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Background: Type 2 diabetes mellitus (T2DM) is a chronic, metabolic disorder in

which concomitant insulin resistance and b-cell impairment lead to

hyperglycemia, influenced by genetic and environmental factors. T2DM is

associated with long-term complications that have contributed to the burden

of morbidity and mortality worldwide. The objective of this manuscript is to

conduct an Exome-Wide Association Study (EWAS) on T2DM Emirati individuals

to improve our understanding on diabetes-related complications to improve

early diagnostic methods and treatment strategies.

Methods: This cross-sectional study recruited 310 Emirati participants that were

stratified according to their medically diagnosed diabetes-related complications:

diabetic retinopathy, diabetic neuropathy, diabetic nephropathy, and

cardiovascular complications. The Illumina’s Infinium Exome-24 array was

used and 39,840 SNPs remained for analysis after quality control.

Findings: The analysis revealed the associations of various genes with each

complication category: 1) diabetic retinopathy was associated to SHANK3 gene

in locus 22q13.33 (SNP rs9616915; p=5.18 x10-4), ZSCAN5A gene in locus 19q13.43

(SNP rs7252603; p=7.55 x10-4), andDCP1B gene in locus 12p13.33 (SNPs rs715146,

rs1044950, rs113147414, rs34730825; p=7.62 x10-4); 2) diabetic neuropathy was

associated to ADH4 gene in locus 4q23 (SNP rs4148883; p=1.23 x10-4), SLC11A1

gene in locus 2q35 (SNP rs17235409; p=1.85 x10-4), and MATN4 gene in locus

20q13.12 (SNP rs2072788; p=2.68 x10-4); 3) diabetic nephropathy was associated

to PPP1R3A gene in locus 7q31.1 (SNP rs1799999; p=1.91 x10-4), ZNF136 gene in

locus 19p13.2 (SNP rs140861589; p=2.80 x10-4), andHSPA12B gene in locus 20p13

(SNP rs6076550; p=2.86 x10-4); and 4) cardiovascular complications was

associated to PCNT gene in locus 21q22.3 (SNPs rs7279204, rs6518289,

rs2839227, rs2839223; p=2.18 x10-4,3.04 x10-4,4.51 x10-4,5.22 x10-4
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respectively), SEPT14 gene in locus 7p11.2 (SNP rs146350220; p=2.77 x10-4), and

WDR73 gene in locus 15q25.2 (SNP rs72750868; p=4.47 x10-4).

Interpretation: We have identified susceptibility loci associated with each

category of T2DM-related complications in the Emirati population. Given that

only 16% of the markers from the Illumina’s Infinium Exome chip passed quality

control assessment, this demonstrates that multiple variants were, either,

monomorphic in the Arab population or were not genotyped due to the use of

a Euro-centric EWAS array that limits the possibility of including targeted ethnic-

specific SNPs. Our results suggest the alarming possibility that lack of

representation in reference panels could inhibit discovery of functionally

important loci associated to T2DM complications. Further effort must be

conducted to improve the representation of diverse populations in genotyping

and sequencing studies.

KEYWORDS

T2DM, diabetes, EWAS, retinopathy, nephropathy, neuropathy, macrovascular
complications, microvascular complications

1 Introduction
Type 2 Diabetes Mellitus (T2DM) is a chronic, metabolic

condition, characterized by elevated blood glucose levels (1).

Although the pathogenesis of T2DM is complex, a number of

factors that increase the risk for the disease have been identified,

including modifiable risk factors (body mass index (BMI), physical

inactivity, diet) and nonmodifiable risk factors (age, ethnicity,

comorbid diseases, family history and genetic predisposition) (2).

The clinical presentation and disease progression of patients with

T2DM are heterogeneous, which may lead to a delay of diagnosis,

multiple pathophysiological abnormalities, and varying

susceptibility to complications. Complications from T2DM can be

classified as microvascular complications, such as retinopathy,

neuropathy and nephropathy, or macrovascular complications,

including cardiovascular, cerebrovascular, and peripheral vascular

disease (3). Although there is a strong inheritance of risk of

developing T2DM, less is known about the heritability and

genetic component of diabetes complications (4). Further studies

must be conducted to elucidate the genetic variants associated to

each diabetic complication to improve early diagnostic measures

and therapeutic strategies.

