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Abstract

This thesis focuses on the study of the performance of a reconfigurable intelligent

surface (RIS) system and ambient backscatter communication (AmBC) system with

multiple input and output antennas. The RIS has been regarded as a bright tech-

nology in the field of communication. It is of the utmost importance to be used to

overcome the limitations of current fifth-generation (5G) wireless networks, which,

for instance, are that high-frequency signals are highly sensitive to obstacles such as

walls, trees, and buildings to deteriorate line-of-sight (LOS) links. Unlike existing

relay technologies, RIS uses a massive array of reflecting elements to alleviate the

negative environment. By manipulating the phase shift and the upcoming wave’s

angle of reflection, and the angle of the incident through software, the transmit-

ted signal quality can be significantly improved. In the meantime, at the receiver

side, the multipath propagation can be minimized. Furthermore, AmBC is an in-

novative communication method that provides a cost-effective, energy-efficient, and

spectrum-efficient approach to transmitting data. Due to these advantages, AmBC

has emerged as a competitive solution for building and deploying the Internet of

Things (IoT) in the future. The AmBC system allows devices such as tags and

sensors to utilize radio frequency (RF) signals that are present in their surround-

ing environment to transmit information signals to tags and sensors by harvesting

power from these signals. Speaking of the difference between the radio frequency
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identification (RFID) communication system and an AmBC system, its benefit is to

collect the information by utilizing ambient RF source signals in lieu of creating an

information-bearing signal.

In order to analyze the performance of the systems mentioned above, two main

fundamental mathematical theories are included. The first theory is the Polyanskiy-

Poor-Verdú (PPV) bound that new achievability and converse bounds for general

channel classes are presented, which are more precise than previous bounds for a

range of relevant parameters. The PPV bound demonstrates that when an average

or maximal error probability is given and a blocklength is set, there always exists the

maximal achievable channel coding rate and shows that the maximum achievable

rate can be accurately approximated for moderate and short blocklengths. In this

theory, a channel property, known as channel dispersion, determines the convergence

speed towards capacity. The second theory is the sphere-packing bound, which is

the most precise formula for the case in which all codewords require equal energy

for transmission with Phase-Shift Keying (PSK) modulation. In this theory, all

possible codewords with equal transmitting energy form a multidimensional sphere.

A Voronoi cell is used to define a single codeword situated on the sphere. Sphere-

packing means that every cell has the same radius and different solid angle, and then

every cell can be treated as a polyhedron in the sphere. The additive white Gaussian

noise (AWGN) modifies the area of the polygon base, i.e., more noise means a larger

size of the area. The error probability of the maximum likelihood (ML) decoder

occurs when the AWGN causes the area of the polygon base of one codeword to

overlap that of another codeword. Thus, by applying the sphere-packing theory to

the AWGN channel with the PSK modulation scheme, the tightest lower bound for

the specific channel is obtained.

This thesis investigates and analyzes the performances of the RIS and AmBC
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systems, and three main research works are involved. The first research work of this

thesis is to present the decoding error probability bounds for the optimal code in an

RIS system within the short blocklength regime and given a code rate and signal-to-

noise ratio (SNR). The approach uses sphere-packing techniques to derive the main

results, with the Wald sequential t-test lemma and the Riemann sum serving as the

primary tools for obtaining the closed-form expressions for both the upper and lower

bounds. The numerical results are demonstrated to illustrate the performance of

the findings.

The second research work focuses on examining the maximal achievable rate for

a given maximum error probability and blocklength in a system that employs RIS

to aid a multiple-input and multiple-output (MIMO) communication system. The

findings of this research include finite blocklength and finite alphabet constraints

channel coding achievability and converse bounds, which are established through

the use of the Berry-Esseen theorem, the Mellin transform, and the closed-form ex-

pression of the mutual information and the unconditional variance. The numerical

analysis indicates that the maximum achievable rate is reached rapidly as the block-

length increases. Additionally, the channel variance accurately reflects the deviation

from the maximum achievable rate due to the finite blocklength.

The third research work investigates the maximum achievable rate in an AmBC

MIMO system, given a fixed blocklength and maximum error probability. Addi-

tionally, both achievability and converse bounds for the specific channel coding with

finite blocklength and finite alphabet constraints are established. The bounds are

based on the same mathematical theories as the previous research focus, such as the

Neyman-Pearson test, the Berry-Esseen theorem, and the Mellin transform. Then

a closed-form expression for the mutual information and information variance is

derived, which simplifies the computation process.
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To explore the relationship between the error probability of the RF source signal

and the error probability of the tag symbol with respect to the blocklength in the

AmBC MIMO system, we apply low-complexity ML detection. The numerical eval-

uation demonstrates that as the blocklength increases, there is a fast convergence to

the maximum achievable rate. Additionally, we prove that the information variance

is an accurate measure of the backoff from the maximal achievable rate due to finite

blocklength.
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Chapter 1

Introduction

This chapter briefly describes the history of several communication systems and

mathematical theories. Furthermore, it will step into the backgrounds and main

motivations. In the third part, the main contributions of this thesis are summarized.

1.1 History of Reconfigurable Intelligent Surface

The advancements in fifth-generation (5G) wireless networks are uncovering various

limitations. One of them is the sensitivity of high-frequency signals to obstacles like

walls, trees, and buildings, which makes it difficult to establish reliable line-of-sight

(LOS) links, leading to a drop in signal quality and coverage. Reconfigurable Intel-

ligent Surface (RIS) has been regarded as another bright technology to tackle these

limitations and pave the way for 5G and sixth-generation (6G) networks, garnering

substantial attention from the wireless communication research community.

The introduction of Reconfigurable Intelligent Surfaces (RIS) [1] in wireless com-

munication systems has changed the definition of radio propagation from passive to

active. The concept of a smart radio environment where RIS can actively influence

radio propagation has been established. The roots of RIS can be traced back to the

1
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early research on Active Frequency-Selective Surfaces (AFSS) [2–4]. By controlling

the PIN diodes integrated into AFSS, it is possible to perform spatial diversity and

filter the specific frequencies from the incoming electromagnetic (EM) waves. This

increases cell coverage, reduces interference between the EM waves, and optimizes

the quality of service.

An RIS is designed to improve the signal quality at the receiver when the line-

of-sight path is obstructed or weak. Unlike traditional relay technologies, an RIS

can improve signal quality without requiring extra power or complicated signal pro-

cessing. By adjusting the phase and angle of the incident and reflecting waves on

each reflective element in a software-controlled manner, the reflected signals can be

optimized to minimize the multipath effect on the received signals. This can result

in amplifying the signal strength or reducing multipath interference by combining

the reflected signals constructively or destructively.

1.2 History of Backscatter Communication

The landscape of wireless networking is undergoing a transformation, moving from

simple point-to-point (P2P) communications to multi-functional systems that cater

to a diverse range of user cases. The IoT is a crucial part of the future of wireless

communication and is expected to encompass billions of connected devices. However,

this presents three major challenges for the design of IoT networks: cost efficiency,

spectrum efficiency, and energy efficiency. With a significant proportion of these

devices relying on limited spectrum resources and some being ultra-low-power or

battery-free, Ambient Backscatter Communication (AmBC) has been seen as an

encouraging solution to provide numerous benefits, such as decreasing the cost,

expanding the spectrum efficiency, and increasing the energy efficiency in the wireless
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communication systems and the future IoT networks.

The concept of backscatter communication has roots dating back to World War

II when it was used to detect enemy aeroplanes by reflecting radar signals. In 1948,

Stockman [5] introduced backscatter communication as a technique that transmits

data by modulating and reflecting received RF signals in lieu of generating them

independently. Based on the configuration, backscatter communication can be clas-

sified into two main types: ambient backscatter communication systems and sym-

biotic radio systems.

1.2.1 Ambient Backscatter Communication

Recently, a new communication technology called ambient backscatter [6–13] has

gained attention as a solution to the limitations of conventional backscatter com-

munication systems. In AmBC systems, backscatter devices can transmit their own

information symbols to other devices or readers by harnessing existing RF source

signals. This eliminates the need for an extra frequency spectrum. At the receiver

end, useful information can be decoded from the received signals by extracting the

ambient backscatter signal out of the RF source signal. This means that backscatter

transmitters can transmit data even when the receiver is not initiated, as long as

they have enough energy from the RF source [14]. This capability makes the AmBC

system a promising technology for various practical applications.

AmBC has enormous potential as a low-energy communication technology, espe-

cially for the IoT, but it is still facing several challenges. The transmission efficiency

of an AmBC system is heavily dependent on the type of ambient source, whether

indoor or outdoor. As a result, AmBC systems must be tailored to specific ambient

sources. Another challenge is to optimize the scheduling of data transmission in

order to make the most of the ambient signals, which are dynamic in nature. More-
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over, the communication protocols of AmBC systems must be designed to avoid

interfering with the transmissions of licensed users. Substantial research has been

conducted to address these challenges and enhance AmBC systems in various as-

pects.

1.2.2 Symbiotic Radio System

Symbiotic radio (SR) is defined in [15] as a cutting-edge backscattering communi-

cation system. It absorbs the benefits of cognitive radio (CR) and AmBC while

addressing their drawbacks. The basic SR system is comprised of two parts: the

primary system and the secondary system. Unlike CR, SR employs backscattering

radio technology, which applies no additional power in the ambient backscatter de-

vices, to make the secondary transmission from the STx to the second receiver (SRx)

become possible instead of utilizing the active RF source signal at both the primary

transmitter (PTx) and second transmitter (STx) and consuming significant power.

Specifically, the STx transmits its own information to the SRx by modulating and

reflecting the RF signals received from the PTx, allowing the secondary system to

increase spectrum and energy efficiency effectively.

In SR, the two systems operate cooperatively on both the transmitter ends, and

the receiver ends. By leveraging the collaborative decoding process at the SRx,

it becomes possible to decode primary and secondary information simultaneously,

effectively avoiding interference between the primary and secondary signals and es-

tablishing highly reliable backscattering communications. The secondary system

would be seen as multipath compared with the primary system, which is similar

to the MIMO system, to increase the spectrum efficiency. This is what makes SR

a prime example of cognitive backscattering communications, achieving two criti-

cal objectives for wireless communications, which are improved spectrum efficiency
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through mutually beneficial usage of the same spectrum and increased power effi-

ciency by utilizing dependable backscattering communications.

1.3 History of the Channel Coding in Finite

Blocklength

In 2010, Yury Polyanskiy, H. Vincent Poor and Sergio Verdú published the epic

work. In this paper, their focus was on determining the maximal achievable chan-

nel coding rate that can be accomplished for an arbitrary blocklength and a given

error probability. The achievability and converse bounds were presented for general

channel classes, which are more precise than previous bounds for a wide range of

relevant parameters. The results indicated that the maximum achievable rate could

be accurately approximated for the short blocklengths. Additionally, the authors

analytically demonstrated that the maximal achievable channel coding rate with a

specific blocklength and error probability could be tightly estimated by the expres-

sion as C −
√

V
n
Q−1(ϵ), where C represents the channel capacity, V is a channel

property known as channel dispersion, n denotes the blocklength, ϵ is the error

probability, and Q is the complementary Gaussian cumulative distribution function.

Ever since Shannon [16] demonstrated that there exists a feature of convergence

from optimal channel coding rate towards capacity, there have been efforts to un-

derstand the impact of finite blocklength. One of the earliest contributions in this

area was by Shannon himself in [16], who derived a tight bound for the AWGN

channel, which was later investigated significantly. With the advent of sparse-graph

codes, more recent work has focused on evaluating the signal-to-noise-ratio (SNR)

compensation which can be regarded as a function of blocklength to assess the sub-

optimality of a specific code easily. Rather than focusing on the asymptotic limit
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represented by channel capacity, this approach aims to improve the evaluation of

the code’s performance at the specific blocklength under consideration.

The authors of [17] compared their new achievability and converse bounds with

the major existing bounds. For the AWGN case, they found that Shannon’s achiev-

ability bound stands out as the clear winner, which is very close to the converse

bound. However, they showed that the shortcoming of Shannon’s method is that it

is more difficult to calculate and analyze than their derived bounds. By comparing

their new bounds and the classical bounds, such as Feinstein’s bound and Gallager’s

bound, they illustrated that their derived bounds are uniformly better than Fein-

stein’s ones. In terms of small blocklength, Gallager’s bound is slightly better than

theirs due to two reasons which are the choice of the different suboptimal decoders

and the different targeted range of the error probability.

Moreover, the more significant finding of their work is the normal approximation.

They found that the channel dispersion quantifies the degree of random variation in

a specific channel model, i.e., AWGN channel, compared to a deterministic channel

model with the same channel capacity. In the finite blocklength regime, the chan-

nel dispersion, along with the channel capacity, presents a significantly accurate

approximation.

1.4 History of Multiple-Input-Multiple-Output

Wireless System

Multiple-input–multiple-output (MIMO) [18] has rapidly been of the utmost tech-

nical advancements in digital communication systems. This technology holds great

promise for addressing the capacity constraints facing the future of internet-intensive

wireless networks. It is astonishing to see that after its original introduction, MIMO
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technology is poised to be widely adopted in industrial wireless devices and IoT net-

works. For instance, MIMO is widely used in wireless local area networks (WLAN)

and orthogonal frequency-division multiple access (OFDMA).

In a wireless communication system, the MIMO technology is created by equip-

ping both the transmitting and receiving ends with multiple antennas. The ultimate

goal of MIMO is to receive the information signals from multiple transmit antennas

at the transmitter side and mix these signals at the receive side to improve the signal

quality, i.e., bit error rate (BER) or data rate of the communication for each user.

This advantage has the potential to significantly enhance both the signal quality

in the networks and alleviate the operator’s costs. Speaking of the concept, it is

space-time signal processing, which combines the time dimension and the spatial di-

mension into the whole communication system. MIMO systems are an extension of

intelligent antenna technology, which has been used for several decades to improve

wireless transmission using antenna arrays.

The most important part of the defining advantages of MIMO systems is their

capability to transform multipath propagation, which has historically been a chal-

lenge in wireless communication systems, into a positive effect from the perspective

of the receiver end. MIMO leverages random fading [19–21] and, when available,

multipath delay spread [22] [23] to significantly increase transfer rates. The poten-

tial for vastly improved performance of the overall wireless communication system

without additional occupation of the spectrum has been a major driving force be-

hind the field of the research area. It has led to advancements in a wide range of

fields, from totally different channel model settings to new mathematical challenges

when analyzing the data rate, channel capacity, and new ways to process and filter

the signal. Other different challenges occur in the implementation part, such as

antenna design and cell coverage design.
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1.5 Related Work and Motivation

In [24], a broad mathematical framework of the RIS-assisted wireless communication

system over a Rayleigh fading channel was presented, and then a theoretical upper

bound was derived. Moreover, the authors presented the relationship between the

received SNR and the number of reflecting elements, indicating that the received

SNR considerably grew as the number of reflecting elements increased. Thus the

reliable transmission over a noisy channel could still be accomplished at low SNRs

with the support of the RIS elements. The authors of [25] investigated the cov-

erage expansion achieved by the RIS-assisted wireless communication system over

quasi-static flat Rayleigh fading channels. Furthermore, compared with both di-

rect link and relay-assisted wireless communication systems, the SNR gain and the

delay outage rate of the RIS were investigated. In [26], the authors studied the

RIS’s placement optimization problem in a cellular network to maximize cell cov-

erage. They developed a coverage maximization algorithm (CMA) to obtain the

optimal RIS’s orientation distance. The authors of [27–29] focused on the RIS-

assisted multiple-input single-output (MISO) wireless communication system, for

which efficient algorithms, such as Lagrangian dual transform, and active and pas-

sive beamforming, were studied to address the non-convex maximization problem of

the weighted sum-rate that can be achieved by all groups. The authors of [30] sta-

tistically characterized the RIS-assisted wireless communication system under the

premise that all cascaded fading channels between the transmitter, RIS and receiver

follow the Rayleigh distribution. Furthermore, the closed-form expression of theoret-

ical outage probability was derived, and the accuracy of their results was validated.

In [31], the authors demonstrated and analyzed the performance of the intelligent

reflecting surface-assisted ultra-reliability low-latency communications (URLLC) in

a factory automation scenario. They also illustrated the achievable data rate and
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the decoding error probability under finite blocklength for several channel models.

In [32], Liu et al. introduced a revolutionary communication system that enables

different devices to transmit messages to each other by harvesting the energy from

ambient RF source signals. This approach eliminates the need for wired communica-

tion and additional power, i.e., batteries, allowing for seamless communication on a

massive scale and in previously inaccessible locations. By utilizing existing TV radio

and cellular networks, the authors have created a new communication technology,

which is defined as AmBC, where wireless communication between different devices

can be achieved by reflecting ambient RF source signals. This avoids applying extra

energy and power to create the RF waves resulting in a higher level of energy and

power efficiency than conventional wireless communication systems. Furthermore, as

it relies on ambient RF signals already present in the environment, there is no need

for dedicated power infrastructure, unlike traditional AmBC. To demonstrate the

viability of the design, the authors have built AmBC devices and achieved different

information rates over a given distance. The authors proposed a hardware prototype

that has been used to demonstrate two previously impossible applications of ubiq-

uitous communication. Following on, Bharadia et al. [33] proposed the BackFi, a

communication system that is similar to the AmBC, but it enables instant and long-

range radio communication between IoT devices without sufficient power supply and

the access points (APs) through ambient backscatter-assisted WiFi communication

system. Our approach allows the APs to simultaneously transmit messages or in-

formation signals to the WiFi clients and decode the received signals from the IoT

devices. The authors have shown that for a given data rate and a specific distance,

there exists a reliable communication method. This performance is significantly bet-

ter than the previous dominant ambient backscatter-assisted WiFi system by one to

three orders of magnitude. BackFi is also highly energy-efficient, relying solely on
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backscattering and requiring minimal power, resulting in low energy consumption

per bit.

Valembois et al. [34] primarily focused on improving the performance of the

1967 sphere-packing bound (SPB67), derived by Shannon, Gallager, and Berlekamp.

SPB67 was defined as a lower bound on the decoding error probability across a broad

range of channels. Despite its potential value, SPB67 has not been utilized in prac-

tical telecommunication systems due to the fact that the main concentration on

asymptotic analysis impedes it in moderate blocklengths, and the computational

complexity involved in its derivation, which can be challenging and uninspiring to

researchers. The aim of the authors is to rekindle interest in this topic by reviewing

the 1959 sphere-packing bound (SPB59) derived by Shannon in 1959 and the follow-

ing SPB67. The second aim is to broaden its scope of application to discrete input

continuous output channels, specifically the modulated signals passing through the

AWGN channel. The final aim is to improve its performance on the decoding er-

ror probability for moderate blocklengths. After numerical results and simulations

analysis, the SPB67 can be proved as the lower bound with the best performance

for most iteratively decodable codes, such as turbo codes and low-density parity-

check (LDPC) codes. Apart from the AWGN channel, the symmetric memoryless

channels have been discussed in [35]. Wiechman et al. derived a new, improved

sphere-packing bound (ISPB) targeted at most error-correcting codes with a list

decoder whose list size is given arbitrarily over symmetric memoryless channels. It

started with a review of the classical results, the SPB59 of Shannon for the AWGN

channel and the SPB67 for discrete memoryless channels, along with Valembois and

Fossorier’s improvement on the SPB67. The ISPB was then introduced as a uni-

formly tighter lower bound on the decoding error probability with a list decoder,

whose list size is arbitrary, than the SPB67 and its improvement. The ISPB was ap-
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plicable to the particular symmetric memoryless channels instead of general discrete

memoryless channels, and its tightness under maximum likelihood (ML) decoding

was evaluated through comparison with previous bounds. By simulation analysis,

ISPB is proved that it can be applied in the turbo-family codes. The paper also

presented a mathematical technique to make it possible to calculate the exact ex-

pression for moderate blocklengths without relying on asymptotic approximations.

In 2008, Telatar published his epic work. The paper [21] examined the bene-

fits of using multiple transmitting antennas and multiple receiving antennas for a

single-user communication system over the AWGN channel with Rayleigh fading or

without Rayleigh fading. The author provided a general formula to compute the

channel capacity and error exponent under the premise of the receiver knowing the

channel distribution. The results demonstrated that the advantages of using MIMO

systems over single-input-single-output (SISO) systems could be substantial, given

the assumption of independent and identically distributed fading coefficient and

noise at different receiving antennas.

The purpose of the paper [36] was to determine that the maximal achievable

channel coding rate can be accomplished for a specific blocklength and a given

decoding error probability over MIMO fading channels. Yang et al. considered sce-

narios in either or both the transmitter and the receiver have or do not have the

knowledge of channel state information (CSI). The key finding was that the outage

capacity, which is a long-term measure, accurately reflects the limitations of slow

fading channels in finite blocklengths. It was demonstrated that the channel dis-

persion is insignificant, regardless of either or both the transmitter and the receiver

knowing the CSI. By the numerical simulation results, the authors confirmed that

the dispersion approaching zero leads to the convergence with a rapid speed to the

outage capacity as the blocklength increases. Following on, Collins et al. [37] fo-
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cused on a common channel model for mobile wireless communication at the finite

blocklength regime. The channel model is multiple-antenna AWGN channels with

random fading gains and full CSI at the receiver ends. The fading process was

approximated by a piecewise-constant process, which was referred to as frequency

non-selective fading. The objective of the paper was to derive a formula for channel

dispersion, which determines the amount of delay required to reach capacity. How-

ever, one difficulty still remained that the converse bound was contingent on the

relation between the transmit power and the blocklength. Another significant result

of the paper was that the orthogonal Alamouti scheme is optimal for the MISO

channel model.

1.6 Contributions

The main objective of this thesis is to analyze the performance of different systems,

i.e., the RIS MIMO system and the AmBC MIMO system, by using the sphere-

packing technique and the mutual information and the unconditional information

variance along with the Berry Esseen theorem to present the simulation results.

