a relationship with
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the migration of oxygen vacancies. According to MacDonald’s point defect model (PDM)
and the penetration mechanism of the passive film, the adsorption of aggressive ions
(such as F−, Br−, Cl−, etc.) from the outside of the film and a large number of oxygen
vacancies result in the formation of numerous cation vacancies [6,11]. The excess cation
vacancies condense into a void, namely, a pit. A lot of researchers have also reported
similar results before, e.g., Refs. [12–14]. However, under certain conditions, such as
acidic conditions, the aggressive Cl− ions can squeeze out and occupy oxygen atoms in
the passive film. Meanwhile, the metal surface forms a salt film, which is dissolved in
solution and accelerates the metal corrosion. In addition, Qu et al. [15] demonstrated that
titanium is prone to forming a chelate compound ([Ti(OH)3]L) in artificial saliva, with
lactic acid, which accelerated passive film dissolution and increased the tendency of pitting
corrosion. They proposed that the addition of lactic acid changed the corrosion mechanism
and accelerated the pitting corrosion [15]. Therefore, the passive film reacted with H+ in an
acidic environment, then tended to dissolve. As such, the metal surface was transformed
from a passive state to an active state. At the moment, the presence of aggressive ions
such as Cl− would corrode a single point, resulting in localized corrosion. However, only
a few studies have been conducted on the pitting corrosion behavior of metals in acid
solutions, let alone metastable pitting corrosion. In addition, interestingly Cl− exerts its
aggressiveness more strongly in acidic environments, compared to other environments.
Therefore, the focus of this work will be on this area.

Combined with our previous work, we decided to continue to adopt laser powder
bed fusion (LPBF)-produced Ti–6Al–4V as a research object [6]. Ti–6Al–4V is currently a
popular metal material for human implants, due to its excellent mechanical properties,
corrosion resistance, and biocompatibility. The traditional manufacturing of the titanium
alloy is gradually being abandoned, because the process is limited by the shape of the target
part and the accuracy is low. More recently, a novel additive manufacturing technology,
commonly known as 3D printing, has attracted a lot of attention. LPBF is one such additive
manufacturing technology. The preparation process of LPBFed Ti–6Al–4V is different
from its traditional preparation, it has a short cycle, high utilization, and is not limited by
shape [16–18]. Furthermore, these advantages also determine many application scenarios
for LPBFed Ti–6Al–4V, which indicates that LPBFed Ti–6Al–4V most likely needs to be
applied in acidic environments. Moreover, pitting corrosion has been found in LPBFed
Ti–6Al–4V used in many applications, which limits its future development [1,6,8,10,19–21].

As a result, this work studied the metastable pitting corrosion behavior of LPBFed
Ti–6Al–4V in an acidic environment. The acidic environment was provided by Hank’s
solution, with lactic acid, and three different pHs were used (pH = 3, 5, and 7). The
corresponding metastable pitting corrosion of LPBFed Ti–6Al–4V in solution with various
pHs is discussed.

2. Experimental
2.1. Preparation of Samples and Solutions

Each LPBFed Ti–6Al–4V block for the experiments was 1 cm × 1 cm × 1 cm, and
manufactured by an MTT SLM 250 HL machine. The whole preparation process was
conducted under a high-purity protective gas (Ar) and a vacuum of 10−3 mbar. The
equipment parameters were 1000 mm/s scan speed, 200 W laser power, and a 40 µm light
spot. Simultaneously, the section line spacing was set at 100 µm, the layer thickness at
50 µm, and the “zigzag” mode was used for both scans. Electrochemical experiments
require a high level of purity of the material surface, so some surface treatments were
needed. First, a perforation was made in the blocks to facilitate the fixing of copper wires,
then the gap between the copper wires and blocks was welded with solder to ensure good
conductivity. Next, the entire block was sealed with epoxy resin, and only one 1 × 1 cm2

surface was left for subsequent treatment. The retained surface was ground with SiC
papers, from 400 to 2000 grit, and polished to a mirror finish with 1 µm diamond grinding
paste. Then the samples were ultrasonically cleaned in alcohol, blown dry, and stored in
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a dry box for use during the experiment. The samples in the subsequent electrochemical
experiments all required the same surface treatment as above.