Genome wide association studies (GWAS) has played a major

role in identifying susceptibility loci associated with these various

categories of diabetes-driven complications. More than 300 genetic

loci have been associated with T2DM, which explain >19% of the

phenotypic variance in risk for T2DM risk (5). Early family and

twin studies have suggested a high concordance rate of the diabetic

complications, with heritability estimated at 18 to 60% (6–10).

GWAS studies have identified susceptible loci for diabetic

retinopathy (WDR72, NVL, and CCDC146) (11–13), diabetic

neuropathy (XIRP2, and APOL1) (13, 14), diabetic nephropathy

(GABRR1, and GYPA) (7, 13), and cardiovascular complications

(PDE4DIP, NAT8, F5, LPA, and RPS6KA2) (13, 15, 16). However, a

number of the single nucleotide polymorphisms (SNPs) that failed

to replicate in multiple populations demonstrate the strong

influence of population specificity on genetic variation

discrimination and contribution to the phenotype of interest.

Therefore, discovery and replication investigations in populations

of various ancestries are required to identify population-specific

traits (17–19). This variability is the leading cause of clinical

translation discrepancies due to the scarcity of genetic research

specifically to the Middle East region, with multiple countries

reporting a T2DM prevalence >20%, including Kuwait, Egypt and

the United Arab Emirates (UAE) (20–22).

With the rising prevalence of diabetes-related complications, there

is an urgency of conducting genetic studies to uncover new target

pathways, and enhance our ability to use precision medicine for

targeted therapeutic measures. By identifying new genotypes in an

underrepresented region, in this case the UAE, this will yield to the

discovery of novel genetic associations in diabetic-related

complications. In this study, we aim to conduct an Exome wide

association study (EWAS) to identify susceptibility loci associated

with diabetic complication development within the Emirati population.

2 Methods

2.1 Ethics approval

An ethical request was submitted to the Dubai Health authority

(DHA) whereby it was accepted under reference number DSREC-

07/2020_19 and conducted in accordance with the Declaration of

Helsinki. All participants provided written informed consent before

taking part in this research. All data was de-identified prior to use.
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2.2 Study group and phenotype definitions

This prospective, cross-sectional study recruited a total of 338

T2DM patients from the Dubai Diabetes Center (DDC), during the

period between October of 2020 and July of 2021. All the patients

were diagnosed in accordance to the American Diabetes

Association (ADA) diagnosis criteria of a HbA1c ≥ 6.5 and were

receiving treatment for their condition. To limit misclassification

and ascertainment bias, the patient recruitment process was

randomized for a more accurate representation of diabetes within

the region.

The blood samples were collected in a sterile 5ml sample tube

supplemented with ethylenediaminetetraacetic acid from the cubital

vein. Samples were transported in a sealed biohazard bag using a

cool transport container to Khalifa University, Center for

Biotechnology, in Abu Dhabi for genotypic and analysis. The

questionnaire included details on the demographic information,

clinical details including physical measurements and medical status,

medications prescribed, and biochemical parameters. In this

questionnaire, it was ensured that the following clinical data was

recorded: date of T2DM diagnosis, presence or absence of a

diabetes-related complications, type of complication, and HbA1c

measurements attained from the DHA’s Salama electronic medical

record system. The patients with the presence of complications were

stratified into four different phenotype-based categories:

retinopathy, neuropathy, nephropathy, and cardiovascular

complication. The group stratification was defined as follows:

1. Retinopathy complication: records of proliferative or non-

proliferative retinopathy, or laser since the diagnosis of

T2DM.

2. Neuropathy complication: records of foot ulcers, gangrene,

amputation of the toe/foot/leg, pain in calf muscle while

walking, shunting and angioplasty on artery in the leg since

the diagnosis of T2DM.

3. Nephropathy complication: records of protein or albumin

in the urine, albuminuria in the range of 30 – 299 mg/g,

estimated Glomerular Filtration Rate (eGFR) <30 since the

diagnosis of T2DM.

4. Cardiovascular complication: records of coronary artery

bypass grafting or a cerebrovascular accident since the

diagnosis of T2DM.

