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a b s t r a c t

Settlement prediction of geosynthetic-reinforced soil (GRS) abutments under service loading conditions
is an arduous and challenging task for practicing geotechnical/civil engineers. Hence, in this paper, a
novel hybrid artificial intelligence (AI)-based model was developed by the combination of artificial
neural network (ANN) and Harris hawks’ optimisation (HHO), that is, ANN-HHO, to predict the settle-
ment of the GRS abutments. Five other robust intelligent models such as support vector regression (SVR),
Gaussian process regression (GPR), relevance vector machine (RVM), sequential minimal optimisation
regression (SMOR), and least-median square regression (LMSR) were constructed and compared to the
ANN-HHO model. The predictive strength, relalibility and robustness of the model were evaluated based
on rigorous statistical testing, ranking criteria, multi-criteria approach, uncertainity analysis and sensi-
tivity analysis (SA). Moreover, the predictive veracity of the model was also substantiated against several
large-scale independent experimental studies on GRS abutments reported in the scientific literature. The
acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments
with reasonable accuracy and yielded superior performance in comparison to counterpart models.
Therefore, it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary
decision-making when investigating the in-service performance of GRS abutments. Finally, the model
has been converted into a simple mathematical formulation for easy hand calculations, and it is proved
cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.
� 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, geosynthetic-reinforced soil (GRS) technology
has grown in prominence as a means of constructing safe and
sustainable structures such as GRS abutments. In comparison to the
pile-supported abutment system (deep foundation), the GRS sys-
tem is a more cost-effective and ecologically friendly method of
supporting highway infrastructure and transportation projects
(Abu-Hejleh et al., 2000; Zornberg et al., 2001; Phillips et al., 2016).

GRS is composed of closely packed granular fill material and
geosynthetic reinforcing layers. Numerous experimental and nu-
merical works have been carried out over the last three decades to
evaluate the performance of GRS structures under static load con-
ditions (e.g. Helwany, 1993; Abu-Hejleh et al., 2000; Bathurst et al.,
2000; Bueno et al., 2005; Hatami and Bathurst, 2006; Adams et al.,
2011; Ahmadi and Bezuijen, 2018; Zheng et al., 2018). All these
studies showed that the geosynthetically reinforced structures
offer high performance and excellent load-bearing capacity.

The GRS abutment is often used to support the bridge structure;
therefore, determining its vertical settlement and lateral defor-
mation is a vital serviceability requirement. Various methods are
available in the literature to predict the lateral displacement of GRS
abutments (Giroud, 1989; Jewell and Milligan, 1989; Christopher
et al., 1990; Wu, 1994; Adams et al., 2002; Wu et al., 2013). The
comparison, effectiveness, and applicability of these methods were
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described in detail by Khosrojerdi et al. (2017). However, the esti-
mation of vertical settlement of GRS abutments/walls requires
further attention. Adams et al. (2011) provided an empirical rela-
tion for evaluating the settlement of GRS abutments/walls. The
method was based on the assessment of the vertical strain of the
GRS mass. Vertical strain in a GRS abutment is determined by
intersecting the applied vertical stress owing to the dead load with
the vertical strain envelope in the performance test stress-strain
curve. Vertical settlement is then determined by multiplication of
the calculated vertical strain with the abutment or wall’s height.
Due to the emergence of powerful computing devices and major
breakthroughs in artificial intelligence (AI), machine learning (ML)
modeling techniques have made many traditional approaches
outmoded. To date, no study has utilised AI/ML technology to
predict the settlement of GRS abutments. Hence, there is a need to
develop a method that can predict the settlement of the GRS
abutments in an intelligent waywith increased accuracy, bypassing
all the aforehand assumptions and shortcomings often associated
with traditional approaches.

In the past few years, the use of AI-based modeling techniques
to solve complex engineering problems has garnered the interest of
various scientists and researchers. AI is frequently utilised in a va-
riety of engineering domains, including geotechnical engineering,
to map the non-linear correlations between input and target vari-
ables (Zhang and Goh, 2013, 2016; Wang et al., 2020a, b; Atangana
Njock et al., 2021; Kaloop et al., 2021; Tang and Na, 2021; Wu et al.,
2021; Zhang et al., 2021a, b, 2022; Bardhan et al., 2022). Many re-
searchers have also successfully developed ML-based applications
to investigate the behaviour of geosynthetic-reinforced foundation
soil (Harikumar et al., 2016; Raja and Shukla, 2020, 2021a, b;
Venkateswarlu et al., 2021). Unlike traditional approaches (empir-
ical or analytical), AI models are predominantly data-driven, and
hence, such models are not assumption bound. This ability of AI/
ML-based models makes them extremely useful in acquiring
knowledge from the underlying data in an intelligent way (Shahin
et al., 2009; Raja et al., 2021).

Artificial neural network (ANN) is the most commonly and
widely used ML-based method to predict the underlying behaviour
of engineering systems. Its ability to learn the hidden relationship
between the input and output variables, easy interpretation,
handling multiple outputs, and effectiveness in predicting the new
data have made it highly efficient among all the ML-based algo-
rithms (Khan et al., 2022). However, recent studies have shown that
metaheuristic-based optimisation techniques can boost the per-
formance of ML-based methods (e.g. ANN) (Bardhan et al., 2021;
Kardani et al., 2021). Such optimisation not only improves the
predictive ability of the ANN but also helps in mitigating the
common “local minima trap” problem by updating the learning
parameters (weights and biases), thus yielding noteworthy results
(Tien Bui et al., 2019; Zhang et al., 2020; Xie et al., 2021). This study
utilises the newly developed Harris hawks optimisation (HHO).
Accordingly, a novel hybrid model is developed by combining ANN
and HHO, abbreviated as ANN-HHO, to predict the settlement of
GRS abutments. The performance and reliability of the ANN-HHO
have been established through comprehensive comparison with
five other intelligent regression-based ML models including sup-
port vector regression (SVR), Gaussian process regression (GPR),
relevance vector machine (RVM), sequential minimal optimisation
regression (SMOR), and least-median square regression (LMSR).
Rigorous statistical analysis, including traditional and modern
performance evaluation indicators, ranking criteria, and multi-
criteria approaches, has been employed to ascertain the accuracy
of the developed ANN-HHO model. The generalisation ability and
trustworthiness of the ANN-HHO model have been assessed
through uncertainty and sensitivity analysis (SA). The model was

also substantiated by comparing the results of several large-scale
independent experimental studies on GRS abutments as reported
in the scientific literature with the ANN-HHO’s results. Most
importantly, the model is converted into a mathematical formula
for easy implementation. It is proved helpful for practitioners in
estimating the settlement of GRS abutments.

2. Methodological background

This section describes the methodological background of the
hybrid intelligent paradigm developed in this study (i.e. ANN-HHO)
to predict the settlement of GRS abutments. Moreover, it also in-
cludes the brief outlook of other methods such as SVR, GPR, RVM,
SMOR, and LMSR, developed for predicting the settlement of GRS
abutments.

2.1. ANN

ANN imitates the human nervous system and consists of a
highly interconnected set of processing elements called neurons.
An ANN architecture comprises a three-layered system, that is, an
input layer, hidden layer(s), and an output layer. In each layer, the
neurons are logically arranged and interact through weighted
connections (Shahin et al., 2001). In order to solve complex prob-
lems, data are presented to the model network via the input layer.
Afterward, the data are processed in the hidden layer(s), and passed
through the output layer. During the entire process, the interaction
between the network layers is done through the neurons. The
output of each layer is produced by multiplying the input of the
predecessor layer with the weight connections. After adding the
weighted inputs to the bias (threshold), the transfer function is
applied to obtain the neuron’s output. Fig. 1 represents the general
structure of the ANN utilised in this study. For the historical
development and detailed description of the ANN, readers can refer
to any of the excellent ML works available in the literature (e.g.
Russell and Peter, 2010; Aggarwal, 2018).

2.2. HHO

Harris hawk is a swarm-based optimisation technique recently
developed by Heidari et al. (2019). Originally inspired by the
predatory behaviour of the Harris hawks, this intelligent technique

Fig. 1. Typical architecture of ANN.
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is effectively applied in solving and optimising many scientific
problems (e.g. Yıldız and Yıldız, 2019; Jiao et al., 2020; Bardhan
et al., 2021). The main advantage of HHO is its gradient-free opti-
misation approach; thus, it can be used for constrained engineering
problems in an efficient way (Heidari et al., 2019). Fig. 2 shows the
different phases of the HHO.

