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Abstract

Within the field of explainable AI, a considerable drawback of the current explanation

methods is that they do not take background knowledge into account to improve the quality of

explanations. We study this problem and present a mechanism to include arbitrary background

knowledge on the input domain as constraints into the reasoning process. We show, theoret-

ically and empirically, that the quality of explanations can be enhanced by 1) using domain

constraints to improve the parsimony of explanations, and 2) producing more focused explan-

ations by specifying a "context" for an explanation (i.e. a cover and a partial world). Further,

we investigate the close connection between explanations and causality by formalising a few

relevant concepts and notions from the social science literature. We illustrate the usefulness

of these formalised notions for making causal arguments over some canonical examples from

the causality literature. Finally, we provide the details of a quantitative approach to improving

explanation quality by using a real-life example from medical domains.
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CHAPTER 1

Introduction

With increasing deployment of AI systems in safety-critical and sensitive domains, there is a

surge of interest in techniques that can better explain the internal decision-making rationale

and outputs of these systems to their end users. Explanations were always needed by the

developers and the deployers of machine learning (ML) models to examine the internal

validity, fairness and correctness of the outputs of the models before deploying them into

real-life settings. In the past couple of years, however, the need for explanations has intensified

by the need to provide the end users of these systems with the "right to be informed" (Wachter,

Mittelstadt and Floridi 2017) attested by the 2016 regulations passed in the EU (GDPR,

European Commission 2016), which made explanations a requirement for systems with

algorithmic decision-making.

Therefore, for real-world applications of ML models, there is a legal obligation and a social

need to ensure that the results, decisions or outputs of these systems can be explained to their

end users.

Some ML models are arguably inherently interpretable. Often called intrinsic, transparent,

or glass-box models, these include the linear models, decision-tree models, and rule-based

models (Linardatos, Papastefanopoulos and Kotsiantis 2020).

Inherently interpretable models can be contrasted with black-box models that are not trans-

parent, nor easily interpretable. Black-box models include deep neural networks (Adadi and

Berrada 2018) and the ensemble methods such as bagging, stacking, boosting and random

forests (Polikar 2012). Black-box models usually require explicit explanations.

1



2 1 INTRODUCTION

Explicit explanations that accompany an ML model’s output after it is generated are often

called post-hoc explanations.

Post-hoc explanation techniques can be classified based on the type of problem they apply

to (i.e., classification, regression, etc.), whether their scope is global or local, and their

algorithmic properties such as search technique, level of approximation (e.g. heuristic vs.

exact) and the final outputs (e.g. feature importance vs. rules, and type of rules) (Sokol and

Flach 2020; Agarwal et al. 2021).

Black-box models are the most obvious candidates among ML models that need post-hoc

explanations; however, even models that are known to be inherently interpretable may become

too complex to be easily interpreted by their end users. Studies show that even simple decision

trees may have many unnecessary complexities in the rules, and that typically, the rules of a

decision tree could be simplified further through logic-based explanation (Izza, Ignatiev and

Marques-Silva 2020).

Unnecessary complexities in explanations can hinder their usefulness, so for practical applic-

ability of explanations, it is crucial to ensure that Occam’s razor is applied in principle to

the explanations before they are returned to a user. Occam’s razor dictates that explanations

should be devoid of any unnecessary complexities, striving for simplicity and straightforward-

ness. But simplicity is not the only factor in providing good explanations. It is also important

to ensure that explanations align with the knowledge, understanding and expectations of the

end users about the problem domain and hence are deemed relevant by them (Miller 2019).

A notable drawback of many of the prior explanation methods (Ribeiro, Singh and Guestrin

2018; Ribeiro, Singh and Guestrin 2016; Lundberg and Lee 2017; Shih, Choi and Darwiche

2018; Ignatiev, Narodytska and Marques-Silva 2019a; Ignatiev, Pereira et al. 2018; Huang

et al. 2021) is that they do not provide an in-depth evaluation of the role of background

knowledge on providing explanations, nor provide methods to systematically incorporate

arbitrary domain constraints into the process of finding explanations. This has warranted

further research into addressing this problem in the past couple of years (Deutch and Frost

2018; Shrotri et al. 2022) and is the focus of our work in this thesis.
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Incorporating background knowledge as domain constraints. Domain constraints are

ubiquitous in ML and arise from the structure and inter-dependencies between features present

in data (Darwiche 2020). As a simple example, consider a medical setting in which some

combinations of drugs are never prescribed together and thus will not appear in any dataset:

if we know that "drug A and drug B are never prescribed together" (i.e., the constraint),

then an explanation of the form "drug A was prescribed and drug B was not prescribed" is

overly redundant; in this situation, it is more parsimonious to supply "drug A was prescribed"

instead.

Although it might be obvious how to process explanations to take simple constraints into

account, it is by no means obvious how to handle constraints represented by arbitrarily

complex formulas. For example, given some well-known but complex rules of a structured

game (such as chess, checkers or even the seemingly simple rules of a tic-tac-toe (TTT) game),

it is not clear how the background knowledge about the rules of these games can be used to

produce better explanations. For instance, how would one incorporate "players take turns"

and "X goes first" into the reasoning process? And what changes to explanations can one

expect as the result of incorporating this background knowledge?

We can expect background knowledge to help to enrich our explanations and enable us to

reveal insights that would not be immediately available from the model itself. For instance,

in a TTT game, there may be several reasons for why a player wins the game, but not all

explanations are well-known. The most common explanation is the three-in-a-row explanation

— that one of the players managed to put three marks in a horizontal, vertical, or diagonal

row. But in some situations, "isolated marks" can also be valid explanations - although not

commonly known.

Consider a finished TTT game in which player X has won in 5 moves (depicted in Table

1.1.a). The fact that player O has placed "an isolated" mark on the board (Table 1.1.c Reason

2) is also an explanation for X winning the game; i.e. a player can never be the winner in a

game in which at most 6 marks are placed on the board and one of his marks is "isolated"

(surrounded by empty cells); there is no way that the player can have three-in-a-row in this

situation.
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a. TTT Game b. Reason 1 c. Reason 2
X X X

O O

X X X
H H

H O

TABLE 1.1. a: A TTT board in which player X has won. b: The common
three-in-a-row explanation for why X has won. c: Another possible explanation
that does not mention any position of X. Marks in the highlighted cells (in
grey) form an explanation: H depicts an empty cell, while X and O show the
position of the marks of players X and O that are part of the explanation.

To show that Reason 2 actually explains why X won, notice that the game could not have been

a draw (because there are still empty cells on the board), so if the game has ended validly

(which is our assumption), then someone has won the game. With 5 empty cells (unmarked)

on the board of Reason 2, we know that player O can have either two or three moves on the

board (since in a valid game, players take turns). No one wins with two moves, so we consider

the case that O has put three marks on the board. From Reason 2, we know the position of one

of O’s moves, and we see that it is an isolated move. If one move out of three was isolated,

then it is not possible to make a 3-in-a-row, therefore O could not have won. Since someone

has won this game, then X must be the winner.

Providing more relevant explanations. Different stakeholders may have different per-

spectives and requirements when it comes to explaining ML decisions. For instance, if one is

interested in player styles and strategy, then examining different types of reasons may yield

interesting insights. Sometimes it is necessary to examine all valid reasons, for instance to

assess the fairness and biases of an ML model (Darwiche and Hirth 2020). So the ability to

generate all of the valid explanations for a given context is an important task.

Too many explanations however, pose another significant challenge for explainable AI;

the existence of multiple competing explanations for a given ML decision or prediction is

problematic both in terms of computing explanations and for returning them to the end users

(Lakkaraju et al. 2019).

Studies show that (following the required verifications of a model as mentioned earlier) not

all explanations may be needed by end users, as people’s cognitive biases often lead them to
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prefer certain types of explanations over others (Miller 2019). It is important to consider the

relevance of an explanation to the end user and their existing knowledge about the problem

domain (Miller 2019).

In line with considering background knowledge, another important aspect is to focus ex-

planations on a "context" that is meaningful for the end user. This context can be seen

as an acceptable explanation framework from which all explanations are derived. This ap-

proach aligns with social science research, where explanations are often generated based

on a pre-selected "causal model" or "explanatory model" that provides a relevant context

for understanding phenomena (Baumgartner and Falk 2018; Ragin 2014a; Duşa and Thiem

2015).

For illustration, consider the example of a professor who is shortlisting student candidates

for a research project. She considers students who have taken at least one and at most two

out of the following three courses: Logic (L), AI (A) and Statistics (S). The professor has

an artificial agent assistant that sends her qualified applications, each accompanied with an

explanation. As required by the professor, the only selection criterion used by the AI assistant

is that candidates have taken at least one and no more than two courses.

There are a total of 6 possible explanations: a.p␣L^ Sq, b.pL^␣Aq, c.pA^␣Sq, d.p␣L^

Aq, e.p␣A^ Sq, f.pL^␣Sq.

Table 1.2 shows a truth table for the combinations of courses (L, A, S) that a student could have

taken, a column Y indicating whether a candidate matches the selection criteria, followed by

the possible explanations for that row. On the right hand side, we see 5 possible explanatory

models, each can explain all of rows of the truth table. Setting aside the details of how

these models are derived, notice that the models differ in the combination of variables that

are explicitly mentioned by them. For example, in explanatory model 1, variable L is not

explicitly mentioned in all of the explanations. But model 4 mentions L in every explanation.

If the professor is happy with only one explanation per candidate, and requires that all of

the explanations to explicitly mention whether the candidate took logic or not, then the AI

assistant can return explanations from explanatory model 4.
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Truth Table Explanatory models for potential candidates (Y=1)

L A S Y Explanations
0 0 0 0 –
0 0 1 1 a,e
0 1 0 1 c,d
0 1 1 1 a,d
1 0 0 1 b,f
1 0 1 1 b,e
1 1 0 1 c,f
1 1 1 0

1.p␣L^ Sq _ pL^␣Aq _ pA^␣Sq

2.p␣L^ Aq _ p␣A^ Sq _ pL^␣Sq

3.p␣L^ Aq _ p␣A^ Sq _ pL^␣Aq _ pA^␣Sq

4.p␣L^ Aq _ p␣L^ Sq _ pL^␣Aq _ pL^␣Sq

5.p␣L^ Sq _ p␣A^ Sq _ pL^␣Sq _ pA^␣Sq

TABLE 1.2. The truth table on the left shows rows with combinations of
courses that candidates could have taken and the possible explanations for
the row (explanations: a: p␣L^ Sq, b:pL^␣Aq, c:pA^␣Sq, d:p␣L^ Aq,
e:p␣A ^ Sq, f:pL ^ ␣Sq). The list on the right hand side shows 5 possible
explanatory models.

For instance, explanations for row (0,1,0) are p␣L^ Aq and pA^␣Sq. Given explanatory

model 1, the explanation is pA ^ ␣Sq, and given explanatory model 4, the explanation is

p␣L^ Aq.

Choosing an explanatory model from which explanations are generated, can help to improve

explanations that are returned to an end user by focusing them to a context that the end user

finds acceptable and relevant.

1.1 Contributions

Against this backdrop, we now provide a summary of our contributions in this thesis in more

technical terms.

First, we study the problem of incorporating background knowledge as domain constraints

into the process of finding explanations. We propose a straightforward approach to effectively

consider and incorporate arbitrary domain constraints.

First contribution: In summary the contributions of the first part of this thesis are:
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(1) Focusing on the sufficient reasons notion of explanation (Darwiche and Hirth 2020),

we provide a crisp formalisation of the notion of sufficient reasons for classifier

decisions that take domain constraints into account.

We show that this results in sufficient reasons that are at least as (and sometimes

more) parsimonious, i.e., more general and more succinct, than not taking constraints

into account. The central insight, both simple and powerful, is to treat a classifier

as a partial function by making it undefined on input instances that do not satisfy

the constraint, and then to use the classic definition of prime implicant on partial

functions (Coudert 1994) as the instantiation of "sufficient reason".

This immediately and naturally generalises the state-of-the-art from the uncon-

strained setting to the constrained setting.

We do this for Boolean classifiers in Chapter 3 and the more general multi-value

classifiers in Chapter 4.

(2) We provide a simple reduction of the computational problem of finding all sufficient

reasons of a classifier’s decision for a given instance in the presence of constraints

to the same problem in the unconstrained setting. This allows one to reuse existing

algorithms and tools from the unconstrained setting.

The idea is that if the constraint is given by the formula κ (which is a formula

that constrains the instances we ask decisions about), and the decision-function

is given by the formula φ, then sufficient reasons of decisions (made by decision-

function represented by φ) that take κ into account are exactly the sufficient reasons

of the decision function represented by the formula pκ Ñ φq. We prove that all

other variations, including the natural variation pκ^ φq which expresses exactly the

instances of interest (i.e., positive instances that satisfy the constraints), provide no

more, and sometimes less, parsimonious sufficient reasons.

(3) We show, both theoretically and empirically on synthetic classifiers and classifiers

learnt from data, that approaches that ignore constraints may supply sufficient

reasons that are unnecessarily long since they redundantly encode knowledge already

described in the constraints.

These contributions are based on our publication (Gorji and Rubin 2022).
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Second contribution: We then address the problem of explanation relevancy and having

too many competing explanations.

We narrow the possible explanations in two dimensions. First, we take inspiration from a

formal computational model of causal reasoning that has been applied in diverse fields (such

as medical diagnosis, social sciences, natural language processing and intention inference in

robotics (Peng and Reggia 1990; Katz et al. 2016)) and use covers of the decision functions

of classifiers as causal models with reference to which explanations are produced. Second,

at the time of reasoning, we further narrow down explanations to those that satisfy a given

partial world (which is a generalisation of an instance to a partial instance), and highlight the

difference makers within the given partial world.

We formalise the definitions of actual causal inference within this framework and prove that

causes are minimal difference makers of their effects. We then show how our definitions deal

with some of the subtleties associated with causal inference.

Third contribution: Finally, we show that these theoretical works can be applied in practice

by analysing the dataset of Corticosteroid Randomization after Significant Head Injury

(CRASH) (Collaborators et al. 2008a) trials in Chapter 6. We show that the simplified

examples presented in the previous paragraphs actually have real-life counterparts. For

instance, focusing on a subset of the inputs allowed specifying the combinations of admission

parameters that are likely to result in a given clinical outcome for different subsets of patients.

This is appealing from a clinician’s perspective and helps to design simplified assessment

protocols in small medical centres without specialist capacity. Therefore, our results have

translational value. Further, in Chapter 6, we also demonstrated how explanations can be

accompanied by quantitative support metrics.

In summary, the thesis is organized as follows:

‚ Chapter 2 presents the related work.

‚ Chapters 3 and 4 present the first contribution of the thesis.
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– In Chapter 3 we define the notion of sufficient reasons for classifier decisions in

the presence of domain constraints.

– In Chapter 4 we extend our notions to finding sufficient reasons for multi-value

classifiers.

‚ Chapter 5 focuses on providing explanations within a specific context.

‚ Chapter 6 reports the results of a real-life application of explanations within a

context.

‚ Finally, we offer some closing remarks in Chapter 7.



CHAPTER 2

Related Work

In this chapter we review the closely related work on formal and heuristic approaches to

providing explanations that are prevalent in AI/ML and causality analysis domains. Before

reviewing the related work, we will clarify a few competing notions of explanation that are

used in the literature.

Explanations. The literature offers many definitions for an "explanation". Informally, an

explanation is a reason for a belief or an action (Miller 2018) and has roots in causality.

Halpern and Pearl (Joseph Y. Halpern and Pearl 2005b) call it a "fact that is not known for

certain but, if found to be true, would constitute an actual cause" of something that needs

to be explained. Operationally, it has been described as the "result of abductive inference

conducted to identify the causes for a certain event" (Miller 2018; Joseph Y. Halpern and

Pearl 2005b).

The literature also characteristically distinguishes explanations from various other (related)

concepts such as inference, justification, scrutability and interpretability/explainability (Kay

2000; Kay and Kummerfeld 2006; Miller 2019). Inference is concerned with determining

the truth of an explanation, or finding a suitable explanation among competing explanations

(Harman 1968). Justification explains why a decision is good, but does not necessarily aim to

give an explanation of the actual decision making process (Miller 2019). Scrutability can be

described as the degree to which a system can be examined to understand what the system

believes about the user, and how the system arrives at its beliefs about other (different) users.

It is also used to describe the degree to which a system can be modified by the user (Kay

and Kummerfeld 2006). Interpretability/explainability is the degree to which an observer can
10
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understand the cause of a decision (Miller 2019; Linardatos, Papastefanopoulos and Kotsiantis

2020).

There are three main types of explanations or reasons for outputs of ML models. Namely:

(1) Sufficient reasons which are also known as prime implicant (PI)-explanations (Shih,

Choi and Darwiche 2018) and abductive explanations (Ignatiev, Narodytska and

Marques-Silva 2019a),

(2) Necessary reasons (Darwiche and Hirth 2022) which are also known as contrastive

explanations (Ignatiev, Narodytska, Asher et al. 2020), and

(3) Counterfactual explanations (Mothilal, Sharma and Tan 2020).

Sufficient reasons provide answers to "plain-fact" questions which ask questions of the form:

"Why does object A have property P ?" (Van Bouwel and Weber 2002). For explaining the

decisions of classifiers, a sufficient reason is a minimal set of features and their values that is

sufficient for the classifier to return a specific decision. This is the notion of explanation that

we use in this thesis.

Contrastive explanations provide an answer to contrastive questions (Van Bouwel and Weber

2002). A contrastive question can be "alternative" or "congruent" or "time-contrastive" (Miller

2018). Paraphrasing Miller 2018: an alternative contrastive question asks: Why does object

a have property P , rather than property Q? A congruent contrastive question asks: Why

does object a have property P , while object b has property Q? A time-contrastive question

asks : Why does object a have property P at time t, but Q at time t1? For explanations of

the individual decisions of a classifier, contrastive explanations (Marques-Silva and Ignatiev

2022) provide the minimal set of features that are needed to change (take different values

from their domain) in order to change the computed decision (Marques-Silva and Ignatiev

2022).

Counterfactual explanations provide answers to counterfactual questions, which are defined

based on the definition of counterfactual statements (Pearl 2009). Counterfactual questions

ask: Would object a having property P , have propertyQ under conditionX? For explanations



12 2 RELATED WORK

of the individual decisions of a classifier, a counterfactual explanation usually has one of the

following forms:

(1) "The decision on ăthe given instanceą is ădecisioną. Had a small subset of

features been different ăfoilą, the decision would have been ădifferent decisioną

instead" (Sokol and Flach 2019).

(2) "The decision on ăthe given instanceą will remain the same, even if a small subset

of features had been different ăfoilą, because of ănecessary set of featuresą"

(Darwiche and Hirth 2022).

Both of these counterfactual forms highlight what could have happened had the input to a

given model been altered in a particular way.

To compute explanations for individual decisions of a classifier, various formal and heuristic

methods of explanation are available.

Formal methods of explanation. Formal explanation methods have their origins in the

logic synthesis methods of 1950s (Quine 1952a; Nelson 1955; McCluskey 1956a) that were

used for circuit optimisation in digital systems (Brayton, Hachtel et al. 1984; Brayton and

Somenzi 1989; Bryant 1992; Brayton, McGeer et al. 1993; McGeer et al. 1993), and were

later adapted and leveraged in expert system diagnosis (Reiter 1987; De Kleer, Mackworth

and Reiter 1992; Peng and Reggia 1990) and for analysing the causes of failures of large

electrical systems (Coudert and Madre 1993; Coudert and Madre 1992; Coudert 1995).