2.3 DNA extraction and genotyping

DNA extraction of 338 T2DM patients was conducted, as per the

manufacturer’s instructions using the Qiagen DNA extraction kit.

DNA samples were genotyped with the Infinium Exome BeadChip

(Illumina, USA) scanned with the iScan System microarray scanner

(Illumina, USA). This BeadChip has a total of 244,883 fixed markers.

The raw data was uploaded onto GenomeStudio 2.0 and converted

into PLINK format. Quality control (QC) was done to check for

discordant gender information, missing genotype data (<98%),

outlying heterozygosity rate (±3), and related individuals

(PI_HAT>0.5). This led to the removal of 28 individuals (1

individual had low genotype quality and 27 individuals were

related) for not passing the QC. The SNPs were filtered using the

following parameters: low minor allele frequency (<0.01), low

genotyping rate (<95%), and deviation from Hardy-Weinberg

Equilibrium (p<10-6). The number of variants excluded for each

filtering parameter was 202075 variants, 2946 variants, and 22

variants, respectively. A total of 310 individuals and 39,840 SNPs

passed QC and remained for analysis.

2.4 Statistical analysis

Association analyses corresponding to the following four

complication groups were conducted for descriptive statistics and

genetic association (EWAS): retinopathy complications,

neuropathy complications, nephropathy complications, and

cardiovascular complications. For each category, the cases were

those that were assigned to that category and the control group were

all the remaining individuals that did not experience that particular

complication. Statistical analysis of demographic characteristics and

anthropometric measurements was conducted. Pearson c2 was used
to measure the association of categorical variables. Independent

sample t-test, presented as mean and standard deviation, or

nonparametric Mann-Whitney U-test, presented as median and

inter-quartile region, were used to study continuous variables.

Statistical analysis was performed in R (version 3.4), SPSS

(version 46.0) and PLINK (version 1.9).

For the genetic case-control comparisons, logistic regression,

assuming additive allelic effects for genotypes SNPs, were

conducted, while adjusting for age, sex, and BMI. Exome-wide

association markers surpassed a conservative Bonferroni-corrected

significance threshold of discovery p<1.2×10-6 (0.05/39,840),

whereas markers that identified associations that reached a

suggestive association threshold of p<5×10-4. A quantile-quantile

(Q-Q) plot analysis was conducted to check whether the

distribution of the inflation p-values deviated from the expected

distribution under the null hypothesis of no genetic association and

the impact of population stratification was evaluated by calculating

the genomic control inflation factor [lGC]. A Manhattan plot was

generated with -log10p-values. Q-Q plots and Manhattan plots

were generated using the Locuszoom tool. Regional plots were

generated by using LocusZoom.

3 Results

A cohort of 310 T2DM patients of which 153 were men and 157

were women aged 14 to 86 years. The cohort was stratified into cases

or controls according to four complication groups that are to be

tested: retinopathy complications (n=62), neuropathy complications

(n=47), nephropathy complications (n=22), and cardiovascular

complications (n=42). This classification was done according to

diagnosis by the diabetes specialist after the onset of T2DM.
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After assessing the anthropometric data of the study cohort

(Table 1), it was seen that T2DM patients with neuropathy

(p<0.001) and macrovascular (p<0.001) complications were

significantly older than the control group. This indicates that

T2DM-related complications are more likely to develop with age,

providing us with the confidence to adjust for age during the

analysis. The gender and mean BMI were not significantly

different between cases and control, across all complications. The

median glycated hemoglobin levels were significantly higher in the

retinopathy cases (p=0.002) compared to controls. The

complication groups retinopathy (p<0.001), neuropathy (p<0.001)

and cardiovascular complications (p<0.001) were characterized

with a longer diabetes duration as opposed to the nephropathy

groups (p=0.058).

After performing QC and filtering, 39,840 SNPs were used for

further testing in each category of T2DM complication. The total

genotyping rate was > 0.995 across all categories. A quantile-

quantile (Q-Q) plot analysis was carried out to check whether the

distribution of the inflation p-values deviated from the expected

distribution under the null hypothesis of no genetic association and

investigate if the overall significance of the genome-wide

associations is due to potential impact of population stratification.

