
Analysing trajectory similarity
and improving graph dilation

Sampson Wong

School of Computer Science, University of Sydney

A thesis submitted to fulfil requirements for the degree of Doctor of Philosophy

Abstract

In this thesis, we focus on two topics in computational geometry.
The first topic is analysing trajectory similarity. A trajectory tracks the movement of

an object over time. A common way to analyse trajectories is by finding similarities. The
Fréchet distance is a similarity measure that has gained popularity in the theory community,
since it takes the continuity of the curves into account. One way to analyse trajectories using
the Fréchet distance is to cluster trajectories into groups of similar trajectories. For vehicle
trajectories, another way to analyse trajectories is to compute the path on the underlying
road network that best represents the trajectory. In Chapters 2, 3 and 4, we focus on
trajectory similarity problems.

The second topic is improving graph dilation. Dilation measures the quality of a network
in applications such as transportation and communication networks. Spanners are low
dilation graphs with not too many edges. Most of the literature on spanners focuses on
building the graph from scratch. We instead focus on adding edges to improve the dilation
of an existing graph. In Chapters 5 and 6, we focus on graph dilation problems.

1

Statement of Attribution

The contents of this thesis are based on four published papers and one unpublished
manuscript. I was the corresponding author and the main contributor on all five papers.
As per convention in theoretical computer science, authors are listed alphabetically.

Chapter 2. Joachim Gudmundsson, Sampson Wong. Cubic upper and lower bounds for
subtrajectory clustering under the continuous Fréchet distance. In Proceedings of the 33rd
Symposium on Discrete Algorithms, SODA 2022.

Chapter 3. Joachim Gudmundsson, Martin P. Seybold, Sampson Wong. Map matching
queries on realistic input graphs under the Fréchet distance. In Proceedings of the 34th
Symposium on Discrete Algorithms, SODA 2023.

Chapter 4. Kevin Buchin, André Nusser, Sampson Wong. Computing continuous
dynamic time warping of time series in polynomial time. In Proceedings of the 38th
Symposium on Computational Geometry, SoCG 2022.

Chapter 5. Joachim Gudmundsson, Sampson Wong. Improving the dilation of metric
graphs by adding edges. In Proceedings of the 32nd Symposium on Discrete Algorithms,
SODA 2021. Journal version in Transactions on Algorithms, TALG 2022.

Chapter 6. Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Sampson Wong.
Bicriteria approximation for minimum dilation graph augmentation. Under submission.

As supervisor for the candidature upon which this thesis is based, I can confirm that the
authorship attribution statements above are correct.

Joachim Gudmundsson

2

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own
work. This thesis has not been submitted for any degree or other purposes.

I certify that the intellectual content of this thesis is the product of my own work and
that all the assistance received in preparing this thesis and sources have been acknowledged.

Sampson Wong

3

Acknowledgements

This thesis would not have been possible without the help of many people.
First, I would like to thank my amazing supervisor — Joachim. I feel incredibly lucky

to be your student.
Second, I would like to thank my colleagues and friends at Sydney University — André,

John, Julian, Martin, Milutin, Patrick, Vikrant, William, Yuan; Adam, Alan, Baptiste,
Chris, Clément, Lindsey, Niku, Sarah, Sasha, Zijin; Anushka, Helen, Kai, Li, Omid, Yuan.
Thank you for creating such a positive atmosphere at the university.

Third, I would like to thank my collaborators — Mark de Berg, Kevin Buchin, Mees van
de Kerkhof, Koen Klaren, Aleksandr Popov, Zeinab Saedi, Frank Staals, Lionov Wiratma;
Mikkel Abrahamsen, Maike Buchin, Ivor van der Hoog, Antonia Kalb, André Nusser,
Lukas Plaetz, Eva Rotenberg, Yucheng Sun, Lea Thiel, Hanwen Zhang. Thank you for
the enriching research discussions, and I hope to work together soon.

Fourth, I would like to thank my family —爸爸,媽咪,家姐. Thank you for always being
there for me, and for always believing in me.

Finally, I would like to thank my wonderful wife — Rachel. I love you.

4

Contents

1 Introduction 7
1.1 Computational geometry . 7
1.2 Trajectory similarity . 8
1.3 Graph dilation . 9
1.4 Contributions . 10
1.5 Other projects during PhD . 11

2 Cubic upper and lower bounds for subtrajectory clustering under the
continuous Fréchet distance 13
2.1 Introduction . 13
2.2 Preliminaries . 15
2.3 Technical Overview . 17
2.4 Discrete Fréchet Distance . 29
2.5 Continuous Fréchet Distance . 34
2.6 Lower bound . 49

3 Map matching queries on realistic input graphs under the Fréchet dis-
tance 73
3.1 Introduction . 73
3.2 Preliminaries . 76
3.3 Technical Overview . 76
3.4 Stage 1: Straightest path queries . 81
3.5 Stage 2: Map matching segment queries . 85
3.6 Stage 3: Map matching queries . 91
3.7 Lower bound for geometric planar graphs . 98
3.8 Conclusion . 104

4 Computing Continuous Dynamic Time Warping of Time Series in Poly-
nomial Time 106
4.1 Introduction . 106
4.2 Preliminaries . 109
4.3 Algorithm . 112
4.4 Proofs of Lemmas 7, 10 and 14 . 121
4.5 Conclusion . 132

5

5 Improving the dilation of a metric graph by adding edges 133
5.1 Introduction . 133
5.2 The Greedy Construction . 135
5.3 Minimising the Dilation . 141
5.4 Approximation factor no better than (1− ε)(k + 1) 142
5.5 The Bottleneck Algorithm . 144
5.6 Conclusion . 145

6 Bicriteria approximation for minimum dilation graph augmentation 146
6.1 Introduction . 146
6.2 Technical overview . 149
6.3 Greedy bicriteria approximation . 152
6.4 Greedy analysis is tight . 158
6.5 Set cover reduction . 160
6.6 Conclusion . 163

6

Chapter 1

Introduction

1.1 Computational geometry

Computer science is the study of computers and computation. It encompassed a wide range
of fields, including:

• Computer systems. This field focuses on the design, implementation, and management
of hardware, software, and networks. Subfields include computer architecture, operat-
ing systems, computer engineering, parallel computing, concurrency, distributed com-
puting, computer networking, computer security, cryptography, blockchains, databases
and data mining.

• Applied computer science, which focuses on practical applications of computer science
to solve real-world problems. Subfields include computer graphics, information pro-
cessing, visualisation, computational science, human computer interaction, software
engineering, programming languages, compilers, artificial intelligence and machine
learning.

• Theoretical computer science focuses on the mathematical foundations of computer
science. Subfields include automata theory, computability theory, complexity theory,
quantum computing, information theory, coding theory, algorithms, data structures,
programming languages and formal methods.

Computational geometry is a subfield of theoretical computer science that focuses on
problems that can be stated geometrically. Geometric problems are commonly set in the
Euclidean plane (alternatively, the Cartesian plane or the xy-plane). Geometric problems
may also be set in higher dimensions.

Computational geometry overlaps with other subfields of theoretical computer science.
In particular, there is significant overlap with:

• Algorithms. Given an input, perform a sequence of steps to produce the desired out-
put. An algorithm is more efficient if it requires fewer steps. In theoretical computer
science, an algorithm’s efficiency is described mathematically. In particular, an al-
gorithms running time is often stated in Big-O notation. Examples of algorithms in
computational geometry include convex hull algorithms and sweep line algorithms.

7

• Data structures. Given input data, perform processing steps to construct a data
structure. Given a query and the data structure, perform query steps to produce
the desired output. The quality of a data structure depends on: the efficiency of
the preprocessing algorithm, the efficiency of the query algorithm, and the size of the
data structure. Examples of data structures in computational geometry include range
searching data structures and point location data structures.

• Complexity theory. Given an input, how many steps are required to produce the
desired output? The complexity of a problem is the efficiency of the best algorithm
for solving it. A problem’s complexity is often stated in terms of its complexity class.
Examples of complexity classes in computational geometry include NP-hard problems
and 3SUM-hard problems.

In this thesis, we focus on two topics in computational geometry. The first topic is
analysing trajectory similarity, which we introduce in Section 1.2. The second topic is
improving graph dilation, which we introduce in Section 1.3.

1.2 Trajectory similarity

The widespread use of the Global Positioning System (GPS) in location aware devices has
led to an abundance of trajectory data. Although collecting and storing this data is cheaper
and easier than ever, this rapid increase of data is making the problem of analysing this
data more demanding.

A GPS trajectory tracks the movement of an object over time. We model a trajectory
as a polygonal curve in the Euclidean plane. A common way to analyse trajectories is
by finding similarities. Computing similarities is a fundamental building block for other
analyses, such as clustering, classification, or simplification. There are numerous similarity
measures considered in literature [16, 58, 80, 116, 151, 155], many of which are application
dependent.

The Fréchet distance is a similarity measure that has gained popularity, especially in
the theory community [12, 37, 69, 148]. Under the Fréchet distance, a minimum cost con-
tinuous alignment is computed between the pair of trajectories. A continuous alignment
is a simultaneous traversal of the pair of trajectories that satisfies four conditions: (i) the
first pair is the first point from both trajectories, (ii) the last pair is the last point from
both trajectories, (iii) each point must appear in some pair in the alignment, and (iv) the
alignment must be a monotonically increasing sequence for both trajectories. The cost of a
continuous alignment, under the Fréchet distance, is the maximum distance between a pair
of points in the alignment.

Alt and Godau [12] were the first to study algorithms for computing the Fréchet distance.
For a pair of trajectories of complexity n, they provide an O(n2 log n) time algorithm. Later,
Buchin et al. [37] provide an improved O(n2

√
log n(log log n)3/2) time algorithm.

Bringmann [28] was the first to apply fine-grained lower bounds, conditioned on the
Strong Exponential Time Hypothesis (SETH), to Fréchet distance problems. Bringmann [28]
showed a quadratic lower bound for computing the Fréchet distance between trajectories
of dimension two or higher. Buchin et al. [42] extended the results to hold for the Fréchet
distance of 1-dimensional trajectories.

One way to analyse trajectories using the Fréchet distance is to cluster trajectories
into groups of similar trajectories. The (k, ℓ)-center and (k, ℓ)-median clustering problems

8

are two such problems that have received attention. Given a set G of trajectories, and
parameters k and ℓ, the problem is to find a set C of k trajectories (not necessarily in G),
each of complexity at most ℓ, so that the maximum Fréchet distance (center) or the sum
of the Fréchet distances (median) over all trajectories in G to its closest trajectory in C is
minimised. The set C is also known as the set of center curves, and the intuition behind
restricting the complexity of the center curves is to avoid overfitting.

Driemel et al. [69] were the first to consider (k, ℓ)-center and (k, ℓ)-medians clustering
of trajectories. They showed that both problems are NP-hard when k is part of the in-
put, and provided (1 + ε)-approximation algorithms if the trajectories are one-dimensional.
Buchin et al. [40] showed that (k, ℓ)-center clustering is NP-hard if ℓ is part of the input, and
provided a 3-approximation algorithm for trajectories of any dimension. Buchin et al. [44]
provided a randomised bicriteria-approximation algorithm with approximation factor (1+ε)
for trajectories of any dimension.

For vehicle trajectories, another way to analyse trajectories is to compute the path on
the underlying road network that best represents the trajectory. Alt et al. [11] study this
problem on geometric planar graphs. They provide an O(pq log p) time algorithm, where p
is the complexity of the graph and q is the complexity of the trajectory. Alt et al. [11]’s
algorithm forms the basis of several existing implementations [25, 53, 145, 161, 163]. Brakat-
soulas et al. [25] implement Alt et al. [11]’s algorithm and experimentally compare it to a
linear-time heuristic and an algorithm minimising the weak Fréchet distance. In their ex-
periments, forty-five vehicle trajectories, each with approximately one hundred edges, are
mapped onto an underlying road network with approximately ten thousand edges. Their
experiments conclude that out of the three algorithms, Alt et al. [11]’s provides the best
results but is the slowest. Subsequent papers focus on improving the practical running time
of the algorithm [145, 163].

1.3 Graph dilation

Let G = (V,E) be a graph embedded in a metric space M . For every pair of points u, v ∈ V ,
the weight of the edge (u, v) is equal to the distance dM (u, v) between points u and v in
the metric space M . Let dG(u, v) be the weight of the shortest path between u and v in
the graph G. For any real number t > 1, we call G a t-spanner if dG(u, v) ≤ t · dM (u, v) for
every pair of points u, v ∈ V . The stretch, or dilation, of G is the smallest t for which G is
a t-spanner.

Spanners have been studied extensively in the literature, especially in the geometric
setting. Given a fixed t > 1, a fixed dimension d ≥ 1, and a set of n points V in d-
dimensional Euclidean space, there is a t-spanner on the point set V with O(n) edges. For
a summary of the considerable research on geometric spanners, see the surveys [77, 98, 147]
and the book by Narasimhan and Smid [133]. Spanners in doubling metrics [50, 95, 110]
and in general graphs [19, 135, 154] have also received considerable attention.

Given a set of points V , a spanning tree of V with minimum dilation is known as a
minimum dilation spanning tree [15, 26, 56], a tree spanner [47, 82, 87] or a minimum
maximum-stretch spanning tree [76, 121, 136]. Computing a minimum dilation spanning
tree is NP-hard even if M is an unweighted graph metric [47] or the Euclidean plane [56].
The minimum dilation spanning tree problem is closely related to tree embeddings of general
metrics [17], and has applications to communication networks and distributed systems [136].

The approximability of the minimum dilation spanning tree problem is an open problem

9

stated in surveys and papers [56, 77, 136], and is a major obstacle towards constructing
low dilation graphs with few edges [15, 108]. The minimum spanning tree is an O(n)-
approximation [77], but no better result is known. Only in the special case where M is an
unweighted graph is there an O(log n)-approximation [76].

1.4 Contributions

In this section, we summarise the main contributions in this thesis. Chapters 2, 3 and 4
contribute to analysing trajectory similarity. Chapters 5 and 6 contribute to improving
graph dilation.

Chapter 2: Subtrajectory clustering

Detecting commuting patterns or migration patterns in movement data is an important
problem in computational movement analysis. Given a trajectory, or set of trajectories, this
corresponds to clustering similar subtrajectories.

We study subtrajectory clustering under the continuous and discrete Fréchet distances.
The most relevant theoretical result is by Buchin et al. (2011). They provide, in the contin-
uous case, an O(n5) time algorithm and a 3SUM-hardness lower bound, and in the discrete
case, an O(n3) time algorithm. We show, in the continuous case, an O(n3 log2 n) time
algorithm and a 3OV-hardness lower bound, and in the discrete case, an O(n2 log n) time
algorithm and a quadratic lower bound. Our bounds are almost tight unless SETH fails.

Chapter 3: Map matching queries

Map matching is a common preprocessing step for analysing vehicle trajectories. In the
theory community, the most popular approach for map matching is to compute a path on
the road network that is the most spatially similar to the trajectory, where spatial similarity
is measured using the Fréchet distance. A shortcoming of existing map matching algorithms
under the Fréchet distance is that every time a trajectory is matched, the entire road network
needs to be reprocessed from scratch. An open problem is whether one can preprocess
the road network into a data structure, so that map matching queries can be answered
in sublinear time. We investigate map matching queries under the Fréchet distance. We
provide a negative result for geometric planar graphs, and a positive result for realistic input
graphs. We show that for c-packed graphs, one can construct a data structure of Õ(cp) size
that can answer (1+ε)-approximate map matching queries in Õ(c4q log4 p) time, where Õ(·)
hides lower-order factors and dependence on ε.

Chapter 4: Continuous dynamic time warping

Dynamic Time Warping is a popular similarity measure for time series, where we define
a time series to be a one-dimensional polygonal curve. The drawback of Dynamic Time
Warping is that it is sensitive to the sampling rate of the time series. The Fréchet distance
is an alternative that has gained popularity, however, its drawback is that it is sensitive to
outliers. Continuous Dynamic Time Warping (CDTW) is a recently proposed alternative
that does not exhibit the aforementioned drawbacks. CDTW combines the continuous
nature of the Fréchet distance with the summation of Dynamic Time Warping, resulting in
a similarity measure that is robust to sampling rate and to outliers. Despite its advantages,

10

the major shortcoming of CDTW is that there is no exact algorithm for computing CDTW
in polynomial time. We present the first exact algorithm for computing CDTW of one-
dimensional curves. Our algorithm runs in time O(n5) for a pair of one-dimensional curves,
each with complexity at most n.

Chapters 5 and 6: Improving graph dilation by adding edges

Most of the literature on spanners focuses on building the graph from scratch. We instead
focus on adding edges to improve an existing graph. A major open problem in this field
is: given a graph embedded in a metric space, and a budget of k edges, which k edges do
we add to produce a minimum-dilation graph? The special case where k = 1 has been
studied in the past, but no major breakthroughs have been made for k > 1. We provide the
first positive result, an O(k)-approximation algorithm that runs in O(n3 log n) time. We
also provide a (2 r

√
2 k1/r, 2r)-bicriteria approximation that runs in O(n3 log n) time, for all

r ≥ 1. In other words, if t∗ is the minimum dilation after adding any k edges to a graph,
then our algorithm adds O(k1+1/r) edges to the graph to obtain a dilation of 2rt∗.

1.5 Other projects during PhD

In this section, we summarise three other projects that the author was involved in. These
projects will not be discussed further in the rest of this thesis.

Covering a set of line segments with a few squares

We study three covering problems in the plane. The first is to decide whether a given set of
line segments can be covered by up to k = 4 unit-sized, axis-parallel squares. We give linear
time algorithms for k ≤ 3 and an O(n log n) time algorithm for k = 4. The second is to build
a data structure on a trajectory to efficiently answer whether any query subtrajectory is
coverable by up to three unit-sized axis-parallel squares. For k = 2 and k = 3 we construct
data structures of size O(nα(n) log n), in O(nα(n) log n) time, so that we can test if an
arbitrary subtrajectory can be k-covered in O(log n) time. The third problem is to compute
a longest subtrajectory of a given trajectory that can be covered by up to two unit-sized
axis-parallel squares. We give O(n2α(n) log2 n) time algorithms for k ≤ 2.

This work is joint with Joachim Gudmundsson, Mees van de Kerkhof, André van Renssen,
Frank Staals, Lionov Wiratma. The conference version appeared in Proceedings of the 12th
International Conference on Algorithms and Complexity, CIAC 2021. The journal version
appeared in Theoretical Computer Science, TCS 2022.

Approximating the packedness of polygonal curves

Driemel, Har-Peled and Wenk [68] introduced the concept of c-packed curves as a realistic in-
put model. In the case when c is a constant they gave a near linear time (1+ε)-approximation
algorithm for computing the Fréchet distance between two c-packed polygonal curves. Since
then a number of papers have used the model. We consider the problem of computing the
smallest c for which a given polygonal curve in Rd is c-packed. We present two approxima-
tion algorithms. The first algorithm is a 2-approximation algorithm and runs in O(dn2 log n)
time. In the case d = 2 we develop a faster algorithm that returns a (6 + ε)-approximation
and runs in O((n/ε3)4/3 poly log(n/ε)) time.

11

This work is joint with Joachim Gudmundsson, Yuan Sha. The conference version ap-
peared in Proceedings of the 31st International Symposium on Algorithms and Computation,
ISAAC 2020. The journal version appeared in Computational Geometry, CGTA 2023.

(k, ℓ)-medians clustering of trajectories

We consider the problem of center-based clustering of trajectories. In this setting, the
representative of a cluster is again a trajectory. To obtain a compact representation of the
clusters and to avoid overfitting, we restrict the complexity of the representative trajectories
by a parameter ℓ. This restriction, however, makes discrete distance measures like dynamic
time warping (DTW) less suited. While the Fréchet distance allows for restriction of the
center complexity, it can also be sensitive to outliers. To obtain a trajectory clustering
algorithm that allows restricting center complexity and is more robust to outliers, we propose
the usage of a continuous version of DTW as distance measure, which we call continuous
dynamic time warping (CDTW). Our contribution is twofold. First, to combat the lack of
practical algorithms for CDTW, we develop an approximation algorithm that computes it.
Second, we develop the first clustering algorithm under this distance measure and show a
practical way to compute a center from a set of trajectories and iteratively improve it.

This work is joint with Milutin Brankovic, Kevin Buchin, Koen Klaren, André Nusser,
Aleksandr Popov. The conference version appeared in Proceedings of the 28th International
Conference on Advances in Geographic Information Systems, SIGSPATIAL 2020.

12

Chapter 2

Cubic upper and lower bounds
for subtrajectory clustering
under the continuous Fréchet
distance

2.1 Introduction

The widespread use of the Global Positioning System (GPS) in location aware devices has
led to an abundance of trajectory data. Although collecting and storing this data is cheaper
and easier than ever, this rapid increase of data is making the problem of analysing this
data more demanding. One way of extracting useful information from a large trajectory
data set is to cluster the trajectories into groups of similar trajectories. However, focusing
on clustering entire trajectories can overlook significant patterns that exist only for a small
portion of their lifespan. Consequently, subtrajectory clustering is more appropriate if we
are interested in similar portions of trajectories, rather than entire trajectories.

Subtrajectory clustering has been used to detect similar movement patterns in various
applications. Gudmundsson and Wolle [107] applied it to football analysis. They reported
common movements of the ball, common movements of football players, and correlations
between players in the same team moving together. Buchin et al. [35] applied subtrajectory
clustering to map reconstruction. They reconstructed the location of roads, turns and cross-
ings from urban vehicle trajectories, and the location of hiking trails from hiking trajectories.
Many other applications have been considered in the Data Mining and the Geographic In-
formation Systems communities, including behavioural ecology, computational biology and
traffic analysis [5, 34, 51, 104, 105, 120, 123, 149, 150].

Despite considerable attention across multiple communities, the theoretical aspects of
subtrajectory clustering are not well understood. The most closely related result is by
Buchin et al. [36]. Their algorithm forms the basis of several implementations [34, 35, 104,
105, 107]. Other models of subtrajectory clustering have also been considered [5, 9], which
we will briefly discuss in our related work section.

To measure the similarity between subtrajectories, numerous distance measures have

13

been proposed in the literature [138, 151, 155]. In this chapter, we will use the (discrete and
continuous) Fréchet distance, which is the most common and successful distance measure
used for trajectories, and also the preferred distance measure in the theory community.

Given a trajectory T , the subtrajectory clustering (SC) problem considered by Buchin
et al. [36] is to compute a subtrajectory cluster consisting of m non-overlapping subtrajec-
tories of T , one of which is called the reference subtrajectory. The reference subtrajectory
must have length at least ℓ, and the Fréchet distance between the reference subtrajectory
and any of the other m− 1 subtrajectories is at most d. We formally define the SC problem
in Section 2.2. For SC under the continuous Fréchet distance, Buchin et al. [36] provide
an O(n5) time algorithm and a 3SUM-hardness lower bound. For SC under the discrete
Fréchet distance, they provide an O(n3) time algorithm. Closing the gaps between the two
upper and lower bounds have remained important open problems.

In this chapter, we provide an O(n3 log2 n) time algorithm for SC under the continuous
Fréchet distance, which is a significant improvement over the previous algorithm [36]. Along
the way, we also show an O(n2 log n) time algorithm for SC under the discrete Fréchet
distance.

We argue that our algorithms are essentially optimal. Our lower bounds are conditional
on the Strong Exponential Time Hypothesis (SETH). Our main technical contribution is
an intricate 3OV-hardness lower bound for SC under the continuous Fréchet distance. This
implies that there is no O(n3−ε) time algorithm for any ε > 0, unless SETH fails. We also
show, via a simple reduction, that Bringmann’s [28] SETH-based quadratic lower bound
applies to SC under the discrete Fréchet distance. These lower bounds show that our two
algorithms are almost optimal, unless SETH fails.

Interestingly, our results show that there is a provable separation between the discrete
and continuous Fréchet distance for SC. A similar separation between the discrete and
continuous variants has been shown for computing the weak Fréchet distance between one-
dimensional curves [42], for computing the Fréchet distance between two point sets [45], and
for computing the Fréchet distance between uncertain curves with imprecise inputs [41].

Next, we outline the structure of the chapter. We discuss related work in Section 2.1.1
and preliminaries in Section 2.2. In Section 2.3.1, we provide an overview of the key insights
that lead to our improved algorithms. In Section 2.3.2, we give a quadratic lower bound in
the discrete case, and an overview of the key components of our cubic lower bound in the
continuous case. Detailed descriptions and the full proofs are provided in Section 2.4 for
our algorithm under the discrete Fréchet distance, in Section 2.5 for our algorithm under
the continuous Fréchet distance, and in Section 2.6 for our 3OV reduction.

2.1.1 Related work

Recently, the closely related problem of clustering trajectories has received considerable
attention, especially the (k, ℓ)-center and (k, ℓ)-median clustering problems. In these prob-
lems, entire trajectories are clustered. Given a set G of trajectories, and parameters k and ℓ,
the problem is to find a set C of k trajectories (not necessarily in G), each of complexity at
most ℓ, so that the maximum Fréchet distance (center) or the sum of the Fréchet distances
(median) over all trajectories in G to its closest trajectory in C is minimised. The set C is
also known as the set of center curves, and the intuition behind restricting the complexity
of the center curves is to avoid overfitting.

Driemel et al. [69] were the first to consider (k, ℓ)-center and (k, ℓ)-medians clustering
of trajectories. They showed that both problems are NP-hard when k is part of the in-

14

put, and provided (1 + ε)-approximation algorithms if the trajectories are one-dimensional.
Buchin et al. [40] showed that (k, ℓ)-center clustering is NP-hard if ℓ is part of the input, and
provided a 3-approximation algorithm for trajectories of any dimension. Buchin et al. [44]
provided a randomised bicriteria-approximation algorithm with approximation factor (1+ε)
for trajectories of any dimension.

The idea of computing a set of center curves for trajectory clustering has been extended to
subtrajectory clustering. Agarwal et al. [5] compute center curves (which they call pathlets)
from a set of input trajectories. The key difference is that pathlets are similar to portions
of the input trajectory, rather than the entire trajectories. Each trajectory is then modelled
as a concatenation of pathlets, with possible gaps in between. Agarwal et al. [5] propose
an objective function for finding the optimal set of pathlets that best describe the set of
input trajectories, and they show that finding the optimum value of the objective function
is NP-hard. They provide an O(log n)-approximation algorithm that runs in polynomial
time. Akitaya et al. [9] consider a similar model, except that they compute a set of center
curves with complexity at most ℓ, and the concatenation of center curves covers the input
trajectory without gaps. The objective is to compute the set of center curves of minimum
size. Akitaya et al. [9] show that computing the optimal set of center curves is NP-hard,
and provide a polynomial-time O(log n)-approximation.

Bringmann [28] was the first to apply fine-grained lower bounds, conditioned on the
Strong Exponential Time Hypothesis (SETH), to Fréchet distance problems. Bringmann [28]
showed a quadratic lower bound for computing the (discrete or continuous) Fréchet dis-
tance between trajectories of dimension two or higher. Bringmann and Mulzer [33] ex-
tended the results to also hold for the discrete Fréchet distance of 1-dimensional trajectories.
Buchin et al. [42] further extended the results to hold for the continuous Fréchet distance
of 1-dimensional trajectories. Bringman et al. [32] showed a 4OV-hardness lower bound for
computing the translation invariant discrete Fréchet distance between two trajectories of
dimension two or higher.

2.2 Preliminaries

In this chapter, we study the problem of detecting a movement pattern that occurs fre-
quently in a trajectory, or in a set of trajectories. The problem was first proposed by
Buchin et al. [36]. We retain the existing convention by referring to this problem as the
subtrajectory clustering (SC) problem. In the SC problem, a trajectory T of complexity n
is defined to be a sequence of points v1, v2, . . . , vn in the c-dimensional Euclidean space Rc,
connected by segments.

Problem 1 (SC problem). Given a trajectory T of complexity n, a positive integer m, and
positive real values ℓ and d, decide if there exists a subtrajectory cluster of T such that:

• the cluster consists of one reference subtrajectory and m − 1 other subtrajectories of
T ,

• the reference subtrajectory has Euclidean length at least ℓ,
• the Fréchet distance between the reference subtrajectory and any other subtrajectory
is ≤ d,

• any pair of subtrajectories in the cluster overlap in at most one point.

Buchin et al. [36] show how the case where the input is a set of trajectories can be
reduced to the case when a single trajectory is given as input. See Figure 2.1. Since our two

15

algorithms build upon the algorithm by Buchin et al. [36] we briefly describe their algorithm.
First, we discuss their algorithm for the discrete Fréchet distance, then for the continuous.

Figure 2.1: A subtrajectory cluster, for a single trajectory (left), or for a set of trajectories
(right).

The first step is to transform SC into a problem in the discrete free space diagram.
Let Fd(T, T) be the discrete Fréchet free space diagram between two copies of T and with
distance value d. Suppose the conditions of SC hold for some reference subtrajectory starting
at vertex s and ending at vertex t. Let ls and lt be the vertical lines in Fd(T, T) representing
s and t. The conditions of SC state that there are m − 1 other subtrajectories so that the
Fréchet distance between the reference subtrajectory and each of the other subtrajectories
is at most d. Therefore, the SC problem reduces to deciding if there are vertical lines ls
and lt so that the reference subtrajectory from s to t has length at least ℓ, and there are
m − 1 monotone paths in Fd(T, T) starting at ls and ending at lt. Moreover, since these
m− 1 subtrajectories overlap with each other in at most one point, the y-coordinates of our
monotone paths overlap in at most one point. Similarly, the y-coordinates of our monotone
paths overlap with the y-interval from s to t in at most one point. See Figure 2.2, left.

ls lt
ls lt

s

t

s

t

Figure 2.2: An example of three monotone paths from ls to lt in the discrete (left) and
continuous (right) free space diagrams. The monotone paths overlap with each other in at
most one point, and overlap with the y-interval from s to t in at most one point.

The second step is to iterate over all reference subtrajectories with length at least ℓ.
Buchin et al. [36] show that, for SC under the discrete Fréchet distance, there are only O(n)
candidate reference subtrajectories to consider, and of these, no reference subtrajectory is
a subtrajectory of any other reference subtrajectory.

The third step is, given a candidate subtrajectory starting at s and ending at t, deciding
whether there is a subtrajectory cluster satisfying the conditions of SC with this candidate
subtrajectory as its reference subtrajectory. The third step is an important subproblem
in both the algorithm of Buchin et al. [36] and our algorithm. We state the subproblem

16

formally.

Subproblem 2. Given a trajectory T of complexity n, a positive integer m, a positive real
value d, and a reference subtrajectory of T starting at vertex s and ending at vertex t, let
ls and lt be two vertical lines in Fd(T, T) representing the vertices s and t. Decide if there
exist:

• m− 1 distinct monotone paths starting at ls and ending at lt, such that
• the y-coordinate of any two monotone paths overlap in at most one point, and
• the y-coordinate of any monotone path overlaps the y-interval from s to t in at most
one point.

Buchin et al. [36] solve each instance of Subproblem 2 individually in O(n +ml) time,
where l is the maximum complexity of the reference subtrajectory. As there are O(n)
reference subtrajectories, there are O(n) subproblems to solve. Therefore, the total running
time of the algorithm is O(n2 + nml) which in the worst case is O(n3).

Next, we describe the algorithm of Buchin et al. [36] under the continuous Fréchet
distance. The first step is exactly the same as the discrete case, except that we substitute
the discrete free space diagram with the continuous free space diagram. See Figure 2.2,
right.

The second step is significantly different between the discrete and continuous case. In
the continuous case, the starting point s and ending point t may be any arbitrary points
on the trajectory T , not just vertices of T . Buchin et al. [36] claim that there are O(n2)
critical points in the free space diagram, and the vertical line ls representing the starting
point of the reference subtrajectory must pass through one of these critical points. We show
in Section 2.3.2 that there are Ω(n3) critical points, and we show in Lemma 34 that there
are O(n3) critical points. Hence, in the general case, there are Θ(n3) possible reference
subtrajectories to consider.

The third step is to solve Subproblem 2. Instead of ls and lt representing vertices that are
the starting and ending points of the reference subtrajectories, we consider ls and lt repre-
senting arbitrary points that are the starting and ending points. Buchin et al. [36] solve each
instance of Subproblem 2 in O(nm) time. As there are O(n3) critical points and therefore
O(n3) reference subtrajectories to consider, the overall running time of Buchin et al.’s [36]
algorithm is O(n4m), which in the worst case is O(n5).

2.3 Technical Overview

Our main technical contributions in this chapter are cubic upper and lower bounds for
Subtrajectory Clustering (SC) under the continuous Fréchet distance.

As a stepping stone towards our cubic upper bound, we study two special cases. The
first special case is the SC problem under the discrete Fréchet distance. The second special
case is the SC problem under the continuous Fréchet distance, but under the restriction
that the reference subtrajectory must be a vertex-to-vertex subtrajectory. The final case
is the general case. In Section 2.3.1, we provide an overview of our key insights in each
case. Detailed descriptions of the algorithms and their analyses can be found in Sections 2.4
and 2.5.

For our lower bounds, assuming SETH, we show in Section 2.3.2 a simple reduction that
proves that there is no O(n2−ε) algorithm for SC for any ε > 0 under the discrete Fréchet
distance. Then, we show that there is no O(n3−ε) algorithm for SC for ε > 0 under the

17

continuous Fréchet distance. We provide an overview of our reduction from 3OV to SC in
Section 2.3.2, and a detailed analysis of our construction can be found in Section 2.6.

2.3.1 Algorithm Overview

Our algorithms, both in the special and general cases, build on the work of Buchin et al. [36].
We make several key insights that lead to improvements over previous work. In this section,
we present our main technical contributions, and defer relevant proofs to Sections 2.4 and 2.5.

Key Insight 1: Reusing monotone paths between different subproblems

As previously stated, the algorithm of Buchin et al. [36] divides SC into one subproblem
per candidate reference subtrajectory. For the discrete Fréchet distance, there are O(n)
candidate reference subtrajectories, so SC is divided into O(n) instances of Subproblem 2.
Buchin et al. [36] showed that each instance of Subproblem 2 can be solved in O(n+ml) ≈
O(n2) time individually, so all O(n) subproblems can be solved in O(n2 + nml) ≈ O(n3)
time.

Our first key insight is that we need not handle each subproblem individually. If we
can reuse monotone paths between the O(n) subproblems, this could significantly speed
up the algorithm. For example, suppose that a subproblem starts at vertex s and ends at
vertex t, whereas an adjacent subproblem starts at vertex s + 1 and ends at vertex t + 1.
Suppose that we solve the subproblem (s, t) first, and we solve the subproblem (s+1, t+1)
next. Our key insight is to reuse the monotone paths that we computed in subproblem
(s, t) to guide our search in subproblem (s+ 1, t+ 1). In fact, since almost all grid cells in
subproblem (s+ 1, t+ 1) have already appeared in the subproblem (s, t), the speedup from
using previously computed paths could be quite large. See Figure 2.3, left.

ls ltls+1 lt+1 ls lt

s

tt

s

s+ 1

t+ 1

Figure 2.3: Monotone paths from ls to lt that are similar to monotone paths from ls+1 to
lt+1 (left). The link-cut tree data structure retaining monotone paths from previous values
of s and t (right).

In short, our approach is as follows. We sort the O(n) subproblems by the x-coordinates
of their vertical lines ls and lt. We consider those with the smallest x-coordinates first.
For each subproblem, we perform a greedy depth first search to find m− 1 non-overlapping
monotone paths. Our search algorithm is very similar to and has the same running time as
the original search algorithm by Buchin et al. [36].

18

While performing our greedy depth first search, we maintain a dynamic tree data struc-
ture to store our monotone paths as we compute them. In particular, we use a link-cut
tree [146], to store a set of rooted trees. The invariant maintained by our data structure is
that every node has a monotone path to the root of its link-cut tree, as shown in Figure 2.3,
right. The link-cut data structure is maintained via edge insertions and deletions, which
require O(log n) time per update. Using this data structure, we can significantly reuse the
monotone paths between subproblems. Whenever we visit a node that has been considered
by a previous subproblem, we can simply query for its root in the link-cut data structure,
without needing to recompute the monotone path.

In Section 2.4.1, we provide details of our greedy depth first search. In Section 2.4.2 we
provide details of how we apply the link-cut tree data structure to our greedy depth first
search. We then use amortised analysis to bound the running time. Putting this together
yields:

Theorem 3. There is an O(n2 log n) time algorithm for SC under the discrete Fréchet
distance.

Key Insight 2: Transforming continuous free space reachability into graph reach-
ability

As we transition from the discrete case of SC to the continuous case, the free space diagram
becomes significantly more complex. In particular, reachability in continuous free space is
calculated in a fundamentally different way to reachability in the discrete free space. The
most common approach for computing the continuous Fréchet distance is to compute the
reachable space. Reachable space is defined to be the subset of free space that is reachable
via monotone paths from the bottom left corner, as shown in Figure 2.4, left. For example,
this is the approach used by Alt and Godau [12] in their original algorithm, and also by
Buchin et al. [37] in their improved algorithm.

Figure 2.4: The reachable free space from the bottom left corner, shaded in green (left).
The directed graph G = (V,E) where there is a path in the graph if and only if there is a
monotone path in the continuous free space diagram (right).

Maintaining the reachable space is fundamentally incompatible with our algorithm. The
reason is that the reachable space only considers monotone paths that start at the bottom
left corner of the free space diagram. In our problem, the starting point of our monotone
path constantly changes, and the reachable space for one starting point may not be used
for computing monotone paths from any other starting point.

We propose an alternative to computing the reachable space in the continuous free space
diagram. A critical point in the continuous free space diagram is the intersection of the
boundary of a cell with the boundary of the free space for that cell (ellipse), or is a cell
corner. We build a directed graph G = (V,E) of size O(n2 log n), where V is the set of

19

O(n2) critical points in the free space diagram, so that there is a monotone path between
two points in the free space diagram if and only if there is a path between the same two
points in the directed graph G. See Figure 2.4, right. Note that reachability in this directed
graph works for any pair of critical points, not just those where the starting point is the
bottom left corner.

In Section 2.5.1, we establish the equivalence between continuous free space reachability
and graph reachability in G. In Section 2.5.2, we combine this with our first key insight to
obtain an O(n2 log2 n) time algorithm for SC under the continuous Fréchet distance, in the
special case where the reference subtrajectory is vertex-to-vertex.

Key Insight 3: Handling additional critical points and reference subtrajectories

In all special cases considered so far, there are O(n) candidate reference subtrajectories, and
hence O(n) instances of Subproblem 2. However, in the continuous case where the reference
subtrajectory may be any arbitrary subtrajectory, there are significantly more candidate
reference subtrajectories to consider. We call a potential starting point for the reference
subtrajectory either an internal or external critical point. The difference is that an internal
critical point lies in the interior of a free space cell, whereas an external critical point lies
on the boundary of a free space cell.

We show that there are O(n3) internal critical points, and therefore O(n3) instances
of Subproblem 2 in the general case. The number of internal critical points is dominated
by critical points of the following type: a point that is on the boundary between free and
non-free space, and shares a y-coordinate with an external critical point. See Figure 2.5,
left. Surprisingly, these O(n3) internal critical points are necessary, and form one of the key
components of our lower bound.

ls lt
ls lt

t

s

Figure 2.5: An example of an internal critical point, marked with a cross (left). The
overlapping y-intervals maintained by the dynamic monotone interval data structure (right).

Given this increase in critical points and reference subtrajectories in the worst case, if
we were to näıvely apply our first two key insights, we would obtain an O(n3m) time al-
gorithm for the general case. The difference is that, previously, our algorithm’s running
times were dominated by maintaining the link-cut tree data structure over our set of crit-
ical points. However, now that there are significantly more reference subtrajectories, the
relatively simple process of enumerating up to m − 1 non-overlapping monotone paths per
reference subtrajectory is the new bottleneck. To handle this bottleneck, we require another
data structure. The dynamic monotone interval data structure [90] reports whether there
exist m− 1 non-overlapping y-intervals, which represent our m− 1 non-overlapping mono-

20

tone paths, without explicitly computing them. See Figure 2.5, right. Putting this together
with our first two key insights we obtain the following theorem.

Theorem 4. There is an O(n3 log2 n) time algorithm for SC under the continuous Fréchet
distance.

2.3.2 Lower Bound Overview

Our aim is to show that the algorithms in Theorems 3 and 4 are essentially optimal, assuming
SETH. We start by showing that there is no strongly subquadratic time algorithm for SC
under the discrete Fréchet distance. We achieve this by reducing from Bringmann’s [28]
lower bound for computing the discrete Fréchet distance.

Theorem 5. There is no O(n2−ε) time algorithm for SC under the discrete Fréchet distance,
for any ε > 0, unless SETH fails.

Proof. Assuming SETH, Bringmann [28] constructs a pair of trajectories, T1 and T2, so that
deciding whether the discrete Fréchet distance between T1 and T2 is at most one has no
O(n2−ε) time algorithm for any ε > 0. Let the trajectories T1 and T2 lie within a ball of
radius r centered at the origin, and let ℓ be the sum of the lengths of the trajectories T1

and T2. Let λ = ℓ + 2r, and place point A at (−4λ, 0) and point B at (4λ, 0). Construct
the trajectory T = A ◦T1 ◦B ◦A ◦T2 ◦B. We will show that there is a subtrajectory cluster
of T with parameters m = 2, ℓ = 8λ and d = 1 if and only if the discrete Fréchet distance
between T1 and T2 is at most one.

Our key observation is that the subtrajectories A ◦ T1 ◦ B and A ◦ T2 ◦ B have discrete
Fréchet distance of at most one if and only if T1 and T2 have a discrete Fréchet distance of
at most one.

For the if direction, the pair of subtrajectories A◦T1 ◦B and A◦T2 ◦B each have length
at least 8λ, and have discrete Fréchet distance at most one from one another.

For the only if direction, suppose there is a subtrajectory cluster of size two. Note that
subtrajectory A ◦ T1, or any other subtrajectory that contains at most one copy of A or B,
will have length strictly less than 8λ. Therefore, A and B must occur in both subtrajectories
in the cluster. The corresponding A’s and B’s must match to one another for the discrete
Fréchet distance to be at most one, so they must be in the same order in their respective
subtrajectory. Without loss of generality, the first subtrajectory contains A ◦T1 ◦B and the
second subtrajectory contains A ◦ T2 ◦ B. So the discrete Fréchet distance between T1 and
T2 must be at most one, as required.

As there is no O(n2−ε) time algorithm for deciding if the discrete Fréchet distance is
at most one for any ε > 0, there is no O(n2−ε) time algorithm for SC under the discrete
Fréchet distance.

Next, we show that there is no strongly subcubic time algorithm for SC under the
continuous Fréchet distance. We achieve this by reducing the three orthogonal vectors
problem (3OV) to SC.

Problem 6 (3OV). We are given three sets of vectors X = {X1, X2, . . . , Xn}, Y =
{Y1, Y2, . . . , Yn} and Z = {Z1, Z2, . . . , Zn}. For 1 ≤ i, j, k ≤ n, each of the vectors Xi,
Yj and Zk are binary vectors of length W . Our problem is to decide whether there exists a
triple of integers 1 ≤ i, j, k ≤ n such that Xi, Yj and Zk are orthogonal. The three vectors
are orthogonal if Xi[h] · Yj [h] · Zk[h] = 0 for all 1 ≤ h ≤W .

21

We employ a three step process in our reduction in Section 2.6. First, given a 3OV
instance (X ,Y,Z), we construct in O(nW) time an SC instance (T,m, ℓ, d) of complexity
O(nW). Second, for this instance, we consider the free space diagram Fd(T, T) and prove
various properties of it. Third, we use the properties of Fd(T, T) to prove that (X ,Y,Z) is
a YES instance if and only if (T,m, ℓ, d) is a YES instance.

Our reduction implies that there is no O(n3−ε) time algorithm for SC for any ε > 0,
unless SETH fails. If such an algorithm for SC were to exist, then by our reduction we would
obtain an O(n3−εW 3−ε) time algorithm for 3OV. But under the Strong Exponential Time
Hypothesis (SETH), there is no O(n3−εWO(1)) time algorithm for 3OV, for any ε > 0 [165].

Next, we present the three key components of our reduction. For the full reduction see
Section 2.6.

Key Component 1: Diamonds in continuous free space

As a stepping stone towards the full reduction, we construct a trajectory T so that Fd(T, T)
has Θ(n3) internal critical points. This weaker result shows that the analysis of our algorithm
in Section 2.5.3 is essentially tight, up to polylogarithmic factors.

To obtain these Θ(n3) internal critical points, we introduce the first key component
of our reduction. It is a method to generate two curves T1 and T2, so that Fd(T2, T1)
consists predominantly of free space, with small regions of diamond-shaped non-free space.
By varying the positions of the vertices on T1 and T2, we can change both the position and
sizes of these small diamonds in Fd(T2, T1).

To construct T1 and T2, we use the polar coordinates in the complex plane. Recall
that r cis θ has distance r from the origin and is at an anticlockwise angle of θ from the
positive real axis. The vertices of T1 will be on the ball of radius r centered at the origin,
as illustrated in Figure 2.6, left. The vertices of T2 will be on the ball of radius r′ centered
at the origin, where r′ > 10r. For now, define ϕ = π

2 , although a much smaller value of ϕ
will be used in the full reduction.

Let O be the origin. Place the vertices A, B, C, D, respectively, at r cis 0, r cisϕ,
r cis(2ϕ), and r cis(3ϕ). Place the vertices A+, B+, C+, D+, respectively, at r′ cisπ,
r′ cis(π + ϕ), r′ cis(π + 2ϕ), and r′ cis(π + 3ϕ). Note that A and A+ are diametrically
opposite from one another, but on differently sized circles. Let || · || denote the Euclidean
norm. Define d = ||A+B||. Then A+ is within distance d of B, C and D, but not within
distance d of A. Similarly, A is within distance d of B+, C+ and D+, but not within
distance d of A+. We call the pairs (A+, A), (B+, B), (C+, C) and (D+, D) antipodes.

A+ O B+ O C+ O D+

A

B

C

D

O A

B

C

D

B+

C+

D+

A+

Figure 2.6: The vertices of T1 and T2 (left), and the free space diagram Fd(T2, T1) (right).

Our key insight is that, if the only vertices that appear in T1 are A, B, C and D, and
the only vertices that appear in T2 are A+, B+, C+ and D+, then the free space diagram

22

Fd(T2, T1) will consist predominantly of free space, with small regions of non-free space.
The centers of the regions of non-free space will have x-coordinate v+ and y-coordinate v,
where (v+, v) are antipodes. Section 2.6.3 is dedicated to properties of antipodal pairs, and
Section 2.6.5 is dedicated to how these small regions associated with the antipodes fit in
with the rest of the free space diagram.

Let A ◦ B ◦ C ◦D denote the trajectory formed by joining, with straight segments, the
vertices A, B, C, and D in order. Define:

T1 = A ◦B ◦ C ◦D
T2 = A+ ◦O ◦B+ ◦O ◦ C+ ◦O ◦D+.

The vertices of T1 and T2 and the free space diagram Fd(T2, T1) are shown in Figure 2.6,
left. It is not too difficult to see that by swapping the order of the vertices in T2, or by
inserting additional vertices into T2, we can change the placements of our diamonds, or
partial diamonds, in the free space in Figure 2.6, right.

We would also like to vary the sizes of our diamonds. To do this, we introduce points
that are approximately distance r′ from the origin. Let B− be on BB+ so that ||BB−|| = d,
that is, B− = (d− r) cisϕ. Similarly, define C− = (d− r) cis(2ϕ). Next, let B+

1 , B+
2 , . . . , B+

n

be points on segment B−B+ so that B−, B+
1 , . . . , B+

n , B+ are evenly spaced. Then the
antipodal pair (B+

i , B) would generate a different sized diamond to the antipodal pair
(B+, B). This is because ||B+

i B|| < d, so the non-free space it generates will be smaller.
We are ready to construct the trajectory T with n3 internal critical points. Define

T1 = A ◦B ◦ C ◦D,
T2 = ⃝1≤i≤n(B

+
i ◦O) ◦⃝1≤i≤n(C

+ ◦O),

and set T =⃝1≤i≤n(T1) ◦ T2. Note that T has linear complexity.

A

B

C

D

B+
1 O B+

2 O B+ O OC+ O OC+ C+

Figure 2.7: A free space diagram Fd(T2, T1) with 2n2 critical points.

In Figure 2.7, on the left, we have the diamonds associated with the antipodal pairs
(B+

i , B). On the right, we have the diamonds associated with the antipodal pairs (C+, C).
Each diamond on the left generates an external critical point for its topmost point (marked
with dots). Moreover, all these external critical points have different y-coordinates. Each of
these distinct y-coordinates generates two internal critical points on each diamond on the
right (marked with crosses). Therefore, Fd(T2, T1) has 2n2 internal critical points. Since
Fd(T, T) contains n copies of Fd(T2, T1) in it, we have that Fd(T, T) contains Θ(n3) critical
points, as required.

23

Key Component 2: Combining diamonds to form gadgets

Recall that in our first component, we generate pairs of curves T1 and T2, so that the only
regions of non-free space in Fd(T2, T1) are small diamonds. We can change T1 and T2 to vary
the number, positions and sizes of the diamonds in Fd(T2, T1). Our second key component
is to position the diamonds in a way that encodes boolean formulas. To help simplify the
description of these boolean formulas, we only consider the two sets (X ,Z), making the
input a 2OV instance for now.

Our first gadget is an OR gadget and checks if one of two booleans is zero. Our second
gadget is an AND gadget and checks if a pair of vectors are orthogonal.

Our OR gadget receives as input two booleans, X and Z, and constructs a pair of curves
T1 and T2. Let s and t be the starting and ending points of T2, and ls and lt be the vertical
lines corresponding to s and t. The trajectories T1 and T2 are constructed in such a way
that, if X · Z = 0 then there is a monotone path from ls to lt, otherwise, there is no such
monotone path.

We use the same definitions of vertices as in the first key component. The pairs (A+, A),
(B+, B), (C+, C) and (D+, D) are antipodes. Define B+

X = O if X = 0, and B+
X = B+

otherwise. Similarly, define D+
Z = O if Y = 0, and D+

Y = D+ otherwise.
Now we are ready to construct the curves T1 and T2.

T1 = A ◦B ◦ C ◦D
T2 = B+ ◦O ◦ C+ ◦O ◦D+ ◦O

◦A+ ◦O ◦B+
X ◦O ◦ C+ ◦O ◦D+

Z .