The most notable formal explanation tools in AI are STEP (Shih, Choi and Darwiche 2018)

which uses Knowledge Compilation (Darwiche and Marquis 2002; Darwiche 2011), and

eXplainer (Ignatiev, Narodytska and Marques-Silva 2019a) and its family of tools which use

SAT (Ignatiev, Pereira et al. 2018), SMT (Ignatiev, Narodytska and Marques-Silva 2019a)

and ILP (Ignatiev, Narodytska and Marques-Silva 2019b) solvers to find explanations for the

outputs of a classifier on individual input instances.
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All of these methods are focused on providing (sufficient or necessary) reasons behind an ML

model’s output (prediction/decision) on individual input instances, but they can also be used

to form counterfactual explanations (Darwiche and Hirth 2022).

Formal explanation methods compute provably minimal explanations, but also have the ability

to be used in model enumeration and to answer other queries such as identifying irrelevant,

forbidden or mandatory features for a given class (Audemard, Koriche and Marquis 2020).

The main limitation of formal explanation methods is their scalability. Indeed, if one is

interested in producing all possible explanations, these methods can hardly scale beyond a

dozen variables for complex problems (Shih, Choi and Darwiche 2018; Ignatiev, Narodytska

and Marques-Silva 2019a; Marques-Silva and Ignatiev 2022). However, in the last couple

of years, numerous theoretical and practical improvements for efficient computation of

explanations have been made, by focusing on specific classifiers, instead of remaining model-

agnostic. For instance, (Huang et al. 2021) introduced "explanation graphs" which allows for

finding explanations for a range of classifiers, including decision trees, graphs and diagrams

in polynomial time. (Marques-Silva and Ignatiev 2022) provide a thorough summary of some

other recent developments in formal explanations in AI.

Our first contribution (Chapters 3 and 4) is based on the formal explanation methods for

ML models. In particular, we focus on improving sufficient reasons by including domain

constraints into the reasoning process.

Apart from finding explanations for individual instances, formal explanation methods can

be used to summarise the input-output behaviour of an ML model into a single (simplified)

explanatory model, by using various covers. A cover of a function is a (minimal) set of terms

that can collectively explain the function as a whole (Karp 1972). Covers are useful when one

wants to reduce the number of possible explanations by focusing explanations on a subset of

terms (i.e. those that appear in a cover). Covers are sometimes used as explanatory causal

models in social science research (Baumgartner 2013; Baumgartner and Falk 2018; Graßhoff

and May 2001).
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The use of covers as causal models was popularised through the works of (Ragin 2014a;

Baumgartner 2009; Duşa and Thiem 2015) on Configurational Comparative Analysis Methods

(CCMs), the most well-known of which is called Qualitative Comparative Analysis (QCA).

QCA uses covers as causal models for a set of observations that are presented by a Boolean

function (Ragin 2014a; Ragin 2009a; Rihoux and Ragin 2008). Following the logical

minimisation procedure of the input Boolean function, QCA measures each term in a cover

with various statistical measures (Ragin 2009a). These measures are used by analysts to

evaluate the importance of contributory factors to causing a phenomenon of interest.

Generating various covers from prime implicants (be they irredundant or of minimum car-

dinality) is a foundational research topic in computer science and engineering. The first

application of covers was for obtaining smaller digital circuits while optimising for cost

and improving the computing speed. Since then, exact and approximate covering methods

have found several other application domains such as fault tree analysis (Coudert and Madre

1993), bioinformatics (Acuña et al. 2012), model-based diagnosis (De Kleer, Mackworth and

Reiter 1990; Peng and Reggia 1990), test generation (Ghosh, Devadas and Newton 1991),

data compression (Amarú et al. 2014) and automated and non-monotonic reasoning (Brewka,

Niemelä and Truszczyński 2008).

In Chapter 5 and 6 we focus on finding explanations from within a particular cover. We

also move beyond explanations for individual input instances. By generalising the notion

of instance we allow for finding explanations for partial instances which was not (so far)

discussed in the related literature (i.e. (Shih, Choi and Darwiche 2018; Ignatiev, Narodytska

and Marques-Silva 2019a)).

Formal explanation methods can be contrasted with heuristic approaches that are widely

used to explain larger ML models. We now review some of the most well-known heuristic

approaches.

Heuristic methods of explanation. The ML literature provides many techniques for produ-

cing post-hoc explanations for the outputs of complex models. For example, Saliency Map

(Simonyan, Vedaldi and Zisserman 2013) is one of the most widely used methods to visualise
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feature importance and contribution to the output of a deep neural network. Saliency Maps

are not explanations per se, but they may help construct explanations by highlighting the

"important" parts of an image. To explain neural networks, backpropagation-based methods

are commonly used to find important features as explanations of an instance. These methods

include gradients-based methods (Simonyan, Vedaldi and Zisserman 2013; Sundararajan,

Taly and Yan 2017), DeepLIFT (Shrikumar, Greenside and Kundaje 2017), and influence

functions (Koh and Liang 2017). All of these methods are heavily susceptible to adversarial

attacks; (Ghorbani, Abid and Zou 2019) highlight issues with explanation robustness and

sensitivity of these methods to small changes to input data. They show how explanations

with these methods can be manipulated (specially for the cases where the importance of small

subsets of features are being evaluated).

Anchors (Ribeiro, Singh and Guestrin 2018), LIME (Ribeiro, Singh and Guestrin 2016) and

SHAP (Lundberg and Lee 2017) are the other most widely used post-hoc explanation methods.

LIME and SHAP are local approximation (perturbation)-based approaches (Agarwal et al.

2021). Using these tools, the outputs of an arbitrary ML model for each individual instance (as

well as the model as a whole) can be explained by "perturbing the inputs in the neighbourhood

of a given instance to observe effects of perturbations on the model’s output" (Agarwal et al.

2021). Several challenges can be associated with perturbation-based methods. (Slack et al.

2020) report how LIME and SHAP can be "fooled" to not flag sensitives features (such as

gender or race) as important features of classifiers that heavily depend on those features to

make decisions.

The main reason behind the shortcomings of these heuristic methods is that these methods

do not take the whole feature space, or the complete decision function of a black-box into

account for producing explanations, and therefore heuristic methods may produce differing

results depending on what subset of feature space was included as input to their explanation

algorithms.

Another drawback is that they do not take background knowledge into account. For instance,

(Izza and Marques-Silva 2022) show that the correctness of Anchors, SHAP and LIME

may improve significantly when background knowledge is available. They showed that the
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correctness of these methods (when compared with the results of formal explanation methods)

is higher when domain constraints are applied. However, (Izza and Marques-Silva 2022)

also report that these heuristic approaches were not able to achieve 100% correctness for the

majority of the datasets that they have examined, even when domain constraints were used.

Explanation relevancy and the possibility of having too many competing explanations is

another problem (Lakkaraju et al. 2019). The work of (Deutch and Frost 2018) and (Shrotri

et al. 2022) show that end users can make explanations more relevant by repeatedly focusing

on their desired area of the input space.

Despite these challenges, heuristic methods are widely used because they are more scalable

than their rival formal-explanation methods; thus, the current trade-off is for guarantees on

the quality and validity of produced explanations in exchange for tractability.



CHAPTER 3

Sufficient Reasons in the Presence of Domain Constraints

Remark: A major part of this chapter was published as "Sufficient Reasons for Classifier

Decisions in the Presence of Domain Constraints" (Gorji and Rubin 2022) and presented

at the AAAI’22 conference (Gorji and Rubin 2022) and is an almost verbatim copy of the

published work. Some sections and examples have been edited to fit the flow and style of the

thesis.

In this chapter we study the problem of providing explanations for classifier decisions in the

presence of domain constraints. We provide a principled answer, as well as theoretical and

empirical evidence suggesting that ignoring constraints can result in explanations that are

unnecessarily long. In particular, ignoring constraints may result in sufficient reasons that

redundantly encode the background knowledge that is already described in the constraints.

The workflow is illustrated in Figure 3.1. A classifier, typically learnt from data, is transformed

into a decision function F . Domain constraints C are taken into account to produce a partial

Data Classifier Decision
Function F

Partial Boolean
Function FC

Sufficient
Reasons

Instance x

Constraints
C

FIGURE 3.1. Workflow — finding sufficient reasons in the presence of con-
straints. The focus of this chapter is on the right of the dashed line.

17
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Boolean function FC , which is used to compute sufficient reasons for the classifier’s decisions

on a particular instance x.

3.1 Preliminaries

We begin by recalling the logical background needed to explain our theory in this chapter.

Boolean logic. Let X “ tX1, X2, ¨ ¨ ¨ , Xnu be a set of n Boolean variables (aka features).

The set of Boolean formulas is generated from X, the constants J (true) and K (false), and

the logical operations ^ (conjunction),_ (disjunction),␣ (negation), Ñ (conditional) and

Ø (bi-conditional). Variables X and their negations ␣X are called literals. A term t is a

conjunction of literals; the empty-conjunction is also denoted J. The size of a term t is

the number of literals that occur in it. An instance (over X) is an element of t0, 1un, and

is denoted x (intuitively, it is an instantiation of the variables X). An instance x satisfies a

formula φ if φ evaluates to true when the variables in φ are assigned truth-values according

to x. The set of instances that satisfy the formula φ is denoted rφs, and is called the set

represented by φ, i.e., a set C of instances is represented by φ if C “ rφs. If rφs “ rψs then

we say that φ, ψ are logically equivalent, i.e., they mean the same thing. For terms s, t, we say

that s subsumes t if rts Ď rss, i.e., if every instance that satisfies t also satisfies s. If rts Ă rss

then we say that s properly subsumes t; depending on the context, we also describe this by

saying that s is more general or more parsimonious than t, or s is more succinct than t (note

that s is smaller than t).

Partial Boolean functions, and prime implicants. A partial Boolean function F (over X)

is a function t0, 1un Ñ t0, 1, ˚u. For i P t0, 1, ˚u define F i to be the set F´1piq. The instances

in F 1, F 0, F ˚ are called, respectively, the positive, negative, undefined instances of F . If

the set F ˚ is empty, then F is a total Boolean function. If rφs “ F 1 we say that the formula

φ represents the total Boolean function F . A term t is an implicant of F if rts Ď F 1 Y F ˚;

it is prime if no other implicant of F subsumes t. Intuitively, t is prime if removing any

literal from t results in a term that is no longer an implicant. This generalises the notion of
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implicant and prime implicant from total Boolean functions, cf. (Quine 1952a; Shih, Choi

and Darwiche 2018; Darwiche and Hirth 2020), to partial Boolean functions, cf. (McCluskey

1956a; Coudert 1994).

We state a simple but useful lemma:

LEMMA 1. If F,G are partial functions over X such that F 1 Y F ˚ Ď G1 YG˚, then every

prime implicant of F is subsumed by some prime implicant of G.

PROOF. Clearly, every implicant of F is an implicant of G. Now, apply the fact that every

implicant of a function is subsumed by some prime implicant of that function. □

Decision-functions. Total Boolean functions naturally arise as the decision-functions of

threshold-based binary classifiers (Choi, Shi et al. 2019; Shih, Choi and Darwiche 2018):

the decision-function F of a threshold-based classifier is the function that maps an instance x

to 1 if Prpd “ 1|xq ě T , and to 0 otherwise; here d is a binary class variable, and Pr is the

distribution specified by the classifier, and T is a user-defined classification threshold.

Table 3.1. demonstrates the truth table representing a hypothetical classifier’s decision

function where T “ 0.5

X1 X2 X3 Prpd “ 1|xq Prpd “ 1|xq ě 0.5 d
0 0 0 0.1 0 0
0 0 1 0.3 0 0
0 1 0 0.3 0 0
0 1 1 0.6 1 1
1 0 0 0.3 0 0
1 0 1 0.6 1 1
1 1 0 0.6 1 1
1 1 1 0.9 1 1

TABLE 3.1. Truth table representing a classifier’s decision function

DEFINITION 1 (Sufficient reasons for total functions). (Darwiche and Hirth 2020) Let F be a

total Boolean function and let x be a positive instance of F . A term t is a sufficient reason of

the decision F pxq “ 1 if (i) t is a prime implicant of F , and (ii) t is satisfied by x.
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Sufficient reasons are called PI-explanation in (Shih, Choi and Darwiche 2018), and abductive

explanations in (Ignatiev, Narodytska and Marques-Silva 2019a).

Standard convention. We freely interchange between total Boolean functions and the

formulas that represent them. In particular, if φ represents the total Boolean function F , we

may refer to implicants, prime implicants, and sufficient reasons of φ (instead of F ).

3.2 Problem Setting

The problem we address is how to define reasons behind the decisions of a classifier in the

presence of domain constraints. As we will show below, by domain constraints we mean the

relationships that we assume holds between variables (features) present in data.

DEFINITION 2. A constraint is a set C of instances over X.

We typically represent constraints by Boolean formulas. Here are just a few examples

that show that constraints are ubiquitous. In a medical setting, constraints of the form

pX1 Ñ X2q may reflect that people with condition X1 also have condition X2, e.g., X1

may mean "is pregnant” and X2 may mean "is a woman”. In a university degree structure:

constraints of the form X1 Ñ pX2 ^ X3q may reflect that X2 and X3 are prerequisites to

X1; constraints of the form X1 Ñ ␣pX2 _ X3q may reflect prohibitions; and constraints

of the form X1 ^X2 may reflect compulsory courses. In configuration problems, e.g., that

arise when users purchase products, the user may be required to configure their product

subject to certain constraints, and constraints of the form pX1 _ X2q ^ ␣pX1 ^ X2q may

reflect that the user needs to choose between two basic models. These constraints also

result from one-hot encodings of categorical variables, e.g., if M is a 12-valued variable

representing months, andXi for i “ 1, ¨ ¨ ¨ , 12 is Boolean variable, then the induced constraint

is p
Ž

iXiq ^

´

Ź

i‰j ␣pXi ^Xjq

¯

. Combinatorial objects have natural constraints, e.g.,

rankings are ordered sets, trees are acyclic graphs, and games have rules, see the Case Studies

and Validation section. Finally, the assumption in this chapter is that constraints are hard, i.e.,
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instances that are not in C will not appear in any data and can be ignored (e.g., they will not

appear in training or testing data).

Recall that we denote decision functions over X by F . Given F and a constraint C, we ask:

How should one define reasons for decision-functions in the presence of constraints?

We posit that a suitable notion of "reason" that takes constraints into account:

D1. does not depend on the representations of F or C, i.e., it is a semantic notion;

D2. does not depend on the values F pxq for x R C, i.e., if F,G agree on C (and perhaps

disagree on the complement of C), then reasons for F given constraint C should be

the same as reasons for G given constraint C;

D3. in case there are no constraints, i.e., C “ t0, 1un, recovers the notion of sufficient

reasons from Definition 1;

D4. eliminates redundancies that are captured by the constraints.

We offer a formalisation that satisfies these desiderata.

3.3 Sufficient Reasons in the Presence of Constraints

In this section we provide the main definition of reasons in the presence of constraints

(Definition 4) and show that it satisfies all of the desired properties D1-D4 listed in the

Problem Setting section.

D1 and D2 motivate the insight that decision-functions in the presence of constraints should

be treated as partial Boolean functions:

DEFINITION 3. For a decision-function F and a constraint C, let FC be the partial Boolean

function that maps x to F pxq if x P C, and to ˚ otherwise.

Technically, ˚ means undefined. We sometimes call FC a constrained decision function.
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We now define sufficient reasons that take constraints into account by considering the partial

function FC .

DEFINITION 4 (Sufficient reasons that take constraints into account). Let F be a decision

function, and C a constraint. Let x be a positive instance of F such that x P C. A term t is a

sufficient reason of the decision F pxq “ 1 that takes the constraint C into account if (i) t is a

prime implicant of the partial Boolean function FC , and (ii) t is satisfied by x.

In this case, we will also say that t is a sufficient reason of the decision FCpxq “ 1. We will

also call prime implicants of FC , sufficient reasons using FC .

Notice that it does not matter what F is for F not in C.

To see that D3 holds, simply note that if C “ t0, 1un then FC “ F is a total function. Thus,

a term t is a sufficient reason of the decision F pxq “ 1 that takes C into account iff it is a

sufficient reason of the decision F pxq “ 1 according to Definition 1.

REMARK 1. Sufficient reasons of negative instances x can be defined and handled dually: a

term t is a sufficient reason of the decision FCpxq “ 0 if it is a sufficient reason of the decision

FCpxq “ 1 where F is the "negation of F”, i.e., F pxq :“ 0 if F pxq “ 1, and F pxq :“ 1 if

F pxq “ 0. Thus, we can reduce reasoning about negative instances of FC to reasoning about

positive instances of FC .

EXAMPLE 1. Consider the total Boolean function F over X “ tX1, X2u represented by the

formula pX1 Ø X2q. Suppose a constraint C is represented by the formula pX1 Ñ X2q, thus

C “ tp0, 0q, p0, 1q, p1, 1qu. Table 3.2 provides both F and the partial Boolean function FC .

The prime implicants of F are pX1 ^ X2q and p␣X1 ^ ␣X2q. The only sufficient reason

of the decision F p0, 0q “ 1 is the term p␣X1 ^␣X2q, and the only sufficient reason of the

decision F p1, 1q “ 1 is the term pX1 ^X2q. The prime implicants of FC are ␣X2 and X1.

The only sufficient reason of the decision FCp0, 0q “ 1 is ␣X2, and the only sufficient reason

of the decision FCp1, 1q “ 1 is X1.



3.3 SUFFICIENT REASONS IN THE PRESENCE OF CONSTRAINTS 23

X1 X2 F FC

0 0 1 1
0 1 0 0
1 0 0 *
1 1 1 1

TABLE 3.2. The row corresponding to the instance not in the constraint is
greyed out.

Finally, we provide a simple theorem that formalises D4. We prove that every sufficient

reason that does not take constraints into account is subsumed by some sufficient reason that

does.

THEOREM 1. Suppose x is a positive instance of FC . Then every sufficient reason of the

decision F pxq “ 1 is subsumed by some sufficient reason of the decision FCpxq “ 1.

PROOF. Let x be a positive instance of FC . In particular, it is a positive instance of F .

Let t be a prime implicant of F that is satisfied by x. We show that there is some prime

implicant t1 of FC that subsumes t (and thus is satisfied by x). To see this, apply Lemma 1

taking G “ FC . The hypothesis of the Lemma holds (i.e., that F 1 Y F ˚ Ď G1 YG˚) since

F 1 Y F ˚ “ F 1 (since F is total) and pFCq
1 Y pFCq

˚ “ pF 1 X Cq Y C (by definition of

FC). □

To complement this theorem, we show that simply considering reasons of the total Boolean

function F (and ignoring the constraint C), may actually supply strictly less succinct reasons.

EXAMPLE 2. Continuing Example 1, note that the only sufficient reason for F p0, 0q “ 1 is

subsumed by a sufficient reason of FCp0, 0q “ 1, i.e., p␣X1 ^ ␣X2q is subsumed by ␣X2.

Similarly, the only sufficient reason for F p1, 1q “ 1 is subsumed by a sufficient reason of

FCp1, 1q “ 1, i.e., pX1^X2q is subsumed by X1. This accords with the intuition that, in light

of the constraint pX1 Ñ X2q, reason X1 is preferred to reason pX1 ^X2q.

Note: Example 1 is reused and made more intuitive in Example 10 of Chapter 5. The reader

can refer to that example for more details.
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It is not hard to find examples where every sufficient reason of F pxq “ 1 is much larger

than every sufficient reason of FCpxq “ 1. E.g., let F be the function X1 ^X2 ^ ¨ ¨ ¨ ^Xn,

and C be the constraint X1 Ñ pX2 ^X3 ^ ¨ ¨ ¨ ^Xnq; then the only reason of the decision

F p1, 1, ¨ ¨ ¨ , 1q “ 1 is X1 ^ X2 ^ ¨ ¨ ¨ ^ Xn, which is subsumed by the reason X1 of the

decision FCp1, 1, ¨ ¨ ¨ , 1q “ 1.