Supplementary Figure 1 presents the Q-Q plot of each respective

complication, demonstrating that the genomic inflation factor was

negligible in all data sets where it was 1.0 for all the categories based

on the chi-squared statistics, after adjustment to age, BMI and

gender. Figure 1 demonstrates the Manhattan plot of each

complication, and the top 10 SNPs that contributed to the

biological relevance of the respective disease is listed in Table 2.

3.1 Retinopathy complications

Gene ACVR1C is highly expressed in adipose tissue, and has

been associated to extraocular retinoblastoma, hyperkeratosis,

T2DM, obesity and anthropometric measurements, such as waist-

to-hip ratio and body mass index (23–25). Interestingly, ACVRIC is

also associated to lipid profile and glycemic markers (26–30).

Similarly, gene ZFHX4 is associated to fasting blood glucose

measurement and metabolite levels (31, 32). The association with

pulse pressure and blood pressure have been associated to diabetic

retinopathy through arterial stiffness and vision impairment, which

has been identified in multiple genes, including the ZFHX4 gene

(26, 33, 34), the SHANK3 gene (35), and theWNT9B gene (34). The

SHANK3 gene, expressed in the brain, has also been associated to

fibrinogen levels and platelet count, which has been reported to be

risk factors in the development and progression of retinopathy

(36–40).

The ZSCAN5A gene is expressed in the brain is associated with

monocyte count, which may lead to the release of pro-inflammatory

factors that interfere with endothelial cell junction integrity of the

blood-retinal barrier, resulting in leucocyte infiltration in the retina

(26, 37, 40, 41). The DCP1B gene, expressed in the brain, is

associated with waist-to-hip ratio, BMI, and obesity-related traits,

TABLE 1 Demographic factors of the cohort.

Retinopathy Complication Neuropathy Complication Nephropathy Complication Cardiovascular Complication

Cases
(n=62)

Controls
(n=248)

p-
value

Cases
(n=47)

Controls
(n=263)

p-
value

Cases
(n=22)

Controls
(n=288)

p-
value

Cases
(n=42)

Controls
(n=268)

p-
value

Age
(years;
Mean ±
SD)

58.00
(11.32)

56.74
(11.61)

0.445
61.70
(10.03)

56.15
(11.61)

0.002
59.18
(9.67)

56.82
(11.67)

0.358
63.11
(9.69)

56.03 (11.53) <0.001

Gender
Male
Feale

34
(54.8%)

28
(45.2%)

119 (48.0%)
129 (52.0%)

0.334

22
(46.8%)

25
(53.2%)

131 (49.8%)
132 (50.2%)

0.705

12
(54.5%)

10
(45.5%)

141 (49.0%)
147 (51.0%)

0.613

22
(52.4%)

20
(47.6%)

131 (48.9%)
137 (51.1%)

0.673

BMI
(kg/m2;
Mean ±
SD)

31.22
(5.56)

30.92 (5.87) 0.715
31.53
(6.57)

30.87 (5.66) 0.478
30.79
(5.42)

30.99 (5.84) 0.878
29.86
(5.18)

31.15 (5.88) 0.183

HbA1c
(%;
Median,
IQR)

7.75
(2.55)

7.01 (1.40) 0.002
7.21
(1.85)

7.10 (1.50) 0.672
7.40
(1.63)

7.10 (1.55) 0.052
7.25
(1.94)

7.10 (1.55) 0.361

Diabetes
Duration,
(years;
Mean ±
SD)*

19.95
(9.48)

13.55 (7.85) <0.001
18.68
(10.17)

14.17 (8.10) <0.001
18.22
(9.74)

14.61 (8.46) 0.058
19.73
(10.06)

14.08 (8.08) <0.001

HBA1c, median glycated hemoglobin levels; IQR, Inter-quartile region; SD, standard deviation.
Pearson c2 was used to measure the association of categorical variables.
Independent sample t-test, presented as mean and standard deviation, or nonparametric Mann-Whitney U-test, presented as median and inter-quartile region, were used to study continuous
variables.
*For each category, there were 13 individuals with missing data from each respective control group.
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all risk factors of T2DM (42–44). This DCP1B gene is also

associated with Insulin-like growth factors (IGFs), in which

transgenic mice models that elucidated that overexpression of

IGF-1 in the retina resulted in variations of eye-related diseases

similar to that in diabetic humans, through retinal capillaries

basement membrane thickening, venule dilation, intra-retinal

microvascular abnormalities, and retinal and vitreous cavity

neovascularization (44, 45).