The first phase of the HHO is exploration. Harris hawks are
natural predators that can detect and track prey using their
extremely powerful eyesight. In mathematical terms, the Harris
hawks are candidate solutions, and the intended prey is deemed
the best candidate (optimum) in each iteration. In HHO, the Harris
hawks work in groups and pounce (strike) on prey from various
locations. The hawks employ several chasing strategies and tactics
according to different scenarios, and prey’s escape strategies. When
the best hawk tracks the prey and comes within striking distance,
the prey escapes while the other hawks keep on chasing the prey.
This strategy will leave the prey exhausted and defenseless, making
it easily hunted. Mathematically, this exploration phase is defined
as follows (Heidari et al., 2019):

xðtþ1Þ ¼
8<
:

xrandðtÞ � r1jxrandðtÞ � 2r2xðtÞj
�
qp � 0:5

�
xpreyðtÞ � xmðtÞ � r3½Lb þ r4ðUb � LbÞ�

�
qp < 0:5

�
(1)

where xrandðtÞ is the randomly selected hawk from the current
population; xðtÞ is the hawk’s location at the current step (itera-
tion); xðtþ1Þ is the hawk’s location at the forthcoming step; xpreyðtÞ
is the prey’s location; r1, r2, r3, and r4 are the random numbers
ranging from 0 to 1 and updated in each step; Ub and Lb are the
upper and lower bounds of variables, respectively; qp represents
the perching strategy depending on either the location of other
hawks in the population (closeness to the preywhen attacking) and
is modeled as qp < 0:5 in Eq. (1), or perch on tall trees (random
location within the search area range) modeled as qp � 0:5 in Eq.

(1); and xm is the mean (average) position of the hawks (within the
current population) and is given as

xmðtÞ ¼ 1
nh

Xnh

i¼1

xiðtÞ (2)

where xiðtÞ and nh represent the location of each hawk at step t and
the total population of hawks, respectively.

The second phase is the transition phase between exploration
and exploitation, which deals with the escaping energy of the prey.
As the prey continuously tries to escape, it will keep losing energy,
and this energy loss E is modeled as follows:

E ¼ 2Eo

�
1� t

T

�
(3)

where Eo is the initial state of the prey’s energy and changes
randomly inside ð�1;1Þ for each step t, and T is the maximum
number of steps. It is essential to understand that the algorithm is
designed to replicate the natural behaviour of hawks and their prey.
The dynamic energy of the prey has a decreasing trend, which
implies that exploration will occur if jEj � 1 and exploitation will
occur if jEj < 1 (Heidari et al., 2019).

The third phase of the HHO is exploitation, during which the
Harris hawk hits the prey discovered in the preceding phase. While
the hawk is attacking, the prey attempts to flee the dangerous
position. The prey and hawk’s evading and chasing behaviours
result in four different techniques during the attacking phase of
HHO: soft besiege (SB), hard besiege (HB), soft besiege with pro-
gressive rapid dives (SBPD), and hard besiege with progressive
rapid dives (HBPD). The theoretical details and mathematical for-
mulations of these strategies can be found in the literature (Heidari
et al., 2019). According to the probability of prey escaping suc-
cessfully (r < 0.5) or unsuccessfully (r � 0.5) prior to the surprise
attack, the following tactics were inferred based on the prey’s
escaping energy:

SB : r�0:5; jEj � 0:5 (4)

HB : r � 0:5; jEj < 0:5 (5)

Fig. 2. Different phases of HHO (adapted from Heidari et al., 2019).

Fig. 3. Pseudocode of HHO (Heidari et al., 2019).
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SBPD : r<0:5; jEj � 0:5 (6)

HBPD : r < 0:5; jEj < 0:5 (7)

The pseudocode of the HHO is given in Fig. 3.

2.3. Hybridising of ANN-HHO

As discussed earlier, the major drawback of ANN is the local
minima trap, and the metaheuristics-based optimisation tech-
niques help in overcoming this problem. Therefore, the hybrid-
isation helps to evade the local minima issue and significantly
enhances the predictive ability of the ANN.

After dividing the dataset into training and testing sets, the first
stage of the hybridisation process is to initialise the ANN, which in-
volves thegenerationofweights andbiases. TheANN’s ideal structure
(hidden layers and nodes) is determined using a hit and trail process.
Thereafter, theweights and biaseswere optimised throughHHO, and
the model was validated through the optimised HHO’s weights and
biases. It may be noted that themutation-based strategy proposed by
Kardani et al. (2021) has been utilised to further improve the per-
formance of HHO. For this, the position of each prey in HHOhas been
updated by creating a diversified solution space for each step (itera-
tion) by utilising the velocity approach of the particle swarm algo-
rithm (PSO), which can be mathematically expressed as

vmþ1 ¼ wmvm (8)

where vm and wm are the mutant’s velocity and inertia weight,
respectively. The mutant velocity is updated in each iteration ac-
cording to Eq. (8). This updated velocity is then used to update the
best prey’s location as follows:

xprey ¼ xprey þ vmþ1 (9)

If the new location’s fitness is greater than the prey’s existing
location fitness, this new locationwill be identified as a prospective
location. To find the optimum location of the prey, the mutation
algorithmwill keep boosting the location by comparing the present
and potential new locations in each iterative step. The research
framework applied for developing ANN-HHO in this study is pre-
sented in Fig. 4.

2.4. SVR

SVR is developed by Drucker et al. (1997) and is based on the
structural risk minimisation principle. It converts the input data to
the higher-dimensional feature space using a non-linear transfer
function. Therefore, if X is the input variable and Y is the target
variable (settlement of GRS abutments in the present study), SVR
can be written as follows (Smola and Schölkopf, 2004):

Fig. 4. Proposed research framework for hybrid ANN-HHO paradigm developed in this study.

M.N. Amjad Raja et al. / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 773e788776



Y ¼ f ðxÞ ¼ wT4ðXÞ þ bsvr (10)

where w is the weight vector, 4 represents the mapping function
for feature extraction, and bsvr is the bias term. Based on the Mer-
cer’s theorem, the SVR utilises the kernel function to perform the
linear separation (Vapnik, 1999). Mathematically, it is defined as
follows:

Y ¼ f ðxÞ ¼ lKðx; xiÞ þ bsvr (11)

where l is the Lagrange multiplier, and K is the kernel function. For
detailed mathematical derivation of SVR, readers may refer to some
excellent studies (Drucker et al., 1997; Smola and Schölkopf, 2004).

The kernel functions such as linear, sigmoid, polynomial, and
radial bias kernel are available. For this study, radial bias kernel
(RBF) function is used to obtain the optimal results. The mathe-
matical formulation of RBF is given as

Kðx; x0Þ ¼ exp
�
� kx� x0k2

2s

�
(12)

where kx� x0k2 is the square of Euclidian distance between the
training and testing patterns, and s is the Pearson’s kernel width.

2.5. GPR

For comparing the results of ANN-HHO, the computationally
intelligent GPRmodel has also been developed and implemented. It
has been successfully applied in many scientific problems for pre-
diction purposes (Gao et al., 2019; Khan et al., 2021). GPR is a non-
parametric methodology based on Bayesian theory that utilises the
principle of information sharing across neighbouring data to fore-
cast the target variables. Mathematically, it can be expressed as

y ¼ f ðyÞwGPRðmðyÞ; kðy; yiÞÞ (13)

where mðyÞ and kðy; yiÞ are the GPR mean function and covariance
kernel function. The optimum results in this study are obtained by
utilising the Pearson’s VII universal kernel (PUK) function:

k
�
y; y
�

¼ 1
��

1þ
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y02

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1=6Þ � 1

.
s
�2r 	6

(14)

where 6 is the peak tailing factor. For more details regarding the
GPR model, and mathematical implications in the field of ML,
readers can refer to some excellent books (e.g. Rasmussen, 2004).

2.6. RVM

Based on sparse Bayesian inference, RVM is a supervised ML
technique that obtains closed-form solutions to regression prob-
lems. RVM is a specialised version of the sparse kernel model first
presented by Tipping (2001) and has a mathematical structure
comparable to that of support vector machine (SVM). In contrast to
SVM, RVM evades the parametrisation issue, which is usually
associated with SVM and often requires a cross-validation
approach. The mathematical form of RVM is similar to that of SVR
(Eq. (10) and (11)); however, the kernel function in RVM does not
require satisfying Mercer’s theorem (Tzikas et al., 2006). More de-
tails about the historical development of RVM can be found in the
literature (Tipping, 2001).

2.7. SMOR

Originally introduced by Platt (1998), SMOR is an extended
version of minimal sequential optimisation (SMO). During SMO, the
critical ridge is defined by the maximum amount of the error be-
tween the original and predicted values (maximum error devia-
tion). If the estimated error is greater than the maximum error
deviation (v), then it can adversely affect the performance of the
system; otherwise if it is less than v, then it can be neglected. A
large quadratic programming (QP) optimisation problem needs to
be solved when training the SVM. The SMO decomposes this large
QP problem into several smaller QP problems. Thereafter, small QP
problems can be solved using analytical techniques, thus mini-
mising time and memory consumption for the training dataset. For
this study, RBF kernel function and an improved learning algorithm
by Shevade et al. (2000) have been employed for implementing
SMOR.

2.8. LMSR

LMSR is a semi-parametric, non-linear quantile regression
method that yields better results than linear regression (LR). The
main difference between the LMSR and LR is that the former uses
the median of error as the measure of central tendency while the
latter employs the mean value of errors (Rousseeuw, 1984). Unlike
the LR, the LMSR is not sensitive to outliers. In a general LR problem,
the residuals can be defined as follows:

rk ¼ ok � cxk � c0 (15)

where rk is the residual, ok is the output, xk is the input value for the
kth variable, and c and c0 are the regression coefficients. This
technique aims at reducing the median of error as follows:

Minimise med
Pn
k¼1

r2k (16)

Table 1
Material and wall properties in Bathurst et al. (2000).