The acid environment was provided by Hank’s solution with the addition of lactic acid.
Hank’s solution is produced by Hank’s balanced salts (Heart Biological Technology Co.,
LTD., Beijing, China) with the addition of 0.35 g/L NaHCO3, and the main compositions of
Hank’s salt are: 0.140 g/L CaCl2, 0.4 g/L KCl, 0.06 g/L KH2PO4, 0.098 g/L MgSO4, 8 g/L
NaCl, 1 g/L C6H12O6, 0.048 g/L Na2HPO4, and 0.011 g/L C19H14O5SNa. The pH values
of Hank’s solution adjusted with lactic acid are 3, 5, and 7, respectively, as a way to control
the change in H+ concentration. Furthermore, during electrochemical experiments, Hank’s
solutions must be kept at 37 ± 0.5 ◦C.

2.2. Morphological Characterization

The morphology of LPBFed Ti–6Al–4V in Hnk’s solutions at pH 3 was inspected
using a scanning electron microscope (SEM). The model of the SEM device is Sigma HD,
Zeiss, which was employed to characterize the pits on the sample surface after 1.0 VSCE
potentiostatic polarization.

2.3. X-ray Photoelectron Spectroscopy Characterization

The chemical compositions of the passive film formed on the samples were analyzed by
X-ray photoelectron spectroscopy (XPS, ESCALAB 250XI, ESCALAB 250Xi T, ThermoFisher
Scientific, Waltham, MA, USA). Samples were conducted 2500 s in Hank’s solutions with
different pH (pH = 3, 5, 7) under 1.0 VSCE potential. The test parameters for XPS are
500 µm spot diameter; the etching speed of 0.2 nm/s with argon ions. Using Al Kα X-rays
as a light source (hv = 1486.6 eV) at 15 kV and 10 mA. Thermo Avantage 5.992 software was
used to fit the XPS spectra.

2.4. Electrochemical Measurements

In this work, an electrochemical workstation (CHI660E, Shanghai Chenhua Company)
equipped with a three-electrode system was used to examine the electrochemical tests. In
this system, the working electrode (WE) was the sample, LPBFed Ti–6Al–4V; the counter
electrode (CE) was a platinum sheet; and the reference electrode (RE) was a saturated
calomel electrode. First of all, the cathodic polarization was conducted for three minutes,
to ensure the passive film formed on the surface of samples in air had been removed
completely (the current does not change with time in cathodic polarization tests). A
potentiodynamic polarization test was performed, at a sweep rate of 0.2 mV/s, with
a sweeping range of −0.25–2.0 VSCE. Afterward, the open circuit potential (OCP) was
measured for 1800 s, to make sure a stable passive film had formed on the sample surface.
Potentiostatic polarization (PP) was performed after OCP, and conducted for 2500 s under
0.6, 0.7, 0.8, 0.9, and 1.0 VSCE potentials. Then, the electrochemical impedance spectroscopy
(EIS) was tested, which scanned samples in the range of 105 Hz to 10−2 Hz, with an AC
amplitude of 10 mv. The EIS results were fitted with the ZView software. Moreover, the
Mott–Schottky tests can be measured directly after EIS, and performed from the film-
formation potential (0.6, 0.7, 0.8, 0.9, and 1.0 VSCE) to −1.0 VSCE under a 1 kHz frequency.
The scan speed of the Mott–Schottky test was 10 mV/s. It should be noted that the entire
experiments needed to be repeated at least three times under the same conditions.

3. Results
3.1. Morphological Features

Figure 1 exhibits the SEM images of the surface of the sample before and after pitting
corrosion. The surface of LPBFed Ti–6Al–4V is smooth and flat, as shown in Figure 1a,
which indicates an original surface without corrosion. In contrast, Figure 1b shows a
pitting morphology of LPBFed Ti–6Al–4V in Hank’s solution, at pH 3, after PP. The pit has
been marked with a white dashed circle. Furthermore, the picture shows an irreversible
steady-state pitting corrosion.
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Figure 1. SEM pictures of the morphologies of LPBFed Ti–6Al–4V in Hank’s solution, at pH 3, after
PP: (a) the surface without corrosion and (b) one pit was discovered on the surface of the sample.