3.2 Neuropathy complications

The GFY gene is mainly expressed in brain tissue, and has been

associated to atherosclerosis through narrowing of the peripheral

arterial vasculature (46). ADH4 gene, expressed in the liver tissue, is

associated with eosinophil count, lipid measurements,

Apolipoprotein A1 levels (ApoA-I), fibrinogen levels and factor

VII levels (38, 39, 47–49). The association with fibrinogen is an

important association, as fibrinogen participates in the coagulation

process which may lead to an inflammatory process, inhibiting the

growth of nerve axons and is closely related to diabetic neuropathy

(50, 51). The LRFN2 gene is expressed in the brain, and has been

associated to BMI, T2DM, and obesity-related traits (26, 42, 52, 53).

Interestingly, gene PKHD1 has been associated to intraocular

pressure, brain measurement, T2DM, and metabolic markers, all

risk factors associated to neuropathy (53–57). SLC11A1 gene is

expressed in the bone marrow and lymphoid tissues, and has been

associated to iron metabolism (58). Using a murine model, Iron’s

effect on T2DM was elucidated demonstrating a positive association

to motor nerve conduction velocities via a reduction in pro-

inflammatory macrophages and an increase in anti-inflammatory

macrophages in nerve sections may induce neuropathy (59). The

MATN4 encodes a protein that is involved in filamentous networks

in the extracellular matrices, which is essential for axonal health and

growth and may lead to nerve fiber loss (60). The PPARA gene has

been associated to immune and inflammatory responses, as well as

lipid markers, glycolytic markers, T2DM and anthropometric

measurements, such as waist-to-hip ratio and body mass index,

all relevant risk factors for diabetic neuropathy (40, 61–64).

D

A

B

C

FIGURE 1

Manhattan plot for diabetes-related (A) retinopathy complications (n=62), (B) neuropathy complications (n=47), (C) nephropathy complications
(n=22), and (D) cardiovascular complications (n=42). The GWAS analyses results are shown on the y-axis as -log10(p-value) and on the x-axis is the
chromosomal location, adjusted for age, gender, and BMI. The blue horizontal line illustrates the suggestive genome-wide association threshold
(p<5×10-4).
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TABLE 2 Top 10 SNPs that were associated with each diabetes-related complication group in the Emirati population.