A

B

C

D

B+ O O O O O OC+ D+ A+ B+
X C+ D+

Z

Figure 2.8: The free space diagram Fd(T2, T1) for the OR gadget. The red diamond in
column B+

X disappears if X = 0, and the blue diamond in column D+
Z disappears if Z = 0.

The free space diagram Fd(T2, T1) is shown in Figure 2.8. The red diamond in column
B+

X disappears if X = 0, whereas the blue diamond in column D+
Z disappears if Z = 0. If

either one is zero, there is a gap for there to be a monotone path from ls to lt. Otherwise,
there is no gap, and no monotone path. This completes the description of the OR gadget.

Our AND gadget receives as input a pair of binary vectors X = (X[1], X[2], . . . , X[W])
and Z = (Z[1], Z[2], . . . , Z[W]), and constructs a pair of trajectories T1 and T2. Let s and t
be the starting and ending points of T2, and let ls and lt be the vertical lines corresponding
to s and t. If X and Z are orthogonal, in other words, if X[h] ·Z[h] = 0 for all 1 ≤ h ≤W ,
then the maximum number of monotone paths from ls to lt is W . If X and Z are not
orthogonal, in other words, if X[h] · Z[h] = 1 for some 1 ≤ h ≤ W , then the maximum
number of monotone paths from ls to lt is W − 1. Let r be a positive real and r′ > 10r.
Now, let ϕ = 2π

2W+4 , let d = ||r cisϕ− r′ cisϕ|| and, let ε = r′ + r − d.

24

B5,h

B1,hB3,h

D

B+
2,h

B+
1,h

D+

B+
3,h

B+
5,h

OA+ B4,h A B+
4,h

C+
1

C+
0

Ch

B2,h

Figure 2.9: Vertices of T1 and T2, for W = 2.

Next, we define the vertices of T1 and T2.

A = r cis 0
Bu,h = r cis(u · ϕ), if u ̸= 2h
Bu,h = (r − 2

3ε) cis(u · ϕ), if u = 2h
Ch = r cis((2W + 2) · ϕ), if Z[h] = 1
Ch = (r − 2

3ε) cis((2W + 2) · ϕ), if Z[h] = 0
D = r cis((2W + 3) · ϕ)
O = 0 cis 0

A+ = r′ cisπ
B+

u,0 = r′ cis(π + u · ϕ)
B+

u,1 = r′ cis(π + u · ϕ), if u is odd

B+
u,1 = r′ cis(π + u · ϕ), if u is even and X[u2] = 1

B+
u,1 = (r′ − 2

3ε) cis(π + u · ϕ)
if u is even and X[u2] = 0

C+
0 = r′ cis(π + (2W + 2) · ϕ)

C+
1 = (r′ − 2

3ε) cis(π + (2W + 2) · ϕ)
D+ = r′ cis(π + (2W + 3) · ϕ)

Now we can construct T1 and T2.

T1 = ⃝1≤h≤W

(
A ◦⃝1≤u≤2W+1(Bu,h) ◦ Ch ◦D

)
◦A

T2 = ⃝1≤u≤2W+1(B
+
u,0 ◦O) ◦ C+

0 ◦O
◦A ◦O ◦⃝1≤u≤2W+1(B

+
u,1 ◦O) ◦ C+

1 ◦O
◦A ◦O ◦⃝1≤u≤2W+1(B

+
u,0 ◦O) ◦D+ ◦O ◦A ◦O ◦ C+

0 ◦O ◦D ◦O

B+
1,0B

+
2,0B

+
3,0B

+
4,0B

+
5,0C

+
0 A+ B+

1,1B
+
2,1B

+
3,1B

+
4,1B

+
5,1C

+
1 B+

1,0B
+
2,0B

+
3,0B

+
4,0B

+
5,0D

+ A+ C+
0 D

A

B1,1

B2,1

B3,1

B4,1

B5,1

C1

D

A

C2

D

B1,2

B2,2

B3,2

B4,2

B5,2

A

A+

Figure 2.10: The free space diagram Fd(T2, T1) for the AND gadget, for W = 2.

The free space diagram Fd(T2, T1) is shown in Figure 2.10, for W = 2. The labels for the
repeated O’s are omitted from the x-axis of Fd(T2, T1). For W = 2, as we can see, there are
four red diamonds, in columns B+

2,1 and B+
4,1, and six blue diamonds, in columns C+

0 , C+
1

and C+
0 . The red diamond in column B+

2,1 and row B2,1 disappears if and only if X[1] = 0.

The red diamond in column B+
4,2 and row B4,2 disappears if and only if X[2] = 0. The other

red diamonds may shrink, but do not completely disappear. The blue diamond in column

25

C+
1 and row C1 disappears if and only if Z[1] = 0. The blue diamond in column C+

1 and
row C2 disappears if and only if Z[2] = 0. The other blue diamonds may shrink, but do not
completely disappear.

The bottom half of the free space diagram is essentially an OR gadget for X[0] and Z[0],
and the top half is essentially an OR gadget for X[1] and Z[1]. In Figure 2.11 left, the
vectors X and Z are orthogonal. In this case, there are two monotone paths, one for the
OR gadget X[0] · Z[0] = 0 and one for the OR gadget X[1] · Z[1] = 0. In Figure 2.11 right,
the vectors X and Z are not orthogonal. In this case, there is a maximum of one monotone
path, and this monotone path passes through the “gap” between the two OR gadgets.

B+
1,0B

+
2,0B

+
3,0B

+
4,0B

+
5,0C

+
0 A B+

1,1B
+
2,1B

+
3,1B

+
4,1B

+
5,1C

+
1 A B+

1,0B
+
2,0B

+
3,0B

+
4,0B

+
5,0D

+ A+ C+
0 D

A

B1,1

B2,1

B3,1

B4,1

B5,1

C1

D

A

C2

D

B1,2

B2,2

B3,2

B4,2

B5,2

A

B+
1,0B

+
2,0B

+
3,0B

+
4,0B

+
5,0C

+
0 A B+

1,1B
+
2,1B

+
3,1B

+
4,1B

+
5,1C

+
1 A B+

1,0B
+
2,0B

+
3,0B

+
4,0B

+
5,0D

+ A+ C+
0 D

A

B1,1

B2,1

B3,1

B4,1

B5,1

C1

D

A

C2

D

B1,2

B2,2

B3,2

B4,2

B5,2

A

Figure 2.11: For W = 2, if X and Z are orthogonal, there are W paths (left), whereas if X
and Z are not orthogonal, there are W − 1 paths (right).

For general values of W , the AND gadget is a stack of OR gadgets for X[h] and Z[h] for
1 ≤ h ≤ W . If X[h] · Z[h] = 0 for all 1 ≤ h ≤ W , we obtain W monotone paths, one per
OR gadget. Otherwise, we obtain a maximum of W − 1 monotone paths, one for each gap
between two consecutive OR gadgets. This completes the description of the AND gadget.

Key Component 3: Combining gadgets to form the full reduction

The gadgets in our full construction are inspired by the gadgets in our second key component.
However, the gadgets in our full construction are more sophisticated in two important ways.

First, in the gadgets constructed so far, we only consider a single pair of vertical lines,
that is, the pair of vertical lines that correspond to the start and end points of T2. In our
full construction, we consider all vertical lines that start and end at internal critical points.
In particular, we consider n2 pairs of vertical lines that correspond to a pair of integers (i, j)
where 1 ≤ i, j ≤ n. Each of these vertical lines passes through nW internal critical points.
The nW internal critical points correspond to pairs of integers (k, h) where 1 ≤ k ≤ n and
1 ≤ h ≤W .

Second, in the gadgets we have constructed so far, we only consider two sets of binary
vectors. In our full construction, we consider three sets of binary vectors, X , Y and Z.

With these two key differences in mind, we can describe the gadgets in our full construc-
tion. We receive as input a 3OV instance, in other words, we are given three sets X , Y and
Z, each containing n binary vectors of length W .

First, we describe the OR gadget that appears in our full construction. There will be
nW copies of the OR gadget. Given 1 ≤ k ≤ n and 1 ≤ h ≤ W , the OR gadget for the

26

pair (k, h) satisfies the following property for all 1 ≤ i, j ≤ n: there are two monotone paths
from ls to lt if Xi[h] · Yj [h] · Zk[h] = 0, whereas there is a maximum of one monotone path
from ls to lt if Xi[h] · Yj [h] · Zk[h] = 1, where ls and lt are the vertical lines corresponding
to the pair (i, j).

In Figure 2.12, there is one monotone path from ls to lt, and this is the only monotone
path in the OR gadget in the case that Xi[h] · Yj [h] · Zk[h] = 1. On the other hand, if
Xi[h] · Yj [h] · Zk[h] = 0, then there are two monotone paths in the OR gadget.

Ah,1
G

Ah,2

Ah,3

Ah,4

Ah,5

Bk,h

C
D
C
D
E
Fh,1

Fh,2

Fh,3

Fh,4

Fh,5

G
Ah+1,1

ls lt

Figure 2.12: The OR gadget for booleans Xi[h], Yj [h] and Zk[h].

In Figure 2.13, we show the two monotone paths from ls to lt in three separate cases: for
Xi[h] = 0, Yj [h] = 0 and Zk[h] = 0. We briefly describe the behaviour in these three cases.
If Xi[h] = 0, a red diamond in the bottom right disappears and one of the two monotone
paths passes through this gap. If Yj [h] = 0, a green diamond disappears and one of the two
monotone paths passes through this gap. Finally, if Zk[h] = 0, all blue diamonds shrink in
size, allowing the lower monotone path to have a much smaller maximum y-coordinate.

It is worth noting the connection between these OR gadgets and internal critical points.
In all three cases, the starting point of the first monotone path is an internal critical point.
If Yj [h] = 0, all starting and ending points of the two monotone paths are either internal
critical points, or share a y-coordinate with an internal critical point.

Similarly to the AND gadget in the second key component, we stack W copies of the OR
gadget on top of each other. Each stack of OR gadgets checks if a triple of vectors (Xi, Yj , Zk)
are orthogonal. There are 2W + 1 monotone paths from ls to lt if Xi[h] · Yj [h] · Zk[h] = 0
for all 1 ≤ h ≤ W , whereas there are 2W paths from ls to lt if Xi[h] · Yj [h] · Zk[h] = 1 for
some 1 ≤ h ≤W .

27

Ah,1
G

Ah,2

Ah,3

Ah,4

Ah,5

Bk,h

C
D
C
D
E
Fh,1

Fh,2

Fh,3

Fh,4

Fh,5

G
Ah+1,1

ls lt

Ah,1
G

Ah,2

Ah,3

Ah,4

Ah,5

Bk,h

C
D
C
D
E
Fh,1

Fh,2

Fh,3

Fh,4

Fh,5

G
Ah+1,1

ls lt

Ah,1
G

Ah,2

Ah,3

Ah,4

Ah,5

Bk,h

C
D
C
D
E
Fh,1

Fh,2

Fh,3

Fh,4

Fh,5

G
Ah+1,1

ls lt

Figure 2.13: The two monotone paths from ls to lt in the cases where Xi[h] = 0, Yj [h] = 0
and Zk[h] = 0, respectively

28

Finally, we combine these AND gadgets to form the full construction. We give a high
level overview. We stack, one on top of another, n copies of the AND gadgets. We add non-
free space between consecutive AND gadgets, so that monotone paths in one AND gadget
cannot interact with monotone paths in another AND gadget. We let the two curves that
generate this free space be T1 and T2. We join T1 and T2 end to end to form the final curve
and set m = 2nW + 2. The intuition behind setting m = 2nW + 2 is that, as there are
n copies of the AND gadget, if there are m − 1 monotone paths, then by the pigeonhole
principle, we must have one AND gadget with 2W + 1 monotone paths, which implies that
Xi, Yj and Zk are orthogonal for some triple (i, j, k). Otherwise, all AND gadgets have 2W
monotone paths, so for all triples (i, j, k), there is some h so that Xi[h] · Yj [h] · Zk[h] = 1.
Putting this all together yields the following theorem.

Theorem 7. There is no O(n3−ε) time algorithm for SC under the continuous Fréchet
distance, for any ε > 0, unless SETH fails.

2.4 Discrete Fréchet Distance

The main theorem that we will prove in this section is:

Theorem 3. There is an O(n2 log n) time algorithm for SC under the discrete Fréchet
distance.

We will be using the discrete free space diagram extensively in our algorithm. Recall
that for the discrete Fréchet distance, the free space diagram Fd(T, T) consists of n2 grid
points. A grid point (x, y) is free if vertices x and y of the trajectory T are within distance d
of one another. A monotone path is a sequence of free grid points where a grid point (x, y)
is followed by (x+ 1, y), (x, y + 1), or (x+ 1, y + 1).

In Section 2.4.1, we show how to solve Subproblem 2 in O(nl) time, where l = t − s,
under the discrete Fréchet distance. Then, in Section 2.4.2, we show how to extend this to
an algorithm that solves SC in O(n2 log n) time, under the discrete Fréchet distance.

2.4.1 Subproblem 2 under the discrete Fréchet distance

We inductively define our algorithm for Subproblem 2 under the discrete Fréchet distance.
In the base case, we compute the monotone path P1 from ls to lt that minimises its max-
imum y-coordinate. In the inductive case, we compute the monotone path Pi from ls to
lt that minimises its maximum y-coordinate, under the condition that Pi does not over-
lap in y-coordinate with P1, P2, . . . , Pi−1 or the y-interval corresponding to the reference
subtrajectory.

To compute each of the paths Pi, we begin by picking its starting point of ls. Initially,
we mark all free grid points as valid, and all non-free grid points as invalid. For i = 1, we
pick the lowest valid grid point on ls as the initial starting point. For i > 1, we pick the
lowest valid grid point on ls that has y-coordinate at least the maximum y-coordinate on
Pi−1. From this initial starting point we begin a greedy depth first search to compute Pi.

Any grid point has up to three neighbouring grid points to explore: (x+1, y), (x+1, y+1)
and (x, y + 1), as long as these grid points are valid. Similar to the standard depth first
search, we explore each branch of the search tree as far as possible first before backtracking.
The greedy aspect of our depth first search is to first explore the neighbour (x+ 1, y), then
(x + 1, y + 1), and finally (x, y + 1). The intuition is that we would like to minimise the

29

y-coordinate of our search. If we are forced to backtrack, i.e. if all neighbours lead to dead
ends, we mark the grid point as invalid and backtrack to its original parent. This is the
only way a free grid point becomes invalid. Once a grid point is marked as invalid, it is
never reverted back to valid, and can never be used in any monotone paths. In Figure 2.14,
backtracking occurred on the red paths, so these cells will be marked as invalid.

ls lt

P1

P2

Figure 2.14: Our greedy depth first search algorithm searches for the monotone paths Pi.
The red paths are dead ends, so we backtrack and then continue searching.

The greedy depth first search halts if one of the following three conditions are met. First,
if our algorithm reaches lt, we have computed Pi, and therefore we halt the search. We
continue by computing the next monotone path Pi+1. Second, if our algorithm backtracks
to our initial starting point, then our algorithm cannot find a monotone path starting at
this point, and therefore we halt the search. We continue by trying to compute Pi, but
starting from a higher valid grid point on ls. Third, if our algorithm moves to a grid point
with y-coordinate strictly between s and t, then the monotone path intersects the reference
trajectory at more than one point, which contradicts the conditions of Subproblem 2, and
therefore we halt the search. We continue by trying to compute Pi again, but we start at
the lowest valid grid point on ls that has y-coordinate at least t.

If our algorithm computes P1, P2, . . . , Pm−1, then our set of m− 1 monotone paths are
returned. Otherwise, if all valid grid points on ls are exhausted, then our algorithm returns
that there is no set of m−1 monotone paths. This completes the statement of our algorithm.

Next we argue the correctness of our algorithm. We make three observations. Each
observation follows immediately from the greedy depth first search and the following ordering
on the outgoing edges: first (x + 1, y), then (x + 1, y + 1), and finally (x, y + 1). For our
third observation, we define l≥g be the set of grid points with the same x-coordinate as g
and have y-coordinate greater than or equal to the y-coordinate of g.

Observation 8. Let P be a monotone path from ls to lt. Throughout the execution of the
greedy depth first search, all grid points on P will remain valid.

Observation 9. Suppose our algorithm starts at a grid point on ls and does not find a
monotone path to lt. Then there is no monotone path from ls to lt starting at that grid
point.

30

Observation 10. Let P be a monotone path from ls to lt computed by our algorithm. Let
the initial starting point of P be g and the final grid point of P be r. Then any monotone
path that starts on l≥g and ends on lt must end on l≥r.

The third observation formalises the intuition that if a monotone path is found, then
a lower monotone path cannot exist. With these three observations in mind, we are now
ready to prove the correctness of our algorithm.

Lemma 11. There exist m − 1 monotone paths satisfying the conditions of Subproblem 2
under the discrete Fréchet distance if and only if our algorithm returns a set of m − 1
monotone paths.

Proof. Suppose our algorithm returns a set of m− 1 monotone paths. It is straightforward
to check from the definition of our algorithm that our set of monotone paths all start on ls,
all end on lt, are distinct, and overlap in at most one y-coordinate. Therefore, our m − 1
monotone paths satisfy the conditions of Subproblem 2.

Next, we prove the converse. We assume that there exist monotone pathsQ1, Q2, . . . , Qm−1

that satisfy the conditions of Subproblem 2. We will prove that our algorithm computes a
set of monotone paths P1, P2, . . . , Pm−1 that also satisfy the conditions of Subproblem 2.

We prove by induction that, for all 1 ≤ i ≤ m− 1, our algorithm computes a monotone
path Pi so that the maximum y-coordinate of Pi is at most the maximum y-coordinate of
Qi. We will focus on the inductive case, since the base case follows similarly. Our inductive
hypothesis implies that the maximum y-coordinate of Pi−1 is at most the maximum y-
coordinate of Qi−1. So the maximum y-coordinate of Pi−1 is at most the minimum y-
coordinate of Qi.

Next, our algorithm attempts to compute Pi. It starts at a y-coordinate that is at
most the minimum y-coordinate of Qi. By the contrapositive of Lemma 9, our algorithm
computes a monotone path when considering the starting point on Qi, if not earlier. Hence,
the minimum y-coordinate of Pi is at most the minimum y-coordinate of Qi. By Lemma 10,
the maximum y-coordinate of Pi is at most the maximum y-coordinate of Qi, completing the
induction and the proof of the lemma. So our algorithm computes a set of m− 1 monotone
paths that satisfy the conditions of Subproblem 2.

Finally, we analyse the running time of our algorithm. Whenever our algorithm visits a
grid point, a constant number of operations are performed. The operations involve checking
if its three neighbours are valid, moving to a neighbour, or backtracking. Each operation
takes constant time.

It suffices to count the number of grid points visited by our algorithm. There are O(nl)
grid points in total between the vertical lines ls and lt where l = t− s. When computing a
monotone path, for example when computing Pi we use a depth first search. We never visit
the same grid point more than once when we compute Pi. Hence, a grid point can only be
revisited when computing different monotone paths, for example, when computing Pi and
Pj . However, this cannot happen very often, as we show next.

Lemma 12. There are at most 2ml instances where Pj revisits a grid point that has previ-
ously been visited by Pi for some i < j.

Proof. First we prove that j ≤ i + 2. Then we use this bound to show that there are at
most 2ml revisiting instances, as claimed.

Suppose for the sake of contradiction that a grid point is visited by Pi and Pj , and
j > i+2. So Pj and Pi must share a y-coordinate at the shared grid point. But the monotone

31

paths Pi+1 and Pj−1 have y-coordinates that are at least the maximum y-coordinate of Pi

and at most the minimum y-coordinate of Pj . Therefore, Pi+1 and Pj−1 must be horizontal
paths. But these paths are no longer unique, which is a contradiction. This proves that
j ≤ i+ 2.

There are at most 2m pairs (i, j) where j− i ≤ 2, and for each such pair (i, j) there is at
most one y-coordinate, i.e. l cells, where Pi and Pj can visit the same cell. In total, there
are at most 2ml cells where both Pi and Pj can visit, for some pair (i, j).

There are O(nl) initial visits to grid points and O(ml) revisits, where l = t − s. This
yields:

Theorem 13. There is an O(nl) time algorithm that solves Subproblem 2 under the discrete
Fréchet distance.

2.4.2 SC under the discrete Fréchet distance

Similar to the previous algorithm of Buchin et al. [36], our algorithm for SC under the
discrete Fréchet distance involves solving O(n) instances of Subproblem 2 with a sweepline
approach. We maintain a link-cut data structure [146] that allows us to reuse monotone
paths during our sweep. Our data structure maintains a set of rooted trees, where the nodes
of the trees are grid points in the free space diagram.

Fact 14 ([146]). A link-cut tree maintains a set of rooted trees, and offers the following
four operations. Each operation can be performed in O(log n) amortised time.

• Add a tree consisting of a single node,
• Attach a node (and its subtree) to another node as its child,
• Disconnect a node (and its subtree) from its current tree,
• Given a node, find the root of its current tree.

The invariant maintained by our data structure is that there is a monotone path from
any node to the root of its current tree. We will first describe our algorithm and how we
update our data structure. Then we will prove our invariant in Lemma 15.

We use a sweepline approach, starting with s = 0 and incrementing s. For each s, we
let t be the final vertex of the shortest subtrajectory that starts at s and has length ≥ ℓ.
For each pair (s, t), we decide whether there exists a set of m−1 monotone paths between ls
and lt that do not overlap in y-coordinate. We perform a modified version of the greedy
depth first search in Section 2.4.1. Our modifications include updating the link-cut data
structure whenever we explore a node, and querying the link-cut data structure to reuse
paths.

Whenever our greedy depth first search moves from a current grid point, which we call
gc, to an outgoing neighbour, which we call gn, we update our link-cut data structure. We
link gc as a child of gn, thus attaching the subtree rooted at gc to the tree containing gn.
Under the algorithm described in Section 2.4.1, we would continue the depth first search
from the neighbour gn. However, we already know that there is a monotone path from gn
to the root of its current link-cut tree. Hence, we set the new current node, gc′ , to be the
root of the tree containing gn and continue our greedy depth first search from there. See
Figure 2.15, left.

Whenever our greedy depth first search backtracks from a current grid point, which
we call gc, we also update our link-cut data structure. An invariant maintained by our

32

ls lt

gc

gn

ls lt

gc′ gc

gn

gs

Figure 2.15: Adding a link from gc to gn when exploring a neighbour (left), and removing
links from gc to its children when backtracking (right).

algorithm is that the current grid point is always the root of its link-cut tree. Hence, its
valid incoming neighbours are its children in the link-cut data structure. We disconnect gc
from each of its children. We backtrack to the incoming neighbour gn with the following
property. If we are currently searching for the monotone path Pi, and the initial node of
Pi on ls is gs, then we choose gn to be the root of the tree containing gs. See Figure 2.15,
right.

The greedy depth first search halts if any of the same three conditions as described in
Section 2.4.1 are met. This completes the description of our algorithm. Next, we argue its
correctness.

Lemma 15. Let g be a grid point in the free space diagram and r be a grid point corre-
sponding to the root of the link-cut tree containing g. Then there is a monotone path from g
to r.

Proof. Each link in the link-cut data structure is from a grid point (x, y) and to a grid point
(x, y + 1), (x + 1, y + 1) or (x + 1, y). Since r is an ancestor of g in the link-cut tree data
structure, there must be a monotone path from g to r.

Next, we prove an analogous lemma to Lemma 10. Recall that l≥g is the set of grid
points with the same x-coordinate as g and have y-coordinate greater than or equal to the
y-coordinate of g.

Lemma 16. For a fixed pair (s, t), suppose g is a grid point on ls and suppose that its root
r lies on lt. Then any monotone path starting on l≥g that ends on lt must end on l≥r.

Proof. By Lemma 15, there exists a monotone path P from g to r. The remainder of
the proof is identical to the proof of Lemma 10, except we replace the claim that our
algorithm prefers to search its lower neighbours with our algorithm prefers to link to its
lower neighbours.

Now we show that our algorithm solves SC.

Lemma 17. There exist m − 1 monotone paths satisfying the conditions of SC under the
discrete Fréchet distance if and only if our algorithm returns a set of m−1 monotone paths.

33

Proof. First we prove the if direction. If our algorithm returns a set of m−1 monotone paths
from ls to lt, then the conditions of Subproblem 2 are satisfied for this fixed pair of vertices
(s, t). With the subtrajectory from s to t acting as the reference trajectory, and the m− 1
monotone paths acting as the other m − 1 subtrajectories, this cluster of subtrajectories
satisfies the conditions of SC.

Next we prove the only if direction. Suppose there exists a set of m− 1 monotone paths
that satisfy SC. Let the reference subtrajectory start at s and end at u. Then the m − 1
monotone paths between ls and lu corresponding to the m − 1 subtrajectories that satisfy
the conditions of Subproblem 2. Let the shortest subtrajectory starting at s with length ≥ ℓ
end at the vertex t. Shorten the m−1 monotone paths to be between ls and lt. There exists
a set of m − 1 monotone paths from ls to lt that satisfy the conditions of Subproblem 2.
The remainder of the proof is identical to the proof of Lemma 11, except we replace our
reference to Lemma 10 with a reference to Lemma 16. Therefore, our algorithm returns a
set of m− 1 monotone paths from ls to lt, as required.

Finally, we analyse the overall running time of our algorithm to obtain the main theorem
of Section 2.4. The running time is dominated by the greedy depth first search and updating
the link-cut data structure.

Theorem 3. There is an O(n2 log n) time algorithm for SC under the discrete Fréchet
distance.

Proof. We will bound the number of steps in the greedy depth first search, and hence the
number of updates made on the data structure. Since each grid point has degree at most
three, there are at most 3n2 pairs of vertices between which there could be a link. At each
search step, our algorithm either moves to a neighbour, in which case a link is added, or our
algorithm backtracks, in which case a link is removed. Once a link is removed it cannot be
added again. Hence, there are at most O(n2) updates made on the data structure, being
either links or cuts, and each update takes O(log n) amortized time. Hence, the overall
running time is O(n2 log n).

By Theorem 5, there is no O(n2−ε) time algorithm for SC under the discrete Fréchet
distance, for any ε > 0, assuming SETH. Therefore, our algorithm is almost tight, unless
SETH fails.

2.5 Continuous Fréchet Distance

The main theorem that we will prove in this section is the following:

Theorem 4. There is an O(n3 log2 n) time algorithm for SC under the continuous Fréchet
distance.

We will be using the continuous free space diagram extensively in this section. Recall
that for the continuous Fréchet distance, the free space diagram Fd(T, T) consists of n

2 cells.
The free space within a single cell is the intersection of an ellipse with the cell. A monotone
path is a continuous monotone path in the free space. For each cell, we define its critical
points to be the intersection of the boundary of the free space with the boundary of the cell.
A cell corner in free space is considered a critical point. There are at most eight critical
points per cell.

34

In Section 2.5.1 we provide a modified version of the algorithm by Alt and Godau [12]
that decides if the continuous Fréchet distance between two trajectories is at most d. In
Section 2.5.2 we extend this algorithm to solve SC under the continuous Fréchet distance in
O(n2 log2 n) time.

2.5.1 The continuous Fréchet distance decision problem

The problem we focus on in this section is to decide if the continuous Fréchet distance
between a pair of trajectories is at most d. We let the complexities of our two trajectories
be n1 and n2. Note that the complexities are usually denoted with m and n, however, we
use n1 and n2 to avoid confusion with the size of the subtrajectory cluster.

Similar to the original algorithm by Alt and Godau [12], we decide whether there is
a monotone path from the bottom left to the top right corner of the free space diagram.
The running time of original algorithm requires O(n1n2) time [12], whereas ours requires
O(n1n2 log(n1 + n2)) time. The original algorithm computes reachability intervals, which
are horizontal or vertical propagations of critical points. We avoid computing reachability
intervals. Instead, our algorithm decomposes long monotone paths into shorter ones, which
we call basic monotone paths.

Recall that a critical point in the continuous free space diagram is either a cell corner,
or the intersection point of a cell boundary with an elliptical boundary between free space
and non-free space.

Definition 18. A basic monotone path is a monotone path that is contained entirely in a
single row (resp. column) of the free space diagram, starts at a critical point on a vertical
(resp. horizontal) cell boundary, and ends on a point on a horizontal (resp. vertical) cell
boundary. See Figure 2.16.

Figure 2.16: Example of basic monotone paths in a row.

The next lemma decomposes a monotone path from the bottom left to the top right
corner into basic monotone paths.

Lemma 19. Given a pair of critical points a and b in the free space diagram, there is a
monotone path from a to b if and only if there is a sequence of critical points p0, p1, p2, . . . , pk
so that p0 = a, pk = b, and there is a basic monotone path from pi to pi+1 for every
i = 0, 1, . . . , k − 1.

Proof. For the “if” direction, there is a monotone path from pi to pi+1 for all i = 0, 1, . . . , k−
1. Concatenating these paths yields a monotone path from a to b.

For the “only if” direction, suppose there is a monotone path Q starts at a and ends at b.
Define q0 = a. We define qi inductively for i ≥ 1. If qi is on a vertical (resp. horizontal)
boundary, then we define qi+1 as the first intersection of Q with a horizontal (resp. vertical)
boundary occurring after qi. Between qi and qi+1 there is a monotone path, and the sequence

35

alternates between being on horizontal and vertical boundaries. Eventually we have qk = b
for some k.

The monotone path from qi to qi+1 may not be basic if qi and qi+1 are not critical points.
For 1 ≤ i ≤ k − 1, if qi is on a vertical (resp. horizontal) boundary, we define pi to be the
critical point below (resp. left of) qi and on the same cell boundary segment as qi. Then
pi is either the lowest free point on a vertical boundary, or the leftmost free point on a
horizontal boundary. Finally, we set p0 = q0 and pk = qk. This completes the construction
of the sequence of critical points p0, p1, p2, . . . , pk. It suffices to show that there is a basic
monotone path from pi to pi+1. See Figure 2.17.

q0

q1

q2

q3

q4

p1
p2

p3

Figure 2.17: Constructing a sequence of basic monotone paths {pi}, from any monotone
path {qi}.

There is a monotone path from pi to qi, since pi is in the same cell and either directly
below or directly to the left of qi. Next, we show that there is a monotone path from qi to
pi+1. Consider the monotone path from qi to qi+1, which is a subpath of Q. Recall that if
qi is on a vertical (resp. horizontal) boundary, then qi+1 is the first intersection of Q with
a horizontal (resp. vertical) boundary. Therefore, the monotone path Q must intersect the
left (resp. bottom) boundary of the cell that has qi+1 on its top (resp. right) boundary.
Let the intersection of Q with this left (resp. bottom) boundary be ri. Now, we have a
monotone path from qi to ri, and there is a monotone path from ri to pi+1. Thus, there is a
monotone path from pi to qi, to ri, to pi+1. Moreover, pi is on a vertical (resp. horizontal)
boundary, and pi+1 is on a horizontal (resp. vertical) boundary, and their cells share a
y-coordinate (resp. x-coordinate). We have shown that there is a basic monotone path from
pi to pi+1, completing our proof.

Lemma 19 motivates us to build the following directed graph. Let G = (V,E) be a
graph where V is the set of critical points in the free space diagram, and E is the set of all
pairs (p, q) such that there is a basic monotone path from p to q. Unfortunately, there are
cases where a critical point has O(n) outgoing edges, so that |E| = O(n3). Our goal will be
to reduce the size of this graph, or rather, build essentially the same graph, but implicitly.
To do this, we observe the following property of outgoing neighbours of a critical point.

Lemma 20. Let p be the lowest free point on a vertical cell boundary. Let q be the rightmost
critical point in the same row as p such that there is a basic monotone path from p to q.

36

Then for any critical point r, there is a basic monotone path from p to r if and only if r is
to the right of p, to the left of q, and has the same y-coordinate as q. See Figure 2.18.

p

qr

Figure 2.18: There is a basic monotone path pr if and only if r is to the right of p, to the
left of q, and r has the same y-coordinate as q.

Proof. We first prove the “only if” direction. Suppose there is a basic monotone path from
p to r. Then clearly r is to the right of p. Moreover, q is to the right of r since q is the
rightmost critical point so that there is a basic monotone path from p to r. Finally, p, q
and r are all on boundaries of cells that share a y-coordinate. Both q and r must be on the
top boundary of their respective cells as there are basic monotone paths from p to q and r.
Hence, q and r share the same y-coordinate. This completes the “only if” direction.

Next we prove the “if” direction. Suppose r shares the same y-coordinate as q, is to
the right of p and to the left of q. Let L be the left boundary of the cell with r on its top
boundary. Since p and q are in the same row of the free space diagram, and L is between p
and q, the basic monotone path from p to q must intersect L at some point, which we will
call s. So there is a monotone path from p to s and s to r, since s is on the left boundary
and r is on the top boundary of the same cell. Moreover, this monotone path is basic since p
is on a vertical boundary, r is on a horizontal boundary, and their cells share a y-coordinate.
This completes the “if” direction.

We also have a corollary for this lemma where the x and y-coordinates are switched.

Corollary 21. Let p be the leftmost free point on a horizontal cell boundary. Let q be the
topmost critical point in the same column as p such that there is a basic monotone path from
p to q. Then for any critical point r, there is a basic monotone path from p to r if and only
if r is above p, is below q, and has the same x-coordinate as q.

We leverage Lemma 20 and Corollary 21 to build an improved graph that has fewer
edges. We use binary trees as an intermediary between the start and end point of the edges
in E. We construct a (directed) binary tree Bi for each horizontal line h0, h1, . . . hn2

in
the free space diagram. Every parent in Bi has a (directed) edge to its two children. The
leaves of the binary tree are a sorted list of the critical points on hi. Analogous binary
trees are constructed for the vertical lines in the free space diagram. Now we describe the
improved graph G′ = (V ′, E′). Let V ′ be the union of the set of critical points in the free
space diagram plus the set of internal vertices in the binary trees Bi for the horizontal and
vertical lines in the free space diagram. For each critical point p on a vertical boundary,
compute the rightmost critical point q so that there is a basic monotone path from p to q.
In G = (V,E), there is a directed edge from p to every critical point that is between p and q
and on the horizontal line through q. Let the binary tree that corresponds to this horizontal
line be Bi. We construct a directed edge from p to nodes of Bi so that the union of their
descendants in Bi matches this set of contiguous critical points on hi. We do so similarly

37

for the critical points p on horizontal boundaries. This completes the construction of the
graph G′ = (V ′, E′).

To decide whether the Fréchet distance between our two trajectories is at most d, we
perform a depth first search in G′ to decide whether there is a directed path from the bottom
left corner to the top right corner. This completes the statement of the algorithm. Now we
prove its correctness.

Lemma 22. Given a pair of critical points a and b, there is a monotone path from a to b
if and only if there is a directed path from a to b in the graph G′ = (V ′, E′).

Proof. By Lemma 19 and the definition of the graph G, there is a monotone path from a to b
if and only if there is a directed path from a to b in the graph G = (V,E). By Lemma 20 and
Corollary 21, the outgoing neighbours of a critical point form a set of contiguous critical
points on either a horizontal or vertical line in the free space diagram. Without loss of
generality, suppose the set of contiguous critical points lie on hi. By the definition of the
binary trees Bi, we can convert a set of edges to this contiguous set of critical points into a
set of paths down the binary tree Bi. Hence, there is a directed edge (p, q) in G = (V,E)
if and only if there is a directed path (p0, p1, . . . , pk) in G′ = (V ′, E′) where p0 = p, pk = q
and pj is in a binary tree Bi for all 1 ≤ j ≤ k − 1. Hence, there is a monotone path from
a to b in the free space diagram if and only if there is a directed path from a to b in the
directed graph G′ = (V ′, E′).

Finally, we analyse the running time of our algorithm. First we consider the running time
of constructing the graph G′ = (V ′, E′). Constructing the set of vertices V ′ takes O(n1n2)
time. It remains to construct the set of edges E′. We first compute, for each critical point
p, the rightmost (resp. topmost) critical point q where there is a basic monotone path from
p to q.

Lemma 23. Given a row of n1 cells in a free space diagram, let p1, p2, . . . , pn1+1 be the
lowest free points on its vertical boundaries. Then we can compute, in O(n1 log n1) time, the
set of critical points q1, q2, . . . , qn1+1, so that for all 1 ≤ i ≤ k, qi is the rightmost critical
point on a horizontal cell boundary such that there is a basic monotone path from pi to qi.

Proof. Let the lowest free points on the vertical boundaries from left to right be p1, p2, . . . , pn1+1.
Let the corresponding highest free points on the same vertical boundaries be r1, r2, . . . , rn1+1.
Our algorithm is a dynamic program that considers the critical points pi and ri for decreas-
ing values of i.

While performing the dynamic program on decreasing values of i, we maintain two lists,
one for pi and one for ri. The list for pi is of all pj that have y-coordinate greater than the
y-coordinates of pi+1, . . . , pj−1. The list for ri is of all rj that have y-coordinate less than
the y-coordinates of ri+1, . . . , rj−1.

Both lists can be maintained in amortized constant time per update by storing the list
as a stack. When a new vertical boundary is considered, we will add pi and ri to the top of
the stack. To maintain the invariant that all pj in the list must have greater y-coordinates
than pi, we pop off all elements on the top of the stack that have y-coordinate less than or
equal to the y-coordinate of pi before adding pi. We maintain ri analogously, but we check
if the y-coordinate is greater than or equal.

Next, we use this pair of stacks to compute our dynamic program. The idea is that we
construct a horizontal path starting at the critical point pi and find the first non-free point
it intersects. There are three cases. Either it reaches the rightmost vertical boundary of

38

the row, it intersects a point that is below pj for some j > i, or it intersects a point that is
above rj for some j > i.

In the first case, the horizontal path intersects the rightmost vertical boundary. If
i < n1 + 1, then qi is on the top boundary of the rightmost cell in the row. If i = n1 + 1,
then qi does not exist.

In the second case, the horizontal line intersects a point that is below pj . By our invariant,
the critical point pj must be in our stack. We locate pj by computing the smallest index j
such that the y-coordinate of pj is at least the y-coordinate of pi. For points to the right
of pj , our monotone path starting at pi can only reach points where the monotone path
starting at pj can reach. Hence, we set qi to qj , which has previously been computing.

The third case is that the horizontal line intersects a point that is above rj . By our
invariant, the critical point rj must be in our stack. Again, we locate rj by computing the
smallest index j such that the y-coordinate of rj is at most the y-coordinate of pi. Our
monotone path starting at pi can reach rj , but cannot reach any points to the right of rj .
Hence, we can set qj to be the leftmost free point on the top boundary of the cell that has
rj on its right boundary.

Maintaining the stacks takes O(n1) time. Performing the binary searches to find pj in
the first case and rj in the second case takes O(n1 log n1) time in total. Hence, the overall
running time for computing q1, q2, . . . , qn1+1 is O(n1 log n1) time, as required.

Lemma 23 allows us to compute all the edges E in O(n1n2 log(n1 + n2)) time. Next, we
convert the edges E into the edges E′. We show that in the graph G′ = (V ′, E′), there are
at most O(log n1) outgoing neighbours of p, and that these neighbours can be computed in
O(log n1) time.

Fact 24 (Chapter 5.1 of [61]). Let B be a binary search tree with size O(n). Suppose the
leaves of B, from left to right, are a sorted list of real numbers. Then we can preprocess
B in O(n) time, so that given a pair of real numbers s and t, we can select O(log n) nodes
of B in O(log n) time so that their descendants are those that lie in the interval [s, t].

Applying Lemma 23 and Fact 24 to each of the O(n1n2) critical points in the free space
diagram leads to an O(n1n2 log(n1 + n2)) time algorithm for constructing all edges in the
graph G′ = (V ′, E′). Moreover, the size of E′ is O(n1n2 log(n1 + n2)). Finally, running the
depth first search takes O(|V ′| + |E′|) = O(n1n2 log(n1 + n2)). This yields the following
theorem.

Theorem 25. Given a pair of trajectories of complexities n1 and n2, there is an O(n1n2 log(n1+
n2)) time algorithm that solves the Fréchet distance decision problem by running a depth
first search algorithm on the set of critical points in the free space diagram.

2.5.2 Reference subtrajectory is vertex-to-vertex

Our approach is to run the sweepline algorithm in Section 2.4.2, but we replace the dis-
crete free space diagram (i.e. the n2 grid points) with the graph G′ = (V ′, E′) defined in
Section 2.5.1. For this we require three modifications to the sweepline algorithm.

The first modification is to generalise the greedy aspect of the depth first search to the
new graph. In the discrete free space diagram, we first explore (x+1, y), then (x+1, y+1),
and finally (x, y+1). In the graph G′ = (V ′, E′), we explore the neighbours with minimum
y-coordinate first, and of those with the same y-coordinate, we explore those with maximum
x-coordinate first.

39

The second modification is to create additional nodes in G′ = (V ′, E′) for the ending
points of the monotone paths Pi. The ending point is the lowest point on lt such that there
is a monotone path to that point. However, this lowest point on lt may not be a node in G′.
We can detect this case by checking if the last critical point before reaching lt, say p, has a
basic monotone path through lt. In this case the ending point is simply the intersection of
lt with a horizontal line through p. We add this intersection to the graph G′, and calculate
its outgoing neighbours.

The third modification is to create additional nodes in G′ = (V ′, E′) for the starting
points of the monotone paths Pi. As usual, the starting point of Pi+1 is the lowest free
point on ls that has a y-coordinate greater than or equal to the maximum y-coordinate of
Pi. However, this lowest free point may not be a node of G′. If it is not, we add it to G′

and calculate its outgoing neighbours.
All additional nodes created in the second and third modifications are not initially part

of the graph G′ = (V ′, E′), and are only added to G′ when necessary. Hence, the graph G′

increases in size as the sweep line algorithm is performed.
A special case that is closely related to the second and third modifications is to detect

if there are infinitely many horizontal monotone paths between ls and lt. We use the same
method as Buchin et al. [36] to detect if adding any of these additional nodes to G′ = (V ′, E′)
creates infinitely many horizontal monotone paths, in which case we return a set of m − 1
monotone paths.

This completes the statement of our algorithm. Next, we argue its correctness.

Lemma 26. There exist m − 1 monotone paths satisfying the conditions of SC under the
continuous Fréchet distance in the case that the reference subtrajectory is vertex-to-vertex if
and only if our algorithm returns a set of m− 1 monotone paths.

Proof. Observe that Lemma 15 generalises from the discrete free space diagram to the graph
G′ = (V ′, E′). In particular, we add a link between a pair of critical points in the continuous
free space diagram only if there is a directed path between them in G′. So there is always
a monotone path from any critical point to the root of its link-cut tree.

Observe that Lemma 16 generalises to G′. In particular, by our first modification, our
algorithm prefers to link to its lower neighbours first, and the remainder of the proof is
identical to the proof of Lemma 16.

Finally, we observe that Lemma 17 generalises to G′. The proof of both the if and only
if directions are identical, so long as we take into account the additional nodes from the
second and third modifications. These additional nodes can be treated exactly the same as
any other critical point in G′, other than that they require additional time to compute. By
generalising Lemma 17 to the continuous free space diagram, we yield the Lemma.

It remains only to analyse the running time.

Theorem 27. There is an O(n2 log2 n) time algorithm that solves SC under the continuous
Fréchet distance in the case that the reference subtrajectory is vertex-to-vertex.

Proof. First, we analyse the running time of constructing G′. By Lemmas 23 and 24, we
can construct G′ in O(n2 log n) time. Next, we analyse the running time of the sweepline
algorithm. This running time is dominated by two processes, maintaining the link-cut tree
and inserting the additional nodes for the second and third modifications.

First, we bound the number of additional nodes, and the time required to insert them.
There are at most m − 1 paths per reference subtrajectory we consider, and we consider

40

O(n) reference subtrajectories. Therefore, we add at most O(mn) additional points to the
graph G′. Inserting these additional points requires O(mn) time. Inserting the outgoing
edges for each of these points requires amortised O(log n) time per edge by Lemmas 23
and 24, which is O(mn log n) time in total

Next, we analyse the running time of maintaining the link-cut tree. For this, the running
time is dominated by updating the data structure. There are O(n2 log n) edges in G′, and
O(mn log n) edges for the additional points. Each update, which is either a link or cut
operation, requires O(log n) amortised time. We observe that, similarly to in Section 2.4.2,
once a link is removed it cannot be added again. So all link and cut updates can be
performed in O(n2 log2 n) time. This dominates the running time of our algorithm, yielding
the theorem.

2.5.3 Reference subtrajectory is arbitrary

Next, we handle the case where the reference subtrajectory may start and end at arbitrary
points on the trajectory. Although there are infinitely many possible starting and ending
points, we only consider starting and ending points associated to either vertices of the
trajectory, or to additional critical points that we call internal critical points.

We define an external critical point to be critical points that lie on the boundary of a
free space cell. In contrast, an internal critical point is in the interior of a cell, and is defined
as follows:

Definition 28. We define an internal critical point to be a point that is in the interior of
a cell, on the boundary between free and non-free space, and satisfies one of the following
three conditions:

• it is the leftmost or rightmost free point in its cell, or
• it shares a y-coordinate with an external critical point, or
• it is ℓ units horizontally to the right of a point that is on the boundary between free
and non-free space.

`

.

Figure 2.19: The three types of internal critical points.

In Figure 2.19 we show the three types of interior critical points. Both the vertices of
the trajectory and the internal critical points are candidate starting points for the reference
subtrajectory. To decide whether any such subtrajectory satisfies the properties in SC, we
would like to perform the same sweepline algorithm as the one in Section 2.5.2. Recall that
this algorithm iterates through all reference subtrajectories, and reuses monotone paths
between these subproblems using a link-cut data structure. We provided the details for
maintaining the link-cut data structure in Section 2.4.2. Recall that three modifications

41

were applied to our sweepline algorithm so that it may be applied to the graph G′ = (V ′, E′).
We provided the details of these three modifications in Section 2.5.2.

However, if we were to perform the same sweepline algorithm as in Section 2.5.2, our
running time would increase to accommodate the additional internal critical points and
their reference subtrajectories. In Lemma 34, we show that there are O(n3) internal critical
points. Therefore, the running time for maintaining the link-cut tree would increase to
O(n3 log2 n). The running time for inserting the additional nodes for the second and third
modifications would increase to O(n3m).

To perform the sweepline algorithm inO(n3 log2 n) time, we avoid computing theO(n3m)
additional nodes for the second and third modifications entirely. We use a completely differ-
ent approach. Our intuition is that if a monotone path exists for a reference subtrajectory,
then either the same or a very similar monotone path is likely to exist for the next reference
subtrajectory. We divide the process of computing m− 1 non-overlapping monotone paths
into two steps. The first step is to maintain a large set of overlapping monotone paths, so
that any monotone path is represented within this set. The second step is to query this
set of overlapping monotone paths to decide whether there are m − 1 elements that do
not overlap. Surprisingly, building and maintaining this set of overlapping monotone paths
is more efficient than recomputing the non-overlapping monotone paths for each reference
subtrajectory.

Our set of overlapping monotone paths is maintained by the following dynamic data
structure.

Fact 29 (Theorem 16 in [90]). A dynamic monotonic interval data structure maintains a
set of monotonic intervals. A set of intervals is monotonic if no interval contains another.
The data structure offers the following three operations. Each operation can be performed
in O(log n) amortised time.

• Insert an interval, so long as the monotonic property is maintained,
• Remove an interval,
• Report the maximum number of non-overlapping intervals in the data structure.

With this data structure in mind, we are now ready to state our algorithm in full. Com-
pute all external critical points and build the graph G′ = (V ′, E′) defined in Section 2.5.1.
Our sweepline algorithm starts with s = 0. For each external critical point g on ls, we per-
form a greedy depth first search to find the lowest point r on lt so that there is a monotone
path from g to r. We maintain the link-cut data structure throughout the greedy depth
first search, so that r is the root of the tree containing g. For s = 0, we only compute a set
of additional external critical points, that is, all points on ls that share a y-coordinate with
another external critical point. For these external critical points, we compute its lowest
monotone path to lt, so that the root of the tree containing the external critical point is on
lt.

For s = 0, we now have a set of link-cut trees, each of which has their root on lt. For
each root r on lt, compute its highest descendant g on ls. This highest descendant can be
maintained by each link-cut tree individually, so that when two link-cut trees are merged,
we simply take the higher descendant for the merged tree. Finally, for each root r on lt, and
its highest descendant g on lt, we insert the interval (y(g), y(r)) into the dynamic monotonic
interval data structure, where y(g) and y(r) denote the y-coordinates of g and r respectively.
See Figure 2.20. This completes the base case of s = 0 in the sweepline algorithm.

Next, compute all internal critical points defined in Definition 28, and sort them by
x-coordinate. We sweep the vertical lines ls and lt from left to right, and whenever ls or lt

42

ltls

g2

g3

r3

r2

r1

g1

y(g2)

y(r2)

y(r1)

y(g1)

y(g3)

y(r3)

Figure 2.20: The link cut tree rooted at ri, with its highest descendant gi on ls, shown
on the left. The y-intervals (y(gi), y(ri)) stored by the dynamic monotonic interval data
structure, shown on the right.

pass through an internal critical point, we process it as an event. There are five types of
events, depending on the type of the internal critical point and whether it passes through ls
or lt. On all five of these events, we maintain the invariant that the intervals inserted into
our data structure are monotonic. We also maintain the invariant that any monotone path
is represented by an interval in the data structure. So that we do not need to re-compute the
exact y-coordinates of these monotone paths at every event point, we only store the relative
positions of the intervals with respect to one another (i.e. whether they are overlapping
or non-overlapping). By only storing the relative positions of the y-coordinates, we can
avoid computing the O(n3m) starting and ending points of monotone paths in the second
and third modifications that are required for the algorithm in Section 2.5.2. We split our
analysis of our five types of events into five cases:

• The first type of event is if ls passes through an internal critical point g that is the
leftmost free point in its cell. For this event, insert g into the graph G′, and compute
the lowest monotone path from g to the lt. If a jump operation was performed using
the link-cut data structure, then the root r of the tree containing g already exists in the
dynamic monotonic interval data structure. We only update this interval to (y(g), y(r))
if g is the highest descendant of r on ls. If no jump operation was performed, then r is
a new root on lt, so we simply insert the interval (y(g), y(r)) into our data structure.