3.2. Potentiodynamic Polarization Test

Figure 2 exhibits the potentiodynamic polarization (PD) curves of LPBFed Ti–6Al–4V
in Hank’s solution, with different pH values (pH = 3, 5, and 7). During the whole PD
process, three samples, with different pH values, show overlapped curves. At the same
time, Table 1 lists the fitting results of the PD curves, including corrosion current density
(Icorr), corrosion potential (Ecorr), and corrosion rate. According to Faraday’s law, the
corrosion rate is calculated as follows [6]:

Corrosion rate =
MIcorr

nFρm
(1)

where M is the molar mass of Ti, which is equal to 47.87 g·mol−1 [17], n is the charge of
the Ti ion, F is the Faraday constant, which is equal to 96,487 C mol−1 [17], and ρm is the
density of the Ti–6Al–4V alloy, which is 4.43 g cm−3 [6]. The values of Icorr can be obtained
by fitting the PD curves. According to the calculations, the corrosion rates for Ti–6Al–4V
under pH 3, pH 5, and pH 7 were 0.2699 × 10−5 mm·y−1, 0.1769 × 10−5 mm·y−1, and
0.0935 × 10−5 mm·y−1, respectively. The Icorr and Ecorr showed opposite tendencies with
decreasing pH values, with Icorr increasing, and Ecorr decreasing. This indicates that the
decreasing pH values directly influenced Ecorr and facilitated alloy corrosion. It can be
concluded that LPBFed Ti–6Al–4V is more susceptible to corrosion in Hank’s solution at
pH 3. Furthermore, current transition phenomena were observed in the inset of Figure 2.
It is indicated that the passive film is in an unstable state above 1.0 VSCE and prone to
pit nucleation on the surface, and the whole phenomenon becomes more pronounced as
the pH value decreases. Therefore, the corrosion resistance of LPBFed Ti–6Al–4V has a
high potential to lead to metastable pitting corrosion, in addition to declining with lower
pH values.
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Figure 2. Potentiodynamic polarization curves of LPBFed Ti–6Al–4V in Hank’s solution with different
pH values, at 37 ◦C.

Table 1. Fitting results and calculated corrosion rate of potentiodynamic polarization curves of
LPBFed Ti–6Al–4V in Hank’s solution with different pH values, at 37 ◦C. Icorr is the corrosion current
density; Ecorr is the corrosion potential.

Solutions Icorr (µA·cm−2) Ecorr (V) Corrosion Rate × 10−5 (mm·y−1)

pH 3 0.0964 −0.49006 0.2699
pH 5 0.0632 −0.47519 0.1769
pH 7 0.0334 −0.46669 0.0935

3.3. Potentiostatic Polarization Test

Five different applied potentials (0.6, 0.7, 0.8, 0.9, and 1.0 VSCE) were selected to
produce a passive film on the alloy surface in Hank’s solution for 2500 s, which are shown
in Figure 3. Figure 3a–c exhibits potentiostatic polarization curves of LPBFed Ti–6Al–4V in
Hank’s solution at various pH values. Each curve begins with a sharp decline and, over
time, transforms into a horizontal line. Several relevant types of research have shown
that this is the result of the growth of a passive film in the early stage, and the gradual
stabilization of the passive film growth in the late stage [22–24]. Generally, the growth and
dissolution of the passive film occur simultaneously, so that the later stable passive film
should be in a dynamic equilibrium [25,26]. After magnifying the pictures, as shown in the
insets of Figure 3, the current transition spikes can be distinguished from the background
current. The information regarding these current transition spikes, such as nucleation times,
durations, nucleation peaks, and so on, can be seen by continuing the amplification, which
has been studied in our previous work [6] and discussed in detail by Burstein et al. [22].
It is known that these current transition spikes can go from nucleation to annihilation in
seconds or less, which has been attributed to the self-repair of the passive film. Irreversible,
stable pitting corrosion will form if the passive film is not repaired in time. Certainly, more
current transition spikes mean a greater tendency toward stable pitting corrosion. For
convenience, a statistical analysis was performed, to count the current spikes in PP tests
at different potentials in the solutions with different pH values. Therefore, the frequency
of pit nucleation was counted and plotted in Figure 4, for a more intuitive comparison of
pitting corrosion at different pH values. During the statistics, the first 200 s of data were
cut, since, during this time the passive film had not been covered completely, and was
unstable on the surface of LPBFed Ti–6Al–4V. The 2500 s duration was averaged into 500 s
segments, for a total of 5 segments, and then counted. The frequency of each segment, is



Metals 2023, 13, 514 6 of 19

the ratio of the number of current transition spikes in that segment, to the period. It can be
seen that the frequency of pit nucleation decreases as the pH increases. In other words, the
lower the pH, the more unstable the passive film becomes, and the probability of pitting
corrosion increases.
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Figure 4. The frequency of pit nucleation for the LPBFed Ti–6Al–4V under the potentials of 0.6, 0.7,
0.8, 0.9, 1.0 VSCE, in Hank’s solution (pH = 3, 5, 7) at 37 ◦C.