Chr Cytoband SNP Gene Risk Allele Adjusted OR (95% CI) Adjusted P-value

Retinopathy Complications

2 2q21.4 rs4664229 ACVR1C G 2.33 (1.48, 3.65) 2.22 x 10-4

8 8q21.13 rs61729527 ZFHX4 A 4.65 (2.01, 10.69) 3.04 x 10-4

17 17q21.32 rs4968281 WNT9B A 2.18 (1.42, 3.33) 3.15 x 10-4

22 22q13.33 rs9616915 SHANK3 G 0.46 (0.29, 0.71) 5.18 x 10-4

1 1p32.3 rs61738851 CYB5RL A 2.99 (1.61, 5.65) 5.46 x 10-4

1 1q41 rs10779261 USH2A G 2.09 (1.37, 3.19) 5.91 x 10-4

19 19q13.43 rs7252603 ZSCAN5A G 0.48 (0.31, 0.74) 7.55 x 10-4

12 12p13.33 rs715146 DCP1B A 3.06 (1.60, 5.86) 7.62 x 10-4

12 12p13.33 rs1044950 DCP1B A 3.06 (1.60, 5.86) 7.62 x 10-4

12 12p13.33 rs113147414 DCP1B A 3.06 (1.60, 5.86) 7.62 x 10-4

Neuropathy Complications

19 19q13.33 rs4802605 GFY A 3.94 (2.01, 7.76) 6.99 x 10-5

4 4q23 rs4148883 ADH4 A 2.52 (1.57, 4.01) 1.23 x 10-4

6 6p21.2 rs6173100 LRFN2 A 5.68 (2.32, 13.8) 1.39 x 10-4

21 21q22.2 rs11558767 GET1 A 3.17 (1.74, 5.77) 1.49 x 10-4

6 6p12.2 rs2499486 PKHD1 G 0.38 (0.23, 0.63) 1.52 x 10-4

2 2q35 rs17235409 SLC11A1 A 5.04 (2.16, 11.75) 1.85 x 10-4

20 20q13.12 rs2072788 MATN4 A 2.29(1.47, 3.58) 2.68 x 10-4

19 19q13.42 rs4644955 TMEM86B A 3.35 (1.71, 6.55) 4.07 x 10-4

22 22q13.31 rs4253772 PPARA A 3.64 (1.77, 7.47) 4.34 x 10-4

3 3Q21.2 rs78680419 HEG1 A 2.53 (1.50, 4.28) 4.92 x 10-4

Nephropathy Complications

2 2q31.2 rs72646845 TTN A 38.05 (6.45, 224.4) 5.84 x 10-5

3 3q22.1 rs61629992 COL6A6 A 5.26 (2.33, 11.92) 6.80 x 10-5

6 6p21.1 rs113848006 PI16 G 12.91 (3.58, 46.49) 9.10 x 10-5

1 1p36.13 rs41272737 CROCC A 9.51 (2.98, 30.28) 1.37 x 10-4

7 7q31.1 rs1799999 PPP1R3A A 3.52 (1.82, 6.82) 1.91 x 10-4

8 8q22.3 rs36027551 DPYS A 17.12 (3.81, 76.95) 2.12 x 10-4

19 19q13.41 rs143144671 ETFB A 5.72 (2.24, 14.58) 2.58 x 10-4

19 19p13.2 rs140861589 ZNF136 G 15.82 (3.57, 70.16) 2.80 x 10-4

20 20p13 rs6076550 HSPA12B A 14.20 (3.39, 59.52) 2.86 x 10-4

10 10p13 rs1541010 FRMD4A A 3.40 (1.75, 6.59) 2.97 x 10-4

Cardiovascular Complications

6 6q14.3 rs62406032 PKHD1 G 5.97 (2.48, 14.38) 6.52 x 10-5

19 19p13.13 rs1078264 MAST1 G 2.93 (1.69, 5.08) 1.28 x 10-4

19 19q13.33 rs480265 GFY A 3.98 (1.96, 8.11) 1.31 x 10-4

21 21q22.3 rs7279204 PCNT A 3.27 (1.74, 6.12) 2.18 x 10-4

7 7p11.2 rs146350220 SEPT1N4 G 11.00 (3.02, 40.06) 2.77 x 10-4

(Continued)
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3.3 Nephropathy complications

The TTN gene in the skeletal muscle and has been associated to

cardiac serum proteins and fractal structure of the heart, as well as

T2DM and nephron-related variables, such glomerular filtration

rate (65–67). While gene PI16, DPY6, FRMD4A and CROCC have

not been reported to be associated with nephropathy, they have

been identified in T2DM (53, 68) and obesity-related traits (69, 70).

PPP1R3A gene is associated with T2DM and plays a crucial role in

glycogen synthesis in the tubules of the kidney, leading to

diabetic nephropathy.

The ZNF136 gene is highly expressed in the kidneys, and

encodes a protein that contains a Krüppel-associated box (KRAB)

A-box domain, which has been associated to the development of

progressive chronic kidney disease (CKD). The Glis2, a Krüppel-

like zinc finger protein, mutant mice had increased cell death and

basement membrane thickening in the proximal convoluted

tubules, resulting in severe renal atrophy with lymphocytic

inflammatory cells infiltration and renal failure (71). The

HSPA12B gene is expressed in the kidney and urinary bladder

whose pathways are related to cellular senescence and cellular

response to heat stress. This gene has been associated with

gamma-glutamyl transferase (GGT) levels, a marker of oxidative

stress that is linked with diabetes and hypertension, both being risk

factors of CKD (72, 73).