Constraint-equivalent reasons. If one is interested in the meaning of a reason, and not

its syntactic structure, then one should consider sufficient reasons up to logical-equivalence

modulo the constraints. That is, terms t, s are C-equivalent (or simply, constraint-equivalent

when the constraint is understood), if C X rss “ C X rts. For instance, if C is represented by

pX1 _X2q ^␣pX1 ^X2q then t “ ␣X1 is C-equivalent to s “ X2, and thus s and t may be

identified as the same reason in the presence of C.

3.3.1 Variations and Parsimony of Reasons

Subtle changes in the definition of sufficient reasons result in radically different types of

reasons. First, we have seen in the Examples that ignoring the constraints does not provide

the most parsimonious reasons. Second, consider the variation in which, instead of using

reasons of the partial function FC , one uses reasons of the total function that agrees with F on

C and assigns 0 to instances not in C. Although seemingly natural, it is not hard to see using

Lemma 1, that this results in less parsimonious reasons. Moreover, if F,C are represented

by the Boolean formulas φ and κ respectively, then this total function is represented by the

formula κ^ φ. In the next section we will see that sufficient reasons using FC are the same

as using the total function corresponding to the formula κÑ φ. We find it striking that this

change of perspective drastically changes the parsimony of the produced reasons; we provide

an example of this difference in the discussion of Case Study 1.
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3.4 Computing Sufficient Reasons

In this section we discuss how to computationally find sufficient reasons in the presence of

constraints. In particular, we show how to reduce this to the unconstrained case.

DEFINITION 5 (Computational problems). Given a decision-function F , a constraint C and

a positive instance x of FC , find all (resp. one) sufficient reasons for the decision FCpxq “ 1.

As usual (see the Preliminaries, Section 3.1), we can think of the total function F and the set of

instances C as Boolean formulas, say F 1 “ rφs and C “ rκs (we are agnostic about exactly

how to represent these formulas until we discuss complexity and the experiments). The

following proposition says that we can reduce the computational problem of the constrained

case to the unconstrained case using the formula pκÑ φq.

PROPOSITION 1. Suppose φ represents F and κ represents C. For a positive instance x of

FC , the sufficient reasons of the decision FCpxq “ 1 are exactly the sufficient reasons of the

decision Gpxq “ 1 where G is the total function represented by the Boolean formula pκÑ φq.

PROOF. First, note that x is a positive instance of G. Indeed, since FCpxq “ 1 we know

that x P C X F 1, i.e., x |ù κ^ φ, and thus also x |ù κÑ φ. Thus, it is sufficient to show that

a term t is an implicant of FC iff it is an implicant of G. By definition, t is an implicant of

FC iff rts Ď pFCq
1 Y pFCq

˚. But pFCq
1 “ F 1 X C and pFCq

˚ “ C (Definition 3). On the

other hand, t is an implicant of the total function G iff rts Ď G1. But G1 “ C Y F 1. Thus

G1 “ pFCq
˚ Y pFCq

1. □

The significance of Proposition 1 is that it shows how to reuse algorithms and tools that are

already developed for reasoning about total Boolean functions. Indeed, as long as the formulas

κ, φ are represented in a language that allows one to form the conditional κÑ φ formula in

polynomial time in the sizes of κ, φ, we have a polynomial time reduction of the problem

of finding reasons with constraints to those without. On the other hand, reasoning without

constraints is a special case of reasoning with constraints, i.e., there is a trivial reduction in
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the other direction too, simply take κ “ true. We summarise this important computational

fact as follows:

THEOREM 2. Assume that formulas are represented in a formalism that allows one to form

the conditional of two formulas in polynomial time. Then, the problem of finding all (resp.

one) sufficient reasons for a decision that takes constraints into account is polynomial time

interreducible with the problem of finding all (resp. one) sufficient reasons for a decision

(without constraints).

Thus, if one uses representations that also allow one to compute sufficient reasons of total

Boolean functions in polynomial time, then, by first applying the reduction in Theorem 2 one

can find sufficient reasons for constrained decision-functions in polynomial time too.

We mention the two main approaches comprising the state of the art for computing sufficient

reasons for total Boolean functions. First, (Shih, Choi and Darwiche 2018) represent formulas

using OBDDs, which support polynomial negation and conjunction (and thus implication).

Their approach provides a polynomial time procedure for finding all sufficient reasons, using

the fact that OBDDs support polynomial-time validity and entailment checking. To reuse

their algorithm in our setting, simply run it on the OBDD representation of the formula

pκ Ñ φq. Second, (Ignatiev, Narodytska and Marques-Silva 2019a) take an agnostic view

on the representation of formulas, and only require that the chosen representation allows

polynomial time entailment checking. To reuse their approach in the presence of constraints,

one may use it on formulas of the form pκÑ φq instead of φ.

Note that if a representation also allows (a) polynomial time validity checking, and (b) forming

the conjunction of a term and formula in polynomial time, then one can decide if two terms are

constraint-equivalent in polynomial time. Thus, if one is interested in computing reasons up

to constraint-equivalence one can compute a set of representatives by, for instance, checking

each pair of reasons for constraint-equivalence.
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3.4.1 Illustration

To clarify the introduced concepts, we illustrate sufficient reasons on a complete synthetic

example of a learnt classifier, inspired by an example in (Kisa et al. 2014).

Consider a tech-company that is shortlisting recent CS graduates for a job interview. The

company considers candidates who took courses on Probability (P), Logic (L), Artificial

Intelligence (A) or Knowledge Representation (K) during their studies. Suppose that the

company uses data on candidates who were hired in the past to learn a threshold-based

classifier, and let F be the associated total decision-function over X “ tL,K, P,Au with

F 1 “ tp0011q, p0110q, p0111q, p1100q, p1101q, p1110q, p1111qu.

Consider an instance x “ p0011q corresponding to candidates that did not take L or K, but

did take P and A. Note that F pxq “ 1, i.e., the classifier decides to grant such candidates

interviews. What is the reason behind this decision? Table 3.3 gives the reasons which were

computed using (Shih, Choi and Darwiche 2018). We see that the only reason behind the

decision of F for x “ p0011q is p␣L^ P ^Aq, i.e., that the candidate did not take L, but did

take P and A.

L K P A Reasons using F using FC

0 0 1 1 p␣L^ P ^ Aq p␣L^ Aq
0 1 1 1 p␣L^P ^Aq, pK^P q p␣L^ Aq, K
1 1 0 0 pL^Kq K
1 1 1 0 pL^Kq, pK ^ P q K
1 1 1 1 pL^Kq, pK ^ P q K

TABLE 3.3. Rows list the positive instances that satisfy the constraints, along
with their reasons using F and using FC .

Suppose, that a student’s enrolments must satisfy the following constraints C: a student must

take P or L, pP _ Lq; the prerequisite for A is P, pAÑ P q; the prerequisite for K is A or L,

pK Ñ pA _ Lqq. Reasons of the constrained decision-function FC are given in Table 3.3.

Note p␣L^ Aq and K are not constraint-equivalent.

Consider the reason behind the decision FCpxq “ 1 where x “ p0011q, i.e., ␣L ^ A.

This reason strictly subsumes the reason ␣L^ P ^ A used by the original (unconstrained)
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classifier F . This phenomenon, that for every positive instance x in C, every sufficient reason

of F pxq “ 1 is subsumed by some sufficient reason of FCpxq “ 1, can be seen in all other

rows of Table 3.3. This illustrates that our notion of sufficient reason (Definition 4) eliminates

such redundancies, a fact we formalised in Theorem 1.

3.5 Case Studies and Validation

In this section we validate our theory on classifiers learnt from binary data given constraints

C.1 We provide a prototype using a type of classifier that is often considered interpretable, i.e.,

decision trees. The purpose of the prototype is to provide a proof of concept that shows that

by using constrained decision-functions FC : (1) we get no less succinct, and sometimes more

succinct, reasons compared with the unconstrained setting; (2) we can seamlessly integrate

two major types of constraints that can arise in AI, namely constraints due to pre-processing of

data (e.g. one-hot, or other categorical, encodings), and semantic constraints that are inherent

to the input domain.

Representation. As discussed earlier, we can compute reasons by reducing to the un-

constrained case. We reuse the algorithms in (Shih, Choi and Darwiche 2018) by simply

building an OBDD representing κÑ φ (using the OBDD operations for complementation

and disjunction), and pass this OBDD as input to their tool that computes sufficient reasons

for a given instance.

Case Study 1. We used the dataset of Corticosteroid Randomization after Significant

Head Injury (CRASH) trial (Collaborators et al. 2008b) to predict the condition of a patient

after a traumatic head injury. There are eleven clinically relevant input variables, including

demographics, injury characteristics and image findings, see (Zador, Sperrin and King 2016a)

for a detailed description of the dataset. Six variables are categorical, and the rest are Boolean.2

1Continuous data can be discretised, and discrete/categorical data can be binarized (Breiman, J. Friedman
et al. 1984).

2Categorical variables are: Age(1-7), Eye(1-4) Motor(1-6), Verbal(1-5), Pupils(1-3). Boolean variables are:
EC,PH,OB, SA,MD,HM .
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The outcome variable indicates moderate or full recovery at 6 months versus death or severe

disability.

Categorical variables are encoded using a one-hot encoding, which induces the constraint C as

follows. For a categorical variable X , let D denote a set of Boolean variables corresponding

to the set of categories of X . The corresponding constraint says that exactly one of the

variables in D must be true. For example, variable Eye (shortened to E) has 4 categories,

which we encode by the Boolean variables in DE “ tE1, E2, E3, E4u. The corresponding

constraint is
Ž

iEi ^
Ź

i‰j ␣pEi ^ Ejq, where i, j vary over t1, 2, 3, 4u. The constraint C is

the conjunction of all such constraints, one for each categorical variable.

Following (Steyerberg et al. 2008a) we base our example on 6945 cases with no missing

values. RPART (seed: 25, train: 0.75, cp: 0.005) correctly classifies 75.69% of instances in

the test set (ROC 0.77). Figure 3.2 shows the model.

FIGURE 3.2. RPART decision tree for Case Study 1.

Consider the instance x that maps A1, E1, M5, V2, P1, OB, MD to 1, and the remaining

four variables to 0. The decision-rule in the decision tree that explains why x is positive is

E1^P1^␣A7^M5^␣A6 (size: 5). There is one sufficient reason using F : ␣A6^␣A7^

M5 ^ P1 (size: 4). Up to constraint-equivalence there are two sufficient reasons using FC : (i)

A1 ^M5 ^ P1 (size: 3), (ii) ␣A6 ^␣A7 ^M5 ^ P1 (size: 4).

Discussion of Case-Study 1. The explanation using the decision tree is strictly subsumed

by the sufficient reason using F . This shows that decision-rules may not be the most succinct

reasons. Further, incorporating constraints resulted in having a smaller reason which would

be missed if one just used F . The reason using F is subsumed by some reason using FC , in

fact it appears as reason (ii); cf. Theorem 1.
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Note that reasons (i) and (ii) are not constraint-equivalent (and thus should be considered

different reasons). Which reason should one prefer? On the one hand, (i) is more succinct,

but on the other hand (ii) strictly constraint-subsumes (i), i.e., it applies to more instances.

Without additional preferences there is no basis to prefer one over the other, and thus we

report both of them. 3

If one incorporated constraints by instead using the function represented by the formula pκ^φq

one would get one sufficient reason for this decision that is highly redundant in light of the

constraint (as discussed in the Variations section), i.e., pA1^E1^M5^V2^P1^
Ź

X ␣Xq

where the conjunction is over all the remaining variables A2, A3, ¨ ¨ ¨ , E2, E3, ¨ ¨ ¨ .

Finally, the histogram in Figure 3.3 compares the sizes of shortest reasons using F and FC

(omitting size 2 reasons which would dominate the graph). Note that the percentage of reasons

using F increases with size, while those using FC decreases with size.
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FIGURE 3.3. Distribution of shortest reasons, restricted to instances without
length ď 2 reasons (i.e., 5440 of 109120 instances). Percentages are rounded
to the nearest decimal.

In summary, this case study empirically validates that reasons that take constraints into

account may be more succinct.

Case Study 2. To study semantic constraints, we used the Tic-Tac-Toe (TTT) Endgame

dataset from the UCI machine learning repository (Dua and Graff 2017). This dataset contains

the complete set of board configurations that result from X going first, until the game ends.

The target concept is "player X has three-in-a-row".

3In Chapter 4, by treating CRASH as a multi-value classifier, we show that the second reason should be
returned.
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i.
0 1 2
3 4 5
6 7 8

ii.
X X X

O O
iii.

01 01 01
00 00 00
10 00 10

TABLE 3.4. i. TTT board; ii. Positive instance; iii. Encoded instance (cell i is
labelled by the values of Vi,OVi,Xq.

We binarize the dataset as in (Verwer and Zhang 2019). For each of the 9 board positions

(labelled as in Table 3.4i.) introduce variables Vi,O (resp. Vi,X) capturing whether or not O

(resp. X) was placed in position i. We trained a classifier on this dataset using RPART (seed

1, train: 0.7, cp 0.01); with 93% accuracy for the test set (ROC 0.97), see Figure 3.4.

FIGURE 3.4. RPART decision tree for case study 2. We drop V and write,
e.g., 4o instead of V4,O for readability.

Let F be the corresponding decision-function. In what follows we focus on sufficient reasons

for the instance in Table 3.4iii. The sufficient reasons using F are given in Table 3.5.

1.
0- -- 0-
-- 0- --
-- 0- --

2.
0- -- --
-- 0- 0-
-- 0- --

3.
-- -- 0-
0- 0- --
-- 0- --

4.
-- 0- --
0- 0- 0-
-- 0- --

5.
01 -1 01
-- -- --
-- 0- --

6.
01 -1 -1
-- -- 0-
-- 0- --

7.
-1 -1 01
0- -- --
-- 0- --

8.
-1 01 -1
0- -- 0-
-- 0- --

TABLE 3.5. Reasons using F

Simple constraints for TTT. The encoding induces a constraint C that expresses that no

position contains both an O and an X, although, unlike the one-hot-constraints (as in Case
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Study 1), it may have neither, i.e., C is given by
Ź

0ďiď8␣pVi,O ^ Vi,Xq. Again, consider the

positive instance in Table 3.4iii. The reasons for the decision using FC include Reasons 1-4

in Table 3.5, as well as Reason A from Table 3.6 which strictly subsumes Reasons 5-8 in

Table 3.5.

A.
-1 -1 -1
-- -- --
-- 0- --

B.
-- -- --
-- 00 00
-- 00 1-

TABLE 3.6. (A) a reason using FC , (B) a reason using FC1

This shows that some reasons of F are redundant in light of the constraint C, e.g., as witnessed

by the inclusion of the literals ␣V0,O and V0,X in reason 5.

More complex constraints: adding game rules. Define the constraint C 1 to include C as

well as saying that the board is the result of valid play, i.e., that X moves first and players

alternate moves. The additional constraint is
Ž

S,T pψS ^ φT q where S, T vary over all

subsets of U “ t0, 1, 2, ¨ ¨ ¨ , 8u such that S X T “ H, and 0 ď |S| ´ |T | ď 1, and ψS

is p
Ź

iPS Vi,Xq ^ p
Ź

iPUzS ␣Vi,Xq and φT is p
Ź

iPT Vi,Oq ^ p
Ź

iPUzT ␣Vi,Oq. The formula

expresses that the set S of positions where X has played is disjoint from the set T where O

has played, and that either there are the same number of moves, or X has played one more.

Using FC1 , the sufficient reasons for the instance above include Reason B in Table 3.6. This

reason can be interpreted as follows: in light of the constraint C 1, which says that the board

is the result of a valid play, if positions 4,5,7 are blank and position 8 has an O, then player

X must have won. This is indeed correct: player O could not have won since with 5 moves

in the game player O can only move twice, and there could not be a draw because not all

positions were filled yet.

Discussion of Case-Study 2. This case study illustrates how our framework seamlessly takes

complex semantic constraints, such as combinatorial constraints, into account when producing

reasons. This should be contrasted with potential ad-hoc algorithms for incorporating any

fixed constraint.
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3.6 Discussion

The crux of this chapter shows how to handle constraints in a principled manner and establishes

that ignoring constraints could result in unnecessarily long/complex sufficient reasons, as well

as missing some reasons altogether. For computing sufficient reasons, our approach reduces

the constrained case to the unconstrained case. Thus, any advance in the efficiency of tools

for solving the latter will yield benefits for the former.

A general critique of the prime implicant based approach is that reasons may become too

large to comprehend when the number of variables is large. Notice that our method is a step

towards improving this problem in the presence of constraints. If the shortest sufficient reason

in the presence of constraints is still too large to comprehend, not taking constraints into

account may result in reasons that are even larger and even harder to comprehend. Observe,

from the case studies, that while adding constraints may decrease or increase the number

of sufficient reasons, it never increases the size of the shortest sufficient reasons (a fact that

is guaranteed by Theorem 1). In cases of multiple (constraint-inequivalent) reasons for a

decision (even amongst the shortest ones), we do not supply a way to pick one reason over

another, a challenging problem (Lakkaraju et al. 2019). Indeed, preferring one reason over

another would require additional assumptions about preferred reasons, e.g., favouring shorter

reasons (Miller 2019).

Our framework for handling constraints is model-agnostic, i.e., it supplies the underlying

principle for handling domain constraints for decision-functions that correspond to binary

classifiers, no matter how the classifiers were learnt or modelled. As a proof-of-concept, we

illustrated this by compiling decision trees into OBDDs. The general problem of compiling

ML models into compact circuits is being actively researched, e.g., (Shih, Choi and Darwiche

2018) for Bayesian networks, (Choi, Shi et al. 2019) for Neural Networks, and (Audemard,

Koriche and Marquis 2020) for Random Forests.

Finally, our work opens up applications that are currently only available in the unconstrained

setting, including the study of classifier bias and counterfactual decisions (Darwiche and

Hirth 2020).



CHAPTER 4

Sufficient Reasons in the Multi-value Setting

In this chapter, we formally extend the required notions for sufficient reasons to the multi-value

setting. We also explore the reasons for constraint-subsumption that arise when constraints

are due to one-hot encoding of variables, as we have seen within the descriptions of the Case

Study 1 (the CRASH example) in Chapter 3.

Constraint subsumption means that in light of the constraints, a reason may be less general

than it could be, so this form of subsumption needs to be considered when producing sufficient

reasons.

Figure 4.1 depicts the full workflow. The focus of this chapter is on everything that follows

obtaining the classification formula ∆ (clarified by the dashed line), namely on encoding an

instance and the classification formula, and then including encoding constraints and domain

constraints to obtain sufficient reasons for the decisions of a multi-value classifier.

Classifier

Data

Obtain disjoint
variable intervals

Classification
formula ∆

Encoded classification
formula ∆b

Sufficient
reasons

Encoding and domain
constraints κbX ^Ψb

Instance αb

FIGURE 4.1. MV Workflow

34
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4.1 Preliminaries

Here we recap the logical background that are needed to explain our theory in this chapter.

Variables, values and domains. Capital letters denote multi-value variables. We may use

subscripts, e.g. Xi denotes the ith variable. Bold capital letters denote a finite set of multi-

value variables tX1, X2, ¨ ¨ ¨ , Xnu or {X, Y, . . . , Z}. Lower case letters denote (nominal)

variable values. We may also use numbers for variable values. We use DX to denote the

domain of variable X that contains the set of values that the variable can take. In the

running examples, we use two multi-value variables X and Y where DX “ tx1, x2, x3u and

DY “ ty1, y2, y3u. The feature space U is the product of the domains of the variables, i.e.,

U “
ś

XPX DX . Elements of U are called assignments, typically denoted α. We may also

use functional notation, i.e., αpXiq P DXi
.