1.6.1 Analytical Bounds for the Optimal Code over the Re-

configurable Intelligent Surface at a Short Blocklength

The first research work is to develop the sphere-packing bounds to assess the per-

formance of an RIS-assisted wireless system at a short blocklength regime. Our

approach builds upon the original work for sphere-packing bounds with an infinite

blocklength over an AWGN channel [16], but we have derived new expressions for

the lower and upper bounds specific to the RIS-assisted system. To achieve this, we

employ the Wald sequential t-test lemma and the Riemann sum to derive a closed-
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form expression for the bounds. In the short blocklength regime, the approximation

of the angle used in the sphere-packing technique to calculate the code rate [16] [34]

can have a margin of error. To address this issue, we have derived a new expression

that provides an exact calculation of the angle.

1.6.2 Performance Analysis for Reconfigurable Intelligent

Surface Assisted MIMO Systems

The second research work is to establish the achievability and converse bounds for

the maximal achievable rate R in an RIS MIMO system, given a fixed maximal

error probability and blocklength. The fundamental mathematical basis for our

analysis includes the Berry-Esseen theorem, mutual information, and unconditional

information variance.

To derive the achievability bound, we employ the Berry-Esseen theorem and

additional inequalities to determine the exact probability density function (PDF) of

the channel output. Our converse bound is derived by combining the maximum of

the auxiliary channel’s PDF, which is produced by m copies of the PDF of Gamma-

distributed variables, with the Mellin transform and Meijer G-function, and the

maximum of its output space by the Lebesgue measure.

We also use the saddle point approximation and Taylor series expansion to obtain

closed-form expressions for both mutual information and unconditional information

variance. To complete our analysis, we compare different modulation schemes in the

RIS MIMO system, focusing on two key aspects: the required blocklength to achieve

a given level of the maximal achievable rate and the impact of the unconditional

information variance on the speed of convergence to the maximal achievable rate.
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1.6.3 Performance Analysis of Multiple-Antenna Ambient

Backscatter Systems at Finite Blocklengths

The last research work is to use the Berry-Esseen theorem as a fundamental basis

to provide achievability and converse bounds on the achievable rate R for a legacy

system with multiple transmit and receive antennas. For our achievability bound,

we utilize the Berry-Esseen theorem, the mutual information, and the information

variance under the condition of the probability of the tag symbol to get the bound.

Furthermore, we exploit the Mellin transform and Meijer G-function to obtain a

maximum on the auxiliary channel’s PDF, a product of m copies of PDF of Gamma

distributed variables. Then, we apply the Lebesgue measure to get the maximum

of its output space. To complete our achievability and converse bounds, we utilize

the different modulation schemes in our legacy system.

To reduce the complexity of multiple integrals for deriving the mutual informa-

tion and the information variance, we use the saddle point approximation and the

Taylor expansion to obtain closed-form expressions of the mutual information and

the information variance.

We apply a low-complexity ML detection to compute the average error proba-

bility of the tag symbol based on the received signal and estimated RF source signal

for a variety of transmitter and receiver antennas. We determine the relationship

between the average error probability of the tag symbol and the maximal error prob-

ability of the RF source signal as a function of the blocklength n and the number of

transmitter and receiver antennas t and r. We utilize different modulation schemes,

i.e., BPSK and QPSK, and different coding methods, i.e., the EBCH code and the

polar code, in our legacy system and AmBC system to validate the derived bounds

and the error probability of the tag symbol.



Chapter 2

Background

This chapter briefly introduces the fundamental concepts of different systems that

are discussed, including the RIS system, the AmBC system, and the MIMO system.

Secondly, this chapter discusses the fundamental mathematical concepts and theo-

ries of several bounds, including the Polyanskiy-Poor-Verdú (PPV) bound and two

sphere-packing bounds. Following on, this chapter briefly presents the fundamental

concepts of error control coding, including BCH code and polar code.

2.1 Fundamentals of Different Systems

In this section, we discuss the mathematical basics of the RIS, AmBC, and MIMO

systems.

2.1.1 Fundamentals of RIS System

In this subsection, we mainly focus on the fundamental of different cases of the RIS

system. A traditional RIS system is comprised of a transmitter, a receiver, and

a meta-surface. The transmitter equipped with a single antenna aims to establish

15
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communication with a receiver that also has a single antenna. However, the LOS

connection between the two is hindered by a wall. To enhance the signal quality,

a reconfigurable meta-surface integrated with Nris reflective elements, known as

an RIS, has been placed between the transmitter and the receiver. The channels

between the transmitter and the i-th RIS element, the i-th RIS element and the

receiver are represented as hi = [hi(1), hi(2), . . . , hi(n)], 1 ≤ i ≤ Nris, and gi =

[gi(1), gi(2), . . . , gi(n)] with hi(k) = |hi(k)| exp{−jψi(k)}, 1 ≤ k ≤ n and gi(k) =

|gi(k)| exp{−jϕi(k)}, respectively. |hi(k)| and |gi(k)| in the channel hi and gi denote

the amplitude of the channel coefficient hi(k) and gi(k), respectively, while ψi(k) and

ϕi(k) represent the phase of the channel coefficient hi(k) and gi(k), respectively. The

received signal at the receiver can be shown as

y(k) =

Nris∑
i=1

ηi(k)hi(k)gi(k)x(k) + w(k), (2.1)

where w(k) denotes the AWGN with zero-mean and equal varianceN0 in both its real

and imaginary components, i.e., w(k) ∼ CN (0, N0), and ηi(k) denotes the reflection

coefficient of the i-th RIS element with ηi(k) = |ηi(k)| exp{−jθi(k)}, 1 ≤ k ≤ n,

where |ηi(k)| and θi(k) represent the coefficient gain and the phase shift controlled

by the i-th RIS element. The coefficient gain |ηi(k)| can be assumed as 1 for all i

from 1 to Nris. The assumption is made that the reflective elements of the RIS are

fitted with varactor-tuned resonators, which can adjust each RIS element’s phase

by altering the bias voltage supplied to the varactor. We will discuss some of the

most common cases of the channel model.

1. It is assumed that the RIS has perfect knowledge of the phases of the chan-

nels hi(k) and gi(k), and it selects the optimal phase shifting accordingly, i.e.,

θi(k) = −(ψi(k) + ϕi(k)). Furthermore, |hi(k)| and |gi(k)| are Rayleigh distri-

bution random variables (RVs). Since the reflecting gain |ηi(k)| are assumed
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as 1 for all i from 1 to Nris, the received signal can be rewritten as

y(k) = A(k)x(k) + w(k), (2.2)

where A(k) =
∑Nris

i=1 |hi(k)| · |gi(k)|.

Since |hi(k)| and |gi(k)| are Rayleigh distributed RVs, their product is a double

Rayleigh distributed RV. A(k) is the sum of Nris independent and identically

distributed (i.i.d.) double Rayleigh distributed RV whose PDF can be tightly

approximated as the first term of a Laguerre series expansion with the param-

eters a =
k21
k2
− 1 and b = k2

k1
, where k1 and k2 denote the mean value and the

variance of A(k). Then, we have

k1 = E[A(k)] = E[
Nris∑
i=1

|hi(k)gi(k)|] =
Nris∑
i=1

E[|hi(k)gi(k)|]. (2.3)

Since |hi(k)| and |gi(k)| are i.i.d. Rayleigh distributed RV, then we have

k1 =
Nrisπ

4
. (2.4)

Following the same procedure as k1, we obtain the value of k2 as follows

k2 = Nris(1−
π2

16
). (2.5)

Theorem 1. The PDF of A(k) can be expressed as

fA(k)(x) =
xa

ba+1Γ(a+ 1)
exp{−1

b
x}, (2.6)

where a =
k21
k2
− 1 and b = k2

k1
with k1 =

Nrisπ
4

and k2 = Nris(1− π2

16
).

We validate the theoretical framework through respective Monte Carlo simu-

lations and analyze the numerical results which is shown on Fig. 2.1.

2. It is assumed that the RIS has not the perfect knowledge of the phases of the

channel hi(k) and gi(k). The phase shift θi(k) induced by the i-th RIS element
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Figure 2.1: The PDF of A(k) with the perfect knowledge of the phases of the
channels hi(k) and gi(k) for different Nris

follows the uniform distribution in [0, 2π) and the reflecting gain |ηi(k)| is 1

for all i from 1 to Nris. Thus, A(k) can be rewritten as

A(k) = |A(k)|ej∠A(k) =
Nris∑
i=1

|hi(k)|e−jψi(k) × |gi(k)|ejϕi(k) × ejθi(k), (2.7)

where |hi(k)| and |gi(k)| denote two Rayleigh distributed RV. Then the PDF

of the product of two Rayleigh RVs is

f|hi(k)||gi(k)|(x) = 4xK0(2x), i = 1, . . . , Nris. (2.8)
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The Fourier transform of f|hi(k)||gi(k)|(x) is

F|hi(k)||gi(k)|(t) =

∫ ∞

−∞
f|hi(k)||gi(k)|(x) exp(−2πjtx)dx

=

∫ ∞

−∞
4xK0(2x) exp(−2πjtx)dx.

Then by using the inverse Fourier transform, we can obtain the distribution

density of |A(k)| as shown below

f|A(k)|(x) =
1

2π

∫ ∞

−∞
(F|hi(k)||gi(k)|(t))

Nris exp(−jtx)dt

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
4xK0(2x) exp(−2πjtx)dx

)Nris

exp(−jtx)dt

=
2x

Nris

exp(− x2

Nris

)

and the angle of A(k) also follows the uniform distribution in [0, 2π). There-

fore, we obtain the expression of the A(k)’s PDF. We validate the theoretical

framework through respective Monte Carlo simulations and analyze the nu-

merical results which is shown on Fig. 2.2.

2.1.2 Fundamental of AmBC System

In this subsection, we mainly focus on the fundamental of several decoding methods

for the AmBC system. A conventional AmBC system is comprised of three com-

ponents: a transmitter, an AmBC device (a tag), and a receiver (a reader). Each

component is equipped with a single antenna. The AmBC device conveys the mes-

sage symbols to the receiver through the modulation and reflection of transmitted

signals, i.e., RF source signal. As a result, the receiver collects both the transmitted

signals and the message symbols backscattered by the AmBC device. Its purpose is

to extract the AmBC device symbols from the received signals. Consider an ambient

RF source signal x(k), where k ranges from 1 to n. The channel coefficient that rep-

resents the channel between the transmitter and the receiver is h, while g1 represents
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Figure 2.2: The PDF of A(k) without the perfect knowledge of the phases of the
channels hi(k) and gi(k) for different Nris

the channel between the transmitter and the AmBC device, and g2 represents the

channel between the AmBC device and the receiver. The average transmitting power

can be defined as P = E[
∑n

k=1 x
2(k)]. It is assumed that the channel coefficients h,

g1, and g2 experience slow fading and remain constant throughout n blocklength.

The relative difference between the LOS link and the backscattered-link is defined

as follows

∆ =
E[(ηg1g2)2]

E[h2]
, (2.9)

where η denotes the reflection coefficient of the AmBC device. Let d denote a

message symbol transmitted by the AmBC device, where d can be either 0 or +1.

The symbol of the AmBC device d is assumed to remain constant over n blocklength
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of x(k), which means that dk is equal to d for all k ranging from 1 to n. The signal

received and reflected by the AmBC device is shown below

y2(k) = ηg1g2dkx(k). (2.10)

Since the AmBC device is equipped with passive components, the electronic noise

at the circuits of the AmBC device can be considered negligible. The receiver

captures two signals, as mentioned before. The signal received by the receiver can

be expressed as follows

y(k) = hx(k) + y2(k) + w(k) = (h+ ηg1g2dk)x(k) + w(k), (2.11)

where w(k) denotes the AWGN with zero-mean and equal variance σ2 in both its

real and imaginary components, i.e., w(k) ∼ CN (0, σ2). Then the received signal

vector can be generated with one AmBC device symbol d as y = [y1, y2, . . . , yn].

It is important to note that the time delay between the direct-link signal and the

backscattered signal from the AmBC device is typically negligible, given that the

distances between the transmitter and receiver and the transmitter and the AmBC

device are significantly longer than the distance between the AmBC device and the

receiver. Without time delay, there still exists a major challenge to recover the

message symbol from the AmBC device in the AmBC system, as the signal reflected

back by the AmBC device is much weaker than the direct-link signal. To address this

challenge, we will discuss some of the most commonly employed detection methods

for extracting the AmBC device symbols.

1. The ML detector is an optimal solution that explores all possible candidates

to minimize the mean square error. The ML detector then estimates both the

transmitted signal x(k) and the AmBC device symbol d as follows

ŝ = arg min
x(k) ∈ Ax,
dk ∈ Ad

∣∣∣y(k)− hx(k)− ηg1g2dkx(k)∣∣∣, (2.12)
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where the set of modulation signals for x(k) and dk are represented by Ax

and Ad, respectively. The number of searches in the ML estimation described

above is equal to the product of the size of the sets Ax and Ad. However, as the

size of Ax increases, the complexity of the ML detector grows exponentially,

making it unfeasible to use the optimal ML detector for recovering both the

transmitted signals and the symbols from the AmBC device in the AmBC

system.

2. The SIC-based detector takes advantage of the fact that the LOS link signals

are significantly better than the backscattered symbols. The SIC-based de-

tector first estimates the transmitted signal x(k), then subtracts it from the

received signal y(k). This allows for the AmBC device symbols dk to be ob-

tained. After estimating dk, the transmitted signal x(k) can be re-estimated by

incorporating dk back into y(k). A step-by-step explanation of the SIC-based

detector is provided below.

The first step is to estimate the transmitted signal x(k). The transmitted

signal x(k) can be estimated by treating the AmBC device symbols dk as

noise which is shown below

x̂(k) = arg min
x(k)∈Ax

∣∣∣x(k)− y(k)

h+ ηg1g2

∣∣∣. (2.13)

The second step is to estimate the AmBC device symbols dk. An intermediate

signal y2(k) can be obtained by extracting hx(k) from y(k). Then the AmBC

device symbols dk can be estimated as

d̂k = arg min
dk∈Ad

n∑
k=1

∣∣∣∣∣∣dk − y2(k)

ηg1g2

∣∣∣∣∣∣2. (2.14)

The third step is to re-estimate the transmitted signal x(k). Since the esti-

mated AmBC device symbols d̂k is obtained, the received signal can be ex-
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pression as a different form

(y(k), d̂k) = (h+ ηg1g2d̂k)x(k) + w(k). (2.15)

Thus, the re-estimated transmitted signal x(k) can be obtained as

ˆ̂x(k) = arg min
x(k)∈Ax

∣∣∣x(k)− (y(k), d̂k)

h+ ηg1g2

∣∣∣. (2.16)

2.1.3 Fundamental of MIMO System

In this subsection, we discuss the fundamental mathematical basics of MIMO sys-

tem. In [21], a Gaussian channel model was considered that pertained to a single

user, equipped with multiple transmitting antennas and multiple receiving antennas.

The total number of antennas at the transmitter end was represented by t, while the

total number of antennas at the receiver end was denoted by r. The author’s focus

would be solely on a linear model, where the output vector y ∈ Cr was dependent

on the input vector x ∈ Ct as described by

y = Hx+ n, (2.17)

where H ∈ Cr×t and n denotes the noise which is assumed to be a zero-mean com-

plex Gaussian with independent and equal variance in both its real and imaginary

components and E[nnH ] = Ir. The transmitted power is constrained to P , i.e.,

E[xHx] ≤ P . Consider a scenario where the channel matrix H is not determinate,

but rather a channel matrix H with a random distribution that is independent of

the distribution of x and n. The distribution of channel matrix H is known at

the receiver side, however, it is not available at the transmitter end. The channel

model can be transformed to the input x and the output (y,H) = (Hx + n,H).

The assumption is made that the entries of H are independently distributed, each

possessing a zero-mean Gaussian distribution, with both the real and imaginary
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parts having independent variances of 1
2
. The aforementioned model is called as a

Rayleigh fading channel where there is sufficient physical separation between the

transmitting and receiving antennas to guarantee independence in the entries of H.

Theorem 2. The capacity of the channel is achieved when x is a circularly sym-

metric complex Gaussian with zero-mean and covariance (P/t)It. The capacity is

given by

C = E
[
log det(Ir +

P

t
HHH)

]
. (2.18)

To evaluate det(Ir +
P
t
HHH), a new matrix M is defined as follows

M =

 HHH , r < t,

HHH, r ≥ t.
(2.19)

Then, M is an m ×m random non-negative matrix with real, non-negative eigen-

values, where m = min{r, t}. Thus, we can rewrite the capacity in terms of the

eigenvalues λ1, λ2, . . . , λm of M as follows

C = E
[ m∑
i=1

log(1 +
P

t
λi)

]
. (2.20)

The joint PDF of the unordered eigenvalues is

fλ,unordered(λ1, λ2, . . . , λm) = (m!Km,n)
−1 exp{−

m∑
i=1

λi}
m∏
i=1

λn−mi

∏
i<j

(λi − λj)2,

(2.21)

where n = max{r, t} and Km,n is a normalizing factor. The expectation the author

aimed to calculate, E
[∑m

i=1 log(1 +
P
t
λi)

]
= mE[log(1 + P

t
λ1)], is dependent solely

on the distribution of one of the unordered eigenvalues. To determine the PDF of

λ1, it is necessary to perform an integration with respect to λ2, . . . , λm:

fλ1(λ1) =

∫
· · ·

∫
fλ(λ1, λ2, . . . , λm)dλ2 · · · dλm. (2.22)
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It is easy to observe that
∏

i<j(λi−λj) is the determinant of a Vandermonde matrix

which can be defined as below

V (λ1, λ2, . . . , λm) =



1 1 . . . 1

λ1 λ2 . . . λm
...

...
...

λm−1
1 λm−1

2 . . . λm−1
m


. (2.23)

Then, (2.21) can be rewritten as

fλ,unordered(λ1, λ2, . . . , λm) = (m!Km,n)
−1 det

(
V (λ1, λ2, . . . , λm)

)2
m∏
i=1

λn−mi exp{−
m∑
i=1

λi}. (2.24)

With applying the elementary operation of matrix and the Gram-Schmidt orthog-

onalization procedure to the sequence 1, λ, λ2, . . . , λm−1, V (λ1, λ2, . . . , λm) can be

transformed to

V̄ (λ1, λ2, . . . , λm) =



ψ1(λ1) ψ1(λ2) . . . ψ1(λm)

ψ2(λ1) ψ2(λ2) . . . ψ2(λm)

...
...

...

ψm(λ1) ψm(λ2) . . . ψm(λm)


, (2.25)

where ψ1, ψ2, . . . , ψm is the outcome after applying the Gram-Schmidt orthogonal-

ization procedure in the space of the real valued functions with inner product∫ ∞

0

ψi(λ)ψi(λ)λ
n−m exp{−λ}dλ =< ψi, ψi >= δij, (2.26)

where δij denotes Dirac delta function. Then,

detV (λ1, λ2, . . . , λm) = det V̄ (λ1, λ2, . . . , λm) =
∑
α

(−1)per(α)
∏
i

ψαi
(λi), (2.27)

where the sum is taken over all possible permutations of {1, 2, . . . ,m}, with per(α)

equal to 0 or 1 depending on whether the permutation α is even or odd. Thus, by
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integrating over λ2, . . . , λm

fλ1(λ1) =
1

m

m∑
i=1

ψi(λ1)
2λn−m1 exp{−λ1}, (2.28)

where the Gram-Schmidt orthonomalization ψi(λ1) =
√

(i−1)!
(i−1+n−m)!

Ln−mi−1 (λ1), and

Lji denotes the associated Laguerre polynomial of order i. Therefore, the channel

capacity, given t transmitters and r receivers with a power constraint of P , is equal

to ∫ ∞

0

log(1 +
P

t
λ)

m∑
i=1

(i− 1)!

(i− 1 + n−m)!

[
Ln−mi−1 (λ)

]2
λn−m exp{−λ}dλ. (2.29)

2.2 Fundamental of PPV and Sphere-Packing

Bounds

In this section, we discuss the mathematical basics of PPV and sphere-packing

bounds.

2.2.1 Fundamental of PPV Bound

In this subsection, we introduce the PPV bound [38, 39]. At first, we need to

introduce an important tool for the PPV bound, that is the Berry-Esseen theorem.

Theorem 3. [Berry-Esseen theorem [40]] Let Xk, k = 1, . . . , n be independent with

µk = E[Xk], σ2
k = V ar[Xk], tk = E[|Xk−µk|3], σ2 =

n∑
k=1

σ2
k and T =

n∑
k=1

tk.

Then for any −∞ < τ <∞∣∣∣P[ n∑
k=1

(Xk − µk) ≥ τσ
]
−Q(τ)

∣∣∣ ≤ 6T

σ3
, (2.30)

where Q(·) is the Q function, Q(x) = 1√
2π

∫∞
x

exp(−1
2
t2)dt.
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In order to use Theorem 3 into the PPV bound, we first need to define the

information density i(X;Y ) as follows

i(X;Y ) = log
dPXY

d(PX × PY )
(X, Y ). (2.31)

Moreover, we need to prove the second moment of i(X;Y ) is nonzero and its third

moment is always less than infinite.

U(X;Y ) = E[|i(X;Y )− I(X;Y )|2]

=

∫ ∞

0

∫ ∞

−∞

∑
X∈At

(
P (X)p(Y,H|X)(1− p(Y,H|X))· (2.32)

log2
{ p(Y,H|X)∑

X′∈At P (X′)p(Y,H|X′)

})
dYdH

> 0, (2.33)

where (2.32) follows from 2
(|A|t

2

)
/|A|t = |A|t − 1 and P (X) = 1/|A|t and (2.33)

follows from 1− p(Y,H|X) > 0.

Then, we need to present the third moment of i(X;Y ) is less than infinite.

T (X;Y ) = E[|i(X;Y )− I(X;Y )|3]

≤ E[|p(Y,H|X)|3] + E[| 1∑
X′∈At P (X′)p(Y,H|X′)

|3] + 2I(X;Y )3 (2.34)

≤ |B|(3e−1 log e)3 + 2I(X;Y )3, (2.35)

where (2.34) follows from Holder’s inequality and (2.35) follows from

max0<x<1{x log3 x} = 0 at x = 1 and max0<x<1{x log3 1
x
} = (3e−1 log e)3 at x = e−3.