3.4. Electrochemical Impedance Spectroscopy after Potentiostatic Polarization

Figure 5 displays the EIS results of LPBFed Ti–6Al–4V in Hank’s solution at different
pHs after PP. Figure 5a,c,e are Nyquist plots, where a larger radius of the capacitive loop
indicates a larger passive film impedance. Therefore, the sample is more resistant in Hank’s
solution at pH 7, which has the largest capacitive loop compared to those of the other
solutions. Figure 5b,d,f are Bode plots, which consist of Bode impendance plots and Bode
phase plots. In the high-frequency region (103~105 Hz) of the Bode phase plots, the phase
angle is close to 0◦, which demonstrates that the electrolyte resistance is constant. The
maximum phase in the mid-frequency region (10−1~103 Hz) is approaching 80◦, indicating
that the sample forms a dense layer on the surface of the solution. Therefore, to clarify the
non-capacitive behavior of the passive film formed on the samples, the R(Q(R(QR))) model
of the equivalent electrical circuit (EEC) (Figure 5a,c,e insets) was used to fit the EIS data.
According to our previous work, the R(Q(R(QR))) model is the most suitable for the ECC
fitting of titanium alloys with bilayer properties [6,25,27]. The fitting results are shown in
Table 2, where Rs is solution resistance, Rf is passive film resistance, Rct is charge transfer
resistance, n is the dispersion index, and CPE is a constant phase element. The value of
Rs has an increasing trend, as follows: pH 3 < pH 5 < pH 7. A high solution resistance
means poor electrical conductivity. It can be deduced that the electrical conductivity of the
solution would be inhibited as the value of pH increases. As a result, the reaction between
the solution and the surface of the substrate is slow, and the passive film is thicker, for less
dissolution. Unlike the Rs, Rf represents the outer film of LPBFed Ti–6Al–4V, and shows
an opposite trend as the value of pH increases. Rct describes the ease of charge transfer
from the metal to the solution, and also proved that the sample had preferable corrosion
resistance in Hank’s solution at pH 7. It is worth noting that Rct represents the dense film
inside the passive film. Therefore, the passive film of LPBFed Ti–6Al–4V formed in the
solutions at pH 3 is prone to dissolve, which leads to poor corrosion resistance.
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Table 2. Fitting results of EIS from Figure 4. Rs is solution resistance, Rf is passive film resistance, Rct

is charge transfer resistance, n is the dispersion index, and CPE is a constant phase element.

Solution Potential
(VSCE) Rs (Ω·cm2)

CPE1 × 10−6

(Ω−1·sn·cm−2) n1
Rf

(kΩ·cm2)
CPE2 × 10−6

(Ω−1·sn·cm−2) n2
Rct

(MΩ·cm2)

pH 3

0.6 11.62 ± 0.54 0.93 ± 0.24 0.91 ± 0.34 13.89 ± 0.10 1.94 ± 0.19 0.93 ± 0.25 6.34 ± 0.14
0.7 19.26 ± 0.14 0.88 ± 0.07 0.86 ± 0.07 14.40 ± 0.36 1.71 ± 0.09 0.93 ± 0.05 10.14 ± 0.07
0.8 19.81 ± 0.17 1.15 ± 0.18 0.90 ± 0.33 15.48 ± 0.27 1.56 ± 0.05 0.94 ± 0.13 13.01± 0.04
0.9 20.42 ± 0.09 1.14 ± 0.22 0.93 ± 0.19 16.33 ± 0.07 1.10 ± 0.04 0.94 ± 0.02 14.37± 0.35
1.0 18.42 ± 0.03 1.32 ± 0.14 0.95 ± 0.21 19.50 ± 0.06 1.20 ± 0.16 0.97 ± 0.04 16.42 ± 0.34