Item Attributes Values

Backfill soil Dry unit weight, gd (kN/
m3)

16.8

Relative density, Dr (%) 50
Median grain size, D50

(mm)
0.34

Effective grain size, D10

(mm)
0.17

Constant-volume friction
angle, 4cv (�)

34

Peak plane strain friction
angle, 4ps (�)

44

Triaxial friction angle, 4tr
(�)

40

Particle shape Rounded (uniform beach sand)
Soil classification (Unified
soil classification system,
USCS)

Poorly graded sand (SP)

GRS walls Height (m) 3.6
Width (m) 3.4
Modular facing units Concrete blocks

(0.3 m � 0.2 m � 0.15 m
(length � width � height)

Reinforcement
(Khosrojerdi
et al., 2020)

Type Geosynthetic (polypropylene
(PP) biaxial-geogrid)

Ultimate tensile strenght,
Tu (kN/m)

14 (Wall 1) and 7 (Wall 2)

Initial tangent stiffness, J
(kN/m)

115 (Wall 1) and 56.5 (Wall 2)
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2.9. Database development and preprocessing

In this study, 354 data points reported by Khosrojerdi et al.
(2020) have been collected to generate the primary dataset. The
data are generated through a finite difference modeling (FDM)
based parametric study performed by validating the full-scale tests
on GRS walls by Bathurst et al. (2000). Four walls (1, 2, 3, and 4)
were constructed by Bathurst et al. (2000) for their full-scale
testing. All the walls had the height of 3.6 m and the same con-
structing units (modular concrete blocks). The geometric configu-
ration of the first two walls (1 and 2) was identical, with the only
difference in strength and the tensile modulus of geosynthetic. For
the thirdwall, four reinforcement layers were placedwith a spacing
ratio of 0.9. The fourth wall was constructed without the hard face,
and geosynthetic layers were arranged in the wrapped form. The
soil properties, reinforcement characteristics, and GRS wall pa-
rameters used in the original study are summarised in Table 1.
Khosrojerdi et al. (2020) simulated the first two walls for con-
ducting the parametric study using the FDM based suite (FLAC3D).
For simulating the soil’s non-linear behaviour, the plastic hardening
model originally proposed by Schanz et al. (1999) was utilised in
their study. For predicting the maximum settlement(s) of GRS
abutments, the most critical attributes considered were: applied/
service load (q), angle of internal friction of soil (4), abutment
height (H), facing batter angle (b), the width of concrete footing (B),
reinforcement spacing (hv), length-ratio of reinforcement (Lr/H),

and initial tensile modulus of reinforcement (J). Figs. 5 and 6
represent the box and whisker plot and correlation matrix of the
complete dataset utilised to build the ANN-HHO model, respec-
tively. The detailed statistical properties of the dataset are sum-
marised in Table 2.

3. Model development and implementation

This section describes the development and implementation of
the AI models constructed in this study. For model development,
the first step is the data division into training and testing datasets.
Training dataset is used to train the models, and testing dataset is
used to validate them. For this study, 75% of the dataset has been
randomly earmarked for training and another 25% for testing. It is
worth noting that the testing dataset plays no part in the training
phase of the models.

3.1. ANN-HHO

The first step is the determination of ANN optimum architec-
ture, i.e. number of hidden layer(s), number of hidden nodes
(neurons), training algorithm and transfer function. Hornik et al.
(1989) showed that, given adequate weight connections, a single
hidden layer can approximate the functionwith sufficient accuracy.
Due to its fast convergence rate and excellent performance in
previous studies, LevenbergeMarquardt back propagation is used

Fig. 5. Box and Whisker plots of GRS abutment settlement database.
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as the training algorithm (Alsmadi et al., 2009). Based on the
gradient decent approach, this algorithm tries to diminish the
network’s error by moving down the gradient of the error curve.

The MATLAB environment has been utilised for developing the
ANN-HHO model to predict the settlement of GRS abutments. The
framework for predicting the settlement of GRS abutments is
already given in Fig. 4.

To avoid the scale issues, data should be normalised before
feeding it to the model network. Therefore, in this work, the whole
dataset has been normalised in [�1, 1] using min-max scaling
method as follows:

x0 ¼ 2
x� xmin

xmax � xmin
� 1 (17)

where x0 is the normalised value of the variables; and xmin and xmax
are the minimum and maximum values, respectively.

As stated earlier, the hit and trail procedure is used to establish
the optimum network structure. The architecture of an optimum
ANN is 8-4-1 with a single hidden layer having 8 input parameters,
4 hidden neurons, and one output. Also, the tangent-sigmoid
activation function as given in Eq. (18) is employed in the hidden
layer, and its range is from �1 to 1. It is worth noting that the
tangent-sigmoid function has been predominantly applied in many
previous ANN-related studies (Ghorbani et al., 2020; Raja and
Shukla, 2021a):

f ðxÞ ¼ tanhðxÞ ¼ 2
1þ e�2x � 1 (18)

Following the selection of the optimal ANN topology, HHO was
used to optimise the ANN’s weights and biases for determining the
settlement of GRS abutments. To train the neural network, the
optimisation approach of Shahin et al. (2001) was used to deter-
mine the optimal number of hidden layer nodes. This was accom-
plished by increasing the number of hidden layer nodes throughout

the model’s training phase until no additional improvement over
the testing dataset was obtained. It is noteworthy that this
improvement is characterised by the decrease in root mean square
error (RMSE) values. Once the optimal number of hidden nodes is
decided (i.e. 4 in this study), the corresponding weights and biases
of ANN are fed to the HHO model.

In HHO, again RMSE is exploited as a cost/fitness function for
any number of iterations. The search process was conducted in it-
erations (t ¼ 100e500) and Harris hawk population (nh ¼ 10e30).
As mutation-based strategy is used to further improve the perfor-
mance of HHO, the inertia weight (wm) was varied from 0.4 to 0.9
(Kardani et al., 2021). Finally, the optimal model with deterministic
factors are obtained after the hit and trail procedure run, and are
summarised in Table 3. Fig. 7 shows the convergence curves (iter-
ative performance) of ANN-HHO model in training and testing
datasets. The final structure of the optimum ANN-HHO model
network is illustrated in Fig. 8.

3.2. Other AI models

All other AI models such as SVR, GPR, RVM, SMOR and LMSR
were developed and implemented according to the procedure
described in Section 2. It is important to note that the same training
and testing datasets have been used for developing these models.
The hyperparameters of all the models are summarised in Table 4.

4. Results and discussion

4.1. Model performance and evaluation

Six statistical indices were computed to analyse and compare
the developed models’ accuracy. This includes: (i) the coefficient of
determination (R2), (ii) the RMSE, (iii) the scatter index (SCI), (iv)
the mean absolute error (MAE), (v) the mean arctangent absolute
percent error (MAAPE), and (vi) the Nash-Sutcliffe coefficient

Fig. 6. Correlation matrix of the input variables.
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(NSC). All of these statistical indices are widely used to determine
the accuracy of ML-based models (Gao et al., 2019; Raja and Shukla,
2021a). However, new research indicates that the predictive
strength of ML-based models should not be determined solely by
individual evaluators (Naser and Alavi, 2021). As a result, the multi-
criteria approach is also used to evaluate the model’s reliability and
trustworthiness (Gandomi et al., 2013; Golbraikh et al., 2003).
Table 5 summarises the mathematical formulations of all statistical
indices. The R2 and NSC values of unity and the RMSE, MAE, SCI, and
MAAPE values of zero indicate an ideal model. The study discusses
the multi-criteria method in greater detail later in the paper.

The performance of all the developed models is illustrated using
the ranking technique (RT). For this, each model is ranked

according to the strength of the utilised statistical indices indicated
in Table 5. A higher precision level (i.e. large R2 and NSC, and lower
RMSE, SCI, MAE, and MAAPE) gives the highest rank (according to
the number of indices used, i.e. 6) and vice versa. The results of the
statistical evaluators (R2, RMSE, SCI, MAE, MAAPE, and NSC) for
ANN-HHO, SVR, GPR, RVM, SMOR, and LMSR in the training and
testing datasets are summarised in Tables 6 and 7, respectively.
After examining both the datasets, it can be observed that the ANN-
HHO has achieved the highest score (i.e. 36 in both datasets, and
the total score ¼ 72). The second and third best performances are
shown by the GPR and SVR models, with scores of 30 and 24 for
both the training and testing datasets, thereby achieving a total
score of 60 and 48, respectively. The RVM, SMOR, and LMSRmodels
have shown poor predictive strength with scores of 14, 13, and 9 in
both datasets and the total scores of 28, 26, and 18, respectively.

Finally, the overall prognostic veracity of all the data-driven
paradigms is depicted in Fig. 9 via Taylor’s diagram (Taylor, 2001).
In terms of settlement prediction of GRS abutments, this figure
represents the accuracy of the developed models considering SD,
correlation coefficient (R), and centred RMSE in testing dataset. The
ideal model in a simulated field is indicated by the measured SD
(16.87 mm), R of unity, and centred RMSE of 0. Regarding the dia-
gram, it can be perceived that for the ANN-HHO model, SD, R, and
centred RMSE have values of 17.93 mm, 0.964, and 4.77 mm,
respectively. This revealed an excellent overall prediction (close to
the measured values) for the developed ANN-HHO model. For SVR,
GPR, RVM, SMOR, and LMSR, the values of SD, R, and RMSE were
(10.74 mm, 0.907, and 8.44 mm), (12.67 mm, 0.95, and 5.92 mm),
(15.91 mm, 0.847, and 9.09 mm), (9.31 mm, 0.821, and 10.62 mm),
and (8.33mm, 0.8, and 11.34mm), respectively. This showed that in
comparison to ANN-HHO, all these models are associated with
more bias in estimating the settlement of GRS abutments. Hence, at
this point, it can be concluded that the hybrid ANN-HHO can pre-
dict the GRS settlement values in an intelligent and reliable way.