• The second type of event is if ls passes through an internal critical point g that shares
a y-coordinate with an external critical point. Similarly to the first event, we insert
the g into the graph G′, and compute its root r on the line lt. We insert a new interval
(y(g), y(r)) into the dynamic monotonic interval data structure if r is new, or replace
an existing interval if r is not new, but g is the highest descendant on ls. After this,
we consider whether ls passing through g causes a pair of monotone paths that were
previously overlapping to now be non-overlapping. In particular, suppose that g shares
a y-coordinate with an exterior critical point, which in turn shares a y-coordinate with
a root r′ on lt. In other words, y(g) = y(r′). Then the pair of intervals (y(g), y(r))
and (y(g′), y(r′)) may switch from overlapping to non-overlapping, or vice versa. If

43

this is the case, we remove the interval (y(g), y(r)) and replace it with a new interval
so that their relative positions are g′, r′, g, r instead of g′, g, r′, r, or vice versa.

• The third type of event is if lt passes through an internal critical point r that is the
rightmost free point in its cell. For this event, simply remove the interval (g, r) from
the dynamic monotone interval data structure, where g is the highest ancestor of r
that is on ls.

• The fourth type of event is if lt passes through an internal critical point r that shares a
y-coordinate with an external critical point. Let the highest descendant of r on ls be g.
We consider whether lt passing through r makes the monotone path from g to r invalid.
This could be the case if the last segment in this monotone path is horizontal, and if
r lies on a boundary between free and non-free space that has a negative gradient. If
this is the case, then we remove the invalid path from r to its child, and recompute
its new highest descendant on g, if one exists. Next, similar to the second event,
we consider whether lt passing through r causes a pair of monotone paths that were
previously non-overlapping to now be overlapping. In particular, suppose that r shares
a y-coordinate with an exterior critical point, which in turn shares a y-coordinate with
a root g′ on ls. In other words, y(r) = y(g′). Then the pair of intervals (y(g), y(r))
and (y(g′), y(r′)) may switch from overlapping to non-overlapping, or vice versa. If
this the case, we remove the interval (y(g), y(r)) and (y(g′), y(r;)) and replace it with
a new interval so that their relative positions are g, r, g′, r′ instead of g, g′, r′r′, or vice
versa.

• The fifth type of event is if ls passes through a point g′ while lt simultaneously passes
through a point r, so that both g′ and r are on the boundaries between free and
non-free space, and y(g′) = y(r). We consider whether ls and lt passing through
g′ and r causes a pair of monotone paths that were previously non-overlapping to
now be overlapping. In particular, the pair of intervals (y(g), y(r)) and (y(g′), y(r′))
may switch from overlapping to non-overlapping, or vice versa. If this is the case,
we remove the interval (y(g), y(r)), and replace it with a new interval so that their
relative positions of g′, r′, g, r instead of g′, g, r′, r, or vice versa.

After processing an event, we report whether there are m − 1 monotone paths for this
event and its associated reference subtrajectory. To do this, we query the dynamic monotone
interval data structure to report the maximum number of non-overlapping intervals in the
data structure. If there are m− 1 or more non-overlapping intervals, we report these m− 1
intervals. We can retrieve the original monotone paths by storing the monotone paths with
the intervals when we insert them. We can modify the monotone paths to start and end at
ls and lt in constant time per monotone path.

This completes the statement of our algorithm. Next, we prove its correctness.

Definition 30. Given s and t, a monotone path from g on ls to r on lt is called minimal
if there does not exist a monotone path from g′ on ls to r′ on lt such that the interval
[y(g′), y(r′)] is a strict subset of the interval [y(g), y(r)].

Lemma 31. Given s and t, and a monotone path from g on ls to r on lt, there exists a
minimal monotone path from g′ on ls to r′ on lt so that [(y(g′), y(r′)] ⊆ [(y(g), y(r))].

Proof. Let r′ be the lowest point on lt so that there is a monotone path from g to r′. We
know r′ exists since we can compute it with a greedy depth first search. Let g′ be the
highest point on ls so that there is a monotone path from g′ to r′. We have by definition

44

that y(g) ≤ y(g′) ≤ y(r′) ≤ y(r), so [(y(g′), y(r′)] ⊆ [(y(g), y(r))]. It suffices to show that
the monotone path from g′ to r′ is minimal.

Suppose the monotone path from g′ to r′ is not minimal. Then there exists a monotone
path from g′′ to r′′ so that [(y(g′′), y(r′′)] ⊂ [(y(g′), y(r′))]. But now, the monotone paths
from g′′ to r′′ and from g′ to r′ must cross at some point u. Construct the monotone path
from g′′ to u to r′. But g′ is the highest point on ls so that there is a monotone path
from g′ to r′, so y(g′′) ≤ y(g′). But y(g′) ≤ y(g′′) since [(y(g′′), y(r′′)] ⊂ [(y(g′), y(r′))]. So
y(g′′) = y(g′).

Therefore, there exists a monotone path from g′ to r′′ such that y(r′′) < y(r′). But now,
the monotone path from g′ to r′′ and the monotone path from g to r must cross at some
point u. Construct the monotone path g to u to r′′. Since y(r′′) < y(r′), this contradicts
the construction that r′ is the lowest point on lt such that there is a monotone path from
g to r′. Hence, our initial assumption that g′ to r′ is not minimal cannot hold, and we are
done.

Lemma 32. Given s and t, suppose we run our sweepline algorithm until our pair of
sweeplines reach ls and lt respectively. Then there is an order preserving bijection from the
y-intervals of the minimal monotone paths to the set of intervals in our dynamic monotonic
interval data structure.

Proof. Our proof is divided into three parts. First we prove an order preserving bijection
in the base case, where s = 0. Next, we prove that in the inductive case, if the sweepline
does not pass through any internal critical points, then the order preserving bijection is
preserved. Finally, we prove that as the sweepline passes through an internal critical point,
the order preserving bijection is preserved.

For the base case, consider when s = 0. Let g be on ls and r be on lt so that the path
from g to r is a minimal monotone path. Suppose g is not an external critical point. Then
there is a segment of free space directly above g. We show that the monotone path from g
to r consists of a horizontal path from g to an external critical point. Suppose the contrary,
that the initial path from g is not horizontal. Let the initial path be from g to h, so that
y(h) > y(g). Then if we selected the point on ls with y-coordinate y(g)+ ε for a sufficiently
small ε, then there would still have y(h) > y(g) + ε, and we would maintain our monotone
path. But now, the new path would have a y-interval from y(g) + ε to y(r), which is a
strict subset of the y-interval from y(g) to y(r), contradicting the fact that the monotone
path from g to r is minimal. Therefore, if g is not an external critical point, then there is a
horizontal path from g to its next point, which must be an external critical point. Therefore,
all minimal monotone paths start at either external critical points or these additional points
that share a y-coordinate with an external critical point. By the definition of our base case
in our algorithm, we insert all y-intervals for these potential starting points, so we have all
minimal monotone paths in our initial data structure. Hence, we have shown the base case
of our induction.

For the inductive case where the sweepline does not pass through an internal critical
point, suppose the inductive hypothesis that ls and lt are sweeplines for which there is an
order preserving bijection. Let ls′ and lt′ be another pair of sweeplines to the right of ls
and lt, so that there are no internal critical points between ls and ls′ , and similarly between
lt and lt′ . We will show that there is a bijection between the y-intervals of the minimal
monotone paths between ls and lt, and ls′ and lt′ . By composing this bijection with the
bijection between the minimal monotone paths between ls and lt and the data structure,

45

we yield a bijection between the minimal monotone paths between ls′ and lt′ and the data
structure.

We construct our bijection between the two sets of minimal monotone paths as follows.
For each minimal monotone path starting at g on ls and ending at r on lt, we perform an
operation to yield a minimal monotone path between ls′ and lt′ . First, we let g′ be the
highest point on ls′ such that there is a monotone path from g to g′ and a monotone path
from g′ to r. Second, we extend the monotone path horizontally from r to its right, until it
either hits lt′ , or the boundary between free and non-free space. We extend the monotone
path along the boundary between free and non-free space until we reach lt′ . When this path
reaches lt′ , we define this point to be r′. This completes the description of the mapping
from minimal monotone paths of ls and lt to paths between ls′ and lt′ .

Our proof of this bijection is divided into five parts. First, we show that the mapping
is well defined. Second, we show that the mapping is from minimal monotone paths to
minimal monotone paths. Third, we show that the mapping is injective. Fourth, we show
that the mapping is surjective. Fifth, we show that the mapping is order preserving.

First, we show that the mapping is well defined. The point g′ is well defined. Extending
r horizontally is well defined, however, it may be that r cannot be extended along the
boundary between free and non-free space until we reach lt′ . There are two ways this can
occur. First, the free space may stop at some x-coordinate before lt′ . However, in this case,
we have an internal critical point that is the rightmost free point in its cell. But we assumed
there were no such critical points between lt and lt′ . Second, the boundary between free
space and non-free space may have a negative gradient, so that the monotone path cannot
travel along it. In this case, we must have a horizontal path starting at r that is extended
towards the boundary with a negative gradient. If the point r does not share a y-coordinate
with an external critical point, then we can reduce the y-coordinate of the horizontal path
containing r, contradicting the fact that g to r is minimal. Hence, r shares a y-coordinate
with an external critical point, so does our horizontal path that intersects the boundary
between free and non-free space. Therefore, this point is an internal critical point, which
again contradicts our assumption that there are no such critical points between lt and lt′ .

Second, we show that the mapping is from minimal monotone paths to minimal monotone
paths. By definition, r′ is the lowest point on lt′ such that there is a monotone path from
g′ to r′. We will show that g′ is the highest point on ls so that there is a monotone path
from g′ to r′. Putting these two facts together yields that the monotone path from g′ to
r′ is minimal. Suppose for the sake of contradiction that there is another point, g′′, that
has a larger y-coordinate than g′, and there is a monotone path from g′′ to r′. Extend the
monotone path starting at g′′ horizontally to the left, and then along the boundary between
free and non-free space, until it reaches ls. For the same reason as extending r horizontally
to the right to reach lt′ , we must be able to extend g′′ horizontally to the left to reach ls,
as there are no internal critical points between ls and ls′ . We show that the extension of
g′′ meets ls at g. If y(g′′) > y(g), this would contradict the minimality of the monotone
path from g to r. If y(g′′) < y(g), then the extension of g′′ crosses the path from g′ to
g, which is impossible. Hence, we have monotone paths from g to g′′ to r where g′′ has a
larger y-coordinate of g′. This contradicts the definition of g′, so the point g′′ cannot exist,
as required.

Third, we show the mapping is injective. Suppose for the sake of contradiction that there
are two monotone paths, g to r and g′ to r′, from ls to lt, that both map to a monotone
path g′′ to r′′, from ls′ to lt′ . Then there are monotone paths from g to g′′ to r and from
g′ to g′′ to r′. Without loss of generality, suppose y(g′) ≥ y(g). Then by the minimality of

46

the path from g to r, we get that y(r′) ≥ y(r). But now, consider the monotone path from
g to g′′ to r′. By the minimality of g to r, we get that y(r′) ≤ y(r), so y(r′) = y(r). By the
minimality of g′ to r′, we get that y(g′) ≤ y(g), so y(g′) = y(g). Hence, g = g′ and r = r′,
so our mapping is injective.

Fourth, we show the mapping is surjective. Suppose for the sake of contradiction that
there is a monotone path between ls′ and lt′ that is not mapped to. Let this minimal
monotone path be from g′ to r′. Let r be the highest point on lt such that there is a
monotone path from g′ to r to r′. Let g be the highest point on ls such that there is a
monotone path from g to g′ to r. We claim that our construction maps the path g to r
to the path g′ to r′. First, we show that g′ is the highest point on ls′ such that there is
a monotone path from g to g′ to r. Suppose there is a higher point g′′ so that there is a
monotone path from g′′ to r. Then we have a monotone path from g′′ to r′, contradicting
the minimality of the path from g′ to r′. Next, we show that if we extend the monotone
path from r horizontally to the right, then we reach the point r′ on lt′ . Suppose that instead
we reach another point r′′. By the definition of our extension, r′′ is the lowest point on lt′

such that there is a monotone path from r to r′′. So y(r′′) ≤ y(r′). But by the minimality
of the path g′ to r′, we get that y(r′′) ≥ y(r′). Hence, r′ = r′′ as required, and the mapping
is surjective.

Fifth, we show that the mapping is order-preserving. Suppose there are paths g to r and
g′ to r′, both between ls and lt. Without loss of generality, let y(g) < y(g′). Suppose these
monotone paths map to g′′ to r′′ and g′′′ to r′′′ respectively. We show that y(g′′) < y(g′′′).
Suppose for the sake of contradiction that y(g′′) ≥ y(g′′′). If g′′ = g′′′, by minimality we
would have r′′ = r′′′, contradicting the injectivity of our mapping. So y(g′′) > y(g′′′).
Therefore, the path from g to g′′ and the path from g′ to g′′′ must cross at some point u.
But now we have a monotone path from g to u to g′′′, which contradicts the fact that g′′ is
the highest point on ls′ such that there is a path from g to g′′ to r. Hence, y(g′′) < y(g′′′)
as required. Finally, we show that y(g′) < y(r) if and only if y(g′′′) < y(r′′). Suppose for
the sake of contradiction that y(g′) < y(r) and y(g′′′) > y(r′′). Take the path from r to r′′

that is a horizontal line to the right, until it reaches the boundary between free and non-free
space, and take the path along this boundary. Similarly, take the path from g′′′ to g′ that is
a horizontal line to the left, until it reaches the boundary between free and non-free space,
and take the path along this boundary. For any pair of vertical lines la between ls and ls′

and lb between lt and lt′ , such that lb − la = ℓ, define a to be the intersection of the path
between g′′′ and g′ with la, and define b to the intersection of the path between r and r′′

with lb. When la = ls, we have y(a) < y(b). When ls = ls′ , we have y(a) > y(b). So
by the intermediate value theorem, there must be a point where y(a) = y(b). This cannot
occur when both a and b are on the horizontal portions of their respective paths. If they
are both on the boundary between free and non-free space, then a and b are interior critical
points, where a is horizontally ℓ units to the right b. If one of a or b is on the boundary
between free and non-free space, and the other is on the horizontal portion, then we also
have an internal critical point, as there is a point on the boundary between free and non-free
space sharing a y-coordinate with an external critical point. Putting this all together, we
yield a contradiction in the case where y(g′) < y(r) and y(g′′′) > y(r′′). We yield a similar
contradiction in that case where y(g′) > y(r) and y(g′′′) < y(r′′). This shows that our
bijection is indeed order preserving. This completes the proof of the inductive case where
the sweepline does not pass through an internal critical point.

For the inductive case where the sweepline passes through an internal critical point, we
show that the bijection between the set of y-intervals and the set of minimal monotone

47

paths is preserved. If the internal critical point is the leftmost free point in the cell, there
is one extra starting point for a minimal monotone path to be considered. If an additional
minimal monotone path exists due to this point, our algorithm adds it to our data structure.
Similarly, if the internal critical point is the rightmost free point in the cell, there is one
fewer ending point for minimal monotone paths, and a y-interval is deleted from our data
structure if necessary. If our internal critical point is a point on the boundary between free
and non-free space that shares a y-coordinate with an external critical point, we consider
the two potential modifications to the set of minimal monotone paths. First, if the internal
critical point is on ls, we consider whether this point is the starting point of a new minimal
monotone path. If the internal critical point is on lt, we consider whether this point is
the last valid point for a minimal monotone path that needs to be removed. Second, we
consider whether there may be a swap in relative positions of the y-coordinates in minimal
monotone paths. If this is the case, we replace the previous y-coordinates with new y-
coordinates in the data structure. Finally, if the internal critical point is a pair of points on
the boundary between free and non-free space that are ℓ units horizontally away from one
another, we consider whether this internal critical point changes the relative positions of
the y-coordinates of minimal monotone paths, and update the data structure accordingly.
Note that if the internal critical point is a leftmost free point or rightmost free point, this
only adds or deletes minimal monotone paths, since the critical point is local to either ls or
lt. In contrast, if the internal critical point is a pair of points on the boundaries of free and
non-free space that are ℓ units horizontally from one another, this only affects the relative
positions of y-coordinates of minimal monotone paths, so it suffices to consider swapping
these relative positions in the data structure. To summarise, in all cases we update the data
structure and preserve the relative positions of the y-intervals of the minimal monotone
paths in our data structure. This completes the proof of our lemma.

Lemma 33. There exist m − 1 monotone paths satisfying the conditions of SC under the
continuous Fréchet distance if and only if our algorithm returns a set of m − 1 monotone
paths.

Proof. Suppose our algorithm returns a set of m − 1 monotone paths. We have already
shown in Section 2.5.2 that the monotone paths computed by the greedy depth first search
and link-cut data structure on G′ = (V ′, E′) result in valid paths. These monotone paths
are non-overlapping due to the order preserving bijection in Lemma 32. Hence, our reference
subtrajectory plus our m − 1 monotone paths forms a subtrajectory cluster that satisfies
the conditions of SC.

Suppose there exist m−1 monotone paths satisfying the conditions of SC. By Lemma 31
there exist m − 1 minimal monotone paths satisfying the conditions of SC. By Lemma 32
there is an order preserving bijection from the y-intervals of these m− 1 minimal monotone
paths to the set of intervals in our dynamic monotonic interval data structure. Hence, when
our algorithm reaches the reference subtrajectory that satisfies the conditions of SC, our
algorithm will report that there are m − 1 non-overlapping intervals in the data structure,
as required.

Finally, we perform a running time analysis on our algorithm. We begin by bounding
the number of internal critical points.

Lemma 34. There are O(n3) internal critical points.

48

Proof. If the internal critical point is the leftmost free point in its cell, there is only one
copy of it in its cell, so there are at most O(n2) internal critical points of this type.

If the internal critical point shares a y-coordinate with an external critical point, and is
on the boundary between free and non-free space, there are only two copies of it per external
critical point and per cell in the same row as it. In total, there are O(n2) external critical
points, and O(n) cells in the same row as it, so there are O(n3) internal critical points of
this type.

If the internal critical point is ℓ unites horizontally to the right of a point that is on the
boundary between free and non-free space, there is at most a constant number of copies per
pair of cells in the same row. This is because, for any pair of cells in the same row as each
other, a ℓ-unit horizontal translation of its free space boundary would only intersect the free
space boundary of the other cell a constant number of times. As there are O(n2) pairs of
cells that share a row, there are O(n2) internal critical points of this type.

Now we can analyse the running time of our algorithm to obtain the main result of
Section 2.5.

Theorem 4. There is an O(n3 log2 n) time algorithm for SC under the continuous Fréchet
distance.

Proof. Computing the graphG′ = (V ′, E′) requires O(n2 log n) time. Computing all internal
critical points takes O(n3) time, by computing each critical point individually in constant
time. Sorting them by x-coordinate requires O(n3 log n) time. At each of the O(n3) events,
we may insert the critical point into the graph G′. Inserting a single critical point inserts
up to O(log n) edges into the graph G′. In total, there are O(n3 log n) edges in the graph
G′. Each edge can be linked or cut at most once, so by the same amortised analysis as in
Section 2.4.2, we spend at most O(n3 log2 n) time updating the link-cut data structure.

We maintain the dynamic monotonic interval data structure by inserting, deleting, or
replacing (both a delete and an insert) an interval, which requires O(log n) time per event.
In total, maintaining the dynamic monotonic interval data structure requires O(n3 log n)
time.

In total, the running time is dominated by updating the link-cut data structure, and the
running time of our algorithm is O(n3 log2 n).

2.6 Lower bound

The main theorem we will prove in this section is the following:

Theorem 7. There is no O(n3−ε) time algorithm for SC under the continuous Fréchet
distance, for any ε > 0, unless SETH fails.

We reduce from the 3OV problem to SC. The formal definition of 3OV is as follows:

Problem 34 (3OV). We are given three sets of vectors X = {X1, X2, . . . , Xn}, Y =
{Y1, Y2, . . . , Yn} and Z = {Z1, Z2, . . . , Zn}. For 1 ≤ i, j, k ≤ n, each of the vectors Xi,
Yj and Zk are binary vector of length W . Our problem is to decide whether there exists a
triple of integers 1 ≤ i, j, k ≤ n such that Xi, Yj and Zk are orthogonal. The three vectors
are orthogonal if Xi[h] · Yj [h] · Zk[h] = 0 for all 1 ≤ h ≤W .

We employ a three step process in our reduction. We first provide an overview of each
step, then we outline the structure of this section in relation to these three steps.

49

• Step 1: Given a 3OV instance (X ,Y,Z), we construct in O(nW) time an SC instance
(T,m, ℓ, d) of complexity O(nW). We construct T by constructing two subtrajectories
T1 and T2 and connecting them by a point. We encode the booleans from the vector
set Z into the subtrajectory T1, and we encode the booleans from the vectors sets
X and Y into the subtrajectory T2. The subtrajectories T1 and T2 are analogous
to the subtrajectories in the overview section under the same name, however, the
subtrajectories in the full construction is significantly more complex.

• Step 2: We consider the free space diagram Fd(T, T) and prove various properties of
it. One of the key properties is the existence of antipodes. In the first key component
of our overview in Section 2.3.2, we briefly described these antipodes, and how these
antipodes determine the positions of diamond-shaped non-free regions in the free space
diagram. Another key property is the structure of Fd(T2, T1), which we show is mostly
of free-space, with all non-free space associated with antipodes. The final key property
are the positions of the vertical lines ls and lt that we will consider in our reduction. In
the third key component in Section 2.3.2, we mentioned that our reduction considers
n2 reference subtrajectories. We describe the positions of n2 pairs of vertical lines ls
and lt, so that ls passes through multiple critical points. Moreover, we show that all
of our n2 reference subtrajectories have the same length.

• Step 3: We use the properties of the free space diagram Fd(T, T) to prove that
(X ,Y,Z) is a YES instance if and only if (T,m, ℓ, d) is a YES instance. If (X ,Y,Z)
is a YES instance, we construct a set of monotone paths in Fd(T, T) to show that
(T,m, ℓ, d) is a YES instance. If (X ,Y,Z) is a NO instance, we define sequences
which we call cutting sequences. We show that if there is a cutting sequence between
a pair of points in Fd(T, T), there is no monotone path between the same pair of points.
We then use these cutting sequences to show that if (X ,Y,Z) is a NO instance, then
(T,m, ℓ, d) is a NO instance.

This rest of this section is structured as follows. In Section 2.6.1, given an instance
(X ,Y,Z) of 3OV, we construct an SC instance (T,m, ℓ, d) of complexity O(nW). In Sec-
tion 2.6.2 we fill in some missing details in our construction, in particular, we show that
certain points in our construction are well defined. This completes Step 1. In Section 2.6.3
we identify the antipodal pairs in our construction. In Section 2.6.4 we identify the starting
and ending points of our n2 reference subtrajectories, and prove that each reference subtra-
jectory has length ℓ. In Section 2.6.5 we describe the free space diagram of our construction,
and show that all non-free regions are associated with an antipodal pair. This completes
Step 2. In Section 2.6.6, we construct a set of monotone paths in the free space diagram.
In Sections 2.6.7, we use this set of monotone paths to prove that if our input (X ,Y,Z)
is a YES instance for 3OV, then our construction (T,m, ℓ, d) is a YES instance for SC.
In Section 2.6.8, we define and construct a set of sequences that show that there are is no
monotone path between certain points. In Section 2.6.9, we use this set of sequences to show
that if our input (X ,Y,Z) is a NO instance for 3OV then our construction (T,m, ℓ, d) is a
NO instance for SC. Finally, in Section 2.6.10, we put it all together and prove Theorem 7.
This completes Step 3.

2.6.1 Construction

Recall that as input we are given a 3OV instance, that is, three sets X , Y, Z of n binary
vectors of length W . Given this instance, we construct an instance (T,m, ℓ, d) for SC. We

50

construct the trajectory T by constructing two subtrajectories T1 and T2 and connecting
them via a point.

Let r and r′ be positive real numbers so that 10r < r′. We use polar coordinates in the
complex plane. Recall that r cis θ is a point that is r units away from the origin, at an angle
of θ anticlockwise from the positive real axis. Define ϕ = π

4W+6 and d = ||r cisπ − r′ cisϕ||,
where || · || denotes the Euclidean norm. Define δ = (r + r′ − d). Let ε > 0 be arbitrarily
small relative to δ and r.

Define the following points which will be used to define T1. See Figure 2.21.

Ah,u = r cis((2W + 3 + u) · ϕ), if u ̸= 2h
Ah,u = (r − 2

3δ) cis((2W + 3 + u) · ϕ), if u = 2h,
AW+1,u = r cis((2W + 3 + u) · ϕ)
Bk,h = r cis((4W + 5) · ϕ), if Zk[h] = 1
Bk,h = (r − ε) cis((4W + 5) · ϕ), if Zk[h] = 0
Bk,W+1 = r cis((4W + 5) · ϕ)
C = r cis((4W + 6) · ϕ)
D = r cis 0
E = r cisϕ
Fh,u = r cis((u+ 1) · ϕ), if u ̸= 2h
Fh,u = (r − 2

3δ) cis((u+ 1) · ϕ), if u = 2h
G = r cis((2W + 3) · ϕ)
H1 = 4r′ cis((3W + 4) · ϕ)
H2 = 8r′ cis((2W + 3) · ϕ).

E

G
Ah,2

Ah,1 Fh,3
Fh,2

Bk,h

Ah,3 Fh,1

DC

H2

G−

G+
j

A+
i,1

A−
1

A+
i,2

A−
2 Ai,3

A−
3

B+
i

B−

C+
iC−D+

i D−

E+
j

E−

F+
j,1

F+
j,2

F+
j,3

F−
j,1

F−
j,2

F−
j,3

H1

Figure 2.21: The vertices of T1 and T2, for W = 1.

51

Now we are ready to define the first subtrajectory T1.

T1 =⃝1≤k≤n

(
⃝1≤h≤W

(
G ◦⃝1≤u≤2W+1(Ah,u) ◦Bk,h ◦ C ◦D ◦ C ◦D

◦ E ◦⃝1≤u≤2W+1(Fh,u)
)

◦G ◦⃝1≤u≤2W+1(AW+1,u) ◦Bk,W+1 ◦ C ◦D ◦ C ◦D

◦ C ◦H1 ◦H2

)
Define the following points which will be used to define T2.

A−
u = (r′ − δ) cis(π + (2W + 3 + u) · ϕ) for all 1 ≤ u ≤ 2W + 1

B− = (r′ − δ) cis(π + (4W + 5) · ϕ)
C− = (r′ − δ) cis(π + (4W + 6) · ϕ)
D− = (r′ − δ) cis(π)
E− = (r′ − δ) cis(π + ϕ)
F−
u = (r′ − δ) cis(π + (u+ 1) · ϕ) for all 1 ≤ u ≤ 2W + 1

G− = (r′ − δ) cis(π + (2W + 3) · ϕ)
H− = (r′ − δ) cis((2W + 3) · ϕ)
A+

i,u = r′ cis(π + (2W + 3 + u) · ϕ), if i or u are odd

A+
i,u = r′ cis(π + (2W + 3 + u) · ϕ), if i and u are even and X i

2
[u2] = 1

A+
i,u = (r′ − 2

3δ) cis(π + (2W + 3 + u) · ϕ), if i and u are even and X i
2
[u2] = 0

B+
i = bi cis(π + (4W + 5) · ϕ), where bi is defined below

C+
i = ci cis((4W + 6) · ϕ), where ci is defined below

D+
i = r′ cis(π)

E+
j = ej cis(π + ϕ) where ej is defined below

F+
j,u = r′ cis(π + (u+ 1) · ϕ), if j or u are odd

F+
j,u = r′ cis(π + (u+ 1) · ϕ), if j and u are even and Y j

2
[u2] = 1

F+
j,u = (r′ − 2

3δ) cis(π + (u+ 1) · ϕ), if j and u are even and Y j
2
[u2] = 0

G+
j = gj cis(π + (2W + 3) · ϕ), where gj is defined below

Now we define bi, ci, gj , and ej .
LetBε = (r−ε) cis((4W+5)·ϕ). For 1 ≤ i ≤ 2n+3, define I+i so that C, I+1 , I+2 , . . . , I+2n+3, Bε

are evenly spaced along the segment CBε. For 1 ≤ i ≤ 2n+ 3 define bi so that ||BiIi|| = d.
For 1 ≤ i ≤ 2n+ 1 define ci so that ||Ci+2Ii|| = d. Define c1 = c2 = c3.

For all 1 ≤ j ≤ 2n+ 1, define J+
j = (r′ − j

2n+2δ) cis(π + (2W + 4) · ϕ) to be a point on

A−
1 A

+
1,1. Define Kj to be the point on GA1,1 such that ||KjJ

+
j || = d. Define gj to be the

positive real so that ||G+
j K2n+2−j || = d.

For all 1 ≤ j ≤ 2n+1, define L+
j = (r′− 2n+4−j

2n+2 δ) cis(π) to be a point on D−D+
1 . Define

Mj to be the point on DE such that ||MjL
+
j || = d. Define ej to be the positive real so that

||E+
j M2n+2−j || = d.

52

Now we are ready to define the second subtrajectory T2.

T2 =⃝1≤i≤2n+1

(
G− ◦G+

i ◦G
− ◦⃝1≤u≤2W+1(A

−
u ◦A+

i,u ◦A
−
u) ◦B− ◦B+

i ◦B
− ◦⃝1≤u≤3(Pi ◦Qi)

)
◦⃝1≤j≤2n

(
E− ◦ E+

j ◦ E
− ◦⃝1≤u≤2W+1(F

−
u ◦ F+

j,u ◦ F
−
u) ◦G− ◦G+

j ◦G
−)

◦ C− ◦ C+
1 ◦ C− ◦D− ◦D+

1 ◦D− ◦ C− ◦ C+
2 ◦ C− ◦D− ◦D+

2 ◦D− ◦H−

◦ E− ◦ E+
2n+1 ◦ E− ◦⃝1≤u≤2W+1(F

−
u ◦ F+

2n+1,u ◦ F−
u) ◦G− ◦G+

2n+1 ◦G−

◦⃝3≤i≤2n+2

(
C− ◦ C+

i ◦ C
− ◦G− ◦D− ◦D+

i ◦D
−)

◦ C− ◦ C+
2n+3 ◦ C− ◦G− ◦D− ◦D+

2n+3

where Pi and Qi are points on B−G− so that, for all 1 ≤ i ≤ n, the subtrajectory from
A+

2i−1,1 to D+
2i+3 has total length λ, for some constant λ. Define T = T1 ◦D− ◦ T2. Define

m = 2nW + 2. Define ℓ = λ− δ. Recall that d = ||r cisπ − r′ cisϕ||. Then our constructed
instance is (T,m, ℓ, d).

We show that Bi, Ei, Gj and Kj are well defined in Section 2.6.2, and show that Pi and
Qi are well defined in Section 2.6.4. Once we show that these points are indeed well defined,
we would complete the Step 1 our reduction.

2.6.2 Points Bi, Ei, Gj and Kj are well defined

In order to show that points Bi, Ei, Gj and Kj are well defined, we start with a useful
lemma. Given a point P and a segment, the lemma constructs a point X on the segment
so that the distance from P to X is exactly d.

Lemma 35. Suppose P , A, B are arbitrary points in the plane and let d be a given constant.
Suppose further that |PA| < d < |PB|. Then there exists a point X on the segment AB so
that |PX| = d.

Proof. As X varies along the segment AB, the distance of P to X is a continuous function.
This function starts at a value less than d (when X = A) and ends at a value greater than d
(when X = B). By the intermediate value theorem, there is a point so that |PX| = d.

Next, we apply this lemma repeatedly to show that Bi, Ei, Gj and Kj are well defined.

Lemma 36. The points Bi, Ci, Ej and Gj are well defined.

Proof. Let O be the origin. The points Bi and Ci can be shown to be well defined in a
similar way, so we focus only on Bi. The definition of Bi is bi cis(π + 4W + 6 · ϕ) so that
||IiBi|| = d. Let B+ = r′ cis(π + 4W + 6 · ϕ). To show that Bi is well defined, we apply
Lemma 35 on segment OB+. We know ||IiO|| < r < d, and ||IiB+|| > ||OB+|| > r′ > d
since ∠IiOB+ > π

2 . Therefore, there exists a point Bi on OB+ so that ||IiBi|| = d.
The points Ej andGj can be shown to be well defined in a similar way, so we focus only on

Ej . For Ej , we first show that Mj is well defined, then we show Ej is well defined. To show
thatMj is well defined, we apply Lemma 35 on segmentDE. We know ||DL+

j || > ||DD−|| =
d, and ||EL+

j || < ||ED+|| = d. Hence, there exists Mj on DE so that ||MjL
+
j || = d. Let

E+ = r′ cis(π + ϕ). To show that Ej is well defined, we apply Lemma 35 on segment
OE+. We know ||MjO|| < r < d, and ||MjE

+|| > ||OE+|| > r′ > d since ∠MjOE+ > π
2 .

Therefore, there exists a point Ej so that ||EjMj || = d.

53

2.6.3 Antipodal property

Similar to our first key component in Section 2.3.2, the subtrajectories T1 and T2 are con-
structed in such a way that most points are within distance d of one another, whereas a few
pairs of points are of distance greater than d from one another. The pairs of points with
distance greater than d are called antipodes, which we list in our definition below.

Definition 37. Define the following pairs of vertices of T to be antipodes: (A+
i,u, Ah,u),

(B+
i , Bk,h), (C+

i , C), (D+, D), (E+
j , E), (F+

j,u, Fh,u), (G+
j , G), and (v+, Hu), where u ∈

{1, 2} and v+ is any vertex of T2.

Next, we prove that these antipodes have distance greater than d from one another, and
are the only such pairs with this property.

Lemma 38. Suppose v is a vertex of T1 and v+ is a vertex of T2, so that the distance
between v+ and v is greater than d. Then v+ and v are antipodes.

Proof. Note that if v = Hu for some u ∈ {1, 2}, then we immediately get that v+ and v are
antipodes. So for the remainder of this proof we assume v ̸= Hu.

Let O be the origin. We will show that v+, O and v are collinear, in that order. Suppose
the contrary. Then ∠v+Ov ≤ π − ϕ, since all vertices in our construction lie on rays
emanating from the origin that are ϕ radians apart. Now, ||Ov|| ≤ r, ||Ov+|| ≤ r′ and
∠v+Ov ≤ π − ϕ. Therefore, ||v+v|| ≤ ||r cisπ − r′ cisϕ|| = d, which is a contradiction.
Hence, v+, O, v are collinear, in that order. Moreover, ||v+v|| > d. The only pairs of
vertices (v+, v) satisfying these two properties are the antipodes listed in Definition 37.

In the next lemma, we prove a useful property of antipodal pairs. In Section 2.6.5 we
will use this useful property to prove that Fd(T2, T1) consists of mostly free-space, with
small regions of non-free space, and that each region of non-free space is associated with an
antipodal pair.

Lemma 39. Suppose a is a point on T1 and b is a point on T2, not necessarily vertices.
Suppose that |ab| > d. Then there exists an endpoint Ea of the segment containing a, and
an endpoint Eb of the segment containing b, so that (Eb, Ea) are antipodes.

Proof. Suppose for the sake of contradiction that there does not exist an endpoint of the
segment containing a and an endpoint of the segment containing b that are antipodes. Let
a be on a1a2 and b be on b1b2. Since none of (au, bw) are antipodes for 1 ≤ u,w ≤ 2, we
have by Lemma 38 that ||aubw|| ≤ d. The distance of point a1 to b1b2 is maximised at the
endpoints b1 or b2. So ||a1b|| ≤ d, ||a2b|| ≤ d. But now, the distance of point b to a1a2
is maximised at the endpoints. So ||ab|| ≤ d. This contradiction means that our initial
assumption cannot hold, and there is a pair of endpoints (Eb, Ea) which are antipodes.

2.6.4 Subtrajectory length property

There are two aims of this subsection. First, we complete the Step 1 our reduction by
showing that the points Pi and Qi are indeed well defined. Second, we identify the critical
points J+

2i−1,j and L+
2i+3,j for 1 ≤ i, j ≤ 2n+ 1, and define a reference subtrajectory from s

to t so that ls passes through J+
2i−1,j and lt passes through L+

2i+3,j . We show that there are

O(n2) reference subtrajectories of this form, and that each of these reference subtrajectories
have Euclidean length equal to ℓ.

54

We start with the first aim of this subsection, that is to show that Pi and Qi are well
defined. The main lemma for this is Lemma 41. Recall that Pi and Qi are points on B−G−

so that, for all 1 ≤ i ≤ n, the subtrajectory from A+
2i−1,1 to D+

2i+3 has total length λ, for
some constant λ. We first show a useful lemma that we will use to prove the main lemma.

Lemma 40. Suppose A and B are arbitrary points in the plane and λ is a positive real
satisfying |AB| < λ < 7 · |AB|. Then there exist points P and Q on AB so that the curve
A ◦⃝1≤u≤3(P ◦Q) ◦B has total length λ.

Proof. Start with P = Q = A. At first, the total length of A ◦ ⃝1≤u≤3(P ◦ Q) ◦ B is
|AB|. Now, move P continuously from A to B. When P reaches B, the total length is
7|AB|. By the intermediate value theorem, there is a position of P so that the total length
of A ◦⃝1≤u≤3(P ◦Q) ◦B is λ.

Now we are ready to prove the main lemma.

Lemma 41. The points Pi and Qi are well defined for 1 ≤ i, j ≤ 2n+ 1.

Proof. Define P2n+1 = Q2n+1 = B−. Similarly, define P2n = Q2n = P2n−1 = Q2n−1 = B−.
Define λ to be the length of the subtrajectory from A+

2n−1,1 to D+
2n+3. We define Pi and

Qi inductively, starting at i = 2n− 1 and working down to i = 1, so that the subtrajectory
from A+

2i−1,1 to D+
2i+3 has length λ. In the base case of i = 2n − 1, the subtrajectory has

length λ by definition.
In the inductive case, assume that the subtrajectory from A+

2i+1,1 to D+
2i+5 has length

λ. We would like to define Pi and Qi so that the subtrajectory from A+
2i−1,1 to D+

2i+3

also has length λ. This is equivalent to the subtrajectory from A+
2i−1,1 to A+

2i+1,1 and the

subtrajectory from D+
2i+3 to D+

2i+5 having the same length. We will approximate the lengths
of these subtrajectories, and show that Pi and Qi can be defined using Lemma 40 to make
the subtrajectories the same length.

First, we approximate the length of the subtrajectory from A+
2i−1,1 to A+

2i+1,1. We ignore
Pi and Qi initially, and add its contribution later. The length is dominated by the distances
between the vertices A+

2i−1,u for 1 ≤ u ≤ 2W − 1, B+
2i−1, G

+
2i−1, A

+
2i,u for 1 ≤ u ≤ 2W − 1,

B+
2i, G

+
2i and finally A+

2i+1,u. Formally, we can set r′ >> r so that δ approaches zero, so B− is

arbitrarily close to B+. With this simplification in mind, the subtrajectory is approximately
a closed loop that visits B+ twice and G+ twice. So a lower bound for the length of the
subtrajectory is 4||B+G+|| ≈ 4

√
2r′. An upper bound for the length of the subtrajectory is

to replace the segments of the subtrajectory with an arc of the circle centered at the origin
with radius r′. This upper bound is a closed loop on the circumference that visits B+ twice
and G+ twice. So an upper bound for the length of the subtrajectory is four times the arc
from B+ to G+, which is approximately 2πr′. Let the length of A+

2i−1,1 to A+
2i+1,1, ignoring

the contributions of Pi and Qi, be λi, so that 4
√
2r′ ≤ λi ≤ 2πr′.

Next, we approximate the length of the subtrajectory from D+
2i+3 to D+

2i+5. The length
is dominated by the distances between the vertices D+, G−, C+, G−, D−, G−, C+, G−

and back to D+. The length of this closed loop is approximately 8||D+G−|| = 8
√
2r′.

Now we use the same idea as Lemma 40. Start with Pi = Qi = B−. Then the length of
the subtrajectory from A+

2i−1,1 to A+
2i+1,1 is simply λi. Now, move Pi continuously from B−

to G−. When Pi reaches G
−, then the length of the subtrajectory from A+

2i−1,1 to A+
2i+1,1

is λi + 6|B−G−| ≈ λi + 6
√
2r′. Therefore, as Pi moves continuously, the initial length of

A+
2i−1,1 to A+

2i+1,1 is at most 2πr′, and its final length is at least 10
√
2r′. By the intermediate

55

value theorem, there exists a position of Pi so that the lengths of the subtrajectories from
A+

2i−1,1 to A+
2i+1,1 and from D+

2i+3 to D+
2i+5 are the same.

Now that all points in the construction are well defined, we have completed the first aim
of this subsection. Next, we focus on the second aim of this subsection, which is to identify
critical points J+

2i−1,j and L+
2i+3,j .

To help us define the critical points J+
2i−1,j and L+

2i+3,j , we add subscripts to the vertices
of T , without modifying the trajectory T . For example, for the vertex G, we let Gk,h denote
the (kW + k + h)th time G appears in T . This subscripted version of the trajectory T is
given as follows:

T =⃝1≤k≤n

(
⃝1≤h≤W

(
Gk,h ◦⃝1≤u≤2W+1(Ak,h,u) ◦Bk,h ◦ Ck,h,1 ◦Dk,h,1 ◦ Ck,h,2 ◦Dk,h,2

◦ Ek,h ◦⃝1≤u≤2W+1(Fk,h,u)
)

◦Gk,W+1⃝1≤u≤2W+1 (Ak,W+1,u) ◦Bk,W+1 ◦ Ck,W+1,1 ◦Dk,W+1,1 ◦ Ck,W+1,2

◦Dk,W+1,2 ◦ Ck,W+1,3 ◦Hk,1 ◦Hk,2

)
◦D−

0

◦⃝1≤i≤2n+1

(
G−

i,1 ◦G
+
i,1 ◦G

−
i,1 ◦⃝1≤u≤2W+1(A

−
i,u ◦A

+
i,u ◦A

−
i,u) ◦B

−
i ◦B

+
i ◦B

−
i

◦⃝1≤u≤3(Pi,u ◦Qi,u)
)

◦⃝1≤j≤2n

(
E−

j ◦ E
+
j ◦ E

−
j ◦⃝1≤u≤2W+1(F

−
j,u ◦ F

+
j,u ◦ F

−
j,u) ◦G

−
j,2 ◦G

+
j,2 ◦G

−
j,2

)
◦ C−

1 ◦ C
+
1 ◦ C

−
1 ◦D

−
1 ◦D

+
1 ◦D

−
1 ◦ C

−
2 ◦ C

+
2 ◦ C

−
2 ◦D

−
2 ◦D

+
2 ◦D

−
2 ◦H

−
1

◦ E−
2n+1 ◦ E

+
2n+1 ◦ E

−
2n+1 ◦⃝1≤u≤2W+1(F

−
2n+1,u ◦ F

+
2n+1,u ◦ F

−
2n+1,u) ◦G

−
2n+1,2 ◦G

+
2n+1,2

◦G−
2n+1,2 ◦⃝3≤i≤2n+3

(
C−

i ◦ C
+
i ◦ C

−
i ◦G

−
i,3 ◦D

−
i ◦D

+
i ◦D

−
i ◦G

−
i,4

)
◦ C−

2n+3 ◦ C
+
2n+3 ◦ C

−
2n+3 ◦G

−
2n+3,3 ◦D

−
2n+3 ◦D

+
2n+3

Now we can define the critical points J+
2i−1,j and L+

2i+3,j on the re-indexed trajectory.

Recall from Section 2.6.1 that J+
j = (r′− j

2n+2δ) cis(π+(2W +4) ·ϕ) is a point on A−
1 A

+
1,1.

Similarly, L+
j = (r′ − 2n+4−j

2n+2 δ) cis(π) is a point on D−D+
1 . Define J+

2i−1,j to coincide with

J+
j in the complex plane, so that A+

2i−1,1, J
+
2i−1,j and A−

2i−1,1 are in that order along the

trajectory T . Similarly, define L+
2i+3,j to coincide with L+

j in the complex plane, so that

D−
2i+3, L

+
2i+3,j and D+

2i+3 are in that order along the trajectory T .

Clearly, there are n2 pairs of critical points J+
2i−1,j and L+

2i+3,j . By considering the

reference subtrajectory from s to t so that ls passes through J+
2i−1,j , and lt passes through

L+
2i+3,j , we obtain the n2 reference subtrajectories that are mentioned our third key com-

ponent in Section 2.3.2. It suffices to show that if we pick ls and lt in this way, then all n2

reference subtrajectories have Euclidean length equal to ℓ.

Lemma 42. For all 1 ≤ i, j ≤ n, the length of the subtrajectory from J+
2i−1,2j−1 to

L+
2i+3,2j+1 is ℓ.

Proof. We already have that the subtrajectory from A+
2i−1,1 to D+

2i+3 has length λ, for all

1 ≤ i ≤ n. The distance from A+
2i−1,1 to J+

j is 2j−1
2n+2δ. The distance from L+

j to D+
2n+3

is 2n+4−2j−1
2n+2 δ. Therefore, the length of the subtrajectory from J+

j to L+
j is λ − 2j−1

2n+2δ −
2n+4−2j−1

2n+2 δ = λ− δ = ℓ as required.

56

This completes the second aim of this subsection. We also show one last property of
the free space diagram Fd(T, T). In particular, we show that ls and lt cannot be between
the vertical lines through the x-coordinates corresponding to Hk,1 and Hk+1,2. It involves
modifying the construction of the base case in Lemma 41.

Lemma 43. For all 1 ≤ k ≤ n, the length of the subtrajectory from Hk,1 to Hk+1,2 is less
than ℓ.

Proof. Consider the subtrajectory from Hk,1Hk+1,2. All points on this subtrajectory, other
than Hk,1, Hk,2, Hk+1,1 and Hk+1,2 lie within a circle of radius r centered at the origin.
We can set r′ to be arbitrarily large relative to r, so that the length of the subtrajectory is
dominated by the distances between the origin, Hk,1, Hk,2, Hk+1,1 and Hk+1,2. Therefore,
the length of the subtrajectory is at most 40r′, ignoring terms involving r. It suffices to
show that ℓ > 40r′.

Recall that the subtrajectory from A+
2n−1,1 to D+

2n+3 is defined to have length λ = ℓ+ δ.
Recall that for all 1 ≤ i ≤ 2n + 3, Pi and Qi were defined so that the subtrajectory from
A+

2i−1,1 to D+
2i+3 also has length λ. We will modify the subtrajectory A+

2n−1,1 to D+
2n+3 so

that λ > 41r′, and therefore, ℓ > 40r′.
To do this, instead of initialising our induction in Lemma 41 with P2n+1 = Q2n+1 = B−

we place P2n+1 and Q2n+1 at B− and G− respectively. Moreover, instead of placing three
copies of each of P2n+1 and Q2n+1, we place 41 copies. Each subtrajectory P2n+1 ◦Q2n+1 ◦
P2n+1 has length at least r′, so λ > 41r′, as required.

2.6.5 Free space diagram

In this section, we describe the free space diagram Fd(T, T), in other words, the free space
diagram between the trajectory T and itself, with distance parameter d. We use the antipo-
dal property in Section 2.6.3 to show that our free space diagram is mostly free space, with
regions of non-free space associated with antipodal pairs.

We begin with the following definition. For any pair of points x and y on the trajectory
T , not necessarily vertices of T , define f(x, y) to be the point in Fd(T, T) with x-coordinate
associated with point x and y-coordinate associated with point y. We introduce the following
notation to describe the regions of non-free space in the free space diagram.

Definition 44. Suppose f(x, y) is not in the free space of Fd(T, T). Define ♢(x, y) to be
the region of non-free space that contains f(x, y).

Next, we show the non-free space ♢(x, y) is always associated with an antipodal pair.

Lemma 45. All regions of non-free space in Fd(T2, T1) are ♢(v+, v) where the pair (v+, v)
are antipodes.

Proof. Suppose f(x, y) is not in free space. Then by Lemma 39, there exists an endpoint of
the segment containing x and an endpoint of the segment containing y that are antipodes.
Let (v+, v) be this pair of antipodes. Let x be on the segment v−v+ and let y be on
the segment uv. We can verify that for all (v+, v) that are antipodes in construction in
Section 2.6.1, by moving from v− to v+ we move further away from (any points on) segment
uv, and similarly, by moving from u to v we move further away from (any point on) segment
v−v+.

Using this fact, we can prove that desired lemma. Since f(x, y) is in non-free space,
we have ||xy|| > d. By moving from x to v+, we move further away from y, which is on

57

uv. Hence, ||v+y|| > d, and all points between f(x, y) and f(v+, y) are in non-free space.
Finally, by moving from y to v, we move further away from v+. Hence, all points between
f(v+, y) and f(v+, v) are non-free space. Therefore, we have constructed a path of non-free
space connecting f(x, y) and f(v+, v), so f(x, y) must be contained in ♢(v+, v).

Now we show that the non-free space ♢(v+, v) is in fact a diamond. In particular, it is
diamond shaped, with concave (inwards-curved) sides. See Figure 2.22.

v+

v

u

w

v− v−

Figure 2.22: ♢(v+, v) is diamond shaped, with concave (inwards-curved) sides.

Lemma 46. Suppose (v+, v) are antipodes, v ̸= Hu,1 and v ̸= Hu,2 for any 1 ≤ u ≤ n.
Then ♢(v+, v) is diamond shaped, with concave (inwards-curved) sides. Moreover, the x-
coordinates spanned by ♢(v+, v) corresponds to a subset of the neighbouring segments of v+;
the y-coordinates spanned by ♢(v+, v) corresponds to a subset of the neighbouring segments
of v.

Proof. Lemma 39 immediately implies that the x and y-coordinates of ♢(v+, v) is spanned
by the neighbouring segments of v+ and v respectively. It suffices to show that the shape
of this non-free space is diamond shaped, with concave (inwards-curved) sides.

Draw a vertical line ♢(v+, v) through the x-coordinate v+, and a horizontal line through
the y-coordinate v. This divides ♢(v+, v) into four quadrants. We will show that each
quadrant consists of a continuous, xy-monotone side. Then we will show that the sides are
concave.

Let the neighbouring segments of v+ in T2 be v−v+ and v+v−. Let the neighbouring
segments of v in T1 be uv and vw. We can verify that for all (v+, v) that are antipodes in
our construction, that the point v− is strictly closer to u, v, w than v+. We can also verify
for all antipodes that u and w are closer to v+ than v.