We denote i(Xn;Y n) =
∑

n i(X;Y ), and let its second moment
∑

n U(X;Y ) be

nonzero and its third moment
∑

n E[|i(X;Y ) − I(X;Y )|3] < ∞. Thus, Theorem 3

is still applicable to i(Xn;Y n).

Theorem 4. [DT Bound] For any input distribution, there exists a code with M

codewords and an error probability ϵ not exceeding

ϵ ≤ E
[
exp

{
−
[
i(X;Y )− log

M − 1

2

]+}]
, (2.36)
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where [·]+ denotes max{·, 0}.

According to the DT bound, we have ϵ ≤ E
[
exp

{
− [i(Xn;Y n)− log M−1

2
)]+

}]
.

In the sequel, we prove that there exist some λ values, so that

ϵ ≥ E
[
exp{0}1{i(Xn;Y n)−log λ≤0}

]
+ E

[
exp

{
− i(Xn;Y n) + log λ

}
1{i(Xn;Y n)−log λ>0}

]
= P

[
i(Xn;Y n) ≤ log λ

]
+ λE

[
exp

{
− i(Xn;Y n)

}
1{i(Xn;Y n)>log λ}

]
. (2.37)

The first step is to obtain the maximum of the first part of the right-hand side of

(2.37). After applying Theorem 3, we have

P
[
i(Xn;Y n) ≤ nI(X;Y )− τ

√
nU(X;Y )

]
≤ 6T (X;Y )
√
nU(X;Y )

3
2

+Q(τ). (2.38)

We assume

log λ = nI(X;Y )− τ
√
nU(X;Y ), (2.39)

and

P
[
i(Xn;Y n) ≤ log λ

]
≤ 6T (X;Y )
√
nU(X;Y )

3
2

+Q(τ). (2.40)

The maximum of the second part of the right-hand side of (2.37) is given below. For

0 ≤ i <∞ and any ∆ > 0,

P
[
−

√
nU(X;Y )(τ − i∆√

nU(X;Y )
) ≤ i(Xn;Y n) (2.41)

− nI(X;Y ) ≤ −
√
nU(X;Y )(τ − (i+ 1)∆√

nU(X;Y )
)
]

= P
[
log λ+ i∆ ≤ i(Xn;Y n) ≤ log λ+ (i+ 1)∆

]
(2.42)

≤ 12T (X;Y )
√
nU(X;Y )

3
2

+Q(τ +
i∆√

nU(X;Y )
)−Q(τ + (i+ 1)∆√

nU(X;Y )
), (2.43)
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where (2.42) is obtained by applying Theorem 3 twice. Then, we have

E
[
exp

{
− i(Xn;Y n)

}
1{i(Xn;Y n)>log λ}

]
=

∞∑
i=0

exp{−(log λ+ i∆)}P
[
log λ+ i∆ ≤ i(Xn;Y n) ≤ log λ+ (i+ 1)∆

]
(2.44)

≤
(

∆√
2π

√
nU(X;Y )

+
12T (X;Y )
√
nU(X;Y )

3
2

) ∞∑
i=0

exp{−(log λ+ i∆)}, (2.45)

where (2.44) is a result of the Riemann integral and (2.45) follows from the fact that

for any σ, Q(x
σ
)−Q(x+∆

σ
) ≤ ∆√

2πσ
. Thus, we have

λE
[
exp

{
− i(Xn;Y n)

}
1{i(Xn;Y n)>log λ}

]
≤

(
∆√

2π
√
nU(X;Y )

+
12T (X;Y )
√
nU(X;Y )

3
2

)
exp{∆}

exp{∆} − 1
, (2.46)

where (2.46) follows for any exp{x} > 1,
∑∞

i=0 exp{−ix} =
exp{x}

exp{x}−1
. Substituting

(2.40) and (2.46) into (2.37), we have

P
[
i(Xn;Y n) ≤ log λ

]
+ λE

[
exp

{
− i(Xn;Y n)

}
1{i(Xn;Y n)>log λ}

]
≤ Q(τ) +

1√
n

6T (X;Y )

U(X;Y )
3
2

(
1 + 2

exp{∆}
exp{∆} − 1

+
U(X;Y )∆ exp{∆}√

2π6T (X;Y )(exp{∆} − 1)

)
.

(2.47)

Based on (2.37), we can assume that the right hand side of (2.47) equals to ϵ, then

we obtain the value of τ

τ = Q−1
(
ϵ− 1√

n

6T (X;Y )

U(X;Y )
3
2

(
1 + 2

exp{∆}
exp{∆} − 1

+
U(X;Y )∆ exp{∆}√

2π6T (X;Y )(exp{∆} − 1)

))
.

(2.48)

For large n, the second item inside the Q function of (2.48) vanishes. There-

fore, we can obtain τ = Q−1(ϵ) + O( 1√
n
). Then, we have log λ = nI(X;Y ) −

Q−1(ϵ)
√
nU(X;Y ) +O( 1√

n
).

Thus, we finally obtain

R ≥ I(X;Y )−Q−1(ϵ)

√
U(X;Y )

n
+

1

n
+O(n− 3

2 ). (2.49)
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After we complete the achievability part, we move to the proof of the converse part.

The important theorem is shown below

Theorem 5 (Converse). Every (M, ϵ) code with codewords belonging to F satisfies

M ≤ inf
QY

sup
x∈F

1

β1−ϵ(x,QY )
, (2.50)

where the infimum is over all distributions QY on B, and A and B denote as the

n-fold Cartesian products of alphabets A and B. If A = An, M = |A|k, and A is

a finite field, a random linear code with its input distribution being equiprobable on

A can be constructed by a random n× k matrix whose entries are independent and

equiprobable on A. The M codewords of this random linear code can be generated

by the products of the aforementioned matrix and every vector in Ak.

The cost constraint on each codeword can be defined by a subset F ⊂ A of per-

missible inputs. And we have

βα(x,QY ) ≥ sup
γ>0

1

γ

(
α− PY |X=x

[dPY |X=x

dQY

≥ γ
])
, (2.51)

where
dPY |X=x

dQY
denotes the Radon-Nikodym derivative between two distributions

PY |X=x and QY .

Then we have

logM ≤ − log βn1−ϵ(x
n, PY n). (2.52)

By applying the following lemma which is shown below,

Lemma 1. Define two measures on An: Q =
∏n

i=1Qi and P =
∏n

i=1 Pi, where

two measures Qi and Pi belong to the measurable space A. And define Dn =

1
n

∑n
i=1D(Qi||Pi) and Vn = 1

n

∑n
i=1

∫
(log dQi

dPi
)2dQi −D(Qi||Pi)2.

Assuming that all quantities are finite and Vn > 0. Then, we have

log βα ≥ −nDn −
√

2nVn
α

+ log
α

2
. (2.53)
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Then we utilize the same procedure as the achievability part, we have

logM ≤ nI(X;Y ) +
√
nU(X;Y )Q−1(1− ϵ) + 1

2
log n. (2.54)

R ≤ I(X;Y )−Q−1(ϵ)

√
U(X;Y )

n
+

1

2n
log n+O(n− 3

2 ). (2.55)

2.2.2 Fundamentals of SPB59

In this subsection, we briefly introduce the fundamentals of SPB59. Shannon [16]

explored various scenarios and presented formulas with varying levels of simplicity

and accuracy for computing them. His focus was on the scenario where all codewords

require equal energy for transmission, which was a characteristic of Phase-Shift

Keying (PSK) modulation. He aimed to find the most precise formula for this

specific case. The equal energy requirement for transmitting codewords implies

that the transmitted signals (x1, x2, . . . , xn) occupy positions on a sphere, S with

radius
√
nEs, where Es denotes the average energy of the transmitted signal. There

are the total number of 2Rn codewords, where R represents the coding rate, each

corresponding to a distinct point on S. These points can be used to define Voronoi

cells, which are the convex regions in Rn comprising of 2Rn points whose distance

to the given point are smaller than that to any of the remaining 2Rn − 1 points.

As all points reside on the surface of the sphere, each Voronoi cell takes the

form of a polyhedral cone, whose solid angle is the angle at a vertex subtended

by the face of the cone, bounded by at most 2Rn − 1 hyperplanes that intersect

at the origin. Since 2Rn cones collectively cut the entire Rn space, i.e., the whole

sphere, the summation of the solid angles of 2Rn cones equals that of Rn, which

in the specific case the summation is equivalent to the total surface area of the

unit sphere. The additive white Gaussian noise (AWGN) modifies the area of the

polygon base, i.e., more noise means larger size of the area. The error probability of
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maximum likelihood (ML) decoder occurs when the AWGN causes the area of the

polygon base of one codeword to overlap that of another codeword. The PDF of the

noise moving the code point a distance d is shown as follows

1

(2π)n/2
exp{−1

2
d2}dV, (2.56)

where dV denotes the element of the volume. Thus, the differential probability for

a circular cone of the half angle θ is

1

(
√
2π)n

exp
[−(r2 + A2n− 2rA

√
n cos θ)

2

][(n− 1)π(n−1)/2(r sin θ)n−2

Γ(n+1
2
)

]
rdrdθ,

(2.57)

where r denotes the radius, θ represents the solid angle, and A denotes the SNR of√
2Es/N0.

For any angle θ, the probability Pe,SPB59 that the noise makes the area of the

polygon base overlap another point is

Pe,SPB59 =
(n− 1)e−nA

2/2

√
2π2(n−1)/2Γ(n+1

2
)

∫ π/2

θ

(sin θ)n−2

∫ ∞

0

rn−1 exp{−1

2
r2

+
√
nrA cos θ}drdθ +

∫ ∞

√
nA

1√
2π

exp{−1

2
t2}dt. (2.58)

To complete the SPB59, we need to obtain the relation between θ and R. The total

area of the circular cone of half angle θ is

Ω(θ) =
2π(n−1)/2

Γ(n−1
2
)

∫ θ

0

(sinϕ)n−2dϕ. (2.59)

And the surface of the n-dimensional sphere of unit radius is

Ω(π) =
2π(n−1)/2

Γ(n−1
2
)

∫ π

0

(sinϕ)n−2dϕ. (2.60)

By solving the equation Ω(θ)
Ω(π)

= 2−nR, for all θ < π/2, we have the approximation as

follows

Γ(n/2)(sin θ)n−1

2Γ(n+1
2
)π1/2 cos θ

(1− tan2 θ

n
) ≤ 2−nR ≤ Γ(n/2)(sin θ)n−1

2Γ(n+1
2
)π1/2 cos θ

. (2.61)
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2.2.3 Fundamental of SPB67

This subsection briefly demonstrates the fundamentals of SPB67. In [41], the

authors considers a discrete memoryless channel with the finite input alphabet

{1, 2, . . . , K} whose input distribution is q = (q1, q2, . . . , qk), and the finite out-

put alphabet {1, 2, . . . , J}. The transition probabilities were defined as P (j|k), 1 ≤

k ≤ K, 1 ≤ j ≤ J . They get the lower bound for the fixed composition codes which

the numbers of occurrences of the input letter k, 1 ≤ k ≤ K were exactly qkn. For

any 0 < ρ < 1, we have

Pe,SPB67 >
1

4
exp

{
n

K∑
k=1

qk

[
µk(ρ)− ρµ′

k(ρ)
]
− ρ

√
2
∑K

k=1 qkµ
′′
k(ρ)

n

}
, (2.62)

where µk(ρ) = ln
∑J

j=1 P (j|k)1−ρf(j)ρ, and f(j) is any function as long as the

summation of all f(j) equals to 1, and µ′
k(ρ) and µ′′

k(ρ) are the first and second

derivative of µk(ρ) with respect to ρ.

To attain the most optimal result from this starting point, the authors have

employed a combination of convex optimization and variational calculus, which led

them to select the function f(j) as follows

f(j) =

(∑K
k=1 qk,ρP (j|k)1−ρ

)1/(1−ρ)

∑J
j′=1

(∑K
k=1 qk,ρP (j

′|k)1−ρ
)1/(1−ρ) , (2.63)

where the input distribution qk,ρ is chose to maximize E0(ρ) which is defined below

E0(ρ) = − ln
J∑
j=1

[ K∑
k=1

qkP (j|k)1−ρ
]1/(1−ρ)

. (2.64)

It is easy to prove that the quantity

K∑
k=1

qk

[
µk(ρ) + (1− ρ)µ′

k(ρ)
]
− (1− ρ)

√
2
∑K

k=1 qkµ
′′
k(ρ)

n
(2.65)
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is monotonic increase starting from ρ = 0 to 1 and always negative. Thus, there

exists ρ̄ ∈ [0, 1] that satisfies the following equation

2−nR =
1

4
exp

{
n

K∑
k=1

qk

[
µk(ρ) + (1− ρ)µ′

k(ρ)
]
− (1− ρ)

√
2
∑K

k=1 qkµ
′′
k(ρ)

n

}
, (2.66)

where R ∈ [ 2
n
, C + 2

n
+

√
2/n

∑K
k=1 qkµ

′′
k(ρ)

ln 2
] and C = dE0(ρ)

dρ
(0) denotes the channel

capacity. For sufficiently large n, it is still easy to prove that the quantity

K∑
k=1

qk

[
µk(ρ)− ρµ′

k(ρ)
]
− ρ

√
2
∑K

k=1 qkµ
′′
k(ρ)

n
(2.67)

is monotonic decrease as a function of ρ. Thus, by selecting ρ = ρ̄, we have

K∑
k=1

qkµ
′
k(ρ) =

ln 2

1− ρ̄
(−R +

2

n
)− 1

1− ρ̄

K∑
k=1

qkµk(ρ̄) +

√
2
∑K

k=1 qkµ
′′
k(ρ̄)

n
. (2.68)

By eliminating
∑K

k=1 qkµ
′
k(ρ) in (2.62), the optimal lower bound is achieved as follows

Pe,SPB67 >
1

4
exp

{
n
[∑K

k=1 qkµk(ρ̄)

1− ρ̄
+

ρ̄

1− ρ̄
(
R− 2

n

)
ln 2 + 2ρ̄

√
2
∑K

k=1 qkµ
′′
k(ρ̄)

n

]}

=
1

4
exp

{
− n

[
E0(

ρ̄

1− ρ̄
)− ρ̄

1− ρ̄
(
R− 2

n

)
log 2 + 2ρ̄

√
2
∑K

k=1 qkµ
′′
k(ρ̄)

n

]}
.

2.3 Forward Error Control Coding

In this section, we give a brief discussion on the Forward error control coding

(FECC), commonly referred to as channel coding, which is a widely used error

detection and correction technique that enhances the reliability of transmission in

existing communication networks. The fundamental concept behind error control

coding is to append code bits to the information bits, thus reducing the BER of the

received signal when it is transmitted through a noisy channel. The earliest error

control code, known as the Hamming code, was developed by Richard Hamming [42]
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in 1950. In the ensuing decades, various error control codes were invented for use

in different applications and situations. There are two primary categories of error

control codes, including BCH code and polar code.

1. BCH codes comprise a vast and robust category of cyclic codes capable of

correcting random number of errors. This category represents a notable ex-

tension of the Hamming code with the capability of correcting multiple errors.

Only binary BCH codes are considered. For any positive integers m ≥ 3 and

t < 2m− 1, there exists a binary BCH code with blocklength n = 2m − 1, the

total number of the parity check digits in a single codeword less than mt, and

the minimum distance of the BCH code d larger than 2t+ 1. We refer to this

code as an BCH code capable of correcting t errors.

Let α denote a primitive element in the Galois field of order 2m, GF (2m).

In order to encode the BCH code, the generator polynomial is required. This

polynomial of the BCH code with blocklength 2m−1 is defined as g(x). If g(x)

has roots α, α2, . . . , α2t, it can be seen as the lowest degree polynomial over Ga-

lois field of order 2, GF (2). Since its roots α, α2, . . . , α2t and β, β2, . . . , β2t are

mutual conjugate with each other, where β is selected from (α2, α3, . . . , αn−1).

Therefore, β, β2, . . . , β2t are g(x)’s roots as well. Due to the fact that the gener-

ator polynomial is the least common multiple of 2t minimal polynomial, we de-

note the minimal polynomial of αi as ϕi(x). From the above argument, the gen-

erator polynomial can be rewritten as g(x) = LCM{ϕ1(x), ϕ2(x), . . . , ϕ2t(x)},

where LCM{·} represents the least common multiple of ·. If i is even, it can

be rewritten as an odd number multiplied by an even number, i.e., i = 2li′,

where i′ is odd and l is larger than 1. Then α to the even power of i αi can

be transformed to (αi
′
)2l. We can define α to the even power of i αi is a

conjugate of α to the odd power of i′ αi
′
. Then we have the minimal poly-
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nomials of αi ϕi(x) which is equal to the minimal polynomial of αi
′
ϕi′(x).

Thus, by eliminating all the even number i and keeping all the odd number

i′, it is easy to obtain that g(x) is the least common multiple of the minimal

polynomial of all odd number i′, i.e., ϕ1(x), ϕ3(x), . . . , ϕ2t−1(x). The degree of

the generator polynomial g(x) is not larger than mt, which implies the above

mentioned feature of the binary BCH code, i.e., the total number of the parity

check bits cannot exceed mt. When t is relatively small, mt precisely equals

the total number of parity-check bits. BCH codes that are defined using α

as a primitive element are typically referred to as primitive (or narrow-sense)

BCH codes.

For the decoding BCH code, An BCH code capable of correcting t errors with

blocklength n = 2m − 1 can be defined as follows: An n-bit binary vector

r = (r0, r1, . . . , rn−1) is considered a codeword if and only if the polynomial

r(x) = r0+ r1x+ · · ·+ rn−1xn−1 has the roots α, α
2, . . . , α2t. As αi is a root of

r(x) for 1 ≤ i ≤ 2t, it follows that r(αi) = r0+r1α
i+r2α

2i+· · ·+rn−1α
(n−1)i =

0. We can represent this equality as a matrix product, as shown below

(r0, r1, . . . , rn−1)



1

αi

α2i

...

α(n−1)i


= 0, (2.69)

for 1 ≤ i ≤ 2t. Let

H =



1 α α2 . . . αn−1

1 (α2) (α2)2 . . . (α2)n−1

...
...

...
. . .

...

1 (α2t) (α2t)2 . . . (α2t)n−1


. (2.70)
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For the BCH code capable of correcting t errors, if r = (r0, r1, . . . , rn−1) is a

codeword, then rHH = 0. If an n-bit vector r satisfies the aforementioned

condition, then αi is a root of r(x). Consequently, r is a codeword in the

BCH code capable of correcting t errors. The parity-check matrix H is used

to check for errors in the code. If αj is a conjugate of αi for some i and j, then

r(αj) = 0⇔ r(αi) = 0. H can be reduced to

H =



1 α α2 . . . αn−1

1 (α3) (α3)2 . . . (α3)n−1

...
...

...
. . .

...

1 (α2t−1) (α2t−1)2 . . . (α2t−1)n−1


. (2.71)

By replacing each entry of H with its corresponding m-bit binary vector in

column form over GF (2), we can generate the parity-check matrix to decode

the BCH code.

2. Polar codes, invented by Erdal Arikan [43] in 2009, are the first type of error

control codes capable of achieving channel capacity for binary-input, discrete,

memoryless symmetric (B-DMS) channels. Polar codes offer the benefit of

efficient encoding and decoding, with complexity O(N logN). The concept of

polar codes stems from channel polarization, which transforms N branches of

a symmetric channel, whose capacity is defined as the mutual information of

the channel W I(W ), into nearly perfect or entirely noisy channels. Out of

N channels, the channels with the capacity of I(W ) tend to be the perfect

channels, while the channels with the capacity of 1 − I(W ) tend to be the

fully noisy channels. Consequently, the total number K of the information

bits in the N blocklength are only sent to pass the perfect channels, while

the rest N − K bits to other fully noisy channels are set as the frozen bits
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which is zero. As the number N approaches infinity, the fraction of perfect

channels approaches the channel capacity of I(W ). To encode the information

vector b = (b1, b2, . . . , bK), the encoder constructs an intermediate vector x =

(x1, x2, . . . , xN) of length N . The elements xi, i ∈ I ⊂ {1, 2, . . . , N} contain

the information bits, while the other elements xj, j ∈ Fc ⊂ {1, 2, . . . , N}

contain frozen bits (e.g., zeros) that are pre-determined which means that the

positions of the frozen bits are fully known at the transmitter and receiver

ends. The intermediate sequence x can then be encoded into a codeword

vector u = (u1, u2, . . . , uN) as u = xGN = x(G2)
⊗n, where n = logN . Here,

(G2)
⊗n denotes the n-th Kronecker power of matrix G2, where

G2 =

1 0

1 1

 . (2.72)

Thus, the GN is the generator matrix of the polar code.

For the SCL decoding, the algorithm, introduced in [44], transforms the origi-

nal SC decoding into a list-first search while satisfying complexity constraints.

At each level s ∈ S, the decoder duplicates into two parallel decoding threads

whose countable set is defined as T , allowing decoding in either direction.

However, to prevent an exponential increase in decoding threads, at each step,

only the L most probable threads (out of 2L possibilities) are retained once the

number of parallel decoding threads reaches L. The decoder produces a list of

L candidates x̂(l), l ∈ {0, 1, . . . , L−1}, corresponding to L (out of 2NR) paths

on the binary tree. The most probable path is selected as the final estimate.