4.2. Multi-criteria approach

All the above-mentioned indices are well-recognised for sta-
tistical analysis. However, the latest research has shown that the AI/
ML models should not solely be judged based on individual eval-
uators (Naser and Alavi, 2021). Despite the well-established cred-
ibility of these indices, they are still associated with certain biases
and, therefore, can undermine or give false hype to the predictive
ability of the models. Therefore, a multi-criteria approach is also
used to ascertain the accuracy of the models. For this, OBJ function
and external validation analysis were conducted (Golbraikh et al.,
2003; Gandomi et al., 2013). The OBJ function is given as follows:

OBJ ¼
�
Notr � Nots
Notr þ Nots

�
RMSEtr þMAEtr

R2tr þ 1

þ
�

2Nots
Notr þ Nots

�
RMSEts þMAEts

R2ts þ 1
(19)

where Notr and Nots are the total numbers of training and testing
datasets, respectively. The lower the value of OBJ function, the
higher the accuracy of the model, and vice versa. The OBJ values of
all the prescient models are depicted in Fig. 10. It displayed that the
ANN-HHO model has the lowest OBJ value (6.53), thus having the
highest accuracy, followed by GPR (8.32) and SVR (9.97).

An external validation criterion developed by Golbraikh et al.
(2003) is also used to determine the forecasting ability of the
models. This criteria evokes more penalties on the models through
more rigorous statistical analysis, thus ensuring their reliability and
trustworthiness rather than coincidental closeness between the

Table 2
Detail descriptive statistics of complete dataset.

Item q 4 J hv b H Lr/H B s

(kPa) (�) (kN/m) (m) (�) (m) e (m) (mm)
Average 188.98 48.12 1757.06 0.26 2.75 5.12 0.6 1.13 16.18
SE 7.23 0.16 25.63 0.01 0.12 0.07 0.01 0.02 0.9
Median 100 48 2000 0.2 2 5 0.5 1 10.25
Mode 400 48 2000 0.2 2 5 0.5 1 6.5
SD 135.98 2.94 482.28 0.14 2.3 1.33 0.2 0.45 16.87
Kurtosis �1.16 2.56 0.72 5.68 1.04 2.99 6.68 8.07 10.32
Skewness 0.64 0.1 �1.26 2.51 1.39 1.34 2.15 2.73 2.74
Range 350 15 2000 0.6 8 6 1.45 2.5 118.62
Minimum value 50 40 500 0.20 0 3 0.22 0.5 1.38
Maximum value 400 55 2500 0.8 8 9 1.67 3 120
Total points 354 354 354 354 354 354 354 354 354

Note: SE ¼ Standard error; SD ¼ Standard deviation.

Table 3
Parameters of ANN-HHO model.

Control parameters Magnitude

Number of iterations 100e500
Harris hawk popualtion size 10e30
Number of hidden layers 1
Number of hidden nodes 4
Inertia weight 0.85
Mutation probability 0.001
Mutants’ rate 0.05
Transfer function Tangent-sigmoid

Fig. 7. Iterative performance of ANN-HHO in training and testing datasets.
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actual and predicted values. This following criterion should be
satisfied. Between the observed and predicted values, or vice versa,
one of the slope regression lines (K or K 0) must pass through the
origin and be near to 1. For settlement prediction of GRS abutments,
it can be represented as follows:

K ¼
Pn

i¼1smi spi

s2mi

(20)

K 0 ¼
Pn

i¼1smi spi

s2pi

(21)

The K orK 0 must be between 0.85 and 1.15. Additionally, the
coefficient of determination passing through the origin should be
less than 0.1. Hence, performance indices (m0 and n0) should be less
than 0.1 and can be estimated as follows:

m0 ¼ R2 � R2o
R2

(22)

n0 ¼ R2 � R02o
R2

(23)

where R2o and R02o are the regression coefficients and can be esti-
mated as

R2o ¼ 1�
Xn
i¼1

s2mi
ð1� KÞ2

,Xn
i¼1



spi

� sm
�2 (24)

R02o ¼ 1�
Xn
i¼1

s2pi
ð1� K 0Þ2

,Xn
i¼1



spi

� sp
�2 (25)

Ideally, the values of R2o and R02o should be close to measured
coefficient of determination (R2), whereas R2 should be greater
than 0.6. Roy and Roy (2008) extended the external validation
criteria by introducing a fourth condition, that is, model stabilisa-
tion criteria (Rs). Mathematically, Rs is calculated as

Rs ¼ R2
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���R2 � R2o
���

r �
> 0:5 (26)

In this manner, a model is deemed acceptable if it satisfies all of
these criteria. Table 8 summarises the findings of the external
validation criteria. The results indicate that the ANN-HHO and GPR
models show good prediction ability for evaluating the settlement
of GRS abutments. This is supported by the fact that these two
models satisfy all four of the external validation approach’s un-
derlying requirements. However, the ANN-HHO model did better
than the other models when ranking criteria based on the perfor-
mance of standalone statistical indices, the OBJ function, and an
external validation method were combined.

Fig. 8. The optimum ANN-HHO structure (8-4-1).
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4.3. Uncertainty analysis

In this sub-section, all the developed models for settlement
prediction of GRS abutments are quantitatively assessed via un-
certainty analysis. For this, the complete dataset of 354 observa-
tions (training and testing) was used to assess the reliability of the
predictive models. It is irrefutable that the settlement predictions
made by the AI models (ANN-HHO, SVR, RVM, SMOR, and LMSR)
are associated with uncertainties (e.g. uncertainty in input vari-
ables, model parameters, numerical simulations, etc.). Therefore,

the uncertainty analysis can be used for the logical comparison of
predictive ability of all the models. For uncertainty analysis. The
following parameters needed to be calculated: (i) absolute error (ε);
(ii) average of errors (AOE, εÞ; (iii) SD; (iv) margin of error (MOE);
and (v) width of confidence interval band (WCIB). In this study, the
confidence interval of 95%was used, representing the error range in
which approximately 95% of the data are located. Themathematical
formulation of these parameters is given below:

εi ¼
��smi � spi

�� (27)

ε ¼
Xn
i¼1

ε (28)

Table 4
Hyperparameters of SVR, GPR, RVM, SMOR, and LMSR models.

Models Parameters

SVR Kernel ¼ RBF; Regularization parameter, C ¼ 20; error sensitivity,
z ¼ 0.03; support vectors ¼ 88

GPR Kernel ¼ PuK; u ¼ 1, s ¼ 1
RVM s ¼ 0:0002; Relevance vectors ¼ 16; variance, s2 ¼ 86:5
SMOR Kernel ¼ RBF; Gamma parameter (G) ¼ 0.01; complexity parameter,

c ¼ 1
LMSR Size of random samples for generating least square regression function,

S ¼ 4

Table 5
Statistical indices and their mathematical euqtaions.

Statistical indices Mathematical euqtaions

R2

R2 ¼ ðnPn
i¼1spi smi �

Pn
i¼1spi

Pn
i¼1smi Þ2

ðnPn
i¼1s2pi

�Pn
i¼1s2pi

ÞðnPn
i¼1s2mi

�Pn
i¼1s2mi

Þ
RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðsmi � spi

Þ2
r

SCI

SCI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðsmi � spi

Þ2
r

smi

MAE
MAE ¼ 1

n

Xn

i¼ 1

��spi
� smi

��
MAAPE

MAAPE ¼ 1
n

Xn

i¼1
arctan

����smi � spi

smi

����� 100%

NSC
NSC ¼ 1�

�Pn
i¼1ðsmi � spi

Þ2Pn
i¼1ðsmi � spi

Þ2
#

Note: spi
and smi are the predicted and measured settlements of the GRS abutment,

respectively; spi and smi are the mean of the predicted and measured settlements,
respectively; and n is the number of data points.

Table 6
Performance ranking of all the models in the training dataset.

Proposed models Network results for training dataset Ranking the predicted models Total score Rank

R2 RMSE (mm) SI MAE MAAPE (%) NSE R 2 RMSE (mm) SCI MAE MAAPE (%) NSE

ANN-HHO 0.94 4.348 0.277 1.857 13.875 0.926 6 6 6 6 6 6 36 1
SVR 0.87 6.687 0.449 2.484 16.587 0.825 4 4 4 4 4 4 24 3
GPR 0.929 5.118 0.326 2.327 16.39 0.897 5 5 5 5 5 5 30 2
RVM 0.722 9.069 0.69 6.409 47.404 0.677 3 3 3 1 1 3 14 4
SMOR 0.687 10.046 0.735 3.992 20.291 0.604 2 2 2 3 2 2 13 5
LMSR 0.65 11.005 0.869 4.353 19.191 0.525 1 1 1 2 3 1 9 6

Table 7
Performance ranking of all the models in the testing dataset.