3.4 Cardiovascular complications

The PKHD1 gene has been associated to T2DM (53), coronary

artery disease (49, 74), cardiac troponin T levels (75), and obesity-

related traits (44, 57, 76). While the MAST1 gene has not been

associated to cardiovascular complications, it has been reported to

be linked glycated hemoglobin levels (77). Importantly, gene GFY

has been associated to carotid plaque build, leading to

cardiovascular complications (46). The SEPT14 gene is expressed

in the brain, heart, bone marrow, and lymphoid tissues, encoding a

highly conserved septin family of cytoskeletal proteins that

represses the accumulation of reactive oxygen species, resulting in

cardiac microvascular endothelial cells apoptosis (78).

Multiple signals within the PCNT gene were identified. The

PCNT gene is highly expressed in heart, and is an integral

component of the microtubule-organizing proteins, which exert

compressive forces on cardiomyocytes that drive the development

of cardiac disorders and T2DM (53, 79). Interestingly, PCNT was

also associated with cataract, indicating how microvascular and

macrovascular complications tend to be strongly interrelated as

damages of small vessels can ultimately results in heart disease

manifestations in diabetes (80, 81). The RILPL2 is highly expressed

in lymphocytic cells and artery, and have been associated to obesity-

related traits (43, 70), including BMI and waist-to-hip ratio, as well

as peripheral arterial disease (82).

4 Discussion

For the first time, we present the top markers identified from an

exome-wide association study for T2DM-related complications

conducted in the Emirati population. By identifying the

susceptible loci associated to high-risk patients that develop

complications form T2DM, this may improve targeted

therapeutic interventions and early biomarker diagnosis through

a panel of genetic markers. Most of the genes identified have been

reported in other GWAS studies of different ethnicities, with a

biological relevance to the pathogenesis of each respective

complication group. These findings provide valuable insight into

the pathogenesis of T2DM driven complications and suggest novel

candidate genes for future functional studies.

As per the demographic characteristics, T2DM patients with

neuropathy and macrovascular complications were significantly

older, with a longer diabetes duration, than the control group.

The gender and mean BMI were not significantly different between

cases and control, across all complications. Interestingly, the

median glycated hemoglobin levels was significantly higher in the

retinopathy cases (p=0.002) compared to controls, which has been

reported in other studies, possibly due to the formation of

thrombus, a pathophysiological basis of early diabetic

retinopathy (83).

When investigating sub-phenotypes of T2DM, diabetic

retinopathy has been identified to be associated with ACVRIC

(rs4664229), ZFHX4 (rs61729527), WNT9B (rs4968281),

SHANK3 (rs9616915), ZSCAN5A (rs7252603), and DCP1B

(rs715146, rs1044950, rs113147414) gene. These genes have

intercrossing pathways and similar genetic variants to fibrinogen

levels associated to intra-vessel pressure, low platelet count,

leukocyte-retinal endothelial cell adhesion, metabolite levels and

glycemic markers, all important factors impacting intra-retinal

microvascular abnormalities, retinal capillaries and variations of

eye-related diseases (23–30, 37, 40–44). For diabetic neuropathy,

gene GFY (rs4802605), ADH4 (rs4148883), LRFN2 (rs61731010),

TABLE 2 Continued

Chr Cytoband SNP Gene Risk Allele Adjusted OR (95% CI) Adjusted P-value

21 21q22.3 rs6518289 PCNT A 3.18 (1.70, 5.94) 3.04 x 10-4

15 15q25.2 rs72750868 WDR73 G 5.49 (2.12, 14.21) 4.47 x 10-4

21 21q22.3 rs2839227 PCNT G 2.70 (1.55, 4.71) 4.51 x 10-4

12 12q24.31 rs28434767 RILPL2 A 2.51 (1.49, 4.21) 4.72 x 10-4

21 21q22.3 rs2839223 PCNT G 3.01 (1.62, 5.62) 5.22 x 10-4
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PKHD1 (rs2499486), SLC11A1 (rs17235409), MATN4 (rs2072788),

and PPARA (rs4253772) were associated or contributed to the

biological relevance to the pathogenesis of the complication.

Specifically, these markers have been associated to atherosclerosis,

immune and inflammatory responses, AST and ApoA-I levels, iron

toxicity, intraocular pressure, and compositional changes in

extracellular matrices, which is essential for axonal health and

growth, and may lead to nerve fiber loss in neuropathic

conditions (26, 40, 42, 52–57, 61–64).