This procedure is described in Algorithm 1, where cs denotes the s-th element
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of a vector x, xs−1
0 represents the sub-vector [x0, x1, . . . , xs−1]

T . Additionally,

W s
n(y,x

s−1
0 |xs) =

∑
xN−1
s+1 ∈XN−s−1

1

2N−1
Wn(y|x)

=
∑

xN−1
s+1 ∈XN−s−1

1

2N−1

N−1∏
s=0

W (ys|us),

where us denotes the s-th element of vector u = xGN .
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Algorithm 1: SCL Decoding [44]

1 T ← {0};

2 for s = 0, 1, . . . , N − 1 do

3 if s ̸∈ S then

4 x̂s(l)← xs for ∀l ∈ T ;

5 else

6 if |T | < L then

7 foreach l ∈ T do

8 Duplicate Path(l);

9 else

10 Calculate Pl,x̂ = W
(s)
n (y, x̂s−1

0 (l) |x) for ∀l ∈ T and ∀x ∈ {0, 1};

11 δ ← the mean value of 2L tentative Pl,x;

12 foreach l ∈ L which satisfies Pl,0 < δ and Pl,1 < δ do

13 Eliminate the thread l and set T ← T \ {l};

14 for l ∈ T do

15 if Pl,x > δ while Pl,x⊗1 < δ then

16 x̂s(l)← x;

17 else

18 Duplicate Path(l);

19 l∗ ← argmaxl∈T W
(N−1)
n (y, x̂N−1

0 (l) | x̂N (l));

20 return x̂S [l
∗];

21 subroutine Duplicate Path(l)

22 Copy the thread l into a new thread l′ ̸∈ T ;

23 T ← T ∪ {l′};

24 x̂s[l]← 0;

25 x̂s[l
′]← 1;



Chapter 3

Analytical Bounds for the Optimal

Code over the Reconfigurable

Intelligent Surface at a Short

Blocklength

3.1 Introdution

In this chapter, we derives the sphere-packing bounds to evaluate the performance

of an RIS-assisted wireless system at a short blocklength regime. Compared with

the original work for sphere-packing bound with an infinite blocklength over an

AWGN channel in [16], we derive the expression for the lower and upper bounds over

the RIS-assisted system in order to utilize our mathematical framework at a short

blocklength regime. Then, we use Wald sequential t-test lemma and the Riemann

sum to obtain the closed-form expression for the bounds. At a short blocklength

regime, the approximation of the angle in the sphere-packing theory, which is used

41
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Figure 3.1: System model for the RIS-assisted wireless system

to determine the code rate in [16] [34], will have a margin of error. To overcome it,

we derive the expression to calculate the exact value of the angle.

3.2 System Model

We consider an RIS-assisted wireless communication system with the direct link

which is blocked by an obstacle (i.e. a wall or building) between the transmit and

receive antenna shown in Fig. 3.1. A rectangular RIS of Nris elements is utilized to

improve the whole system performance, and only reflection-type RIS is considered

in this letter. We assume that all the RIS elements are ideal which means that

each of them can independently influence the phase and the reflection angle of the

impinging wave.

The signal vector at the receive antenna is given by

y(i) =
√
PrA(i)s(i) + w(i), i = 1, . . . , n, (3.1)
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where w(i) is the equivalent baseband AWGN with a zero mean and variance N ,

i.e., w(i) ∼ CN (0, N0), and A(i) is the channel coefficient, Pr is the average power at

the receiver which can be obtained from the path-loss model [45] as Pr =
PGtGrλ2

16π2(d21+d
2
2)
,

where P is signal power at the transmitter, and λ is the wavelength in meters, and

Gt and Gr are the transmitter and receiver antenna gains. d1 and d2 denote the

distance between the transmitter and the RIS, the RIS and the receiver, respectively.

We assume that the binary phase shift keying (BPSK) modulation is adopted in the

air interface. The transmitted signal s(i) ∈ A, i = 1, . . . , n, where A = {−1,+1}.

We denote the baseband equivalent channels between the transmitter and the m-

th reflecting element of the RIS by hm = [hm(1), . . . , hm(n)], ∀m = 1, . . . , Nris with

hm(i) = |hm(i)|ejϕm(i), where |hm(i)| and ϕm(i) represent the amplitude and phase

of the channel coefficient hm(i), respectively. The reflecting channels between the

m-th reflecting element and the receiver are gm = [gm(1), . . . , gm(n)] with gm(i) =

|gm(i)|ejφm(i), where |gm(i)| and φm(i) represent the amplitude and phase of the

channel coefficient gm(i), respectively. The channels are assumed to be i.i.d., and

their envelops follow the Rayleigh distribution, i.e., we have hm(i), gm(i) ∼ CN (0, 1).

Then, the channel coefficient A(i) of our RIS-assisted system can be expressed as

A(i) =

Nris∑
m=1

ηm(i)hm(i)gm(i), (3.2)

where ηm(i) denotes the reflecting coefficient of the m-th reflecting element with

ηm(i) = |ηm(i)|ejθm(i), where |ηm(i)| represents the reflecting gain and θm(i) is the

phase shift configured by the m-th reflecting element. Without loss of generality,

we assume the reflecting gain |ηm(i)| = 1. In addition, we assume that the phases of

the channels hm(i) and gm(i) are perfectly known to the transmitter, and that the

transmitter can choose the optimal phase shifting. Hence, (3.2) can be re-written
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Figure 3.2: Plane of cone of angle α

as

A(i) =

Nris∑
m=1

|hm(i)| · |gm(i)| (3.3)

In Fig. 3.2, we assume that O is the origin of a n dimensional sphere and S is

a signal point which situates on the surface of the n dimensional sphere. α denotes

the angle of the cone intersected by the two outer lines and the angle α + dα is

the slightly larger angle which represents a larger cone. The radius of outer cone is

r + dr and that of the inner cone is r. Therefore, the two sides of the ring shaped

plane is rdα and dr, respectively. d presents the distance between the signal point

S and the above ring. We consider that there is a channel code with the number of

codewordsM . For notation simplicity, in the following we use A instead of A(i), the
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code can place its M points arbitrarily on the surface of the n dimensional sphere

whose radius is A
√
n P
N0

.

3.3 Performance Analysis

Theorem 6. For any α1 < π
2
, given the channel coefficient A, the conditional

probability of error Pe, opt(n,R|A) for the optimal code with the length n, and code

rate R can be bounded by

Φ(α, n,A) ≤ Pe, opt(n,R|A) ≤ Φ(α, n,A) +
M

Λ(π, n)

∫ α1

0

Λ(α, n)dΦ(α, n,A), (3.4)

where Φ(α, n,A) denotes the probability of a signal point S in the n dimensional

sphere that n also represents the code length, which has the A
√
n P
N0

distance between

the origin point O, being moved outside the cone whose angle is α. And Λ(α, n)

denotes the n − 1 dimensional area of the cap which is cut out by the cone on the

n− 1 dimensional unit sphere. And α1 is the angle which can evenly cut the sphere

into M parts, equivalently MΛ(α1, n) = Λ(π, n).

Then by taking the expectation over the channel coefficient A, both upper and

lower bounds of the error probability Pe, opt(n,R) for the optimal code with the length

n, and code rate R can be finally obtained as

EA
[
Φ(α, n,A)

]
≤ Pe, opt(n,R) ≤ EA

[
Φ(α, n,A) +

M

Λ(π, n)

∫ α1

0

Λ(α, n)dΦ(α, n,A)
]
,

(3.5)

where the parameter α1 is determined by solving the equation

2nRΛ(α1, n) = Λ(π, n). (3.6)

The proof of Theorem 6 can be found in [16] [34].
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According to Theorem 6, at first, we need to calculate Λ(α1, n). The surface of

a n dimensional sphere with r radius can be given as

Sn(r) =
nπn/2rn−1

Γ(n+2
2
)
. (3.7)

According to the cosine law, and the fact of the n− 1 dimensional unit sphere,

we obtain that the radius of the cap is sinα. Thus, we get

Λ(α1, n) =
(n− 1)π

n−1
2

Γ(n+1
2
)

∫ α1

0

sinn−2 αdα. (3.8)

From (3.8), we can easily get

Λ(π, n) = Sn(1) =
nπn/2

Γ(n+2
2
)
. (3.9)

And in order to decrease the margin of error at the short blocklength regime and

get the exact expression for Λ(α, n), we need to calculate
∫ α
0
(sinα)n−2dα which is

defined by the recursive relationship for all n > 3

In =

∫ α

0

(sinα)n−2dα = − sinn−3 α cosα + (n− 3)

∫ α

0

cos2 α sinn−4 αdα

= − sinn−3 α cosα + (n− 3)
( ∫ α

0

sinn−4 αdα−
∫ α

0

sinn−2 αdα
)

= −sinn−3 α cosα

n− 2
+
n− 3

n− 2
In−2

and by the initial conditions

I2
△
= α; I3

△
= − cosα. (3.10)

For numerical accuracy purpose, we use this recursive relationship to compute

the value of In, then times the coefficient which is (n − 1)π
n−1
2 /Γ(n+1

2
). We can

therefore get the expression for Λ(α, n), if n is even, then

Λ(α, n) =
(n− 1)π

n−1
2

Γ(n+1
2
)

((n− 3)!!

(n− 2)!!
α− sinn−3 α cosα

n− 2

−
∑
i=0

sinn−5−2i α cosα

∏n
2

j=n
2
−i(2j − 3)∏n

2

k=n
2
−(i+1)(2k − 2)

)
(3.11)
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and if n is odd, then

Λ(α, n) = −(n− 1)π
n−1
2

Γ(n+1
2
)

((n− 3)!!

(n− 2)!!
cosα +

sinn−3 α cosα

n− 2
+
∑
i=0

sinn−5−2i α cosα·

∏n
2

j=n
2
−i(2j − 3)∏n

2

k=n
2
−(i+1)(2k − 2)

)
. (3.12)

Then we need to calculate Φ(α, n) which corresponds to the probability of signal

point S being carried outside the cone by the noise. The noise, of which the mean

value and variance are zero and one, respectively, is generated by a n dimensional

Gaussian distribution function

f(d) =
1

(2π)n/2
e−d

2/2. (3.13)

Based on the cosine law, from Fig. 3.2, we have the expression for d

d2 = r2 + A2n
P

N0

− 2rA

√
n
P

N0

cosα. (3.14)

The differential volume of the ring shaped region equals to the shaded area which

is rdrdα times the surface of a n− 1 dimensional sphere whose radius is r sin θ

dV = rdrdαSn−1(r sinα) = rdrdα
(n− 1)π

n−1
2 (r sinα)n−2

Γ(n+1
2
)

. (3.15)

We multiply the probability density in (3.13) and the differential volume in (3.15)

and then substitute d from (3.14), we can get the expression for Φ(α),

Φ(α, n,A) =
(n− 1) exp(−1

2
A2n P

N0
)

2n/2π1/2Γ(n+1
2
)

∫ π/2

α1

sinn−2 α·∫ ∞

0

rn−1 exp(−1

2
r2 + rA

√
n
P

N0

cosα)drdα +Q(A

√
n
P

N0

). (3.16)

Now, to reduce the complexity of (3.16), we want to obtain the closed form of

Φ(α, n,A) by eliminating integrals with respect to r and α, respectively. At first,
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by applying Wald sequential t-test lemma in [46], we can eliminate the integral with

respect to r as follows

∫ ∞

0

rn−1 exp(−1

2
r2 + rA

√
n
P

N0

cosα)dr

≈
√
2π∆(α, n)(

r̄(α, n)

e
)n−1 exp

(1
2
r̄2(α, n,A)

)
, (3.17)

where

r̄(α, n,A) = Ar̄(α, n) =
√
nA

(1
2

√
P

N0

cosα +

√
P cos2 α

4N0

+
1

n

)
and

∆(α, n) =
1

2

((
1+

1

4

(√
cos2 α

P

N0

+
1

4
− cosα

√
P

N0

)2)−1/2

+

√
r̄2(α, n)

r̄2(α, n) + 1
n−1

)
Then, we have

Φ(α, n,A) ≈ Q(A

√
n
P

N0

) +
(n− 1)

en−12(n−1)/2Γ(n+1
2
)∫ π/2

α1

∆(α, n)

r̄(α, n,A) sin2 α
exp

(
−n

(1
2

A2P

N0

− 1

2n
r̄2(α, n,A)−log(r̄(α, n,A) sinα)

))
dα.

(3.18)

Then, to eliminate the integral with respect to α, we utilize the Riemann sum.

A partition of the interval [α1, π/2] is a finite sequence of numbers of the form

α1 = α1 < α2 < · · · < α∞ = π/2 with the subinterval [αi, αi+1]. Due to the fact

that the exponential part in (3.18) has its maximum at α1 in the interval [α1, π/2],

the whole function of (3.18) will go down exponentially. Therefore, we assume that

the first K subintervals dominate the integral and the length of each subinterval

is the same and αi+1 − αi = n−1. Then, we have the closed-form expression for
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Φ(α, n,A) as follows

Φ(α, n,A) ≈ Q(A

√
n
P

N0

) +
1

en−12(n−1)/2Γ(n+1
2
)

K∑
i=1

∆(αi +
1
2n
, n)

r̄(αi +
1
2n
, n, A) sin2(αi +

1
2n
)
·

exp
(
− n

(1
2

A2P

N0

− 1

2n
r̄2(αi +

1

2n
, n,A)− log

(
r̄(αi +

1

2n
, n,A) sin(αi +

1

2n
)
)))
(3.19)

Additionally, we focus on our upper bound. From (3.18), We have

dΦ(α, n,A) =
(n− 1)

2(n−1)/2Γ(n+1
2
)

(
∆(α, n)(

r̄(α, n,A)

e
)n−1 sinn−2 α

)
·

exp
(
− 1

2
A2n

P

N0

+
1

2
r̄2(α, n,A)

)
dα (3.20)

Then, we can also use the Riemann sum to obtain the closed form of

Λ(α, n)dΦ(α, n,A). A partition of the interval [0, α1] is a finite sequence of numbers

of the form 0 = α−∞ < · · · < α0 < α1 = α1 with the subinterval [αi, αi+1]. We

utilize the last K subintervals to the Riemann sum.∫ α1

0

Λ(α, n)dΦ(α, n,A) ≈ 1

2(n−1)/2Γ(n+1
2
)

1∑
i=−K+1

(
Λ(αi, n)·

∆(αi, n)(
r̄(αi, n, A)

e
)n−1 sinn−2 αi

)
exp

(
− 1

2
A2n

P

N0

+
1

2
r̄2(αi, n, A)

)
. (3.21)

Moreover, we need to get the probability density of the channel coefficient A to cal-

culate the expectation over A. The PDF of A in (3.3) can be statistically evaluated

as [30]

fA(x) =
xa

ba+1Γ(a+ 1)
exp

(
− x

b

)
, (3.22)

where

a =
k21
k2
− 1 and b =

k2
k1
, (3.23)

where k1 =
Nrisπ

4
and k2 = Nris(1− π2

16
).

Finally, we combine (3.22) and (3.19) together to obtain the closed-form ex-

pression for the lower bound denoted as PL
e, opt(n,R) in (3.24) which is shown as
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follows.

PL
e, opt(n,R) =

1

en−12(n−1)/2Γ(n+1
2
)

K∑
i=1

∆(αi +
1
2n
, n)

r̄2(αi +
1
2n
, n) sin3(αi +

1
2n
)
·

X−a
2 (αi +

1

2n
, n)

(√
X(αi +

1

2n
, n)Γ

(a− 1

2

)
1F1

(a− 1

2
,
1

2
,

1

4b2X(αi +
1
2n
, n)

)
− Γ

(a
2

)
1F1

(a
2
,
1

2
,

1

4b2X(αi +
1
2n
, n)

))
. (3.24)

Then we combine (3.22) and (3.21) together to obtain the upper bound as

PU
e, opt(n,R) for the case that only n is even in (3.25), which is shown as follows.

PU
e, opt(n,R) = PL

e, opt(n,R) +
2nRΓ((n+ 2)/2)

nπn/22(n−1)/2Γ(n+1
2
)

1∑
i=−K+1

Λ(αi, n)∆(αi, n)

r̄2(αi, n) sin
3(αi)

·

(√
X(αi, n)Γ

(a− 1

2

)
1F1

(a− 1

2
,
1

2
,

1

4b2X(αi, n)

)
− Γ

(a
2

)
1F1

(a
2
,
1

2
,

1

4b2X(αi, n)

))
,

(3.25)

where X(α, n) = nP
2N0
− r̄2(α,n)

2
and a, b are given in (3.23).

Compared with the approximation of α1 in [16] [34] which is tightly suitable

when R and n grow relatively large. To compute the exact value of α1 in (3.6) at a

short blocklength regime, in the case of an even n, we use (3.11) divided by (3.9) to

obtain the exact value of α1. Otherwise, we use (3.12) divided by (3.9) to calculate

α1.

3.4 Simulation Results

In this section, we compare the lower and upper bounds for different blocklength and

numbers of the RIS elements. Figs. 3.3 and 3.4 illustrate the comparison between the

lower and upper bounds on the ML decoding error probability for the codes with the

code length n = 128 bits and n = 64 bits and with the same code rate R = 0.5 bits

per channel use over the perfect Rayleigh fading channel in Section 3.3 for different
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Figure 3.3: A comparison between the lower and upper bounds on the ML decoding
error probability for the codes of code length n = 64 bits and n = 128 bits with
the same code rate R = 0.5 bits per channel use over the perfect Rayleigh fading
channel in Section 3.3 for Nris = 4.

numbers of RIS elements 4 and 64, respectively. We define the transmit SNR as

P
N0

in decibels (dB) and set Pr = 0dB, the wavelength λ = 0.125m (the operating

frequency fc = 2.4 GHz), Gt = Gr = 8 (9.03 dBi) and d1 = d2 = 10m. We utilize

the Polar code with SCL decoder and the EBCH code with OSD decoder to validate

our bounds. All the simulations are averaged by 106 Monte Carlo realization. We

set the PPV bound in [17] as a reference. From Fig. 3.3, we observe that at the low

SNR regime, the performance of the code with the short blocklength, i.e., n = 64,

is slightly better than the one with the long blocklength, i.e., n = 128,. When
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Figure 3.4: A comparison between the lower and upper bounds on the ML decoding
error probability for the codes of code length n = 64 bits and n = 128 bits with
the same code rate R = 0.5 bits per channel use over the perfect Rayleigh fading
channel in Section 3.3 for Nris = 64.

we increase the SNR, the long code will finally outperform the short code. The

SNR’s value of the intersection on the lower bounds is approximately 40.25 dB. It

indicates that the short code is preferred when the targeted SNR is less than 40.25

dB. Otherwise, we can choose the long code to accomplish better transmission. In

Fig. 3.3, in terms of the code length of 128 bits, for a decoding error probability of

10−2, the gap between the lower and upper bounds is 0.10 dB. When the decoding

error probability level is low i.e., 10−4, the gap decreases to 0.15 dB. This margin

means that if the performance of the actual code is in this area, the correspondingly
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actual code can be seen as the optimal code. Moreover, the SNR’s value of the

intersection on the upper bounds is basically the same as the lower bounds, which

is around 40.25 dB.

Fig. 3.4 shows, as Nris increase from 4 to 64, the comparison between the

performances of both the lower and upper bounds of the different code length with

the same code rate. When it comes to n = 64 bits, for the same decoding error

probability of 10−4, the gap between its lower and upper bounds decreases from 0.85

dB to 0.25 dB. Thus, this result indicates that when the number of RIS elements

increases, the gap between the lower and upper bounds narrows. Furthermore, the

SNR’s value of the intersection on the lower bounds is approximately 15.50 dB.

Compared with Fig. 3.3, it indicates that with the increase of the RIS elements, the

short code outperforms the long code over a more extensive range of SNR.

In this section, we derive the lower and upper bounds for the optimal code over

the RIS system. If the BLER performance of the practical code falls within the

region bounded by the lower and upper bounds, it is the optimal code for that

particular channel. Obviously, the investigated EBCH code and the polar code are

not the optimal code for the investigated RIS channel, that is the reason why their

BLER are outside the derived bounds. To further illustrate this, we also reproduced

the lower and upper bounds over the AWGN channel from the original study [15]

and simulated the investigated EBCH code over the AWGN channel. We set the

code rate R = 0.5, and the blocklength n = 128. The simulation result for the

(128, 64)-EBCH code with OSD decoder (the order is chosen to 3) is also shown in

Fig. 3.5. All the simulations are averaged over 105 Monte Carlo realizations. It can

be seen that the BLER falls outside the bounds as well.
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Figure 3.5: A comparison between the (128, 64)-EBCH code with OSD decoder
whose order is 3 and the bounds on the ML decoding error probability for the codes
of code length n = 64 bits and n = 128 bits over the AWGN channel.

3.5 Summary

In this chapter, we investigated the lower and upper bounds of the decoding error

probability for the optimal code of the specific length, SNR and code rate over the

RIS assisted communication system at a short blocklength regime. The sphere-

packing technique is mainly used to derive our bounds with the closed-form expres-

sion for both the lower and upper bounds. The numerical findings demonstrate how

different blocklength performs over the RIS-assisted wireless system for a given code

rate and how exactly the number of RIS elements improves the signal quality at the

receiver side.



Chapter 4

Performance Analysis for

Reconfigurable Intelligent Surface

Assisted MIMO Systems

4.1 Introduction

In this chapter, we use the Berry-Esseen theorem, mutual information and uncon-

ditional information variance as the fundamental mathematical basis to obtain the

achievability and converse bounds for the maximal achievable rate R given a fixed

maximal error probability ϵ and blocklength n for an RIS MIMO system. To derive

the achievability bound, we use the Berry-Esseen theorem and some other inequal-

ities and show the channel output’s exact PDF. To derive our converse bound, we

combine the maximum of the auxiliary channel’s PDF, which is a product of m

copies of the PDF of Gamma distributed variables by the Mellin transform and

Meijer G-function, and the maximum of its output space by the Lebesgue measure.

Furthermore, we utilize the saddle point approximation and the Taylor series expan-

55
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Figure 4.1: System Model.

sion to find the closed forms for both the mutual information and the unconditional

information variance. In order to complete our achievability and converse bounds,

we utilize different modulation schemes in our RIS MIMO system, and compare the

performance of each modulation scheme mainly in two aspects. One is the required

blocklength to achieve a certain level of the maximal achievable rate, and the other

is how the unconditional information variance affects the convergence’s speed to the

maximal achievable rate.