Proposed models Network results for testing dataset Ranking the predicted models Total score Rank

R2 RMSE (mm) SI MAE MAAPE (%) NSE R2 RMSE (mm) SCI MAE MAAPE (%) NSE

ANN-HHO 0.93 5.886 0.352 2.989 17.118 0.906 6 6 6 6 6 6 36 1
SVR 0.856 9.653 0.628 4.388 26.986 0.747 4 4 4 4 4 4 24 3
GPR 0.914 7.837 0.479 3.927 26.909 0.833 5 5 5 5 5 5 30 2
RVM 0.714 10.767 0.774 7.039 49.148 0.685 3 3 3 1 1 3 14 4
SMOR 0.657 13.076 0.922 5.381 28.289 0.536 2 2 2 3 2 2 13 5
LMSR 0.627 13.975 1.047 5.64 26.499 0.47 1 1 1 2 3 1 9 6

Fig. 9. Visualisation of predictive accuracy of all the models via Taylor’s diagram.
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SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

 
ðεi � εÞ2
n� 1

!vuut (29)

MOE95% ¼ 1:96

ffiffiffiffiffiffiffiffi
SD2

n

s
(30)

WCIB ¼ UB� LB ¼ ðεþMOEÞ � ðε�MOEÞ (31)

where n is the length of the data, i.e. number of points; and UB and
LB represent the upper and lower bounds of the confidence inter-
val, respectively. The performances of all the models are illustrated
in the form of bar plots (see Fig. 11). It is noteworthy that the lower
value of WCIB provides more accurate predictions of the model. In
other words, a model showing a lower value of WCIB is associated
with less bias, and predictions made by it will be much more reli-
able than those showing a higher value. The ANN-HHO model has
shown lower values of WCIB (1.67) and MOE (0.83) in comparison
to its counterparts and is the most accurate model. Also, the values
of AOE (2.23) and SD (4.01) for the ANN-HHO model represent
higher trustworthiness in comparison to other models developed
in this study.

4.4. Performance assessment of the models via probability
distribution

The ability of the developed ANN-HHO model to emulate the
probability distribution of the measured GRS settlement data was
visually assessed via violin plots. The plots of observed versus AI

model-simulated settlement are illustrated in Fig. 12. The similarity
between the models is represented by the distribution of the pre-
dicted (simulated) and observed GRS abutment settlement data.
From Fig. 12, it can be observed that the simulated settlement data
of ANN-HHO model are close to the observed settlement data. The
next best similarity can be observed for the GPRmodel. The highest
distortion in the violin was observed for the LMSR model followed
by the SMOR model. Consistency in the results shows a clear pre-
eminence of the ANN-HHO model in simulating GRS abutment
settlement.

4.5. Model robustness and SA

In the development of ML-based applications for prediction
purposes, SA and feature importance analysis are imperative to
estimate the strength of input variables on the output of the model
(Wang et al., 2020a; Zhang et al., 2021b). A good and dependable
model is one that fits the calibration data well and also predicts the
studied system’s underlying physical behaviour rationally (Shahin
et al., 2009; Raja and Shukla, 2021a). The SA was performed in
this section to determine the ANN-HHOmodel’s robustness, and to
assess the strength of the input parameters (q, 4, J, b, hv, H, Lr/H, and
B) on the settlement of GRS abutments.

Shahin et al. (2009) proposed the SA technique to determine the
derived model’s generalisability. For this, one input parameter is
increased from the lowest to the greatest value (within the training
data range), while the remaining parameters are held constant at
their mean values, and the associated output is assessed. This is also
referred to as a one-at-a-time (OAT) SA. Twenty equal incremental
steps were chosen for this study in order to examine the effect of
each parameter on the settlement of GRS abutments. At each stage,
the following normalised value of the Sensitivity index (SI) is
calculated (Hamby, 1995):

SI ¼ spðiþ1ÞðvÞ � spðiÞðvÞ
spðiÞðvÞ

xðiÞðvÞ
xðiþ1ÞðvÞ � xðiÞðvÞ

(32)

where spðtÞ and spðiþ1Þ are the predicted GRS abutment settlements
at steps i and i þ1, respectively; and xðiÞ and xðiþ1Þ are the values of
variable at steps i and i þ1, respectively.

Fig. 13 illustrates the findings of the SA. The positive number in-
dicates that the GRS settlement increases when the associated pa-
rameters increase, while the negative value indicates that the GRS
settlement decreases as the corresponding parameters increase. The
increases in the applied load, reinforcementvertical spacing,heightof
the abutment, and width of footing resulted in the increase in the
settlement value. On the contrary, increases in the friction angle,
tensile stiffness, facingbatter angle, and length-ratioof reinforcement
caused the decrease in the settlement of GRS abutments. Similar re-
sults were found in the earlier studies (Wu, 2006; Wu et al., 2006;
Khosrojerdi et al., 2020). Therefore, it can be established that the

Fig. 10. OBJ function values of all the AI models.

Table 8
Results of external model evaluation criteria.

Parameters for evaluating the strength with respect to external model validation criteria External validation criteria in Golbraikh et al.
(2003)

Stabilisation
criteria in Roy
and Roy (2008)

ML models R2 K K 0 R2o R2o
0

m0 n0 Condition 1 Condition 2 Condition 3 Rs Rs >0.5
ANN-HHO 0.93 0.936 1.018 0.993 0.999 �0.141 �0.155 U U U 0.56 U

SVR 0.856 1.288 0.714 0.784 0.853 0.161 0.006 U x x 0.48 x
GPR 0.914 1.19 0.782 0.906 0.915 0.017 �0.002 U U U 0.74 U

RVM 0.714 1.078 0.769 0.99 0.904 �0.921 �0.604 U U U 0.16 x
SMOR 0.657 1.337 0.592 0.638 0.701 0.058 �0.14 U x U 0.36 x
LMSR 0.627 1.425 0.543 0.383 0.625 0.628 0.008 U x x 0.20 x
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developed ANN-HHO model has good generalisation ability, and
predicts the settlementofGRSabutments inaway that coincideswith
the underlying general physical behaviour of the investigated system.

4.6. Evaluation of ANN-HHO through independent case studies

To assess the proposed ANN-HHO model’s accuracy in predict-
ing the settlement of GRS abutments, three large-scale experiments
described in the scientific literature were chosen to compare
measured and anticipated settlement values. The parameters used
in the studies of Helwany et al. (2007), Wu et al. (2008), and Hatami
and Doger (2021) are summarised in Table 9. The measured set-
tlements of GRS abutments obtained in these studies have been
compared with the predicted values by ANN-HHO, and are pre-
sented in Fig. 14a�d. The results were also compared with the
Adams et al. (2011)’s empirical method. From the results, it can be
concurred that the developed ANN-HHO model predicted the set-
tlement with fair accuracy, and has outperformed the traditional
empirical method. This can be confirmed with the estimated values
of MAE. In the studies of Helwany et al. (2007), Hatami and Doger

(2021), and Wu et al. (2008), the obtained MAE values are 17.4
(dataset 1) and 15.3 (dataset 2), 5.3, and 13.12, respectively, for the
ANN-HHO model; wheareas for the same datasets, the values are
34.9 (dataset 1) and 66.9 (dataset 2), 7.6, and 37.32, respectively,
obtained by the method of Adams et al. (2011). It should be noted
that this comparison is based on relatively small datasets, thus the
results cannot be generalized as superiority of one model over
another.

To this point, the accuracy, reliability, and robustness of the
ANN-HHO model have been assessed via rigorous statistical anal-
ysis, ranking criteria, multi-criteria approach, uncertainty analysis
and SA, and independent validation from field-scale studies.
However, in order to convert the developed ANN-HHO model from
“black-box” to “glass-box”, it is imperative to convert the model
into a mathematical formulation. Such a mathematical formulation
will help the practitioners estimate the settlement of the GRS
abutments with ease. Moreover, it will allow the researchers to
track, build, improve, or criticise the developedmodel. Therefore, in
the next section, the model is converted into a simple trackable
formula.

Fig. 11. Result (bar chart) of uncertainty analysis.

Fig. 12. Visualisation of relative performance of various AI-models in replicating the distribution of observed GRS abutment settlement data via violin plots.

Fig. 13. SA for evaluating the robustness and generalisation ability of the ANN-HHO
model.
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5. Mathematical formula for GRS abutment settlement
estimation

In this section, the developed ANN-HHO model has been con-
verted into traceable functional relationship. The mathematical
formulation for ANN-based model is given as follows (Shahin et al.,
2001; Khan et al., 2021):

Y ¼ FHO

 
bo þ

XH
k¼1

WkoFih

 
bhkþ

Xm
i¼1

WikXi

!!
(33)

where FHO is the transfer function between the hidden and output
layers, bo is the bias/threshold of output layer node, Wko is the
weighted connection between kth node of a single hidden layer and
output node,Wik is the weighted connection between ith input and
kth node of hidden layer, Fih is the transfer function between the
input and hidden layers, bhj is the bias/threshold value for node k of
hidden layer (k ¼ 1, h), Xi is the ith input node (variable), and Y
represent the output variable. The weights and biases of the
network are summarised in Table 10.