pH 5

0.6 18.59 ± 0.08 1.08 ± 0.06 0.87 ± 0.12 8.42 ± 0.03 0.89 ± 0.15 0.78 ± 0.09 8.58 ± 0.06
0.7 18.69 ± 0.14 1.25 ± 0.01 0.97 ± 0.21 9.51 ± 0.21 1.61 ± 0.23 0.89 ± 0.06 15.85 ± 0.07
0.8 19.11 ± 0.01 0.83 ± 0.13 0.84 ± 0.32 10.96 ± 0.14 1.33 ± 0.11 0.91 ± 0.09 18.46 ± 0.09
0.9 26.32 ± 0.02 0.73 ± 0.10 0.98 ± 0.04 13.82 ± 0.28 1.18 ± 0.04 0.92 ± 0.06 20.01 ± 0.09
1.0 24.47 ± 0.22 1.86 ± 0.19 0.89 ± 0.11 17.36 ± 0.07 1.73 ± 0.04 0.94 ± 0.04 21.97 ± 0.07

pH 7

0.6 20.11 ± 0.41 1.02 ± 0.04 0.91 ± 0.29 5.67 ± 0.21 0.93 ± 0.17 0.85 ± 0.26 9.00 ± 0.08
0.7 24.87 ± 0.02 0.96 ± 0.09 0.97 ± 0.12 6.01 ± 0.11 1.43 ± 0.06 0.94 ± 0.05 16.71 ± 0.02
0.8 28.42 ± 0.10 1.69 ± 0.06 0.91 ± 0.03 8.88 ± 0.21 1.92 ± 0.15 0.85± 0.09 21.06 ± 0.07
0.9 30.64 ± 0.17 0.93 ± 0.14 0.96 ± 0.04 10.53 ± 0.04 1.79 ± 0.51 0.95 ± 0.14 23.68 ± 0.06
1.0 31.46 ± 0.37 1.24 ± 0.30 0.96 ± 0.11 12.05 ± 0.02 1.79 ± 0.08 0.94 ± 0.08 27.03 ± 0.24

3.5. Mott–Schottky Measurements

Figure 6 displays the Mott–Schottky diagrams of LPBFed Ti–6Al–4V in Hank’s solution
with different pHs, after PP. Generally, Figure 6a–c all exhibit linear regions, with positive
slopes between −0.5 and −0.3 VSCE, between −0.6 and −0.4 VSCE, and between −0.7
and −0.5 VSCE, respectively. It can be confirmed that the presence of oxygen vacancies
(anion donors) in the passive film represent n-type semiconductive properties. Initially, the
thickness of the passive film formed by PP can be measured using the equation below [28]:

LSS =
εε0A
Ceff

(2)

where ε is the relative dielectric constant of the passive film (TiO2 is the principal component
of the passive film, and equals 60 [28]); ε0 is the vacuum dielectric constant, and equals
8.85 × 10−14 F·cm−1; A is the effective passivation area of Ti electrode (1 cm2); and Ceff is
the effective capacitance, which can be derived from the EIS results (at the frequency of
1 kHz, the electrochemical impedance shows an almost purely capacitive behavior [29])
after the potentiostatic polarization test of the passive film. The calculated thickness of the
passive film is plotted in Figure 7a, which demonstrates that a low pH of Hank’s solution
is adverse to the formation of the passive film.

According to the above description, the donor density (ND, mainly for oxygen va-
cancies) has a relationship with the slope of the Mott–Schottky curve. Then, ND can be
calculated based on the n-type semiconductive Mott–Schottky expressions: the slope of
the curves equals 2

εε0eND
[30], where e is the electron charge (1.6 × 10−19 C). The measured

ND is plotted in Figure 7b, and the relationship between ND and the applied potential is
obtained by fitting the following equation [31]:

ND = ω1e−bE +ω2 (3)

where ω1, ω2, and b are fitting constants in Equation (3), and correspond to the fitted
equations in Figure 6b; E is the applied potential. As shown in Figure 6b, ND decreased
with increasing potentials and pH. In addition, the diffusion coefficient of vacancy (DO) is
another important indicator of the passive film, and the growth kinetics of the passive film
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also depends on it. The expression for DO is based on the Nernst–Plank transport equation
as follows [32]:

DO =
ipRT

4eFεLω2
(4)

where ip is the current density under a stable state, which can be obtained from Figure 3; R
is the gas constant (8.314 J·mol−1); T is the absolute temperature; F is Faraday’s constant
(96487 C·eq−1);ω2 can be obtained from Figure 7b. εL is the electric field intensity, which
has a linear relationship with LSS and E, given by Equation (5) [17]:

Lss =
(1− α)E
εL

+ B (5)

where α is the surface polarizability and equals 0.5, and B is a constant [33]. As such, εL
can be determined, and DO is plotted in Figure 7c. Figure 7c describes the electrochemical
reaction at the interface of the passive film/solution. Thus, the growth rate of the passive
film formed on LPBFed Ti–6Al–4V in Hank’s solution at different pHs can be ordered as
follows: pH 7 > pH 5 > pH 3.