Let us focus on the top right quadrant. This is the free space with x-coordinates asso-
ciated with the segment v+v−, and y-coordinates associated with the segment vw. Along
the edge v+v−, the distance to any fixed point on vw is strictly increasing. Similarly, along
the edge vw, the distance to any fixed point on v+v− is strictly increasing. Therefore, the
boundary of ♢(v+, v), which is the set of all x ∈ v+v− and y ∈ vw so that ||xy|| = d, is
a continuous curve starting at the same y-coordinate as v+, and moving down and to the
right. This gives one of the four curved sides of the diamond. Moreover, we know that in
the free space diagram, the free space must be the intersection of an ellipse with the cell.

58

Hence, this xy-monotone side is concave, inward-facing, and the boundary of an ellipse.
Repeating this for all four quadrants gives the four continuous, xy-monotone and concave
(inwards-curved) sides of ♢(v+, v).

Finally, we describe the free space and non-free space on the vertical line through the
x-coordinate associated with the point Hk,2 for some 1 ≤ k ≤ n. We the vertical line
alternates between free and non-free space, where the free space corresponds with Hu,2 for
some u, as shown in Figure 2.23.

H2,2

H1,2

H2,2

H3,2

H5,2

H4,2

Figure 2.23: An example of the vertical line from Hk,2 passing through alternating regions
of free and non-free space, where k = 2 and n = 5.

Lemma 47. Consider the vertical line in the free space diagram Fd(T, T) with x-coordinate
corresponding to Hk,2. This vertical line consists of alternating regions of free space and
non-free space, with n regions of contiguous free space and n + 1 regions of contiguous
non-free space. Moreover, each of the n regions of contiguous free space contains the point
f(Hk,2, Hu,2) for some 1 ≤ u ≤ n.

Proof. Consider the vertices of T . Divide the vertices into two sets,H2 = {Hu,2 for some 1 ≤
u ≤ n}, and the other vertices T \H2. For all v ∈ T \H2, the vertex v is within the ball of
radius 4r′ centered at the original, so the distance from v to Hk,2 is greater than d. However,
for all v ∈ H2, the distance from v to Hk,2 is zero.

Let x be an arbitrary point on T . If x is on a segment where both endpoints are in
T \H2, then f(Hk,2, x) is non-free space. If one of the endpoints are in T \H2, then x will
only be free space if it is within distance d to Hk,2. These regions of close proximity only
occur when one of the endpoints is Hu,2. So there are exactly n segments of free space, and
n+ 1 segments of non-free space on the vertical line with x-coordinate Hk,2.

This completes Step 2 of our reduction, that is, to prove the various useful properties of
the free space diagram Fd(T, T). For the remainder of this chapter, we will focus on Step 3,
to use the properties of the free space diagram Fd(T, T) to prove that (X ,Y,Z) is a YES
instance if and only if (T,m, ℓ, d) is a YES instance.

59

2.6.6 Paths in free space

In the following section (Section 2.6.7), we will show that if (X ,Y,Z) is a YES instance for
3OV, then (T,m, ℓ, d) is a YES instance for SC. This involves constructing a pair of vertical
lines ls and lt, and m − 1 monotone paths from ls to lt, with the property that the m − 1
monotone paths intersect in their y-coordinates in at most one point, and the each of the
m− 1 monotone paths intersect with the y-interval from s to t in at most one point.

In this section, we compile a list of monotone paths, and prove their correctness. Some
of these monotone paths are conditioned on one of the booleans Xi[h], Yj [h] or Zk[h] being
equal to zero. The list of monotone paths from this section will be used extensively in the
subsequent section.

To aid with our description of monotone paths in both this section and the subsequence
section, we use the following notation. Suppose (v+, v) are antipodes, v ̸= Hu,1 and v ̸= Hu,2

for any 1 ≤ u ≤ n. Define the top, bottom, left and right corners of ♢(v+, v) to be ♢T (v
+, v),

♢B(v
+, v), ♢L(v

+, v) and ♢R(v
+, v) respectively.

We say f(x, y)→ f(w, z) if there is a monotone path from f(x, y) to f(w, z).

Lemma 48. For 1 ≤ i, j, k ≤ n and 1 ≤ h ≤W :

(a) ♢R(A
+
2i−1,1, Ak,h,1)→ ♢T (B

+
2i, Bk,h),

(b) ♢R(A
+
2i−1,1, Ak,h,1)→ ♢T (B

+
2i+1, Bk,h) if Xi[h] = 0,

(c) ♢T (B
+
i , Bk,h)→ ♢B(C

+
i+1, Ck,h,1),

(d) ♢T (B
+
2i, Bk,h)→ ♢B(C

+
2i+2, Ck,h,1) if Zk[h] = 0,

(e) ♢B(C
+
i+2, Ck,h,1)→ ♢L(D

+
i+3, Dk,h,1),

(f) ♢R(A
+
2i−1,1, Ak,h,1)→ ♢L(D

+
2i+3, Dk,h,2).

(g) ♢R(A
+
2i−1,1, Ak,h,1)→ ♢L(D

+
2i+3, Dk,h,1) if Xi[h] · Zk[h] = 0.

(h) ♢L(A
+
2i−1,2, Ak,h,2)→ ♢T (D

+
2i+2, Dk,h,2).

(i) ♢B(E
+
2j−1, Ek,h)→ ♢T (G

+
2j,2, Gk,h).

(j) ♢B(E
+
2j−1, Ek,h)→ ♢T (G

+
2j+1,2, Gk,h) if Yj [h] = 0.

(k) ♢L(E
+
1 , Ek,h)→ ♢T (G

+
1,2, Gk,h).

(l) f(E+
1 , Dk,h,2)→ ♢T (G

+
2n+1,2, Gk,h).

Proof.

(a) ♢R(A
+
2i−1,1, Ak,h,1)→ ♢L(A

+
2i,1, Ak,h,1)→ ♢L(A

+
2i,2, Ak,h,2)→ . . .→ ♢L(A

+
2i,2W+1, Ak,h,2W+1)

→ ♢T (B
+
2i, Bk,h)

(b) SinceXi[h] = 0, we have that ♢(A+
2i,2h, Ak,h,2h) is non-existent by construction. There-

fore, ♢T (A
+
2i,2h−1, Ak,h,2h−1)→ ♢B(A

+
2i,2h+1, Ak,h,2h+1). Hence, we have ♢R(A

+
2i−1,1, Ak,h,1)→

♢L(A
+
2i,1, Ak,h,1)→ ♢L(A

+
2i,2, Ak,h,2)→ . . .→ ♢L(A

+
2i,2h−1, Ak,h,2h−1)→ ♢T (A

+
2i,2h−1, Ak,h,2h−1)

→ ♢B(A
+
2i,2h+1, Ak,h,2h+1) → ♢L(A

+
2i+1,2h, Ak,h,2h) → ♢L(A

+
2i+1,2h+1, Ak,h,2h+1) →

. . .→ ♢L(A
+
2i+1,2W+1, Ak,h,2W+1)→ ♢L(B

+
2i+1, Bk,h)→ ♢T (B

+
2i+1, Bk,h)

60

(c) Define I+i−0.5 to be the midpoint of I+i I+i−1. From the definition of Ii, we have

||B+
i I+i−0.5|| < d and ||C+

i+1I
+
i−0.5|| < d. The point I+i−0.5 lies on CB, however,

since ε can be chosen to be arbitrarily small, we can place I+i−0.5 on Bk,hCk,h,1

while maintaining ||B+
i I+i−0.5|| < d and ||C+

i+1I
+
i−0.5|| < d. Let I+i−0.5,k,h be the copy

of I+i−0.5 on the segment Bk,hCk,h,1. Hence, ♢T (B
+
i , Bk,h) → f(B+

i , I+i−0.5,k,h) →
f(C+

i+1, I
+
i−0.5,k,h)→ ♢B(C

+
i+1, Ck,h,1).

(d) Since Zk[h] = 0, we have Bk,h = Bk,W+1. Let Ii,k,h be the copy of the point Ii on the
segment Bk,hCk,h,1. Then by our definition of Ii, we have ||BiIi|| = d and ||Ci+2Ii|| =
d. Hence, ♢T (B

+
2i, Bk,h) = f(I2i, Bk,h)→ f(I2i, Ck,h,1) = ♢B(C

+
2i+2, Ck,h,1).

(e) ♢B(C
+
i+2, Ck,h,1)→ ♢R(C

+
i+2, Ck,h,1)→ ♢L(C

+
i+3, Ck,h,1)→ ♢L(D

+
i+3, Dk,h,1).

(f) By (a), ♢R(A
+
2i−1,1, Ak,h,1)→ ♢T (B

+
2i, Bk,h). By (c), ♢T (B

+
2i, Bk,h)→ ♢B(C

+
2i+1, Ck,h,1).

By (e), ♢B(C
+
2i+1, Ck,h,1)→ ♢L(D

+
2i+2, Dk,h,1). Putting this together, ♢R(A

+
2i−1,1, Ak,h,1)→

♢T (B
+
2i, Bk,h)→ ♢B(C

+
2i+1, Ck,h,1)→ ♢L(D

+
2i+2, Dk,h,1)→ ♢L(D

+
2i+3, Dk,h,2).

(g) We modify the proof of (f) in the case where Xi[h] ·Zk[h] = 0. If Xi[h] = 0, we replace
(a) with (b) to yield ♢R(A

+
2i−1,1, Ak,h,1) → ♢T (B

+
2i+1, Bk,h) → ♢B(C

+
2i+2, Ck,h,1) →

♢L(D
+
2i+3, Dk,h,1). If Zk[h] = 0, we replace (c) with (d) to yield ♢R(A

+
2i−1,1, Ak,h,1)→

♢T (B
+
2i, Bk,h)→ ♢B(C

+
2i+2, Ck,h,1)→ ♢L(D

+
2i+3, Dk,h,1).

(h) ♢L(A
+
2i−1,2, Ak,h,2)→ ♢T (B

+
2i−1, Bk,h)→ ♢B(C

+
2i, Ck,h,1)→ ♢L(D

+
2i+1, Dk,h,1)→

♢L(D
+
2i+2, Dk,h,2).

(i) ♢B(E
+
2j−1, Ek,h)→ ♢L(E

+
2j−1, Ek,h)→ ♢L(E

+
2j , Ek,h)→ ♢L(F

+
2j,1, Fk,h,1)→ ♢L(F

+
2j,2, Fk,h,2)

→ . . .→ ♢L(F
+
2j,2W+1, Fk,h,2W+1)→ ♢T (G

+
2j,2, Gk,h)

(j) Since Yk[h] = 0, we have that ♢(F+
2j,2h, Fk,h,2h) is non-existent. Therefore, ♢T (F

+
2j,2h−1, Fk,h,2h−1)

→ ♢B(F
+
2j,2h−1, Fk,h,2h−1). Hence, ♢B(E

+
2j−1, Ek,h)→ ♢L(E

+
2j−1, Ek,h)→ ♢L(E

+
2j , Ek,h)→

♢L(F
+
2j,1, Fk,h,1)→ ♢L(F

+
2j,2, Fk,h,2)→ . . .→ ♢L(F

+
2j,2h−1, Fk,h,2h−1)→ ♢T (F

+
2j,2h−1, Fk,h,2h−1)

→ ♢B(F
+
2j,2h−1, Fk,h,2h−1) → ♢L(F

+
2j+1,2h, Fk,h,2h) → ♢L(F

+
2j+1,2h+1, Fk,h,2h+1) →

. . .→ ♢L(F
+
2j+1,2W+1, Fk,h,2W+1)→ ♢T (G

+
2j+1,2, Gk,h)

(k) ♢L(E
+
1 , Ek,h)→ ♢L(F

+
1,1, Fk,h,1)→ ♢L(F

+
1,2, Fk,h,2)→ . . .→ ♢L(F

+
1,2W+1, Fk,h,2W+1)→

♢T (G
+
1,2, Gk,h)

(l) f(E+
1 , Dk,h,2)→ ♢L(D

+
1 , Dk,h,2)→ ♢L(E

+
2n+1, Ek,h)→ ♢L(F

+
2n+1,1, Fk,h,1)→ ♢L(F

+
2n+1,2, Fk,h,2)

→ . . .→ ♢L(F
+
2n+1,2W+1, Fk,h,2W+1)→ ♢T (G

+
2n+1,2, Gk,h)

2.6.7 YES instances

In this section, we show that if our input (X ,Y,Z) to 3OV is a YES instance, then our
constructed instance (T,m, ℓ, d) for SC is a YES instance.

Since (X ,Y,Z) is a YES instance, there exists a triple of integers 1 ≤ ī, j̄, k̄ ≤ n, so that
for all 1 ≤ h ≤ W , we have Xī[h] · Yj̄ [h] · Zk̄[h] = 0. To show that (T,m, ℓ, d) is a YES
instance, it suffices to construct a pair of vertical lines ls and lt in Fd(T, T) so that, there

61

are m− 1 distinct monotone paths starting at ls and ending at lt, where the y-coordinates
of any two monotone paths overlap in at most one point, and where the subtrajectory from
s to t has length at least ℓ. Moreover, each of the monotone paths intersect the y-interval
from s to t in at most one point.

Choose the starting point s = J+
2ī−1,2j̄−1

and ending point t = L+
2ī+3,2j̄+1

. By Lemma 42

the subtrajectory from s to t has length exactly ℓ. Next, we construct a set of m − 1 =
2nW + 1 monotone paths from ls to lt.

DefineKj,k,h to be the point onGk,hAk,h,1 so that ||Kj,k,hJ
+
i,j || = d and ||Kj,k,hG

+
2n+2−j,2|| =

d. DefineMj,k,h to be the point onDk,h,2Ek,h so that ||Mj,k,hL
+
i,j || = d and ||Mj,k,hE

+
2n+2−j || =

d. Define Mj,k,W+1 to be the point on Dk,W+1,2Ck,W+1,3 so that ||Mj,k,W+1L
+
i,j || = d.

Our set of constructed paths is as follows:

• For 1 ≤ k ≤ n, k ̸= k̄, 1 ≤ h ≤W , construct f(J+
2ī−1,2j̄−1

, Ak,h,2)→ f(L+
2ī+3,2j̄+1

, Ek,h).

• For 1 ≤ k ≤ n, k ̸= k̄, 1 ≤ h ≤W construct f(J+
2ī−1,2j̄−1

, Ek,h)→ f(L+
2ī+3,2j̄+1

, Ak,h+1,1).

• For k = k̄, 1 ≤ h ≤W , Yj̄ [h] = 0, construct f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,h)→ f(L+
2ī+3,2j̄+1

,M2j̄+1,k̄,h).

• For k = k̄, 1 ≤ h ≤W , Yj̄ [h] = 0, construct f(J+
2ī−1,2j̄−1

,M2j̄+1,k̄,h)→ f(L+
2ī+3,2j̄+1

,K2j̄−1,k̄,h+1).

• For k = k̄, 1 ≤ h ≤W , Yj̄ [h] ̸= 0, construct f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,h)→ f(L+
2ī+3,2j̄+1

, Ck,h,2).

• For k = k̄, 1 ≤ h ≤W , Yj̄ [h] ̸= 0, construct f(J+
2ī−1,2j̄−1

, Dk,h,2)→ f(L+
2ī+3,2j̄+1

,K2j̄−1,k̄,h+1).

• Construct f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,W+1)→ f(L+
2ī+3,2j̄+1

,M2j̄+1,k̄,W+1)

We prove the correctness of our constructed paths. First, we note that f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,h)

and f(L+
2ī+3,2j̄+1

,M2j̄+1,k̄,h) are free points since ||K2j̄−1,k,hJ
+
i,2j̄−1

|| = d and ||M2j̄+1,k,hL
+
i,2j̄+1

|| =
d, respectively. In total, we have 2nW +1 paths. Next, we prove that these 2nW +1 paths
are indeed valid.

Lemma 49. f(J+
2ī−1,2j̄−1

, Ak,h,2)→ f(L+
2ī+3,2j̄+1

, Ek,h)

Proof. f(J+
2ī−1,2j̄−1

, Ak,h,2)→ ♢L(A
+
2ī−1,2

, Ak,h,2)→ ♢T (D
+
2ī+2

, Dk,h,2)→ f(L+
2ī+3,2j̄+1

, Ek,h),

where the second → in the chain is given by Lemma 48(h).

Lemma 50. f(J+
2ī−1,2j̄−1

, Ek,h)→ f(L+
2ī+3,2j̄+1

, Ak,h+1,1)

Proof. f(J+
2ī−1,2j̄−1

, Ek,h) → ♢L(E
+
1 , Ek,h) → ♢T (G

+
1,2, Gk,h) → f(L+

2ī+3,2j̄+1
, Ak,h+1,1),

where the second → in the chain is given by Lemma 48(k).

Lemma 51. f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,h)→ f(L+
2ī+3,2j̄+1

,M2j̄+1,k̄,h)

Proof. f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,h)→ ♢R(A
+
2ī−1,1

, Ak,h,1)→ ♢L(D
+
2ī+3

, Dk,h,2)→ f(L+
2ī+3,2j̄+1

,M2j̄+1,k̄,h),

where the second → in the chain is given by Lemma 48(f).

Lemma 52. f(J+
2ī−1,2j̄−1

,M2j̄+1,k̄,h)→ f(L+
2ī+3,2j̄+1

,K2j̄−1,k̄,h+1) if Yj̄ [h] = 0.

Proof. f(J+
2ī−1,2j̄−1

,M2j̄+1,k̄,h)→ ♢B(E
+
2n+1−2j̄

, Ek,h)→ ♢T (G
+
2n+3−2j̄,2

, Gk,h)→
f(L+

2ī+3,2j̄+1
,K2j̄−1,k̄,h+1), where the first → is given by ||M2j̄+1,k,hE

+
2n+1−2j̄

|| = d, second

→ in the chain is given by Lemma 48(j), and the third→ is given by ||K2j̄−1,k,hG
+
2n+3−2j̄,2

|| =
d.

Lemma 53. f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,h)→ f(L+
2ī+3,2j̄+1

, Ck,h,2) if Yj̄ [h] ̸= 0.

62

Proof. f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,h)→ ♢R(A
+
2i−1,1, Ak,h,1)→ ♢L(D

+
2i+3, Dk,h,1)→ f(L+

2ī+3,2j̄+1
, Ck,h,2),

where the second→ in the chain is given by Lemma 48(g) (note Yj̄ [h] ̸= 0 =⇒ Xi[h]·Zk[h] =
0).

Lemma 54. f(J+
2ī−1,2j̄−1

, Dk,h,2)→ f(L+
2ī+3,2j̄+1

,K2j̄−1,k̄,h+1)

Proof. f(J+
2ī−1,2j̄−1

, Dk,h,2)→ f(E+
1 , Dk,h,2)→ ♢T (G

+
2n+1,2, Gk,h)→ f(L+

2ī+3,2j̄+1
,K2j̄−1,k̄,h+1),

where the second → in the chain is given by Lemma 48(l).

Lemma 55. f(J+
2ī−1,2j̄−1

,K2j̄−1,k̄,W+1)→ f(L+
2ī+3,2j̄+1

,M2j̄+1,k̄,W+1)

Proof. The proof is essentially the same as the one for Lemma 51, except h is set to W +1.
One subtlety is that Mj,k,W+1 is a point on Dk,W+1,2Ck,W+1,3. But the same monotone
path persists since ♢L(D

+
2ī+3

, Dk,W+1,2) is the same shaped diamond as ♢L(D
+
2ī+3

, Dk,h,2)
for 1 ≤ h ≤W .

Hence, we have m − 1 valid monotone paths that start at ls and end at lt. No pair
of monotone paths overlap in y-coordinate in more than one point. No monotone path
overlaps in y-coordinate with the y-interval from s = J+

2ī−1,2j̄−1
to t = L+

2ī+3,2j̄+1
. These

statements are true in both the Yj̄ [h] = 0 and Yj̄ [h] ̸= 0 cases. Hence, we have shown that
our constructed instance (T,m, ℓ, d) is a YES instance, yielding the following theorem.

Theorem 56. If our input (X ,Y,Z) is a YES instance for 3OV, then our constructed
instance (T,m, ℓ, d) is a YES instance for SC.

2.6.8 Cuts in free space

In the following section (Section 2.6.9), we will show that if (X ,Y,Z) is a NO instance
for 3OV, then (T,m, ℓ, d) is a NO instance for SC. This involves showing that for any pair
of vertical lines ls and lt, there cannot be m − 1 monotone paths from ls to lt with the
property that the y-coordinate of the m− 1 monotone paths overlap in at most one point,
and the y-coordinates of the m− 1 monotone paths intersect with the y-interval from s to
t in at most one point. In actuality, we show the contrapositive of the above statement in
Section 2.6.9, but the core idea of upper bounding the number of monotone paths remains
the same.

To upper bound the number of monotone paths that can exist in our free space diagram,
we require a significantly different (or in fact, opposite) strategy to Sections 2.6.6. In
particular, we need a way to show that, for a point (s, z1) on ls and a point (t, z2) on lt, that
there is no monotone path from (s, z1) → (t, z2). To show that there is no such monotone
path, we construct a cutting sequence from (s, z1) to (t, z2). This is very similar in spirit to
cuts constructed in Buchin et al.’s [42] lower bound.

First, let us define a cutting sequence. We say that f(x, y) dominates f(w, z) if f(x, y)
is strictly above and to the left of f(w, z). In other words, x > w and y > z. We say that
f(x, y) undermines f(w, z) if f(x, y) is vertically below f(w, z), and the vertical segment
between the two points is entirely in non-free space. We define a dominating sequence to
be a sequence of points so that each point either dominates or undermines the next point
in the sequence. We define a cutting sequence to be a dominating sequence where the first
point dominates the second point, and the second to last point dominates the last point.

To simplify the description of our dominating and cutting sequences in this and subse-
quent sections, we use the following notation. Let f(x, y) >d f(w, z) denote that f(x, y)

63

dominates f(w, z). Let f(x, y) >u f(w, z) denote that f(x, y) undermines f(w, z). Let
f(x, y) >du f(w, z) denote that there is a dominating sequence from f(x, y) to f(w, z). See
Figure 2.24.

f(w, z) f(x, y)

f(w, z)
f(x, y) f(w, z)

f(x, y)

Figure 2.24: Left: f(x, y) >d f(w, z). Middle: f(x, y) >u f(w, z). Right: f(x, y) >du

f(w, z).

With this notation in mind, we are ready to prove that if there is a cutting sequence
from f(x, y) to f(w, z) that there cannot be a monotone path f(x, y)→ f(w, z).

Lemma 57. If there is a cutting sequence from f(x, y) to f(w, z), then there is no monotone
path from f(x, y) to f(w, z).

Proof. Let the cutting sequence be f(x1, y1), f(x2, y2), . . . , f(xi−1, yi−1), f(xi, yi), where
f(x1, y1) = f(x, y) and f(xi, yi) = f(w, z). Then f(x1, y1) >d f(x2, y2) >du f(xi−1, yi−1) >d

f(xi, yi). Suppose for the sake of contradiction that there is a monotone path from f(x1, y1)
to f(xi, yi). See Figure 2.25.

f(x2, y2)

f(x1, y1)

f(x3, y3)

f(x4, y4)

f(x6, y6)

f(x8, y8)

f(x7, y7)

f(x5, y5)

Figure 2.25: A cutting sequence from f(x1, y1) to f(xi, yi), for i = 8.

Since f(x1, y1) >d f(x2, y2), we know f(x2, y2) is strictly below the monotone path
f(x1, y1)→ f(xi, yi). Since f(xi−1, yi−1) >d (xi, yi), we know f(xi−1, yi−1) is strictly above
the monotone path f(x1, y1) → f(xi, yi). Therefore, a dominating sequence f(x2, y2) >du

f(xi−1, yi−1) starts below the monotone path and ends above the monotone path.

64

If we ignore the y-coordinates and focus only on the x-coordinates, the dominating se-
quence f(x2, y2) >du f(xi−1, yi−1) and the monotone path f(x1, y1) → f(xi, yi) are both
weakly increasing. Therefore, there must be an x-coordinate where the dominating sequence
f(x2, y2) >du f(xi−1, yi−1) crosses from being below to being above the monotone path
f(x1, y1)→ f(xi, yi). At this point, the dominating sequence is increasing in y-coordinate.
Therefore, we must have an undermining step at this x-coordinate. However, an undermin-
ing step only traverses non-free space, so it cannot cross the monotone path. This yields a
contradiction.

In this section, we compile a list of dominating sequences, and pairs of undermining
points. We prove the correctness of these sequences. For now, we will not show any cutting
sequences, but in Section 2.6.9, we will combine our dominating sequences and undermining
points to form cutting sequences. Some of these dominating sequences are conditioned on
one of the booleans Xi[h], Yj [h] or Zk[h] being equal to one.

For several of our dominating sequences and undermining points, we require the fol-
lowing additional points. Let N1, N2 and N3 be points on H1H2 so that the points
H1, N1, N2, N3, H2 are evenly spaced. Let Nk,1, Nk,2 and Nk,3 be the copies of N1, N2

and N3 on the segment Hk,1Hk,2.

Lemma 58. For 1 ≤ i, j, k, u ≤ n and 1 ≤ h ≤W :

(a) ♢B(G
+
1,1, Gk,h) >du ♢B(C

+
1 , Ck,h,1)

(b) ♢B(C
+
1 , Ck,h,1) >du ♢T (G

+
2n+1,2, Gk,h)

(c) ♢B(A
+
2i+1,1, Ak,h,1) >du ♢T (C

+
2i+3, Ck,h,1)

(d) ♢B(E
+
1 , Ek,h) >du ♢T (G

+
1,2, Gk,h)

(e) ♢B(A
+
2i−1,2, Ak,h,2) >du ♢T (D

+
2i+2, Dk,h,2).

(f) ♢B(A
+
2i,1, Ak,h,1) >du ♢T (C

+
2i+2, Ck,h,2) if Xi[h] · Zk[h] = 1.

(g) ♢B(E
+
2j , Ek,h) >du ♢T (G

+
2j,2, Gk,h) if Yj [h] = 1.

(h) f(Nk,3, G1,1) >u f(Nk,3, N1,2)

(i) f(Hk,1, Nu,1) >du f(Nk,3, Nu+1,2)

(j) f(Hk,1, Nn,1) >u f(Hk,1, D
+
2n+3)

(k) f(G+
1,1, Hk−1,1) >u f(G+

1,1, Gk,h)

(l) f(H−
1 , Hn,1) >du f(C+

3 , G+
2n+1,2)

(m) f(H−
1 , E+

2n+1) >u f(H−
1 , D+

2n+3)

Proof.

(a) ♢B(G
+
1,1, Gk,h) >u ♢T (G

+
1,1, Gk,h) >d ♢B(A

+
1,1, Ak,h,1) >u ♢T (A

+
1,1, Ak,h,1)

>d ♢B(A
+
1,2, Ak,h,2) >u ♢T (A

+
1,2, Ak,h,2) >d . . . >d ♢B(A

+
1,2W+1, Ak,h,2W+1)

>u ♢T (A
+
1,2W+1, Ak,h,2W+1) >d ♢B(C

+
1 , Ck,h,1)

65

(b) ♢B(C
+
1 , Ck,h,1) >u ♢T (C

+
1 , Ck,h,1) >d ♢B(D

+
1 , Dk,h,1) >u ♢T (D

+
1 , Dk,h,1) >d ♢B(C

+
2 , Ck,h,2)

>u ♢T (C
+
2 , Ck,h,2) >d ♢B(D

+
2 , Dk,h,2) >u ♢T (D

+
2 , Dk,h,2) >d ♢B(E

+
2n+1, Ek,h) >u

♢T (E
+
2n+1, Ek,h) >d ♢B(F

+
2n+1,1, Fk,h,1) >u ♢T (F

+
2n+1,1, Fk,h,1) >d ♢B(F

+
2n+1,2, Fk,h,2) >u

♢T (F
+
2n+1,2, Fk,h,2) >d . . . >d ♢B(F

+
2n+1,2W+1, Fk,h,2W+1) >u ♢T (F

+
2n+1,2W+1, Fk,h,2W+1) >d

♢B(G
+
2n+1,2, Gk,h+1) >u ♢T (G

+
2n+1,2, Gk,h+1)

(c) ♢B(A
+
2i+1,1, Ak,h,1) >u ♢T (A

+
2i+1,1, Ak,h,1) >d ♢B(A

+
2i+1,2, Ak,h,2) >u ♢T (A

+
2i+1,2, Ak,h,2)

>d . . . >d ♢B(A
+
2i+1,2W+1, Ak,h,2W+1) >u ♢T (A

+
2i+1,2W+1, Ak,h,2W+1) >d ♢B(B

+
2i+1, Bk,h)

>u ♢T (B
+
2i+1, Bk,h) >d ♢B(C

+
2i+3, Ck,h,1) >u ♢T (C

+
2i+3, Ck,h,1)

(d) ♢B(E
+
1 , Ek,h) >u ♢T (E

+
1 , Ek,h) >d ♢B(E

+
1 , Ek,h) >u ♢T (E

+
1 , Ek,h) >d ♢B(F

+
1,1, Fk,h,1)

>u ♢T (F
+
1,1, Fk,h,1) >d ♢B(F

+
1,2, Fk,h,2) >u ♢T (F

+
1,2, Fk,h,2) >d . . . >d ♢B(F

+
1,2W+1, Fk,h,2W+1)

>u ♢T (F
+
1,2W+1, Fk,h,2W+1) >d ♢B(G

+
1,2, Gk,h) >u ♢T (G

+
1,2, Gk,h)

(e) ♢B(A
+
2i−1,2, Ak,h,2) >u ♢T (A

+
2i−1,2, Ak,h,2) >d ♢B(A

+
2i−1,3, Ak,h,3) >u ♢T (A

+
2i−1,3, Ak,h,3)

>d . . . >d ♢B(A
+
2i−1,2W+1, Ak,h,2W+1) >u ♢T (A

+
2i−1,2W+1, Ak,h,2W+1) >d ♢B(B

+
2i−1, Bk,h)

>u ♢T (B
+
2i−1, Bk,h) >d ♢B(C

+
2i+1, Ck,h,1) >u ♢T (C

+
2i+1, Ck,h,1) >d ♢B(D

+
2i+1, Dk,h,1)

>u ♢T (D
+
2i+1, Dk,h,1) >d ♢B(C

+
2i+2, Ck,h,2) >u ♢T (C

+
2i+2, Ck,h,2) >d ♢B(D

+
2i+2, Dk,h,2)

>u ♢T (D
+
2i+2, Dk,h,2)

(f) SinceXi[h] = 1, we have ♢(A+
2i,2h, Ak,h,2h) is non-empty. Therefore, ♢T (A

+
2i,2h−1, Ak,h,2h) >d

♢B(A
+
2i,2h, Ak,h,2h) >u ♢T (A

+
2i,2h, Ak,h,2h) >d ♢B(A

+
2i,2h+1, Ak,h,2h). Since Zk[h] = 1,

♢T (B
+
2i, Bk,h) >d ♢B(C

+
2i+1, Ck,h,1). Now, ♢B(A

+
2i,1, Ak,h,1) >u ♢T (A

+
2i,1, Ak,h,1) >d

♢B(A
+
2i,2, Ak,h,2) >u ♢T (A

+
2i,2, Ak,h,2) >d . . . >d ♢B(A

+
2i,2h, Ak,h,2h) >u ♢T (A

+
2i,2h, Ak,h,2h) >d

. . . >d ♢B(A
+
2i,2W+1, Ak,h,2W+1) >u ♢T (A

+
2i,2W+1, Ak,h,2W+1) >d ♢B(B

+
2i, Bk,h) >u

♢T (B
+
2i, Bk,h)

>d ♢B(C
+
2i+1, Ck,h,1) >u ♢T (C

+
2i+1, Ck,h,1) >d ♢B(D

+
2i+1, Dk,h,1) >u ♢T (D

+
2i+1, Dk,h,1)

>d ♢B(C
+
2i+2, Ck,h,2) >u ♢T (C

+
2i+2, Ck,h,2)

(g) Since Yj [h] = 0, we have ♢(F+
2j,2h, Fk,h,2h) is non-empty. Therefore, ♢T (F

+
2j,2h−1, Fk,h,2h−1) >d

♢B(F
+
2j,2h, Fk,h,2h) >u ♢T (F

+
2j,2h, Fk,h,2h) >d ♢B(F

+
2j,2h+1, Fk,h,2h+1). Now, ♢B(E

+
2j , Ek,h)

>u ♢T (E
+
2j , Ek,h) >d ♢B(F

+
2j,1, Fk,h,1) >u ♢T (F

+
2j,1, Fk,h,1) >d ♢B(F

+
2j,2, Fk,h,2) >u

♢T (F
+
2j,2, Fk,h,2) >d . . . >d ♢B(F

+
2j,2h, Fk,h,2h) >u ♢T (F

+
2j,2h, Fk,h,2h) >d . . . >d

♢B(F
+
2j,2n+1, Fk,h,2n+1) >u ♢T (F

+
2j,2n+1, Fk,h,2n+1) >d ♢B(G

+
2j,2, Gk,h) >u ♢T (G

+
2j,2, Gk,h)

(h) Recall that H1 = 4r′ cis(3W + 4) · ϕ and H2 = 8r′ cis(2W + 3) · ϕ. So the distance
between consecutive pairs in H1, N1, N2, N3, H2 is greater than d. The subtrajectory
from G1,1 to N1,2 is closest to the point N3 at its endpoint, but ||N1,2N3|| > d. Hence,
for all points x on the subtrajectory between G1,1 to N1,2, we have ||xNk,3|| > r′ > d.
Hence, f(Nk,3, G1,1) >u f(Nk,3, N1,2).

(i) LetM be a point so thatHu,2 ≺M and ||Hu,2M || = 2d. We show that f(Hk,1, Nu,1) >u

f(Hk,1,M) >d f(Nk,3, Hu,2) >u f(Nk,3, Nu+1,2). The subtrajectory from Nu,1 to M
lies outside the circle of radius 2r′ centered at the origin, but Hk,1 is within distance
r′ of the origin. Hence, f(Hk,1, Nu,1) >u f(Hk,1,M). Similarly, f(Nk,3, Hu,2) >u

f(Nk,3, Nu+1,2).

66

(j) The distances between Hk,1 and the segments Nn,1H2,n and H2,nD
−
0 is strictly greater

than d. Of all the points on the subtrajectory from D−
0 to D+

2n+3, the point closest to

Hk,1 is H−
1 , as all other vertices lie below the real axis on the complex plane. Since

||H−
1 Hk,1|| > d, we have, for every point x on segment Nn,1H2,n, that f(Hk,1, x) is in

non-free space. Therefore, f(Hk,1, Nn,1) >u f(Hk,1, D
+
2n+3).

(k) Let x be a point on the segment Gk,hHk,1. Note that as x moves from Gk,h to
Hk,1, the distance from x to G+

1,1, increases. But ||Gk,hG
+
1,1|| > d, so ||xG+

1,1|| > d.

Therefore, f(G+
1,1, x) is in non-free space for all x on the segment Gk,hHk,1. Thus,

f(G+
1,1, Hk−1,1) >u f(G+

1,1, Gk,h).

(l) We show that f(H−
1 , Hn,1) >u f(H−

1 , D+
2) >d f(C+

3 , D−
2) >u f(C+

3 , G+
2n+1,2). The

point H−
1 is distance d away from the segments Hn,1Hn,2 and Hn,2D

−
0 . The subtra-

jectory from D−
0 to D+

2 lies entirely below the real axis in the complex plane, so the
distance from H−

1 to any of these points is greater than d. Therefore, f(H−
1 , Hn,1) >u

f(H−
1 , D+

2). The distance from C+
3 to any point on the subtrajectory starting at D−

2

and ending at G+
2n+1,2 is greater than d. Therefore, f(C+

3 , D−
2) >u f(C+

3 , G+
2n+1,2).

Putting this together yields the dominating sequence.

(m) The subtrajectory from E+
2n+1 to D+

2n+3 lies entirely below the real axis in the complex

plane, so the distance from H−
1 to any of these points is at least d. Therefore, f(H−

1 , x)
is in non-free space for all points x on the segment E+

2n+1D
+
2n+3. This implies the

claimed lemma.

2.6.9 NO instances

In this section, we show that if our input (X ,Y,Z) to 3OV is a NO instance, then our
constructed instance (T,m, ℓ, d) for SC is a NO instance.

We do this by taking the contrapositive. We show that if our constructed instance
(T,m, ℓ, d) is a YES instance for SC, then our input (X ,Y,Z) is a YES instance for 3OV.

Since (T,m, ℓ, d) is a YES instance, there exists a pair of vertical lines ls and lt so that the
subtrajectory from s to t has length at least ℓ, there are m− 1 = 2nW +1 monotone paths
from ls to lt, no two of these monotone paths overlap in y-coordinate, and no monotone
path overlaps in y-coordinate with the y-interval from s to t.

The remainder of this section consists of five steps. The first step is to narrow down the
starting position s of the reference subtrajectory. The second step is to show that there are
2W + 1 monotone paths from ls to lt between the y-coordinates of Hk−1,1 and Hk,1, for
some 1 ≤ k ≤ n. The third step is to show that s is between G+

2i−1,1 and G+
2i+1,1, for some

1 ≤ i ≤ n. The fourth step is to show that s is between J+
2i−1,2j−1 and J2i−1,2j+1 for some

1 ≤ j ≤ n. The fifth step is to show that, for the integers i, j and k in our second, third and
fourth steps, that Xi, Yj , Zk are orthogonal. Putting our five steps together shows that our
input (X ,Y,Z) is a YES instance, as required.

As mentioned above, our first step is to narrow down the position of the starting point
s. We begin with some useful notation, and then prove that s is between Hn,1 and G+

2n+1,1

in Lemma 60.

Definition 59. We say x ≺ y if x precedes y in the trajectory T .

Lemma 60. Hn,1 ≺ s ≺ G+
2n+1,1

67

Proof. We first show s ≺ G+
2n+1,1. By our construction, the subtrajectory from A+

2n−1,1 to

D+
2n+3 has length ℓ + δ. Hence, the subtrajectory from G+

2n+1,1 to D+
2n+3 has length less

than ℓ. Since D+
2n+3 is the final vertex of T , we have t ⪯ D+

2n+3. Since the subtrajectory

from s to t has length at least ℓ, we have that s ≺ G+
2n+1,1.

Next, we show Hn,1 ≺ s. Suppose for the sake of contradiction that s ⪯ Hn,1. Without
loss of generality, let Hk−1,1 ⪯ s ⪯ Hk,1 for some 1 ≤ k ≤ n. By Lemma 43, we must have
s ⪯ Hk ≺ Hk,2 ≺ t. Let the first n + 1 monotone paths from ls to lt be f(s, yi) → f(t, zi)
for 1 ≤ i ≤ n+ 1.

We will prove by induction that Ni,2 ⪯ zi for all 1 ≤ i ≤ n. In the base case, suppose for
the sake of contradiction that z1 ≺ N1,2. Then f(s, y1) >d f(Nk,3, G1,1) >u f(Nk,3, N1,2) >d

f(t, z1) by Lemma 58(h). There is a cutting sequence from f(s, y1) to f(t, z1), which yields
a contradiction.

Now we prove the inductive case. Assume the inductive hypothesis that Ni,2 ⪯ zi.
Then Ni,2 ⪯ yi+1, since our monotone paths do not overlap in y-coordinate. Suppose
for the sake of contradiction that zi+1 ≺ Ni+1,2. Then f(s, yi+1) >d f(Hk,1, Ni,1) >du

f(Nk,3, Ni+1, 2) >d f(t, zi+1) by Lemma 58(i). There is a cutting sequence from f(s, yi+1)
to f(t, zi+1), which is a contradiction. This completes our induction.

Setting i = n in our induction, we get that Nn,1 ⪯ zn. Therefore, Nn,1 ⪯ yn+1. Now, by
Lemma 58(j) we have the cutting sequence f(s, yn+1) >d f(Hk,1, Nn,1) >u f(Hk,1, D

+
2n+3) >d

f(t, zn+1), yielding the final contradiction. Therefore, our initial assumption that s ⪯ Hn,1

cannot hold, and we are done.

Next, we show that there is at most no monotone paths in the region of free space
between y-coordinates of Hn,1 and D+

2n+3 that do not intersect the y-interval from s to t.
This fact will be useful for the second step in this section, which was to show that there are
2W + 1 monotone paths associated with the region between y-coordinates of Hk−1,1 and
Hk,1, for some 1 ≤ k ≤ n.

Lemma 61. In the free space with bottom left corner f(s,Hn,1) and top right corner
f(t,D+

2n+3), any monotone path from ls to lt overlaps in y-coordinate with the y-interval
from s to t in more than one point.

Proof. Let f(s, y1) → f(t, y2) be a monotone path in the free space with bottom left cor-
ner f(s,Hn,1) and top right corner f(t,D+

2n+3). Therefore, Hn,1 ⪯ y1 ⪯ y2 ⪯ D+
2n+3.

Suppose y2 ≺ G+
2n+1,2. Then f(s, y1) >d f(H−

1 , Hn,1) >du f(C+
3 , G+

2n+1,2) >d f(t, y2)
by Lemma 58(l). There is a cutting sequence from f(s, y1) to f(t, y2), which is a con-
tradiction. Hence, G+

2n+1,2 ⪯ y2. Suppose, E+
2n+1 ≺ y1. By Lemma 58(m), f(s, y1) >d

f(H−
1 , E+

2n+1) >u f(H−
1 , D+

2n+3) >d f(t, y2), which contradicts the fact that f(s, y1) →
f(t, y2) is a monotone path. Hence, y1 ⪯ E+

2n+1. Therefore Hn,1 ⪯ y1 ⪯ E+
2n+1 ≺ G+

2n+1,2 ⪯
y2 ⪯ D+

2n+3. But we also have Hn,1 ⪯ s ≺ G+
2n+1,1, so E+

2n+1 ≺ t ≺ D+
2n+3. Hence, the

y-interval of the monotone path f(s, y1) → f(t, y2) intersects the y-interval from s to t in
more than one point.

Now we are ready to prove the second step of this section.

Lemma 62. Let H0,1 = G1,1. There exists 1 ≤ k ≤ n so that, in the free space with bottom
left corner f(s,Hk−1,1) and top right corner f(t,Hk,1), there are at least 2W +1 monotone
paths with non-overlapping y-coordinates.

68

Proof. There are m − 1 = 2nW + 1 monotone in the free space with bottom left corner
f(s,H0,1) and top right corner f(t,D+

2n+3). By Lemma 61 there are no monotone paths in

the free space with bottom left corner f(s,Hn,1) and top right corner f(t,D+
2n+3) that do

not intersect the y-interval from s to t. Therefore, all 2nW + 1 monotone paths are in the
free space with bottom left corner f(s,H0,1) and top right corner f(t,Hn,1). By pigeonhole
principle, there exists 1 ≤ k ≤ n so that there are 2W +1 monotone paths in the free space
with bottom left corner f(s,Hk−1,1) and top right corner f(t,Hk,1).

For the remainder of this section, assume that 1 ≤ k ≤ n is an integer so that there are
at least 2W + 1 monotone paths in the free space with bottom left corner f(s,Hk−1,1) and
top right corner f(t,Hk,1). Using these paths we can narrow down the position of s further.

Lemma 63. G+
1,1 ⪯ s ≺ G2n+1,1

Proof. Suppose for the sake of contradiction that Hn,1 ≺ s ≺ G+
1,1. Let the monotone paths

in the free space with bottom left corner f(s,Hk−1,1) and top right corner f(t,Hk,1) be
f(s, yi)→ f(t, zi) for 1 ≤ i ≤ 2W + 1.

We will prove that Gk,i+1 ≺ zi for 1 ≤ i ≤ W by induction. Suppose for the sake of
contradiction that z1 ⪯ Gk,2. Then by Lemmas (k), (a) and (b) we have the cutting sequence
f(s, y1) >d f(G+

1,1, Hk−1,1) >u f(G+
1,1, Gk,h) >du ♢B(C

+
1 , Ck,h,1 >du ♢T (G

+
2n+1,2, Gk,h+1) >d

f(t, z1), contradicting f(s, y1)→ f(t, z1).
Now we prove the inductive case. Assume the inductive hypothesis Gk,i+1 ≺ zi. Then

Gk,i+1 ≺ yi+1. Suppose for the sake of contradiction that zi+1 ⪯ Gk,i+2. Then by
Lemma 58(a) and (b) we have the cutting sequence f(s, yi+1) >d ♢B(G

+
1,1, Gk,i+1) >du

♢B(C
+
1 , Ck,h,1 >du ♢T (G

+
2n+1,2, Gk,i+2) >d f(t, zi+1), contradicting the fact that f(s, yi+1)→

f(t, zi+1). This completes the induction.
Setting i = W yields Gk,W+1 ≺ zW . So Gk,W+1 ≺ yW+1. But now, by Lemma,

f(s, yW+1) >d f(G+
1,1, Gk,W+1) >du f(C+

3 , Hk,1) >d f(t, zW+1), contradicting f(s, yW+1)→
f(t, zW+1). This yields a contradiction on our initial assumption, so G+

1,1 ⪯ s as re-
quired.

We can now assume without loss of generality that G+
2i−1,1 ≺ s ⪯ G+

2i+1,1 for some
1 ≤ i ≤ n. Recall that this was the third step of this section. Next, we prove a similar result
towards the fourth step.

Lemma 64. J+
2i−1,1 ≺ s ⪯ J+

2i−1,2n+1

Proof. It suffices to rule out the cases G+
2i−1,1 ≺ s ⪯ J+

2i−1,1, and J+
2i−1,2n+1 ≺ s ⪯ G+

2i+1,1.
We will focus on the 2W + 1 paths in the free space with bottom left corner f(s,Hk−1,1)
and top right corner f(t,Hk,1) be f(s, yi)→ f(t, zi). The reason we can do this is that, for
our final lemma, Lemma 65, we only require that J+

2i−1,1 ≺ s ⪯ J+
2i−1,2n+1 and that there

are 2W + 1 paths.
We start with the G+

2i−1,1 ≺ s ⪯ J+
2i−1,1 case. We will modify the 2W + 1 monotone

paths so that s = J+
2i−1,1. By Lemma 42, we have C+

2n+3 ≺ t ⪯ L+
2i+3,3. Let the monotone

paths in the free space with bottom left corner f(s,Hk−1,1) and top right corner f(t,Hk,1)
be f(s, yi)→ f(t, zi) for 1 ≤ i ≤ 2W +1. Define y′i = Ak,h,2 if Gk,h ≺ yi ≺ Ak,h,2, otherwise
y′i = yi. Define z′i = Ck,h,2 if Dk,h,1 ⪯ zi ≺ Dk,h,2, define z′i = K+

1,k,h if Dk,h,2 ⪯ zi ⪯ K+
1,k,h

otherwise z′i = zi. We claim that if f(s, yi) → f(t, zi), then f(J+
2i−1,1, y

′
i) → f(L+

2i+3,3, z
′
i).

If Gk,h ≺ yi ≺ Ak,h,2, then f(s, yi) is to the right of ♢(A+
2i−1,1, Ak,h) and we can replace the

69

starting point f(s, yi) with f(J+
2i−1,1, Ak,h,2). Otherwise, the segment between f(s, yi) and

f(J+
2i−1,1, yi) is free space, so we can replace the starting point f(s, yi) with f(J+

2i−1,1, yi).

Hence, we have f(J+
2i−1,1, y

′
i)→ f(t, zi). If Dk,h,1 ⪯ zi ≺ Dk,h,2, then f(t, zi) is to the right

of ♢(C+
2i+3, Ck,h,2), so the monotone path f(J+

2i−1,1, y
′
i) → f(t, zi) must have passed under

♢B(C
+
2i+3, Ck,h,2). Hence, we can replace the ending point f(t, zi) with f(L+

2i+3,3, Ck,h,2).

If Dk,h,2 ⪯ zi ⪯ K+
1,k,h then we append the monotone path f(t, zi) → f(L+

2i+3,3,K
+
1,k,h)

to obtain the monotone path f(J+
2i−1,1, y

′
i) → f(L+

2i+3,3,K
+
1,k,h). Otherwise, the horizontal

segment f(t, zi)→ f(L+
2i+3,3, zi) is free space, so we can append this to our path. Hence, we

have modified all 2W + 1 monotone paths so that s = J+
2i−1,1 and t = L+

2i+3,3 as required.

Next we consider the J+
2i−1,2n+1 ≺ s ⪯ G+

2i+1,1. First, note that the subtrajectory from

J+
2n−1,2n+1 to D+

2n+3 has length less than ℓ, so we only need to consider the case where
1 ≤ i < n. The remainder of this proof is very similar to the previous case. We modify the
2W+1 monotone paths. Our modification moves the starting x-coordinate to J+

2i−1,2n+1 and

the ending x-coordinate to L+
2i+3,2n+1. For the starting x-coordinate, we observe that since

s ≤ G+
2i+1,1, the point f(s, yi) is to the left of ♢(G+

2i+1,1, Gk,h). Therefore, the horizontal

segment from f(J+
2i−1,2n+1, yi) to f(s, yi) must be free space. Therefore, we can prepend

this to the monotone path to obtain f(J+
2i−1,2n+1, yi)→ f(t, zi). We truncate the monotone

path at the y-coordinate L+
2i+3,2n+1 to obtain f(J+

2i−1,2n+1, yi)→ f(L+
2i+3,2n+1, z

′
i) for some

z′i ≺ zi. Therefore, we modified all 2W + 1 monotone paths so that s = J+
2i−1,1 and

t = L+
2i+3,3 as required.

Putting this all together, we obtain that there are 2W + 1 paths in the free space with
bottom left corner f(s,Hk−1,1) and top right corner, and J+

2i−1,1 ≺ s ⪯ J+
2i−1,2n+1 for some

1 ≤ i ≤ n.

For the remainder of this section, we can assume that J2i−1,2j−1 ≺ s ⪯ J2i−1,2j+1 for
some 1 ≤ j ≤ n. Recall that this was the fourth step of this section.

Now we are ready to prove the fifth and final step of this section. We use the 2W + 1
paths from Lemma 62 and the cutting sequences from Lemma 57 to show that that Xi, Yj

and Zk are orthogonal, and therefore that (X ,Y,Z) is a YES instance.

Lemma 65. Suppose J2i−1,2j−1 ≺ s ⪯ J2i−1,2j+1 and there are 2W + 1 monotone paths
in the free space diagram with bottom left corner f(s,Hk−1) and top right corner f(t,Hk).
Then

Xi[h] · Yj [h] · Zk[h] = 0 for all 1 ≤ h ≤W.