For computing the settlement of GRS abutment with 8 input
parameters (q, 4, J, hv, b, H, Lr/H, and B) via ANN-HHO, the rela-
tionship is given as follows:

s0p ¼
X4
k¼1

Wko tanh qk þ bo (34)

Table 9
Input parameters of GRS abutments for independent case studies.

Parameters Helwany et al.
(2007)

Hatami and Doger (2021) Wu et al. (2008)

Dataset 1 Dataset 2

q (kPa) 100e500 100e400 100e400 100e500
4 (�) 34.8 34.8 48 37
J (kN/m) 800 380 788 583
hv (m) 0.2 0.2 0.2 0.2
b (�) 0 0 0 0
H (m) 4.65 4.65 2.45 4.65
Lr/H 0.677 0.677 0.94 0.677
B (m) 0.9 0.9 0.2 0.9

Fig. 14. Comparison of settlement values of GRS abutments predicted via ANN-HHO with the measured settlement values, and empirical methods given by: (a) Helwany et al.
(2007) (dataset 1); (b) Helwany et al. (2007) (dataset 2); (c) Hatami and Doger (2021); and (d) Wu et al. (2008).
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where s0p is the normalised value of predicted GRS abutment set-
tlement, and qk is given as follows:

qk ¼ W1kq
0 þW2k4

0 þW3kJ
0 þW4kh

0
v þW5kb

0þ

W6kH
0 þW7kðLr =HÞ’þW8kB

0 þ bh (35)

It may be noted that q0, 40 J0, h0v, b
0, H0, ðLr=HÞ’; and B’ denote the

normalised values of the attributes. The final predicted settlement
value should be de-normalised using the following equation:

sp ¼
�
s0p þ1

�
ðsmax � sminÞ

.
2þ smin (36)

where smax and smin represent the maximum and minimum values
of settlement for GRS abutments. A design example is presented in
the Appendix section.

6. Advantages, limitations and future outlook

The proposed hybridisation of the ANN and HHO shows many
advantages, such as curtailment of local minima issue, cost saving
associated with experimental and FDM based modeling, and high
predictive veracity. The concept of integration of mutation strategy
with HHO is simple and easy to implement. Although the devel-
oped model can predict the settlement of GRS abutments in an
intelligent way, yet care should be taken when applying it to the
data beyond the training range of ANN. However, the model can
easily be upgraded as new data are generated andmade available. It
is also noteworthy that the above expression is calibrated only for
GRS abutments where the geosynthetic layers are laid in planar
form. Thewrapped form of geosynthetic layers is not considered for
this work. In the future, a deep learning approach could be utilised
for a more comprehensive comparison of the ML algorithms. The
ensemble learning technique, which combines the output of
several robust AI-based methods, might also be a useful approach
in the future.

7. Conclusions

The settlement estimation of GRS abutments under service
loading conditions is a difficult task for practicing geotechnical/civil
engineers. In this study, a novel intelligent paradigm (ANN-HHO)
has been developed and implemented for predicting the maximum
settlement of GRS abutments in an intelligent way. The results of
the developed ANN-HHO model have been compared with 5 ML-
based robust methods, i.e. SVR, GPR, RVM, SMOR, and LMSR. The
historical database generated through FDM-based analysis of vali-
dated large-scale tests in the literature was used to calibrate and
validate the ML models. The following conclusions can be drawn
from this research:

(1) Among all the developed models, i.e. ANN-HHO, SVR, GPR,
RVM, SMOR, and LMSR, the ANN-HHO model has shown

superior predictive ability in estimating the settlement of
GRS abutments.

(2) For combined predictive performance (training and testing),
the ANN-HHO has gained the highest ranking (total
score ¼ 72) with an OBJ value of 6.52, and has met all the
conditions related to the multi-criteria approach.

(3) The results of uncertainty analysis and SA have shown that
the developed ANN-HHO is robust and can generalise over
the given data range.

(4) The probability distribution via violin plots and results from
Taylor’s diagram show that the predictions made by the
ANN-HHO are associated with less bias in comparison to its
counterparts.

(5) The predicted strength of the ANN-HHOmodel has also been
corroborated by several large-scale experimental studies
reported in the literature. The results revealed that the ANN-
HHO predicted GRS abutment settlement values are close to
the measured values.

More importantly, the model has been converted into a simple
mathematical relationship and can easily be implemented by
practitioners for the preliminary design of GRS abutments.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Higher Education Commission
(HEC) for supporting this research. In addition, we extend our
appreciation to the anonymous reviewers for their valuable rec-
ommendations and insights.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jrmge.2022.04.012.

References

Abu-Hejleh, N., Wang, T., Zornberg, J.G., 2000. Performance of geosynthetic-
reinforced walls supporting bridge and approaching roadway structures. Proc.
Sess. Geo-Denver 2000 - Adv. Transp. Geoenvironmental Syst. Using Geosynth.
GSP 103 291, 218e243.

Adams, M., Nicks, J., Stabile, T., Wu, J., Schlatter, W., Hartmann, J., 2011. Geosynthetic
reinforced soil integrated bridge system interim implementation guide. In: Rep.
No. FHWA-HRT-11-026. Federal Highway Administration, Washington, USA.

Adams, M.T., Lillis, C.P., Wu, J.T.H., Ketchart, K., 2002. Vegas mini pier experiment
and postulate of zero volume change. In: Seventh International Conference on
Geosynthetics. Nice, France., pp. 389e394

Aggarwal, C.C., 2018. Neural Networks and Deep Learning, Machine Learning.
Springer International Publishing, Switzerland.

Table 10
Weights and biases of ANN-HHO model.

Weight connections between the input and hidden layers, Wik Hidden layer bias, bh

1 2 3 4 5 6 7 8
0.3193 �0.4917 0.2125 0.3878 �0.0413 0.4498 �0.3101 0.8091 0.63
0.5332 �0.2948 �0.7318 0.6164 �0.2106 0.4853 0.3086 �0.2326 �1.4963
�0.5941 1.0762 �0.5543 �0.1754 0.3854 0.3364 2.0796 �1.2674 3.8159
0.3103 0.3794 �0.1724 �0.2353 0.0308 �0.2529 0.2614 �0.4574 1.8177

Weight connections between the hidden and ouput layers, Wko Output layer bias, bo
0.237 1.9936 �3.1693 3.2111 e e e e 1.2168

M.N. Amjad Raja et al. / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 773e788786

http://refhub.elsevier.com/S1674-7755(22)00109-3/sref1
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref1
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref1
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref1
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref1
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref2
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref2
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref2
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref3
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref3
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref3
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref3
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref4
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref4


Ahmadi, H., Bezuijen, A., 2018. Full-scale mechanically stabilized earth (MSE) walls
under strip footing load. Geotext. Geomembranes 46, 297e311.

Alsmadi, M., Omar, K., Noah, S.A.M., 2009. Back propagation algorithm : the best
algorithm among the multi-layer perceptron algorithm. Int. J. Comput. Sci.
Netw. Secur. 9, 378e383.

Atangana Njock, P.G., Shen, S.L., Zhou, A.N., Modoni, G., 2021. Artificial neural
network optimized by differential evolution for predicting diameters of jet
grouted columns. J. Rock Mech. Geotech. Eng. 13, 1500e1512.

Bardhan, A., GuhaRay, A., Gupta, S., Pradhan, B., Gokceoglu, C., 2022. A novel inte-
grated approach of ELM and modified equilibrium optimizer for predicting soil
compression index of subgrade layer of Dedicated Freight Corridor. Transp.
Geotech. 32, 100678.

Bardhan, A., Samui, P., Ghosh, K., Gandomi, A.H., Bhattacharyya, S., 2021. ELM-based
adaptive neuro swarm intelligence techniques for predicting the California
bearing ratio of soils in soaked conditions. Appl. Soft Comput. 110, 107595.

Bathurst, R.J., Walters, D., Vlachopoulos, N., Burgess, P., Allen, T.M., 2000. Full scale
testing of geosynthetic reinforced walls. Proc. Sess. Geo-Denver 2000 - Adv.
Transp. Geoenvironmental Syst. Using Geosynth. GSP 103 291, 201e217.

Bueno, B.S., Benjamim, C.V.S., Zornberg, J.G., 2005. Field performance of a full-scale
retaining wall reinforced with nonwoven geotextiles. In: Slopes and Retaining
Structures under Seismic and Static Conditions. American Society of Civil En-
gineers, Reston, VA, pp. 1e9.

Christopher, B.R., Gill, S.A., Giroud, J.P., Mitchell, J., Schlosser, F., Dunncliff, J., 1990.
Reinforced Soil Structures Design and Construction Guidelines Vol. 1: Design
and Construction guidelines.” Rep. No. FHWA-RD 89-043. Federal Highway
Administration, Washington, USA.

Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V., 1997. Support vector
regression machines. Adv. Neural Inf. Process. Syst. 9, 155e161.

Gandomi, A.H., Yun, G.J., Alavi, A.H., 2013. An evolutionary approach for modeling of
shear strength of RC deep beams. Mater. Struct. Constr. 46, 2109e2119.