Moreover, the kinetics of the film growth can be expressed as Equation (6), based on
the point defect model (PDM), expressed as follows [11]:

dLSS

dt
= J

Ω
NA

(6)

where Ω is the molar volume of each cation; t is time; NA is Avogadro’s number; and J is
the vacancy flux. According to Fick’s first law, J is determined by both the concentration
gradient (JC) and the potential gradient (JP), listed as follows [34]:

J = JC + JP (7)

The solution was kept in a stable state during the whole test in this work. So, JC is a
constant, while J is heavily impacted by JP. As a result, the equation may be written as [13]:

JP = qiKD0ND (8)

where qi is an electric charge and has a value of 2e; and K is defined as K = Fε
RT . As such,

qi and K are considered constants, and the results of JP are determined by ND and DO.
Therefore, the calculated JP is plotted in Figure 7d, which shows that the passive film
formed on the LPBFed Ti–6Al–4V in Hank’s solution with pH 7, has a high oxygen flux. It
indicates that, in the films in which the oxygen vacancies travel quicker, the passive film
grows faster, which is consistent with the result that the passive film thickness is thickest at
pH 7 (Figure 6a).
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Figure 7. Calculated (a) thicknesses (LSS), (b) donor densities (ND), (c) vacancy diffusion coeffi-
cients (DO), and (d) vacancy fluxes (JP) of the passive films formed on LPBFed Ti–6Al–4V, under
different potentiostatic polarization potentials (0.6, 0.7, 0.8, 0.9 and 1.0 VSCE), in Hank’s solution at
different pHs.

3.6. XPS Analysis of Passive Films

Figure 8 shows the Ti 2p spectra for LPBFed Ti–6Al–4V, after sputtering at 0 nm, 10 nm,
30 nm, and 60 nm, respectively. It can be noticed that the oxide composition of TiO2 reaches
its maximum at the outmost layer, for all three pH values. The three valences of Ti ions
co-exist in the passive film, while their composition varies with pH and sputtering depth.
Table 3 lists the composition distribution of Ti ions in each valence state from Figure 8. The
content of TiO2 increases with pH in each depth, while decreasing with the increase in
depth. At the surface of the passive film, the fractions of Ti4+, Ti3+, and Ti2+ are 85.72 at%,
9.21 at%, and 5.07 at% in Hank’s solution at pH 3, respectively. In contrast, the fractions of
Ti4+, Ti3+, and Ti2+ are 89.67 at%, 5.30 at%, and 5.02 at% in Hank’s solution at pH 5, and
89.91 at%, 5.11 at%, and 4.98 at% in Hank’s solution at pH 7, respectively. The proportion
of Ti3+ increased significantly at the sputtering depth of 10 nm. A similar condition is
also applied to the fraction of Ti2+ at the sputtering depth of 60 nm, of course along with
the decline in Ti4+. According to Gebert et al. [35], TiO2 was produced by the gradual
transformation of TiO and Ti2O3, so the outmost layer exhibits a passive film dominated by
TiO2. Qin et al. [25] also performed similar research, they found that the aggressive ions
(Cl−) could dissolve the formed TiO2, and inhibit the transformation of TiO and Ti2O3 to
TiO2. Therefore, the transformation process of TiO and Ti2O3 to TiO2 is also applied in this
work, and this process could also be suppressed by some ions. Accordingly, the inhibitor in
this work is H+. A lower fraction of suboxides of Ti2O3 and TiO could be detected over the
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sputtering depths in Hank’s solution at pH 7, so a thicker passive film formed, in agreement
with the results of Figure 7a.
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To determine the Cl− adsorption, XPS spectra of Cl 2p for LPBFed Ti–6Al–4V on
the surfaces of the passive film have been conducted, and are shown in Figure 9. The
potentiostatic polarization tests, under an applied potential of 1.0 VSCE, were performed,
while the peak of Cl− is obvious for the sample in Hank’s solution at pH 3. In addition,
the larger the value of pH, the less Cl− is adsorbed. It can be concluded, that more Cl− is
adsorbed on the surfaces of passive films in Hank’s solution with higher H+ concentration
during potentiostatic polarization.
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Table 3. Ratios of Ti ions with different valences in the passive films formed on the LPBFed Ti–6Al–4V
at different sputtering depths, after potentiostatic polarization under 1.0 VSCE in Hank’s solution
with different pH values (pH = 3, 5, and 7).