MV-formulas. An MV-formula ∆ is a formula generated from atomic predicates of the

form X “ v where X P X and v P DX , the constants J (true) and K (false), and the

logical operations ^ (conjunction),_ (disjunction),␣ (negation), Ñ (conditional) and Ø

(bi-conditional).

For an MV-formula ∆ and an assignment α, define α |ù ∆ (read α satisfies ∆ or α is a model

of ∆), inductively as usual:

‚ α |ù J,

‚ α |ù pX “ xq if αpXq “ x.

‚ α |ù p∆1 ^∆2q if α |ù ∆i for all i “ 1, 2,

‚ α |ù ␣∆1 if it is not the case that α |ù ∆1.

A formula ∆ is consistent if there is some assignment that satisfies ∆, otherwise it is incon-

sistent. A set Φ of formulas is consistent if there is some assignment α that satisfies every

formula in Φ.



36 4 SUFFICIENT REASONS IN THE MULTI-VALUE SETTING

A formula ∆i logically implies another formula ∆j , written ∆i |ù ∆j , iff every assignment

satisfying ∆i satisfies ∆j . If we also have ∆j |ù ∆i then the two formulas are logically

equivalent, written ∆i ” ∆j .

We may write r∆s for the set of assignments that satisfy ∆.

A formula ∆ is trivial if neither ∆ nor ␣∆ is consistent.

Literals and terms and relations between terms. Following (Choi, Shih et al. 2020), we

define an MV-literal to be a non-trivial MV-formula that mentions a single variable.

Let DX “ tx1, x2, x3u. The following are literals:

‚ X “ x1,

‚ X ‰ x1,

‚ X “ x1 _X “ x3,

‚ X ‰ x1 ^X ‰ x2.

The following are not literals, as they are trivial:

‚ X “ x1 _X “ x2 _X “ x3,

‚ X “ x1 ^X ‰ x1.

Intuitively, even-though a literal is an arbitrary formula, it just determines a strict subset of

DX . For instance if DX “ t0, 1u semantically there are 2 literals (which can be written in

many different ways). E.g. pX “ 1q, pX ‰ 0q and pX “ 1 ^X “ 1q are semantically the

same.

An MV-Term τ is a conjunction of MV-literals over distinct variables. Let DX “ tx1, x2, x3u

and DY “ ty1, y2, y3u. The following is an MV-term: pX “ x1 _ X “ x2q ^ pY ‰ y1q.

We emphasis that although having disjunctions in literals may seem unnatural, semantically,

terms can be expressed as conjunctions of negations of atoms.
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An MV-literal that specifies a single value, i.e., the cardinality of set S is 1, is called simple.

An MV-term is simple if all of its MV-literals are simple. The following MV-terms are simple:

‚ X “ x1 ^ Y “ y1,

‚ X “ x2 ^ Y “ y1.

The following MV-terms are not simple:

‚ X ‰ x1 ^ Y “ y1,

‚ X “ x2 ^ pY “ y1 _ Y “ y3q.

Logical entailment applied to MV-terms is called subsumption. That is, an MV-term τi

subsumes MV-term τj if τj |ù τi. If we also have τi ı τj , then τi strictly subsumes τj . For

example, the MV-term X “ x1 ^ pY “ y1 _ Y “ y3q is strictly subsumed by the MV-terms

X ‰ x3 ^ pY “ y1 _ Y “ y3q and X “ x1.

Moreover, when logical entailment is applied to literals we use general instead of "subsumes",

i.e., if lj |ù li we say that li is more general than lj .

To understand subsumption better, consider the following example. Let X denote the day

of the week, DX={Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}.

Let Y denote month of the year DY = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The MV-

term τ1 : pX “ Monday ^ pY “ 1 _ Y “ 2qq is subsumed by another term τ2 : pX ‰

Saturday^ pY “ 1_ Y “ 2_ Y “ 3qq since τ2 is more general and contains τ1 .

An MV-term τ is an implicant of MV-formula ∆ if τ |ù ∆.

An MV-term τ is a prime implicant of ∆ if τ is an implicant of ∆ that is not strictly subsumed

by another implicant of ∆.

Constraints.

DEFINITION 6. An MV-constraint κ is a set of MV-instances that can be represented by a

formula.
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Specifically, κ captures background knowledge.

Let κ be an MV-constraint. For two terms τi, τj we say that τj is κ-subsumed by τi if

τj ^ κ |ù τi ^ κ. If also have that τi ^ κ * τj ^ κ we say that τj is strictly κ-subsumed by τi.

We can think of this as inducing an order on terms: τj ď τi if τj is κ-subsumed by τi. Two

terms τi, τj that are not logically equivalent may still be logically equivalent modulo κ, i.e.,

each κ-subsumes the other. Note that in this case rκs X rτis “ rκs X rτjs.

4.2 Extending to the Multi-Value Setting

Classifiers that accept numeric or categorical variables as input are called multi-value-input

classifiers. Multi-value-input classifiers can be divided into separate groups based on the

type of their outputs. Those with a single Boolean output variable are called Boolean-output.

Those that have a single multi-value output are multi-value-output. And those that have

multiple outputs are called multi-output classifiers.

EXAMPLE 3 (Demonstrative Example 1). Consider the study of the expression level of five

genes from a sample of 500 hypothetical individuals, 200 of whom are diagnosed with cancer

and the rest are controls. The columns in Table 4.1. show the expression levels of genes (g1 to

g5), patient’s sex and age, and two outcome variables (C1-stage) and (C2-stage) for the stage

of two different types of comorbidity for each hypothetical case.

A classifier that is trained on the above dataset and predicts C1-stage and C2-stage for a new

patient based on the values of 7 inputs {g1-g5, sex, age} is an example of a multi-value-input,

multi-output classifier. If we dropped C2-stage, and trained a classifier that only predicts

C1-stage, then we have a multi-value-input, multi-value-output classifier. If we dropped

both C1-stage and C2-stage, and created a new dichotomised outcome variable indicating

the presence of C1 (yes,no), regardless of its stage, then the classifier is an example of a

multi-value-input, Boolean-output classifier.

1This example is loosely inspired by the toy example given in (Yordanov et al. 2016).
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Case g1 g2 g3 g4 g5 sex age C1-stage C2-stage
1 0.17 0.51 0.83 0.51 0.51 F 34 0 0
2 0.17 0.51 0.83 0.51 0.51 F 26 0 0
3 0.17 0.51 0.83 0.51 0.17 M 18 0 0
4 0.51 0.51 0.17 0.51 0.51 F 46 0 0
5 0.51 0.51 0.17 0.51 0.51 M 20 0 0
6 0.17 0.83 0.51 0.17 0.83 M 19 0 0
...

...
...

...
...

...
...

...
...

...
495 0.51 0.17 0.83 0.51 0.83 F 50 1 2
496 0.51 0.17 0.83 0.51 0.83 M 49 0 1
497 0.83 0.17 0.51 0.83 0.51 M 34 0 3
498 0.83 0.51 0.51 0.17 0.83 M 67 2 0
499 0.83 0.51 0.51 0.17 0.83 F 34 1 3
500 0.17 0.83 0.51 0.17 0.83 F 23 3 0

TABLE 4.1. Demonstrative Dataset.

The case of multi-value-output and multi-output classifiers is briefly discussed in Section 4.6

(Discussions). In the remaining sections, our focus is on multi-value-input Boolean-output

classifiers, and we refer to these as multi-value classifiers or MV-classifiers for short.

4.2.1 Decision Function of a Multi-Value Classifier

The input-output behaviour of multi-value classifiers can be captured by total functions.

DEFINITION 7. Given a set X of variables X and their corresponding domains DX , a multi-

value decision function over X is a function F that maps instances over X to classes t0, 1u,

i.e., a total function of the form F : U Ñ t0, 1u. If F pαq “ 1 (resp. “ 0) we say that the

classifier’s decision is positive (resp. negative) on that instance.

We represent an MV-classifier by a single formula ∆, where the models of ∆ capture the

instances in class 1, and the models of formula ␣∆ capture instances in class 0. That is, α

satisfies ∆ if and only if F pαq “ 1; and thus, α satisfies ␣∆ iff F pαq “ 0.

EXAMPLE 4 (Illustrating the decision function of multi-value classifiers). Consider the

following example with the Iris dataset (Dua and Graff 2017) The Iris dataset contains

measurements for features distinguishing three classes of Iris flowers, with 50 instances for
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FIGURE 4.2. Decision tree for IRIS

each class. We considered a dichotomised class of ‘Versicolor vs. Not-versicolor’, and trained

the decision tree shown in Figure 4.2.

From the Figure 4.2 decision tree, we see that the classifier uses only two variables, Petal

Width (W) and Petal Length (L), and discretised the variables as follows:

‚ Petal Width into 5 intervals p´8, 0.08s, p0.08, 1.55s, p1.55, 1.65s, p1.65, 1.75s,

p1.75,`8q, and

‚ Petal Length to 3 intervals p´8, 4.95s, p4.95, 5.45s, p5.45,`8s.

Let X “ tW,Lu and let their values represent these intervals, i.e., DW “ tx1, . . . , x5u

and DL “ ty1, . . . , y3u. The decision function F of the MV-classifier is then over the 15

(|DW | ˆ |DL|) possible combinations of the values of variables W and L:

W x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

L y1 y1 y1 y1 y1 y2 y2 y2 y2 y2 y3 y3 y3 y3 y3

F pW,Lq 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

TABLE 4.2. Truth table representing the classifier’s decision function

Therefore, while the inputs to the classifier in Figure 4.2 are continuous variables, the

input-output behaviour of the classifier can be captured by the MV-formula:

∆ “ pW “ x2^L “ y1q_pW “ x3^L “ y1q_pW “ x3^L “ y2q_pW “ x4^L “ y2q
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4.3 Sufficient Reasons in the Multi-Value Setting

Given a multi-value decision function ∆ and an instance α where ∆pαq “ 1 we are interested

in finding the reasons behind the classifier’s positive decision on this instance.

The notion of prime implicant as sufficient reasons is straightforwardly applicable in the

multi-value setting. We recall the extension of the notion of prime implicants from Boolean

to multi-value from (Marquis 1991; Ignatiev, Narodytska and Marques-Silva 2019a).

In the Boolean setting, given a decision function F , and an instance x, a sufficient reason

for decision F pxq “ 1 is a prime implicant of F that is satisfied by instance x (Definition 4,

Chapter 3).

The same principles can be applied in the multi-value setting. Let us recall the definition of a

multi-value prime implicant:

DEFINITION 8. [CF. (Marquis 1991; Ignatiev, Narodytska and Marques-Silva 2019a)]. An

MV-term τ is a prime implicant of F if τ is an implicant of F that is not strictly subsumed by

another implicant of F .

A sufficient reason for a positive decision on α can be defined to be a prime implicant of F

that is satisfied by instance α. More formally:

DEFINITION 9. [CF. (Choi, Shih et al. 2020)]. Let F be a total multi-value function and α

be an instance decided positively by F . An MV-term τ is a sufficient reason of the decision

F pαq “ 1 if (i) τ is a prime implicant of F and (ii) τ is satisfied by α.

Note that this definition does not talk about domain constraints.

Multi-value sufficient reasons in the presence of domain constraints. Similar to the

Boolean case, the process of finding sufficient reasons in the multi-value setting should

ideally be conducted while including any background knowledge that may be available on

the problem domain into the reasoning process. Including the domain constraints into the
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reasoning process ensures that sufficient reasons are devoid of any unnecessary complexities

that would be simplified by the background knowledge as shown in the previous chapter.

In the presence of domain constraints, the notion of sufficient reasons for a constrained

decision function can be straightforwardly extended to the multi-value setting. We do so now.

Let PIp∆q denote the set of all prime implicants of ∆. Let κ be an MV-constraint (Defini-

tion 6).

DEFINITION 10. An MV-term term τ is a multi-value sufficient reason, or simply sufficient

reason, for instance α if α |ù τ and τ P PIpκÑ ∆q.

EXAMPLE 5 (Illustrating the definition of multi-value sufficient reason (with terms with

complex literals)). Consider two variables X and Y with DX “ tx1, x2, x3u and DY “

ty1, y2, y3u and the formula ∆ : pX “ x1 _X “ x2q ^ pY “ y2 _ Y “ y3q representing the

decision function of a classifier over these two variables.

Given an instance α : X “ x1 ^ Y “ y2, the only prime implicant (and multi-value sufficient

reason) for the decision ∆pαq “ 1 is X ‰ x3 ^ Y ‰ y1. Now consider a constraint

κ : X ‰ x3 Ñ Y ‰ y1, then the sufficient reason for α is X ‰ x3.

Multi-value sufficient-reasons, when applied to Boolean formulas, recover the notion of

sufficient reasons from the previous chapter (i.e. Definition 8, Chapter 3).

Suppose in the MV setting that all of the variables are Boolean (i.e., DX “ t0, 1u for every

variable X). Then the satisfaction relation |ù, and thus also subsumption and sufficient

reasons, coincide in the two settings. To see this, note that α |ù X “ 1 in the MV setting

iff α |ù X in the Boolean setting, and α |ù X “ 0 in the MV setting iff α |ù ␣X in the

Boolean setting. Thus, α |ù φ in the MV setting iff α |ù φ in the Boolean setting. Thus, by

treating the MV-literal X “ 1 as the Boolean literal X , and treating the MV-literal X “ 0

as the Boolean literal ␣X , we can treat MV-formulas as Boolean formulas. Then, φ |ù φ1

in the MV setting iff φ |ù φ1 in the Boolean setting, i.e., subsumption coincides in the two

settings. Also, if τ is an MV-term, then each literal in τ is of the form X “ 0, X “ 1, or

pX “ 0q_ pX “ 1q. However, the latter is logically equivalent to J, and thus can be dropped
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from the term. Thus, an MV-term τ can be considered a Boolean term. Thus, τ is a (prime)

implicant of φ in the MV setting iff τ is a (prime) implicant of φ in the Boolean-setting, and

so sufficient reasons in the two setting coincide.

To summarise this section, the notions of prime implicants as sufficient reasons can be

straightforwardly extended from the Boolean to multi-value setting: (1) if variables in the

multi-value case happen to be Boolean, we get the same notion as in the Boolean setting; (2)

prime implicants are computed by maximal generalisation of terms that satisfy an instance

(while ensuring that they remain an implicant).

In the next section, we discuss the practical aspects and considerations for computing multi-

value sufficient reasons.

4.4 Computing Sufficient Reasons in the Multi-value Setting

There are some important issues that arise when computing sufficient reasons in the multi-

valued case as compared with the Boolean case:

(1) Terms (and therefore prime implicants) in the multi-value setting can contain “com-

plex" literals, i.e. in the multi-value setting literals can be arbitrary formulas over

a single variable (containing disjunctions, conjunctions, equalities or inequalities).

This is a notable difference with the Boolean case where there are only two non-trivial

literals on a variable X (i.e. X and ␣X).

(2) An MV-term τ1 subsumes another term τ2 if every literal in τ1 subsumes some literal

in τ2. In comparison, in the Boolean case, this condition is equivalent to the condition

that every literal in τ2 appears in τ1.

As we are interested in using the apparatus that is available in a Boolean setting (such as

Knowledge Compilation or SAT solvers), in the remaining part of this chapter, we focus

on reducing the problem of producing sufficient reasons for a multi-value classifier to the

problem of producing sufficient reasons for a Boolean classifier. This is operationalised

through encoding the required multi-value expressions in Boolean logic.
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4.4.1 One-hot Encoding

One-hot encoding is one of the most common pre-processing techniques for representing

multi-value variables with Boolean variables.

Consider a multi-value variable X with m values in its domain DX : tx1, ..., xmu.

Encoding MV-variables. To represent an MV-variable X in the Boolean setting, we

introducem Boolean variablesXx1 ,. . . ,Xxm . We encode an MV-atomX “ xi by the Boolean

term that is a conjunction of Xxi
and ␣Xxj

for all j ‰ i. For example, if DX “ tx1, x2, x3u,

the three values of X are encoded as (Xx1 ^ ␣Xx2 ^ ␣Xx3), (␣Xx1 ^ Xx2 ^ ␣Xx3) and

(␣Xx1 ^␣Xx2 ^Xx3).

Encoding MV-formulas. We extend this encoding to MV-formulas ∆ as follows: define

∆b to be the BV-formula formed from ∆ by replacing every occurrence of an MV-atom by

its encoding term. For example, if the domain of X is tx1, x2, x3u and the domain of Y is

ty1, y2, y3u, then the encoding of X “ x1 _ Y “ y2 is

pXx1 ^␣Xx2 ^␣Xx3q _ p␣Yy1 ^ Yy2 ^␣Yy3q

and the encoding of pX “ x1 _X “ x2q ^ Y “ y2 is

ppXx1 ^␣Xx2 ^␣Xx3q _ p␣Xx1 ^Xx2 ^␣Xx3qq ^ p␣Yy1 ^ Yy2 ^␣Yy3q.

Once ∆b is obtained, one may mistakenly assume that it is all one needs to compute sufficient

reasons. One-hot encoding is known for producing “illegal states" (Golson 1993), i.e. com-

binations of Boolean variables that are not representative of any combination of MV-variables.

There is an important constraint on the Boolean feature space that needs to be considered.

Adding the necessary encoding constraint. We need to ensure that ∆b rules out the useless

combinations of Boolean variables that are not mapped to any MV-term properly. For example,

(Xx1^Xx2^␣Xx3) would not represent any term of ∆ because it says that X takes the value
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x1 and the value x2, but each MV-variable can take just one value) and needs to be ruled out.

Similarly (␣Xx1 ^␣Xx2 ^␣Xx3) needs to be ruled since it cannot represent any MV-literal.

This is done by employing a one-hot constraint κbX that ensures ∆b represents only the terms

of ∆ and nothing more, i.e.,

κbX “
ł

i

Xxi
^

ľ

i‰j

␣pXxi
^Xxj

q (4.1)

where i, j vary over m.

Let κbX be the conjunction of one-hot constraints for all variables, i.e.,

κbX “
ľ

XPX

κbX (4.2)

Then, ∆ in Boolean form is represented by

∆H
“ κbX Ñ ∆b (4.3)

We use H to denote the embedded one-hot constraint.

4.4.2 Restricting Prime Implicants of ∆H to be Negative Boolean Terms

(Choi, Shih et al. 2020) prove that for one-hot encoded multi-value variables, prime implicants

should be limited to terms that only contain negative Boolean literals.

In the next section, we will illustrate the need for such an approach with an example of an

MV-formula and its Boolean encoding that has prime implicants with positive literals whose

corresponding MV-implicants are not prime. That is, Boolean prime implicants with positive

literals need not be prime in the MV setting.

A negative Boolean term τneg is formed from an MV-term τ by replacing every MV-literal in

τ with a negative Boolean term. An MV-literal specifies a subset Sτ of values in DX . It is

encoded using the negative Boolean term
Ź

xiRSτ
␣Xxi

. For example, if DX “ tx1, x2, x3u,
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then literal X “ x2 is encoded using the negative Boolean term ␣Xx1 ^ ␣Xx3 and literal

X “ x1 _X “ x2 is encoded using the negative Boolean term ␣Xx3 .

Further, (Choi, Shih et al. 2020) observe that negative Boolean terms have two useful proper-

ties:

(1) A single negative Boolean term can represent an MV-term with complex literals

(whereas in normal one-hot encoding we may need multiple Boolean terms to

represent the arbitrary formula of an MV-term).

(2) If the negative Boolean representation of an MV-term τ1 subsumes the negative

Boolean representation of another MV-term τ2 (i.e. if
Ź

xiRSτ2
␣Xxi

|ù
Ź

xiRSτ1
␣Xxi

),

then we have that τ2 is subsumed by τ1.