Gao, W., Alsarraf, J., Moayedi, H., Shahsavar, A., Nguyen, H., 2019. Comprehensive
preference learning and feature validity for designing energy-efficient resi-
dential buildings using machine learning paradigms. Appl. Soft Comput. J. 84,
105748.

Ghorbani, B., Arulrajah, A., Narsilio, G., Horpibulsuk, S., Bo, M.W., 2020. Develop-
ment of genetic-based models for predicting the resilient modulus of cohesive
pavement subgrade soils. Soils Found. 60, 398e412.

Giroud, J.P., 1989. Geotextile engineering workshop-design examples. Rep. No.
FHWA-. HI-89 2.

Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. De, Lee, K.H., Tropsha, A., 2003. Rational
selection of training and test sets for the development of validated QSAR
models. J. Comput. Aided Mol. Des. 17, 241e253.

Hamby, D.M., 1995. A comparison of sensitivity analysis techniques. Health Phys. 68
(2), 195e204.

Harikumar, M., Sankar, N., Chandrakaran, S., 2016. Behaviour of model footing
resting on sand bed reinforced with multi-directional reinforcing elements.
Geotext. Geomembranes 44, 568e578.

Hatami, K., Bathurst, R.J., 2006. Numerical model for reinforced soil segmental walls
under surcharge loading. J. Geotech. Geoenviron. Eng. 132, 673e684.

Hatami, K., Doger, R., 2021. Load-bearing performance of model GRS bridge abut-
ments with different facing and reinforcement spacing configurations. Geotext.
Geomembranes 49, 1139e1148.

Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H., 2019. Harris
hawks optimization: algorithm and applications. Future Generat. Comput. Syst.
97, 849e872.

Helwany, M.B., 1993. Long-term Soil-Geosynthetic Interaction in Geosynthetic-
Reinforced Soil Structures. PhD Thesis. University of Colorado, Boulder USA.

Helwany, S.M.B., Wu, J.T.H., Kitsabunnarat, A., 2007. Simulating the behavior of GRS
bridge abutments. J. Geotech. Geoenviron. Eng. 133, 1229e1240.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are
universal approximators. Neural Network. 2, 359e366.

Jewell, R.A., Milligan, G.W.E., 1989. Deformation calculations for reinforced soil
walls. In: Proceedings of the 12 International Conference on Soil Mechanics and
Foundation Engineering. Taylor & Francis, Abingdon, U.K., pp. 1259e1262

Jiao, S., Chong, G., Huang, C., Hu, H., Wang, M., Heidari, A.A., Chen, H., Zhao, X., 2020.
Orthogonally adapted Harris hawks optimization for parameter estimation of
photovoltaic models. Energy 203, 117804.

Kaloop, M.R., Bardhan, A., Kardani, N., Samui, P., Hu, J.W., Ramzy, A., 2021. Novel
application of adaptive swarm intelligence techniques coupled with adaptive
network-based fuzzy inference system in predicting photovoltaic power.
Renew. Sustain. Energy Rev. 148, 111315.

Kardani, N., Bardhan, A., Gupta, S., Samui, P., Nazem, M., Zhang, Y., Zhou, A., 2021.
Predicting permeability of tight carbonates using a hybrid machine learning
approach of modified equilibrium optimizer and extreme learning machine.
Acta Geotech 17, 1239e1255.

Khan, M.U.A., Shukla, S.K., Raja, M.N.A., 2022. Load-settlement response of a footing
over buried conduit in a sloping terrain: a numerical experiment-based artifi-
cial intelligent approach. Soft Comput. https://doi.org/10.1007/s00500-021-
06628-x.

Khan, M.U.A., Shukla, S.K., Raja, M.N.A., 2021. Soileconduit interaction: an artificial
intelligence application for reinforced concrete and corrugated steel conduits.
Neural Comput. Appl. 33, 14861e14885.

Khosrojerdi, M., Xiao, M., Qiu, T., Nicks, J., 2020. Prediction equations for estimating
maximum lateral displacement and settlement of geosynthetic reinforced soil
abutments. Comput. Geotech. 125, 103622.

Khosrojerdi, M., Xiao, M., Qiu, T., Nicks, J., 2017. Evaluation of prediction methods for
lateral deformation of GRS walls and abutments. J. Geotech. Geoenviron. Eng.
143, 06016022.

Naser, M.Z., Alavi, A.H., 2021. Error metrics and performance fitness indicators for
artificial intelligence and machine learning in engineering and sciences. Archit.
Struct. Constr. 25. https://doi.org/10.1007/s44150-021-00015-8.

Phillips, E.K., Shillaber, C.M., Mitchell, J.K., Dove, J.E., Filz, G.M., 2016. Sustainability
comparison of a geosynthetic-reinforced soil abutment and a traditionally-
founded abutment: a case history. In: Geotechnical and Structural Engineer-
ing Congress 2016 - Proceedings of the Joint Geotechnical and Structural En-
gineering Congress, pp. 699e711, 2016.

Platt, J., 1998. Sequential minimal optimization: a fast algorithm for training sup-
port vector machines. In: Advances in Kernel Methods-Support Vector
Learning. MIT Press, Microsoft. Technical Report MSR-TR-98-14, Cambridge,
MA.

Raja, M.N.A., Shukla, S.K., 2021a. Predicting the settlement of geosynthetic-
reinforced soil foundations using evolutionary artificial intelligence technique.
Geotext. Geomembranes 49, 1280e1293.

Raja, M.N.A., Shukla, S.K., 2021b. Multivariate adaptive regression splines model for
reinforced soil foundations. Geosynth. Int. 28, 368e390.

Raja, M.N.A., Shukla, S.K., 2020. An extreme learning machine model for
geosynthetic-reinforced sandy soil foundations. Proc. Inst. Civ. Eng. Geotech.
Eng. 1e42.

Raja, M.N.A., Shukla, S.K., Khan, M.U.A., 2021. An intelligent approach for predicting
the strength of geosynthetic-reinforced subgrade soil. Int. J. Pavement Eng.
https://doi.org/10.1080/10298436.2021.1904237.

Rasmussen, C.E., 2004. Gaussian processes in machine learning. In: Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Springer, pp. 63e71.

Rousseeuw, P.J., 1984. Least median of squares regression. J. Am. Stat. Assoc. 79,
871e880.

Roy, P.P., Roy, K., 2008. On some aspects of variable selection for partial least squares
regression models. QSAR Comb. Sci. 27, 302e313.

Russell, S.J., Peter, N., 2010. Artificial Intelligence: A Modern Approach, third ed.
Artificial Intelligence, Prentice-Hall, Upper Saddle River, New Jersey, USA.

Schanz, T., Vermeer, P.A., Bonnier, P.G., 1999. The hardening soil model: formulation
and verification. Beyond 2000 Comput. Geotech. Ten Years PLAXIS Int. Proc. Int.
Symp. Amsterdam 281e296. March 1999.

Shahin, M.A., Jaksa, M.B., Maier, H.R., 2009. Recent advances and future challenges
for artificial neural systems in geotechnical engineering applications. Adv. Artif.
Neural Syst. 1e9, 2009.

Shahin, M.A., Jaksa, M.B., Maier, H.R., 2001. Artificial neural network applications in
geotechnical engineering. Aust. Geomech J. 36, 49e62.

Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K., 2000. Improvements to
the SMO algorithm for SVM regression. IEEE Trans. Neural Network. 11, 1188e
1193.

Smola, A.J., Schölkopf, B., 2004. A tutorial on support vector regression. Stat.
Comput. 14, 199e222.

Tang, L.B., Na, S.H., 2021. Comparison of machine learning methods for ground
settlement prediction with different tunneling datasets. J. Rock Mech. Geotech.
Eng. 13, 1274e1289.

Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single
diagram. J. Geophys. Res. Atmos. 106, 7183e7192.

Tien Bui, D., Hoang, N.D., Nhu, V.H., 2019. A swarm intelligence-based machine
learning approach for predicting soil shear strength for road construction: a
case study at Trung Luong National Expressway Project (Vietnam). Eng. Com-
put. 35, 955e965.

Tipping, M.E., 2001. Sparse bayesian learning and the relevance vector machine.
J. Mach. Learn. Res. 1, 211e244.

Tzikas, D.G., Wei, L.Y., Likasa, A., Yang, Y.Y., Galatsanos, P.K., 2006. A tutorial on
relevance vector machines for regression and classification with applications.
EURASIP News Lett 17, 4e23.

Vapnik, V.N., 1999. An overview of statistical learning theory. IEEE Trans. Neural
Network. 10, 988e999.

Venkateswarlu, H., Sharma, S., Hegde, A., 2021. Performance of genetic program-
ming and multivariate adaptive regression spline models to predict vibration
response of geocell reinforced soil bed: a comparative study. Int. J. Geosynth. Gr.
Eng. 7. https://doi.org/10.1007/s40891-021-00306-6.

Wang, L., Wu, C.Z., Gu, X., Liu, H.L., Mei, G.X., Zhang, W.G., 2020a. Probabilistic
stability analysis of earth dam slope under transient seepage using multivariate
adaptive regression splines. Bull. Eng. Geol. Environ. 79, 2763e2775.