Proof. Let the 2W + 1 monotone paths be f(s, yi)→ f(t, zi) for 1 ≤ i ≤ 2W + 1. Suppose
for the sake of contradiction that there exists 1 ≤ h̄ ≤W such that Xi[h̄] · Yj [h̄] ·Zk[h̄] = 1.
We will prove the following series of statements by induction:

(i) for 1 ≤ h < h̄, we have Ck,h,1 ⪯ z2h−1, Gk,h ≺ z2h,

(ii) for h = h̄, we have M2j+1,k,h̄ ≺ z2h̄−1, K2j−1,k,h̄+1 ≺ z2h̄,

(iii) for h̄ < h ≤W , we have Ek,h,2 ⪯ z2h−1, Ak,h+1,1 ≺ z2h.

After proving these three statements, we will use them to yield a contradiction. But
first, we will prove (i), (ii) and (iii), in order:

(i) Let 1 ≤ u ≤ 2h̄ − 2. We prove the following by induction on u: if u is odd, let
u = 2h− 1, and we show that Ck,h,1 ⪯ z2h−1, whereas if u is even, let u = 2h, and we
show that Gk,h ≺ z2h.

70

We start with the base case u = 1. Suppose for the sake of contradiction that z1 ≺
Ck,1,2. Then by Lemma 58(c), we have f(s, y1) >d f(G+

3,1, Hk−1,1) >u ♢T (G
+
3,1, Gk,h) >d

♢B(A
+
2i+1,1, Ak,h,1) >du ♢T (C

+
2i+3, Ck,h,1) >d f(t, z1), contradicting the claim that

f(s, y1) → f(t, z1). This completes the base case. Next, we prove the inductive case
of (i).

We split the inductive case into two subcases, either u is odd or u is even.

In the inductive case, if u is odd, we assume the inductive hypothesis for u− 1, which
is even. Let u = 2h− 1. Our inductive hypothesis states that Gk,h−1,2 ≺ z2h−2, from
which we get Gk,h−1,2 ≺ y2h−1. Suppose for the sake of contradiction that z2h−1 ≺
Ck,h,1. Then by Lemma 58(c), we have f(s, y2h−1) >d ♢B(A

+
2i+1,1, Ak,h,1) >du

♢T (C
+
2i+3, Ck,h,1) >d f(t, z2h−1), contradicting f(s, y2h−1)→ f(t, z2h−1). So Ck,h,1 ⪯

z2h−1, as required.

In the inductive case, if u is even, we assume the inductive hypothesis for u−1, which
is odd. Let u = 2h. Our inductive hypothesis states that Ck,h,1 ⪯ z2h−1, from which
we get Ck,h,1 ⪯ y2h. Suppose for the sake of contradiction that z2h ⪯ Gk,h. Then
by Lemma 58(b), f(s, y2h) >d ♢B(C

+
1 , Ck,h,1) >du ♢T (G

+
2n+1,2, Gk,h) >d f(t, z2h),

contradicting f(s, y2h)→ f(t, z2h). So Gk,h ≺ z2h, as required.

This completes the proof by induction of (i).

(ii) For h = h̄, recall the following definitions. Recall that h̄ is defined so that Xi[h̄] ·Yj [h̄] ·
Zk[h̄] = 1. Recall thatK2j−1,k,h is the point onGk,hAk,h,1 so that ||K2j−1,k,hJ

+
i,2j−1|| =

d and ||K2j−1,k,hG
+
2n+3−2j,2|| = d. Recall that M2j+1,k,h is the point on Dk,h,2Ek,h so

that ||M2j+1,k,hL
+
i,2j+1|| = d and ||M2j+1,k,hE

+
2n+1−2j || = d. Recall that J2i−1,2j−1 ≺

s ⪯ J2i−1,2j+1, so by Lemma 42, we have L2i+3,2j+1 ≺ t ⪯ L2i+3,2j+3.

We begin by showing M2j+1,k,h̄ ≺ z2h̄−1. Assume for the sake of contradiction that
z2h̄−1 ⪯ M2j+1,k,h̄. Since L2i+3,2j+1 ≺ t, we have f(t, Ck,h,2) >u f(t,M2j+1,k,h̄).
Therefore, z2h̄−1 ≺ Ck,h,2. By (i) we have Gk,h ≺ z2h̄−2 ⪯ y2h̄−1. So f(s, y2h̄−1) >d

♢B(A
+
2i,1, Ak,h,1). SinceXi[h]·Zk[h] = 1, by Lemma 58(f), we have that ♢B(A

+
2i,1, Ak,h,1) >du

♢T (C
+
2i+2, Ck,h,2). Finally, since z2h̄−1 ≺ Ck,h,2, we have ♢T (C

+
2i+2, Ck,h,2) >d f(s, z2h̄−1).

Putting this together we obtain the cutting sequence f(s, y2h̄−1) >d ♢B(A
+
2i,1, Ak,h,1) >du

♢T (C
+
2i+2, Ck,h,2) >d f(s, z2h̄−1, contradicting the fact that f(s, y2h̄−1)→ f(s, z2h̄−1).

Therefore, M2j+1,k,h̄ ≺ z2h̄−1, as required.

Next, we show K2j−1,k,h̄+1 ≺ z2h̄. Assume for the sake of contradiction that z2h̄ ⪯
K2j−1,k,h̄+1. We know that M2j+1,k,h̄ ≺ z2h̄−1. Therefore, M2j+1,k,h̄ ≺ y2h̄. Since

Yj [h] = 1, by Lemma 58(g), we have that f(s, y2h̄) >d ♢B(E
+
2n+1−2j , Ek,h̄) >du

♢T (G
+
2n+1−2j,2, Gk,h̄) >d f(t, z2h̄), contradicting the fact that f(s, y2h̄) → f(t, z2h̄).

Therefore, K2j−1,k,h̄+1 ≺ z2h̄, as required.

(iii) Let 2h̄ + 1 ≤ u ≤ 2W . We prove the following by induction on u: if u is odd, let
u = 2h− 1, and we show that Ek,h,2 ⪯ z2h−1, whereas if u is even, let u = 2h, and we
show that Ak,h+1,1 ≺ z2h.

We start with the base case u = 2h̄ + 1. Suppose for the sake of contradiction
that z2h̄+1 ≺ Ek,h̄+1,2. By (ii) we know that K2j−1,k,h̄+1 ≺ z2h̄, which implies that
K2j−1,k,h̄1

≺ y2h̄+1. Since s ⪯ J2i−1,2j+1, we have f(s,K2j−1,k,h̄+1) >u f(s,Ak,h̄+1,2).

Therefore, Ak,h̄+1,2 ≺ y2h̄+1. Now, by Lemma 58(e), f(s, y2h̄+1)>d ♢B(A
+
2i−1,2, Ak,h̄+1,2)

71

>du ♢T (D
+
2i+2, Dk,h̄+1,2)>d f(t, z2h̄+1), contradicting f(s, y2h̄+1)→ f(t, z2h̄+1). Hence,

Ek,h̄+1,2 ⪯ z2h̄+1 as required. This completes the base case. Next, we prove the in-
ductive case of (iii).

We split the inductive case into two subcases, either u is odd or u is even.

In the inductive case, if u is odd, we assume the inductive hypothesis for u−1, which is
even. Since the base case u = 2h̄+1 is already handled, we can assume that 2h̄+2 ≤ u−
1. Let u = 2h− 1. Our inductive hypothesis states that Ak,h,1 ≺ z2h−2, which implies
Ak,h,1 ≺ y2h−1. Suppose for the sake of contradiction that z2h−1 ≺ Ek,h,2. Then by
Lemma 58(e) we have f(s, y2h−1) >d ♢B(A

+
2i−1,2, Ak,h,2) >du ♢T (D

+
2i+2, Dk,h,2) >d

f(t, z2h−2), contradicting the claim that f(s, y2h−1) → f(t, z2h−1). Hence, Ek,h,2 ⪯
z2h−1, as required.

In the inductive case, if u is even, we assume the inductive hypothesis for u−1, which
is odd. Let u = 2h. Our inductive hypothesis states that Ek,h,2 ⪯ z2h−1, which
which we get Ek,h,2 ⪯ y2h. Suppose for the sake of contradiction that z2h ⪯ Ak,h+1,1.
Then by Lemma 58(d) we get f(s, y2h) >d ♢B(E

+
1 , Ek,h) >du ♢T (G

+
1,2, Gk,h) >d

f(t, z2h), contradicting the fact that f(s, y2h)→ f(t, z2h). Therefore, Ak,h+1,1 ≺ z2h,
as required.

This completes the proof by induction of (iii).

Finally, set h = W in statement (iii) to get Ak,W+1,1 ≺ z2W . Therefore, Ak,W+1,1 ≺
y2W+1. By Lemma 58(e), f(s, y2W+1) >d ♢B(A

+
2i−1,2, Ak,W+1,2) >du ♢T (D

+
2i+2, Dk,W+1,2) >u

f(D+
2i+2, Hk,1) >d f(t, z2W+1). This contradicts the fact that f(s, y2W+1)→ f(t, z2W+1).
Hence, our initial assumption that there exists 1 ≤ h̄ ≤W such that Xi[h̄]·Yj [h̄]·Zk[h̄] =

1 cannot hold. Therefore, Xi, Yj and Zk are orthogonal.

Putting this all together yields the main theorem of Section 2.6.9.

Theorem 66. If our input (X ,Y,Z) is a NO instance for 3OV, then our constructed
instance (T,m, ℓ, d) is a NO instance for SC.

2.6.10 Putting it all together

Finally, we combine Theorems 56 and 66 to obtain our main theorem of Section 2.6.

Theorem 7. There is no O(n3−ε) time algorithm for SC under the continuous Fréchet
distance, for any ε > 0, unless SETH fails.

Proof. Suppose for the sake of contradiction that there is an O(n3−ε) time algorithm for
SC under the continuous Fréchet distance, for some ε > 0. We will use this to construct an
O(n3−εWO(1)) time algorithm for 3OV, which cannot occur unless SETH fails [165].

Our algorithm for 3OV is as follows. We obtain our input (X ,Y,Z) for 3OV. We
construct the instance (T,m, ℓ, d) as described in Section 2.6.1. Next, we run our algorithm
for SC under the continuous Fréchet distance. If our algorithm returns YES for (T,m, ℓ, d),
we return YES for (X ,Y,Z), likewise in the NO case. This completes the description of our
algorithm.

The correctness of our algorithm follows directly from Theorems 56 and 66. Finally,
we analyse the running time of our 3OV algorithm. Constructing the instance (T,m, ℓ, d)
takes O(nW) time, and the complexity of T is O(nW). Our SC algorithm for the input
(T,m, ℓ, d) takes O(n3−εW 3−ε) time. Therefore, the overall running time is O(n3−εWO(1)),
which cannot occur unless SETH fails.

72

Chapter 3

Map matching queries on
realistic input graphs under the
Fréchet distance

3.1 Introduction

Location-aware devices have enabled the tracking of vehicle trajectories. In urban environ-
ments, vehicle trajectories align with an underlying road network. However, imprecision in
the Global Positioning System introduces errors into the trajectory data. Map matching
aims to mitigate the effects of these errors by computing a path on the underlying road
network that best represents the vehicle’s trajectory. See Figure 3.1.

Figure 3.1: A road network (black), a noisy trajectory (red), and its matched path (blue).

Map matching is a common preprocessing step for analysing vehicle trajectories. As
such, numerous map matching algorithms have been proposed across multiple communities
(e.g. in the Urban Planning, Geographic Information Systems, and Databases communities).
Map matching was the focus of the 2012 ACM SIGSPATIAL Cup [10]. For an overview of
the extensive literature on map matching, see the surveys [52, 111, 118, 137, 162, 169]. In
the theory community, by far the most popular approach is to embed the road network and
the trajectory into the Euclidean plane, and to compute a path on the road network that
is the most spatially similar to the trajectory [11, 25, 49, 53, 103, 145, 163], where spatial
similarity is measured using the Fréchet distance [12]. Formally, the map matching problem

73

under the Fréchet distance is defined as follows.

Problem 1 (Map matching). Given a graph P and a trajectory Q in the plane, compute a
path π in P that minimises dF (π,Q), where dF (·, ·) denotes the Fréchet distance.

In a seminal paper by Alt, Efrat, Rote and Wenk [11], the authors study Problem 1
on geometric planar graphs. They provide an O(pq log p) time algorithm, where p is the
complexity of the graph and q is the complexity of the trajectory. Their idea is to construct
a free space surface, which is a generalisation of the free space diagram [12], and then to
perform a sweep line algorithm where a set of reachable points is maintained at the sweep
line’s current position.

Alt et al. [11]’s algorithm forms the basis of several existing implementations [25, 53, 145,
161, 163]. Brakatsoulas et al. [25] implement Alt et al. [11]’s algorithm and experimentally
compare it to a linear-time heuristic and an algorithm minimising the weak Fréchet distance.
In their experiments, forty-five vehicle trajectories, each with approximately one hundred
edges, are mapped onto an underlying road network with approximately ten thousand edges.
Their experiments conclude that out of the three algorithms, Alt et al. [11]’s provides the
best map matching results but is the slowest. Subsequent papers focus on improving the
practical running time of the algorithm [145, 163]. We show that a significantly faster
algorithm for geometric planar map matching is unlikely to exist, unless SETH fails.

Traditional analysis focuses on worst case instances, which are unlikely to occur in prac-
tice. By making realistic input assumptions, we can circumvent these worst-case instances,
and provide bounds that better reflect running time on realistic input. In computational
movement analysis, the most popular realistic input assumption is c-packedness. A set of
edges is c-packed if the total length of edges inside any ball is at most c times the radius of
the ball. Given two c-packed trajectories of complexity n, one can (1+ε)-approximate their
Fréchet distance in O(cε−1/2 log(1/ε)n+ cn log n) time [31, 68], circumventing the Ω(n2−δ)
lower bound for all δ > 0 implied by SETH [28, 42].

Chen, Driemel, Guibas, Nguyen and Wenk [53] study map matching on realistic input
graphs and realistic input trajectories. They provide a (1+ε)-approximation algorithm that
runs in O((p + q) log(p + q) + (ϕq + cp) log pq log(p + q) + (ϕε−2q + cε−1p) log(pq)) time,
where the graph is ϕ-low-density and has complexity p, and the trajectory is c-packed and
has complexity q. A graph is ϕ-low-density if, for any ball of radius r, the number of edges
with length at least r that intersect the ball is at most ϕ. Note that a c-packed graph is
2c-low-density [68]. Chen et al. [53] implement their algorithm to map trajectories, each
with at most one hundred edges, onto an underlying road network with approximately one
million edges. Their experiments show significant running time improvements compared
to previous work. On large road networks, their map matching algorithm runs in under a
second, whereas previous algorithms [25, 163] require several hours.

For both general graphs and realistic input graphs, a shortcoming of the existing map
matching algorithms is that, every time a trajectory is matched, the entire road network
needs to be reprocessed from scratch. This is reflected in the linear dependence on p in
the running times of Alt et al. [11] and Chen et al. [53], where p is the complexity of the
input graph. If we were to build a data structure for efficient map matching queries, then
we would remove the need to reprocess the graph every time a new trajectory is mapped.
Formally, the query version of the map matching problem is given below.

Problem 2 (Map matching queries). Given a graph P in the plane, construct a data struc-
ture so that given a query trajectory Q in the plane, the data structure returns minπ dF (π,Q),
where π ranges over all paths in P and dF (·, ·) denotes the Fréchet distance.

74

To the best of our knowledge, we are the first to study map matching queries under
the Fréchet distance. Obtaining a data structure for Problem 2 with query time that is
sublinear in the complexity of the graph is stated as an open problem in [53] and in [103].

3.1.1 Contributions

In this chapter, we investigate map matching queries under the Fréchet distance. An open
problem proposed independently by [53] and [103] asks whether it is possible to preprocess
a graph into a data structure so that map matching queries can be answered in sublinear
time.

We provide a negative result in the case of geometric planar graphs. We show that, unless
SETH fails, there is no data structure that can be constructed in polynomial preprocessing
time, that answers map matching queries in O((pq)1−δ) query time for any δ > 0, where p
and q are the complexities of the graph and the query trajectory, respectively. Our negative
result shows that preprocessing does not help for geometric planar map matching.

We provide the first positive result in the case of realistic input graphs. Our data
structure has near-linear size in terms of p, and its query time is polylogarithmic in terms
of p. We consider the following theorem to be the main result of our chapter.

Theorem 3. Given a c-packed graph P of complexity p, one can construct a data structure of
O(p log2 p+cε−4 log(1/ε)p log p) size, so that given a query trajectory Q of complexity q, the
data structure returns in O(q log q ·(log4 p+c4ε−8 log2 p)) query time a (1+ε)-approximation
of minπ dF (π,Q) where π ranges over all paths in P and dF (·, ·) denotes the Fréchet distance.
The preprocessing time is O(c2ε−4 log2(1/ε)p2 log2 p).

The most closely related results are [53] and [103]. We briefly compare the realistic
input assumptions of these related works to our result. In Chen et al. [53], the graph is
ϕ-low-density and the trajectory is c-packed. In Gudmundsson and Smid [103], the graph is
a c-packed tree with long edges, and the trajectory has long edges. In our result, the graph
is c-packed, but surprisingly, we require no input assumptions on the query trajectory.

3.1.2 Related work

The Fréchet distance is a popular similarity measure for trajectories. To compute the Fréchet
distance between a pair of trajectories of complexity n, Alt and Godau [12] provide an
O(n2 log n) time algorithm, which Buchin et al. [37] improve to an O(n2

√
log n(log log n)3/2)

algorithm. Conditioned on the Strong Exponential Time Hypothesis (SETH), for all δ > 0,
Bringmann [28] shows an Ω(n2−δ) lower bound for computing the Fréchet distance in two or
more dimensions. Buchin et al. [42] generalise the lower bound to one or more dimensions.

Variants of Problem 1 have been considered. Seybold [144] and Chambers et al. [49]
consider finding the shortest map matching paths in geometric graphs. Chen et al. [55]
study map matching under the weak Fréchet distance, whereas Wylie and Zhu [167] and
Fu et al. [89] consider map matching under the discrete Fréchet distance. Wei et al. [161]
and Chen et al. [55] combine the Fréchet distance approach with a Hidden Markov Model
approach to obtain a hybrid algorithm.

A problem closely related to Problem 2 is to preprocess a trajectory for Fréchet distance
queries. Driemel and Har-Peled [67] preprocess a trajectory Z of complexity n in O(n log3 n)
time and O(n log n) space, so that given a query trajectory Q with complexity k, and a query
subtrajectory Z[u, v] where u and v are points on Z, one can return in O(k2 log n log(k log n))

75

time a constant factor approximation of the Fréchet distance between Z[u, v] and Q. In this
chapter we show that, even with polynomial time preprocessing time on the trajectory Z, one
cannot hope to answer Fréchet distance queries in truly subquadratic time, unless SETH
fails. As such, special cases have been considered. For k = 2, one can answer (1 + ε)-
approximate [67] or exact [46, 63, 106] queries in polylogarithmic query time, by constructing
a data structure of subquadratic size. Discrete Fréchet distance queries for small values of k
have also been studied [71, 83, 86].

Gudmundsson and Smid [103] preprocess a c-packed tree for Fréchet distance queries.
We regard this to be one of the most relevant results to our work. Given a c-packed tree T ,
and a positive real number ∆, the authors show how to construct a data structure of size
O(cn) in O(n log2 n+ cn log n) preprocessing time, so that given a polygonal curve Q with
k vertices, one can decide in O(c4k log2 n) time whether there exists a path π ∈ T so that
dF (π,Q) ≤ 3.001 ·∆, or that dF (π,Q) > ∆ for all paths π ∈ T , where dF (·, ·) denotes the
Fréchet distance. The authors assume that the edges of T and Q have length Ω(∆). Since
∆ is fixed at preprocessing time, it is unclear whether it is possible to minimise the Fréchet
distance to solve Problem 2.

Related structures that have received considerable attention include range searching and
approximate nearest neighbour searching under the Fréchet distance [4, 18, 29, 39, 62, 70,
74, 84, 97, 114].

3.2 Preliminaries

Let P = (V,E) be an undirected graph embedded in the Euclidean plane R2. An edge
uv ∈ E is a segment between u, v ∈ V , with length equal to the Euclidean distance, i.e.
|uv| = d(u, v). Let p = |V | + |E| be the complexity of the graph P . We assume that P is
connected, otherwise, our map matching queries can be handled for each connected compo-
nent independently. A path π ∈ P is defined to be a sequence of vertices u1, . . . , uk ∈ V so
that uiui+1 ∈ E for all 1 ≤ i < k. In particular, for the purposes of this chapter we consider
only paths π in P that start and end at vertices of P . Given a pair of vertices u, v ∈ P ,
the graph metric dP is defined so that dP (u, v) equals the total length of the shortest path
between u and v in the graph P . The graph P is c-packed if, for every ball Br of radius
r in the Euclidean plane, the total length of edges in E inside Br is upper bounded by cr.
Formally,

∑
e∈E |e ∩Br| ≤ cr.

A trajectory is a sequence of vertices in the Euclidean plane. Given vertices a1, . . . , aq,
the polygonal curveQ is a piecewise linear functionQ : [1, q]→ R2 satisfyingQ(i) = ai for all
1 ≤ i ≤ q, and Q(i+µ) = (1−µ)ai+µai+1 for all integers 1 ≤ i ≤ q−1 and reals 0 ≤ µ ≤ 1.
Let Γ(q) be the space of all continuous non-decreasing functions for [0, 1]→ [1, q]. For a pair
of polygonal curves Q1 and Q2 of complexities n1 and n2, we define the Fréchet distance be-
tweenQ1 andQ2 to be dF (Q1, Q2) = inf(α1,α2)∈Γ(n1)×Γ(n2) maxµ∈[0,1] d(Q1(α1(µ)), Q2(α2(µ))),
where d(·, ·) denotes the Euclidean distance.

Let 0 < ε < 1 be a constant that is fixed at preprocessing time.

3.3 Technical Overview

In Section 3.3.1, we give an overview of our data structure for map matching queries on
c-packed graphs. In Section 3.3.2, we give an overview of our lower bound for map matching
queries on geometric planar graphs. Full proofs are provided in Sections 3.4-3.7.

76

3.3.1 Data structure for c-packed graphs

Our data structure for c-packed graphs is built in three stages. In Stage 1, we construct a
data structure for straightest path queries, which we will define in due course. In Stage 2, we
construct a data structure for map matching queries, in the special case that the trajectory
is a segment. In Stage 3, we construct a data structure for map matching queries in general.
Each stage builds upon and generalises the previous stage. We provide an overview of
Stages 1, 2 and 3 in Sections 3.3.1, 3.3.1 and 3.3.1 respectively.

Stage 1: Straightest path queries

For every pair of vertices in the graph, we are interested in precomputing a path between
them that is as straight as possible. We define straightness using the Fréchet distance.
Formally, given a pair of vertices u and v, we define a straightest path between u and v to
be a path π ∈ P between u and v that minimises the Fréchet distance dF (π, uv). This leads
us to the following definition for straightest path queries.

Subproblem 4 (Straightest path queries). Given a graph P in the plane, construct a
data structure so that given any pair of vertices u, v ∈ P , the data structure returns
minπ dF (π, uv) where π ranges over all paths in P between u and v. See Figure 3.2.

u v

π

δF

P

Figure 3.2: Given a pair of query vertices u, v (red), the data structure in Subproblem 4
returns minπ dF (π, uv) (light-blue) where π ranges over all paths between u and v (blue) in
the graph P (black).

Note that Subproblem 4 can be viewed as a special case of map matching queries, where
the query trajectory must be a segment between two graph vertices, and the path must
connect the endpoints of the query segment. A näıve way to answer straightest path queries
is, for every pair of vertices, to precompute the Fréchet distance for its straightest path.
Unfortunately, storing the precomputed Fréchet distance for all pairs of vertices requires
Ω(p2) space.

Instead, we use a semi-separated pair decomposition [1] to reduce the number of pairs
we need to consider. We define the transit vertices of a semi-separated pair to be a set
of vertices so that any path between the two components of the semi-separated pair must
pass through at least one of the transit vertices. We define the set of transit pairs of a
semi-separated pair to be pairs of vertices where one vertex is in the semi-separated pair,
and one vertex is a transit vertex. For c-packed graphs, we show that there are at most
O(cp log p) transit pairs. By storing the minimum Fréchet distance for each transit pair, we
reduce the storage requirement of our data structure to O(cp log p).

77

Finally, we answer straightest path queries by dividing the path u → v into two paths.
Specifically, we divide u → v into u → w → v, where w is a transit vertex of the semi-
separated pair separating u and v. Having precomputed the minimum Fréchet distance for
transit pairs (u,w) and (w, v), we use these Fréchet distances to obtain a constant factor
approximation for the Fréchet distance of the straightest path between u and v.

Putting this all together, we obtain Theorem 5. For a full proof see Section 3.4.

Theorem 5. Given a c-packed graph P of complexity p, one can construct a data structure
of O(cp log p) size, so that given a pair of query vertices u, v ∈ P , the data structure returns
in O(log p) query time a 3-approximation of minπ dF (π, uv), where π ranges over all paths
in P between u and v. The preprocessing time is O(cp2 log2 p).

Stage 2: Map matching segment queries

Our next step is to answer map matching queries where the query trajectory is an arbitrary
segment.

Subproblem 6 (Map matching segment queries). Given a graph P in the plane, construct
a data structure so that given a query segment Q in the plane, the data structure returns
minπdF (π,Q) where π ranges over all paths in P that start and end at a vertex of P . See
Figure 3.3.

δFπ Q

P

Figure 3.3: Given a query segment Q (red), the data structure in Subproblem 6 returns
minπ dF (π,Q) (light-blue) where π ranges over all paths (blue) in the graph P (black).

Subproblem 6 can be viewed as a generalisation of Subproblem 4, where the endpoints
of the segment Q are not necessarily graph vertices, and the starting and ending points of
the path are not given and must instead be computed. To answer map matching segment
queries, we combine two data structures. The first data structure is an extension of the data
structure in Theorem 5, which we modify to handle query segments that do not necessarily
have their endpoints at graph vertices. The second data structure is to build a simplification
of the c-packed graph so that one can efficiently query the starting and ending points of the
path.

To build our first data structure, we use the result of Driemel and Har-Peled [67], which
states that one can preprocess a trajectory in near-linear time and space, so that given a
query segment, one can (1 + ε)-approximate the Fréchet distance from the query segment
to any subcurve of the trajectory in constant time. Let ε > 0 and χ = ε−2 log(1/ε). By
combining Theorem 5 with their result, we obtain a data structure of O(cχ2p log p) size, so
that given a pair of query vertices u, v ∈ P and a query segment ab in the plane, the data

78

structure returns in O(log p+ cε−1) time a (1 + ε)-approximation of minπ dF (π, ab), where
π ranges over all paths in P between u and v. The preprocessing time is O(cχ2p2 log2 p).

To build our second data structure, we use graph clustering to simplify the c-packed
graph. We first consider the decision version of the problem. Given a Fréchet distance r, we
guarantee that all edges in our simplified graph have length at least εr. By c-packedness, the
number of simplified graph vertices inside a disk of radius r is at most a constant. Given
a query segment ab, this reduces the number of candidate starting and ending points of
the matched path to a constant. We use an orthogonal range searching data structure to
efficiently query for the candidate starting and ending points of the path. Finally, we apply
parametric search to minimise the Fréchet distance r.

By combining our two data structures, we obtain Theorem 7. For a full proof see
Section 3.5.

Theorem 7. Given a c-packed graph P of complexity p, one can construct a data structure
of O(cε−4 log2(1/ε) · p log p) size, so that given a query segment ab in the plane, the data
structure returns in O(c4ε−4 · log2 p) time a (1+ ε)-approximation of minπ dF (π, ab), where
π ranges over all paths in P that start and end at a vertex of P . The preprocessing time is
O(cε−4 log2(1/ε) · p2 log2 p).

Stage 3: Map matching queries

Finally, we consider general map matching queries, which we restate for convenience. See
Figure 3.4.

Problem 2 (Map matching queries). Given a graph P in the plane, construct a data struc-
ture so that given a query trajectory Q in the plane, the data structure returns minπ dF (π,Q),
where π ranges over all paths in P and dF (·, ·) denotes the Fréchet distance.

δF

Q

P

π

Figure 3.4: Given a query trajectory Q (red), the data structure in Problem 2 returns
minπ dF (π,Q) (light-blue) where π ranges over all paths (blue) in the graph P (black).

Let the vertices of Q be a1, . . . , aq, and let the Fréchet distance for the decision version
be r. We compute a set of points Ti that ai can match to. Each point bi,j ∈ Ti is either a
vertex of P , or a point along an edge of P . The size of Ti is at most a constant, depending
on c and ε. For a point bi,j that is a vertex of P , we construct it in the same way as in
Stage 2. For a point bi,j that is on an edge of P , we construct it by sampling along the
edges of P that have length at least εr/2 and are within a distance of r to ai. To efficiently
query the edges of P with these two properties, we build a three-dimensional low-density
environment and use the range searching data structure of Schwarzkopf and Vleugels [141].

79

The final step is to build a directed graph on the set of points ∪qi=1Ti. For each bi,j ∈ Ti

and bi+1,k ∈ Ti+1, we use the map matching segment query from the previous section to
compute a (1 + ε)-approximation of the minimum Fréchet distance minπ(π, aiai+1) where
π ranges over all paths between bi,j and bi+1,k. We set the capacity of the directed edge
from bi,j to bi+1,k to be this minimum Fréchet distance. We decide whether there is a
directed path from a point in T1 to a point in Tq so that the capacities of all edges on the
directed path are at most (1 + ε)r. Finally, we use parametric search to minimise r.

Putting this all together, we obtain Theorem 3, which we restate for convenience. For a
full proof see Section 3.6.

Theorem 3. Given a c-packed graph P of complexity p, one can construct a data structure of
O(p log2 p+cε−4 log(1/ε)p log p) size, so that given a query trajectory Q of complexity q, the
data structure returns in O(q log q ·(log4 p+c4ε−8 log2 p)) query time a (1+ε)-approximation
of minπ dF (π,Q) where π ranges over all paths in P and dF (·, ·) denotes the Fréchet distance.
The preprocessing time is O(c2ε−4 log2(1/ε)p2 log2 p).

3.3.2 Lower bound for geometric planar graphs

In the final section, we investigate lower bounds for map matching queries on graphs that are
not c-packed. Our lower bounds attempt to explain why answering map matching queries is
such a difficult problem in general. In particular, we show that unless SETH fails, there is
no data structure that can be constructed in polynomial preprocessing time, that answers
map matching queries on geometric planar graphs in truly subquadratic time. Note that the
upper bound of Alt et al.’s [11] matches this lower bound up to lower-order factors, which
implies that preprocessing does not help for geometric planar map matching, unless SETH
fails.

To build towards our lower bound for map matching queries, we consider a warm-up
problem, which is to preprocesses a trajectory, so that given a query trajectory, the data
structure can efficiently answer the Fréchet distance between the query trajectory and the
preprocessed trajectory. Buchin et al. [46] claim that this is an extremely difficult problem,
which is why the special case of query segments is considered in their chapter. We provide
evidence towards Buchin et al.’s [46] claim. We show that preprocessing does not help
with Fréchet distance queries on trajectories unless SETH fails. In particular, there is no
data structure with polynomial preprocessing time that can answer Fréchet distance queries
significantly faster than computing the Fréchet distance without processing. To show our
lower bound, we modify the Bringmann’s [28] construction to answer the offline version of
the data structure problem in a similar fashion to Bringmann et al. [29] and Rubinstein [139].

Next, we prove a lower bound for Problem 1. We show that unless SETH fails, there
is no truly subquadratic time for map matching on geometric planar graphs. This shows
that the algorithm by Alt et al. [11] for geometric planar map matching is optimal up to
lower-order factors, unless SETH fails. Finally, we combine the ideas from our warm-up
problem and our lower bound for Problem 1 to rule out truly subquadratic query times for
map matching queries on geometric planar graphs, unless SETH fails.

Putting this all together, we obtain Theorem 8. For a full proof see Section 3.7.

Theorem 8. Given a geometric planar graph of complexity p, there is no data structure that
can be constructed in poly(p) time, that when given a query trajectory of complexity q, can
answer 2.999-approximate map matching queries in O((pq)1−δ) query time for any δ > 0,
unless SETH fails. This holds for any polynomial restrictions of p and q.

80

This completes the overview of the main results of our chapter.

3.4 Stage 1: Straightest path queries

The first stage of our data structure for c-packed graphs is to construct a straightest path
query data structure. Recall that the straightest path between u and v is a path π ∈ P
from u to v that minimises the Fréchet distance dF (π, uv). A data structure for straightest
path queries is defined as follows. Given a pair of query vertices u and v, the data structure
returns the minimum Fréchet distance dF (π, uv) where π ranges over all paths between u
and v. As stated in the technical overview, we avoid storing a quadratic number of Fréchet
distances by using a semi-separated pair decomposition (SSPD) to reduce the number of
pairs of vertices we need to consider.

Definition 9 (SSPD). Let V be a set of vertices. A semi-separated pair decomposition of V
with separation constant s ∈ R+ is a collection {(Ai, Bi)}ki=1 of pairs of non-empty subsets
of V so that

min(diameter(Ai),diameter(Bi)) ≤ s · d(Ai, Bi),

and for any two distinct points u and v of V , there is exactly one pair (Ai, Bi) in the
collection, such that (i) u ∈ Ai and v ∈ Bi, or (ii) v ∈ Ai and u ∈ Bi.

Note that for sets A,B, we define d(A,B) = min(a,b)∈A×B d(a, b), where d(a, b) denotes

the Euclidean distance. The total weight of {(Ai, Bi)}ki=1 is defined as
∑k

i=1(|Ai| + |Bi|).
Abam et al. [1] show how to construct an SSPD of V with separation constant s in O(ns−2+
n log n) time, that has O(ns−2) pairs, and total weight O(ns−2 log n), where n is number of
vertices in V .

Although not explicitly stated in [1], given any two distinct points u and v of V , one can
query the SSPD in O(log n) time to retrieve the pair (Ai, Bi) satisfying either (i) u ∈ Ai

and v ∈ Bi or (ii) v ∈ Ai and u ∈ Bi. We provide a sketch of the query procedure.
The SSPD in [1] is constructed using a BAR tree [73], where each node in the balanced
tree has an associated weight class. Each leaf of the BAR tree is associated with a point
in V , and has a weight class of O(log n). Given any two distinct points u and v, we
simultaneously traverse the BAR tree, from the root to the leaf nodes associated with u and
v. The invariant maintained by the simultaneous traversal is that the weight class along
the two traversals remains the same. The semi-separated pair (Ai, Bi) that we return is the
pair of nodes in the BAR tree with minimum weight class that satisfies the semi-separated
property min(diameter(Ai),diameter(Bi) ≤ s · d(Ai, Bi). Putting this together, we obtain
the following observation.

Observation 10. Given a pair of distinct points u and v of V , one can query the SSPD
of [1] in O(log n) time to obtain a semi-separated pair (Ai, Bi) satisfying either (i) u ∈ Ai

and v ∈ Bi or (ii) v ∈ Ai and u ∈ Bi.

We construct an SSPD of the vertices of P with separation constant 1/2. For each
semi-separated pair (Ai, Bi) in our SSPD, we select a set of O(c) vertices of P to be transit
vertices. The transit vertices have the property that any path from Ai to Bi must pass
through a transit vertex. In Lemma 11, we show how to compute transit vertices.

Lemma 11. Let P = (V,E) and let {(Ai, Bi)}ki=1 be an SSPD of V with separation constant
1/2. For each pair (Ai, Bi) of the SSPD, one can compute a set of vertices Ci ⊂ V in O(cp)

81

time satisfying (i) |Ci| ≤ 2c, and (ii) any path starting at a vertex in Ai and ending at a
vertex in Bi must pass through a vertex in Ci.

Proof. First, we construct the set Ci. Then we prove that Ci satisfies the required properties.
Finally, we analyse the running time of our algorithm.

Without loss of generality, suppose diameter(Ai) ≤ diameter(Bi). Let a0 be a vertex in
Ai. Let D1 be a disk with centre at a0 with radius diameter(Ai), and let D2 be a disk with
centre at a0 with radius 2 · diameter(Ai). See Figure 3.5. All vertices of Ai are in D1. All
vertices of Bi are outside D2, since d(a0, Bi) ≥ d(Ai, Bi) ≥ 2 · diameter(Ai) = radius(D2),
where the second inequality comes from the separation constant of the SSPD being 1/2.

Ai

Bi

D1

D2

a0

Figure 3.5: A semi-separated pair Ai (red) and Bi (blue). The circlesD1 andD2 (orange) are
centred at a vertex a0 ∈ Ai, and have radius diameter(Ai) and 2 diameter(Ai) respectively.
The value of the max-flow/min-cut in the figure is ℓ = 4, so |Ci| = 4.

Next, we set up a max-flow instance. Set the capacity of each edge of P = (V,E) to 1.
Set the vertices in Ai to be sources, and set the vertices in Bi to be sinks. The max-flow of
the instance is equal to its min-cut. Let the minimum cut be a set of edges e1, e2, . . . , eℓ.
Choose one endpoint for each edge e1, e2, . . . , eℓ to form the set Ci. This completes the
construction of Ci.

We show that our construction of Ci satisfies the properties (i) |Ci| ≤ 2c, and (ii) any
path starting at a vertex in Ai and ending at a vertex in Bi must pass through a vertex
in Ci. Property (ii) follows from e1, e2, . . . , eℓ being a cut. This is because removing all the
edges in the cut would disconnect the sources from the sinks, so all paths from Ai to Bi

must pass through one of e1, e2, . . . , eℓ and one of the vertices in Ci. Property (i) follows
from c-packedness. In the max-flow instance, the capacity of the max-flow is ℓ. Since all
edges have capacity 1, there are ℓ edge-disjoint paths from Ai to Bi. Each edge-disjoint
path has one endpoint in D1, and one endpoint outside D2. So each path intersects both
the inner and outer boundaries of the annulus D2 \D1. The width of the annulus D2 \D1

is equal to diameter(Ai). Therefore, there are ℓ edge disjoint paths in D2 \ D1 that each
have length at least diameter(Ai). Since the graph is c-packed, the total length of edges
in the ball D2 is at most c times the radius of D2, which is 2c · diameter(Ai). Therefore,
ℓ · diameter(Ai) ≤ 2c · diameter(Ai). Hence, |Ci| = ℓ ≤ 2c as required.

82

Finally, we analyse the running time of our algorithm, which is dominated by computing
the max-flow. The running time of the Ford-Fulkerson algorithm is equal to the number of
edges in P times the max-flow. Since ℓ ≤ 2c, the max-flow is ≤ 2c. Moreover, there are
O(p) edges in P . Therefore, the overall running time of the algorithm is O(cp).

The set of transit vertices for a semi-separated pair (Ai, Bi) is defined to be the set Ci

constructed above. Next, we define transit pairs. Given a semi-separated pair (Ai, Bi), a
transit pair for the semi-separated pair (Ai, Bi) is a pair of vertices (u,w) so that u ∈ Ai∪Bi

and w ∈ Ci, where Ci is the set of transit vertices for (Ai, Bi) defined in Lemma 11. Now,
we bound the total number of transit vertices and pairs.

Lemma 12. There are O(cp) transit vertices and O(cp log p) transit pairs in P , over all
semi-separated pairs in the SSPD.

Proof. There are O(p) semi-separated pairs in the SSPD in [1]. By Lemma 11, there are
O(c) transit vertices per semi-separated pair. Therefore, there are O(cp) transit vertices in
total. For a semi-separated pair (Ai, Bi), let (u,w) be a transit pair. There are |Ai|+ |Bi|
choices for u, and at most 2c choices for w. Therefore, the number of transit pairs over all
semi-separated pairs is at most

∑k
i=1 2c(|Ai|+ |Bi|) = O(cp log p), since

∑k
i=1(|Ai|+ |Bi|) =

O(p log p) is the weight of the SSPD in [1].

Our next step is to precompute and store the minimum Fréchet distance dF (π, uw) for
each transit pair (u,w), where π ranges over all paths in P between u and w. For this, we
use a modification of the algorithm by Alt et al. [11].

Lemma 13. Let u,w ∈ P be a pair of vertices, and let ab be a segment. One can compute
minπ dF (π, ab) in O(p log p) time, where π ranges over all paths in P between u and w.

Proof (Sketch). Our proof is essentially the same as in [11], except that we replace the
sweepline algorithm with a simple Dijkstra search [65]. The fact that the endpoints u and w
are given makes this simplification possible. Furthermore, by replacing the sweepline with
Dijkstra, we do not require P to be planar.

For the sake of completeness, we provide a proof sketch of our result. We set up a free
space diagram for the decision problem in the same way as in [11]. Let P = (V,E). For each
edge e ∈ E, let FD(e, ab) be the free space diagram between e and ab. Note that the x- and
y-coordinates of FD(e, ab) denote the positions along e and ab respectively. Moreover, ori-
ent FD(e, ab) so that a has the minimum y-coordinate and b has the maximum y-coordinate.
Similarly to [11], there is a path π between vertices u and w satisfying dF (π, ab) ≤ d if and
only if there is a sequence of free space diagrams {FD(ei, ab)}ki=1 with a monotone path in
the free space from (u, a) to (w, b). See Figure 3.6.

We avoid using a sweepline algorithm, and instead perform a Dijkstra search between u
and w. First, check that (u, a) and (w, b) are in the free space. Next, construct a priority
queue on points (x, y) in the free space diagram, where x is a vertex of P , and y is any point
on the segment ab. The priority of (x, y) is y. The invariant maintained by the priority queue
is that for all (x, y) in the priority queue, there is a monotone path from (u, a) to (x, y).
Initially, the priority queue contains only (u, a). In each iteration, we pop a point from the
priority queue with minimum y-coordinate. Let this point be (x, y). For all neighbours x′

of x ∈ P , add (x′, y′) to the priority queue, where y′ is the minimum y-coordinate so that
there is a monotone path from (x, y) to (x′, y′) in FD(xx′, ab). This maintains the invariant
of the priority queue. Halt the priority queue if (w, b′) is in the priority queue, which occurs

83

e1 e2

b

a
e3

e4

F3
F4

F1

Fi = FD(ei, ab)

F2

u

(u, a)

(w, b)

w

Figure 3.6: The x-coordinates of FD(ei, ab) denote the position along ei, and the y-
coordinates denote the position along ab. There is a path π between u and w with
dF (π, ab) ≤ d if and only if there is a monotone path from (u, a) to (w, b) in the free
space surface.

if and only if there is a monotone path from (u, a) to (w, b′) to (w, b). Finally, we apply
parametric search to minimise the Fréchet distance in the same way as in [11].

We analyse the running time. Constructing the free space diagrams takes O(p) time.
Running Dijkstra’s algorithm takes O(|E|+ |V | log |V |) = O(p log p) time. Finally, applying
parametric search [126] with Cole’s optimisation [59] takes O(p log p) time.

We are now ready to build the data structure for straightest path queries, which is the
main result of this section.

Theorem 5. Given a c-packed graph P of complexity p, one can construct a data structure
of O(cp log p) size, so that given a pair of query vertices u, v ∈ P , the data structure returns
in O(log p) query time a 3-approximation of minπ dF (π, uv), where π ranges over all paths
in P between u and v. The preprocessing time is O(cp2 log2 p).

Proof. First we describe the preprocessing procedure. Construct an SSPD of the vertices
of P , with separation constant 1/2. For each semi-separated pair (Ai, Bi), let Ci be its set of
transit vertices as defined in Lemma 11. Recall that if u ∈ Ai ∪Bi and w ∈ Ci, then (u,w)
is a transit pair of (Ai, Bi). For each transit pair (u,w), we set ab = uw in Lemma 13 to
compute the straightest path between u and w, and we store the minimum Fréchet distance.

Next, we describe the query procedure. Given a pair of query vertices u and v, we query
our SSPD for the semi-separated pair (Ai, Bi) so (i) u ∈ Ai and v ∈ Bi, or (ii) v ∈ Ai and
u ∈ Bi. Let Ci be the transit vertices for (Ai, Bi). For each w ∈ Ci, define πuw to be the
straightest path between u and w, and define Duw = dF (πuw, uw). Define πwv and Dwv

analogously. Define t to be the orthogonal projection of w onto uv and define Dw to be the
orthogonal distance. See Figure 3.7. Finally, return minw∈Ci

(max(Duw, Dwv) + Dw) as a
3-approximation for the minimum Fréchet distance of the shortest path between u and v.

We prove that the query procedure returns a 3-approximation. Our proof is inspired by
the proof of Lemma 5.5 in [67]. Let πuv be the straightest path between u and v. Then, for
any transit vertex w ∈ Ci, we have

84

πuw

w

u v
t

Dwv

πwv

Duw

Dw

Figure 3.7: Vertices u, v and transit vertex w (black), the straightest paths πuw and πwv

(blue) with Fréchet distances Duw, Dwv (orange), and the orthogonal distance Dw from w
to uv (orange, dashed).

dF (πuv, uv) ≤ dF (πuw ◦ πwv, uv)
≤ max(dF (πuw, ut), dF (πwv, tv)))
≤ max(dF (πuw, uw) + dF (uw, ut), dF (πwv, wv) + dF (wv, tv))
= max(Duw +Dw, Dwv +Dw)
= max(Duw, Dwv) +Dw

Therefore, dF (πuv, uv) ≤ minw∈Ci(max(Duw, Dwv) +Dw). Next, using Lemma 11, assume
that w∗ ∈ Ci is a transit vertex so that w∗ ∈ πuv. Then clearly Dw∗ ≤ dF (πuv, uv). By
Lemma 5.3 in [67],Duw∗ ≤ 2·dF (πuv, uv). Putting this together, we obtain max(Duw∗ , Dw∗v)+
D∗

w ≤ 3·dF (πuv, uv). Therefore, our query procedure returns a 3-approximation of dF (πuv, uv),
as required.

Finally, we analyse the running time and space of our preprocessing and query proce-
dures. Constructing the SSPD takes O(p log p) time [1]. By Lemma 11, all transit vertices
and transit pairs can be computed in O(cp2 log p) time. Computing the minimum Fréchet
distance for all transit pairs takes O(cp2 log2 p) time. Therefore, our data structure can
be constructed in O(cp2 log2 p) time. Storing the Fréchet distance for all transit pairs re-
quires O(cp log p) space, by Lemma 12. By Observation 10, querying the SSPD for the
semi-separated pair containing the query vertices takes O(log p) time. There are O(c) tran-
sit vertices to check. For a transit vertex w, looking up the values Duw and Dwv in our
data structure takes constant time. Computing Dw takes constant time. Putting this all
together, we obtain the stated theorem.

3.5 Stage 2: Map matching segment queries

Recall that a data structure for map matching segment queries is defined as follows. Given
a query segment ab in the plane, the data structure returns the minimum Fréchet distance
dF (π, ab) as π ranges over all paths in P that start and end at a vertex of P .

As stated in the technical overview, we build two data structures in this section. The
first data structure in this section is an extension of Theorem 5, which we modify to handle
arbitrary query segments in the plane.

Lemma 14. Given a c-packed graph P of complexity p, one can construct a data structure
of O(cp log p) size, so that given a pair of query vertices u, v ∈ P and a query segment
ab in the plane, the data structure returns in O(log p) query time a 3-approximation of

85

minπ dF (π, ab), where π ranges over all paths in P between u and v. The preprocessing time
is O(cp2 log2 p).

Proof (Sketch). Our proof is the exactly same as the proof of Theorem 5, except that (i)
we define Dw = dF (uw ◦wv, ab), and (ii) we define t to be the point on ab that matches to
w, under the minimum Fréchet distance matching between ab and uw ◦ wv.

This completes the construction of the first data structure, however, its approximation
ratio is 3. Next, we improve the approximation ratio to (1 + ε). We first prove a useful
lemma.

Lemma 15. Let u,w ∈ P be a fixed pair of vertices. Let ε > 0 and χ = ε−2 log(1/ε). One
can construct a data structure of O(χ2) space, so that given a query segment ab in the plane,
the data structure returns in constant time a (1+ε)-approximation of minπ dF (π, ab), where
π ranges over all paths in P between u and w. The preprocessing time is O(χ2p log p).

Proof (Sketch). Our proof is the same as the proof of Lemma 5.8 in [67], except that instead
of computing the Fréchet distance between a curve and a segment joining a pair of grid
points, we use Lemma 13 to minimise the Fréchet distance over all paths between u and w.

Now, we use Lemma 15 to improve the approximation ratio of Lemma 14 to (1 + ε).

Lemma 16. Let ε > 0 and χ = ε−2 log(1/ε). One can construct a data structure of
O(cχ2p log p) size, so that given a pair of query vertices u, v ∈ P and a query segment ab
in the plane, the data structure returns in O(log p+ cε−1) time a (1 + ε)-approximation of
minπ dF (π, ab), where π ranges over all paths in P between u and v. The preprocessing time
is O(cχ2p2 log2 p).

Proof (Sketch). Our proof is essentially the same as the proof of Theorem 5.9 in [67], except
that (i) we replace subcurves with transit pairs, (ii) we replace Lemma 5.8 in [67] with
Lemma 15, and (iii) we replace Theorem 5.6 in [67] with Lemma 14.

For the sake of completeness, we provide a proof sketch of our result. We first describe
the preprocessing procedure. We construct the data structure in Lemma 14. For each
transit pair, we construct the data structure in Lemma 15. Next, we describe the query
procedure. Given a pair of query vertices (u, v) and a query segment ab, we use Lemma 14 to
compute a real value r so that minπ dF (π, ab) ≤ r ≤ 3 ·minπ dF (π, ab), where π ranges over
all paths between u and v. Next, we iterate over all transit vertices w associated with the
semi-separated pair containing (u, v). Define B(w, 3r) to be a ball with radius 3r centred
at w. If B(w, 3r) does not intersect ab, we skip the transit vertex w and move onto the next
one. Hence, we may assume that B(w, 3r) intersects ab. We compute O(ε−1) evenly spaced
vertices on the chord B(w, 3r) ∩ ab. Let t be one of these vertices. See Figure 3.8.