By restricting PIs to be negative Boolean terms, given a term τ , (Choi, Shih et al. 2020) show

that:

τ P PIp∆q ô τneg P PIp∆H
q (4.4)

We now show how to take domain constraints into account.

Recall that κbX denotes the one-hot encoding constraints for all variables (Equation 4.2), and

let Ψb be the Boolean encoded background knowledge capturing the relationships between

variables. A negative Boolean term τneg is a sufficient reason (Definition 9) of ∆H for instance

αb in presence of background knowledge Ψb if :

αb
|ù τneg and (4.5)

τneg P PIpΨb
Ñ ∆H

q (4.6)

We remark that the formula Ψb Ñ ∆H is Ψb Ñ pκbX Ñ ∆bq, which is equivalent to pκbX ^

Ψbq Ñ ∆b, i.e., constraints that capture background knowledge can be conjoined with the

encoding constraints to compute sufficient reasons.

EXAMPLE 6 (Demonstrating constraint-subsumption with ∆H and showing that negative

terms are not constraint-subsumed). Consider two MV-variables X and Y with DX “
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tx1, x2, x3u and DY “ ty1, y2, y3u. Let the following truth table (Table 4.3.) represent the

decision function of a classifier over these two variables.

X x1 x2 x3 x1 x2 x3 x1 x2 x3
Y y1 y1 y1 y2 y2 y2 y3 y3 y3

F pX, Y q 0 0 0 1 1 0 1 1 0

TABLE 4.3. decision function

The formula ∆ : pX “ x1 ^ Y “ y2q _ pX “ x2 ^ Y “ y2q _ pX “ x1 ^ Y “ y3q _ pX “

x2 ^ Y “ y3q can represent this classifier.

Given an instance α : X “ x1 ^ Y “ y2, the four MV-terms that are listed in the first column

of Table 4.4 are all implicants of ∆, and are consistent with α. However, notice that between

these MV-terms, the one at row I2 subsumes all other terms as its literals are the weakest (or

most abstract, or most general) (i.e., the values of X and Y in I2 contain all the values of X

and Y in all other MV-terms).

A. MV-terms B. Boolean terms
I1. X ‰ x3 ^ Y “ y2 ␣Xx3 ^ Yy2
I2. X ‰ x3 ^ Y ‰ y1 ␣Xx3 ^␣Yy1
I3. X “ x1 ^ Y “ y2 Xx1 ^ Yy2
I4. X “ x1 ^ Y ‰ y1 Xx1 ^␣Yy1

TABLE 4.4. Multi-value terms in Column A. and their Boolean encoding
listed in column B.

In other words, pX “ x1q |ù X ‰ x3 and pX “ x2q |ù X ‰ x3 and similarly, pX “ x1q |ù

X ‰ x2 and pX “ x3q |ù X ‰ x2 .

The MV-term X ‰ x3 ^ Y ‰ y1 is the only prime implicant of ∆. But all four terms in the

second column of Table 4.4 are prime implicants of the Boolean encoding of ∆ (i.e., ∆H).

Some of the Boolean prime implicants in the second column of Table 4.4 correspond to

MV-terms that are subsumed by some other MV-terms (and therefore are not prime) in the

multi-value setting.

For example, the MV-term X “ x1^Y “ y2 is subsumed by the MV-term X ‰ x3^Y ‰ y1,

however its Boolean encoding, Xx1 ^ Yy2 is not subsumed by ␣Xx3 ^␣Yy1 .
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By restricting sufficient reasons to be negative Boolean terms, the only sufficient reason for

∆H in Example 6 is ␣Xx3 ^␣Yy1 , which corresponds to the only prime implicant of ∆, i.e.,

X ‰ x3 ^ Y ‰ y1.

EXAMPLE 7 (Adding to the Case Study 1 of Chapter 3, where up to constraint-equivalence

there were two sufficient reasons (i) A1 ^M5 ^ P1, (ii) ␣A6 ^␣A7 ^M5 ^ P1). By using

the ∆H and subsequently computing (negative) prime implicants we obtain only one sufficient

reason:

τ : ␣A6 ^␣A7 ^␣M1,␣M2,␣M3,␣M4 ^␣M6 ^␣P2 ^␣P3.

Therefore restricting prime implicants to the negative Boolean terms, provides a reason that

is not constraint-subsumed.

4.4.3 Size of a reason

We now clarify the notion of the size of a sufficient reason in the multi-value setting. The size

of a reason (term) in the Boolean setting is the number of literals that occur in it. Similarly

in the multiple-value setting, the size of a reason is the number of MV-literals that appear in

it. If Boolean encoding is used to compute sufficient reasons for multi-value classifiers, it

is important to note that, the size of a reason in the multi-value setting is not the number of

encoding literals in the Boolean setting, rather it is the number of literals of the MV-term. In

other words, reasons need to be transformed back into their multi-value form to compute the

size of a reason.

Therefore the size of the reason τ given above is 3 as the MV-term that that is encoded by this

PI has three MV-literals. For example:

pA ‰ 6^ A ‰ 7q ^M “ 5^ P “ 1,

pA “ 1_ A “ 2_ A “ 3_ A “ 4_ A “ 5q ^M “ 5^ P “ 1

both have three literals. All other MV-terms that τ can represent have 3 MV-literals and have

a size=3.
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EXAMPLE 8 (A complete example of computing sufficient reasons in the presence of back-

ground knowledge in the multi-value setting through Boolean encoding). Consider the

illustrative example in section 3.4.1. This time, let all variables be multi-value variables, each

with 2 values in their domain DXi
“ t0, 1u. let the associated classification function over

X “ tL,K, P,Au be represented by ∆:

pL “ 0^K “ 0^ P “ 1^ A “ 1q _ pL “ 0^K “ 0^ P “ 1^ A “ 1q_

pL “ 1^K “ 1^ P “ 0^ A “ 0q _ pL “ 1^K “ 1^ P “ 1^ A “ 0q_

pL “ 1^K “ 1^ P “ 1^ A “ 1q

Following the original example, a student’s enrolments must satisfy the following constraints

Ψ: they must take P or L, pP “ 1 _ L “ 1q; the prerequisite for taking A is P, pA “ 1 Ñ

P “ 1q; the prerequisite for taking K is A or L, pK “ 1Ñ pA “ 1_ L “ 1qq.

We follow the example in section 3.4.1 and compare the sufficient reasons that were obtained

in the Boolean setting with those that are obtained from the MV-encoding for the instance

α : pL “ 0^K “ 0^ P “ 1^A “ 1q that is decided positively. This instance corresponds

to a candidate that did not take L or K, but did take P and A. Results in Table 4.5 were

computed by reusing the tool proposed in (Shih, Choi and Darwiche 2018).

L K P A Reasons Negative PIs of ∆H consistent with pαbq

0 0 1 1 p␣L^ Aq pL1 “ 0^ A0 “ 0q
0 1 1 1 p␣L^ Aq, K pL1 “ 0^ A0 “ 0q, pK0 “ 0q
1 1 0 0 K pK0 “ 0q
1 1 1 0 K pK0 “ 0q
1 1 1 1 K pK0 “ 0q

TABLE 4.5. Rows list the instances for which the classifier made a positive
decision, and that satisfy the constraints. The other two columns show reasons
that were obtained in the Boolean and encoded multi-value setting respectively.

The results confirm that we can reuse the apparatus from the Boolean setting in the MV

setting.
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4.5 Constraint Subsumption in General

So far, we have demonstrated that in some cases (specifically for when constraints are due

to the Boolean encoding of MV-variables) it is required that the sufficient reasons supplied

are not constraint-subsumed. Indeed, in Example 6 we have seen that constraint-subsumed

reasons when constraints are due to the Boolean encoding of MV-variables, would correspond

to reasons that are not prime in the MV setting.

However, so far, it is not clear whether we should allow constraint-subsumed prime implicants

as sufficient reasons in general. For instance, in the following example, it is not immediately

clear whether sufficient reasons should be limited to those that are not constraint-subsumed.

EXAMPLE 9. Consider three MV-variables X and Y and Z with DX “ tx1, x2, x3u and

DY “ ty1, y2, y3, y4u and DZ “ tz1, z2, z3u.

Let ∆ : pX “ x1 _ pY ‰ y3 ^ Y ‰ y4qq ^ Z “ z3 represent the decision function of a

classifier over these three variables.

Given a constraint κ : X “ x1 Ñ Y “ y1, there are two prime implicants of κ Ñ ∆:

X “ x1 ^ Z “ z3 and pY ‰ y3 ^ Y ‰ y4q ^ Z “ z3.

The first prime implicant is κ-subsumed by the second one.

This example is an illustration of the fact that with respect to the part of the feature space

that we "care about" (i.e., those that satisfy κ), constraint-subsumed prime implicants are less

general than those prime implicants that are not constraint-subsumed. Indeed, they cover less

instances.

While it could be argued that without having further background knowledge (e.g., user

preference), we cannot choose one reason over the other, from our perspective, taking

constraints into account is an indication of user preference. It shows that the user is interested

in those explanations that are most parsimonious (and general) with respect to the constraints.

Therefore, unless there is a strong reason not to do so, we propose not to return constraint-

subsumed prime implicants as sufficient reasons to the user. Hence, taking constraints into
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account means sufficient reasons are both not subsumed, and not constraint-subsumed by any

other potential reason.

Therefore, a sufficient reason for a positive decision on α can be defined to be a prime

implicant of F that is satisfied by instance α, and is not constraint-subsumed by any other

prime implicant of F . More formally:

DEFINITION 11. (Refining Definition 9) An MV-term term τ is a multi-value sufficient reason,

or simply sufficient reason, for instance α if all of the following conditions are satisfied:

(1) α |ù τ

(2) τ P PIpκÑ ∆q

(3) there is no other prime implicant τ 1 in PIpκÑ ∆q such that τ ^ κ |ù τ 1 ^ κ

In Example 9, the only sufficient reason is the prime implicants that is not constraint-subsumed,

i.e. pY ‰ y3 ^ Y ‰ y4q ^ Z “ z3.

4.6 Discussion

In this chapter, we have extended our notion of sufficient reasons in the presence of constraints

to the multi-value setting. We then focused on addressing the constraint subsumption issues

that were due to the encoding of multi-value variables into Boolean variables, and took

inspiration from the negative encoding of (Choi, Shih et al. 2020) to limit sufficient reasons

to negative prime implicants, and thus resolve constraint subsumptions that were due to the

one-hot encoding of multi-value literals.

It is important to note that without constraints, by definition, sufficient reasons are not

subsumed, but in the presence of constraints, sufficient reasons may be constraint-subsumed.

In the general case, we believe that unless there is a good reason to allow constraint-subsumed

reasons, by default, taking constraints into account means that reasons should not be constraint-

subsumed.
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In this chapter we did not investigate providing sufficient reasons for multi-value-output and

multi-output classifiers, however, we showed that one can represent a multi-value classifier

with a Boolean classifier. On the other hand (Sasao 1978; Coudert 1994) showed that one

can reduce the minimization of both, multi-value-output and multi-output Boolean functions

to the minimisation of a single-output Boolean function with added variables. This allows

reusing the same apparatus from the Boolean setting in the most general case of multi-value

multi-output classifiers. However, based on our preliminary analysis, some post-processing

(or extra constraints that capture the nuances of the Boolean encoding) are needed in this

reduction. For instance, to clean up explanations by removing the added dummy variables that

are needed for the reduction, or prevent returning the dummy variables in the explanations.

We will leave the investigation of multi-value multi-output classifiers to future work.



CHAPTER 5

Causal Arguments and Explanations Within a Context

There is a close connection between explanations and causality, as (Miller 2019) puts it,

"good" explanations should address the causes of events.

In this chapter, we investigate the connection between causes and prime implicants, and

motivate the definition of irredundant prime-covers of the decision functions of a classifier as

a causal model. Selecting a causal model prior to the reasoning process allows one to reduce

the number of possible explanations. This is useful in situations where there are too many

competing explanations, and not all explanations are needed, or when there is a preference for

providing explanations from within a certain (predefined) subset of explanations.

We formalise some concepts and notions from the causality literature, in particular, we

formalise the notion of cause, actual cause and causal difference makers, and prove that

difference makers track the outcome. We then illustrate the usefulness of finding difference

makers with some examples and show how our definitions deal with some of the subtleties

associated with causal inference. Analysing such subtleties has great value for application in

sensitive domains, such as health care or legal policy, where the cause-and-effect relations

between variables need to be investigated in depth, prior to making conclusions.

The results of our investigation demonstrate that our method performs as well as (Bochman

2018) compared with Structural Causal Models (Joseph Y Halpern and Pearl 2005a) when

causes for one effect at a time are being modelled and analysed. A limitation of our work is

that we do not model a sequence of cause-and-effect relations, and therefore cannot compare

the performance of our method with some other criteria and subtleties that are studied in the

literature.

53
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5.1 Preliminaries

The preliminaries listed in this section are the same as the preliminaries in Chapter 3. The

reader can skip to the new notion introduced in Definition 12.

We will represent the decision function of a Boolean classifier by partial Boolean functions,

and causal models by certain disjunctive normal-forms of Boolean formulas that cover these

functions.

Notation. We use the set-theoretic notation: subset Ď, strict-subset Ă, complement X .

Boolean Formulas. Let X be a finite set of Boolean variables, say tX1, X2, ¨ ¨ ¨ , Xnu.

The set of Boolean formulas is generated from X and the constants true and false, by the

operations ␣ (logical negation), _ (logical disjunction), and ^ (logical conjunction). An

assignment of the variables is a function x : X Ñ t0, 1u. For a Boolean formula φ and an

assignment x, define x |ù φ, read x satisfies φ, inductively as usual:

‚ x |ù Xi if xi “ 1

‚ x |ù ␣φ if x * φ,

‚ x |ù φ1 ^ φ2 if x |ù φi for all i “ 1, 2,

‚ x |ù φ1 _ φ2 if x |ù φi for some i “ 1, 2.

If Φ is a set of Boolean formulas, write Φ |ù ϕ if every assignment satisfying all the formulas

in Φ satisfies ϕ. In this case we say that Φ logically implies ϕ, and that ϕ logically follows

from Φ. In case Φ is a singleton, we may write ϕ instead of the more precise tϕu. A set Φ

of formulas is consistent if Φ * false, i.e., if there is some assignment v that satisfies every

formula in Φ.

A literal is a variable Xi or the negation of a variable ␣Xi. A term is a set of literals in which

each variable occurs at most once (either as Xi or ␣Xi). By convention, the empty term is the

constant true. Implicitly, a term t is the conjunction
Ź

XPtX , and so ␣t means
Ž

XPt␣X . A

formula φ that is a disjunction of conjunctions of literals is said to be in disjunctive-normal

form (DNF). We represent DNFs as sets Σ of terms. Implicitly, a set of terms is a disjunction
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Ž

tPΣ t (and so ␣Σ means
Ź

tPΣ␣t), and a set Σ of terms represents the Boolean formula
Ž

tPΣ

Ź

lPt l.

Partial Boolean Functions and Covers. A partial Boolean function F (over X) is a function

t0, 1un Ñ t0, 1, ˚u. For i P t0, 1, ˚u define F i to be the set F´1piq. The instances in F 1, F 0,

F ˚ are called, respectively, the positive, negative, undefined instances of F . We name these

sets as follows: F 1 is the function’s onset, F 0 the offset, and F ˚ the don’t-care set. If the set

F ˚ is empty, then F is a total Boolean function or simply, a Boolean function. Note that in

this case, the function F is determined by its onset.

DEFINITION 12 (Cover). (Coudert and Sasao 2002) A Boolean function G covers a partial

Boolean function F if F 1 Ď G1 and F 0 Ď G0.

An equivalent formulation is that F 1 Ď G1 Ď F 1 Y F ˚ “ F 0. In other words, G1 separates

F 1 from F 0.

EXAMPLE 10. Consider a voting system where three people represented by X “ tX1, X2, X3u

vote on a particular proposal. A proposal is accepted or rejected based on the majority vote.

A Boolean function G determines whether the proposal is accepted or rejected. Now suppose

voter X2 copies the vote of X1, captured by the formula pX1 Ø X2q. A partial Boolean

function F determines the fate of the proposal in this situation. Table 5.1 provides both G

and the partial Boolean function F .

X1 X2 X3 G F
0 0 0 0 0
0 0 1 0 0
0 1 0 0 *
0 1 1 1 *
1 0 0 0 *
1 0 1 1 *
1 1 0 1 1
1 1 1 1 1

TABLE 5.1. Grey rows highlight the difference between functions G and F .

Boolean function G covers partial function F , notice that G1 Ď F 1YF ˚ and G0 Ď F 0YF ˚.
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Important Notation. For clarifying some arguments, we may freely swap between formula

notation, set notation, and function notation. In particular, a Boolean formula φ determines

the total Boolean function F such that F pxq “ 1 iff x |ù φ; every total Boolean function

can be expressed by a Boolean formula, say in DNF; a Boolean formula φ covers the partial

Boolean function F if F 1 |ù φ and F 0 |ù ␣φ; a (partial or total) assignment x is identified

with the set of literals it makes true, i.e., tX : xpXq “ 1u Y t␣X : xpXq “ 0u; for a term t

and an assignment x we write x |ù t and tpxq “ 1 interchangeably. Finally, in the examples

we will use capital letters A,B,C for variables, and instead of writing A “ 1 (resp. A “ 0)

we may write A (resp. ␣A).

Irredundant Prime-Covers. The problem of finding "simple" sets Σ of terms that cover a

given partial Boolean function F is sometimes called two-level logic minimisation (Coudert

and Sasao 2002). Here "simple" can be instantiated in a number of ways. In this work it

means that Σ is prime and irredundant, which we now define.

An implicant of F is a term t such that t1 Ď F 1 Y F ˚, i.e., tpxq “ 1 implies F pxq P t1, ˚u.

An implicant of F is prime if there is no proper subset of t is an implicant of F . Write PIpF q

for the set of all prime implicants of F .

A cover Σ of F is prime if Σ Ď PIpF q. A cover Σ of F is irredundant if no strict subset

Σ1 Ă Σ covers F . A cover Σ is irredundant prime if it is both irredundant and prime.

Note that the only irredundant prime-cover of the Boolean formula true is the cover consisting

of a single term, i.e., ttrueu. In particular, the cover does not mention any literals.

In the following section we import from social science literature, the idea that irredundant

prime-covers are causal models of the underlying data.

5.2 Irredundant Prime-Covers as Causal Models

In this section we show how to describe a dataset with a partial Boolean function and illustrate

that irredundant prime-covers of such functions serve as causal models.
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Consider a dataset containing all possible observations for a set of variables tX1, X2, ¨ ¨ ¨ , Xnu

that result in a specific phenomenon/outcome. Suppose the data is given as two disjoint sets

P,N Ď t0, 1un. This induces the partial Boolean function F that maps x P t0, 1un as follows:

x ÞÑ 1 if x P P ; v ÞÑ 0 if x P N ; and x ÞÑ ˚ otherwise. Irredundant prime-covers of such

partial Boolean functions serve as causal models.

We illustrate with the following running example, taken from (Joseph Y Halpern and Pearl

2005a).

EXAMPLE 11 (Arsonists). Two arsonists drop lit matches L1, L2 (so n “ 2) in two different

parts of the forest. The issue is whether the whole forest burns down.

In the first setting, called "disjunctive", it is enough that one of the lit matches is dropped to

burn down the whole forest. The data is P “ tp1, 0q, p0, 1q, p1, 1qu and N “ tp0, 0qu. The

corresponding (total) Boolean function F_ maps assignments in P to 1 and assignments in

N to 0. The only irredundant prime-cover of F_ is Σ_ :“ L1 _ L2.