4.2 System Model

We consider an RIS-assisted wireless communication system with t transmit and

r receive antennas shown in Fig. 4.1. Both of the transmitter and receiver have

multiple antennas which are placed as uniform linear arrays (ULAs). The direct

link is blocked by an obstacle (i.e. a wall or building) which is situated between

the transmit and receive antennas. A rectangular RIS of Nris elements is utilized to
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improve the whole system performance, and only reflection-type RIS is considered

in this paper. We assume that all the RIS elements are ideal which means that

each of them can independently influence the phase and the reflection angle of the

impinging wave.

We let m = min{t, r}. The signal vector at the receive antenna array is given by

Y = HX+W, (4.1)

where H ∈ Cr×t is the channel matrix, X ∈ Ct×n is the transmit signal over n

channel uses, Y ∈ Cr×n is the corresponding received signal, and W ∈ Cr×n is the

additive noise at the receiver, which is independent of H and has i.i.d. CN (0, 1)

entries.

The channel matrix H of our RIS-assisted system can be expressed as

H = H2Σ(θ)H1, (4.2)

where H1 ∈ CNris×t represents the channel between the transmitter and the RIS,

H2 ∈ Cr×Nris represents the channel between the RIS and the receiver, and Σ(θ) =

diag(θ) ∈ CNris×Nris , where θ = [θ1, . . . , θNris
]T ∈ CNris×1 represents the signal

reflecting coefficient from the RIS. In this paper, similar to the related works [47–49],

we assume that the signal reflection from any RIS element is ideal, i.e., without any

power loss. In other words, we may write θi = exp{jϕi} for i = 1, . . . , Nris, where

ϕi is the phase shift induced by the i-th RIS element, which can be flexibly adjusted

in [0, 2π)1. Equivalently, we may write |θi| = 1, i = 1, . . . , Nris.

Let us consider input and output sets A and B and a conditional probabil-

ity measure PY|X : At×n 7→ Br×n. We denote a codebook with M codewords by

1To characterize the achievable rate limit of RIS-assisted MIMO systems without perfect phase

shifting, we assume that the phase shift by each RIS element can be continuously adjusted, i.e.,

we assume that the phase shift of the RIS elements obeys the continuous uniform distribution over

the interval [0, 2π).
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(C1, . . . ,CM). A decoder is defined as a random transformation PZ|Y : Br×n 7→

{1, . . . ,M} which satisfies PZ|X(j|Cj) ≥ 1− ϵ, j = 1, . . . ,M where ϵ is the maximal

error probability. We also consider that each codeword Cj satisfies the equal power

constraint ||Cj||2 = nP , where P is the transmit power. Then, a codebook and a de-

coder whose maximal error probability is smaller than ϵ are termed as an (n,M, ϵ)

code and its coding rate is defined as R = logM
n

. In this paper, the information

density also plays an essential role, which is defined as [50]

i(X;Y )
△
= log

PY|X(y|x)
PY(y)

, (4.3)

where PY|X(y|x) denotes the conditional distribution on Br×1 for all x ∈ At×1, and

PY(y) represents the output distribution.

4.3 Achievability and Converse Bounds

In this section, we provide the definitions of achievability and converse bounds. The

achievability and converse bounds are important to the proof of the channel cod-

ing theorem. The achievability bound is a lower bound on the size of a code that

can be guaranteed to exist with a given arbitrary blocklength and error probabil-

ity. The converse bound is an upper bound on the size of any code with a given

arbitrary blocklength and error probability. The mutual information is defined as

I(X;Y )
△
= E[i(X;Y )]. Additionally, the unconditional information variance is de-

fined as U(X;Y )
△
= V ar[i(X;Y )], where V ar[·] denotes the variance of (·). More-

over, our achievability and converse bounds for the examined RIS MIMO system

are presented below.

Theorem 7. We consider a communication system with finite input alphabet A, and

the continuous output alphabet B. Let p(Y,H|X) be the corresponding conditional
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PDF on B for all X ∈ An, where H is a channel matrix. The input distribution

P (X)
△
= [q1, . . . ,qt]

T , where qi = [qi,0, . . . , qi,n], i = 1, . . . , t with qi,j being equiprob-

able, i.e., qi,j =
1
|A| . Then we define the mutual information and the unconditional

information variance as I(X;Y ) and U(X;Y ), respectively.

Thus for the RIS MIMO channel and arbitrary 0 < ϵ < 1, we have the achiev-

ability and converse bounds

I(X;Y )−
√
U(X;Y )

n
Q−1(ϵ) +

1

n
+O(n− 3

2 ) ≤ R ≤

I(X;Y )−
√
U(X;Y )

n
Q−1(ϵ+

ϵ√
n
) +

(m+ 1) log n

2n
+O(n− 3

2 ), (4.4)

where Q is the complementary Gaussian cumulative distribution function Q(x) =∫∞
x

1√
2π

exp(−u2

2
)du.

Proof. We give the key proof steps. At first, we prove that the second moment of

i(X;Y ) is nonzero and the third moment is always less than infinity. According to

the DT bound in [17], we have ϵ ≥ P[i(Xn;Y n) ≤ log λ]

+ λE[exp {−i(Xn;Y n)}1{i(Xn;Y n)>log λ}]. After applying the Berry-Esseen theorem

several times, we have P[i(Xn;Y n) ≤ log λ]+λE[exp{−i(Xn;Y n)}1{i(Xn;Y n)>log λ}] ≤

Q(τ) + 1√
n

6T (X;Y )

U(X;Y )
3
2
(1 + 2 exp{∆}

exp{∆}−1
+ U(X;Y )∆ exp{∆}√

2π6T (X;Y )(exp{∆}−1)
). Then, we can select a par-

ticular value of τ to eliminate the right hand of the above equation. Thus, we have

the achievability bound. For the converse part, we denote the auxiliary channel as

QY|X,H. After applying the Meijer G function and the Lebesgue measure, we have

the converse bound of the maximal error probability of the auxiliary channel. Ac-

cording to the binary hypothesis testing in [17], we finally obtain the converse part.

The detailed proof of Th. 7 can be found in Section 2.2.1 and Appendix A.

To accomplish the achievability bound by applying Th. 7, we need to obtain the

exact expression of both the mutual information and the unconditional variance. At
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first, for our system model, the input distribution P (X) = [q1, . . . ,qt]
T , where qi =

[
1

2
, . . . ,

1

2︸ ︷︷ ︸
n

] and qi = [
1

4
, . . . ,

1

4︸ ︷︷ ︸
n

], for BPSK and QPSK, respectively2. Additionally

the conditional PDF of a MIMO Rayleigh fading channel, p(Y,H|X), is given by

[35,51,52]

p(Y,H|X) = p(H)p(Y|X,H) =
p(H)

det(πIr)
exp

(
− (Y −HX)(Y −HX)H

)
, (4.5)

where Ir designates the r × r identity matrix and det(·) denotes the determinant.

Then

I(X;Y ) = (4.6)∫ ∞

0

∫ ∞

−∞

∑
X∈At

(
P (X)p(Y,H|X) log

{ p(Y,H|X)∑
X′∈At P (X′)p(Y,H|X′)

})
dYdH

=

|A|t∑
i=1

P (xi)
t

det(πIr)

∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
m-dimensions
(w.r.t. h)

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
m-dimensions
(w.r.t. y)

p(h) exp{−1

2
||y − hxi||2}· (4.7)

(
− log e

2
||y − hxi||2 − log

{ |A|t∑
i′=1

P (xi′)
t exp{−1

2
||y − hxi′ ||2}

})
dydh

2As long as we have the conditional distribution of different modulation scheme, we can obtain

the derivations in Section 4.3. The conditional distributions for PSK and QAM modulations

are given below. Therefore, the derivations in Section 4.3 are applicable for both PSK and QAM

signalings.For PSK modulation, let M = 2p be the size of the constellation of the PSK modulation,

and denote the input to the channel by x = (x1, x2) where the possible input values are given by

xk = (cosθk, sinθk), where θk = (2k+1)π
M , k = 0, 1, . . . ,M−1. Therefore, the conditional probability

density function of the channel output is given by p(Y,H|X) = p(h)
2πσ2 exp (− ||y−hxk||2

2σ2 ). For QAM

modulation, let M = 2p, where p is even, be the size of the constellation for the QAM modulation,

and denote the input to the channel by x = (x1, x2) where the possible input values are given by

xk = ( IkT , Jk

T ), where Ik = Jk = (2k + 1 −
√
M), k = 0, 1, . . . ,

√
M − 1 and T is a normalization

factor which T =
√

1
2

∑
k(2k + 1−

√
M)2. Therefore, the conditional probability density function

of the channel output is given by p(Y,H|X) = p(h)
2πσ2 exp (− ||y−hxk||2

2σ2 ).
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and

U(X;Y ) = (4.8)∫ ∞

0

∫ ∞

−∞

∑
X∈At

(
P (X)p(Y,H|X) log2

{ p(Y,H|X)∑
X′∈At P (X′)p(Y,H|X′)

})
dYdH

=

|A|t∑
i=1

P (xi)
t

det(πIr)

∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
r-dimensions
(w.r.t. h)

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
r-dimensions
(w.r.t. y)

p(h) exp{−1

2
||y − hxi||2}· (4.9)

(
− log e

2
||y − hxi||2 − log

{ |A|t∑
i′=1

P (xi′)
t exp{−1

2
||y − hxi′ ||2}

})2

dydh

− [I(X;Y )]2,

where x is selected equiprobably from t-dimension constellation consisted of |A|t

vectors and xi and xi′ are the i-th and i′-th points in the constellation of x. In order

to reduce the complexity of the mutual information and the unconditional variance,

we give the approximation of (4.7) and (4.9). At first, we deal with the mutual

information I(X;Y ),

I(X;Y ) = t log |A|+ 1

|A|t

|A|t∑
i=1

∫ ∞

0

∫ ∞

−∞

1

det(πIr)
p(h) exp{−1

2
∥y − hxi∥2}· (4.10)

log{
exp{−1

2
∥y − hxi∥2}∑|A|t

i′=1 exp{−1
2
∥y − hxi′∥2}

}dydh

= t log |A| − 1

|A|t ln 2

|A|t∑
i=1

∞∑
p=1

1

p

p∑
q=0

p!(−1)q

q!(p− q)!
1

det(πIr)

∫ ∞

0

∫ ∞

−∞
p(h)· (4.11)

(
Π(y,h)

)−q
+O( 1

(Π(y,h))q+1
)dydh,

where (4.11) comes from Taylor series expansion of (4.10) and

Π(y,h) =

|A|t∑
i′=1

exp
{∥∥y − qh(xi − xi′)

∥∥2

2q
−

(q + 1)
∥∥h(xi − xi′)

∥∥2

2

}
. (4.12)

Before utilizing the saddle point approximation, we need to guarantee the exis-

tence of the saddle point. For convenience of notation, we use vector ci,i′ to represent
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h(xi − xi′). Since q is positive integers, it is easy for us to validate that

Π−q(y) =
[ |A|t∑

i′

exp{
∥∥y − qci,i′∥∥2

2q
−

(q + 1)
∥∥ci,i′∥∥
2

}
]−q

> 0

lim
y→∞
{Π−q(y)} = lim

y→∞

[ |A|t∑
i′

exp{
∥∥y − qci,i′∥∥2

2q
−

(q + 1)
∥∥ci,i′∥∥
2

}
]−q
→ 0

lim
y→−∞

{Π−q(y)} = lim
y→−∞

[ |A|t∑
i′

exp{
∥∥y − qci,i′∥∥2

2q
−

(q + 1)
∥∥ci,i′∥∥
2

}
]−q
→ 0

Thus there exists a maximum value of Π−q(y), which satisfies the condition

of the saddle point approximation. Then we can assume that Π−q(y) achieves its

maximum at y = y0, which y0 satisfies ∂
∂y
Π−q(y)|y=y0 = 0

|A|t∑
i′=1

2(y0 − qci,i′)
2q

exp{
∥∥y0 − qci,i′

∥∥2

2q
−

(q + 1)
∥∥ci,i′∥∥
2

} = 0. (4.13)

After solving (4.13), we have y0 =
∑|A|t

i′=1 qρi,i′ci,i′ , where ρi,i′ =

Π(y0)/
∑|A|t

i′=1 Π(y0) is a positive number from (0, 1) and satisfies that
∑|A|t

i′=1 ρi,i′ = 1.

Therefore, we have for a non-zero number q, the multiple integrals over the complex

number vector y can be approximated by the saddle point approximation∫ ∞

−∞

1

det(πIr)

(
Π(y,h)

)−q
dy ≈

[ |A|t∑
i′=1

exp{−
∥∥h(xi − xi′)

∥∥2

3− exp{−
∥∥h(xi − xi′)

∥∥2
/4}
}
]−q

.

(4.14)

Combining (4.11) and (4.14), we eliminate the multiple integrals over the complex

vector y as

I(X;Y ) ≈ t log |A| − 1

|A|t ln 2

|A|t∑
i=1

∞∑
p=1

1

p

p∑
q=0

p!(−1)q

q!(p− q)!

∫ ∞

0

p(h)·

[ |A|t∑
i′=1

exp
{
−

∥∥h(xi − xi′)
∥∥2

3− exp{−
∥∥h(xi − xi′)

∥∥2
/4}

}]−q
dh. (4.15)

Then by observing (4.15), we take advantage of inverse Taylor series expansion,

leading to the following result.
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Lemma 2. Let t represent the number of transmitter antennas, and A denotes the

input alphabet, and p(h) represents the channel distribution, and xi denotes the

transmitted vector in the i-th transmitter antenna. The mutual information can be

approximated as

I(X;Y ) ≈ t log |A|−∫ ∞

0

p(h)
1

|A|t

|A|t∑
i=1

log
[ |A|t∑
i′=1

exp
{
−

∥∥h(xi − xi′)
∥∥2

3− exp{−
∥∥h(xi − xi′)

∥∥2
/4}

}]
dh. (4.16)

Moreover, we need to obtain the approximation of the unconditional variance

U(X;Y ). The first step is similar with the process of the approximation of I(X;Y ),

we utilize the Taylor series expansion as follows

U(X;Y ) =
1

|A|t

|A|t∑
i=1

∫ ∞

0

∫ ∞

−∞

1

det(πIr)
p(h) exp{−1

2
∥y − hxi∥2}· (4.17)

log2{
exp{−1

2
∥y − hxi∥2}

1
|A|t

∑|A|t
i′=1 exp{−1

2
∥y − hxi′∥2}

}dydh− I(X;Y )2

= −[I(X;Y )− (t log |A|)]2 + 1

det(πIr)|A|t ln 2
· (4.18)

|A|t∑
i=1

∫ ∞

0

∫ ∞

−∞
p(h)

( ∞∑
p=1

1

p

p∑
q=0

p!(−1)q

q!(p− q)!
(
Π2(y,h)

)−q
+O( 1

Π2(y,h)
)q+1 )

)2

dydh,

where

Π2(y,h) =

|A|t∑
i′=1

exp
{∥∥y − 2qh(xi − xi′)

∥∥2

4q
−

(2q + 1)
∥∥h(xi − xi′)

∥∥2

2

}
. (4.19)

Then we use the same techniques as the approximation of I(X;Y ), i.e., the saddle

point approximation, we have for a non-zero number q, the multiple integrals over the
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complex number vector y can be approximated by the saddle point approximation∫ ∞

−∞

1

det(πIr)

(
Π2(y,h)

)−2q

dy =
(∫ ∞

−∞

1

det(πIr)

(
Π2(y,h)

)−q
dy

)2

(4.20)

≈
[ |A|t∑
i′=1

exp{−
∥∥h(xi − xi′)

∥∥2

6− exp{−
∥∥h(xi − xi′)

∥∥2
/16}

}
]−2q

.

(4.21)

By using the inverse Taylor series expansion, leading to the following result.

Lemma 3. Keeping parameters the same as Lemma 2, the unconditional variance

can be approximated as

U(X;Y ) ≈ −[I(X;Y )− (t log |A|)]2+∫ ∞

0

p(h)
1

|A|t

|A|t∑
i=1

log2
[ |A|t∑
i′=1

exp
{
−

∥∥h(xi − xi′)
∥∥2

6− exp{−
∥∥h(xi − xi′)

∥∥2
/16}

}]
dh. (4.22)

Moreover, we need to get the probability density of the channel coefficient h to

calculate the expectation over h. From (4.2), we let hi,j, h1,i,j and h2,i,j denote the

element of the i-th row and the j-th column of H, H1 and H2, respectively. For

notational convenience, we denote hi,j as h, h1,i,j as h1 and h2,i,j as h2, respectively,

then we have

h = |h|ej∠h =
Nris∑
i=1

|h2,i|ej∠h2,i × |h1,i|ej∠h1,i × ejθi , (4.23)

where |h1,i| and |h2,i| denotes two Rayleigh RVs. Then the PDF of the product of

two Rayleigh RVs is

p|h1,i||h2,i|(x) = 4xK0(2x), i = 1, . . . , Nris. (4.24)

The Fourier transform of p|h1,i||h2,i|(x) is

F|h1,i||h2,i|(k) =

∫ ∞

−∞
p|h1,i||h2,i|(x) exp(−2πjkx)dx =

∫ ∞

−∞
4xK0(2x) exp(−2πjkx)dx.

(4.25)
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Then by using the inverse Fourier transform, we can obtain the distribution

density of |h| as shown below

p|h|(x) =
1

2π

∫ ∞

−∞
(F|hi||gi|(k))

Nris exp(−jkx)dk

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
4xK0(2x) exp(−2πjkx)dx

)Nris

exp(−jkx)dk

=
2x

Nris

exp(− x2

Nris

) (4.26)

and the angle of h also follows the uniform distribution in [0, 2π). Therefore, we

obtain the expression of the h’s PDF.

Substituting (4.26) into the mutual information and the unconditional variance

(4.16) and (4.22), respectively. Then applying the right Riemann sum to elimi-

nate the multiple integrals over the complex vector h, we obtain the closed-form

expression of I(X;Y ) and U(X;Y ) as follows

I(X;Y ) ≈ t log |A| −
∑
k=1

∆hk· (4.27)

2hk
Nris

exp(− h2k
Nris

)
1

|A|t

|A|t∑
i=1

log
[ |A|t∑
i′=1

exp
{
−

∥∥hk(xi − xi′)
∥∥2

2(3− exp{−
∥∥hk(xi − xi′)

∥∥2
/8})

}]
U(X;Y ) ≈ −[I(X;Y )− (t log |A|)]2 +

∑
k=1

∆hk· (4.28)

2hk
Nris

exp(− h2k
Nris

)
1

|A|t

|A|t∑
i=1

log2
[ |A|t∑
i′=1

exp
{
−

∥∥hk(xi − xi′)
∥∥2

2(6− exp{−
∥∥hk(xi − xi′)

∥∥2
/8})

}]
,

where ∆hk = hk−hk−1. Finally, we substitute (4.27) and (4.28) into (4.4) to obtain

our achievability and converse bounds for the Rayleigh fading channel.

To compare with our result, we calculate the capacity of the channel whose input

is a circularly symmetric complex Gaussian with zero mean and covariance P
t
It. The

Theorem is shown below.

Theorem 8. [21] Under the power constraint P , we assume the same channel with

the same number of transmitting and receiving antennas as our system model. Its
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capacity, as determined by the complex Gaussian input, is equal to

Eg[log(1 +
P

t
g)] =

∫ ∞

0

log(1 +
P

t
g)dg, (4.29)

where g denotes the eigenvalues of the matrix HHH, where H is from (4.2), and its

PDF is given by

pg(x) =
m∑
i=0

i!

2(i+max{r, t} −m)!
(L

max{r,t}−m
i (x/Nris))

2·

(x/Nris)
max{r,t}−m exp (−x/Nris). (4.30)

Thus we have

CGaussian =
∑
k=1

∆gk log(1+
P

t
gk)

m∑
i=0

i!

2(i+max{r, t} −m)!
(L

max{r,t}−m
i (gk/Nris))

2·

(gk/Nris)
max{r,t}−m exp (−gk/Nris), (4.31)

where ∆gk = gk − gk−1.

4.4 Extension To More General Cases

In this chapter, we apply our achievability and converse bounds to several possible

cases. We assume perfect channel estimation in Sections 4.4.1 and 4.4.3. When the

channel is not known to the receiver, there exists mismatched decoding, i.e., scaled

nearest neighbor (SNN) decoding [53]. We briefly introduce the general notion of

mismatched decoding. Consider a conditional probability measure PY|X with input

X ∈ At×n and output Y ∈ Br×n. At coding rate R and blocklength n, a codebook

with M codewords by (C1, . . . , CM). For mismatched decoding, we let a function

d : At×n × Br×n → R be a decoding metric, which hence induces the following

decoding rule: ĵ = argminj∈M d(X,Y), with ties broken arbitrarily. A coding rate

R is achievable if there exists a sequence of codebook such that the maximal error
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probability asymptotically vanishes as n→∞, and the supremum of the achievable

rate is called the mismatched capacity.

Furthermore, to analyze the effect of the CSI estimation in finite blocklength,

there is a received pilot overhead provided to the receiver. For the RIS MIMO

system, if the receiver antenna is 1, the overall pilot overhead is Nris+1 [54]. When

the pilot overhead is inserted in every channel use, then the resulting achievable rate

should be discounted by a factor of (1− Nris+1
n

).

4.4.1 Perfect Phase Alignment-Rayleigh fading channel

In this subsection, we consider the case when the phase shift can be perfectly aligned

with the channel phases due to the perfect channel estimation. Generally, the perfect

phase shift is unknown for capacity maximization over the MIMO channel. However,

according to [55,56], the discrete-Fourier transform (DFT)-based phase-shifting con-

figuration along with an additional steering direction ϑ ∈ CNris×1could be adopted

to obtain a proper design on Φ = [θ1, . . . ,θNris
], where Φ = diag(ϑ)F and F is the

DFT matrix, which guarantees that the whole channel information in all directions

can be estimated. Therefore, to compare with the imperfect phase shift, we assume

that there exists a perfect phase shift that can be achieved in the MIMO system.