We use Lemma 15 to compute a (1+ε)-approximation of minπ dF (π, at) as π ranges over
all paths between u and w (resp. tb and paths between w and v). We take the larger Fréchet
distance out of the at and tb cases, and return it as a (1+ε)-approximation of minπ dF (π, ab)
as π ranges over all paths between u and v assuming w ∈ π and w matches to t. Finally,
we minimise over all transit vertices w and the evenly spaced vertices t ∈ B(w, 3r) ∩ ab
to obtain a (1 + ε)-approximation of minπ dF (π, ab). The proof of correctness follows from
Theorem 5.9 in [67].

We analyse the preprocessing time and space. There are O(cp log p) transit pairs by
Lemma 12. By Lemma 14 and Lemma 15, the data structure has O(cχ2p log p) size, and can

86

ba

t

B(w, 3r)

Figure 3.8: The O(ε−1) evenly spaced vertices, including t (black) on the chord B(w, 3r)∩ab
which is the intersection of segment ab (red) and the ball centred at w with radius 3r
(orange).

be constructed in O(cχ2p2 log2) preprocessing time. We analyse the query time. Computing
a 3-approximation takes O(log p) query time. Iterating over all choices of w and t takes
O(cε−1) time. Putting this together yields the claimed lemma.

This improves the approximation ratio of the first data structure to (1 + ε). Next, we
consider the second data structure, which can efficiently query the starting and ending points
of the path.

For our second data structure, we simplify the c-packed graph using graph clustering.
The clustering algorithm we use is Gonzales’ algorithm [94]. Let P = (V,E) be the graph,
which from Section 3.2 is assumed to be connected. For a pair of vertices u, v ∈ V , let
dP (u, v) be the shortest path between u and v in P . For k = 1, . . . , p, we compute a k-centre
clustering of V under the graph metric dP . For k = 1, choose an arbitrary vertex v1 to be the
1-centre. Mark v1 as a cluster centre, and let r1 be the radius of the 1-centre clustering. For
k ≥ 2, compute the vertex vk that is the furthest from all existing cluster centres v1, . . . , vk−1.
Mark vk as a new centre, and let rk be the radius of the k-centre clustering. After all vertices
are marked as cluster centres, we have computed a list [(v1, r1), . . . , (vp, rp)] of cluster centres
and cluster radii.

We use the cluster centres and cluster radii to construct a hierarchy of simplifications of
the graph P . In particular, define Vr to be the set of vertices {vi ∈ V : ri ≥ εr}. We show
that for any square S with side length 2r, there are at most O(cε−1) vertices in Vr ∩ S.

Lemma 17. Let P = (V,E) be a c-packed graph and let S be a square in the plane with side
length 2r. Then there exists a set of vertices T ⊆ V satisfying (i) |T | = O(cε−1) and (ii)
for all vertices v ∈ V ∩ S, there exists t ∈ T so that dP (v, t) ≤ εr.

Proof. Run the clustering algorithm described above to compute a list [(v1, r1), . . . , (vp, rp)]
of cluster centres and their clustering radii. Recall that Vr is the set of vertices in V
satisfying ri ≥ εr. Let S′ be a square concentric with S, but has side length 4r. Define
T1 = Vr ∩ S′. First, we show that T1 satisfies Property (i). Then we add a single vertex to
T1 to construct T2, and show that T2 satisfies both Properties (i) and (ii).

For Property (i), if there exists a vertex t ∈ T1 so that dP (t, t
′) ≤ εr for all t′ ∈ V , then

defining T1 = {t} clearly satisfies both properties. Otherwise, for all t ∈ T1 there exists a
vertex t′ so that dP (t, t

′) ≥ εr. Construct the shortest path from t to t′ under the graph
metric dP , and let t′′ be the point (not necessarily a vertex) on the shortest path between t
and t′ so that dP (t, t

′′) = εr/3. Let the shortest path from t to t′′ be πt. Construct the set
of paths {πt}t∈T1

. First, we will show that the set of paths {πt}t∈T1
are edge disjoint, and

87

all lie in a square with side length 5r. See Figure 3.9. Then, we will use the c-packedness
property in the square with side length 5r to prove Property (i).

u πu

v
πv

t πt

4r5r

Figure 3.9: The vertices T1 = {t, u, v} (black) are in a square of side length 4r (orange,
solid). The paths {πt, πu, πv} (blue) are edge disjoint and lie in a square with side length
5r (orange, dashed).

First, we show {πt}t∈T1
is edge disjoint. Suppose for the sake of contradiction that

s, t ∈ T1, and πs and πt share an edge. Using this shared edge, by the triangle inequality
we have dP (s, t) < εr. Let s = vi have cluster radius ri, and t = vj have cluster radius rj ,
so that i < j. Then we have the inequality

rj ≤ rj−1 = max
v∈P

min
k<j

dP (vk, v) = min
k<j

dP (vk, vj) ≤ dP (vi, vj) = dP (s, t) < εr,

where maxv∈P mink<j dP (vk, v) = mink<j dP (vk, vj) comes from the fact that vj was the
furthest vertex from all existing cluster centres in the jth round of Gonzales’ algorithm. But
t ∈ Vr, so rj ≥ εr. This is a contradiction, so {πt}t∈T1

is edge disjoint.
Now, we will use the c-packedness property to show that |T1| = O(cε−1). Each path πt

is a shortest path between a pair of points that are distance εr/3 away, so the total path
length of {πt}t∈T1

is |T1| · εr/3. Each vertex t ∈ T1 is in a square with side length 4r. Each
path πt has length at most εr < r, since 0 < ε < 1. Therefore, all edges in {πt}t∈T1

are in a
square with side length 5r. Finally, by c-packedness, we have that c · 5r is an upper bound
on the total edge length in the square of side length 5r, which is guaranteed to contain the
edges of {πt}t∈T1 . Therefore, c ·5r ≥ |T1| ·εr/3, which implies |T1| ≤ 15cε−1. This concludes
the proof of Property (i).

For Property (ii), let Vr = [v1, . . . , vi]. If Vr consists of all vertices of V , then T1

consists of all vertices inside S′, and (ii) is trivially true. Otherwise, suppose vi+1 ̸∈ Vr.
So ri+1 < εr. Therefore, after i + 1 rounds of Gonzales’ algorithm, the cluster radius is at
most εr. So all vertices v ∈ P are within distance εr from one of the vertices [v1, . . . , vi+1].
Define T2 = [v1, . . . , vi+1] ∩ S′. Then |T2| ≤ |T1| + 1 = O(cε−1). Moreover, for all vertices
v ∈ P ∩ S, v is within distance εr from one of the vertices [v1, . . . , vi+1]. Without loss of
generality, let j ≤ i + 1 so that dP (v, vj) < εr. Since v ∈ S and dP (v, vj) < εr, we have
vj ∈ S′. Therefore, vj ∈ T2 = [v1, . . . , vi+1]∩S′. As a result, T2 satisfies both Properties (i)
and (ii), as required.

Next, we build a data structure so that, given any square S in the plane, the data
structure can efficiently return a set of vertices T that satisfies the properties in Lemma 17.

Lemma 18. Let P = (V,E), and let ε > 0. One can construct a data structure of O(p log p)
size, so that given a query square S in the plane with side length 2r, the data structure
returns in O(log p+ cε−1) time a set of vertices T satisfying (i) |T | = O(cε−1) and (ii) for

88

all vertices v ∈ V ∩ S, there exists t ∈ T so that dP (v, t) ≤ εr. The preprocessing time is
O(p2 log p).

Proof. We show how to efficiently query the set T2 given in Lemma 17. We run the clus-
tering algorithm described in this section to compute a list [(v1, r1), . . . , (vp, rp)] of cluster
centres and their clustering radii. We build an orthogonal range searching data structure
for three-dimensional points. Specifically, for each pair (vi, ri) in the list, we insert the point
(xi, yi, ri) into the orthogonal range searching data structure, where (xi, yi) are the x- and
y-coordinates of the point vi, respectively. Given a square S, we perform an orthogonal
range search for all vertices (vi, ri) so that vi ∈ S, and ri ≥ εr. We return this set of
vertices as T2. Lemma 17 proves that T2 satisfies Properties (i) and (ii).

Next, we analyse the running time and space of the preprocessing and query procedures.
We use the orthogonal range searching data structure of Afshani et al. [3], and we use the
clustering algorithm of Gonzales [94].

The storage requirement of the orthogonal range searching data structure is O(p log2 p).
Computing the distance matrix under dP takes O(p2 log p) time. Performing Gonzales’
clustering algorithm to compute p centres takes O(p2) time. Constructing the orthogonal
range searching data structure takes O(p log2 p) time. Therefore, the overall preprocessing
time is O(p2 log p). The query time of the orthogonal range searching data structure is
O(log p+ |T |). Therefore, the overall query time is O(log p+ cε−1). This proves the stated
lemma.

Finally, we are ready to combine the two data structures in Lemmas 16 and 18 to answer
map matching segment queries. The theorem below is the main result of this section.

Theorem 7. Given a c-packed graph P of complexity p, one can construct a data structure
of O(cε−4 log2(1/ε) · p log p) size, so that given a query segment ab in the plane, the data
structure returns in O(c4ε−4 · log2 p) time a (1+ ε)-approximation of minπ dF (π, ab), where
π ranges over all paths in P that start and end at a vertex of P . The preprocessing time is
O(cε−4 log2(1/ε) · p2 log2 p).

Proof. The preprocessing procedure is to construct the data structure in Lemmas 16 and 18.
For both data structures, we use the parameter ε′ = ε/6 instead of ε.

Next, we consider the query procedure for the decision problem. Given a segment ab in
the plane and a Fréchet distance of r, the decision problem is to decide whether r∗ ≤ r or
r∗ ≥ r, where r∗ = minπ dF (π, ab) where π ranges over all paths in P that start and end
at a vertex of P . We construct a disk centred at a with radius r, and we enclose this disk
in a square with side length 2r. We query the data structure in Lemma 18 to obtain a set
of vertices Ta. We query the set of vertices Tb analogously. For every (u, v) ∈ Ta × Tb, we
query the data structure in Lemma 16 for a value ruv which is a (1 + ε′)-approximation of
minπ dF (π, ab), where π ranges over all paths between u and v. See Figure 3.10.

Let r′ = min(u,v)∈Ta×Tb
ruv. We distinguish three cases (a), (b) and (c):

(a) If r′ ≤ r, we return that r∗ ≤ r.
(b) If r′ ≥ (1 + ε′)2r, we return that r∗ ≥ r.
(c) If r′ ∈ [r, (1 + ε′)2r], we return that r∗ ∈ [(1− ε′)r, (1 + ε′)2r].

The third case does not technically answer the decision problem, as it does not return r∗ ≤ r
or r∗ ≥ r. However, in this case, we will show that (1+ε′)r is a (1+ε)-approximation of r∗,
as required by the stated theorem. This completes the description of the query procedure

89

v

a

b

πuv

ruv
u

Figure 3.10: The query segment ab (red), the squares centred at a and b with side length 2r
(orange), the sets of vertices Ta and Tb including u and v (orange), and the path πuv (blue)
between u and v minimising the Fréchet distance ruv (light-blue) up to a factor of (1 + ε).

for the decision problem. Next, we prove its correctness, which we separate into cases (a),
(b) and (c).

(a) We know r∗ ≤ ruv for all vertices u, v in P . Therefore, r∗ ≤ r′. So if r′ ≤ r, then
r∗ ≤ r.

(b) Given a pair of vertices u, v in P , define r∗uv to be minπ dF (π, ab) where π ranges over
all paths between u and v. Clearly, r∗ ≤ r∗uv for all vertices u, v in P . Moreover,
by Lemma 16, since ruv is a (1 + ε′)-approximation, we have r∗ ≤ r∗uv ≤ ruv ≤
(1 + ε′)r∗uv. Let π∗ be the path that attains r∗, i.e. r∗ = dF (π

∗, ab). Let the
starting and ending points of π∗ be u∗ and v∗ respectively. By Lemma 17, there
exists a graph vertex u ∈ Ta so that dP (u

∗, u) ≤ ε′r. Define the vertex v ∈ Tb

analogously. See Figure 3.11. Consider the path π∗
uv obtained by concatenating the

paths uu∗, π∗, and v∗v. Note that π∗
uv is a valid path between u and v, moreover,

dF (π
∗
uv, ab) ≤ max(dF (uu

∗, a), dF (π∗, ab), dF (v∗v, b)). But dF (u
∗, a) ≤ dF (π

∗, ab) =
r∗, and dP (u

∗, u) ≤ ε′r. Hence, dF (uu
∗, a) ≤ r∗+ε′r. Similarly, dF (v

∗v, b) ≤ r∗+ε′r,
so dF (π

∗
uv, ab) ≤ r∗ + ε′r. Therefore, r∗uv ≤ dF (π

∗
uv, ab) ≤ r∗ + ε′r. Now, r′ ≤ ruv ≤

(1 + ε′)r∗uv ≤ (1 + ε′)(r∗ + ε′r). If r′ ≥ (1 + ε′)2r, then (1 + ε′)(r∗ + ε′r) ≥ (1 + ε′)2r,
so r∗ + ε′r ≥ r + ε′r, and therefore r∗ ≥ r.

(c) From the proof of the first case, we have r∗ ≤ r′. If r′ ≤ (1+ε′)2r, then r∗ ≤ (1+ε′)2r.
From the proof of the second case, we have r′ ≤ r∗+ε′r. If r′ ≥ r, then r∗ ≥ (1−ε′)r.
Putting this together, if r′ ∈ [r, (1+ε′)2r], then r∗ ∈ [(1−ε′)r, (1+ε′)2r]. In particular,
(1+ε′)2r ≥ r∗, and (1+ε′)2r ≤ (1+ε′)3r∗ ≤ (1+ε′)(1+3ε′)r∗ ≤ (1+6ε′)r∗ = (1+ε)r∗,
so (1 + ε′)r is a (1 + ε)-approximation of r∗, as required.

v

a

b

π∗

u
u∗

v∗

Figure 3.11: Given segment ab (red), the path π∗ (blue) minimises its Fréchet distance to
ab. We define a new path that concatenates vertex u, path π∗, and vertex v, where u ∈ Ta

and v ∈ Tb.

90

Next, we apply parametric search to the decision problem, which we call D(r). De-
fine D(r) to be TRUE if r′ ≤ r, and define D(r) to be FALSE if r′ ≥ (1 + ε′)r. If
r′ ∈ [r, (1 + ε′)r], we immediately halt the parametric search, and return (1 + ε′)r as a
(1 + ε)-approximation of r∗. It suffices to show (i) that D(r) is monotone, and (ii) that all
operations in D(r) are either independent of r, or can be made equivalent to a constant num-
ber of comparisons {r > ci} where ci is a critical value. First, we show (i). Suppose D(r1)
evaluates to TRUE, and r1 < r2. Then r∗ ≤ r1 ≤ r2, and we cannot have D(r2) evaluating
to FALSE. So either D(r2) is also TRUE, or we halt the parametric search and obtain a
(1+ ε)-approximation. Similarly, if D(r1) evaluates to FALSE, and r1 > r2, then we cannot
have D(r2) evaluating to TRUE. Therefore, D(r) is monotone. Next, we show (ii). The first
step of D(r) is to query the data structure in Lemma 18 for the set Ta. The data structure is
a three-dimensional orthogonal range searching data structure. All operations that depend
on r can be evaluated by comparing r to a difference between x-, y- or z-coordinates. As
an example, if a = (xa, ya), then a point (xi, yi, ri) lies in the orthogonal range if and only
if |xa − xi| ≤ r, |ya − yi| ≤ r and ri ≥ ε′r. In particular, |xa − xi|, |ya − yi| and ri/ε

′ are
critical values. The next step is to query Lemma 16 to obtain r′. This step is independent
of r and generates no critical values. Finally, we compare r′ with r and (1+ε′)r. Therefore,
r′ and r′/(1 + ε′) are critical values. This completes the proof of (i) and (ii).

We analyse the construction time and space of the data structure. Let χ = ε−2 log(1/ε).
The data structure in Lemma 16 has O(cχ2p log p) size, whereas the data structure in
Lemma 18 has O(p log p) size. The data structure in Lemma 16 requires O(cχ2p2 log2 p)
preprocessing time, whereas the data structure in Lemma 18 requires O(p2 log p) prepro-
cessing time. Therefore, the overall data structure has O(cχ2p log p) size, and requires
O(cχ2p2 log2 p) preprocessing time.

We analyse the query time of the decision problem. Querying the data structure in
Lemma 18 takes O(log p+ cε−1) time. There are O(c2ε−2) pairs (u, v) ∈ Ta × Tb. For each
pair (u, v), querying the data structure in Lemma 16 takes O(log p) time. Therefore, the
overall query time of the decision version is O(c2ε−2 log p). We analyse the running time of
parametric search. The decision version forms both the sequential and parallel algorithms.
The running time of parametric search [126] is O(NpTp + TpTs logNp), where Ts is the
running time of the sequential algorithm, Np is the number of processors for the parallel
algorithm, and Tp is the number of parallel steps in the parallel algorithm. By setting
Np = 1, we obtain Ts = Tp = O(c2ε−2 log p). Therefore, the overall running time of the
parametric search step is O(c4ε−4 log2 p).

3.6 Stage 3: Map matching queries

We start by considering the decision problem of the map matching query, in which we are
given a trajectory Q in the plane and a Fréchet distance r, and we are to decide whether
r ≤ r∗ or r ≥ r∗, where r∗ is the minimum value of dF (π,Q) where π ranges over all paths
in P that start and end at a vertex of P . Let Q have vertices a1, . . . , aq. The first step is to
compute a constant number of points on P that can match to ai. We have two cases, either
the point matching to ai is a vertex of P , or it is a point along an edge of P . The points
along the edges of P are defined as follows.

Definition 19. Given a graph P = (V,E) embedded in the Euclidean plane, define the set F
to be points that lie on an edge of E. Formally, F = {f ∈ R2 : f ∈ e, e ∈ E}.

91

The trajectory vertex ai must match to a point in V or F . If the point is in V , we use
Lemma 17 to compute a set of O(cε−1) vertices that can match to ai. If the point is in F ,
we prove a generalisation of Lemma 17 to compute a set of O(cε−2) points that can match
to ai. The generalisation is stated below.

Lemma 20. Let P = (V,E) and let F = {f ∈ R2 : f ∈ e, e ∈ E}. Let S be a square
in the plane with side length 2r. Then there exists a set of points T ⊂ F satisfying (i)
|T | = O(cε−2) and (ii) for all points f ∈ F ∩ S, there exists t ∈ T so that dP (f, t) ≤ εr.

Proof. We use Lemma 17 to construct a set of graph vertices T2 so that |T2| = O(cε−1),
and for all vertices v ∈ V ∩S, there exists t2 ∈ T2 so that dP (v, t) ≤ εr/2. Let Er be the set
of edges E with length at least εr/2. Let S′ be a square that is concentric with S, but has
side length 4r. For each e ∈ Er, choose O(ε−1) evenly spaced points on the chord e∩S′, so
that the distance between consecutive points is at most εr/2. Add these O(ε−1) points to
the set T3, for each e ∈ Er. We will show that the set T2 ∪ T3 satisfies both Properties (i)
and (ii).

We first prove Property (i). By Lemma 17, |T2| = O(cε−1). Then for e ∈ Er, the
length of the edge e ∩ S′ is at least εr/2. By the c-packedness property on S′, we have
c · 4r ≥ |Er| · εr/2. Therefore, |Er| = O(cε−1). The set T3 consists of O(ε−1) points per
edge in |Er|, so |T3| = O(cε−2). This completes the proof of Property (i).

Next we prove Property (ii). Let f ∈ F ∩ S. We have three cases, either f is a graph
vertex, f is on an edge with length ≤ εr/2, or f is on an edge with length ≥ εr/2. If f
is a graph vertex, then Lemma 17 implies that there exists t ∈ T2 so that dP (f, t) ≤ εr/2.
If f is on an edge with length ≤ εr/2, let v be one of the endpoints of the edge. There
exists t ∈ T2 so that dP (v, t) ≤ εr/2. Therefore, dP (f, t) ≤ dP (f, v)+dP (v, t) ≤ εr. Finally,
if f is on an edge with length ≥ εr/2, then let the edge be e. There exists O(ε−1) evenly
spaced points on the chord e ∩ S′ in T3. Since the distance between consecutive points is
≤ εr/2, there exists a point t3 ∈ T3 so that dP (f, t3) ≤ εr/2. This completes the proof of
Property (ii) and we are done.

Our next step is to build a data structure analogous to Lemma 18, but for computing
points that ai can match to. To build this data structure, we first construct a three-
dimensional low-density environment.

Definition 21. A set of objects in R3 is k-low-density if, for every axis-parallel cube Hr with
side length r, there are at most k objects that satisfy (i) the object intersects Hr, and (ii) the
object has size at least r. The size of an object is the side length of the smallest axis-parallel
cube that encloses the object.

Definition 22. Given a segment e ⊂ R2 and ε ∈ R+, we define trough(e, ε) ⊂ R3 to be

trough(e, ε) = {(x, y, z) : d((x, y), e) ≤ 4z ≤ 8ε−1|e|}

The three-dimensional object trough(e, ε) ⊂ R3 is the union of two half-cones and a
triangular prism. See Figure 3.12.

The base of the half-cones have a radius of 8ε−1|e|. The half-cones and the triangular
prism have a height of 2ε−1|e|. Next, we show that if P = (V,E) is a c-packed graph, then
the set of troughs {trough(e, ε) : e ∈ E} is a low-density environment.

Lemma 23. Let P = (V,E) be a c-packed graph, and let 0 < ε < 1. Then {trough(e, ε) :
e ∈ E} is an O(cε−1)-low-density environment.

92

Figure 3.12: A trough is the union of two half-cones (red, blue) and a triangular prism
(grey).

Proof. First, we show that trough(e, ε) has size at most 18ε−1|e|. Let (x, y, z) ∈ trough(e, ε).
Then 0 ≤ z ≤ 2ε−1|e|. Moreover, d((x, y), e) ≤ 8ε−1|e|, so (x, y) must lie inside a circle
centred at the midpoint of e, with radius 9ε−1|e|. Therefore, (x, y) lies inside a circle with
radius 9ε−1|e|. So (x, y, z) lies in a cylinder with radius 9ε−1|e| and height 2ε−1|e|. So the
size of trough(e, ε) is at most 18ε−1|e|, as claimed.

Let Hr be any axis parallel cube with side length r. Let zmin be the minimum z-
coordinate of Hr. We can assume without loss of generality that zmin ≥ 0. Suppose
trough(e, ε) intersects withHr and trough(e, ε) has size at least r. Let (x, y, z) ∈ trough(e, ε)∩
Hr. Let h be the projection of the centre of Hr onto the hyperplane defined by z = 0. See
Figure 3.13.

Hr

eh

(x, y, z)

Figure 3.13: The point (x, y, z) (blue) is in the intersection of trough(e, ε) (black) and the
cube Hr (orange). The point h (orange) and the edge e (black) are on the hyperplane z = 0.

Then,
d(h, e) ≤ d(h, (x, y)) + d((x, y), e)

≤ r + 4z
≤ 5r + 4zmin

where the first inequality is the triangle inequality, the second comes from (x, y, z) ∈ Hr ∩
trough(e, ε), and the third comes from the maximum z-coordinate of Hr being zmin + r.

The maximum z-coordinate of trough(e, ε) is 2ε−1|e|, whereas the minimum z-coordinate
of Hr is zmin. Therefore, zmin ≤ 2ε−1|e|. Since trough(e, ε) has size at least r and at most
18ε−1|e|, we have r ≤ 18ε−1|e|. Putting this together, we have 5r + 4zmin ≤ 100ε−1|e|.

Consider the ball B(h, 10r+8zmin) centred at h with radius 10r+8zmin. Since d(h, e) ≤
5r+4zmin, the length of e that is contained inB(h, 10r+8zmin) is at least min(|e|, 5r+4zmin).
But 100ε−1|e| ≥ 5r + 4zmin. So the length of e that is contained in B(s, 10r + 8zmin) is at
least ε · (5r + 4zmin)/100.

Finally, suppose there were k edges {ei}ki=1 so that each ei satisfies (i) trough(ei)
intersects Hr, and (ii) trough(ei) has size at least r. Then by definition, the environ-
ment is k-low-density. It suffices to upper bound k. The total length of edges inside
B(h, 10r + 8zmin) is at least kε · (5r + 4zmin)/100. By the c-packedness of P , we have

93

c · (10r + 8zmin) ≥ kε · (5r + 4zmin)/100, so k ≤ 50cε−1. Therefore, for all Hr there are
at most 50cε−1 troughs that intersect Hr and have size at least r. This proves the stated
lemma.

Next, we use the result of Schwarzkopf and Vleugels [141] to build a range searching data
structure for the low-density environment. Note that trough(e, ε) has constant description
complexity.

Lemma 24 (Theorem 3 in [141]). Let E be a set of n objects in R3, where each object has
constant description complexity. Suppose that E is a k-low-density environment. Then E
can be stored in a data structure of size O(n log2 n + kn), such that it takes O(log2 n + k)
time to report all objects that contain a given query point q ∈ R3. The data structure can
be computed in O(n log2 n+ kn log n) time.

We use Lemma 24 to construct a data structure for computing points that the vertices
of the query trajectory (i.e. ai for 1 ≤ i ≤ q) can match to. In particular, for any square
S in the plane, the following data structure returns a set of points T ⊂ F satisfying the
properties in Lemma 20.

Lemma 25. Let P = (V,E), let F = {f ∈ R2 : f ∈ e, e ∈ E}, and let ε > 0. One can
construct a data structure in O(p2 log p) time of size O(p log2 p), so that given a query square
S in the plane with side length 2r, the data structure returns in O(log2 p+ cε−2) time a set
of points T ⊂ F satisfying (i) |T | = O(cε−2) and (ii) for all points f ∈ F ∩ S, there exists
t ∈ T so that dP (f, t) ≤ εr.

Proof. We construct the data structure in Lemma 18. For each edge e ∈ E, we construct
trough(e, ε), and we use Lemma 24 to construct a range searching data structure on the
set of troughs. Note that troughs form a low-density environment by Lemma 23. This
completes the construction procedure.

Given a query square S, we use Lemma 18 to query a set T2. Next, we state the query
for T3. Let the centre of S be (x, y), and its side length be 2r. Query the data structure in
Lemma 24 for all troughs that contain the query point (x, y, r). Suppose the data structure
returns {trough(ei)}ki=1. Let S′ be the square concentric with S, but with side length 4r.
For each ei, choose O(ε−1) evenly spaced points on the chord ei ∩ S′, so that the distance
between consecutive points is ≤ εr/2. This completes the query for set T3.

Next, we prove the correctness of the query. For T2, the proof of correctness follows
from Lemma 18. For T3, we require all edges with length at least εr/2 that intersect
S′. It suffices to show that querying Lemma 24 for all troughs containing the query point
(x, y, r) is sufficient to obtain all such edges. Recall from the definition of the trough
that (x, y, r) ∈ trough(e, ε) if and only if d((x, y), e) ≤ 4r and 4r ≤ 8ε−1|e|. Note that
d((x, y), e) ≤ 4r covers all edges that intersect S′, and 4r ≤ 8ε−1|e| covers all edges with
length at least εr/2. Therefore, the queries for T2 and T3 are correct. Lemma 20 proves
that T2 ∪ T3 satisfies Properties (i) and (ii) in the stated lemma.

The data structure in Lemma 18 has O(p log p) size. The data structure in Lemma 24
has O(p log2 p + cp) = O(p log2 p) size. Therefore, the overall size of our data structure is
O(p log2 p).

The preprocessing time of Lemma 18 and Lemma 24 are O(p2 log p) and O(p log2 p +
cε−1p log p) respectively. Therefore, the overall preprocessing time is O(p2 log p).

Finally, the query time of Lemma 18 is O(log p + cε−1). The query time of Lemma 24
is O(log2 n + cε−1) time. Constructing the evenly spaced points takes O(ε−1) time per

94

chord, and there are O(cε−1) chords overall. Therefore, the overall query time is O(log2 p+
cε−2).

Finally, we are ready to construct the map matching data structure for general trajectory
queries on c-packed graphs.

Theorem 3. Given a c-packed graph P of complexity p, one can construct a data structure of
O(p log2 p+cε−4 log(1/ε)p log p) size, so that given a query trajectory Q of complexity q, the
data structure returns in O(q log q ·(log4 p+c4ε−8 log2 p)) query time a (1+ε)-approximation
of minπ dF (π,Q) where π ranges over all paths in P and dF (·, ·) denotes the Fréchet distance.
The preprocessing time is O(c2ε−4 log2(1/ε)p2 log2 p).

Proof. The preprocessing procedure is to build the data structures in Lemmas 16 and 25.
For both data structures, we use the parameter ε′ = ε/9 instead of ε.

Given a query trajectory Q and a Fréchet distance of r, the decision problem is to
decide whether r∗ ≤ r or r∗ ≥ r, where r∗ = minπ dF (π,Q) as π ranges over all paths
in P that start and end at a vertex of P . Recall that the vertices of Q are a1, . . . , aq.
We divide the decision problem into three steps. In step one, we construct a square of
side length 2r centred at ai. For 1 ≤ i ≤ q, we query Lemma 25 with this square to
obtain a set of points Ti that can match to ai. In step two, we build a directed graph
over ∪qi=1Ti, which we define as follows. Let bi,j ∈ Ti and bi+1,k ∈ Ti+1. Let ci,j and di,j
be graph vertices so that bi,j is on the edge ci,jdi,j . Define ci+1,k and di+1,k analogously.
For now, we suppose that the path π passes through the pair of endpoints (ci,j , ci+1,k).
Analogous arguments can be made if the path π instead passes through the pairs of endpoints
(ci,j , di+1,k), (di,j , ci+1,k) or (di,j , di+1,k). Let a′i be the point on aiai+1 that is the closest
to ai and satisfies dF (bi,jci,j , aia

′
i) ≤ r. Let a′i+1 be the point on aiai+1 that is the closest

to ai+1 and satisfies dF (ci+1,kbi+1,k, a
′
i+1ai+1) ≤ r. See Figure 3.14.

ai

ai+1bi,j
di,j

ci,j

Ti

Ti+1

bi+1,k
ci+1,k

di+1,k

Figure 3.14: If bi,j ∈ Ti (orange) is a point that can match to ai (red), we let the edge
containing bi,j be ci,jdi,j (black). The analogous edge ci+1,kdi+1,k is defined for bi+1,k.

We query the data structure in Lemma 16. From this, we obtain a (1+ε′)-approximation
of minπ dF (π, a

′
ia

′
i+1) where π ranges over all paths between the graph vertices ci,j and ci+1,k.

In our directed graph over ∪qi=1Ti, define the capacity of the directed edge from bi,j to bi+1,k

to be the minimum of the four (1 + ε′)-approximations of minπ dF (π, a
′
ia

′
i+1) where π

ranges over all paths between the pairs of vertices (ci,j , ci+1,k), (ci,j , di+1,k), (di,j , ci+1,k)
and (di,j , di+1,k). This completes step two, that is, building the directed graph. The third
step is, for r′ ∈ {r, (1 + ε′)r}, to decide whether there exists a path in the directed graph
from T1 to Tq, so that the capacity of each edge in the path is at most r′. We distinguish
three cases (a), (b) and (c):

95

(a) If there exists a path in the case r′ = r, we return that r∗ ≤ r.
(b) If there does not exist a path in the case r′ = (1 + ε′)2r, we return that r∗ ≥ r.
(c) If there exists a path in the case r′ = (1 + ε′)2r but not for the case r′ = r, we return

that
r∗ ∈ [(1 + ε′)−2r, (1 + ε′)2r].

Note that the third case does not technically answer the decision problem, however, in
this case, we will show that (1 + ε′)2r is a (1 + ε)-approximation of r∗, as required by the
theorem statement. This completes the description of the query procedure in the decision
version. Next, we prove its correctness, which we separate into cases (a), (b) and (c).

(a) Suppose there exists a path with capacity at most r′, where r′ ≥ r. Let this path
be b1, . . . , bq, where bi ∈ Ti for 1 ≤ i ≤ q. Let the capacity of the directed edge from bi
to bi+1 be Ci. Then Ci ≤ r′, by definition, so there exists graph vertices ci and ci+1,
and points a′i and a′i+1 on aiai+1 satisfying dF (bici, aia

′
i) ≤ r, dF (bi+1ci+1, a

′
i+1ai+1) ≤

r, and dF (πi, a
′
ia

′
i+1) ≤ Ci for some path πi between ci and ci+1. Define π′

i to be the
concatenation of bici, πi and ci+1bi+1. So dF (π

′
i, aiai+1) ≤ max(Ci, r) ≤ r′. Define

π′ to be the concatenation of π′
i for all 1 ≤ i ≤ q. Then dF (π

′, Q) ≤ r′. Therefore,
r∗ = minπ dF (π,Q) ≤ dF (π

′, Q) ≤ r′, so r∗ ≤ r′. In the first case, there exists a path
for r′ = r, so r∗ ≤ r, as required.

(b) Suppose there does not exist a path with capacity at most r′. Let π∗ be the path
in P so that r∗ = dF (π

∗, Q). Let the points on π∗ that match to a1, . . . , aq ∈ Q be
u∗
1, . . . , u

∗
q ∈ P . By Lemma 25, there exist points bi ∈ Ti so that dP (bi, u

∗
i) ≤ ε′r, for

all 1 ≤ i ≤ q. Let ri be the minimum Fréchet distance dF (π, aiai+1) where π ranges
over all paths between bi and bi+1. Then

ri ≤ max(dF (biu
∗
i , ai), dF (π

∗[u∗
i , u

∗
i+1], aiai+1), dF (u

∗
i+1bi+1, ai+1)),

since the concatenation of biu
∗
i , the subtrajectory π∗[u∗

i , , u
∗
i+1] of π

∗, and u∗
i+1bi+1 is

a valid path from bi to bi+1. See Figure 3.15.
Note that dF (biu

∗
i , ai) ≤ dF (u

∗
i , ai) + dP (bi, u

∗
i) ≤ r∗ + ε′r. Therefore, ri ≤ r∗ + ε′r.

Then, the capacity of the edge from bi to bi+1 is at most (1 + ε′)ri ≤ (1 + ε′)(r∗ +
ε′r). Putting this together, there exists a path from T1 to Tq with capacity at most
(1 + ε′)(r∗ + ε′r). In the second case, there does not exist a path with capacity
r′ = (1+ε′)2r. Therefore, (1+ε′)2r ≤ (1+ε′)(r∗+ε′r) which implies (1+ε′)r ≤ r∗+ε′r
and r ≤ r∗, as required.

(c) From proof of the first case, r∗ ≤ r′, if there exists a path for r′. Therefore, r∗ ≤
(1+ε′)2r. From the proof of the second case, r∗ ≥ r′ if there exists a path for (1+ε′)2r′.
Therefore, r∗ ≥ (1+ ε)−2r. Putting this together, we get r∗ ∈ [(1+ ε′)−2r, (1+ ε′)2r].
In particular, we have (1 + ε)2r ≥ r∗, and (1 + ε)2r ≤ (1 + ε′)4r∗ ≤ (1 + 3ε′)2r∗ ≤
(1 + 9ε′)r∗ = (1 + ε)r∗, so (1 + ε′)2r is a (1 + ε)-approximation of r∗, as required.

For the minimisation version, we apply parametric search. Define the decision problem
D(r) to be TRUE if there exists a path for r′ = r, and FALSE if there does not exist a path
for r′ = (1 + ε′)2r.

It suffices to show (i) that D(r) is monotone and (ii) that all operations in D(r) are
either independent of r, or can be made equivalent to a constant number of comparisons
{r > ci} where ci is a critical value. First we show (i). Suppose D(r1) evaluates to TRUE,
and r1 < r2. Then r∗ ≤ r1 ≤ r2 and we cannot have D(r2) evaluation to FALSE. So either

96

ai

ai+1

bi+1

bi

u∗
i+1

π∗[u∗
i , u

∗
i+1]

u∗
i

Figure 3.15: The trajectory vertices ai and ai+1 (red) match to u∗
i and u∗

i+1 on the optimal
path π∗ (blue). We construct a path from bi to bi+1 (orange) by concatenating the edge biu

∗
i ,

the subtrajectory π∗[u∗
i , u

∗
i+1] and u∗

i+1bi+1.

D(r2) is also TRUE, or we halt the parametric search and obtain a (1 + ε)-approximation
of r∗. Similarly, if D(r1) evaluates to FALSE, and r1 > r2, then we cannot have D(r2)
evaluating to TRUE. Therefore, D(r) is monotone.

Next, we show (ii). The first step is to query Lemma 16 to obtain a set of points Ti

that can match to ai. The critical values of this step are when the query point (x, y, r)
lies on the boundary of the troughs in the low-density environment. This can be evaluated
as a low order polynomial in terms of r. The second step is to compute the points ai
and a′i, and query the data structure in Lemma 16 to obtain a (1 + ε′)-approximation of
minπ dF (π, a

′
ia

′
i+1). The critical values occur when ai and a′i match to different pairs of grid

points in Lemma 15, which can be resolved using a low order polynomial in terms of r. The
third step is to decide whether there exists a path in the directed graph where the capacity
of each edge is at most r′. The critical values are when the capacity of an edge is exactly
r′, which can be resolved as a low order polynomial of r. This completes the proof of (i)
and (ii).

We analyse the space and preprocessing time of the data structure. First, we analyse
the space. The data structures in Lemmas 16 and 25 require O(cε−4 log(1/ε)p log p) and
O(p log2 p) space respectively. The overall space requirement is O(cε−4 log(1/ε)p log p +
p log2 p). Next, the preprocessing times of Lemmas 16 and 25 are O(c2ε−4 log2(1/ε)p2 log2 p)
and O(p2 log p) respectively. The overall preprocessing time is O(c2ε−4 log2(1/ε)p2 log2 p).

For the query time of the decision version, for each 1 ≤ i ≤ q we query the data structure
in Lemma 20 to construct the set Ti. In total, this takes O(q · (log2 p+ cε−2)) time. Next,
we build a directed graph on ∪qi=1Ti. There are O(q · c2ε−4) directed edges between Ti and
Ti+1, for 1 ≤ i < q. Computing the capacity of the directed edge, by querying Lemma 16,
takes O(log p + cε−1) time. Finally, deciding whether there is a directed path from T1 to
Tq takes O(q · c2ε−4) time. Therefore, the overall running time of the decision version is
O(q · (log2 p+ c2ε−4 log p)).

Finally, we analyse the running time of parametric search. The running time of para-
metric search [126] is O(NpTp+TpTs logNp), where Ts is the running time of the sequential
algorithm, Np is the number of processors for the parallel algorithm, and Tp is the number
of parallel steps in the parallel algorithm. The sequential algorithm is the same as the de-
cision algorithm, so Ts = O(q · (log2 p+ c2ε−4 log p)). The parallel algorithm is to simulate
the decision algorithm on Np = q processors. The first two steps can be parallelised to
run on q processors in O(log2 p+ c2ε−4 log p) parallel steps. In the third step, it suffices to
check if each of the edges has capacity at most r′. Computing the directed path generates
no additional critical values, so it does not need to be simulated by the parallel algorithm.

97

The third step can be parallelised onto q processors to run in O(c2ε−4) parallel steps. The
total number of parallel steps is Tp = O(log2 p+ c2ε−4 log p). Therefore, substituting these
values into the running time of parametric search, we get that the overall running time
of parametric search is O(q log q · (log4 p + c4ε−8 log2 p)). This completes the proof of the
theorem.

3.7 Lower bound for geometric planar graphs

In this section, we no longer assume that the graph P is c-packed. The main result of
this section is that for geometric planar graphs, unless SETH fails, no data structure can
preprocess a graph in polynomial time to answer map matching queries in O((pq)1−δ) for
any δ > 0, and for any polynomial restrictions of p and q. In Section 3.7.1, we construct
a lower bound for the warm-up problem of Fréchet distance queries on trajectories. In
Section 3.7.2, we construct a lower bound for map matching queries on geometric planar
graphs.

3.7.1 Fréchet distance queries on trajectories

Our warm-up problem is to extend the lower bound of Bringmann [28] to Fréchet distance
queries on trajectories. The lower bound assumes a weaker version of SETH.

Definition 26 (SETH′). The CNF-SAT problem is to decide whether a formula φ on N
variables x1, . . . xN and M clauses C1, . . . , CM has a satisfying assignment. SETH ′ states
that there is no Õ((2−δ)N) algorithm for CNF-SAT for any δ > 0, where Õ hides polynomial
factors in N and M .

If SETH′ fails, then so does SETH [164]. Next, we provide a proof sketch of Theorem 1.2
in [28].

Lemma 27 (Theorem 1.2 in [28]). Let n and m denote the complexities of a pair of tra-
jectories. There is no 1.001-approximation with running time O((nm)1−δ) for the Fréchet
distance for any δ > 0, unless SETH fails. This holds for any polynomial restrictions of n
and m.

Proof (Sketch). Suppose for the sake of contradiction that there exists a positive constant
δ so that there is a 1.001-approximation with running time O((nm)1−δ) for the Fréchet
distance. We summarise the main steps of Theorem 1.2 in [28], which generalises the m = n
case to the m ̸= n case.

Suppose m = Θ(nγ) for some γ > 0. We are given a CNF-SAT instance φ with
variables x1, . . . , xN and clauses C1, . . . , CM . We partition its variables x1, . . . , xN into
V1 = {x1, . . . , xℓ} and V2 = {xℓ+1, . . . , xN}, where ℓ = N/(γ + 1). Let Ak be all the assign-
ments of Vk for k ∈ {1, 2}. Using the same method as the m = n case in [28], we construct
curves P1 and P2 so that |P1| = Θ(M ·|A1|) and |P2| = Θ(M ·|A2|). Moreover, by Lemma 3.7
and Lemma 3.9 in [28], if A1 × A2 contains a satisfying assignment, then dF (P1, P2) ≤ 1,
whereas if A1 × A2 contains no satisfying assignment, then dF (P1, P2) ≥ 1.001. Note that
if n = |P1|, then m = |P2| = Θ(nγ).

Therefore, any 1.001-approximation of dF (P1, P2) with running time O((nm)1−δ) yields
an algorithm for CNF-SAT with running timeO((M ·|A1|)1−δ(M ·|A2|)1−δ) = O(M22(1−δ)N),
contradicting SETH′ and SETH.

98

Next, we consider the problem of preprocessing a trajectory such that, given a query
trajectory, their Fréchet distance can be computed efficiently. This is stated as an extremely
challenging problem in Buchin et al. [46]. In Lemma 28 we show that preprocessing essen-
tially does not help with computing the Fréchet distance. In particular, we show that even
with polynomial preprocessing time, one cannot obtain a truly subquadratic query time for
computing the Fréchet distance. We prove this by considering the offline version of the data
structure problem, in a similar fashion to Bringmann et al. [29] and Rubinstein [139].

Lemma 28. Let n denote the complexity of a trajectory. There is no data structure that
can be constructed in poly(n) time, that when given a query trajectory of complexity m,
can answer 1.001-approximate Fréchet distance queries in O((nm)1−δ) query time for any
δ > 0, unless SETH fails. This holds for any polynomial restrictions of n and m.

Proof. Suppose for the sake of contradiction that there exists positive constants α and δ
so that one can construct a data structure in O(nα) preprocessing time to answer 1.001-
approximate Fréchet distance queries with a query time of O((nm)1−δ).

Suppose m = Θ(nγ) for some γ > 0. We take two cases. In the first case, γ ≥ 2α. Given
a pair of trajectories with complexities n and m, we can preprocess the first trajectory
in O(nα) time, and query a 1.001-approximation of its Fréchet distance with the second
trajectory in O((nm)1−δ) time. But O(nα) = O(m1/2), so the overall running time is
O((nm)1−δ). This contradicts Lemma 27.

In the second case, γ ≤ 2α. We follow the same steps as Lemma 27. We are given a CNF-
SAT instance φ with variables x1, . . . , xN and clauses C1, . . . , CM . We partition its variables
x1, . . . , xN into V1 = {x1, . . . , xℓ} and V2 = {xℓ+1, . . . , xN}, where ℓ = N/(2α+ 1). Let Ak

be all the assignments of Vk for k ∈ {1, 2}. Note that if n = |A1|, then m = |A2| = Θ(n2α).
Partition the set A2 into subsets B1, . . . , BK so that |Bi| = Θ(|A1|γ), for all 1 ≤ i ≤ K,
and K = O(|A1|2α−γ). Note that A1 × A2 contains a satisfying assignment if and only if
there exists 1 ≤ i ≤ K so that A1 × Bi contains a satisfying assignment. Using the same
method as the m = n case in [28], we construct curves P1 and Qi so that |P1| = Θ(M |A1|)
and |Qi| = Θ(M |Bi|) for 1 ≤ i ≤ K. Moreover, by Lemma 3.7 and Lemma 3.9 in [28], if
A1 ×Bi contains a satisfying assignment, then dF (P1, Qi) ≤ 1, whereas if A1 ×Bi contains
no satisfying assignment, then dF (P1, Qi) ≥ 1.001. Note that if n = |P1|, then m = |Qi| =
Θ(nγ).

Therefore, to decide if there is a satisfying assignment for the CNF-SAT instance φ, it
suffices to query a 1.001-approximation of dF (P1, Qi) for all 1 ≤ i ≤ K. We preprocess the
trajectory P1 in O((M |A1|)α) = O(Mα2αN/(2α+1)) = O(Mα2N/2) time. We answer all K
queries in time

O(
∑K

i=1(M |A1|)1−δ(M |Bi|)1−δ) = O(KM2|A1|1−δ|A1|(1−δ)γ)
= O(M2|A1|(1−δ)+(1−δ)γ+2α−γ)
= O(M2|A1|(1−δ)+2α)
= O(M22N(1+2α−δ)/(1+2α))
= O(M22(1−δ/(1+2α))N).

Putting this together, we yield an algorithm for CNF-SAT with running time

O(Mα2N/2 +M22(1−
δ

1+2α)N),

where α and δ are constants, contradicting SETH′and SETH.

99

An open problem is whether one can adapt the lower bound of Buchin et al. [42] to rule
out approximation factors between 1.001 and 3. In particular, one would need to extend
their construction to hold for a pair of trajectories with an imbalanced number of vertices.

Another open problem is whether one can extend the lower bound to range searching
queries. Given a database of k trajectories with m vertices each and a query trajectory with
n vertices, Baldus and Bringmann [18] conjecture that a O((kmn)1−δ) time algorithm for
range searching would falsify SETH.

3.7.2 Map matching queries on geometric planar graphs

We return to the map matching problem. The main result of this section is that there is no
data structure that can preprocess a geometric planar graph in polynomial time to answer
map matching queries in truly subquadratic time. To build towards this result, we first show
that Alt et al.’s [11] O(pq log p) time algorithm for Problem 1 is optimal up to lower-order
factors, conditioned on unbalanced OVH.

Definition 29 (OVH). The OV problem is to decide whether the sets A,B ⊆ {0, 1}d contain
a pair of binary vectors (a, b) ∈ A × B so that a and b are orthogonal. Let n = |A| and
m = |B|. OVH states that there is no Õ((nm)1−δ) time algorithm for OV for any δ > 0,
where Õ hides polynomial factors in d. This holds for any polynomial restrictions of n and
m.

If OVH fails, then so does SETH [164]. We use OVH to prove our lower bound for Prob-
lem 1. For constructing our graph and our trajectory, we use the notation Q = ⃝q

i=1ai =
a1 ◦ . . . ◦ aq to denote the polygonal curve Q obtained by linearly interpolating between the
vertices a1, . . . , aq.

Lemma 30. Let P be a geometric planar graph of complexity p and Q be a trajectory of
complexity q. There is no 2.999-approximation with running time O((pq)1−δ) for computing
minπ dF (π,Q) for any δ > 0, unless SETH fails. This holds for any polynomial restrictions
of p and q.

Proof. Suppose for the sake of contradiction that there exists a positive constant δ so that
there is a 2.999-approximation with running time O((pq)1−δ) for Problem 1.

We are given an OV instance A,B ⊆ {0, 1}d. Let p = |A| and q = |B|, where there
may be any polynomial restriction of p and q. First, we will construct a graph P of com-
plexity O(dp) and a trajectory Q of complexity O(dq). Then we will show that a 2.999-
approximation of minπ dF (π,Q) yields an O((pq)1−δ) time algorithm for OV.

Let h be a small constant, which we will choose later on in the proof. Inspired by
Buchin et al. [42] and Bringmann et al. [29], we define the following polygonal curves. See
Figure 3.16. It is straightforward to verify that dF (0A, 0B) = dF (0A, 1B) = dF (1A, 0B) = 1,
and dF (1A, 1B) = 3.

1A := (0, 0) ◦ (12, 0) ◦ (12, h) ◦ (6, h) ◦ (6, 2h) ◦ (18, 2h)
0B := (0, 0) ◦ (13, 0) ◦ (13, h) ◦ (5, h) ◦ (5, 2h) ◦ (18, 2h)
0A := (0, 0) ◦ (14, 0) ◦ (14, h) ◦ (4, h) ◦ (4, 2h) ◦ (18, 2h)
1B := (0, 0) ◦ (15, 0) ◦ (15, h) ◦ (3, h) ◦ (3, 2h) ◦ (18, 2h)

100

1A

0B

0A

1B

Figure 3.16: The polygonal curves 1A, 0B , 0A and 1B .

We use 0A and 1A to construct P . We start by constructing the curves R, S and Ti.

R := ⃝d
k=1Rk where Rk := 0A + (18k, 0),

S := ⃝d
k=1Sk where Sk := 0A + (18k, 7ph),

Ti := ⃝d
j=1Ti,k where Ti,k := A[i][k]A + (18k, 3ih) for all 1 ≤ i ≤ p, 1 ≤ k ≤ d

where A[i][k] is the kth coordinate of the ith vector in A, and A[i][k]A is either 0A or 1A
depending on whether A[i][k] is 0 or 1, and +(x, y) translates the curve horizontally by x
and vertically by y. See Figure 3.17.

Ti

R,S

Figure 3.17: The curves R and S are obtained by concatenating translated versions of 0A.
The curves Ti are obtained by concatenating translated versions of 0A and 1A.

Next, we use R and S to construct curves U and V . Note that U and V each contain a
loop.