In the second setting, called "conjunctive", both lit matches need to be dropped to burn down

the whole forest. The corresponding Boolean function is denoted F^. The only irredundant

prime-cover of F^ is Σ^ :“ L1 ^ L2.

Note that it is sometimes convenient to denote the value of a given Boolean function by a

variable. In this example, we will use the variable B (for either setting).

We now discuss how one may justify that irredundant prime-covers can be considered causal

models.

Covers (i.e., formulas in DNF) can be seen as (two-level) circuits. According to (Pearl 2002),

"Circuits qualify as causal models because a circuit can contain the information to confirm or

refute all action, counterfactual and explanatory sentences concerned with the operation of the

circuit", and "logical functions (Boolean input-output relation) is insufficient for answering

such queries".
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By the above reasoning, any cover can be taken as a causal model, but not according to

(Graßhoff and May 2001) who limit the definition to specific types of covers, i.e. those covers

that are irredundant and prime. Indeed, (Graßhoff and May 2001) argue that irredundant

prime-covers satisfy four basic intuitions of causation, i.e.,

(1) the principle of causal determinism which says that the same cause is always accom-

panied by the same effect,

(2) the principle of causality which says that if no cause is present no effect is caused,

(3) the principle of causal relevance which says that every type of cause is indispensable

in at least one situation, and

(4) the principle of persistent relevance which says that a causal factor maintains its

causal relevance when additional factors are taken into account.

We will not say more about such justifications and for the rest of this chapter we simply take

irredundant prime-covers to be causal models. Instead, we focus on two intuitions from this

literature that try and identify properties of causes.

(Baumgartner 2015) stresses that "causes are difference makers of outcomes". More formally,

after defining the notions of sufficiency and necessity (A is sufficient for E if and only if

AÑ E; and, A is necessary for E if and only if E Ñ A.) (Baumgartner 2015) defines the

notion of a Boolean difference maker as follows: "A factor A is a Boolean difference-maker

of an outcome E if, and only if, A is contained in a minimally sufficient condition AX of E

such that AX , in turn, is contained in a minimally necessary condition of E." We formalise

these statements in the following definition (Definition 13 ); we call it "cause" and reserve

the phrase "difference maker" for a property that we define in (Definition 14) based on the

intuitions discussed in (Baumgartner 2022).

DEFINITION 13 (Cause). Let Σ be an irredundant prime-cover of partial Boolean function

F . A literal l is a cause of F wrt model Σ if there is a term t P Σ containing l. We say l is a

cause of F if it is a cause of F wrt some irredundant prime-cover Σ of F .
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EXAMPLE 12 (Arsonists Continued). In the disjunctive case, L1 is a cause of B (by symmetry,

also L2 is also a cause of B). Also in the conjunctive case L1 is a cause of B (by symmetry

L2 is a cause of B).

Baumgartner has another intuition: "Causes explain outcomes", and as such, a change in a

cause X "is associated with a change in the outcome when everything else stays the same"

(Baumgartner 2022). We formalise this intuition in the following definition which we call

"difference maker" (note that (Baumgartner 2015) does not formalise this and uses "Boolean

difference maker" to refer to what we call "cause" in Definition 13).

DEFINITION 14 (Difference Maker). Let F be a partial Boolean function. A literal l is a

Difference Maker for F if there is a Boolean formula T , called a context, such that

(1) T |ù F 1 Ñ l,

(2) T |ù F 0 Ñ ␣l,

(3) T, F 1 is consistent,

(4) T, F 0 is consistent,

The first two items express that in context T , the value of the literal l "tracks" the outcome of

F , and we call these the tracking conditions. The second two items express that the context is

not trivial, and we call these the consistency conditions.

Note that in the special case that F is a total Boolean function, then we get that T |ù F 1 Ø l.

The next theorem connects the two notions:

THEOREM 3 (Cause implies Difference Maker). Let F be a partial Boolean function such

that F 1 is consistent and F 0 is consistent. If a literal l is a cause for F then l is a difference

maker for F .

PROOF. Assume that the literal l is a cause for F , i.e., l in a term t of an irredundant

prime-cover Σ of F .
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Recall that Σ covers F means:

F 1
|ù

ł

cPΣ

c (5.1)

F 0
|ù

ľ

cPΣ

␣c (5.2)

and that we view terms both as sets of literals and conjunctions of literals. In particular, tztlu

is shorthand for
Ź

l1Pt,l1‰l l.

We will show that l is a difference maker for F . Define T to be the following formula:

˜

ľ

cPΣ,c‰t

␣c

¸

^ ptztluq. (5.3)

Informally, T says that none of the c ‰ t are true and all of the terms other than l in t are true.

Note that if t “ l then T is simply
˜

ľ

cPΣ,c‰t

␣c

¸

. (5.4)

We begin by showing that the tracking conditions hold.

Combining (5.1) and (5.3) we see that T, F 1 |ù t and so also T, F 1 |ù l since l is a conjunct

in t. Thus, T |ù F 1 Ñ l. Combining (5.2) and (5.3), we see that T, F 0 |ù ␣t^ ptztluq, and

so also T, F 0 |ù ␣l. Thus T |ù F 0 Ñ ␣l.

We now show that the consistency conditions hold.

Suppose, for a contradiction, that F 1, T is not consistent. Thus, F 1 |ù ␣T . That is, every

assignment that satisfies c for some c P Σ also either (a) satisfies c1 for some c1 P Σzttu

or (b) satisfies ␣l1 for some l1 ‰ l a literal in t. We will show that Σzttu is a cover of F ,

thus contradicting that Σ is irredundant. First, we show that F 1 |ù
Ž

c1PΣzttu c
1. Note that

if t “ l then (b) disappears and (a) states exactly what we want. On the other hand, if

tztlu is non-empty, then if an assignment makes F 1 true, but does not make any c1 P Σzttu
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true, then it must make t true by (5.1), which is impossible by (b). Second, we show that

F 0 |ù
Ź

cPΣzttu␣c. But this is immediate since we even have that F 0 |ù ␣c for every c P Σ

by (5.2).

Suppose, for a contradiction, that F 0, T is not consistent. Thus, F 0 |ù ␣T . Note that if

t “ l then F 0 |ù ␣T is impossible by (5.4). So we may assume that tztlu is not empty. So,

F 0 |ù
Ž

cPΣ,c‰t c _ ␣ptztluq. By (5.2), conclude that F 0 |ù ␣ptztluq. Thus tztlu |ù ␣F 0,

i.e., every assignment that makes tztlu true is in F 1 Y F ˚, i.e., tztlu is an implicant of F . But

this contradicts that t is prime. □

REMARK 2. We remark that slight variations of this definition do not work. For instance, we

cannot let T “ tztlu. Also, we cannot use the conditions T |ù l |ù F 1 and T |ù ␣l |ù F 0.

EXAMPLE 13 (Arsonists continued). In the conjunctive setting, the literal L1 is a difference-

maker. Indeed, let T :“ L2. Then

(1) in every situation in which the second lit match is dropped and there is a fire, we

must have that the first lit match is dropped;

(2) in every situation in which the second lit match is dropped and there is no fire, we

must have that the first lit match is not dropped;

(3) there are situations in which the second lit match is dropped and there is a fire;

(4) there are situations in which the second lit match is dropped and there is no fire.

In the disjunctive setting, the literal L1 is a difference-maker. Indeed, it is not hard to see that

one can take T :“ ␣L2. Then

(1) in every situation in which the second lit match is not dropped and there is a fire, we

must have that the first lit match is dropped;

(2) in every situation in which the second lit match is not dropped and there is no fire,

we must have that the first lit match is not dropped;

(3) there are situations in which the second lit match is not dropped and there is a fire;

(4) there are situations in which the second lit match is not dropped and there is no fire.
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Finally, observe that a function may have more than one irredundant prime-cover. This means

that, given data, the user might have to choose one cover (perhaps using additional background

knowledge), or might have to consider all covers (Spirtes 2010). We will see an instance of

this in Example 6 (5.3.6).

5.3 Using Irredundant Prime-Covers to Infer Actual

Causation and Causal Explanations

In this section we show how to do causal inference using irredundant prime-covers as causal

models. To do so, we refine the definition of cause (Definition 13) to worlds.

A partial world w is a consistent set of literals. In functional notation, this corresponds to the

set of assignments that make w true. A world is a partial world with exactly one assignment

making it true, i.e., a maximally consistent set of literals (which can be viewed, equivalently,

as an assignment).

In the next definition, we use the following notation. If Σ is a cover and w a partial world,

write Σ, w for the set of formulas t
Ž

tPΣ

Ź

lPt lu Y tl : l P wu, i.e., all the literals in w as well

as the cover Σ in DNF.

DEFINITION 15 (Actual Causes). Let Σ be an irredundant prime-cover of partial Boolean

function F , and let w be a partial world such that Σ, w is consistent. A literal l is an actual

cause of F in w wrt model Σ if there is a term t P Σ such that a) l P t, and b) Σ, w |ù t.

Intuitively, condition a) says that l is a cause of F if the circumstances t hold, while condition

b) says that the circumstances t hold in all worlds that are considered possible.

REMARK 3. A weaker definition would replace condition b) by condition b’): w, t is consistent.

This says that the circumstances t hold in some possible world. This would allow one to

distinguish "necessary actual causes" and "possible actual causes". We will not pursue this

distinction further, but merely point out that if l does not satisfy our definition of "actual
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cause", although we will say that l is not an actual cause, under a finer definition it might still

be a possible actual cause.

EXAMPLE 14 (Arsonists continued). Suppose the forest burned down, and we want to

understand the cause. Consider the situation that the first arsonist did not light a match,

i.e., w :“ t␣L1u. This rules out the conjunctive case (since tL1 ^ L2,␣L1u is inconsistent).

In the disjunctive case, tL1 _ L2,␣L1u is consistent, its only model is t␣L1, L2u, and a)

L2 P Σ_, and b) L2 is a logical consequence of tL1 _ L2,␣L1u. So L2 is an actual cause,

i.e., the second arsonist caused the fire.

In the rest of this section we evaluate our definition of actual cause on a number of subtle

examples from the literature, taken from (Bochman 2018).

Our aim is to investigate the kind of causal claims one can make with irredundant prime-covers

in some complex causal scenarios that have been discussed in the causality literature. We also

provide an example of using our definition for explaining the decision function of a classifier.

5.3.1 Example 1: Loader - General illustration

(Hopkins and Pearl 2003) A firing squad consists of shooters B and C. It is A’s job to load

B’s gun, C loads and fires his own gun. If shot by either B or C, the prisoner dies D.

A Boolean function F represents all possible observations is in Table 5.2.

A B C D
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Irredundant prime-cover:
ΣD :“ pA^Bq _ C

TABLE 5.2. Observations and causal models for Loader
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The only irredundant prime-cover of F is Σ :“ ttA,Bu, tCuu. In DNF this is pA^Bq _ C.

Thus, for instance, each of A, B and C are causes of F .

Suppose the prisoner dies, and we want to understand the cause of her death. We instantiate

Definition 15 in a number of partial worlds:

‚ Suppose w :“ tA,␣B,Cu, i.e. we know that A loaded the gun but only C shot.

Then C is the only actual cause.

‚ Suppose w :“ tA,Cu, i.e., we know that A loaded the gun and C shot (but do not

know if B shot or not). Then only C is an actual cause.

‚ Suppose w :“ tA,B,Cu, i.e., we know that A loaded B’s gun, and both B and C

shot. Then each of A, B, and C are actual causes.

‚ Suppose w :“ tA,␣Cu, i.e., we know that A loaded B’s gun, that C did not shoot,

but do not observe whether B shot or not. Then each of A and B are actual causes.

‚ Suppose w :“ tAu, i.e., we know that A loaded B’s gun. Then none of A, B, or C

are actual causes.

The cause for the first partial world is discussed in (Bochman 2018) and agrees with our

finding here. (Bochman 2018) reports that a Structural Equation Model yielded an incorrect

cause (A) for this example.

5.3.2 Example 2: Window - Overdetermination

Billy (B) and Suzy (S) both throw rocks at a window. The rocks strike the window at exactly

the same time. The window breaks (W ).

Possible observations and the causal model is in Table 5.3.

We explore the scenario commonly discussed in the literature. Consider the window is broken,

we have w :“ tS,Bu. Then each of S and B is an actual cause of W . In this example, the

rocks hit the window at the same time, and the conclusion of the model meets common sense.

The finding of (Bochman 2018) for this example is also that both S and B are the actual cause.
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B S W
0 0 0
0 1 1
1 0 1
1 1 1

Irredundant prime-cover:
ΣW :“ B _ S

TABLE 5.3. Observations and causal models for Window

The Structural Equation Models (Joseph Y Halpern and Pearl 2005a) usually need additional

variables for dealing with examples of overdetermination.

5.3.3 Example 3: Backup - Early Preemption

(Hitchcock 2007) Assassin poisons Victim’s coffee (A). Victim drinks it and dies (D). If

Assassin had not poisoned the coffee, Backup would have (B), and Victim would have died

anyway.

The death of the victim is invariable in this situation. The possible observations are given in

Table 5.4.

A B D
1 0 1
0 1 1

Irredundant prime-cover:
ΣD :“ true

TABLE 5.4. Observations and causal models for Backup

Since there is just one irredundant prime-cover, and it has no literals, we cannot deduce any

causes, actual causes, or difference makers.

The Structural Equation Model (Joseph Y Halpern and Pearl 2005a) for this example is

represented using two different equations B “ ␣A and D “ A _ B. Indeed, our method

does not deal with analysing actual causes for multiple events at the same time (or a sequence

of events). In (Bochman 2018) both ␣A and B are identified as actual cause of the victim’s

death.
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5.3.4 Example 4: Inevitable Shock - Switch

(McDermott 1995; Weslake 2015) Two switches are wired to an electrode. The switches are

controlled by A and B respectively, and the electrode is attached to C. A flips her switch (A),

which forces B to flip her switch (B) (B has no other option). The electrode is activated and

shocks C (C) iff both switches are in the same position.

The truth table and the causal model is given in Table 5.5.

A B C
0 0 1
0 1 0
1 1 1

Irredundant prime-cover:
ΣC :“ A_␣B

TABLE 5.5. Observations and causal models for Inevitable Shock

Given the partial world w :“ tA,Bu, A is the only actual cause of C. Similar conclusion is

reached in (Bochman 2018).

5.3.5 Example 5: Purple Flame - (In)transitivity of Causation

(Menzies and Beebee 2001) Jones puts potassium salts (P ) into a hot fire (F ). Because

potassium compounds produce a purple flame when heated, the flame changes to a purple

colour (PF ), though everything else remains the same. Both flames ignite some flammable

material (I).

The truth table and causal model is provided in Table 5.6.

P F PF I
0 0 0 0
0 1 0 1
1 0 0 0
1 1 1 1

Irredundant prime-cover:
ΣI :“ F,

ΣPF :“ F ^ P

TABLE 5.6. Observations and causal models for Purple Flame

Considering w :“ tP, F, Iu, the actual causes of PF would be F and P . But P is not an

actual cause of I . It should be noted that causation is transitive in regularity theories in general
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(Paul 2004), however it is not transitive in the irredundant prime-cover model presented here.

Indeed as we have mentioned earlier (in Example 5.3.3), irredundant prime-cover models do

not deal with analysing actual causes for multiple events (i.e., we do not analyse causes of a

sequence of events).

5.3.6 Example 6: Classifier Function

The example in Table 5.7 is taken from (Miller 2018). We use this example to demonstrate

how causal difference makers can be used for explaining classifiers in AI.

Legs Sting Eyes Compound. eyes Wings Type
8 0 8 0 0 Spider
6 0 2 1 2 Beetle
6 1 5 1 4 Bee
6 0 5 1 2 Fly

TABLE 5.7. Arthropods classifier

There are multiple irredundant prime-covers for each Type as displayed under columns in

Table 5.8:

ΣSpider ΣBeetle ΣBee ΣFly

8L 6L^ 2E S 5E^2W
8E 2E ^ 2W 4W 5E^␣S
␣C 2E ^ C
␣W 2E ^␣S

TABLE 5.8. Arthropods type irredundant prime-covers

Consider the partial world w :“ t6L, 5E, 4W u and suppose we want to understand the cause

of the classifier returning Bee. Then, 4W is the only actual cause, and we should use the

cover 4W to see this.

We make a few important observations:

(1) For producing explanations, all of the irredundant prime-covers of a class might

need to be evaluated.
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(2) Even in the absence of a complete set of observations (i.e., given a partial world)

actual causes can be identified and can be used for generating explanations for

classifier decisions using a causal model of the classifier.

(3) If explanations address causal difference makers, they are generated with respect to

the whole causal model of the classifier, therefore we speculate that they may help

produce more robust explanations.

5.4 Discussion

In this chapter we motivated the definition of a cover of the decision function of a classifier as

a causal model, and then formalised the intuitive notion of a difference maker condition from

(Baumgartner 2015) showing that being a cause implies being a difference maker. We did not

establish the converse (i.e., whether meeting the difference maker condition implies being

a cause). For making actual causation claims, we generalised the notion of an instance to a

partial instance in the definition of a partial world, therefore our work in this chapter enables

finding explanations for partial observations (which was not discussed in the related literature

(Choi, Shih et al. 2020; Ignatiev, Narodytska and Marques-Silva 2019a)).

Many of the subtleties that are studied in the causality literature are related to the issues

regarding sequential causation claims. We looked at two such issues in Examples 5.3.3 and

5.3.5, but left the extension and refinements needed for modeling a sequence of cause-effect

relations to future work.

The work of (Baumgartner 2015) is fundamentally based on the regularity theoretic account

of causality, which is one of the several different accounts of causation (Beebee, Hitchcock

and Menzies 2009). In regularity theories, causation requires a "causes before effects"

relation (among some other conditions that must be satisfied), i.e., that event B causally

depends on event A necessitates that A occurred before B. These include Mackie’s INUS-

conditions (Mackie 1965), and Wright’s NESS theory (Wright 1985)1. Counterfactual

1INUS is an acronym of "Insufficient but Non-redundant part of an Unnecessary yet Sufficient condition";
NESS is an acronym of "a Necessary Element in a Sufficient Set of conditions".
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approaches on the other hand, take that event B causally depends on event A to mean that if

A had not occurred then B would not have occurred (Lewis 1974).

Refinements to Mackie’s original method, in particular, the work of (Graßhoff and May

2001) reformed the INUS approach with two insights: 1) whether a causal condition is true

cannot be judged in isolation but depends on a system of causal conditions; 2) while the naive

INUS approach understood that causal conditions should be minimal (i.e., implicants should

be prime), the refined account also understood that the system of conditions itself should

also be minimal (i.e., covers should be irredundant). This model was shown to perform at

least on par with the counterfactual accounts (Baumgartner 2013) and was further developed

in (Baumgartner and Falk 2018). It is for these reasons that we focused on irredundant

prime-covers as causal models in this chapter.

Our work in this chapter leaves us with an open question: how important is the irredundancy

condition in being a difference maker? More formally, is it the case that a literal l is a cause

(Definition 13) if it appears in some prime implicant t of F , even if t does not appear in any

irredundant prime-cover of F ?

A prominent account in AI of causal models, actual causation, and explanations, are Structural

Equations (Joseph Y Halpern and Pearl 2005a; Joseph Y. Halpern and Pearl 2005b; Miller

2019; Miller 2018). Besides some obvious differences between this setting and ours (e.g.,

we currently only allow literals to be causes, rather than formulas), there are a number

of important questions aimed at comparing the two settings: Do irredundant prime-covers

correspond to Structural Equations in a precise sense? Are irredundant prime-covers adequate

as causal theories of action and change? (McCain, Turner et al. 1997)



CHAPTER 6

Application of Covers and Explanations Within a Cover

Remark: A major part of this chapter was published as "A Configurational Analysis of Risk

Patterns for Predicting the Outcome After Traumatic Brain Injury"(Gorji, Zador and Poon

2017) and presented at American Medical Informatics Association 2017 (AMIA’17). The

paper was modified to fit the structure and style of the thesis and minor improvements were

made.