In this case, the channel coefficient h in (4.23) is modified to

h =

Nris∑
i=1

|h2,i| · |h1,i|. (4.32)

Note that the closed-form approximation of the h’s PDF can be evaluated as

ph(x) =
xa

ba+1Γ(a+ 1)
exp

(
− x

b

)
, (4.33)

where a =
z21
z2
− 1 and b = z2

z1
with z1 = Nrisπ

4
and z2 = Nris(1 − π2

16
). Substituting

(4.33) into the closed forms of the mutual information and the unconditional variance
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(4.27) and (4.28), we have

I(X;Y ) ≈ t log |A| −
∑
k=1

∆hk

1

ba+1Γ(a+ 1)
hak exp

(
− hk

b

)
· (4.34)

1

|A|t

|A|t∑
i=1

log
[ |A|t∑
i′=1

exp
{
−

∥∥hk(xi − xi′)
∥∥2

2(3− exp{−
∥∥hk(xi − xi′)

∥∥2
/8})

}]
U(X;Y ) ≈ −[I(X;Y )− (t log |A|)]2 +

∑
k=1

∆hk

1

ba+1Γ(a+ 1)
hak exp

(
− hk

b

)
· (4.35)

1

|A|t

|A|t∑
i=1

log2
[ |A|t∑
i′=1

exp
{
−

∥∥hk(xi − xi′)
∥∥2

2(6− exp{−
∥∥hk(xi − xi′)

∥∥2
/8})

}]
.

Therefore, we substitute (4.34) and (4.35) into (4.4) to obtain our achievability

and converse bounds for the perfect phase alignment-Rayleigh fading channel.

4.4.2 Rician Fading Channel

In this subsection, we consider the Rician fading channel. Specially, we assume

the channel coefficient |h1| in (4.23) follows the Rician distribution which is |h1| ∼

Rician(α1, β1). The PDF of which is given by

p|h1|(x) =
x

α2
1

exp
(
− x2 + β2

1

2α2
1

)
I0(

β1x

α2
1

), (4.36)

where the shape parameter of the Rician fading K1 =
β2
1

2α2
1
denotes the ratio of the

power contributions by line-of-sight path to the remaining multipaths, and the scale

parameter of the Rician fading Ω = 2α2
1 + β2

1 is the total power received in all

paths. We assume that the PDF of |h2| in (4.23) is also Rician distribution which

is |h2| ∼ Rician(α2, β2).

Note that we change the distribution of entries in (4.2) from the Rayleigh dis-

tribution to the Rician distribution, then the process is similar to the Rayleigh part

which is omitted for simplicity. We have the PDF of |h| as

p|h|(x) =
2x

Nris(1 +K1)(1 +K2)
exp

(
− x2

Nris(1 +K1)(1 +K2)

)
. (4.37)
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Substituting (4.37) into the closed forms of the mutual information and the

unconditional variance (4.27) and (4.28), we have

I(X;Y ) ≈ t log |A| −
∑
k=1

∆hk

2hk
Nris(1 +K1)(1 +K2)

exp
(
− h2k
Nris(1 +K1)(1 +K2)

)
·

1

|A|t

|A|t∑
i=1

log
[ |A|t∑
i′=1

exp
{
−

∥∥hk(xi − xi′)
∥∥2

2(3− exp{−
∥∥hk(xi − xi′)

∥∥2
/8})

}]
(4.38)

U(X;Y ) ≈ −[I(X;Y )− (t log |A|)]2 +
∑
k=1

∆hk

2hk
Nris(1 +K1)(1 +K2)

·

exp
(
− h2k
Nris(1 +K1)(1 +K2)

) 1

|A|t

|A|t∑
i=1

log2
[ |A|t∑
i′=1

exp
{
−

∥∥hk(xi − xi′)
∥∥2

2(6− exp{−
∥∥hk(xi − xi′)

∥∥2
/8})

}]
. (4.39)

Therefore, we substitute (4.38) and (4.39) into (4.4) to obtain our achievability

and converse bounds for the Rician fading channel.

4.4.3 Perfect Phase Alignment-Rician Fading Channel

In this subsection, we consider perfect phase alignment case with the Rician fading

channel. In this case, the channel coefficient h in (4.32) is given by

h =

Nris∑
i=1

|h2,i| · |h1,i|. (4.40)

where |h1| ∼ Rician(α1, β1) and |h2| ∼ Rician(α2, β2), respectively. Note that the

closed form approximation of PDF of the channel coefficient h can be evaluated as

ph(x) =
xa

ba+1Γ(a+ 1)
exp

(
− x

b

)
, (4.41)

where a =
z21
z2
− 1 and b = z2

z1
with z1 = Nris(

π
4
L1/2(−K1)L1/2(−K2)) and z2 =

Nris((1 + K1)(1 + K2) − π2

16
L2
1/2(−K1)L

2
1/2(−K2)), where Lq(·) denotes a Laguerre
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Figure 4.2: Achievability and converse bounds for (n,M, ϵ) codes for an RIS MIMO
system over a Rayleigh fading channel and transmit antennas t = 2 and receive
antennas r = 2, Nris = 16 and SNR=−10dB for ϵ = 10−3 and with BPSK and
QPSK modulation, repectively.

polynomial. Substituting (4.33) into the closed forms of the mutual information and

the unconditional variance (4.27) and (4.28), we have the same equations as (4.34)

and (4.35) with different values of z1 and z2. Therefore, we substitute the above

mutual information and unconditional variance into (4.4) to obtain our achievability

and converse bounds for the perfect phase alignment-Rician fading channel.
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Figure 4.3: Achievability and converse bounds for (n,M, ϵ) codes for an RIS MIMO
system over a Rayleigh fading channel and transmit antennas t = 2 and receive
antennas r = 2, Nris = 32 and SNR=−10dB for ϵ = 10−3 and with BPSK and
QPSK modulation, repectively.

4.5 Simulation Results

4.5.1 Evaluation of the Derived Bounds

In this section, we consider an RIS MIMO system consisting of multiple transmitter

antennas, a rectangular RIS of Nris elements and multiple receive antennas. We

assume all the channels, i.e., the channels between the transmitter and the RIS,

the RIS and the receiver, and the transmitter and the receiver, are independent

with the maximal error probability ϵ = 10−3. Assuming that all the channels are

Rayleigh fading channels, the number of the transmit and receive antennas are
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t = 2 and r = 2, respectively, and the SNR is −10 dB, Figs. 4.2 and 4.3 show the

numerical results of the derived bounds with BPSK and QPSK modulated signals

and the capacity for Nris = 16 and 32, respectively. From Fig. 4.2, we can see that

CGaussian = 2.2509 bit/(channel use), which is calculated based on Theorem 8, and

the maximal achievable rate for the BPSK modulated signal is 1.3283 bit/(channel

use) from (4.27). The required blocklength n to achieve above 80% and 90% of

its maximal achievable rate starts at n = 100 and n = 400, respectively. With the

QPSK modulation, the required blocklengths are n = 240 and n = 940, respectively.

In Fig. 4.3, we only change the RIS element from Nris = 16 to 32. The capacity is

3.3145 bit/(channel use), and the required blocklengths decrease dramatically to 40

and 160, respectively. For QPSK modulation, the required blocklengths are n = 100,

and n = 400, respectively.

The channel variance can be treated as the unconditional information variance

U(X;Y ) in (4.28). It shows how quickly the performance converges to the maximal

achievable rate as blocklength n grows. When ϵ > Q( (m+1) logn

2n
√

(
U(X;Y )

n
)
), the converse

bound will first decrease and then converge to its achievability part, while 0 <

ϵ < Q( (m+1) logn

2n
√

(
U(X;Y )

n
)
), the converse bound will be monotonic increasing along with the

increase of the blocklength. Additionally, if the target is to transmit at a fraction

of the maximal achievable rate 0 < η < 1 with a maximal error probability ϵ,

the relationship between the required blocklength n and the channel variance is

n ≈ U(X;Y )
(I(X;Y ))2

(Q−1(ϵ)
1−η

)2
.

The performance of the 2 × 2 MIMO case over different channels, i.e., perfect

phase alignment Rayleigh fading channel in Section 4.4.1, Rician fading channel in

Section 4.4.2 and perfect phase alignment Rician fading channel in Section 4.4.3, in

terms of the required blocklength, with the different number of RIS elements and

different SNR level are summarized in Table 4.1. Moreover, the gap between the
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Table 4.1: Required blocklengths to achieve 80% and 90% of the maximal achiev-
able rate for an RIS MIMO system over different channels and transmit antennas
t = 2 and receive antennas r = 2, ϵ = 10−3.

80% 90%

Nris = 16 Nris = 32 Nris = 16 Nris = 32

BPSK QPSK BPSK QPSK BPSK QPSK BPSK QPSK

Perfect phase alignment-

Rayleigh fading channel1 80 220 20 40 360 860 80 140

Rician fading channel2 180 380 80 180 720 1560 300 720

Perfect phase alignment-

Rician fading channel3 100 220 20 40 400 920 10 140

1 The SNR=−20 dB. 2 The SNR=−30 dB. 3 The SNR=−40 dB.

two bounds and the maximal achievable rate of the 2× 2 MIMO case over different

channels with a specific number of RIS elements Nris = 16, a given maximal error

probability ϵ = 10−3, and the blocklength n = 256 are summarized in Table 4.2.

From Figs. 4.2 and 4.3 and Tables 4.1 and 4.2, we can conclude that: 1) as Nris

increases, the overall channel between the transmitter and the receiver becomes

better. That means that the gap between the maximal achievable rate for different

modulation schemes and the capacity increases and vice versa at the same SNR

level; 2) the required blocklength n falls significantly to achieve a given fraction of

the maximal achievable rate as the number of RIS elements increases.

In Figs. 4.4-4.7, we demonstrate the performance of the 3× 3 MIMO case over

the four different channels. From these figures, we observe that: 1) the Rician fading

channel is much better than the Rayleigh fading channel regardless of whether it is

perfect phase alignment or not; 2) when Nris increases, the RIS element’s effect on

the QPSK modulated signal is more significant than that on the BPSK modulated
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Table 4.2: The gap between the achievability and converse bounds and the maximal
achievable rate for an RIS MIMO system over different channels and the number
of RIS elements Nris = 16, transmit antennas t = 2 and receive antennas r = 2,
ϵ = 10−3, and the blocklength n = 256.

Maximal achievable
rate

Gap to the

achievability bound

Gap to the

converse bound

BPSK QPSK BPSK QPSK BPSK QPSK

Rayleigh fading channel1 1.3283 1.9254 0.3042 0.5204 0.2613 0.4774

Perfect phase alignment-

Rayleigh fading channel2 1.3435 1.9843 0.3028 0.5246 0.2599 0.4816

Rician fading channel3 1.0945 1.4743 0.2774 0.4598 0.2345 0.4169

Perfect phase alignment-

Rician fading channel4 1.2865 1.8978 0.2942 0.5122 0.2513 0.4693

1 The SNR=−10 dB. 2 The SNR=−20 dB. 3 The SNR=−30 dB. 4 The SNR=−40 dB.

signal; 3) to achieve the same performance, the required SNR for the channel with

perfect phase alignment is approximately 20 dB smaller than the one without perfect

phase alignment.

To validate our results, we transform the achievability and converse bounds in

Theorem 7 to the lower and upper bounds on the average error probability. From

Theorem 7, We have the achievability and converse bounds on maximal error prob-

ability. Since there always exists an (n,M, ϵ)-code in the maximal error proba-

bility ϵ that guarantees the existence of an (n,M ′, ϵ′)-code in the average error

probability ϵ′, for any ϵ′ < ϵ < 1 and 0 < ξ < 1, where M ′ = 2nR/(1−ξ) and

ϵ′ = ξϵ. From (4.4), we have I(X;Y ) −
√
U(X;Y )/nQ−1(ϵ) + O(n−3/2) ≤ R ≤

I(X;Y )−
√
U(X;Y )/nQ−1(ϵ) + (m+ 1) log n/(2n) +O(n−3/2). Therefore, we ob-

tain the lower and upper bounds on the average error probability, i.e., ϵ′, which is

shown below.

ξQ
(I(X;Y ) + m+1

2
logn
n
−R(1− ξ)√

U(X;Y )
n

)
≤ ϵ′ ≤ ξQ

(I(X;Y )−R(1− ξ)√
U(X;Y )

n

)
.
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Figure 4.4: The comparison of achievability and converse bounds between Rayleigh
fading channel, Rician fading channel whose two shape parameters are K1 = 10 and
K2 = 5 respectively and transmit antennas t = 3 and receive antennas r = 3 for
ϵ = 10−3 and SNR= −20 dB with BPSK modulation and Nris = 16 and Nris = 32,
respectively.

By utilizing the polar code with a successive cancellation list (SCL) decoder and

the extended BCH code with an ordered statistic decoder (OSD), we validate our

derived results. In Fig. 4.8, we set the number of RIS elements Nris = 16, the

number of the transmitter and receiver antennas to 2, the modulation scheme to

BPSK, the coding rate R = 0.5, and the blocklength n = 128. All the simulations

are averaged over 106 Monte Carlo realizations. We choose two coding methods:

one is the (128, 264, ϵ′)-polar code with SCL decoder (the list size is L = 32), and

the other is the (128, 264, ϵ′)-EBCH code with OSD decoder (the order is chosen
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Figure 4.5: The comparison of achievability and converse bounds between Rayleigh
fading channel, Rician fading channel whose two shape parameters are K1 = 10 and
K2 = 5 respectively and transmit antennas t = 3 and receive antennas r = 3 for
ϵ = 10−3 and SNR= −20 dB with QPSK modulation and Nris = 16 and Nris = 32,
respectively.

to 4). We observe that the simulation result of the EBCH code is slightly better

than the one of the polar code at the blocklength n = 128. Furthermore, as long as

the simulation results are below the upper bound, they would validate our derived

results. In Fig. 4.9, we change the number of the transmitter and receiver antennas

to 3, and the rest parameters remain the same as in Fig. 4.8. At first, we compare

the performance of two codes in different MIMO systems, i.e., 2×2 MIMO and 3×3

MIMO systems. At the same EbNo level of −14 dB, the average error probability

drops from 0.3248 to 0.0607 for the EBCH code and from 0.4441 to 0.0754 for the
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Figure 4.6: The comparison of achievability and converse bounds between Rayleigh
fading channel with perfect phase alignment, Rician fading channel with perfect
phase alignment whose two shape parameters are K1 = 10 and K2 = 5 and transmit
antennas t = 3 and receive antennas r = 3 for ϵ = 10−3 and SNR= −40 dB with
BPSK modulation and Nris = 16 and Nris = 32, respectively.

polar code. At the same average error probability level of 10−2, the gaps between

the simulation result and the lower bound are 2 dB and 2.5 dB for the EBCH code

and polar code, respectively. We observe that the gaps increase to 2.5 dB and 3 dB

for the EBCH code and the polar code. The performance of bounds over the 3× 3

MIMO system is better than that over the 2× 2 MIMO system.
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Figure 4.7: The comparison of achievability and converse bounds between Rayleigh
fading channel with perfect phase alignment, Rician fading channel with perfect
phase alignment whose two shape parameters are K1 = 10 and K2 = 5 and transmit
antennas t = 3 and receive antennas r = 3 for ϵ = 10−3 and SNR= −40 dB with
QPSK modulation and Nris = 16 and Nris = 32, respectively.

4.5.2 Rate vs SNR

In Figs. 4.10 and 4.11, we illustrate the capacity, the maximal achievable rate of

QPSK and BPSK modulated signals over Rayleigh fading channel with the different

number of RIS elements Nris = 4 and 32 and different transmit antennas t = 2 and

3, respectively. Fig. 4.10 shows the tightness of the mutual information in Lemma

2. Moreover, it shows that the capacity achieved by circularly symmetric complex

Gaussian inputs increases without any boundary as the SNR increases, and the gaps

between the Gaussian input and the different modulated signals increase as the SNR
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Figure 4.8: The lower and upper bounds for (128, 264, ϵ′) codes for the RIS MIMO
system over a Rayleigh fading channel, the number of RIS elements Nris = 16, and
the BPSK modulation scheme with the number of antennas t = r = 2 and t = r = 3,
respectively.

increases. In Fig. 4.11, we change the number of the transmit antennas to t = 2 and

choose Nris = 4 and 32. As SNR increases, there exists a limit of the achievable rate

for each modulation scheme and the number of transmitter and receiver antennas,

i.e., for 2 × 1 MIMO with BPSK modulation, the limit t log |A| = 2 and for 3 × 1

MIMO with QPSK modulation, the limit t log |A| = 6. Moreover, the effect of the

number of RIS elements on the achievable rate is that the speed approaching the

limit increases as the number of RIS elements increases.
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Figure 4.9: The lower and upper bounds for (128, 264, ϵ′) codes for the RIS MIMO
system over a Rayleigh fading channel, the number of RIS elements Nris = 16, and
the QPSK modulation scheme with the number of antennas t = r = 2 and t = r = 3,
respectively.

4.6 Summary

In this chapter, we have established achievability and converse bounds on the max-

imal achievable rate R at a given blocklength n and a maximal error probability ϵ

for an RIS MIMO system. The analytical results demonstrated that the number of

transmit and receive antennas and the channel variance U(X;Y ) would affect the

convergence speed to the maximal achievable rate as the blocklength n increases.

For the future work, we will investigate our derived results into the new surfaces,

such as the intelligent omni-surface [57].
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Figure 4.10: The maximal rate achieved by Gaussian inputs, QPSK, and BPSK
for an RIS MIMO system over a Rayleigh fading channel with the number of RIS
elements Nris = 4, and single receive antennas r = 1 with t = 2 and t = 3,
respectively.
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Figure 4.11: The maximal rate achieved by Gaussian inputs, QPSK, and BPSK for
an RIS MIMO system over a Rayleigh fading channel and single receive antennas
r = 1 and t = 2 with the number of RIS elements Nris = 4, and Nris = 32,
respectively.



Chapter 5

Performance Analysis of

Multiple-Antenna Ambient

Backscatter Systems at Finite

Blocklengths

5.1 Introduction

In this chapter, we use the Berry-Esseen theorem as a fundamental basis to provide

achievability and converse bounds on the achievable rate R for a legacy system with

multiple transmit and receive antennas. For our achievability bound, we utilize the

Berry-Esseen theorem, the mutual information, and the information variance under

the condition of the probability of the tag symbol to get the bound. Furthermore,

we exploit the Mellin transform and Meijer G-function to obtain a maximum on

the auxiliary channel’s probability density function (PDF), a product of m copies

of PDF of Gamma distributed variables. Then, we apply the Lebesgue measure to

83
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get the maximum of its output space. To complete our achievability and converse

bounds, we utilize the different modulation schemes in our legacy system.

To reduce the complexity of multiple integrals for deriving the mutual informa-

tion and the information variance, we use the saddle point approximation and the

Taylor expansion to obtain closed-form expressions of the mutual information and

the information variance.

We apply a low-complexity ML detection to compute the average error proba-

bility of the tag symbol based on the received signal and estimated RF source signal

for a variety of transmitter and receiver antennas. We determine the relationship

between the average error probability of the tag symbol and the maximal error prob-

ability of the RF source signal as a function of the blocklength n and the number of

transmitter and receiver antennas t and r. We utilize different modulation schemes,

i.e., BPSK and QPSK, and different coding methods, i.e., the EBCH code and the

polar code, in our legacy system and AmBC system to validate the derived bounds

and the error probability of the tag symbol.

5.2 System Model

Let us consider input and output sets An, D and Bn, D̂ and the conditional prob-

ability measures PY |X : An 7→ Bn, and Pd̂|d : D̂ 7→ D. We denote an RF source’s

codebook with M codewords by (c1, . . . , cM). An RF source signal decoder, which

is defined as a random transformation PZ|Y : Bn 7→ {1, . . . ,M}, satisfies a maximal

error probability of the RF source signal as follows:

PZ|X(i|Ci) ≥ 1− ϵsource, i = 1, . . . ,M (5.1)

where ϵsource is the maximal error probability of the RF source signal. Additionally,

a tag symbol decoder, which is a random transformation Pd̂|d, satisfies an error
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Figure 5.1: System model for ambient backscatter communications.

probability of the tag symbol as follows:

ϵtag = 1− 1

|D|

|D|−1∑
i=0

Pd̂|d(d̂i|di), (5.2)

where d̂i ∈ D and di ∈ D, and ϵtag is the error probability of the tag symbol. The

RF source’s codebook and decoder whose maximal error probability is smaller than

ϵsource are called an (n,M, ϵsource) code and its corresponding coding rate is defined

as R = logM
n

.

We consider an AmBC MIMO system with one RF source, one receiver and one

backscatter tag with no battery as depicted in Fig. 5.1. In the legacy system, the

RF source and the receiver have t and r antennas, respectively and the tag has a

single antenna. We let m
∆
= min(t, r) and denote by Hsg, Hgr and Hsr the channel

coefficient matrices between the RF source and tag, the tag and receiver, the RF

source and receiver, respectively. We have Hsg ∈ Ct×1,Hgr ∈ C1×r,Hsr ∈ Ct×r [58].

A part of the tag received signal will be harvested to power the circuit of the
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tag, the rest would be backscattered to accomplish “0” and “ + 1” transmission.

Without loss of generality, we assume that the tag symbol remains unchanged for

one block data transmission from the RF source. We denote the tag symbol as

d0, d1 ∈ D, where D = {0,+1}. The AmBC receiver receives both the RF source

and tag symbol. Suppose the time delay between the RF source and the tag is

negligible. Then, the received signal Y can be expressed by

Y = X(Hsr +HsgHgrAd) +W, (5.3)

where X ∈ Cn×t is the signal transmitted over n channel uses; Y ∈ Cn×r is the

corresponding received signal; channel coefficients Hsg, Hgr and Hsr are random but

remain constant over the n channel uses [59] [19]. W ∈ Cn×r is the additive noise

at the receiver, which is independent of Hsg, Hgr and Hsr and has i.i.d. CN (0, 1)

entries; A is the scattering efficiency of the tag and since the tag only contains

passive components, therefore the thermal noise at the tag is negligible.