U := (0,−18) ◦ (0, 0) ◦R ◦ (36d, 3h) ◦ (0, 3h) ◦ (0, 0),
V := (0, 6ph) ◦ S ◦ (36d, 6ph) ◦ (0, 6ph) ◦ (0, 18),

See Figure 3.18, left. Finally, we connect the curves Ti, U and V to obtain the graph P .
For 1 ≤ i ≤ p, we connect U to Ti with the edge (0, 3h) ◦ (18, 3ih). For 1 ≤ i ≤ p, we
connect Ti to V with the edge (18d, 3ih+ 2h) ◦ (36d, 6ph). We take the union of Ti, U , V ,
and these 2p connections to obtain the graph P , completing its construction. See Figure 3.18,
right. It is straightforward to verify that P is connected and planar, and |P | = O(dp).

Now, we use 0B and 1B to construct Q.

Wj := ⃝d
j=1Wj,k where Wj,k := B[j][k]B + (18k, 0) for all 1 ≤ j ≤ q, 1 ≤ k ≤ d,

X := ⃝q
j=1Xj where Xj := (0, 0) ◦Wj ◦ (36d, 0) ◦ (0, 3h) for all 1 ≤ j ≤ q,

Q := (0,−18) ◦X ◦ (0, 18).

Note that B[j][k] is the kth coordinate of the jth vector in B, where B[j][k]B is either 0B
or 1B depending on whether B[j][k] is 0 or 1, and +(x, y) translates the curve horizontally
by x and vertically by y. This completes the construction of Q. See Figure 3.19. It is
straightforward to verify that |Q| = O(dq).

We will show that if our OV instance A,B is a YES-instance, then minπ dF (π,Q) ≤
1.001. Suppose that A[i] and B[j] are orthogonal. We will construct a path π ∈ P with

101

R

S

(0,−18)

(0, 0)
(0, 3h) (36d, 3h)

(0, 6ph) (36d, 6ph)

(0, 18)

(0,−18)

R

T1

...

Tp

S

(0, 0)
(0, 3h)

(0, 6ph)

(0, 18)

(36d, h)

(36d, 6ph)

U

V P

Figure 3.18: (Left) The lower curve U in red, the upper curve V in blue. (Right) The
graph P obtained by connecting U , V and Ti.

Wi(0, 0)
(0, 3h) (36d, 3h)

X1 ◦ . . . ◦Xq

(0, 18)

(0,−18)

Xi Q

Figure 3.19: (Left) Curve Xi is obtained by concatenating (0, 0), Wi, (36d, 3h) and (0, 3h).
(Right) Curve Q is obtained by concatenating (0,−18), Xi for 1 ≤ i ≤ q, and (0, 18).

dF (π,Q) ≤ 1.001, which we define as follows.

Y := ⃝j−1
ℓ=1Yℓ where Yℓ := (0, 0) ◦R ◦ (36d, 3h) ◦ (0, 3h) for all 1 ≤ ℓ ≤ j − 1,

Z := ⃝q
ℓ=j+1Zℓ where Zℓ := (0, 6ph) ◦ S ◦ (36d, 6ph) ◦ (0, 6ph) for all j + 1 ≤ ℓ ≤ q,

π := (0,−18) ◦ Y ◦ Ti ◦ Z ◦ (0, 18),

It is straightforward to verify that π is a path of P . Next, we provide a matching of π
and Q with Fréchet distance at most 1.001, assuming h is sufficiently small.

π = (0,−18) ◦ (0, 0) Q = (0,−18) ◦ (0, 0)
◦⃝j−1

ℓ=1 Yℓ ◦⃝j−1
ℓ=1 Xℓ

◦ Ti ◦ Xj

◦⃝q
ℓ=j+1 Zℓ ◦⃝q

ℓ=j+1 Xℓ

◦ (0, 6ph) ◦ (0, 18) ◦ (0, 3h) ◦ (0, 18)

It suffices to show that dF (Yℓ, Xℓ) ≤ 1, dF (Ti, Xj) ≤ 1 and dF (Zℓ, Xℓ) ≤ 1.001, for a
sufficiently small choice of h. This is equivalent to showing that dF (R,Wℓ) ≤ 1, dF (Ti,Wj) ≤
1, and dF (S,Wℓ) ≤ 1.001. We traverse these pairs of trajectories synchronously. For 1 ≤
k ≤ d, we have Rk = 0A+(18k, 0), Wj,k = B[j][k]B +(18k, 0), Ti,k = A[i][k]A+(18k, 0) and

102

Sk = 0A + (18k, 7ph). Since dF (0A, B[j][k]B) ≤ 1, we have dF (Rk,Wj,k) ≤ 1. Putting this
together for 1 ≤ k ≤ d, we have dF (R,Wℓ) ≤ 1. Also, we have dF (A[i][k]A, B[j][k]B) ≤ 1 for
all 1 ≤ k ≤ d, since A[i] and B[k] are orthogonal. Therefore, dF (Ti,k,Wj,k) ≤ 1, and putting
this together for 1 ≤ k ≤ d, we have dF (Ti,Wj) ≤ 1. Finally, since dF (0A, B[j][k]B) ≤ 1, we
have dF (Sk,Wj,k) ≤ 1 + 7ph. We can obtain that 1 + 7ph ≤ 1.001 by setting h = 0.0001/p.
Putting this together for 1 ≤ k ≤ d, we have dF (S,Wℓ) ≤ 1.001. To summarise, we have
dF (Yℓ, Xℓ) ≤ 1, dF (Ti, Xj) ≤ 1 and dF (Zℓ, Xℓ) ≤ 1.001, so dF (π,Q) ≤ 1.001 as required.

We show that if our OV instance A,B is a NO-instance, then minπ dF (π,Q) ≥ 3. Sup-
pose for the sake of contradiction that A,B is a NO-instance but there exists π ∈ P so
that dF (π,Q) < 3. First, note that π must start at (0,−18) and end at (0, 18) since no
other vertices in P can match to the start and end points of Q. Note that (0,−18) ∈ U
and (0, 18) ∈ V , and that any path π from U to V must pass through one of the curves Ti.
Without loss of generality, let Ti be a subcurve of π. Consider the point (22, 3ih) ∈ Ti ⊂ π.
This point must match to some point in Q that is not on the edges (0,−18) ◦ (0, 0) or
(0, 3h)◦(0, 18). Therefore, there exists some j so that (22, 3ih) ∈ π matches to a point onXj .
The point (22, 3ih) cannot match to any of the edges (0, 0)◦ (18, 0), (18(d+1), 2h)◦ (36d, 0),
(36d, 0)◦(0, 3h) or (0, 3h)◦(0, 0) on Xj . Therefore, the point (22, 3ih) ∈ Ti that matches to a
point onWj . As the pathWj ⊂ Q is traversed, the path π must continue to traverse the path
along Ti, since Ti is an isolated path that only connects to the rest of P at its endpoints.
Therefore, Ti and Wj are traversed simultaneously. Specifically, the subcurves Ti,k ⊂ Ti

and Wj,k ⊂ Wj are traversed simultaneously, since no points on Ti,k can match to points
on Wj,k′ for all k ̸= k′. This implies dF (π,Q) ≥ dF (Ti,k,Wj,k) for all 1 ≤ k ≤ d.

Finally, we use the fact that A,B is a NO-instance to show that dF (Ti,k,Wj,k) = 3 for
some 1 ≤ k ≤ d. Since A,B is a NO-instance, A[i] and B[j] are not orthogonal. Therefore,
there exists a k so that A[i][k] = B[j][k] = 1. Therefore, dF (A[i][k]A, B[j][k]B) = 3. Since
Ti,k = A[i][k]A+(18k, 3ih) and Wj,k = B[j][k]B+(18k, 0), we have dF (A[i][k]A, B[j][k]B) =
3 + 3ih ≥ 3. Therefore, dF (π,Q) ≥ dF (Ti,k,Wj,k) > 3, contradicting the fact that
dF (π,Q) < 3. Therefore, if our OV instance A,B is a NO-instance, then minπ dF (π,Q) ≥ 3
as required.

To summarise, we can decide if A,B is a YES-instance or a NO-instance by deciding
whether minπ dF (π,Q) ≤ 1.001 or minπ dF (π,Q) ≥ 3. Therefore, any 2.999-approximation
with running time O((pq)1−δ) yields an algorithm for OV with running time O(d2(pq)1−δ),
where p = |A| and q = |B|. This contradicts OVH and SETH.

Finally, we combine the ideas in Lemma 28 and 30 to obtain the main theorem of the
section. The theorem essentially states that for geometric planar graphs, preprocessing does
not help for map matching. In particular, we show that even with polynomial preprocessing
time on the graph, one cannot obtain a truly subquadratic query time for the map matching
problem in Problem 2.

Theorem 8. Given a geometric planar graph of complexity p, there is no data structure that
can be constructed in poly(p) time, that when given a query trajectory of complexity q, can
answer 2.999-approximate map matching queries in O((pq)1−δ) query time for any δ > 0,
unless SETH fails. This holds for any polynomial restrictions of p and q.

Proof. Suppose for the sake of contradiction that there exists positive constants α and δ
so that one can construct a data structure in O(nα) preprocessing time to answer 2.999-
approximate map matching queries with a query time of O((pq)1−δ).

Suppose q = Θ(pγ) for some γ > 0. We take two cases. In the first case, γ ≥ 2α. Given a
geometric planar graph of complexity p and a trajectory of complexity q, we can preprocess

103

the graph in O(pα) time, and query a 2.999-approximation of minπ dF (π,Q) in O((pq)1−δ)
time. But O(pα) = O(q1/2), so the overall running time is O((pq)1−δ). This contradicts
Lemma 30.

In the second case, γ ≤ 2α. We are given an OVH instance A,B where |A| = n and
|B| = m. Since OVH holds for any polynomial restrictions of n and m, we may assume that
m = Θ(n2α). Partition the set B into subsets B1, . . . , BK so that |Bi| = Θ(|A|γ), for all
1 ≤ i ≤ K, and K = O(|A|2α−γ). Note that A × B contains a pair of orthogonal vectors
if and only if there exists 1 ≤ i ≤ K so that A × Bi contains a pair of orthogonal vectors.
Given the OV instance A,Bi, we use Lemma 30 to construct a geometric planar graph P and
a trajectories Qi so that p = |P | = O(d|A|) = O(dn) and q = |Qi| = O(d|Bi|) = O(dnγ).
Moreover, by Lemma 30, if (A,Bi) is a YES-instance, then minπ(π,Qi) ≤ 1.001, whereas if
(A,Bi) is a NO-instance, then minπ(π,Qi) ≥ 3. Note that q = Θ(pγ).

Therefore, to decide if A,B is a YES-instance or a NO-instance, it suffices to query
a 2.999-approximation of minπ(π,Qi) for all 1 ≤ i ≤ K. Recall that m = Θ(n2α). We
preprocess the graph P in O((dn)α) = O(dαm1/2) time. We answer all K queries in time

O(
∑K

i=1(dn)
1−δ(dnγ)1−δ) = O(Kd2n1−δ+γ)

= O(d2n(1−δ+γ+2α−γ)
= O(d2n2α+1−δ)
= O(d2n(2α+1)(1−δ/(1+2α))
= O(d2(mn)1−δ/(1+2α)).

Putting this together, we yield an algorithm for OVH with running time

O(dαm1/2 + d2(mn)1−
δ

1+2α),

where α and δ are constants. This contradicts OVH under the polynomial restriction m =
Θ(n2α), thereby contradicting SETH.

3.8 Conclusion

We showed that for c-packed graphs, one can construct a data structure of near-linear size,
so that map matching queries can be answered in time near-linear in terms of the query
complexity, and polylogarithmic in terms of the graph complexity. We showed that for
geometric planar graphs, there is no data structure for answering map matching queries in
truly subquadratic time, unless SETH fails.

Our map matching queries return the minimum Fréchet distance between the query
trajectory and any path in an undirected graph. The data structure can be modified for
directed graphs and for matched paths that start and end along edges of the graph. We can
also modify the data structure to return the length of the minimum Fréchet distance path.
More generally, one can modify the data structure to return

∑
e∈π f(e) for any function f ,

where π is the path with approximate minimum Fréchet distance. One application of this
is fare estimation for ride-sharing services.

Our data structures return the minimum Fréchet distance of the matched path. One can
modify our data structure to retrieve the path that attains the minimum Fréchet distance,
however, the space requirement would increase to quadratic. An open problem is whether
one can obtain a map matching data structure that retrieves the matched path, and uses
subquadratic space. Another open problem is whether one can make ε chooseable at query
time, rather than at preprocessing time.

104

Yet another direction for future work is to improve the preprocessing, size, and query
time of the data structure. Can one improve the preprocessing time to subquadratic? Can
one reduce the dependencies on c, ε−1, log q and log p? For example, can one improve the
query time by avoiding parametric search? Avoiding parametric search would also make the
algorithm more likely to be implementable in practice.

Another practical consideration is verifying whether real-world road networks are indeed
c-packed. Since these road networks contain upwards of a million edges [53], a faster im-
plementation for computing the c-packedness value of a graph [100] would be required. If
real-world road networks are not c-packed, an interesting direction for future work would
be to consider other realistic input models, such as ϕ-low-density, which have small values
of ϕ even on large road networks [54].

Finally, two open problems are proposed in Section 3.7. Can one modify the lower bound
of Buchin et al. [42] to rule out approximation ratios between 1.001 and 3 for preprocessing
a trajectory to answer Fréchet distance queries in truly subquadratic time? Can one extend
the lower bounds to rule out efficient data structures for other Fréchet distance queries, for
example, range searching queries?

105

Chapter 4

Computing Continuous
Dynamic Time Warping of
Time Series in Polynomial Time

4.1 Introduction

Time series data arises from many sources, such as financial markets [153], seismology [168],
electrocardiography [20] and epidemiology [22]. Domain-specific questions can often be
answered by analysing these time series. A common way of analysing time series is by
finding similarities. Computing similarities is also a fundamental building block for other
analyses, such as clustering, classification, or simplification. There are numerous similarity
measures considered in literature [16, 58, 80, 116, 151, 155], many of which are application
dependent.

Dynamic Time Warping (DTW) is arguably the most popular similarity measure for
time series, and is widely used across multiple communities [6, 93, 129, 132, 140, 142, 152,
156, 160]. Under DTW, a minimum cost discrete alignment is computed between a pair of
time series. A discrete alignment is a sequence of pairs of points, subject to the following
four conditions: (i) the first pair is the first sample from both time series, (ii) the last
pair is the last sample from both time series, (iii) each sample must appear in some pair
in the alignment, and (iv) the alignment must be a monotonically increasing sequence for
both time series. The cost of a discrete alignment, under DTW, is the sum of the distances
between aligned points. A drawback of a similarity measure with a discrete alignment is
that it is sensitive to the sampling rates of the time series. As such, DTW is a poor measure
of similarity between a time series with a high sampling rate and a time series with a low
sampling rate. For such cases, it is more appropriate to use a similarity measure with a
continuous alignment. In Figure 4.1a, we provide a visual comparison of a discrete alignment
versus a continuous alignment, for time series with vastly different sampling rates.

The Fréchet distance is a similarity measure that has gained popularity, especially in the
theory community [12, 37, 69, 148]. To apply the Fréchet distance to a time series, we linearly
interpolate between sampled points to obtain a continuous one-dimensional polygonal curve.
Under the Fréchet distance, a minimum cost continuous alignment is computed between the
pair of curves. A continuous alignment is a simultaneous traversal of the pair of curves that

106

(a) Top: The optimal alignment under a dis-
crete similarity measure, e.g. DTW. Bot-
tom: The optimal alignment under a contin-
uous similarity measure.

(b) Top: The optimal simplification under
a bottleneck measure, e.g., Fréchet distance.
Bottom: The optimal simplification under a
summation-based similarity measure.

Figure 4.1: Issues with discrete (left) and bottleneck (right) measures as opposed to contin-
uous, summed measures.

satisfies the same four conditions as previously stated for DTW. The cost of a continuous
alignment, under the Fréchet distance, is the maximum distance between a pair of points
in the alignment. The Fréchet distance is a bottleneck measure in that it only measures
the maximum distance between aligned points. As a result, the drawback of the Fréchet
distance is that it is sensitive to outliers. For such cases, a summation-based similarity
measure is significantly more robust. In Figure 4.1b, we illustrate a high complexity curve,
and its low complexity “simplification” that is the most similar to the original curve, under
either a bottleneck or summation similarity measure. The simplified curve under the Fréchet
distance is sensitive to and drawn towards its outlier points.

Continuous Dynamic Time Warping (CDTW) is a recently proposed alternative that
does not exhibit the aforementioned drawbacks. It obtains the best of both worlds by
combining the continuous nature of the Fréchet distance with the summation of DTW.
CDTW was first introduced by Buchin [43], where it was referred to as the average Fréchet
distance. CDTW has also been referred to as the summed, or integral, Fréchet distance.
CDTW is similar to the Fréchet distance in that a minimum cost continuous alignment is
computed between the pair of curves. The cost of a continuous alignment, under CDTW, is
the integral of the distances between pairs of points in the alignment. We provide a formal
definition in Section 4.2. Other definitions were also given under the name CDTW [75, 143],
see Section 4.1.1.

Compared to existing popular similarity measures, CDTW is robust to both the sam-
pling rate of the time series and to its outliers. CDTW has been used in applications where
this robustness is desirable. In Brakatsoulas et al. [25], the authors applied CDTW to map-
matching of vehicular location data. The authors highlight two common errors in real-life
vehicular data, that is, measurement errors and sampling errors. Measurement errors re-
sult in outliers whereas sampling errors cause discrepancies in sampling rates between input
curves. Their experiments show an improvement in map-matching when using CDTW in-
stead of the Fréchet distance. In a recent paper, Brankovic et al. [27] applied CDTW to
clustering of bird migration data and handwritten character data. The authors used (k, ℓ)-
center and medians clustering, where each of the k clusters has a (representative) center

107

Figure 4.2: Clustering of the c17 pigeon’s trajectories under the DTW (left), Fréchet (mid-
dle), and CDTW (right) distances. Figures were provided by the authors of [27].

curve of complexity at most ℓ. Low complexity center curves are used to avoid overfitting.
Compared to DTW and the Fréchet distance, Brankovic et al. [27] demonstrated that clus-
tering under CDTW produced centers that were more visually similar to the expected center
curve. Under DTW, the clustering quality deteriorated for small values of ℓ, whereas under
the Fréchet distance, the clustering quality deteriorated in the presence of outliers.

Brankovic et al.’s [27] clustering of a pigeon data set [125] is shown in Figure 4.2. The
Fréchet distance is paired with the center objective, whereas DTW and CDTW are paired
with the medians objective. Under DTW (left), the discretisation artifacts are visible. The
blue center curve is jagged and visually dissimilar to its associated input curves. Under
the Fréchet distance (middle), the shortcoming of the bottleneck measure and objective is
visible. The red center curve fails to capture the shape of its associated input curves, in
particular, it misses the top-left “hook” appearing in its associated curves. Under CDTW
(right), the center curves are smooth and visually similar to their associated curves.

Despite its advantages, the shortcoming of CDTW is that there is no exact algorithm
for computing it in polynomial time. Heuristics were used to compute CDTW in the map-
matching [25] and clustering [27] experiments. Maheshwari et al. [124] provided a (1 + ε)-
approximation algorithm for CDTW in O(ζ4n4/ε2) time, for curves of complexity n and
spread ζ, where the spread is the ratio between the maximum and minimum interpoint
distances. Existing heuristic and approximation methods [25, 27, 124] use a sampled grid
on top of the dynamic program for CDTW, introducing an inherent error that depends on
the fineness of the sampled grid, which is reflected in the dependency on ζ in [124].

In this work, we present the first exact algorithm for computing CDTW for one-dimensional
curves. Our algorithm runs in time O(n5) for a pair of one-dimensional curves, each with
complexity at most n. Unlike previous approaches, we avoid using a sampled grid and in-
stead devise a propagation method that solves the dynamic program for CDTW exactly.
In our propagation method, the main difficulty lies in bounding the total complexity of our
propagated functions. Showing that CDTW can be computed in polynomial time fosters
hope for faster polynomial time algorithms, which would add CDTW to the list of practical
similarity measures for curves.

108

4.1.1 Related work

Algorithms for computing popular similarity measures, such as DTW and the Fréchet dis-
tance, are well studied. Vintsyuk [156] proposed Dynamic Time Warping as a similarity
measure for time series, and provided a simple dynamic programming algorithm for com-
puting the DTW distance that runs in O(n2) time, see also [21]. Gold and Sharir [93]
improved the upper bound for computing DTW to O(n2/ log log n). For the Fréchet dis-
tance, Alt and Godau [12] proposed an O(n2 log n) time algorithm for computing the Fréchet
distance between a pair of curves. Buchin et al. [37] improved the upper bound for comput-
ing the Fréchet distance to O(n2

√
log n(log log n)3/2). Assuming SETH, it has been shown

that there is no strongly subquadratic time algorithm for computing the Fréchet distance
or DTW [2, 28, 30, 33, 42].

Our definition of CDTW was originally proposed by Buchin [43], and has since been
used in several experimental works [25, 27]. We give Buchin’s [43] definition formally in
Section 4.2. Other definitions under the name CDTW have also been considered. We briefly
describe the main difference between these definitions and the one used in this chapter.

To the best of our knowledge, the first continuous version of DTW was by Serra and
Berthod [143]. The same definition was later used by Munich and Perona [131]. Although
a continuous curve is used in their definition, the cost of the matching is still a discrete
summation of distances to sampled points. Our definition uses a continuous summation
(i.e. integration) of distances between all points on the curves, and therefore, is more robust
to discrepancies in sampling rate. Efrat et al. [75] proposed a continuous version of DTW
that uses integration. However, their integral is defined in a significantly different way to
ours. Their formulation minimises the change of the alignment and not the distance between
aligned points. Thus, their measure is translational invariant and designed to compare the
shapes of curves irrespective of their absolute positions in space.

4.2 Preliminaries

We use [n] to denote the set {1, . . . , n}. To continuously measure the similarity of time series,
we linearly interpolate between sampled points to obtain a one-dimensional polygonal curve.
A one-dimensional polygonal curve P of complexity n is given by a sequence of vertices,
p1, . . . , pn ∈ R, connected in order by line segments. Furthermore, let || · || be the norm
in the one-dimensional space R. In higher dimensions, the Euclidean L2 norm is the most
commonly used norm, but other norms such as L1 and L∞ may be used.

Consider a pair of one-dimensional polygonal curves P = p1, . . . , pn and Q = q1, . . . , qm.
Let ∆(n,m) be the set of all sequences of pairs of integers (x1, y1), . . . , (xk, yk) satisfying
(x1, y1) = (1, 1), (xk, yk) = (n,m) and (xi+1, yi+1) ∈ {(xi+1, yi), (xi, yi+1), (xi+1, yi+1)}.
The DTW distance between P and Q is defined as

dDTW (P,Q) = min
α∈∆(n,m)

∑
(x,y)∈α

||px − qy||.

The discrete Fréchet distance between P and Q is defined as

ddF (P,Q) = min
α∈∆(n,m)

max
(x,y)∈α

||px − qy||.

Let p and q be the total arc lengths of P and Q respectively. Define the parametrised
curve {P (z) : z ∈ [0, p]} to be the one-dimensional curve P parametrised by its arc length.

109

In other words, P (z) is a piecewise linear function so that the arc length of the subcurve
from P (0) to P (z) is z. Define {Q(z) : z ∈ [0, q]} analogously. Let Γ(p) be the set of all
continuous and non-decreasing functions α : [0, 1]→ [0, p] satisfying α(0) = 0 and α(1) = p.
Let Γ(p, q) = Γ(p)× Γ(q). The continuous Fréchet distance between P and Q is defined as

dF (P,Q) = inf
(α,β)∈Γ(p,q)

max
z∈[0,1]

||P (α(z))−Q(β(z))||,

The CDTW distance between P and Q is defined as

dCDTW (P,Q) = inf
(α,β)∈Γ(p,q)

∫ 1

0

||P (α(z))−Q(β(z))|| · ||α′(z) + β′(z)|| · dz.

For the definition of CDTW, we additionally require that α and β are differentiable. The
original intuition behind dCDTW (P,Q) is that it is a line integral in the parameter space,
which we will define in Section 4.2.1. The term ||α′(z) + β′(z)|| implies that we are using
the L1 metric in the parameter space, but other norms have also been considered [116, 124].

4.2.1 Parameter space under CDTW

The parameter space under CDTW is analogous to the free space diagram under the con-
tinuous Fréchet distance. Similar to previous work [43, 116, 124], we transform the problem
of computing CDTW into the problem of computing a line integral in the parameter space.

Recall that the total arc lengths of P and Q are p and q respectively. The parameter
space is defined to be the rectangular region R = [0, p]× [0, q] in R2. The region is imbued
with a metric || · ||R. The L1, L2 and L∞ norms have all been considered, but L1 is the
preferred metric as it is the easiest to work with [116, 124]. At every point (x, y) ∈ R we
define the height of the point to be h(x, y) = ||P (x)−Q(y)||.

Next, we provide the line integral formulation of dCDTW , which is the original motivation
behind its definition. To make our line integral easier to work with, we parametrise our line
integral path γ in terms of its L1 arc length in R. The following lemma is a consequence of
Section 6.2 in [43]. We provide a proof sketch of the result for the sake of self-containment.

Lemma 1.

dCDTW (P,Q) = inf
γ∈Ψ(p,q)

∫ p+q

0

h(γ(z)) · dz,

where Ψ(p, q) is the set of all functions γ : [0, p+ q]→ R satisfying γ(0) = (0, 0), γ(p+ q) =
(p, q), γ is differentiable and non-decreasing in both x- and y-coordinates, and ||γ′(z)||R = 1.

Proof. Recall that the definition of dCDTW (P,Q) is:

dCDTW (P,Q) = inf
(α,β)∈Γ(p,q)

∫ 1

0

||P (α(z))−Q(β(z))|| · ||α′(z) + β′(z)|| · dz

Let γ = (α, β) ∈ Γ(p, q). Then γ(0) = (α(0), β(0)) = (0, 0) and γ(1) = (α(1), β(1)) =
(p, q). By considering γ(z) as a point in the the parameter space R, we observe that if we
vary z ∈ [0, 1], then γ(z) is a curve starting at (0, 0), ending at (p, q), and is non-decreasing
in both x- and y-coordinates. Now, consider the integral of h(·) along the curve γ. The
mathematical expansion of the line integral

∫
γ
h(z) · dz is:

110

∫
γ

h(z) · dz =

∫ 1

0

h(γ(z)) · ||γ′(z)||R · dz.

The expanded integral closely resembles the formula for dCDTW (P,Q). The first term
h(γ(z)) is equal to ||P (α(z)) − Q(β(z))||. The second term ||γ′(z)||R is equal to ||α′(z) +
β′(z)||, since || · ||R is the L1 norm and because α and β are non-decreasing. Hence,

dCDTW (P,Q) = inf
γ∈Γ(p,q)

∫ 1

0

h(γ(z)) · ||γ′(z)||R · dz.

We now reparametrise γ ⊂ R in terms of its L1 arc length in R. This is the “natural
parametrisation” of the curve γ. We already know that γ starts at (0, 0), ends at (p, q),
and is differentiable and non-decreasing in x- and y-coordinates. We let Ψ(p, q) be the
set of all functions that satisfy these three conditions, in addition to a fourth condition,
||γ′(z)||R = 1. Then α′(z) + β′(z) = 1, as α′(z), β′(z) > 0. By integrating from 0 to z, we
get α(z) + β(z) = z. In particular, we have γ(p + q) = (p, q), since the curve must end at
(p, q). So z ∈ [0, p+ q] is the new domain of the reparametrised curve γ ∈ Ψ(p, q). Putting
this together, we obtain the stated lemma.

4.2.2 Properties of the parameter space

Before providing the algorithm for minimising our line integral, we first provide some struc-
tural insights of our parameter space R = [0, p] × [0, q]. Recall that P : [0, p] → R maps
points on the x-axis of R to points on the one-dimensional curve P , and analogously for Q
and the y-axis. Hence, each point (x, y) ∈ R is associated with a pair of points P (x) and
Q(y), so that the height function h(x, y) = ||P (x) − Q(y)|| is simply the distance between
the associated pair of points. Divide the x-axis of R into n− 1 segments that are associated
with the n− 1 segments p1p2, . . . , pn−1pn of P . Divide the y-axis of R into m− 1 segments
analogously. In this way, we divide R into (n− 1)(m− 1) cells, which we label as follows:

Definition 2 (cell). Cell (i, j) is the region of the parameter space associated with segment
pipi+1 on the x-axis, and qjqj+1 on the y-axis, where i ∈ [n− 1] and j ∈ [m− 1].

For points (x, y) restricted to a single cell (i, j), the functions P (x) and Q(y) are linear.
Hence, P (x) −Q(y) is also linear, so h(x, y) = ||P (x) −Q(y)|| is a piecewise linear surface
with at most two pieces. If h(x, y) consists of two linear surface pieces, the boundary of these
two pieces is along a segment where h(x, y) = 0. Since we are working with one-dimensional
curves, we have two cases for the relative directions of the vectors −−−−→pipi+1 and −−−−→qjqj+1. If the
vectors are in the same direction, since −−−−→pipi+1 and −−−−→qjqj+1 are both parametrised by their arc
lengths, they must be travelling in the same direction and at the same rate. Therefore, the
line satisfying h(x, y) = 0 has slope 1 in R. Using a similar argument, if −−−−→pipi+1 and −−−−→qjqj+1

are in opposite direction, then the line satisfying h(x, y) = 0 has slope −1 in R.
The line with zero height and slope 1 will play an important role in our algorithm. We

call these lines valleys. If a path γ travels along a valley, the line integral accumulates zero
cost as long as it remains on the valley, since the valley has zero height.

Definition 3 (valley). In a cell, the set of points (x, y) satisfying h(x, y) = 0 forms a line,
moreover, the line has slope 1 or −1. We call this line a valley.

111

4.3 Algorithm

Our approach is a dynamic programming algorithm over the cells in the parameter space,
which we defined in Section 4.2.1. To the best of our knowledge, all the existing approx-
imation algorithms and heuristics [25, 27, 116] use a dynamic programming approach, or
simply reduce the problem to a shortest path computation [124]. Next, we highlight the key
difference between our approach and previous approaches.

In previous algorithms, sampling is used along cell boundaries to obtain a discrete set
of grid points. Then, the optimal path between the discrete set of grid points is computed.
The shortcoming of previous approaches is that an inherent error is introduced by the grid
points, where the error depends on the fineness of the grid that is used.

In our algorithm, we consider all points along cell boundaries, not just a discrete subset.
However, this introduces a challenge whereby we need to compute optimal paths between
continuous segments of points. To overcome this obstacle, we devise a new method of
propagating continuous functions across a cell. The main difficulty in analysing the running
time of our algorithm lies in bounding the total complexity of the propagated continuous
functions, across all cells in the dynamic program.

Our improvement over previous approaches is in many ways similar to previous algo-
rithms for the weighted region problem [128], and the partial curve matching problem [38].
In all three problems, a line integral is minimised over a given terrain, and an optimal
path is computed instead of relying on a sampled grid. However, our problem differs from
that of [128] and [38] in two important ways. First, in both [128] and [38], the terrain is a
piecewise constant function, whereas in our problem, the terrain is a piecewise linear func-
tion. Second, our main difficulty is bounding the complexity of the propagated functions.
In [128], a different technique is used that does not propagate functions. In [38], the prop-
agated functions are concave, piecewise linear and their complexities remain relatively low.
In our algorithm, the propagated functions are piecewise quadratic and their complexities
increase at a much higher, albeit bounded, rate.

The remainder of our chapter is structured as follows. In Section 4.3.1, we set up our
dynamic program. In Section 4.3.2, we solve its base case. In Section 4.3.3 we solve the
propagation step. In Section 4.3.4, we analyse the algorithm’s running time. In Section 4.3.5,
we fill in missing bounds from the running time analysis. We consider our main technical
contribution to be the running time analysis in Sections 4.3.4 and 4.3.5, and their proofs in
Section 4.4.

4.3.1 Dynamic program

Our dynamic program is performed with respect to the following cost function.

Definition 4 (cost function). Let (x, y) ∈ R, we define

cost(x, y) = inf
γ∈Ψ(x,y)

∫ x+y

0

h(γ(z)) · dz.

Recall from Lemma 1 that dCDTW (P,Q) = infγ∈Ψ(p,q)

∫ p+q

0
h(γ(z)) · dz, which implies

that cost(p, q) = dCDTW (P,Q). Another way of interpreting Definition 4 is that cost(x, y)
is equal to dCDTW (Px, Qy), where Px is the subcurve from P (0) to P (x), and Qy is the
subcurve from Q(0) to Q(y).

112

Recall from Section 4.2.2 that the parameter space is divided into (n− 1)(m− 1) cells.
Our dynamic program solves cells one at a time, starting from the bottom left cell and
working towards the top right cell. A cell is considered solved if we have computed the cost
of every point on the boundary of the cell. Once we solve the top right cell of R, we obtain
the cost of the top right corner of R, which is cost(p, q) = dCDTW (P,Q), and we are done.

In the base case, we compute the cost of all points lying on the lines x = 0 and y = 0.
Note that if x = 0 or y = 0, then the function cost(x, y) is simply a function in terms of
y or x respectively. In general, the function along any cell boundary — top, bottom, left
or right — is a univariate function in terms of either x or y. We call these boundary cost
functions.

Definition 5 (boundary cost function). A boundary cost function is cost(x, y), but restricted
to a top, bottom, left or right boundary of a cell. If it is restricted to a top or bottom (resp.
left or right) boundary, the boundary cost function is univariate in terms of x (resp. y).

In the propagation step, we use induction to solve the cell (i, j) for all 1 ≤ i ≤ n − 1
and 1 ≤ j ≤ m − 1. We assume the base case. We also assume as an inductive hypothesis
that, if i ≥ 2, then the cell (i− 1, j) is already solved, and if j ≥ 2, then the cell (i, j − 1) is
already solved. Our assumptions ensure that we receive as input the boundary cost function
along the bottom and left boundaries of the cell (i, j). In other words, we use the boundary
cost functions along the input boundaries to compute the boundary cost functions along the
output boundaries.

Definition 6 (input/output boundary). The input boundaries of a cell are its bottom and
left boundaries. The output boundaries of a cell are its top and right boundaries.

We provide details of the base case in Section 4.3.2, and the propagation step in Sec-
tion 4.3.3.

4.3.2 Base case

The base case is to compute the cost of all points along the x-axis. The y-axis can be
handled analogously. Recall that cost(x, y) = infγ∈Ψ(x,y)

∫ x+y

0
h(γ(z)) · dz. Therefore, for

points (x, 0) on the x-axis, we have cost(x, 0) = infγ∈Ψ(x,0)

∫ x

0
h(γ(z)) ·dz. Since γ(z) is non-

decreasing in x- and y-coordinates, and ||γ′(z)|| = 1, we must have that γ′(z) = (1, 0). By
integrating from 0 to z, we get γ(z) = (z, 0), which implies that cost(x, 0) =

∫ x

0
h(z, 0) · dz.

Consider, for 1 ≤ i ≤ n− 1, the bottom boundary of the cell (i, 1). The height function
h(z) is a piecewise linear function with at most two pieces, so its integral cost(x, 0) =∫ x

0
h(z, 0)·dz is a continuous piecewise quadratic function with at most two pieces. Similarly,

since the height function along x = 0 is a piecewise linear function with at most 2(n − 1)
pieces, the boundary cost function along x = 0 is a continuous piecewise quadratic function
with at most 2(n − 1) pieces. For boundaries not necessarily on the x- or y-axis, we claim
that the boundary cost function is still a continuous piecewise-quadratic function.

Lemma 7. The boundary cost function is a continuous piecewise-quadratic function.

We defer the proof of Lemma 7 to Section 4.4. Although the boundary cost function has
at most two pieces for cell boundaries on the x- or y-axis, in the general case it may have
more than two pieces. As previously stated, the main difficulty in bounding our running
time analysis in Section 4.3.4 is to bound complexities of the boundary cost functions.

113

4.3.3 Propagation step

First, we define optimal paths in the parameter space. We use optimal paths to propagate
the boundary cost functions across cells in the parameter space. Note that the second part
of Definition 8 is a technical detail to ensure the uniqueness of optimal paths. Intuitively,
the optimal path from s to t is the path minimising the path integral, and if there are
multiple such paths, the optimal path is the one with maximum y-coordinate.

Definition 8 (optimal path). Given t = (xt, yt) ∈ R, its optimal path is a path γ ∈ Ψ(xt, yt)

minimising the integral
∫ xt+yt

0
h(γ(z)) · dz. If there are multiple such curves that minimise

the integral, the optimal path is the one with maximum y-coordinate (or formally, the one
with maximum integral of its y-coordinates).

Suppose t is on the output boundary of the cell (i, j). Consider the optimal path γ that
starts at (0, 0) and ends at t. Let s be the first point where γ enters the cell (i, j). We
consider the subpath from s to t, which is entirely contained in the cell (i, j). In the next
lemma, we show that the shape of the subpath from s to t is restricted, in particular, there
are only three types of paths that we need to consider. A similar proof can be found in
Lemma 4 of Maheswari et al. [124]. Nonetheless, due to slight differences, we provide a full
proof. Specifically, the differences are that we consider one-dimensional curves, and use the
L1 norm in parameter space to obtain a significantly stronger statement for type (A) paths.

Lemma 9. Let t be a point on the output boundary of a cell. Let s be the first point where
the optimal path to t enters the cell. There are only three types of paths from s to t:

(A) The segments of the cell are in opposite directions. Then all paths between s and t
have the same cost.

(B) The segments of the cell are in the same direction and the optimal path travels towards
the valley, then along the valley, then away from the valley.

(C) The segments of the cell are in the same direction and the optimal path travels towards
the valley, then away from the valley.

For an illustration of these three types of paths, see Figure 4.3.

(A)

s

t

(B)

s

t

(C)

s

t

Figure 4.3: The three types of optimal paths through a cell.

Proof. We begin by summarising the main steps of the proof. Define γ1 to be an optimal
path to s, followed by either a type (A), (B) or (C) path from s to t. If the segments are
in opposite directions, we use a type (A) path, whereas if the segments are in the same
direction, we use either a type (B) or type (C) path. Define γ2 to be an optimal path to s,

114

followed by any path from s to t. The main step is to show that h(γ1(z)) ≤ h(γ2(z)), as
this would imply that γ2 is an optimal path from s to t. In fact, if the segments are in the
opposite directions, we get that h(γ1(z)) = h(γ2(z)), implying that all type (A) paths from
s to t have the same cost. This completes the summary of the main steps of the proof.

We start our proof by considering the case where, for this cell, the curves are in opposite
directions. Let t = (xt, yt) and let γ1 ∈ Ψ(xt, yt) be an optimal path to t. Let s = (xs, ys),
and let γ2 ∈ Ψ(xt, yt) be the concatenation of an optimal path to s and any path from s
to t.

By definition, γ1(xt+yt) = γ2(xt+yt) = (xt, yt), and γ1(xs+ys) = γ2(xs+ys) = (xs, ys).

It suffices to show that
∫ xt+yt

xs+ys
h(γ1(z)) · dz =

∫ xt+yt

xs+ys
h(γ2(z)) · dz, as this would imply that

any path from s to t has the same cost. We will show a slightly stronger statement, that
for all xs + ys ≤ z ≤ xt + yt, we have h(γ1(z)) = h(γ2(z)).

Let γ1(z) = (α1(z), β1(z)) be the x- and y-coordinates of γ1(z). Since γ1(z) ∈ Ψ(xt, yt),
we have ||γ′

1(z)||R = 1 and α′
1(z), β

′
1(z) > 0. Therefore, α′

1(z) + β′
1(z) = 1. By integrating

from 0 to z, we get α1(z) + β1(z) = z. Let γ2(z) = (α2(z), β2(z)). Then similarly, α2(z) +
β2(z) = z.

Without loss of generality, assume P is in the positive direction, and Q is in the negative
direction. Recall that P is parametrised by arc length, so the arc length of the subcurve
from P (0) to P (z) is z. Hence, for xs + ys ≤ z ≤ xt + yt, and for i ∈ {1, 2}, since P is in
the positive direction, we have P (αi(z)) = P (xs) + αi(z) − xs. Similarly, since Q is in the
negative direction, Q(βi(z)) = Q(ys)− βi(z) + ys. Putting this together,

h(γ1(z)) = ||P (α1(z))−Q(β1(z))||
= ||P (xs) + α1(z)− xs −Q(ys) + β1(z)− ys||
= ||P (xs) + α2(z)− xs −Q(ys) + β2(z)− ys||
= ||P (α2(z))−Q(β2(z))||
= h(γ2(z)).

This concludes the proof in the first case.
Second, we consider the case where, for this cell, the curves are in the same direction.

For this case, a similar proof is given in Lemma 4 of Maheshwari et al. [124]. Nonetheless,
we provide a proof for the sake of completeness. Similarly to the first case, let t = (xt, yt)
and s = (xs, ys). Let γ1 be the concatenation of an optimal path to s, and then either a
type (B) or type (C) path from s to t. Recall from the statement of our lemma that a type
(B) path is an axis-parallel path from s towards the valley, then a path along the valley,
then an axis-parallel path away from the valley to t. A type (C) path is an axis-parallel
path from s towards the valley, then an axis-parallel path away from the valley to t. Let
γ2 ∈ Ψ(xt, yt) be the concatenation of an optimal path to s, then any path from s to t.

By definition, γ1(xt+yt) = γ2(xt+yt) = (xt, yt), and γ1(xs+ys) = γ2(xs+ys) = (xs, ys).

We are required to show that
∫ xt+yt

xs+ys
h(γ1(z)) ·dz ≤

∫ xt+yt

xs+ys
h(γ2(z)) ·dz, as this would imply

that γ1 is an optimal path from s to t. We will show a slightly stronger statement, that for
all xs + ys ≤ z ≤ xt + yt, we have h(γ1(z)) ≤ h(γ2(z)).

For i ∈ {1, 2}, let γi(z) = (αi(z), βi(z)). For the same reasons as in the first case,
αi(z) + βi(z) = z. Without loss of generality, assume both P and Q are in the positive
direction. For the same reasons as in the first case, for i ∈ {1, 2}, we have P (αi(z)) =
P (xs) + αi(z)− xs and Q(βi(z)) = Q(ys) + βi(z)− ys.

For type (B) paths, if γ1(z) is along the valley, then h(γ1(z)) = 0 so clearly h(γ1(z)) ≤
h(γ2(z)). For both type (B) and type (C) paths, the only remaining case is where γ1(z) is

115

along an axis parallel path from s towards the valley, since other the case where γ1(z) is
along an axis parallel path away from the valley to t can be handled analogously.

Without loss of generality, assume s is on the bottom boundary, and γ1(z) is along a
vertical path from s to the valley. Then α1(z) = xs and β1(z) = z − α1(z) = z − xs. Since
γ2(z) is monotonically increasing in the x-coordinate, we have α2(z) ≥ xs and β2(z) =
z − α2(z) ≤ z − xs. Without loss of generality, assume P (xs) − Q(ys) ≥ 0. Since γ1(z)
is on the vertical path from s to the valley, but does not cross over the valley, we have
P (α1(z))−Q(β1(z)) ≥ 0. Putting this together,

h(γ1(z)) = P (α1(z))−Q(β1(z))
= P (xs) + α1(z)− xs −Q(ys)− β1(z) + ys
= P (xs) + xs − xs −Q(ys)− z + xs + ys
≤ P (xs) + α2(z)− xs −Q(ys)− β2(z)− ys
= P (α2(z))−Q(β2(z))
= h(γ2(z)),

where the second last equality uses that P (α2(z)) − Q(β2(z)) ≥ P (α1(z)) − Q(β1(z)) ≥ 0.
This concludes the proof in the second case, and we are done.

We leverage Lemma 9 to propagate the boundary cost function from the input boundaries
to the output boundaries of a cell. We provide an outline of our propagation procedure in
one of the three cases, that is, for type (B) paths. These paths are the most interesting
to analyse, and looking at this special case provides us with some intuition for the other
cases. For type (B) paths, we compute the cost function along the output boundary in three
consecutive steps. We first list the steps, then we describe the steps in detail.

1. We compute the cost function along the valley in a restricted sense.

2. We compute the cost function along the valley in general.

3. We compute the cost function along the output boundary.

In the first step, we restrict our attention only to paths that travel from the input
boundary towards the valley. This is the first segment in the type (B) path as defined in
Lemma 9. We call this first segment a type (B1) path, see Figure 4.4. Define the type
(B1) cost function to be the cost function along the valley if we can only use type (B1)
paths from the input boundary to the valley. The type (B1) cost function is simply the cost
function along the bottom or left boundary plus the integral of the height function along
the type (B1) path. The height function along the type (B1) path is a linear function, so
the integral is a quadratic function. To obtain the type (B1) cost function, we add the
quadratic function for the type (B1) path to the cost function along an input boundary. We
combine the type (B1) cost functions along the bottom and the left boundaries by taking
their lower envelope.

In the second step, we compute the cost function along the valley in general. It suffices
to consider paths that travel from the input boundary towards the valley, and then travel
along the valley. This path is the first two segments in a type (B) path as defined in
Lemma 9. We call these first two segments a type (B2) path, see Figure 4.4. Since the
height function is zero along the valley, if we can reach a valley point with a particular cost
with a type (B1) path, then we can reach all points on the valley above and to the right
of it with a type (B2) path with the same cost. Therefore, the type (B2) cost function is

116

(B1) (B2)

Figure 4.4: The type (B1) and type (B2) paths from the bottom boundary to the valley.

the cumulative minimum of the type (B1) cost function, see Figure 4.5. Note that the type
(B2) cost function may have more quadratic pieces than the type (B1) cost function. For
example, in Figure 4.5, the type (B2) cost function has twice as many quadratic pieces as
the type (B1) cost function, since each quadratic piece in the type (B1) cost function splits
into two quadratic pieces in the type (B2) cost function — the original quadratic piece plus
an additional horizontal piece.

(B1)

(B2)

cost

V

Figure 4.5: The type (B2) cost function plotted over its position along the valley V . The
type (B2) cost function is the cumulative minimum of the type (B1) cost function.

In the third step, we compute the cost function along the output boundary, given the
type (B2) cost function along the valley. A type (B) path is a type (B2) path appended
with a horizontal or vertical path from the valley to the boundary. The height function of
the appended path is a linear function, so its integral is a quadratic function. We add this
quadratic function to the type (B2) function along the valley to obtain the output function.
This completes the description of the propagation step in the type (B) paths case.

Using a similar approach, we can compute the cost function along the output boundary
in the type (A) and type (C) paths as well. The propagation procedure differs slightly for
each of the three path types, for details see Section 4.4. Recall that due to the second step
of the type (B) propagation, each quadratic piece along the input boundary may propagate
to up to two pieces along the output boundary. In general, we claim that each quadratic
piece along the input boundary propagates to at most a constant number of pieces along
the output boundary. Moreover, given a single input quadratic piece, this constant number
of output quadratic pieces can be computed in constant time.

Lemma 10. Each quadratic piece in the input boundary cost function propagates to at most
a constant number of pieces along the output boundary. Propagating a quadratic piece takes
constant time.

We defer the proof of Lemma 10 to Section 4.4. We can now state our propagation step
in general. Divide the input boundaries into segments, so that for each segments, the cost

117

function along that segments is a single quadratic piece. Apply Lemma 10 to a segments to
compute in constant time a piecewise quadratic cost function along the output boundary.
Apply this process to all segments to obtain a set of piecewise quadratic cost functions
along the output boundary. Combine these cost functions by taking their lower envelope.
Return this lower envelope as the boundary cost function along the output boundary. This
completes the statement of our propagation step. Its correctness follows from construction.

4.3.4 Running time analysis

We start the section with a useful lemma. Essentially the same result is stated without
proof as Observation 3.3 in [38]. For the sake of completeness, we provide a proof.

Lemma 11. Let γ1, γ2 be two optimal paths. These paths cannot cross, i.e., there are no
z1, z2 such that γ1(z1) is below γ2(z1) and γ1(z2) is above γ2(z2).

t1

t2
u

Figure 4.6: A pair of optimal paths that cross at a point u.

Proof. Suppose for sake of contradiction that there exists a pair of optimal paths, γ1 to t1
and γ2 to t2, that cross over at a point u, see Figure 4.6. Moreover, assume that u is the
first such crossover point, i.e., u is the last point such that γ1 and γ2 are non-crossing until
u. Without loss of generality, before the intersection point u, the path γ1 is below γ2, and
after the intersection point u, the path γ1 is above γ2. Since γ1 is an optimal path to t1,
the portion of γ1 up to u must be the optimal path to u. Similarly, the portion of γ2 up
to u must be the optimal path to u. Since optimal paths are unique, we obtain that γ1
and γ2 are identical up to the first crossover point u, contradicting the fact that γ1 and γ2
cross.

Define N to be the total number of quadratic pieces in the boundary cost functions over
all boundaries of all cells. We will show that the running time of our algorithm is O(N).

Lemma 12. The running time of our dynamic programming algorithm is O(N).

Proof. The running time of the dynamic program is dominated by the propagation step. Let
Ii,j denote the input boundaries of the cell (i, j). Let |Ii,j | denote the number of quadratic
functions in the input boundary cost function. By Lemma 10, each piece only propagates
to a constant number of new pieces along the output boundary, and these pieces can be
computed in constant time. The final piecewise quadratic function is the lower envelope of
all the new pieces, of which there are O(|Ii,j |) many.

We use Lemma 11 to speed up the computation of the lower envelope, so that this step
takes only O(|Ii,j |) time. Since optimal paths do not cross, it implies that the new pieces
along the output boundary appear in the same order as their input pieces. We perform the
propagation in order of the input pieces. We maintain the lower envelope of the new pieces

118

in a stack. For each newly propagated piece, we remove the suffix that is dominated by the
new piece and then add the new piece to the stack. Since each quadratic piece can be added
to the stack at most once, and removed from the stack at most once, the entire operation
takes O(|Ii,j |) time. Summing over all cells, we obtain an overall running time of O(N).

Note that Lemma 12 does not yet guarantee that our algorithm runs in polynomial
time as we additionally need to bound N by a polynomial. Lemma 10 is of limited help.
The lemma states that each piece on the input boundary propagates to at most a constant
number of pieces on the output boundary. Recall that in Section 4.3.3, we illustrated a
type (B) path that resulted in an output boundary having twice as many quadratic pieces
as its input boundary. The doubling occurred in the second step of the propagation of
type (B) paths, see Figure 4.5. If this doubling behaviour were to occur for all our cells
in our dynamic program, we would get up to N = Ω(2n+m) quadratic pieces in the worst
case, where n and m are the complexities of the polygonal curves P and Q. To obtain a
polynomial running time, we show that although this doubling behaviour may occur, it does
not occur too often.