Note on some special terminology used in this section: set-theoretic logical analysis method

refers to the problem of finding an irredundant prime-cover of a function. A configuration is

the set of literals in a prime implicant. We follow the methodology of Qualitative Comparative

Analysis (QCA)(Ragin 2014b) which is a method of causality analysis that uses an irredundant

prime-cover as a causal model.

QCA yields a cover whose prime implicants are weighted empirically with three different

measures; consistency, raw coverage and unique coverage. We briefly explain these terms.

Paraphrasing (Ragin 2009a), consistency indicates the "degree to which instances of the

outcome agree in displaying each prime implicant", and is defined as the ratio between the

number of instances in the original dataset that are satisfied by the prime implicant and belong

to the decided outcome class, versus the number of instances in the original dataset that are

satisfied by the prime implicant.

Raw coverage "assesses the degree to which instances of the condition are paired with

instances of the outcome" (Ragin 2009a) and is calculated by computing the number of

instances in the original dataset that can be explained by the given prime implicant versus

the number of instances in the original dataset (with the same outcome as the outcome of the

70
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prime implicant). Unique coverage provides further information about a prime implicant’s

relative empirical importance (Ragin 2009a). It is calculated by subtracting from the raw

coverage of a prime implicant, the proportion that is explained by any other prime implicant.

Finally, GCS stands for Glasgow Coma Scale (Marmarou et al. 2007) which is a rating for

the state of a patient with a traumatic brain injury and is based on components/features such

as "motor response", "pupillary reactivity" and "verbal response".

The rest of the terms are described within the introduction and body of the included work.

6.1 Introduction

Traumatic Brain Injury is a significant source of morbidity and mortality. TBI-related disability

is quoted to be 5.3 million in the United States (Langlois and Sattin 2005) and 7.7 million in the

European Union old member state (Tagliaferri et al. 2006). Furthermore, TBI affects younger

population (<45 years), which contributes to the devastating impact on society. Prognostic

models have given increasing insight into predictor importance highlighting patient age,

motor response and imaging findings as the most influential predictors of outcome3. These

findings helped tailor our assessment protocols and pointed out the variables that should be

gathered for clinical trials (Murray et al. 2007). In the past, TBI studies have investigated

both multi-variable and single-variable models to assess the prognostic strength of variables

on TBI outcome (Majdan et al. 2017; Hawley et al. 2017). Multi-variable models (Murray

et al. 2007; Steyerberg et al. 2008b; Zador, Sperrin and King 2016b) focus on development

and assessment of the combined effect of multiple variables on the outcome, while single-

variable approaches focus on assessing the prognostic strength of one particular variable

(Marmarou et al. 2007). More recently machine-learning methods such as Bayesian Networks

have been applied to TBI databases, which proved to be an appealing way to formalise

intuitive as well as unexpected associations between variables (Zador, Sperrin and King

2016b). Model specification for multi-variate approach using regression, often rely on the

inherent assumption that each variable has an independent effect on the outcome (Lingsma

et al. 2010). It is known that these techniques assess the net effect (Ragin 2000) of a set of
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variables on an outcome and are not generally concerned with configurations and interaction

of variables. For understanding complex biological conditions, the interactions between

variables needs to be studied in a multi-dimensional manner. In reviewing the methods that

assess the effect of multiple variables on TBI outcome, we note that the mainstream techniques

are marked by limitations in expressing the interactions between variables, and the role of

these interactions in predicting the outcome. This means that in these techniques, the data is

assumed to have just one ready answer for the magnitude of a variable’s effect on the outcome.

When interaction terms are not modelled adequately, the accuracy of estimates in regression

approaches can be affected by model misspecification (Gordon 1968). If interaction terms are

not modelled, the effect of individual independent variables are likely to be over-estimated.

Modeling interactions in a multi-variate analysis is not a straightforward task. Starting from

single variables, all possible combinations of variables need to be investigated. Depending on

the number of variables, multiple models can be generated, and the validation of these models

is non-trivial. Conventional statistical methods cannot account for situations in which only

specific combinations of variables reveal their impact on the outcome (conjunctural causation)

or all paths that lead to an outcome need to be simultaneously uncovered (equifinality). These

methods also fall short in explaining situations in which a given combination of variables

contributes to the presence of an outcome but at the same time is irrelevant for the absence of

that outcome (causal asymmetry) (Ragin 2014b).

Despite the depth and breadth of recent investigations, there is limited generalised knowledge

to model the complex interaction of variables and the prognostic value of these interactions

in TBI. In this study our goal is to systematically investigate these interactions. While

considering that the predictors of favourable outcome in TBI are not necessarily the negation

or reversal of predictors of unfavourable outcome, we study the interaction of variables

causative to this asymmetry, in a multi-dimensional, multi-variate manner.

Set-theoretic logical analysis methods can detect recurring causal patterns (Mahoney, Goertz

and Ragin 2013), and are well suited to help us explore a configurational model of TBI

outcome. For this, we apply the method of Qualitative Comparative Analysis (Ragin 2014b;

Ragin 2000; Ragin 2009b) (QCA) which unlike statistical approaches, can address the three
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important phenomenon of conjunctural causation, equifinality and causal asymmetry inherent

in modelling the concept of configurations (Ragin 2009b). The general assumption behind

the configurational approach applied here is that the interaction or combinations of different

predictor variables can explain the difference in outcome classes. Hence, in comparison to

statistical approach like regression that provides an estimate of impacts of the study variable

on outcome in a specified model, rather QCA allows a study factor to participate in difference

configurations affecting the outcome.

The chapter proceeds as follows: First we briefly cover the background on TBI and the current

state of research in this area and will introduce the explanatory variables included in our

study. Next, we explain the analytical framework behind our study, followed by the research

design. We then present the QCA results and offer a more substantive interpretation of risk

patterns before concluding the chapter with an assessment of the predictive power of the

model compared to that of a simple logistic regression model followed by a discussion.

6.2 Prognostic Models and Predictor Variables in TBI

The International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)

(Hukkelhoven et al. 2005) set forth three prognostic models with different levels of complexity,

using well-known predictors (age, Glasgow Coma Motor Score, and pupillary reactivity),

computed tomographic characteristics (CT classification and traumatic subarachnoid hem-

orrhage), secondary insults (hypoxia or hypotension) and laboratory values on admission

(Hb and glucose) (Murray et al. 2007; Maas et al. 2010). These models can predict 6-month

outcome in patients with severe or moderate TBI with good discriminative ability based

on the Area Under Curve (AUC) (Hukkelhoven et al. 2005). Assessment and validation of

these widely accepted prediction models on different cohorts has been the focus of many

investigations. Externally, the IMPACT models were validated against the Corticosteroid

Randomization after Significant Head Injury (CRASH) (Collaborators et al. 2008a) trial

findings. The CRASH trial included 10008 cases of patients with traumatic head injury within

8 hours of clinical assessment from 239 hospitals in 29 countries.
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We have based our current study on the clinically relevant variables from previous studies

by IMPACT and CRASH researchers who have identified age, motor score and imaging

abnormalities as important predictors of clinical outcome in TBI(Roozenbeek, Maas and

Menon 2013; Murray et al. 2007; Zador, Sperrin and King 2016b). Study variables include

demographics, injury characteristics, computed tomography (CT) findings and Glasgow

Outcome Scale (GCS, motor, verbal response and eye opening). Outcome measure was

dichotomised as death or severe disability at 6 months.

From the 10008 cases in the CRASH dataset, about a third had one or more missing values

and were omitted from our analysis. Our analysis is therefore based on the 6945 cases that had

no missing values. Table 1 describes the characteristics of patient data in the CRASH dataset.

The missing CT findings were responsible majority of the excluded values in the study (2191

of the 10008 patients, 21.9%). For the majority of these patients (2063) a CT brain was not

performed at all whereas only 128 had one or more imaging findings not recorded in the

dataset. We considered multiple imputations of missing data, which would technically be

difficult to interface with the subsequent analysis. Furthermore, previous studies with the

CRASH trial dataset found no difference between imputed and complete datasets (Steyerberg

et al. 2008b). We therefore choose to undertake a complete data analysis rather than imputing

missing values. Another consideration regarding the dataset was the better early outcomes

(14 days) for high-income countries, compared low-middle income regions. The 6-month

outcomes (used in our study) were however similar between income regions.
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Variable category Variable (abbr.) Category Total

Epidemiology

Sex (sex) Male 5706
Female 1239

Age (age) ă 20 892
20-24 1191
25-29 860
30-34 754
35-44 1199
45-54 899
ě 55 1150

Injury Cause (cause) Road traffic accident 4780
Fall>2 meters 920

Other 1245
Major extracranial injury (ec) Yes 1638

No 5307

Assessment

Eye opening (eye) No response 2680
To pain 1261

To verbal stimulus 1764
Spontaneous 1240

Motor response (motor) No response 601
Extension 407

Abnormal flexion 515
Withdrawal 933

Localises 2723
Follows commands 1766

Verbal response (verbal) No response 2640
Incomprehensible sounds 1124

Single words 821
Confused 2006
Oriented 354

Pupillary response (pupils) Both reactive 5791
No response unilateral 496

No response 658

Image findings

Petechial haemorrhage (phm) Yes 1974
No 4971

Subarachnoid bleed (sah) Yes 2206
No 4739

Obliterated 3rd ventricle or Yes 1663
basal cisterns (oblt) No 5282
Midline shift (mdls) Yes 1021

No 5924
Hematoma (hmt) Yes 2718

No 4227

Outcome
Outcome at 6 months Death or severe disability 2763

Moderate disability or 4182
good recovery

TABLE 6.1. Characteristics of patient data in the CRASH dataset
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6.3 Qualitative Comparative Analysis

The method of Qualitative Comparative Analysis (QCA) is used for analysis of complex

dependencies in configurational data (Ragin 2014b). Ragin describes QCA as "an analytic

technique designed specifically for the study of cases as configurations of aspects, conceived

as combinations of set memberships” (Ragin 2014b). A configuration is a combination of

variables that consistently produce (i.e. are sufficient for) the outcome (Ragin 2000).

At its core, QCA is based on ideas from the field of logic synthesis (Shannon 1949) to obtain

the minimal Boolean sum-of-products (SOP) formulas (in other words DNF formulas) that

fully represents a given truth table of variables. The truth table lists all logically possible

combinations of the variables based on the dataset included in the study. The core algorithm

in QCA, the Quine-McCuskey (Quine 1952b; McCluskey 1956b) algorithm, was established

in 1950s and is used for minimisation of Boolean logic formulas to find the smallest, logic-

ally valid combination of variables that have the largest coverage over the all cases under

investigation.

The Quine-McCluskey algorithm like any other logical analysis method is not concerned with

the empirical validity of the formulas that are being discovered. It is the role of the analyst to

design a valid foundation for analysis and then to assess the empirical validity of the findings.

After listing all variables in a truth table, the analyst needs to select the threshold at which

sufficient evidence for the outcome is defined. For example, if the analyst wants to uncover

all combinations of variables that lead to a certain outcome 85% of the time, the sufficiency

score needs to be set to 85%. All combinations of conditions that meet this threshold are then

included in further analysis. The analyst can also define the minimum number of occurrences

of a certain combination for it to be included in the study. This gives the analyst the choice to

include for example all combinations that appeared at least two times for favourable outcome.

The parameters of fit in QCA are consistency and coverage (Ragin 2014b). These parameters

assess how consistently a combination of conditions appears in the data and the degree to

which the findings cover or explain the dataset.
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Steps of Analysis. For analysis, we used fsQCA (Ragin, Drass and Davey 2006), a software

developed by Ragin (Ragin 2014b) for configurational analysis. An implementation of QCA

in R (Thiem and Dusa 2013) was also used for replication and comparison. The steps are

schematically shown below (Figure 6.1).

Pre-
Processing

Construction
of Truth

Table

Selection of
Inclusion

Thresholds

Analysis of
Cases with
Favourable
Outcome

Analysis of
Cases with

Unfavourable
Outcome

Evaluation
of Results

FIGURE 6.1. The 6 steps in our analysis

6.4 Variable Selection and Dimensionality Reduction

Since the computational cost of an exact multi-value logical analysis increases according to

the number of variables included in the study, the algorithms used with these methods cannot

process a large number of variables. The predictor variables in TBI dataset are nominal and

multi valued. When flattened, the total number of variables in the truth table sums up to 36

(including the outcome variable,). An exact analysis of 35 variables and one outcome requires

1.8 Petabytes of memory and could not be analysed on conventional lab computers at the

university. (6th Generation Intel® Core™ i7-6700T Processor (8M Cache, up to 3.60 GHz),

12GB Memory, 1TB hard drive). For this reason, we need to select the most informative

variables and consider increasing the granularity of multi-value variables by merging multiple

sub-categories.

6.5 Results

We employed the binary decision tree algorithm RPART (Therneau, Atkinson, Ripley et al.

2010), which is an implementation of Classification and Regression Trees (Breiman, J. H.

Friedman et al. 2017) (CART) in R, to identify the most informative variables and the cut off

point for each multi-level variables. We pruned the resulting decision tree using two different

complexity parameters (0.001 and 0.01) and evaluated the predictive power of the resulting



78 6 APPLICATION OF COVERS AND EXPLANATIONS WITHIN A COVER

models based on the Area Under Curve (AUC). Table 6.2 compares the AUC of the two

models with that of the original CRASH dataset. DeLong’s test was used to formally compare

the ROC curves for the different models.

Model AUC 95%CI (DeLong) DeLong p1

Original CRASH 0.8348 0.8252 - 0.8444 -

11-var Binarized 0.8235 0.8136 - 0.8334 0.1091

9-var Binarized 0.8175 0.8073 - 0.8276 0.01504
1 Compared with Original Crash

TABLE 6.2. Model Evaluation

The 11-var model showed no significant different (Delong p values >0.05) compared with the

original model (non-binarized dataset). The alternative hypothesis was that the true difference

in AUC is not equal to 0. Even though the dataset represents the same population, the paired

ROC test is not applicable for comparing the ROC curves of the binarized models with that of

the original model since the models are very different and are deemed to be unpaired by the

built-in glm (general linear model) algorithm in R. At AUC 0.8175, the 9-variable model has a

higher AUC than sensitivity based (AUC 0.8149) and specificity based (AUC 0.8132) models

reported in earlier studies7. The Delong p-value for the 9-var model is less than 0.05 showing

a more significant difference to the AUC of the original model compared to the 11-var model.

We test two models. The first model includes the 9 most informative variables based on the

application of RPART, and the second model includes only 7 variables. Variable importance

ranking for the two models is given in Table 3.

Variables motor verbal eye pupils age mdls oblt hmt sah ec phm sex cause
9-var Model 30 18 15 13 11 5 4 2 2 1 1 - -
7-var model 35 15 14 16 11 4 3 1 1 - - - -

TABLE 6.3. Variable importance based on RPART for two models
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6.6 Comparative Analysis Using QCA

The first step in an exact analysis of a dataset using the configurational approach is to construct

a truth table of variables. Each case in the CRASH dataset will correspond to a row in truth

table. A truth table represents a binary tree in which every input variable takes either a zero or

one for value. The truth table for our dataset is constructed by replacing for each label i in

variable X the ith label of X with a new variable Xi. This means that multi-level variables

are flattened into binary variables by expanding column wise. Given that our dataset includes

6945 cases, and in QCA terms this represents a Large-N analysis, it is unlikely that we can

find perfectly sufficient causal combinations. We tested multiple levels and decided to set the

sufficiency threshold (Ragin 2009b) to 70%. The inclusion cut off point is kept at 1, meaning

a single occurrence of a combination is enough to include it for further analysis.

Raw coverage (RC), unique coverage (UC) and consistency (CONS) are the parameters of fit

and assess how consistently a combination of conditions appears in the data and the degree to

which the findings cover or explain the dataset (Ragin 2009b). The dashes (-) in the result

tables mean that presence or absence of the variable does not matter for the outcome of that

configuration.

6.7 Analysis of the 9-Var Model

As shown in Table 6.4, 67.8% of the Configurations for favourable outcome with a consistency

of 84.9% could be explained by 40 combinations. The top 6 configurations for favourable

outcome based on this model are reported. The first four conditions cover more cases in the

dataset based on their RC and UC. Table 6.5 shows top 6 configurations for unfavourable

outcome.

As shown in Table 6.5, 42.9% of the Configurations for unfavourable outcome with a con-

sistency of 87.2% could be explained by 63 combinations. The top configurations for

unfavourable outcome are reported.
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age eye motor verbal pupils oblt mdls hmt sah RC UC CONS
1 < 45 - localises

or follows
commands

> single
words

both
reactive

- no - no 0.335 0.028 0.905

2 < 45 any
response

- > single
words

both
reactive

no no - - 0.370 0.014 0.899

3 < 45 any
response

localises
or follows
commands

- - no no no - 0.318 0.000 0.896

4 < 45 any
response

localises
or follows
commands

- both
reactive

no no - - 0.414 0.020 0.885

5 < 45 - withdrawal
or less

- both
reactive

- no no yes 0.086 0.015 0.806

6 - any
response

withdrawal
or less

> single
words

- no no no no 0.315 0.079 0.872

TABLE 6.4. Top 6 Configurations for Favourable Outcome Based on the 9-Var
Model

6.8 Analysis of the 7-Var Model

Since variable importance ranking of hmt and sah are the lowest in the rankings of our

classification tree, we removed these two variables to evaluate the resulting configurations

without them. The AUC of the 7-var model is 0.811 (95% CI: 0.8136-0.8334 (DeLong)). At

DeLong’s p-value 9.474E-04 compared with the original model, the ROC curves of the two

models were significantly different. It was found that 57.2% of the cases with favourable

outcome with a consistency of 85.7% could be explained by 9 combinations. From these 9

configurations in Table 6.6, we report on the top 6 that have the highest RC and UC.

With a raw coverage of 0.48, the configuration of row 1 in Table 6 explains the highest number

of favourable outcomes covered by the total model (2740 cases), capturing the configuration

"patients (below 45), with motor (localizes OR follows commands) AND pupils (both reactive)

AND mdls (no) AND oblt (no)." This means that regardless of the value of eye and verbal,

with 86% consistency, any configuration that matches row 1 results in favourable outcome.

On the other hand, 44.5% of the cases of unfavourable outcome with a consistency of 83%

could be explained by 20 combinations. Due to space limitation, we only report the top 8

configurations in Table 6.7 below.
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age eye motor verbal pupils oblt mdls hmt sah RC UC CONS
1 - no re-

sponse
withdrawal
or less

Incomp.
sounds
or no
response

no re-
sponse/
unilateral

- - - yes 0.125 0.009 0.901

2 - no re-
sponse

withdrawal
or less

Incomp.
sounds
or no
response

- yes - yes yes 0.087 0.018 0.889

3 - - withdrawal
or less

Incomp.
sounds
or no
response

- - yes yes no 0.078 0.024 0.857

4 < 45 no re-
sponse

withdrawal
or less

- - no no - - 0.059 0.001 0.921

5 < 45 - withdrawal
or less

Incomp.
sounds
or no
response

no re-
sponse/
unilateral

- no no yes 0.030 0.004 0.848

6 < 45 any
response

- Incomp.
sounds
or no
response

no re-
sponse/
unilateral

no - yes - 0.029 0.002 0.964

TABLE 6.5. Top 6 Configurations for Unfavourable Outcome Based on the
9-Var Model

With a raw coverage of 0.2, the configuration of row 1 in Table 6.7 explains the highest

number of unfavourable outcomes covered by the total model; capturing the configuration

"patients who are 45 and above with eye = (no response) AND verbal = (incomprehensible

sounds or no response)."