Now let us denote H0 = Hsr and H1 = Hsr+AHsgHgr, then (5.3) can be written

as

Y =

 XH0 +W, d = 0,

XH1 +W, d = +1.
(5.4)

5.3 Performance Analysis

In this section, we provide the definitions of achievability and converse bounds. The

achievability and converse bounds are essential to the proof of the channel coding

theorem. The achievability bound is a lower bound on the size of a code that can

be guaranteed to exist with a given arbitrary blocklength and error probability.

The converse bound is an upper bound on the size of any code with a given arbi-

trary blocklength and error probability. Moreover, compared with the original work
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in [17], our achievability and converse bounds examine the legacy MIMO system

with finite alphabet constraints, i.e., BPSK and QPSK modulated signal. Due to

the high complexity of multiple integrals in the calculation, we obtain the closed-

form expression by applying the saddle point approximation to let our bounds have

practical implementation. Furthermore, in the second subsection, we examine the

relation between the error probability of the RF source signal, ϵsource, and the error

probability of the tag symbol, ϵtag, with respect to the blocklength n. Combin-

ing our derived bounds and the relation between ϵsource and ϵtag, we would find an

(n,M, ϵsource) code to achieve a specific level of ϵtag.

5.3.1 Achievability and Converse Bounds

In this subsection, our achievability and converse bounds for the legacy MIMO

system are presented below.

Theorem 9. We consider a communication system having the finite input alphabet

A and D, and the continuous output alphabet B. Let p(Y,H|X) be the corresponding

conditional PDF on B for all X ∈ A, where H is a channel matrix. The input

distribution P (X)
△
= [q0, . . . ,qt]

T , where qi = [qi,0, . . . , qi,|A|] is equiprobable.

Thus for the legacy MIMO channel and arbitrary 0 < ϵsource < 1, we have the

achievability and converse bounds

I(X;Y |D)−
√
U(X;Y |D)

n
Q−1(ϵsource) +O(n−3/2) ≤ R

≤ I(X;Y |D)−
√
U(X;Y |D)

n
Q−1(ϵsource) +

m+ 1

2

log n

n
+O(n−3/2). (5.5)

where I(X;Y |D) and U(X;Y |D) denote the mutual information and the informa-

tion variance with respect to D, respectively and Q is the complementary Gaussian

cumulative distribution function Q(x) =
∫∞
x

1√
2π

exp(−u2

2
)du.
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The proof of the achievability part of Theorem 9 can be found in Section 2.2.1

and the converse part can be found in Appendix A.

In order to apply Th. 9 in our system model, we make the assumption that the

tag symbol d is predetermined. We then apply a two-step decoding process: the

first step is to decode the received signal Y with the knowledge of d, and the second

step is to decode the tag symbol d with the use of the decoded received signal.

According to Section 5.2, we know that the set of d consists of two different values,

which are ”0” and ” + 1”, respectively. One way to obtain the mutual information

I(X;Y |D) and the information variance U(X;Y |D) is by taking a weighted sum on

the probability of occurrence of that particular value of d.

1. Case 1: when d = 0, we have

I(X;Y |d = 0)
△
=

∫ ∞

0

∫ ∞

−∞

∑
X∈At

(
P (X)p(Y,H0|X)·

log
{ p(Y,H0|X)∑

X′∈At P (X′)p(Y,H0|X′)

})
dYdH0

=
∑
X∈At

qX
det(πIr)

∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
m-dimensions
(w.r.t. h0)

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
m-dimensions
(w.r.t. y)

m−1∏
i=0

p(h0,i)·

exp{−1

2
||yi − h0,ixi||2}

(
− log e

m−1∑
j=0

1

2
||yj − h0,ixj||2

− log
{m−1∑
k=0

∑
x′
k∈A

qk exp{−
1

2
||yk − h0,kx

′
k||2}

})
dydh0 (5.6)
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and

U(X;Y |d = 0)
△
=

∫ ∞

0

∫ ∞

−∞

∑
X∈At

(
P (X)p(Y,H0|X)·

log2
{ p(Y,H0|X)∑

X′∈At P (X′)p(Y,H0|X′)

})
dYdH0

=
∑
X∈At

qX
det(πIr)

∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
m-dimensions
(w.r.t. h0)

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
m-dimensions
(w.r.t. y)

m−1∏
i=0

p(h0,i)·

exp{−1

2
||yi − h0,ixi||2}

(
− log e

m−1∑
j=0

1

2
||yj − h0,ixj||2

− log
{m−1∑
k=0

∑
x′
k∈A

qk exp{−
1

2
||yk − h0,kx

′
k||2}

})2

dydh0

− [I(X;Y )]2, (5.7)

where P (X) = [q0, . . . ,qt]
T denotes the input distribution, qi = [1

2
, 1
2
] and

qi = [1
4
, 1
4
, 1
4
, 1
4
], for BPSK and QPSK respectively, and p(h0,i) denotes the

PDF of the channel between one transmit antenna and one receive antenna. In

this case, we can assume that the PDF of h0,i obeys the Rayleigh distribution.

In order to reduce the complexity of multiple integrals in the mutual informa-

tion and the information variance, we give the closed-formed approximation

of (5.6) and (5.7) as follow

I(X;Y |d = 0) ≈ t log |A| − Eh0

[
1

|A|t

|A|t∑
i=1

log
[ |A|t∑
i′=1

exp
{
−

∥∥h0(xi − xi′)
∥∥2

3− exp{−
∥∥h0(xi − xi′)

∥∥2
/4}

}]]
(5.8)

and

U(X;Y |d = 0) ≈ −
[
(t log |A|)− I(X;Y )

]2
+ Eh0

[
1

|A|t

|A|t∑
i=1

log2
[ |A|t∑
i′=1

exp
{
−

∥∥h0(xi − xi′)
∥∥2

6− exp{−
∥∥h0(xi − xi′)

∥∥2
/16}

}]]
, (5.9)
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where the proof of (5.8) and (5.9) can be found in Appendix B.

2. Case 2: when d = +1, in order to obtain the mutual information and the

information variance I(X;Y |d = +1) and U(X;Y |d = +1), we just change h0

in (5.8) and (5.9) to h1.

After getting the mutual information and the information variance of each case,

then applying Theorem 9, we have

I(X;Y |D)−
√
U(X;Y |D)

n
Q−1(ϵsource) +O(n−3/2) ≤ R

≤ I(X;Y |D)−
√
U(X;Y |D)

n
Q−1(ϵsource) +

m+ 1

2

log n

n
+O(n−3/2), (5.10)

where

I(X;Y |D) =

|D|−1∑
i=0

P[d = di]I(X;Y |d = di) (5.11)

U(X;Y |D) =

|D|−1∑
i=0

P[d = di]U(X;Y |d = di). (5.12)

To compare with our result, we calculate the capacity of the channel whose input

is a circularly symmetric complex Gaussian with zero mean and covariance P
t
It. The

Theorem is shown below.

Theorem 10. [21] Under the power constraint P , we assume the same channel

with the same number of transmitting and receiving antennas as our system model.

Its capacity, as determined by the complex Gaussian input, is equal to

C = P[d = 0]Eg0 [log(1 +
P

t
g0)] + P[d = +1]Eg1 [log(1 +

P

t
g1)], (5.13)

where g0 and g1 denote the eigenvalues of the matrix HH
0 H0 and HH

1 H1, respectively,

where H0 and H1 are from (5.4), and their PDFs are given by

pg0(x) =
1

2m

m∑
i=1

(i− 1)!

(i− 1 + max{r, t} −m)!

(
L
max{r,t}−m
i−1 (

x

2
)
)2

(
x

2
)max{r,t}−m exp{−x

2
},

(5.14)
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and

pg1(x) =
1

m

m∑
i=1

(i− 1)!

(i− 1 + max{r, t} −m)!

(
L
max{r,t}−m
i−1 (x)

)2
xmax{r,t}−m exp{−x},

(5.15)

where Lak(x) is the associated Laguerre polynomial of order k. Thus we have

C =
P[d = 0]

2

∫ ∞

0

log(1 +
P

t
g0)

m∑
i=1

(i− 1)!

(i− 1 + max{r, t} −m)!
·

(
L
max{r,t}−m
i−1 (

g0
2
)
)2

(
g0
2
)max{r,t}−m exp{−g0

2
}

+ P[d = +1]

∫ ∞

0

log(1 +
P

t
g1)

m∑
i=1

(i− 1)!

(i− 1 + max{r, t} −m)!
·

(
L
max{r,t}−m
i−1 (g1)

)2
g
max{r,t}−m
1 exp{−g1}. (5.16)

5.3.2 The Capacity Analysis of the AmBC System

In this subsection, we analyze the capacity of the AmBC system. We define

CAmBC(D;Y ) as the capacity of the AmBC system. We assume that the input

distribution P (X) is equiprobable and that the RF source signal is known in advance.

Then we can obtain the conditional capacity of the AmBC system. By taking a

weighted sum on the probability of occurrence of that particular value of X, P (X),

we have

CAmBC(D;Y |xj) =
∫ ∞

0

∫ ∞

−∞

1∑
i=0

P[d = i]p(Y,Hi|X)·

log
p(Y,Hi|X)∑1

i′=0 P[d = i′]p(Y,Hi′ |X)
dYdH (5.17)

= Ehi

[ 1∑
i=0

p(hi)P[d = i] log
( 1∑
i′=0

P[d = i′]·

exp
{
− ||xj(hi − hi′)||2

3− exp{−||xj(hi − hi′)||2/4}
})]

, (5.18)
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where the proof of (5.18) can be easily obtained by the similar method in Appendix

B. Then, we have

CAmBC(D;Y ) =

|A|t∑
j=1

1

|A|t
CAmBC(D;Y |xj). (5.19)

5.3.3 The Relation between ϵsource and ϵtag

In this subsection, we provide the relation between the maximal error probability

of the RF source signal, ϵsource, and the average error probability of the tag symbol,

ϵtag, with respect to the blocklength n. Due to the fact that the tag symbol affects

the channel instead of being directly sent to the receiver end, we do not directly use

the maximum-likelihood (ML) detection to estimate the tag symbol d̂. According

to [60], the computational complexity of the ML detector is |A|logM |D|, which grows

exponentially as the alphabet size of the modulation scheme increases. To reduce

the complexity, we propose a low-complexity ML detection to decode the tag symbol

from the received signal Y. The computational complexity of low-complexity ML

detection is logM |A||D|, which is lower than that of the original ML detection.

The estimated tag symbol d̂ is given as follows:

d̂
△
= argmin

d

∥∥∥Y − X̂Hsr − dX̂G
∥∥∥2

, (5.20)

where X̂ is the estimated RF source signal at the receiver side and G = AHsgHgr.

Then, we let

Z =
1

n
Trace{G

HX̂H

∥G∥2
(Y − X̂Hsr)} (5.21)

=
1

n
Trace{G

HX̂HXG

∥G∥2
}d+ 1

n
Trace{G

H(X̂HX− X̂HX̂)Hsr

∥G∥2
}+ ω, (5.22)

where

ω =
1

n
Trace{G

HX̂HW

∥G∥2
} (5.23)
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and ω ∼ CN (0, 1/(n∥G∥2)).

Due to the low-complexity ML detection, if Z > Zth, d̂ = +1, otherwise, d̂ = 0,

where Zth is the decision threshold.

1. Case 1: when X̂ = X, we have 1 − δ < 1
n
Trace{GHX̂HXG/∥G∥2} < 1 + δ,

where δ ≤ 1, and 1
n
Trace{GHX̂HXG/∥G∥2} is a discrete real number, then

we can treat this value as the coefficient of d, thus

Z =
1

n
Trace{GHX̂HXG/∥G∥2}d+ ω. (5.24)

The coefficient of d only has value in the real part which means

ℑ{Trace{GHX̂HXG/∥G∥2} = 0. Thus it shows that Z obeys Gaussian dis-

tribution. Therefore, under X̂ = X, the error probability of the event d̂ ̸= d

can be expressed as below

P[d̂ ̸= d|X̂ = X] = Q
(√

n∥G∥
(
−Zth,1+

1

n
E
[
Trace{GHX̂HXG/∥G∥2}

]))
.

(5.25)

Remark. For 2× 2 MIMO, we select Zth,1 = 0.75, while for 3× 3 MIMO, we

select Zth,1 = 0.95.

2. Case 2: when X̂ ̸= X, we have −δ < 1
n
Trace{GHX̂HXG/∥G∥2} < +δ, where

δ ≤ 1, and 1
n
Trace{GHX̂HXG/∥G∥2} is a discrete complex number, thus we

have,

Z =
1

n
Trace{GHX̂HXG/∥G∥2}d+ 1

n
Trace{G

H(X̂HX− X̂HX̂)Hsr

∥G∥2
}+ω.

(5.26)

Thus for d = +1, we have

P[d̂ = 0, d = +1|X̂ ̸= X] = Q

(√
n∥G∥

(
− Zth,2 +

1

n
E
[
ℑ{Trace{

GHX̂HX(G+Hsr)

∥G∥2
+

GHX̂HX̂Hsr

∥G∥2
}}
]))

(5.27)
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and for d = 0, we have

P[d̂ = +1, d = 0|X̂ ̸= X] = Q

(√
n∥G∥

(
Zth,2 −

1

n
E
[
ℑ{Trace{

GHX̂HX(G+Hsr)

∥G∥2
+

GHX̂HX̂Hsr

∥G∥2
}}
]))

. (5.28)

Remark. For 2× 2 MIMO, we select Zth,2 = 0.75, while for 3× 3 MIMO, we

select Zth,2 = 0.95.

Once getting the error probability of the tag symbol for both cases of X̂ = X

and X̂ ̸= X, we have the equation which expresses the relationship between ϵ and

the error probability of the tag symbol, ϵtag by combining (5.25), (5.27) and (5.28).

ϵtag = (1− ϵsource)Q
(√

n∥G∥
(
− Zth,1 +

1

n
E
[
Trace{GHX̂HXG/∥G∥2}

]))
+ ϵsource

[
P[d = +1]Q

(√
n∥G∥

(
− Zth,2 +

1

n
E
[
ℑ{Trace{G

HX̂HX(G+Hsr)

∥G∥2

+
GHX̂HX̂Hsr

∥G∥2
}}

]))
+ P[d = 0]Q

(√
n∥G∥

(
Zth,2 −

1

n
E
[
ℑ{Trace{

GHX̂HX(G+Hsr)

∥G∥2
+

GHX̂HX̂Hsr

∥G∥2
}}

))]
. (5.29)

Therefore, given a specific maximal error probability of the RF source signal

ϵsource, after getting the lower and upper bounds for the channel code rate R, we can

obtain the relationship between the channel code rate R and the error probability

of the tag symbol ϵtag from (5.29).

5.4 Numerical Results

In this section, we resort to numerical simulation to evaluate the proposed studies.

We consider a legacy system consisting of multiple transmitter antennas, the tag

with a single antenna and multiple receiver antennas. We assume all the channels,
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Figure 5.2: The comparison between 2 × 2 MIMO and 3 × 3 MIMO with BPSK
and QPSK modulated signal, respectively.

i.e., the channels between the transmitter and the tag, the tag and the receiver, and

the transmitter and the receiver, are independent, Assuming that all the channels

are Rayleigh fading channels, and the SNR is −5 dB. Fig. 5.2 shows the mutual

information of the legacy system in (5.11) for the BPSK and QPSK modulated

signal for P[d = +1] from 0 to 1 with 2 × 2 MIMO and 3 × 3 MIMO, respectively.

We observe that as the probability of the tag symbol d = +1 increases, I(X;Y |D)

increases accordingly, regardless of the modulation scheme of the RF source signal

and the number of transmitter and receiver antennas. Additionally, the gap between

different modulated signals decreases as the number of transmitter and receiver

antennas increases. Fig. 5.3 demonstrates the value of CAmBC(D;Y ) in (5.19) for
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Figure 5.3: The comparison between 2 × 2 MIMO and 3 × 3 MIMO with BPSK
and QPSK modulated signal, respectively.

BPSK and QPSK modulated RF source signal with P[d = +1] from 0 to 1 over the

2 × 2 MIMO and 3 × 3 MIMO systems, respectively. By comparing the results in

Fig. 5.2, we easily observe that under the same level of SNR, i.e., SNR= −5 dB, the

mutual information of the legacy system I(X;Y |D) is much larger than the capacity

of the AmBC system CAmBC(D;Y ). The mutual information of the legacy system

as shown in Fig. 5.2 increases as P[d = +1] increases. While the mutual information

of the AmBC system CAmBC(D;Y ) reaches the peak when P[d = +1] = 0.5, see Fig.

5.3, therefore, in the following simulations, we choose P[d = +1] = 0.5.

We consider the same legacy MIMO system as above, and we set the maximal

error probability ϵ = 10−3. Assuming that all the channels are Rayleigh fading
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Figure 5.4: Achievability and converse bounds for (n,M, ϵsource) codes for an
AmBC MIMO system over a Rayleigh fading channel and transmit antennas t = 2
and receive antennas r = 2 for ϵsource = 10−3, SNR= −5 dB and with BPSK and
QPSK modulation, repectively.

channels, P[d = 0] = P[d = +1] = 0.5 and the SNR is −5 dB. Figs. 5.4 and 5.5

show the numerical results of the derived bounds with BPSK and QPSK modulated

signals and the capacity for t = r = 2 and t = r = 3, respectively. From Fig. 5.4),

we can see that the capacity is 0.9611 bit/(channel use), which is calculated from

(5.16) and the maximal achievable rate for the BPSK modulated signal is 0.7151

bit/(channel use), which is obtained based on (5.11). The blocklength n required

to achieve above 70% and 80% of its maximal achievable rate start at n = 180 and

n = 420, respectively. The gap between the capacity and its maximal achievable

rate is 0.2460 bit/(channel use). With the QPSK modulation, the maximal achiev-
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Figure 5.5: Achievability and converse bounds for (n,M, ϵsource) codes for an
AmBC MIMO system over a Rayleigh fading channel and transmit antennas t = 3
and receive antennas r = 3 for ϵsource = 10−3, SNR= −5 dB and with BPSK and
QPSK modulation, repectively.

able rate is 0.8772 bit/(channel use), and the blocklength n required to achieve

above 70% and 80% of its maximal achievable rate start at n = 380 and n = 860,

respectively. The gap in the QPSK case is 0.0839 bit/(channel use). In Fig. 5.5,

we only change the number of transmitter and receiver antennas from t = r = 2 to

t = r = 3, and the rest parameters remain the same. The capacity, in this case, is

1.4425 bit/(channel use). The BPSK modulated signal’s maximal achievable rate

is 1.3006 bit/(channel use). The blocklength n, which can surpass 70% and 80% of

its maximal achievable rates, decreases dramatically to 100 and 240, respectively,

compared with the case of 2 × 2 MIMO. Moreover, the gap between the capacity
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and the maximal achievable rate decreases to 0.1419 bit/(channel use). For QPSK

modulation, its maximal achievable rate is 1.415 bit/(channel use), and the block-

length n = 260 and n = 580 are required to achieve above 70% and 80% of its

maximal achievable rate, respectively. The gap also falls to 0.0269 bit/(channel use)

compared with the case for 2 × 2 MIMO. The findings are summarized in Table

5.1. From Figs. 5.4-5.5, we can conclude that: 1) as the number of transmitter and

receiver antennas increases, the maximal achievable rates of the BPSK and QPSK

modulated signal accelerate, which indicates that the gap between the maximal

achievable rate for different modulation schemes and the capacity decreases at the

same SNR level; 2) the required blocklength n falls significantly to achieve a given

fraction of the maximal achievable rate as the number of transmitter and receiver

antennas increases.

The information variance U(X;Y |D) in (5.12) shows how quickly the perfor-

mance converges to the maximal achievable rate as blocklength n grows. In the case

of the BPSK and QPSK modulations shown in Fig. 5.4, the information variances

for the BPSK and QPSK modulated signal are 0.9281 and 2.8267, respectively.

From Fig. 5.5, we can see that the information variances are 1.6990 and 4.9729,

respectively.

Additionally, if the target is to transmit at a fraction of the maximal achievable

rate 0 < η < 1 with a pre-determined ϵsource, the relationship between the required

blocklength n and the information variance is given as follows:

n ≈ U(X;Y |D)

(I(X;Y |D))2
(Q−1(ϵsource)

1− η
)2
.

To validate our results, we transform the achievability and converse bounds in

Th. 9 to the lower and upper bounds on the average error probability of the RF

source signal. From Th.9, We have the achievability and converse bounds on maxi-

mal error probability. Since there always exists an (n,M, ϵsource)-code in the maximal
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Table 5.1: Required blocklength to achieve a given fraction of the maximal achiev-
able rate for an AmBC MIMO system over a Rayleigh fading channel, SNR= −5dB
and ϵ = 10−3, and P (d) = [0.5, 0.5].

2× 2 MIMO 3× 3 MIMO

BPSK QPSK BPSK QPSK

Required n to Achieve 70%

of The Maximal Achievable Rate 180 380 100 260

Required n to Achieve 80%

of The Maximal Achievable Rate 420 860 240 580

error probability ϵsource that guarantees the existence of an (n,M ′, ϵ′source)-code in

the average error probability ϵ′source, for any ϵ′source < ϵsource < 1 and 0 < ξ < 1,

where M ′ = 2nR/(1−ξ) and ϵ′source = ξϵsource. From (5.10), we have I(X;Y |D) −√
U(X;Y |D)/nQ−1(ϵsource) +O(n−3/2) ≤ R ≤ I(X;Y |D)−

√
U(X;Y |D)/n

Q−1(ϵsource) + (m+ 1) log n/(2n) +O(n−3/2).

We transform the achievability and converse bounds into the lower and upper

bounds on the maximal error probability of the RF source signal as follows.

Q
(I(X;Y |D) + m+1

2
logn
n
−R√

U(X;Y |D)
n

)
≤ ϵsource ≤ Q

(I(X;Y |D)−R√
U(X;Y |D)

n

)
.

Therefore, we obtain the lower and upper bounds on the average error probability

of the RF source signal, i.e., ϵ′source, which is shown below.