Wang, L., Wu, C.Z., Tang, L.B., Zhang, W.G., Lacasse, S., Liu, H.L., Gao, L., 2020b.
Efficient reliability analysis of earth dam slope stability using extreme gradient
boosting method. Acta Geotech 15, 3135e3150.

Wu, J.T., 2006. Design and construction guidelines for geosynthetic-reinforced soil
bridge abutments with a flexible facing. Des. Constr. Guidel. Geosynth. Soil
Bridg. Abutments with a Flex. Facing. https://doi.org/10.17226/13936.

Wu, J.T.H., 1994. Design and construction of low cost the next generation in tech-
nology. In: Rep. No. CTI-UCD-1-94. Colorado Transportation Institute, Denver,
USA.

Wu, J.T.H., Ketchart, K., Adams, M.T., 2008. Two full-scale loading experiments of
geosynthetic-reinforced soil (GRS) abutment wall. Int. J. Geotech. Eng. 2, 305e
317.

Wu, J.T.H., Lee, K.Z.Z., Pham, T., 2006. Allowable bearing pressures of bridge sills on
GRS abutments with flexible facing. J. Geotech. Geoenviron. Eng. 132, 830e841.

M.N. Amjad Raja et al. / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 773e788 787

http://refhub.elsevier.com/S1674-7755(22)00109-3/sref5
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref5
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref5
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref6
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref6
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref6
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref6
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref7
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref7
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref7
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref7
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref8
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref8
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref8
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref8
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref9
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref9
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref9
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref10
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref10
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref10
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref10
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref11
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref11
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref11
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref11
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref11
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref12
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref12
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref12
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref12
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref13
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref13
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref13
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref14
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref14
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref14
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref15
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref15
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref15
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref15
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref16
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref16
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref16
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref16
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref17
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref17
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref18
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref18
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref18
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref18
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref19
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref19
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref19
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref20
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref20
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref20
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref20
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref21
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref21
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref21
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref22
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref22
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref22
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref22
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref23
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref23
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref23
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref23
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref24
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref24
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref25
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref25
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref25
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref26
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref26
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref26
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref27
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref27
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref27
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref27
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref28
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref28
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref28
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref29
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref29
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref29
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref29
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref30
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref30
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref30
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref30
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref30
https://doi.org/10.1007/s00500-021-06628-x
https://doi.org/10.1007/s00500-021-06628-x
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref32
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref32
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref32
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref32
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref32
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref33
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref33
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref33
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref34
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref34
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref34
https://doi.org/10.1007/s44150-021-00015-8
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref36
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref36
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref36
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref36
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref36
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref36
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref37
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref37
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref37
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref37
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref38
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref38
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref38
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref38
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref39
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref39
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref39
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref40
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref40
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref40
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref40
https://doi.org/10.1080/10298436.2021.1904237
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref42
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref42
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref42
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref42
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref43
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref43
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref43
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref44
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref44
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref44
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref45
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref45
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref46
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref46
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref46
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref46
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref47
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref47
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref47
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref47
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref48
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref48
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref48
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref49
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref49
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref49
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref50
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref50
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref50
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref51
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref51
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref51
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref51
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref52
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref52
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref52
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref53
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref53
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref53
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref53
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref53
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref54
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref54
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref54
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref55
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref55
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref55
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref55
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref56
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref56
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref56
https://doi.org/10.1007/s40891-021-00306-6
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref58
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref58
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref58
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref58
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref59
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref59
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref59
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref59
https://doi.org/10.17226/13936
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref61
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref61
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref61
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref62
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref62
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref62
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref63
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref63
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref63


Wu, J.T.H., Pham, T.Q., Adams, M.T., 2013. Composite Behavior of Geosynthetic
Reinforced Soil Mass. FHWA Rep. No. FHWA-HRT10-077, McLean, VA.

Wu, Z.J., Wei, R.L., Chu, Z.F., Liu, Q.S., 2021. Real-time rock mass condition prediction
with TBM tunneling big data using a novel rockemachine mutual feedback
perception method. J. Rock Mech. Geotech. Eng. 13, 1311e1325.

Xie, C.Y., Nguyen, H., Bui, X.N., Choi, Y., Zhou, J., Nguyen-Trang, T., 2021. Predicting
rock size distribution in mine blasting using various novel soft computing
models based on meta-heuristics and machine learning algorithms. Geosci.
Front. 12, 101108.

Yıldız, B.S., Yıldız, A.R., 2019. The Harris hawks optimization algorithm, salp swarm
algorithm, grasshopper optimization algorithm and dragonfly algorithm for
structural design optimization of vehicle components. Mater. Test. 61, 744e748.

Zhang, K., Lyu, H.M., Shen, S.L., Zhou, A., Yin, Z.Y., 2020. Evolutionary hybrid neural
network approach to predict shield tunneling-induced ground settlements.
Tunn. Undergr. Space Technol. 106, 103594.

Zhang, W.G., Goh, A.T.C., 2016. Multivariate adaptive regression splines and neural
network models for prediction of pile drivability. Geosci. Front. 7 (1), 45e52.

Zhang, W.G., Li, H.R., Han, L., Chen, L.L., Wang, L., 2022. Slope stability prediction
using ensemble learning techniques: a case study in Yunyang County,
Chongqing, China. J. Rock Mech. Geotech. Eng. https://doi.org/10.1016/
j.jrmge.2021.12.011.

Zhang, W.G., Li, H.R., Li, Y.Q., Liu, H.L., Chen, Y.M., Ding, X.M., 2021a. Application of
deep learning algorithms in geotechnical engineering: a short critical review.
Artif. Intell. Rev. 54, 5633e5673.

Zhang, W.G., Wu, C.Z., Zhong, H.Y., Li, Y.Q., Wang, L., 2021b. Prediction of undrained
shear strength using extreme gradient boosting and random forest based on
Bayesian optimization. Geosci. Front. 12 (1), 469e477.

Zhang, W.G., Goh, A.T.C., 2013. Multivariate adaptive regression splines for analysis
of geotechnical engineering systems. Comput. Geotech. 48, 82e95.

Zheng, Y.W., Fox, P.J., McCartney, J.S., 2018. Numerical simulation of deformation
and failure behavior of geosynthetic reinforced soil bridge abutments.
J. Geotech. Geoenviron. Eng. 144, 04018037.

Zornberg, J.G., Abu-Hejleh, N., Wang, T., 2001. Measuring the performance of geo-
synthetic reinforcement in a Colorado bridge structure. GFR Mag. 19 (2).

Dr. Muhammad Nouman Amjad Raja obtained his PhD
degree from Edith Cowan University (ECU), Australia in
2021 and his MSc degree from the Department of Civil,
Geo and Environmental Engineering, Technische Uni-
versität München (TUM), Germany in 2016. He is currently
serving as an Assistant Professor at the University of
Management and Technology, Pakistan. Moreover, he is
also a member of the Geotechnical and Geoenvironmental
Research Group, ECU, Australia. His current research focus
is the investigation of geosynthetic-reinforced soil bed us-
ing experimental, numerical, and intelligent modeling
techniques. He has already published several papers in
reputed geotechnical engineering journals. Besides
serving as a reviewer for various top-notch geotechnical

engineering journals, he has recently been selected as the youngest editorial board
member of the International Journal of Geosynthetics and Ground Engineering.

M.N. Amjad Raja et al. / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 773e788788

http://refhub.elsevier.com/S1674-7755(22)00109-3/sref64
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref64
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref65
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref65
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref65
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref65
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref65
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref66
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref66
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref66
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref66
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref67
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref67
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref67
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref67
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref67
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref67
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref67
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref67
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref68
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref68
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref68
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref69
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref69
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref69
https://doi.org/10.1016/j.jrmge.2021.12.011
https://doi.org/10.1016/j.jrmge.2021.12.011
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref71
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref71
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref71
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref71
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref72
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref72
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref72
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref72
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref73
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref73
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref73
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref74
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref74
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref74
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref75
http://refhub.elsevier.com/S1674-7755(22)00109-3/sref75

	Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling
	Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid i ...
	1. Introduction
	2. Methodological background
	2.1. ANN
	2.2. HHO
	2.3. Hybridising of ANN-HHO
	2.4. SVR
	2.5. GPR
	2.6. RVM
	2.7. SMOR
	2.8. LMSR
	2.9. Database development and preprocessing

	3. Model development and implementation
	3.1. ANN-HHO
	3.2. Other AI models

	4. Results and discussion
	4.1. Model performance and evaluation
	4.2. Multi-criteria approach
	4.3. Uncertainty analysis
	4.4. Performance assessment of the models via probability distribution
	4.5. Model robustness and SA
	4.6. Evaluation of ANN-HHO through independent case studies

	5. Mathematical formula for GRS abutment settlement estimation
	6. Advantages, limitations and future outlook
	7. Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