6.9 Predicting Outcome with QCA

To evaluate the usefulness of the 7-variable QCA model, we compared its ability to predict

the TBI outcome with that of a simple binary logistic regression (Logit) model:

P (TBI outcome) = Logit( β0 + β1*age + β2*eye + β3*motor + β4*verbal + β5*pupils +

β6*oblt + β7*mdls )
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age eye motor verbal pupils oblt mdls RC UC CONS
1 < 45 - localises

OR follows
commands

- both
reactive

no no 0.483 0.058 0.860

2 < 45 - localises
OR follows
commands

at least
single
words

both
reactive

- no 0.394 0.037 0.893

3 < 45 any
response

- at least
single
words

both
reactive

no - 0.384 0.025 0.897

4 < 45 any
response

localises
OR follows
commands

- - no no 0.423 0.003 0.883

5 < 45 any
response

localises
OR follows
commands

at least
single
words

- no - 0.364 2.3E-4 0.899

6 < 45 no re-
sponse

withdrawal
or less

at least
single
words

- no no 0.003 0.003 0.736

TABLE 6.6. Top 6 Configurations for Favourable Outcome Based on the 7-Var
Model

where P is the predicted probability of TBI outcome based on the assumption of linear

relationship between the variables. The purpose of using this simple model for comparison is

to show the difference between the results of a conventional additive model with that of QCA.

The two models are based on very different assumptions. The linear logistic regression model

assigns a weight to all independent variables and is additive in nature. The QCA model takes

patterns of interactions between variables into account and outputs multiple combinations.

We compared the predictive power of the two models based on the number of true positives

and false negatives they predict as well as their overall prediction accuracy. The results are

shown in Table 6.8. Precision reports the percentage of correct predictions that the model

makes. Recall reports the fraction of positive predictions that are truly positive. Accuracy of

the model is the percentage of all true predictions from the number of predictions the model

makes.

Precision: TP {pTP ` FP q; Recall: TP {pTP ` FNq; Accuracy: pTP ` TNq{ppTP `

TNq ` pFP ` FNqq. Abbreviations TP, FP, TN, FN respectively refer to True Positive,

False Positive, True Negative and False Negative.
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age eye motor verbal pupils oblt mdls RC UC CONS
1 45 and

above
no re-
sponse

- incomp.
sounds
or no
response

- - - 0.200 0.069 0.832

2 45 and
above

- - incomp.
sounds
or no
response

no re-
sponse/
unilateral

no - 0.059 0.009 0.858

3 45 and
above

- - incomp.
sounds
or no
response

- no yes 0.034 0.006 0.840

4 - no re-
sponse

withdrawal
or less

incomp.
sounds
or no
response

no re-
sponse/
unilateral

- - 0.239 0.043 0.857

5 - no re-
sponse

withdrawal
or less

incomp.
sounds
or no
response

- - yes 0.161 0.020 0.873

6 45 and
above

no re-
sponse

- - no re-
sponse/
unilateral

no no 0.035 0.001 0.860

7 45 and
above

no re-
sponse

- - both
reactive

yes no 0.018 0.001 0.836

8 45 and
above

any
response

withdrawal
or less

- both
reactive

- yes 0.009 0.002 0.896

TABLE 6.7. Top 8 Configurations for Unfavourable Outcome Based on the
7-Var Model

One main difference between the two models is that the Logit model generates one model for

the whole dataset, but the QCA only explains patterns in a fraction of the dataset.

Model2 Precision Recall True Positive
Rate

False Positive
Rate

7-var QCA favourable˚ 0.86 0.85 0.858 0.133
7-var QCA
unfavourable˚

0.83 0.83 0.830 0.169

7-var Logit favourable 0.75 0.86 0.881 0.447
7-var Logit unfavourable 0.73 0.57 0.553 0.317
2 N = 6945 (Favourable outcome: 4182 Cases, Unfavourable outcome: 2763 Cases)
˚ For QCA (Favourable outcome: 2790 Cases, Unfavourable outcome: 1483 Cases)

TABLE 6.8. Predicting favourable outcome in TBI in CRASH dataset.
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If precision and recall for the two models are calculated based on the number of cases that

they claim to explain, the QCA model benefits from higher accuracy:

‚ Accuracy of the QCA model on the fraction of the dataset explained by the 7-var

model: (2394+1232) / (2790+ 1483) = 0.848

‚ Accuracy of the Logit model : (3684+1527) / (4182+ 2763) = 0.750

However, when we evaluate the predictive power of each model on the full dataset, the Logit

model demonstrates a better precision and recall than the 7-var QCA model in predicting

outcome, but suffers from higher false positive rates for both cases of unfavourable and

favourable outcome. These results highlight the advantages of using QCA particularly when

variables that affect outcome positively do not necessarily have reverse effect when they

are removed, hence enabling us to highlight the possible asymmetries in the way individual

variables can influence the outcome through their participation in configurations.

For the 9-var model, the cases of favourable outcome that QCA did not cover totals 215

different combinations, and for cases of unfavourable outcome that number is 174. For the

7-var model, the numbers are 79 and 59 respectively. Some of these non-covered cases are

single occurrences of the configuration of variables that could not be factored with other

configurations.

6.10 Discussion

Our study demonstrated a different approach to evaluating predictors of clinical outcome in

TBI. With methods of QCA we established multiple configurations for admission variables

that are predictive of favourable versus unfavourable outcome. Most of the findings are

intuitive, young age (<45), good neurological condition and lack of CT abnormalities are in

keeping with favourable outcome. Whereas older age, poor neurological condition and CT

findings such as mass effect or traumatic subarachnoid bleed are suggestive of an unfavourable

outcome. These results are in line with previous studies; however an unexpected finding was

that on formal variable importance ranking using RPART age fell behind the GCS components
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as well as pupillary response. This is further traceable in several of the configurations (1-3

Table 6.5) for unfavourable outcome where age does not appear. A further finding in our

study is the dichotomisation values for admission variables which we established using a

binary decision tree algorithm (RPART). Binary adaptation of clinical features is appealing to

clinicians because it simplifies patient assessment particularly in the emergency setting. We

have demonstrated that collapsing multi-level variables into binary does not impact model

performance when maintaining the full set or most of variables present in the original model

(Table 6.2). Consequently, a binary model can potentially inform a simplified assessment

protocol without substantial loss of clinical information. A translational value of our findings

is that the configurations of admission variables, backed by the raw coverage, unique coverage

and consistency parameters, can be regarded as "typical" patient scenarios that are strongly

predictive of a clinical outcome.



CHAPTER 7

Conclusion

Machine learning models have gained considerable traction in safety critical and sensitive

domains, such as healthcare, finance, transportation, and legal policy, owing to their potential

to improve decision-making, enhance efficiency, and deliver innovative solutions. However,

this rapid adoption has raised social and legal concerns regarding the trustworthiness and

fairness of these models (GDPR, European Commission 2016). As a result, a growing field

of research has emerged, focusing on the development of techniques to produce verifiable

and humanly-understandable explanations for the internal decision-making rationale and

outputs of these models (Ribeiro, Singh and Guestrin 2018; Ribeiro, Singh and Guestrin

2016; Lundberg and Lee 2017; Shih, Choi and Darwiche 2018; Ignatiev, Pereira et al. 2018;

Ignatiev, Narodytska and Marques-Silva 2019a; Simonyan, Vedaldi and Zisserman 2013;

Shrikumar, Greenside and Kundaje 2017; Koh and Liang 2017).

In this thesis we contribute to this line of research. We observed that many of the existing

explanation methods do not consider background knowledge when generating explanations.

In the context of ML explanations, background knowledge may include information about

the relationships between input variables and the preferences of the end users of the model

for explanations. Focusing on the role of background knowledge on enhancing the quality of

explanations, we made a few contributions.

First, we focused on the notion of sufficient reasons and showed both theoretically and

empirically that the size of sufficient reasons may be shortened by incorporating background

knowledge as domain constraints into the process of generating them. In particular, in Chapter

3 and Chapter 4 we generalised certain aspects of the state of the art in formal explanation

methods (Shih, Choi and Darwiche 2018) and (Ignatiev, Narodytska and Marques-Silva

86
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2019a) for the Boolean and multi-value case by incorporating domain constraints, and showed

that we can improve explanations in terms of their size. Indeed, sufficient reasons that take

domain constraints into account may become more parsimonious. In addition, we remarked

in Chapter 4 that one can achieve further generality by preferring non-constraint-subsumed

prime implicants. We acknowledged that the two objectives – generality vs. parsimony in

terms of size – may be in tension.

Then, we focused explanations to be generated from a pre-specified "context" for an explan-

ation, enhancing explanations in terms of relevancy to the end users. Limiting the number

of explanations or focusing explanations to a user-specified context is an important parallel

to taking background knowledge into account. It addresses the practical applicability of

the ML models as it helps to explain the model’s behaviour with reference to an accept-

able explanation framework from the perspective of the end users. In Chapter 5, by using

irredundant prime-covers, we showed that we can narrow down explanations to a specific

context. This helps to reduce the number of possible explanations while keeping explanations

coherent with respect to a pre-specified model. Further, we investigated the close connection

between explanations and causality and formalised some concepts and notions from the social

science literature. We illustrated the usefulness of these formalised notions for making causal

arguments over some canonical examples from the causality literature, and then, evaluated the

performance of our proposed approach in dealing with some important subtleties discussed in

the causality analysis literature. The pursuit of a technique to produce explanations based on

a model that can be regarded as causal is an important endeavour. Perhaps other, and more

sophisticated models of causality could be investigated in future work.

Finally, knowledge of an "original dataset" is yet another form of background knowledge that

can be used to enhance the quality of explanations. We demonstrated that explanations can be

backed up (and perhaps be made more trustworthy) by using some quantitative support metrics.

Inspired by methods used in social science literature, in Chapter 6 we used irredundant prime-

covers as causal models, and measured the consistency and coverage of each explanation over

the original dataset that the ML model was trained on. We provided the details of a real life

application in medical domains, thus evaluated our method empirically.
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In summary, ignoring background knowledge when explaining ML models, can have consid-

erable consequences. It can lead to producing sub-optimal explanations, i.e. those that are

unnecessarily detailed and hard to interpret. It may also lead to providing too many competing

explanations (or seemingly random or unrelated explanations) and thus, imposing unnecessary

cognitive load on the end users. These issues may restrict the practical applicability the

explanation methods. Incorporating background knowledge, as we show how to do in this

thesis, may help to produce explanations that are more relevant to the end users and to what

they already know about the problem domain.



Reference for Important Notations and Definitions

The purpose of this section is to provide the notations and definitions that are used in Chapter

3 and Chapter 4 in one location for easy reference. The first section includes the notations

and definitions for finding explanations for Binary classifiers, and the second section extends

the notations to the case of the multi-value classifiers.

Reference for Chapter 3

X : Boolean variables.

X : Bold capital letters denote the set of n Boolean variables, i.e., X “

tX1, X2, ¨ ¨ ¨ , Xnu.

Boolean formulas φ : The set of Boolean formulas is generated from X, the constants J (true)

and K (false), and the logical operations ^ (conjunction),_ (disjunction),␣

(negation),Ñ (conditional) andØ (bi-conditional).

literal : Variables X and their negations ␣X

Term t : A conjunction of literals with no literal repeated. The empty-conjunction

is also denoted J. The size of a term t is the number of literals that occur

in it.

instance (over X) : An element of t0, 1un, denoted x (intuitively, it is an instantiation of the

variables X). An instance x satisfies a formula φ if φ evaluates to true

when the variables in φ are assigned truth-values according to x. The set

of instances that satisfy the formula φ is denoted rφs, and is called the set

represented by φ, i.e., a set C of instances is represented by φ if C “ rφs.

Logical entailment : For a Boolean formula φ and an instance x, define x |ù φ, read x satisfies

φ, inductively as usual:
89
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‚ x |ù Xi if xi “ 1

‚ x |ù ␣φ if x * φ,

‚ x |ù φ1 ^ φ2 if x |ù φi for all i “ 1, 2,

‚ x |ù φ1 _ φ2 if x |ù φi for some i “ 1, 2.

If Φ is a set of Boolean formulas, write Φ |ù ϕ if every assignment

satisfying all the formulas in Φ satisfies ϕ. In this case we say that Φ

logically implies ϕ, and that ϕ logically follows from Φ. In case Φ is a

singleton, we may write ϕ instead of the more precise tϕu. A set Φ of

formulas is consistent if Φ * false, i.e., if there is some x that satisfies every

formula in Φ.

Logical equivalence : If rφs “ rψs then we say that φ, ψ are logically equivalent, intuitively,

they mean the same thing.

Subsumption between terms : For terms s, t, we say that s subsumes t if rts Ď rss, i.e., if every instance

that satisfies t also satisfies s. If rts Ă rss then we say that s properly

subsumes t; depending on the context, we also describe this by saying that

s is more general or more parsimonious than t, or s is more succinct than t

(note that s is smaller than t).

Partial Boolean function A partial Boolean function F (over X) is a function t0, 1un Ñ t0, 1, ˚u. For

i P t0, 1, ˚u define F i to be the set F´1piq. The instances in F 1, F 0, F ˚ are

called, respectively, the positive, negative, undefined instances of F .

Total Boolean function If the set F ˚ is empty, then F is a total Boolean function.

If rφs “ F 1 we say that the formula φ represents the total Boolean

function F .

Implicant A term t is an implicant of F if rts Ď F 1 Y F ˚;

Prime implicant an implicant t is prime if no other implicant of F subsumes t. Intuitively,

t is prime if removing any literal from t results in a term that is no longer

an implicant. This generalises the notion of implicant and prime implicant

from total Boolean functions, defined in (Quine 1952a; Shih, Choi and

Darwiche 2018; Darwiche and Hirth 2020), to partial Boolean functions, as

described in (McCluskey 1956a; Coudert 1994).
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Set PIpF q the set of all prime implicants of F .

Constraint C : a set of instances over X.

Constraint-equivalent : terms t, s are C-equivalent (or simply, constraint-equivalent when the

constraint is understood), if C X rss “ C X rts. For instance, if C is

represented by pX1 _X2q ^ ␣pX1 ^X2q then t “ ␣X1 is C-equivalent

to s “ X2, and thus s and t may be identified as the same reason in the

presence of C.

Constraint-subsumption : For two terms t, s say that s is constraint-subsumed by t if rss X C Ď

rts X C.

Reference for Chapter 4

X : Capital letters denote multi-value variables. We may use subscripts, e.g.

Xi denotes the ith variable.

X : Bold capital letters denote a finite set of multi-value variables tX1, X2, ¨ ¨ ¨ , Xnu

or {X, Y, . . . , Z}.

x : Lower case letters denote (nominal) variable values. We may also use

numbers for variable values.

DX : Domain of variable X that contains the set of values that the variable can

take. In the running examples, we use two multi-value variables X and Y

where DX “ tx1, x2, x3u and DY “ ty1, y2, y3u.

Feature space U : The product of the domains of the variables, i.e., U “
ś

XPX DX . Ele-

ments of U are called assignments, typically denoted α. We may also use

functional notation, i.e., αpXiq P DXi
.

MV-formula ∆ : a formula generated from atomic predicates of the form X “ x where

X P X and x P DX , the constants J (true) and K (false), and the logical

operations ^ (conjunction),_ (disjunction),␣ (negation),Ñ (conditional)

andØ (bi-conditional).

MV-instance α : An MV-instance (aka instance, aka assignment) α is an element of the

universe U . We may write it in functional notation, i.e, α is a function such

that αpXq P DX for every X P X.
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Logical entailment : For a MV-formula ∆ and an assignment α, define α |ù ∆ (read α satisfies

∆ or α is a model of ∆), inductively as usual:

‚ α |ù J,

‚ α |ù pX “ xq if αpXq “ x.

‚ α |ù p∆1 ^∆2q if α |ù ∆i for all i “ 1, 2,

‚ α |ù ␣∆1 if it is not the case that α |ù ∆1.

A formula ∆ is consistent if there is some assignment that satisfies ∆,

otherwise it is inconsistent. A set Φ of formulas is consistent if there is

some assignment δ that satisfies every formula in Φ.

A formula ∆i logically implies another formula ∆j , written ∆i |ù ∆j ,

iff every assignment satisfying ∆i satisfies ∆j . If we also have ∆j |ù ∆i

then the two formulas are logically equivalent, written ∆i ” ∆j .

We may write r∆s for the set of assignments that satisfy ∆.

A formula ∆ is trivial if neither ∆ nor ␣∆ is consistent.

MV-literal : A non-trivial MV-formula that mentions a single variable.

Let DX “ tx1, x2, x3u. The following are literals:

‚ X “ x1,

‚ X ‰ x1.

‚ X “ x1 _X “ x3,

‚ X ‰ x1 ^X ‰ x2.

The following are not literals, as they are trivial:

‚ X “ x1 _X “ x2 _X “ x3,

‚ X “ x1 ^X ‰ x2.

Intuitively, even-though a literal is an arbitrary formula, it just determ-

ines a strict subset of DX . For instance if DX “ t0, 1u semantically there

are 2 literals (which can be written in many different ways). E.g. pX “ 1q,

pX ‰ 0q and pX “ 1 ^ X “ 1q are semantically the same. We em-

phasise that although having disjunctions in literals may seem unnatural,

semantically, terms can be expressed as conjunctions of negations of atoms.

Simple MV-literal : A MV-literal that specifies a single value, i.e., the cardinality of set S is 1.



REFERENCE FOR IMPORTANT NOTATIONS AND DEFINITIONS 93

MV-Term τ : A conjunction of MV-literals over distinct variables. LetDX “ tx1, x2, x3u

and DY “ ty1, y2, y3u. The following is an MV-term: pX “ x1 _ X “

x2q ^ pY ‰ y1q.

Simple MV-term : An MV-term is simple if all of its MV-literals are simple. The following

MV-terms are simple:

‚ X “ x1 ^ Y “ y1,

‚ X “ x2 ^ Y “ y1.

The following MV-terms are not simple:

‚ X ‰ x1 ^ Y “ y1,

‚ X “ x2 ^ pY “ y1 _ Y “ y3q.

Subsumption of MV-terms : Logical entailment applied to MV-terms is called subsumption.

That is, an MV-term τi subsumes MV-term τj if τj |ù τi. If we also

have τi ı τj , then τi strictly subsumes τj . For example, the MV-term

X “ x1 ^ pY “ y1 _ Y “ y3q is strictly subsumed by the MV-terms

X ‰ x3 ^ pY “ y1 _ Y “ y3q and X “ x1

Moreover, when logical entailment is applied to literals we use general

instead of "subsumes", i.e., if lj |ù li we say that li is more general than lj .

∆pαq “ 1 (resp. “ 0) : the formula ∆ evaluates to 1 (resp. 0) on instance α.

Implicant : An MV-term τ is an implicant of MV-formula ∆ if τ |ù ∆.

Prime Implicant : An MV-term τ is a prime implicant of ∆ if τ is an implicant of ∆ that is

not strictly subsumed by another implicant of ∆.

PIp∆q : the set of all prime implicants of ∆.

MV-constraint κ : an MV-formula representing a set of instances. Specifically, κ captures

background knowledge.

Constraint subsumption : Let κ be an MV-constraint. For two terms τi, τj we say that τj is κ-

subsumed by τi if τj ^ κ |ù τi ^ κ. If also have that τi ^ κ * τj ^ κ we

say that τj is strictly κ-subsumed by τi. We can think of this as inducing an

order on terms: τj ď τi if τj is κ-subsumed by τi.
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Constraint equivalence Two terms τi, τj that are not logically equivalent may still be logically

equivalent modulo κ, i.e., each κ-subsumes the other. Note that in this case

rκs X rτis “ rκs X rτjs.
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