ξQ
(I(X;Y |D) + m+1

2
logn
n
−R(1− ξ)√

U(X;Y |D)
n

)
≤ ϵ′source ≤ ξQ

(I(X;Y |D)−R(1− ξ)√
U(X;Y |D)

n

)
.

By utilizing the polar code with a successive cancellation list (SCL) decoder and

the extended BCH code with an ordered statistic decoder (OSD), we validate our

derived results.
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Figure 5.6: Lower and upper bounds for (128, 264, ϵ′source) codes for a legacy system
over a Rayleigh fading channel and transmit antennas t = 2 and receive antennas
r = 2 with BPSK modulated RF source signal, repectively.

In Fig. 5.6, we set the number of the transmitter and receiver antennas to 2, the

modulation scheme to BPSK, the coding rate R = 0.5, and the blocklength n = 128.

All the simulations are averaged over 106 Monte Carlo realizations. We choose two

coding methods: one is the (128, 264)-polar code with SCL decoder (the list size is

L = 32), and the other is the (128, 264)-EBCH code with OSD decoder (the order is

chose to 4). We observe that for the EBCH code, at the average error probability

level of 10−2 and 10−4, the gap between the simulation result and the lower bound

increases from 2.5 dB to 4 dB, respectively. As EbNo increases, the gap increases

accordingly. The simulation result of the EBCH code is slightly better than the

one of the polar code. However, it still shows that the EBCH code is still better
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Figure 5.7: Lower and upper bounds for (128, 264, ϵ′source) codes for a legacy system
over a Rayleigh fading channel and transmit antennas t = 2 and receive antennas
r = 2 with QPSK modulated RF source signal, repectively.

than the polar code at the blocklength n = 128. In Fig. 5.7, we set the modulation

scheme to QPSK and keep the rest parameters the same as in Fig. 5.6. We observe

that the overall performance between the BPSK modulation scheme and the QPSK

modulation scheme in the 2×2 MIMO system is similar. The simulation results and

our derived bounds validate the observation. In Fig. 5.8, we change the number of

the transmitter and receiver antennas to 3, the modulation scheme to BPSK, and

remain the rest parameters the same as in Figs. 5.6 and 5.7. At first, we compare

the performance of two codes in different MIMO systems, i.e., 2×2 MIMO and 3×3

MIMO systems. At the same EbNo level of −4 dB, the average error probability

drops from 0.4375 to 0.0907 for the EBCH code and from 0.5509 to 0.1089 for the
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Figure 5.8: Lower and upper bounds for (128, 264, ϵ′source) codes for a legacy system
over a Rayleigh fading channel and transmit antennas t = 3 and receive antennas
r = 3 with BPSK modulated RF source signal, repectively.

polar code. At the same average error probability level of 10−2, the gaps between

different MIMO systems are 3 dB and 3.5 dB for the EBCH code and polar code,

respectively. We observe that the bounds are closer in the 3 × 3 MIMO system

than in the 2 × 2 MIMO system. In Fig. 5.9, we change the modulation scheme

from BPSK to QPSK, and remain the rest parameters the same as in Fig. 5.8. The

comparison between these two figures shows that the gap between the performance

of the two codes in different modulation schemes becomes larger, i.e., 1 dB and 2

dB (at the same average error probability level of 10−2) for the EBCH code and

polar code, respectively. In Fig. 5.10, we set the number of the transmitter and

receiver antennas to 2 and 3, respectively, the RF source signal modulation scheme
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Figure 5.9: Lower and upper bounds for (128, 264, ϵ′source) codes for a legacy system
over a Rayleigh fading channel and transmit antennas t = 3 and receive antennas
r = 3 with QPSK modulated RF source signal, repectively.

to BPSK, and keep the rest parameters the same as in Figs. 5.6-5.9. We compare

the performance of our proposed method and ML detection with different coding

methods of the RF source signal, i.e., the EBCH code and polar code. When EbNo

is small, the gaps between these two methods are 0.5 dB and 0.8 dB for the 2 × 2

MIMO and 3 × 3 MIMO system, respectively. As EbNo increases, the gap slightly

increases to 1 dB and 1.2 dB for 2×2 MIMO and 3×3 MIMO systems, respectively.

Additionally, we observe that as EbNo increases, the gap between different codes

vanishes for both 2× 2 MIMO and 3× 3 MIMO systems.

Fig. 5.11-5.13 demonstrates the relation between the blocklength n and the

probability of P[d̂ ̸= d|X̂ = X], P[d̂ = 0, d = +1|X̂ ̸= X], and P[d̂ = +1, d = 0|X̂ ̸=
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Figure 5.10: The comparison between ML detection and our proposed method with
different coding methods with BPSK modulation over a Rayleigh fading channel and
transmit antennas t = 2 and receive antennas r = 2, and transmit antennas t = 3
and receive antennas r = 3, respectively.

X], which are obtained from (5.25), (5.27), and (5.28), respectively. From Fig. 5.11,

we observe that under the condition of X̂ = X, the conditional probability of d̂ ̸= d

decreases as the blocklength n increases regardless of the number of transmitter and

receiver antennas. When n = 200, P[d̂ ̸= d|X̂ = X] for 2× 2 MIMO is 6.56× 10−4,

while the one for 3×3 MIMO is 9.53×10−6. When n moves to 1000, the probability

for 2 × 2 MIMO decreases to 4.29 × 10−5 while the one for 3 × 3 MIMO drops

to 1.23× 10−7. Furthermore, when n increases to 2000, the conditional probability,

P[d̂ ̸= d] under the condition of X̂ = X for 2×2 MIMO case decreases to 1.30×10−5

in the meanwhile, that probability for 3 × 3 MIMO case falls to 2.41 × 10−8. The
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Figure 5.11: P[d̂ ̸= d|X̂ = X] in (5.25) over 2 × 2 MIMO and 3 × 3 MIMO,
respectively.

decreasing trend of 2×2 MIMO is much slower than that for 3×3 MIMO from n = 0

to 1000. After n = 1000, the tendencies for both cases are flattened. Compared

with ML detection, when n is less than 800, there is a small gap between the low-

complexity ML detection that we mainly use in this paper and the ML detection for

2×2 and 3×3 MIMO. As n grows larger, the performances of the two methods, i.e.,

the ML and the low-complexity ML detection methods, are basically the same. Fig.

5.12 and 5.13 show that under the condition of X̂ ̸= X and d = +1, the conditional

probability of d̂ ̸= d increases as the blocklength n increases regardless of the number

of the transmitter and receiver antennas. Moreover, the figures also demonstrate

that under the condition of X̂ ̸= X and d = 0, the conditional probability of d̂ ̸= d
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Figure 5.12: P[d̂ = 0, d = +1|X̂ ̸= X] in (5.27) over 2×2 MIMO and 3×3 MIMO,
respectively.

decreases as the blocklength n increases regardless of the number of transmitter and

receiver antennas. Compared with the ML detection, for 2 × 2 MIMO case, when

n increases from 0 to 2000, the gap between the ML and the low-complexity ML

detection shrinks to a constant, while the gap for 3× 3 MIMO falls to a very small

margin. Basically, when n goes beyond 1000, the performances of the two detections

are the same for 3× 3 MIMO case.

Fig. 5.14 demonstrates the error probability of the tag symbol ϵtag in (5.29) with

different blocklength n and the error probability of the RF source signal ϵsource for

2 × 2 MIMO and 3 × 3 MIMO, respectively. The relationship between ϵsource and

the blocklength n is given by Theorem 9 and (5.10). Moreover, (5.29) illustrates the
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Figure 5.13: P[d̂ = +1, d = 0|X̂ ̸= X] in (5.28) over 2×2 MIMO and 3×3 MIMO,
respectively.

relation between ϵsource and ϵtag and the blocklength n. Therefore, we plot (5.29) in

a 2D plane with the x-axis representing the blocklength n, the y-axis representing

ϵsource, and the z-axis representing ϵtag. From Fig. 5.14, we observe that for the same

ϵsource, 3×3 MIMO significantly outperforms 2×2 MIMO from the blocklength n = 0

to 1000. When n increases, the gap between these two cases shrinks. Furthermore,

for the same blocklength n, when ϵsource is less than 10−5, the performance of 3× 3

MIMO is substantially better than that of 2 × 2 MIMO. As ϵsource becomes small,

i.e., 10−10, the gap between the performances of two cases decreases.
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Figure 5.14: The comparison between the blocklength, n, the error probability of
the RF source signal ϵsource and the error probability of the tag symbol, ϵtag.

5.5 Summary

In this chapter, we established achievability and converse bounds on the maximal

achievable rate R at a given blocklength n and a maximal error probability ϵsource for

an AmBC MIMO system. We derived the relationship between ϵsource and ϵtag with

respect to the blocklength n. The analytical results demonstrated that the number

of transmit and receive antennas and the information variance U(X;Y |D) would

affect the convergence speed to the maximal achievable rate as the blocklength n

increases.



Chapter 6

Conclusions

This thesis presents novel methods to analyze the performance and demonstrate

the methods how to analyze the performance of RIS and AmBC systems. The key

results and findings are summarized as follows.

In Chapter 3, we explore the lower and upper bounds of the optimal code’s

decoding error probability, for a specific length, SNR, and code rate, in a short

blocklength regime, within an RIS-assisted communication system. Our approach

primarily employs the sphere-packing technique to determine the lower and upper

bounds, which are derived using closed-form expressions. Through our numerical

analysis, we gain insights into the performance of various blocklengths within an

RIS-assisted wireless system, given a specific code rate, and determine how the

number of RIS elements could enhance signal quality at the receiver’s end.

In Chapter 4, we derive both achievability and converse bounds on the maximal

achievable rate R for a given blocklength n and maximal error probability ϵ in an

RIS MIMO system. Our analysis reveals that the convergence speed to the maximal

achievable rate is impacted by several factors, such as the number of transmit and

receive antennas, as well as the channel variance U(X;Y ). Our analytical results

110
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shed light on the important role these factors play in determining the achievable

rate and the associated error probability in RIS MIMO systems, particularly as the

blocklength n increases.

In Chapter 5, we develop both achievability and converse bounds on the maximal

achievable rate R for a given blocklength n and maximal source error probability

ϵsource. Through our analysis, we establish the relationship between the source error

probability ϵsource and the tag error probability ϵtag with respect to the blocklength

n. Our analytical results further demonstrate that the convergence speed to the

maximal achievable rate is influenced by various factors, including the number of

transmit and receive antennas and the information variance U(X;Y |D), especially

as the blocklength n increases. These findings provide important insights into the

factors that impact the achievable rate and associated error probabilities in AmBC

MIMO systems.

6.1 Future Work

In this section, some remaining research problems are listed which will be carried

out in the future:

1. We will investigate our mathematics framework into the state-of-the-art com-

munication systems, such as the Intelligent Omni-surface in [57] and the Re-

configurable Holographic Surfaces in [61].

2. We will investigate our derived results at the finite blocklength regime into

the differential privacy due to the fact that Rebollo-Mondero et al. connect

Equation 4 in [62], which represents the risk-distortion function, to Shannon’s

rate-distortion problem in information theory [63]. Shannon’s theory addresses

the compression of data while minimizing the average distortion in the recon-
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structed signal. It aims to create a concise code that efficiently represents

the original signal or data, with low distortion. The rate-distortion theory

determines the expected distortion level D given the desired information rate

R of the code, or vice versa, using the rate-distortion function R(D) similar

to Equation 4. This function defines the infimum of the rates of codes that

maintain a distortion bounded by D. By the above connection, we can apply

our derived results at the finite blocklength regime to find the relationship

between the size of the dataset and the differential privacy.



Appendix A

Proofs for Chapter 4

In this appendix, we give the proof of the converse part of Theorem 7 and Theorem

9 in Chapter 4 and Chapter 5, respectively. We assume the transmitter is not aware

of the realizations of the channel matrix H. We denote the average power constraint

p(X)
∆
=

1

n
XXH . (A.1)

Based on [64–66], to evaluate the converse bound of an auxiliary channel, we need

to obtain the lower bound of ϵ′, where ϵ′ is the maximal error probability over the

corresponding auxiliary channel. We thus denote the auxiliary channel Q as:

QY|X,H
∆
=

n∏
j=1

QYj |X,H, (A.2)

where

QYj |X,H = CN (0, Ir +Hp(X)HH), (A.3)

We denote B
∆
= Ir + Hp(X)HH and let its eigenvector ω = [ω1, . . . , ωm] =

λmax
(
B). Note that P = p(X) is the only factor that affects the output of the

QY|X,H channel. Let the space S
∆
= p(Y) = 1

n
YYH and its entry is defined as

the square of the norm of Y and is then normalized by the blocklength n, which is
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shown below

Sj =
ωj
n

n∑
i=1

|Zj,i|2, j = 1, . . . ,m, (A.4)

where Zj,i ∼ CN (0, 1). S can be seen as the statistical expression of the receiver’s

detection of X from (Y,H). Thus the auxiliary channel QY|X,H can be seen as

QS|B. From (A.4), we note that the Sj follows the Gamma distribution, and its

corresponding PDF is given by

qSj |Bj
(sj|ωj) =

nn

(ωj)nΓ(n)
sn−1
j exp

{
− nsj

ωj

}
. (A.5)

Moreover, as QS|B is a product of m copies of the PDF of Sj. We can obtain the

PDF of QS|B by the theorem shown below [67].

Theorem 11. Given N independent Gamma-distributed RVs xi and that their shape

parameter k and scale parameter θ are all the same, we have the PDF of xi as

fi(xi) =
1

Γ(k)θk
xk−1
i e−

xi
θ . (A.6)

We denote z as the product of N independent gamma variables xi. Therefore, the

PDF of z = x1x2 . . . xN is a normalized Meijer G-function as

g(z) = KGN,0
0,N

(
k−1

∣∣ z

θN
)
, (A.7)

where K is a normalizing factor which is

K = (
1

θ
)N

N∏
i=1

1

Γ(k)
, (A.8)

and

Gm,n
p,q

( j1,j2,...,jp
k1,k2,...,kq

∣∣ z) = 1

2πi

∫ c+i∞

c−i∞
z−s ·

∏m
j=1 Γ(s+ kj) ·

∏n
j=1 Γ(1− jj − s)∏p

j=n+1 Γ(s+ jj) ·
∏q

j=m+1 Γ(1− kj − s)
ds,

(A.9)

where c is a vertical contour in the complex plane chosen to separate the poles of

Γ(s+ kj) from those of Γ(1− jk)− s.



115

We set two parameters, the shape parameter k = n and the scale parameter

θj =
ωj

n
. The number of copies in our case is N = m. Then we can apply Theorem

11 to calculate the PDF of QS|B as

qSj |Bj
(sj|ωj) = KGm,0

0,m

(
n−1

∣∣ sj( n
ωj

)m
)
, (A.10)

where

K = (
n

ωj
)m

m∏
i=1

1

Γ(n)
, (A.11)

and

Gm,0
0,m

(
n−1

∣∣ sj( n
ωj

)m
)
=

1

2πi

∫ c+i∞

c−i∞
(sj(

n

1 + ωj
)m)−z

m∏
j=1

Γ(z + n− 1)dz. (A.12)

Consider an arbitrary code for the auxiliary channel Q. The decoding sets cor-

responding to the M codewords is denoted by Di, i = 1, ...,M . ϵ′ is the maximal

error probability over the auxiliary channel Q. Then we have

1− ϵ′ = 1

M
EH

[ M∑
i=0

∫
Di

qS|B(s)ds

]
≤ EH

[ ∫
D0

qS|B(s)ds

]
≤ EH

[
max{qS|B(s)} × Leb(D0)

]
.

Next we need to provide the maximum of the output space of an arbitrary

decoding set, Leb(D0). Due to the power allocation vector p(X), the space P can

be bounded by a certain ball in Rm. Based on the definition of S, its space is a

slightly larger ball than the space P. Thus we can obtain the maximum of the

Lebesgue measure [68] of D0,

Leb(D0) ≤ Leb(S) ≤ K

M
, (A.13)

where K is a constant.
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Then the decoding set of any codeword has a Lebesgue measure space which is

always smaller than K
M
. Therefore, we have

1− ϵ′ ≤ EH

[
max{qS|B(s)} ×

K

M

]
(A.14)

=
1

M

(
(n− 1)n exp{−(n− 1)}

Γ(n)

)m

×
∫ ∞

0

m∏
i=1

(ωj)p(g)dg (A.15)

≤ nm/2

M
. (A.16)

According to Theorem 4, we have

Λ(ϵ) ≥ 1

λ

(
ϵ− P

[
i(Xn;Y n) ≤ log λ

])
≥ 1

λ

(
ϵ− 6T (X;Y )
√
nU(X;Y )

3
2

−Q(τ)
)
, (A.17)

where Λ(ϵ) denotes the maximal probability of error under PY|X,H if the probability

of error under QY|X,H is ϵ and (A.17) follows from (2.40) in Subsection 2.2.1. Then,

log Λ(ϵ) ≥ −nI(X;Y ) + τ
√
nU(X;Y ) + log

(
ϵ− 6T (X;Y )
√
nU(X;Y )

3
2

−Q(τ)
)
, (A.18)

where (A.18) follows from (2.39) in Subsection 2.2.1. We assume τ = Q−1(ϵ(1 +

1√
n
)− 6T (X;Y )

√
nU(X;Y )

3
2
). Thus,

log Λ(ϵ) ≥ −nI(X;Y ) +
√
nU(X;Y )Q−1(ϵ(1 +

1√
n
)− 6T (X;Y )
√
nU(X;Y )

3
2

)− 1

2
log n.

(A.19)

Due to the fact that log Λ(ϵ) ≤ log(1− ϵ′), we have

−nI(X;Y ) +
√
nU(X;Y )Q−1(ϵ+

ϵ√
n
)− 1

2
log n+O( 1√

n
) ≤ 1− ϵ′. (A.20)

Thus substituting (A.20) into (A.16), we have

R ≤ I(X;Y )−
√
U(X;Y )

n
Q−1(ϵ+

ϵ√
n
) +

(m+ 1) log n

2n
+O(n− 3

2 ). (A.21)



Appendix B

Proofs for Chapter 5

In this appendix, we give the proof of saddle point approximation [69] of (5.8) and

(5.9) in Chapter 5.

I(X;Y |d = 0) = t log |A|+ 1

|A|t

|A|t∑
i=1

∫ ∞

0

∫ ∞

−∞

1

det(πIr)
p(h0) exp{−

1

2
∥y − h0xi∥2}·

log{
exp{−1

2
∥y − h0xi∥2}∑|A|t

i′=1 exp{−1
2
∥y − h0xi′∥2}

}dydh0 (B.1)

= t log |A| − 1

|A|t ln 2

|A|t∑
i=1

∞∑
p=1

1

p

p∑
q=0

p!(−1)q

q!(p− q)!
1

det(πIr)
·∫ ∞

0

∫ ∞

−∞
p(h0)

(
Π(y,h0)

)−q
dydh0, (B.2)

where (B.2) comes from Taylor series expansion of (B.1) and

Π(y,h0) =

|A|t∑
i′=1

exp
{∥∥y − qh0(xi − xi′)

∥∥2

2q
−

(q + 1)
∥∥h0(xi − xi′)

∥∥2

2

}
.

Before utilizing the saddle point approximation, we need to guarantee the exis-

tence of the saddle point. For convenience of notation, we use vector ci,i′ to represent

h0(xi−xi′). Since q is positive integers, it is easy for us to validate that Π−q(y) > 0,

limy→∞{Π−q(y)} = 0 and limy→−∞{Π−q(y)} = 0.
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Thus there exists a maximum value of Π−q(y), which satisfies the condition

of the saddle point approximation. Then we can assume that Π−q(y) achieves its

maximum at y = y0, which y0 satisfies ∂
∂y
Π−q(y)|y=y0 = 0

|A|t∑
i′=1

2(y0 − qci,i′)
2q

exp{
∥∥y0 − qci,i′

∥∥2

2q
−

(q + 1)
∥∥ci,i′∥∥
2

} = 0. (B.3)

After solving (B.3), we have y0 =
∑|A|t

i′=1 qρi,i′ci,i′ , where ρi,i′ =

Π(y0)/
∑|A|t

i′=1 Π(y0) is a positive number from (0, 1) and satisfies that
∑|A|t

i′=1 ρi,i′ = 1.

Therefore, we have for a non-zero number q, the multiple integrals over the complex

number vector y can be approximated by the saddle point approximation

∫ ∞

−∞

1

det(πIr)

(
Π(y,h0)

)−q
dy ≈

[ |A|t∑
i′=1

exp{−
∥∥h0(xi − xi′)

∥∥2

3− exp{−
∥∥h0(xi − xi′)

∥∥2
/4}
}
]−q

.

(B.4)

Combining (B.2) and (B.4), we eliminate the multiple integrals over the complex

vector y as

I(X;Y |d = 0) ≈ t log |A| − 1

|A|t ln 2

|A|t∑
i=1

∞∑
p=1

1

p

p∑
q=0

p!(−1)q

q!(p− q)!

∫ ∞

0

p(h0)·

[ |A|t∑
i′=1

exp
{
−

∥∥h0(xi − xi′)
∥∥2

3− exp{−
∥∥h0(xi − xi′)

∥∥2
/4}

}]−q
dh0. (B.5)

Then by observing (B.5), we take advantage of inverse Taylor series expansion

and we obtain

I(X;Y |d = 0) ≈ t log |A| −
∫ ∞

0

p(h0)
1

|A|t

|A|t∑
i=1

log
[ |A|t∑
i′=1

exp
{
−

∥∥h0(xi − xi′)
∥∥2

3− exp{−
∥∥h0(xi − xi′)

∥∥2
/4}

}]
dh0. (B.6)

Moreover, we need to obtain the approximation of the unconditional variance

U(X;Y ). The steps are basically same with the process of the approximation of
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I(X;Y ), then we have

U(X;Y |d = 0) ≈ −[I(X;Y )− (t log |A|)]2 +
∫ ∞

0

p(h0)
1

|A|t

|A|t∑
i=1

log2[

|A|t∑
i′=1

exp{−
∥∥h0(xi − xi′)

∥∥2

6− exp{−
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∥∥2
/16}

}]dh0. (B.7)
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