Sputtering Depth (nm) Solutions Ti4+ (at%) Ti3+ (at%) Ti2+ (at%)

0
pH = 3 85.72 9.21 5.07
pH = 5 89.67 5.30 5.02
pH = 7 89.91 5.11 4.98

10
pH = 3 64.23 28.35 7.43
pH = 5 66.41 26.35 7.24
pH = 7 68.57 24.55 6.87

30
pH = 3 64.09 23.92 11.98
pH = 5 68.04 21.67 10.29
pH = 7 71.86 19.82 8.32

60
pH = 3 52.08 32.66 15.25
pH = 5 55.35 30.14 14.51
pH = 7 57.53 28.49 13.98
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4. Discussion
4.1. Effect of H+ Concentration on the Formed Passive Films

It is widely known that, the greater the concentration of H+, the smaller the pH value.
In this work, the passive films formed on the surface of the LPBFed Ti–6Al–4V in Hank’s
solution, with different concentrations of H+, exhibited different properties. Titanium alloy
is easy to passivate at room temperature, and the formed passive film (mainly TiO2) could
provide natural protection to avoid corrosion. The oxide layer exhibits good corrosion
resistance in aqueous environments and has low electrical conductivity. However, the
passive film is sensitive to H+ in the aqueous environment, and the following hydrolysis
reaction occurs between H+ and the passive film:

TiO2 + 4H+ → 2H2O + Ti4+ (9)

Generally, the passive film is always in a dynamic equilibrium of dissolution and
generation. The influence of H+ concentration breaks this equilibrium and accelerates
the dissolution. As such, the passive film is thin in Hank’s solution with a high H+

concentration, i.e., low pH, which is in accord with Figure 7a. Furthermore, the composition
distribution of Ti4+ detected on the surface of the passive film in Hank’s solution with
high H+ concentration, is relatively low. It could be speculated that the passive film has
undergone a hydrolysis reaction (Reaction (9)) and dissolved, so that a large amount of Ti4+

travels into the solution.
In detail, the formation of the passive film is divided into three stages: (i) TiO is the

initial form of passivation, it is then quickly oxidized to a trivalent state (Ti2O3) by the
following reaction:

2Ti + 3H2O− 6e− → Ti2O3 + 6H+ (10)

(ii) the new Ti2O3 undergoes Reaction (10) and transforms into its tetravalent state
(TiO(OH)2) before dehydration:

Ti2O3 + 4OH− → 2TiO(OH)2 + H2O + 4e− (11)

(iii) finally, the stable oxide, TiO2, is formed via dehydration (Reaction (12)):

TiO(OH)2 → TiO2 + H2O (12)

In this work, the outmost layer of passive film is dominated by TiO2, according to
XPS results, and the suboxides of TiO and Ti2O3 are distributed in the internal passive film.
It is demonstrated that the formation of the passive film proceeds sequentially from the
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inside to the outside with the diffusion of oxygen vacancies. In general, the diffusion rate
of oxygen vacancies is faster than cation vacancies, which indicates that a large number of
cation vacancies will be left on the surface of the passive film [36,37]. As such, the surface of
the passive film presents a negative charge and is prone to absorb H+. Reaction (9) occurs,
and the passive film begins to dissolve. As the concentration of H+ increases, the reaction
intensifies, and the dissolution of the passive film becomes more distinct. That is to say, the
passive film becomes reactive due to increased H+ concentration. It is confirmed again that
the thickness of the passive film is thinning with increasing H+ concentration (Figure 7a).
As a consequence, the increase in H+ concentration inhibits the formation of the passive
film and promotes the dissolution of the passive film.