The genes that contributed to the biological relevance of

diabetic nephropathy, include gene TTN (rs72646845), PI16

(rs113848006), DPY6 (rs36027551), CROCC (rs41272737),

PPP1R3A (rs1799999), ZNF136 (rs140861589), HSPA12B

(rs6076550), and FRMD4A (rs1541010). The markers identified to

the development of diabetic nephropathy have mainly been

expressed in the kidney and urine bladder, and have been

associated to nephron-related variables, such glomerular filtration

rate, glycogen synthesis in the tubules of the kidney and thickening

in the proximal convoluted tubules (65–67, 71–73). Cardiovascular

complications in T2DM is associated to PKHD1 (rs62406032),

MAST1 (rs1078264), GFY (rs480265), SEPT14 (rs146350220),

PCNT (rs6518289, rs2839227, rs2839223) and RILPL2

(rs28434767). Interestingly, these markers have been associated to

coronary artery disease, glycated hemoglobin levels, cardiac

troponin T levels, and obesity-related traits (44, 49, 57, 74–77).

The major limitation in this study is the sample size with an

inadequate statistical power to be able to detect rare variants in the

population pool. Moreover, the control group of the study included

patients with a short duration of illness which could have

contributed to a reduced power to the study. However, it is also

important to note that the real period of T2DM is usually assumed

to be longer than the clinically defined duration by at least several

years due to a delay of diagnosis. Future studies, with a larger

cohort, should adjust for duration of diabetes as it may serve as a

genetic risk factor. Furthermore, the HbA1c levels were recorded

only at one time point, at the time of recruitment, which could have

been a limiting factor. Another limiting factor is the exome

microarray chip where its incompatibility with the Middle

Eastern population was seen in the fact that many variants were

excluded after quality control due to the identification of

monomorphic markers, homozygosity due to high consanguinity,

and the accumulation of deleterious recessive alleles within the gene

pool of the population. In fact, approximately 82.5% did not pass

the MAF cut-off, demonstrating possible missed identification of

pathogenic variants. Genetic variation in population arises from

new mutations occurring through generations, in which changes in

MAF may occur. This is due to genetic drift or differences in fitness

levels conferred by different alleles in the presence of certain

environment, including population bottleneck due to high

consanguinity or migration (84).

Further studies need to be conducted in a large-scale, multi-

ethnic cohort to replicate the findings of this study and substantiate

our current knowledge of complications associated to T2DM. Given

that only 16% of the markers from the Illumina’s Infinium Exome

chip passed quality control assessment, this demonstrates that

multiple variants were, either, monomorphic in the Arab

population or were not genotyped due to the use of a Euro-

centric EWAS array that limits the possibility of including

targeted ethnic-specific SNPs. Our results suggest the alarming

possibility that lack of representation in reference panels could

inhibit discovery of functionally important loci associated to T2DM

complications. Enabling global equity in the benefits of genomics

will be vital for precision medicine initiatives, including risk

prediction, development of therapies and implications for

screening and diagnostics. Future work in diverse populations

should focus on using unbiased approaches, unbiased marker

discover and global genome references. This will be beneficial to

better understand reproducibility and heterogeneity of effects

among populations, improve the power to identify causal drivers

of association signals, as well as important resources for fine-

mapping of causal and rare variants.

This study has demonstrated that given that the majority of

genetic studies, including the genotyping and sequencing panels, are

developed based on the European ancestry, it has essentially

deemed inapplicable to other ethnic groups. This foreshadows a

near future where those genetic tests that are only valid for

European descent be used as the blueprint for clinical

applications for genetics, creating a skewed standard for ethnic

minorities, such as the Middle East population. The scarcity of

baseline genetic data is indicative of health inequalities that may be

faced, further highlighting the urgency to ensure the inclusion of

non-European descents in the genetic research movement. Hence, a

microarray chip that is more inclusive to the Arab population needs

to be developed and utilized to ensure that a wider spectrum of

variants is included to detect rare SNPs associated within this region

of the world. Further effort must be conducted to improve the

representation of diverse populations in genotyping and sequencing

studies to enable the unprecedented characterization of fine-scale

genetic architecture and genetic susceptibilities to diseases, globally.

This would allow for eventual delving into pharmacogenomics for

the development of therapeutic strategies catered to the patient

according to the complications experienced.
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