4.2. Effect of H+ Concentration on the Metastable Pitting Corrosion of LPBFed Ti–6Al–4V

Combined with the above description, H+ ions aid in the conversion of the passive
film from a passive state to an active state, as well as in the adsorption of Cl− (Figure 9).
However, metastable pitting corrosion is the result of the adsorption of Cl− on the surface
of the passive film. Based on the point defect model (PDM), the growth of the passive
film depends on the migration of oxygen vacancies, and Cl− is prone to be trapped by
the oxygen ion in the anion site. Figure 10 displays the mechanism of the growth and
dissolution of the passive film, defects are expressed by Kröger–Vink notation [38]. TiTi is Ti
ions in the cation site of the passive film; Vö is oxygen vacancies in the passive film; V4′

Ti is Ti
ion vacancies in the passive film; VTi is vacancies in the Ti substrate; e′ is an electron; Oo is an
oxygen ion in the anion site of the passive film; Ti4+

(aq) is Ti ions in solution [11]. The growth
process of the passive film is expressed as Reaction (1) in Figure 10, which indicates that the
Ti atom enters into the film and produces Vö. Generally, Reaction (9) is the dissolution of
the passive film, while Cl− is introduced by Reaction (2), inFigure 10. This is the result of a
high amount of Cl− being adsorbed on the surface of the passive film in the acidic solution,
forcing oxygen atoms to occupy Oo, a process known as competitive adsorption. Guan
et al. [31] reported a similar process in acid fluoride-containing solutions. Therefore, the
passive film is gradually thinned, by creating soluble chlorides at Cl−-adsorbed locations.
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cation site of the passive film, Vö is oxygen vacancies in the passive film, V4′

Ti is Ti ion vacancies in the
passive film, VTi is vacancies in the Ti substrate, e′ is an electron, Oo is oxygen ion in the anion site of
the passive film, Ti4+

(aq) is Ti ions in solution.
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Furthermore, many researchers proposed three principle mechanisms to simulate a
pit that destroys the passive film, and finally erodes the metal substrates, during which the
pit nucleates and develops from the passive film [4,39,40]. The three principal mechanisms
are: the film-breakdown mechanism, the penetration mechanism, and the adsorption mech-
anism [1,4,41]. An adsorption mechanism was used in this work, as shown in Figure 11.
First of all, as the H+ concentration increases in Hank’s solution, the accumulation of Cl−

on the surface of the passive film also increases (Figure 8). Afterwards, the passive film
becomes active and is prone to dissolution. In the meantime, oxygen atoms and chloride
ions competitively adsorb in the passive film, as shown in Figure 11. Cl− is small and
aggressive, which squeezes out oxygen atoms, and Cl− combines with the metal to become
soluble chlorides (Reaction (2) in Figure 10). At this moment, macroscopic electrochemistry
manifests as current transition spikes and metastable pitting corrosion can be observed,
which is demonstrated in Figure 3. The thickness of the passive film is thinned in this
way, as shown in Figure 11. In addition, the passive film itself tends to dissolve in an
acidic environment.
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5. Conclusions

In this work, the metastable pitting corrosion behavior of laser powder bed fusion
(LPBF)-produced Ti–6Al–4V, in Hank’s solutions, at different pH (3, 5, and 7) has been
investigated. Meanwhile, the properties of passive films formed in an acidic environment
were also researched. The principle conclusions are summarized below:

(1) In the polarization tests, the LPBFed Ti–6Al–4V, in Hank’s solutions, at different pH
(3, 5, and 7) shows metastable pitting corrosion. With the increase in H+ concentration,
the frequency of metastable pitting corrosion becomes greater, and the possibility of
pitting corrosion is also higher.

(2) The passive film formed on the LPBFed Ti–6Al–4V mainly contains TiO2, based on
XPS results, while the content decreases with increasing H+ concentration. Coupled
with Motty–Schottky tests, the transformation process of TiO2 from TiO and Ti2O3 was
suppressed by H+. As such, the passive film has a thin thickness in Hank’s solution at
pH 3.

(3) The surface of the passive film becomes active in an acidic solution and is prone to
dissolve. Meanwhile, more Cl− were attracted to the surface of the passive film. There
was competitive adsorption of Cl− and oxygen atoms on the passive film, resulting
in soluble chlorides. According to the adsorption mechanism, the metastable pitting
corrosion would form at the Cl− adsorption sites.
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