4.3.5 Bounding the cost function’s complexity

Our bound comes in two parts. First, we subdivide the boundaries in the parameter space
into subsegments and show, in Lemma 13, that there are O((n+m)3) subsegments in total.
Second, in Lemma 15, we show that each subsegment has at most O((n +m)2) quadratic
pieces. Putting this together in Theorem 16 gives N = O((n+m)5).

We first define the O((n+m)3) subsegments. The intuition behind the subsegments is
that for any two points on the subsegment, the optimal path to either of those two points is
structurally similar. We can deform one of the optimal paths to the other without passing
through any cell corner, or any points where a valley meets a boundary.

Formally, define Ak to be the union of the input boundaries of the cells (i, j) such that
i + j = k. Alternatively, Ak is the union of the output boundaries of the cells (i, j) such
that i + j + 1 = k. Next, construct the partition Ak := {Ak,1, Ak,2, . . . , Ak,L} of Ak into
subsegments. Define the subsegment Ak,ℓ to be the segment between the ℓth and (ℓ+ 1)th

critical point along Ak. We define a critical point to be either (i) a cell corner, (ii) a point
where the valley meets the boundary, or (iii) a point where the optimal path switches from
passing through a subsegment Ak−1,ℓ′ to a different subsegment Ak−1,ℓ′′ .

Let |Ak| denote the number of piecewise quadratic cost functions Ak,ℓ along Ak. Let
|Ak,ℓ| denote the number of pieces in the piecewise quadratic cost function along the sub-
segment Ak,ℓ. Thus, we can rewrite the total number of quadratic functions N as:

N =

n+m−1∑
k=2

|Ak|∑
ℓ=1

|Ak,ℓ|.

We first show that the number of subsegments |Ak| is bounded by O(k2) and then
proceed to show that |Ak,ℓ| is bounded by O(k2) for all k, ℓ.

Lemma 13. For any k ∈ [n+m], we have |Ak| ≤ 2k2.

Proof. We prove the lemma by induction. Since the cell (1, 1) has at most one valley, and
since the input boundary A2 has one cell corner, we have |A2| ≤ 3. For the inductive step,
note that there are at most 2k cell corners on Ak, and there are at most k points where a

119

valley meets a boundary on Ak. By the inductive hypothesis, there are at most 2(k − 1)2

subsegments on Ak−1. And as optimal paths do not cross by Lemma 11, each subsegment
of Ak−1 contributes at most once to the optimal path switching from one subsegment to a
different one on Ak. Thus, for k ≥ 3, we obtain |Ak| ≤ 2(k−1)2+2k+k+1 = 2k2−k+3 ≤
2k2.

Next, we show that |Ak,ℓ| is bounded by O(k2) for all k, ℓ. We proceed by induction.
Recall that, due to the third type of critical point, all optimal paths to Ak,ℓ pass through
the same subsegment of Ak−1, namely Ak−1,ℓ′ for some ℓ′. Our approach is to assume the
inductive hypothesis for |Ak−1,ℓ′ |, and bound |Ak,ℓ| relative to |Ak−1,ℓ′ |. We already have
a bound of this form, specifically, Lemma 10 implies that |Ak,ℓ| ≤ c · |Ak−1,ℓ′ |, for some
constant c > 1. Unfortunately, this bound does not rule out an exponential growth in the
cost function complexity. We instead prove the following improved bound:

Lemma 14. Let |Ak,ℓ| be a subsegment on Ak, and suppose all optimal paths to |Ak,ℓ| pass
through subsegment |Ak−1,ℓ′ | on Ak−1. Then

|Ak,ℓ| ≤ |Ak−1,ℓ′ |+D(Ak−1,ℓ′) + 1,
D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1,

where D(·) counts, for a given subsegment, the number of distinct pairs (a, b) over all
quadratics ax2 + bx+ c in the boundary cost function for that subsegment.

We defer the proof of Lemma 14 to Section 4.4. The lemma obtains a polynomial bound
on the growth of the number of quadratic pieces by showing, along the way, a polynomial
bound on the growth of the number of distinct (a, b) pairs over the quadratics ax2 + bx+ c.

As we consider this lemma to be one of the main technical contributions of the chapter, we
will briefly outline its intuition. It is helpful for us to revisit the doubling behaviour of type
(B) paths. Recall that in our example in Figure 4.5, we may have |Ak,ℓ| = 2|Ak−1,ℓ′ |. This
doubling behaviour does not contradict Lemma 14, so long as all quadratic functions along
Ak−1,ℓ′ have distinct (a, b) pairs. In fact, for |Ak,ℓ| = 2|Ak−1,ℓ′ | to occur, each quadratic
function in |Ak−1,ℓ′ | must create a new horizontal piece in the cumulative minimum step.
But for any two quadratic functions with the same (a, b) pair, only one of them can to create
a new horizontal piece, since the horizontal piece starts at the x-coordinate − b

2a . Therefore,
we must have had that all quadratic functions along Ak−1,ℓ′ have distinct (a, b) pairs. In
Section 4.4, we generalise this argument and prove |Ak,ℓ| ≤ |Ak−1,ℓ′ |+D(Ak−1,ℓ′) + 1.

We perform a similar analysis in the special case of type (B) paths to give the intuition
behind D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1. For type (B) paths, the number of distinct (a, b) pairs
changes only in the cumulative minimum step. All pieces along Ak,ℓ can either be mapped
to a piece along Ak−1,ℓ′ , or it is a new horizontal piece. However, all new horizontal pieces
have an (a, b) pair of (0, 0), so the number of distinct (a, b) pairs increases by only one. For
the full proof of Lemma 14 for all three path types, refer to Section 4.4.

With Lemma 14 in mind, we can now prove a bound on |Ak,ℓ| by induction.

Lemma 15. For any k ∈ [n+m] and Ak,ℓ ∈ Ak we have |Ak,ℓ| ≤ k2.

Proof. Note that in the base case D(A2,ℓ) ≤ 2 and |A2,ℓ| ≤ 4 for any A2,ℓ ∈ A2. By
Lemma 14, we get D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1, for some subsegment Ak−1,ℓ′ on Ak−1. By a
simple induction, we get D(Ak,ℓ) ≤ k for any k ∈ [n +m]. Similarly, assuming |Ak−1,ℓ| ≤
(k− 1)2 for any Ak−1,ℓ ∈ Ak−1, we use Lemma 14 to inductively obtain |Ak,ℓ| ≤ |Ak−1,ℓ′ |+
D(Ak−1,ℓ′) + 1 ≤ |Ak−1,ℓ′ |+ k ≤ (k − 1)2 + k − 1 + 1 ≤ k2 for any Ak,ℓ ∈ Ak.

120

Using our lemmas, we can finally bound N , and thereby the overall running time.

Theorem 16. The Continuous Dynamic Time Warping distance between two 1-dimensional
polygonal curves of length n and m, respectively, can be computed in time O((n+m)5).

Proof. Using Lemmas 13 and 15, we have

N =

n+m−1∑
k=2

|Ak|∑
ℓ=1

|Ak,ℓ| ≤
n+m∑
k=2

|Ak|∑
ℓ=1

k2 ≤
n+m∑
k=2

2k4 ≤ 2(n+m)5.

Thus, the overall running time of our algorithm is O((n+m)5), by Lemma 12.

4.4 Proofs of Lemmas 7, 10 and 14

In this section, we provide proofs for the following three lemmas.

Lemma 7. The boundary cost function is a continuous piecewise-quadratic function.

Lemma 10. Each quadratic piece in the input boundary cost function propagates to at most
a constant number of pieces along the output boundary. Propagating a quadratic piece takes
constant time.

Lemma 14. Let |Ak,ℓ| be a subsegment on Ak, and suppose all optimal paths to |Ak,ℓ| pass
through subsegment |Ak−1,ℓ′ | on Ak−1. Then

|Ak,ℓ| ≤ |Ak−1,ℓ′ |+D(Ak−1,ℓ′) + 1,
D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1,

where D(·) counts, for a given subsegment, the number of distinct pairs (a, b) over all
quadratics ax2 + bx+ c in the boundary cost function for that subsegment.

Our approach is to use induction to prove these three lemmas. Our inductive approach
is to prove the three lemmas simultaneously, in that the inductive hypothesis for one lemma
is required to prove the other lemmas. In fact, for this inductive approach to work, we
require a stronger version of Lemma 7, which we state as Lemma 17.

Lemma 17. The cost along a subsegment Ak,ℓ is a continuous piecewise quadratic function.
Moreover, for every point t on the piecewise quadratic function, the left derivative at t is
greater than or equal to the right derivative at t.

The remainder of this chapter is dedicated to prove these lemmas required for the cor-
rectness of our algorithm and its running time. In Section 4.3.2, we proved Lemma 17 for
the base case where k = 2. Lemmas 10 and 14 are clearly true for k = 2. For the inductive
case we require a case analysis. Recall Lemma 9.

Lemma 9. Let t be a point on the output boundary of a cell. Let s be the first point where
the optimal path to t enters the cell. There are only three types of paths from s to t:

(A) The segments of the cell are in opposite directions. Then all paths between s and t
have the same cost.

121

(B) The segments of the cell are in the same direction and the optimal path travels towards
the valley, then along the valley, then away from the valley.

(C) The segments of the cell are in the same direction and the optimal path travels towards
the valley, then away from the valley.

For an illustration of these three types of paths, see Figure 4.3.

Using Lemma 9, we divide our inductive step into separate case analyses for each of the
three types of optimal paths:

Type (A) Type (B) Type (C)
Lemma 17 Lemma 21 Lemma 28 Lemma 31
Lemma 10 Lemma 22 Lemma 29 Lemma 32
Lemma 14 Lemma 23 Lemma 30 Lemma 33

For proving our lemmas, it will be useful to us to introduce the following notation.

Definition 18 (parent). If all optimal paths of Ak,ℓ pass through Ak−1,ℓ′ , then the subseg-
ment Ak−1,ℓ′ is called the parent of Ak,ℓ.

4.4.1 Type (A) paths

In this section we show that Lemmas 10, 14, and 17 hold for the output boundary cost
functions of type (A) paths. We assume the inductive hypothesis, that Lemmas 10, 14,
and 17 hold for the input boundary cost function. First we state two observations that help
simplify our proofs.

Observation 19. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose there exists a type (A) path
from Ak−1,ℓ′ to Ak,ℓ. Then all paths from Ak−1,ℓ′ to Ak,ℓ are type (A) paths.

Proof. Type (A) paths only exist between segments that are in opposite directions. Type
(B) or (C) paths only exist between segments that are in the same direction. If not all
paths were type (A) paths, we must have switched directions, which means there is a cell
corner, which is a critical point. But in a subsegment there are no critical points.

Observation 20. All optimal paths in a type (A) cell can be replaced by a single horizon-
tal segment or a single vertical segment, possibly changing the starting point, but without
changing the cost at the end point.

Proof. Consider any optimal path through a type (A) cell and without loss of generality
assume that it starts on the bottom boundary. By Lemma 9 we can replace a type (A)
path by any other path without changing the cost. In particular, we can replace it by the
path that first goes horizontally along the bottom boundary and then vertically until the
end point. However, the cost of this path is at least as high as the exclusively vertical path
that starts at the point where we leave the bottom boundary. Thus, we can only consider
paths that consist of a single horizontal or vertical segment, without changing the cost on
the outputs of the cell.

We now show Lemma 17 for type (A) paths. Note that by Observation 19 we already
know that either all paths are of type (A) or none are. Hence, we only have to consider the
former case.

122

Lemma 21. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ

are type (A) paths. Then the cost along Ak,ℓ is a continuous piecewise quadratic function.
Moreover, for every point t on the piecewise quadratic function, the left derivative at t is
greater than or equal to the right derivative at t.

Proof. The cost along Ak,ℓ is equal to the cost along Ak−1,ℓ′ plus the cost of an optimal type
(A) path. By Observation 20, all optimal paths that we have to consider are either a single
vertical or horizontal segment. The cost of a vertical/horizontal path inside a subsegment is a
quadratic with respect to its x-coordinate/y-coordinate. This quadratic cost may change at
a critical point, but since there are no critical points inside a subsegment, the cost is simply
a quadratic. Summing a function with a quadratic preserves the fact that the function is
a piecewise quadratic function. Summing a function with a quadratic also preserves the
property that for every point t on the piecewise quadratic function, the left derivative at t
is greater than or equal to the right derivative at t.

We now show Lemma 10 for type (A) paths. Again, by Observation 19, we can assume
that all paths are of type (A).

Lemma 22. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths starting from Ak−1,ℓ′ are
type (A) paths. If we propagate a single quadratic piece of Ak−1,ℓ′ to the next level Ak, it
is a piecewise quadratic function with at most a constant number of pieces. Moreover, this
propagation step takes only constant time.

Proof. First we consider propagating Ak−1,ℓ′ to the opposite side. By Observation 20, we
can assume that this happens along a vertical or horizontal segment. These paths have
piecewise quadratic cost with at most two pieces. Computing the cost from Ak−1,ℓ′ to the
opposite side takes constant time. In the case that Ak−1,ℓ′ contains the top left corner of
its cell, we need to propagate its cost along the top boundary. This cost has at most two
pieces and takes constant time to compute. In the case that Ak−1,ℓ′ contains the bottom
right corner of its cell, we need to propagate its cost along the right boundary. This cost
has at most two pieces and takes constant time to compute. Hence, the cost along the next
level Ak has a constant number of pieces and the propagation can be computed in constant
time.

Finally, we show Lemma 14 for type (A) paths.

Lemma 23. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (A) paths, then

D(Ak,ℓ) ≤ D(Ak−1,ℓ′),

|Ak,ℓ| ≤ |Ak−1,ℓ′ |.

Proof. Without loss of generality Ak−1,ℓ′ is on the bottom boundary. If Ak,ℓ is on the top
boundary, then its cost is the same as the one on Ak−1,ℓ′ plus a quadratic, and we have
D(Ak,ℓ) ≤ D(Ak−1,ℓ′) and |Ak,ℓ| ≤ |Ak−1,ℓ′ |. If Ak,ℓ is on the right boundary, then all
vertical paths pass through the bottom right corner and thus there is a single path with
minimum cost. This implies D(Ak,ℓ) = |Ak,ℓ| = 1.

123

4.4.2 Separating type (B) and (C) paths

Similarly to Section 4.4.1, it will be useful to show Lemmas 10, 14, and 17, for output
boundary cost functions of only type (B) or type (C) paths. It will be useful to be able
to consider two types of paths separately. In order to do this, we must show that we can
further divide our subsegments so that, for each subsegment on the output boundary, all
optimal paths to the subsegments are type (B) paths or that all optimal paths are type (C)
paths.

Lemma 24. Suppose we add a critical point in Ak,ℓ where the optimal path from Ak−1,ℓ′ to
Ak,ℓ changes between a type (B) path and a type (C) path. Then at most two critical points
are added to Ak,ℓ.

Proof. Suppose there were at least three such critical points. Then the path types must
alternate, between B, C, B, C. In particular, there must exist, along the output boundary,
paths of type B,C,B. The two outer type (B) paths must visit the valley. However, the
inner type (C) path is sandwiched between the type (B) paths, since by Lemma 11, no
optimal paths may cross. Therefore, the type (C) path must also visit the valley, which
contradicts the definition of the type (C) path.

4.4.3 Type (B) paths

As a consequence of the additional critical points in Lemma 24, we obtain the following fact.

Observation 25. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose there exists a type (B) path
from Ak−1,ℓ′ to Ak,ℓ. Then all paths from Ak−1,ℓ′ to Ak,ℓ are type (B) paths.

Recall that V is the valley of our cell in the parameter space, if one exists.

Definition 26. Let the type (B1) function be the cost function along V if we only allow an
axis parallel path from Ak−1,ℓ′ to V . Let the type (B2) function be the cost function along
V if we allow an axis parallel path from Ak−1,ℓ′ to V followed by a path of slope 1 along V .

V

v

s2
S2

(B1)

V

v

s2
S2

(B2)

Figure 4.7: The type (B1) and type (B2) optimal path from s2 ∈ S2 to v ∈ V .

We prove an observation, that the type (B2) cost function is indeed the cumulative
minimum of the type (B1) cost function.

Observation 27. The type (B2) cost function is the cumulative minimum function of the
type (B1) cost function.

124

Proof. We observe that a type (B2) paths is a type (B1) path appended with a path along
the valley. Since the height function is zero along the valley, if we can reach a valley point
for a particular cost with a type (B1) path, then we can reach all points on the valley above
and to the right of it with a type (B2) path. So the type (B2) cost function is the cumulative
minimum of the type (B1) cost function, see Figure 4.5.

(B1)

(B2)

cost

V

Figure 4.8: The type (B2) cost function.

Finally, we can show the main lemmas of this section. Lemmas 28, 29 and 30 are the
special cases of Lemmas 17, 10 and 14 in the type (B) paths case.

Lemma 28. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ

are type (B) paths. Then the cost along Ak,ℓ is a continuous piecewise quadratic function.
Moreover, for every point t on the piecewise quadratic function, the left derivative at t is
greater than or equal to the right derivative at t.

Proof. Three operations are performed to get from the cost function along Ak−1,ℓ′ to the
cost function along Ak,ℓ. From Ak−1,ℓ′ to the type (B1) cost function we add a quadratic
function. From type (B1) to type (B2), we take the cumulative minimum, as shown in
Figure 4.7. From the type (B2) cost function to Ak,ℓ, we add a quadratic function. All
three operations preserve the fact that the cost function is a piecewise quadratic function.
All three operations preserve the property that, for every point t on the piecewise quadratic
function, the left derivative at t is greater than or equal to the right derivative at t.

Lemma 29. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ are type
(B) paths. If we propagate a single quadratic piece of Ak−1,ℓ′ to the next level Ak, it is
a piecewise quadratic function with at most a constant number of pieces. Moreover, this
propagation step takes only constant time.

Proof. Computing the cost function along V consists of adding a quadratic function to the
cost function along Ak−1,ℓ, and taking the cumulative minimum. This cost function has at
most two pieces and can be computed in constant time. Adding a quadratic function to the
cost function along V to yield the cost function along Ak takes constant time.

Lemma 30. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (B) paths. Then

D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1,

|Ak,ℓ| ≤ |Ak−1,ℓ′ |+D(Ak−1,ℓ′) + 1.

125

Proof. Three operations are performed to get from the cost function along Ak−1,ℓ′ to the
cost function along Ak,ℓ. The first and third are to add a quadratic function, whereas the
second is to take the cumulative minimum.

The first and third operations do not change the number of distinct pairs (a, b). The sec-
ond operation only adds horizontal functions, so the number of distinct pairs (a, b) increases
by at most once. Putting this together yields D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1.

The first and third operations do not change the number of pieces in the piecewise
quadratic function. The second operation adds a horizontal function at each of the local
minima. The local minima of a piecewise quadratic function can occur at the endpoints of
the function, at points where both the left and right derivatives are zero, or at points where
the left derivative is strictly less than the right derivative. There are at most two endpoints,
and we can only add a horizontal function to one of them. For each distinct pair (a, b), there
is at most one local minima where both the left and right derivatives are zero, since this
local minima only occurs at the x-coordinate given by x = − b

2a . By Lemma 28, we do not
have any points where the left derivative is strictly less than the right derivative. Putting
this together, we add at most D(Ak−1,ℓ′)+1 horizontal functions at the local minima of the
piecewise quadratic function. This gives |Ak,ℓ| ≤ |Ak−1,ℓ′ |+D(Ak−1,ℓ′)+1, as required.

4.4.4 Type (C) paths

Recall that we require the following three lemmas for type (C) paths.

Lemma 31. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ

are type (C) paths. Then the cost along Ak,ℓ is a continuous piecewise quadratic function.
Moreover, for every point t on the piecewise quadratic function, the left derivative at t is
greater than or equal to the right derivative at t.

Lemma 32. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ are type
(C) paths. If we propagate a single quadratic piece of Ak−1,ℓ′ to the next level Ak, it is
a piecewise quadratic function with at most a constant number of pieces. Moreover, this
propagation step takes only constant time.

Lemma 33. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (C) paths. Then

D(Ak,ℓ) ≤ D(Ak−1,ℓ′),

|Ak,ℓ| ≤ |Ak−1,ℓ′ |.

We prove these lemmas again by dividing into subcases. Our subcases are defined as
follows.

Definition 34. Let type (C1), (C2) and (C3) paths be type (C) paths where the starting
point and the ending point are on the left and right, bottom and right, or bottom and top
boundaries respectively.

To show that we can indeed divide our analysis into these three subcases, we make the
following observation.

Observation 35. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose there exists a type (C1), or
(C2), or (C3) path from Ak−1,ℓ′ to Ak,ℓ. Then all paths from Ak−1,ℓ′ to Ak,ℓ are type (C1),
or (C2), or (C3), respectively.

126

s

t

s

t

s

t

s′

s′

s′

Figure 4.9: The type (C1), (C2) and (C3) paths.

Proof. Suppose there were paths of different types between Ak−1,ℓ′ to Ak,ℓ. Then either
their starting points are on different boundaries, or their ending points are on different
boundaries. Therefore, there is either a critical point on Ak−1,ℓ′ or on Ak,ℓ. But this is not
possible, so there are no paths of different types between Ak−1,ℓ′ to Ak,ℓ.

We require separate case analyses for type (C1), (C2) and (C3) paths. See Figure 4.10.
We prove our claims for type (C1) paths in Section 4.4.5, type (C2) paths in Section 4.4.6,
and type (C3) paths in Section 4.4.7.

Type (C1) Type (C2) Type (C3)
Lemma 31 Lemma 36 Lemma 42 Lemma 47
Lemma 32 Lemma 37 Lemma 43 Lemma 48
Lemma 33 Lemma 38 Lemma 44 Lemma 49

Figure 4.10: The proofs of Claims 31, 32 and 33 divided into three subcases.

4.4.5 Type (C1) paths

The type (C1) path is first a vertical path from s to s′, then a horizontal path from s′ to t.
However, we notice that since s′ is on the left boundary, we can simplify the path to the
horizontal part from s′ to t, since we know the optimal cost at s′ by our inductive hypothesis.
The cost along the horizontal path from s′ to t is a quadratic, so the cost function along
Ak,ℓ is simply the cost function along Ak−1,ℓ′ plus a quadratic. Using the same arguments
as in Section 4.4.1, we yield the following three lemmas.

Lemma 36. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (C1) paths. Then the cost along Ak,ℓ is a continuous piecewise quadratic function.
Moreover, for every point t on the piecewise quadratic function, the left derivative at t is
greater than or equal to the right derivative at t.

Lemma 37. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ are type
(C1) paths. If we propagate a single quadratic piece of Ak−1,ℓ′ to the next level Ak, it is
a piecewise quadratic function with at most a constant number of pieces. Moreover, this
propagation step takes only constant time.

Lemma 38. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (C1) paths. Then

D(Ak,ℓ) ≤ D(Ak−1,ℓ′),

|Ak,ℓ| ≤ |Ak−1,ℓ′ |.

127

4.4.6 Type (C2) paths

Definition 39. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ

are type (C2) paths. Let the type (C2) path be a vertical path from s to s′ and a horizontal
path from s′ to t. Define pathcost(s, t) to be the cost at s plus the cost along the type (C2)
path. In other words,

pathcost(s, t) = cost(s) +

∫ s′

s

h(x) · dx+

∫ t

s′
h(x) · dx.

The cost at t is the minimum path cost over all type (C2) paths ending at t. In other
words, cost(t) = mins pathcost(s, t).

Observation 40. Suppose s is a point on Ak−1,ℓ′ where the left derivative of cost(s) at s
does not match the right derivative of cost(s) at s. Then cost(t) ̸= pathcost(s, t) for all t.

Proof. We assume by inductive hypothesis that Lemma 17 is true along Ak−1,ℓ′ . In partic-
ular, we assume the cost function along Ak−1,ℓ′ cannot obtain a local minimum at a point
where its left derivative does not equal its right derivative. Recall that pathcost(s, t) =

cost(s) +
∫ s′

s
h(x) · dx +

∫ t

s′ h(x). For fixed t, the second and third terms are (single piece)
quadratic functions in terms of s. Therefore, for fixed t, we add two single piece quadratic
functions to cost(s) to obtain pathcost(s, t). Therefore, pathcost(s, t) cannot have a local
minimum at s, since the left derivative does not match the right derivative at s in cost(s),
and adding the two quadratic functions to cost(s) does not affect this property. Since
pathcost(s, t) does not have a local minimum at s, it cannot have a global minimum at s
either, so cost(t) ̸= pathcost(s, t), as required.

Observation 41. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose that s is on Ak−1,ℓ′ and t is
on Ak,ℓ so that cost(t) = pathcost(s, t). Then ∂

∂spathcost(s, t) = 0. Moreover, the set of
points in a cell for which this occurs is a set of segments, and there are at most |Ak−1,ℓ′ |
such segments.

Proof. By the contrapositive of Observation 40, we have that the point s is a point on Ak−1,ℓ′

such that its the left derivative of cost(s) at s matches the right derivative of cost(s) at s.
So the derivative of cost(s) is well defined at s. Therefore, ∂

∂spathcost(s, t) is well defined at

s, since pathcost(s, t) = cost(s)+
∫ s′

s
h(x) ·dx+

∫ t

s′ h(x), and the second and third terms are

quadratic functions in terms of s if t is fixed. Since ∂
∂spathcost(s, t) is well defined at s, and

cost(t) = pathcost(s, t) so pathcost(s, t) is minimised as s, we have that ∂
∂spathcost(s, t) =

0. Since pathcost(s, t) is a bivariate quadratic function with |Ak−1,ℓ′ | pieces, the partial
derivative equation ∂

∂spathcost(s, t) = 0 defines a bivariate linear function with |Ak−1,ℓ′ |
pieces. This bivariate linear function is a set of |Ak−1,ℓ′ | segments, as required.

Lemma 42. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (C2) paths. Then the cost along Ak,ℓ is a continuous piecewise quadratic function.
Moreover, for every point t on the piecewise quadratic function, the left derivative at t is
greater than or equal to the right derivative at t.

Proof. For all t on Ak,ℓ, we define σ(t) as the point on Ak−1,ℓ′ such that cost(t) = pc(t)

where pc(t) := pathcost(σ(t), t) = cost(σ(t)) +
∫ σ′(t)
σ(t)

h(r)dr +
∫ t

σ′(t) h(r)dr. By induction,

we get that cost is a piecewise quadratic function on Ak−1,ℓ′ , and by Observation 41, we get

128

that σ is a piecewise linear function. Therefore, pc is a piecewise quadratic function and so
is cost on Ak,l.

Next, we show that for every point t0 on Ak,ℓ, pc is continuous in t0 (which isn’t necessar-
ily true for σ) and the left derivative of pc at t0 is greater than or equal to the right derivative
of pc at t0. We write ∂−pc(t0) ≥ ∂+pc(t0). Consider the points directly to the left of t0 such
that a single linear piece of σ contains all of them in its domain. Now let −→σ be the linear
function corresponding to this piece with its domain extended to the right of t0, and let −→pc
be the function −→pc(t) := pathcost(−→σ (t), t) = cost(−→σ (t)) +

∫ −→σ ′(t)
−→σ (t)

h(r)dr+
∫ t
−→σ ′(t) h(r)dr. We

analogously define ←−σ and ←−pc by considering points directly to the right of t0 and extending
the piece’s domain to the left. Note that −→σ ̸=←−σ only if σ changes from one linear piece to
another at t0.

Both −→pc and ←−pc are continuous, since −→σ and ←−σ are linear while cost is continuous
on Ak−1,l′ by induction. For all t < t0 and close to t0, we have −→pc(t) = pc(t) = cost(t) =
mins pathcost(s, t) by definition and thus −→pc(t) ≤ ←−pc(t). Similarly, for all t > t0 close to t0,
we have −→pc(t) ≥ ←−pc(t). Together, this implies −→pc(t0) = ←−pc(t0), which in turn yields that pc
is continuous in t0 with pc(t0) =

−→pc(t0) =←−pc(t0).
The continuity of −→pc, ←−pc and pc at t0 also means that they all have a left and a

right derivative at t0. Assume for the sake of contradiction that ∂−−→pc(t0) ̸= ∂+−→pc(t0).
This would require ∂−cost(−→σ (t0)) ̸= ∂+cost(−→σ (t0)), because the second and third terms
of −→pc(t) are quadratic functions of t without break points. Due to the linearity of −→σ ,
∂−cost(−→σ (t0)) ̸= ∂+cost(−→σ (t0)) only occurs when −→σ (t0) is a break point of cost, which is
impossible by −→pc(t0) = pc(t0) = cost(t0) and the contrapositive of Observation 40. This
yields a contradiction, so ∂−−→pc(t0) = ∂+−→pc(t0).

Finally, we have ∂−−→pc(t0) = ∂−pc(t0) and ∂+−→pc(t0) ≥ ∂+pc(t0), since
−→pc(t) = pc(t) for

all t ≤ t0 and −→pc(t) ≥ pc(t) for all t > t0 close to t0. Putting everything together yields

∂−cost(t0) = ∂−pc(t0) = ∂−−→pc(t0) = ∂+−→pc(t0) ≥ ∂+pc(t0) = ∂+cost(t0)

as required.

Lemma 43. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ are type (C2)
paths. If we propagate a single quadratic piece of Ak−1,ℓ′ to the next level Ak, the cost is a
quadratic function. Moreover, this propagation step takes only constant time.

Proof. Let s be a point on a single quadratic piece on Ak−1,ℓ′ . In constant time, we can
compute the bivariate quadratic function pathcost(s, t). In constant time, we can compute
the segment where ∂

∂spathcost(s, t) = 0. For all (s, t) on this segment, we write s as a linear
function of t. We know by Observation 41 that cost(t) = pathcost(s, t) along this segment.
In constant time, we can substitute the linear function of s in terms of t into pathcost(s, t)
to obtain cost(t), i.e. the propagated cost along the next level Ak.

Lemma 44. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (C2) paths. Then

D(Ak,ℓ) ≤ D(Ak−1,ℓ′),

|Ak,ℓ| ≤ |Ak−1,ℓ′ |.

Proof. First, we show |Ak,ℓ| ≤ |Ak−1,ℓ′ |. For all t on Ak,ℓ, we define s(t) as the point on
Ak−1,ℓ′ such that that cost(t) = pathcost(s(t), t). By Observation 41, we get that s(t)
is a piecewise linear function in terms of t, and s(t) has at most |Ak−1,ℓ′ | linear pieces.

129

Substituting s(t) into pathcost(s(t), t), we get that cost(t) is a piecewise quadratic function,
which is the lower envelope of |Ak−1,ℓ′ | quadratic pieces. By Lemma 11, the lower envelope
of |Ak−1,ℓ′ | pieces appear in the same order as the input pieces they were propagated from.
Therefore, the lower envelope cost(t) has at most |Ak−1,ℓ′ | quadratic pieces, as required.

Next, we show D(Ak,ℓ) ≤ D(Ak−1,ℓ′). Suppose that f1(x) = ax2 + bx + c1, and
f2(x) = ax2+ bx+ c2. We apply the propagation step in Lemma 43 to f1(x) and f2(x). Let
pathcost1(s, t) be the bivariate quadratic function for s in the domain of f1(x), and similarly
pathcost2(s, t) be the bivariate quadratic function for s in the domain of f2(x). Since f1(x)
and f2(x) differ by at most a constant, we get that pathcost1(s, t) and pathcost2(s, t) differ
by at most a constant. The derivative ∂

∂spathcost(s, t) does not depend on the constant
terms, so s and t have the same linear relationship for s in the domain of f1(x) and f2(x).
Substituting the linear function s(t) into pathcost1(s(t), t) and pathcost2(s(t), t), we obtain
cost1(t) and cost2(t), that differ at most by an additive constant. Hence, any two quadratic
functions in cost(s) that share the same (a, b) terms propagate to a pair of quadratic func-
tions in cost(t) that share the same (a, b) terms. Hence, every one of the D(Ak−1,ℓ′) many
distinct (a, b) pairs in cost(s) map to at most one of the D(Ak,ℓ) many distinct (a, b) pairs
in cost(t). Therefore, D(Ak,ℓ) ≤ D(Ak−1,ℓ′), as required.

4.4.7 Type (C3) paths

Definition 45. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Let the type (C3.1) function be the cost
function along Ak,ℓ if we only allow vertical type (C3) paths from Ak−1,ℓ′ to Ak,ℓ. Let the
type (C3.2) function be the cost function along Ak,ℓ if we allow arbitrary type (C3) paths
(vertical followed by a horizontal path) from Ak−1,ℓ′ to Ak,ℓ. See Figure 4.11.

(C3.1) (C3.2)

s

t

s

s′ t

Figure 4.11: The type (C3.1) and type (C3.2) paths.

Similar to type (B1) and type (B2) functions in Section 4.4.3, our approach will be to
first compute the type (C3.1) and then modify it to obtain the type (C3.2) function. Recall
that for a type (B1) function f(t), the type (B2) function is the cumulative minimum of f(t).
Recall that the cumulative minimum has horizontal extensions at each of the local minima
of f(t). For type (C3) paths, we apply similar extensions, but our new extensions will be
non-horizontal, but instead follow the shape of a quadratic function g(t). See Figure 4.12.

Observation 46. Let cost3.1(t) be a type (C3.1) function, and let g(t) be the integral of the
height function h(t) along the top boundary. Then the type (C3.2) function, cost3.2(t), is
given by

cost3.2(t) = min
s′≤t

(
cost3.1(s

′)− g(s′)
)
+ g(t)

130

cost

T2

s′

cost(t)

g(t)

cost(s′)− g(s′) + g(t)

Figure 4.12: A non-horizontal extension (purple) of a function (blue) that follows the shape
of a quadratic (red).

Proof. Recall that a type (C3.2) path is a path from s (bottom) to s′ (top) to t (top). The
type (C3.2) cost function is the minimum cost over all such type (C3.2) paths. Therefore,

cost3.2(t) = min
s′≤t

(
cost(s) +

∫ s′

s

h(t)dt+

∫ t

s′
h(t)dt

)
= min

s′≤t

(
cost3.1(s

′) +
∫ t

s′
h(t)dt

)
= min

s′≤t

(
cost3.1(s

′)− g(s′) + g(t)
)

= min
s′≤t

(
cost3.1(s

′)− g(s′)
)
+ g(t),

as required.

Now, we can compute cost3.2(t) from cost(s) in the following way. First, we compute the

quadratic function
∫ s′

s
h(t)dt and add it to cost(s) to obtain cost3.1(s

′). Next, we compute
g(s′), the integral of the height function along the top boundary, and subtract it from
cost3.1(s

′). Then, we compute its cumulative minimum function, mins′≤t

(
cost3.1(s

′)−g(s′)
)
.

Finally, we add g(t). In each step, we either add or subtract a quadratic, or take the
cumulative minimum of a function. These steps are essentially the same as the ones for
type (B) paths, with minor modifications. By applying essentially the same arguments as
in Section 4.4.3, we obtain the following three lemmas.

Lemma 47. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (C3) paths. Then the cost along Ak,ℓ is a continuous piecewise quadratic function.
Moreover, the local minima along Ak,ℓ are either at its endpoints or where its derivative is
well defined and equal to zero.

Lemma 48. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ are type
(C3) paths. If we propagate a single quadratic piece of Ak−1,ℓ′ to the next level Ak, it is
a piecewise quadratic function with at most a constant number of pieces. Moreover, this
propagation step takes only constant time.

Lemma 49. Let Ak−1,ℓ′ be the parent of Ak,ℓ. Suppose all paths from Ak−1,ℓ′ to Ak,ℓ are
type (C3) paths. Then

D(Ak,ℓ) ≤ D(Ak−1,ℓ′),

131

|Ak,ℓ| ≤ |Ak−1,ℓ′ |.

4.5 Conclusion

We presented the first exact algorithm for computing CDTW of one-dimensional curves,
which runs in polynomial time. Our main technical contribution is bounding the total
complexity of the functions which the algorithm propagates, to bound the total running
time of the algorithm. One direction for future work is to improve the upper bound on the
total complexity of the propagated functions. Our O(n5) upper bound is pessimistic, for
example, we do not know of a worst case instance. Another direction is to compute CDTW
in higher dimensions. In two dimensions, the Euclidean L2 norm is the most commonly used
norm, however, this is likely to result in algebraic issues similar to that for the weighted
region problem [48]. One way to avoid these algebraic issues is to use a polyhedral norm,
such as the L1, L∞, or an approximation of the L2 norm [72, 109]. This would result in an
approximation algorithm similar to [124], but without a dependency on the spread.

Acknowledgements

The authors would like to thank Jan Erik Swiadek for helpful feedback on the manuscript.
In particular, we included their improved proof of Lemma 42.

132

Chapter 5

Improving the dilation of a
metric graph by adding edges

5.1 Introduction

Let G = (V,E) be a graph embedded in a metric space M . For every pair of points u, v ∈ V ,
the weight of the edge (u, v) is equal to the distance dM (u, v) between points u and v in
the metric space M . Let dG(u, v) be the weight of the shortest path between u and v in
the graph G. For any real number t > 1, we call G a t-spanner if dG(u, v) ≤ t · dM (u, v) for
every pair of points u, v ∈ V . The stretch, or dilation, of G is the smallest t for which G is
a t-spanner.

Spanners have been studied extensively in the literature, especially in the geometric
setting. Given a fixed t > 1, a fixed dimension d ≥ 1, and a set of n points V in d-
dimensional Euclidean space, there is a t-spanner on the point set V with O(n) edges. For
a summary of the considerable research on geometric spanners, see the surveys [77, 98, 147]
and the book by Narasimhan and Smid [133]. Spanners in doubling metrics [50, 95, 110]
and in general graphs [19, 135, 154] have also received considerable attention.

Most of the literature on spanners focuses on building the graph from scratch. This
chapter instead focuses on adding edges to improve an existing graph. Applications where
graph networks tend to be better connected over time include road, rail, electric and com-
munication networks. The overall quality of these networks depend on both the quality of
the initial design and the quality of the additions. In this chapter, we focus on the latter.
In particular, given an initial metric graph, and a budget of k edges, which k edges do we
add to produce a minimum-dilation graph?

Figure 5.1: An example where k = 2 edges (red) are added to an initial graph G (black) to
produce a minimum-dilation graph.

133

Problem 1. Given a positive integer k and a metric graph G = (V,E), compute a set
S ⊆ V ×V of k edges so that the dilation of the resulting graph G′ = (V,E∪S) is minimised.

The problem stated is a major open problem in the field [81, 122, 166]. It is also one of
twelve open problems posed in the final chapter of Narasimhan and Smid’s book [133]. As
no major breakthroughs have been made, special cases have been studied.

The first special case is when k = 1. Let n and m be the number of vertices and edges
of the graph G, respectively. Farshi et al. [81] provided an O(n4) time exact algorithm and
an O(mn + n2 log n) time 3-approximation. Wulff-Nilsen [166] improved the running time
of the exact algorithm to O(n3 log n), and in a follow-up paper Luo and Wulff-Nilsen [122]
provided an O((n4 log n)/

√
m) time exact algorithm that uses linear space. Several of the

papers that study the k = 1 case mention the k > 1 case as one of the main open problems
in the field.

The second special case is if G is an empty graph. Giannopoulos et al. [91] and Gud-
mundsson and Smid [102] independently proved that it is NP-hard to produce the highest
quality spanner by adding k edges to an empty graph. This implies that Problem 1 is NP-
hard. If we restrict ourselves to polynomial time algorithms, it therefore makes sense to
consider approximation algorithms. In Euclidean space, Aronov et al. [15] showed how to
add k = n−1+ℓ edges to an empty graph to produce an O(n/(ℓ+1))-spanner in O(n log n)
time. By setting ℓ = εn, this result implies an O(1/ε)-approximation to Problem 1 for all
k ≥ (1 + ε)n. However, the general case where G is a non-empty (Euclidean or metric)
graph and k ≤ n− 1 still remains open.

Farshi et al. [81] conjectured that generalising their algorithm to general k may provide
a reasonable approximation algorithm. In Section 5.5, we show an Ω(2k) lower bound for
their algorithm.

In this chapter we obtain the first positive result for the general case. Our approximation
algorithm runs in O(n3 log n) time and guarantees an O(k)-approximation factor. Although
our algorithm may not be optimal, we hope that we provide some insight for further research,
or for related graph augmentation problems [8, 112, 113, 117].

We provide a tight analysis of our algorithm. We show that, for any ε > 0, our algorithm
yields an approximation factor of (1 + ε)(k + 1), but the same algorithm cannot yield an
approximation factor better than (1 − ε)(k + 1). We achieve our main result by reducing
Problem 1 to the following approximate decision version:

Problem 2. Given an integer k, a real number t, and a metric graph G = (V,E), decide
whether t∗ ≤ t or t∗ > t

k+1 , where t∗ is the minimum dilation of G′ = (V,E ∪ S) over all

sets S where S ⊆ V × V and |S| = k. In the case where t
k+1 < t∗ ≤ t, either of the two

options may be chosen arbitrarily.

Our algorithm for Problem 2 is a slight modification of the standard greedy t-spanner
algorithm. We provide details of our algorithm and argue its correctness in Section 5.2.
In Section 5.3, we show how to use the approximate decision algorithm for Problem 2 to
develop an approximation algorithm for Problem 1. We prove that only O(log n) calls to
the greedy algorithm is required to obtain an (1 + ε)(k + 1)-approximation. Finally, in
Section 5.4, we provide a construction to show that the same algorithm cannot yield an
approximation factor better than (1− ε)(k + 1).

134

5.2 The Greedy Construction

As mentioned in the introduction, our approach to solving Problem 2 is a modified greedy t-
spanner construction. We introduce some notation for the purposes of stating the algorithm.
For an edge e ∈ V × V , let dM (e) denote the length of the edge e in the metric space M .
Given a graph G, let δG(e) denote the shortest path between the endpoints of e in the graph
G. Let dG(e) be the total length of edges along the path δG(e).

In the original greedy spanner construction, the algorithm begins with an empty graph
G, and a positive real value t > 1, and yields a t-spanner as follows: sort all the edges in
{V × V } by increasing weight and then process them in order. Processing an edge e entails
a shortest path query. If dG(e) > t · dM (e), then the edge e is added to G, otherwise it
is discarded. The algorithm terminates when all edges have been processed. The resulting
graph is a t-spanner.

In our setting we will start with a initial graph G, a positive real value t > 1 and
a positive integer k. Our modified greedy algorithm sorts the edges in {V × V } \ E by
increasing weight and then processes them in order. For each edge e, we perform a shortest
path query. If dG(e) > t · dM (e), then the edge e is added to G, otherwise it is discarded.
The algorithm terminates if all edges have been processed, or if k+1 edges have been added
to G by the algorithm.

Formally, the greedy edges ai and the augmented graphs Gi are defined inductively as
follows:

Definition 3. Let G0 = G, and for 1 ≤ i ≤ k + 1, let Gi = Gi−1 ∪ ai where ai is the
shortest edge in V × V satisfying dGi−1

(ai) > t · dM (ai).

If the algorithm terminates after all the edges have been processed, then at most k edges
have been added to yield a t-spanner. Therefore t∗ ≤ t. Otherwise, if at least k + 1 edges
are added, we will prove in Section 5.2.1 that t∗ > t

k+1 .

5.2.1 Proof of correctness

Our approach is to use the edges added by the greedy algorithm to obtain an upper bound
on t with respect to t∗. Our upper bound comes from the following relationship, which is a
straightforward consequence of Definition 3:

Observation 4. In the graph Gi−1, if there is a connected path between the endpoints of ai
with total length L, then L > t · dM (ai).

Our goal is to construct a connected path in Gi−1 between the endpoints of ai and to
bound its length by (k + 1) t∗ · dM (ai). If we are able to do this, then Observation 4 would
immediately imply that (k+1) t∗ > t, as required. Note that i is some fixed integer between
1 and k + 1. As part of our construction, we will show how to select a suitable value for i.

To motivate how we construct a connected path in Gi−1 between the endpoints of ai, let
us consider a special case where k = 1. Let G be the initial graph and let the first two greedy
edges be a1 and a2. Suppose that an optimal edge to add is s1, and let G∗ = G∪ {s1}. See
Figure 5.2.

We select i = 2 in Observation 4, so that our goal is to construct a connected path in
G1 = G ∪ {a1} between the endpoints of a2 and upper bound its length by 2 t∗ · dM (a2).

A näıve connected path between the endpoints of a2 that has length upper bounded by
t∗ ·dM (a2) is the path δG∗(a2), which we recall is the shortest path between the endpoints of

135

s1

a2 a1

G

δG∗(a2)
γ1

Figure 5.2: The graph G with optimal edge s1 and greedy edges a1 and a2.

a2 in the graph G∗. The path is shown in Figure 5.2. The reason that dG∗(a2) ≤ t∗ ·dM (a2)
is because the dilation of G∗ is t∗. Unfortunately, the issue with this path is that it uses the
edge s1 and therefore is not a path in G1, so Observation 4 does not apply.

We modify δG∗(a2) into a longer path that does not use s1. Our approach is to combine
the path with a cycle by using the symmetric difference operation. Recall that the symmetric
difference of a set of sets are all the elements that appear in an odd number of those sets.

To remove s1 from the path δG∗(a2), we take its symmetric difference with the cycle γ1,
which is formed by linking the path δG∗(a1) and the edge a1 end to end. Ideally, the
symmetric difference of δG∗(a2) and γ1 would form a connected path between the endpoints
of a2. Moreover, if both the path δG∗(a2) and the cycle γ1 use the edge s1 exactly once,
then taking the symmetric difference cancels the two occurrences of s1, leaving a path that
is entirely in G1.

In fact, we can show this approach works in general. We begin with the näıve path
δG∗(ai), where G∗ is the optimal graph defined as follows:

Definition 5. Let S ⊆ V × V be the set of k edges so that G ∪ S has dilation t∗. Then
G∗ = G ∪ S.

Similar to the k = 1 case, the path δG∗(ai) is not in the graph Gi−1. We modify the
path δG∗(ai) by taking its symmetric difference with a set of cycles. We prove that for any
set of cycles, the symmetric difference of δG∗(ai) and the set of cycles always contains a
connected path between the endpoints of ai. Moreover, we show how to select the set of
cycles in such a way that all edges in S are cancelled out by the symmetric difference. In
this way, we have constructed a connected path in the graph Gi−1 between the endpoints
of ai.

We first prove that taking the symmetric difference of δG∗(ai) with any set of cycles
maintains the invariant that there always exists a connected path between the endpoints of
ai.

Lemma 6. The symmetric difference of a path P with any number of cycles contains a
connected path between the endpoints of P . See Figure 5.3.

Proof. Consider a subgraph formed by the symmetric difference of P and a set of cycles.
We will look at the degree of all vertices in this subgraph.

Consider the parity of the degree of each vertex. Taking the symmetric difference main-
tains the parity of the sum of the degrees. The contribution of a cycle to the degree of all
vertices is even, whereas the contribution of P to the degree of all vertices is even except

136

P

Figure 5.3: Given a path (black) and cycles (red, green, blue), the symmetric difference
(solid) contains a connected path between the endpoints of the black path.

for the endpoints of P . Hence, the only two vertices with odd degree are the endpoints of
P . Applying Euler’s theorem to the connected component that contains the endpoints of
P , we deduce that there is an Eulerian trail between the two vertices of odd degree. Hence,
there is a connected path between the endpoints of P .

Next, we construct the set of cycles Γ = {γj : 1 ≤ j ≤ k+1}. We will apply Lemma 6 to
our näıve connected path δG∗(ai) and a subset of Γ. Each cycle γj is simply a generalisation
of γ1 from the k = 1 case, which we recall is formed by linking the path dG∗(a1) and the
edge a1 end to end.

Definition 7. Let γj be a cycle formed by linking the path δG∗(aj) and the edge aj end to
end.

A subset of Γ is chosen in such a way so that the symmetric difference with δG∗(ai)
consists only of edges in Gi−1. To ensure this, we must choose the path δG∗(ai) and the
cycles γj so that all edges in S cancel out in the symmetric difference. We use elementary
linear algebra to provide a non-constructive proof that there exists a path δG∗(ai) and subset
of Γ where this property holds.

Lemma 8. Let {a1, a2, . . . , ak+1} be the first k + 1 edges given in Definition 3. Then
there exists a non-empty subset I ⊆ {1, 2, . . . , k + 1} so that the symmetric difference of
{δG∗(aj) : j ∈ I} does not contain any edges of S.

Proof. Recall from Definition 5 that S is the set of k edges so that G ∪ S has dilation t∗.
Consider δG∗(aj)∩S, which is a subset of S. We can represent any subset of S as an element
of the vector space {0, 1}S , as each binary digit simply represents whether an element is in
that subset. Take the basis {1j : j ∈ S} for the vector space {0, 1}S . The basis element
1j simply represents whether the jth element of S is in that subset. Hence, we can expand
δG∗(aj) ∩ S into a sum of basis elements by writing δG∗(aj) ∩ S =

∑
λij1j .

As there are k + 1 subsets δG∗(aj) ∩ S, their vector space expansions
∑

λij1j must
be linearly dependent. The linear dependence equation, when taken in modulo 2, can be
rearranged into the form

∑
j∈I δG∗(aj) ∩ S = 0 for some I ⊆ {1, 2, . . . , k + 1} and I ̸= ∅.

137

The modulo 2 equation
∑

j∈I δG∗(aj)∩S = 0 directly implies that the symmetric difference
of {δG∗(aj) ∩ S : j ∈ I} is empty.

For the remainder of this section, let I ⊆ {1, 2, . . . , k+1} be the subset that satisfies the
conditions of Lemma 8, in other words, the symmetric difference of {δG∗(aj) : j ∈ I} does
not contain any edges of S. We select the path δG∗(ai) where i = max I. Let J = I \ {i}
and select the subset Γ′ = {γj : j ∈ J}. We construct the set of edges that is the symmetric
difference of δG∗(ai) and Γ′. This completes the construction of the required path.

s1

s2

s3

δG∗(a4)γ1

γ2 γ3

a1

a2

a3

Figure 5.4: An example where we take the symmetric difference of dG∗(a4), γ2 and γ3 to
avoid all three of the edges s1, s2 and s3 that are not in G3.

For an illustrated example, see Figure 5.4. Let k = 3 and S = {s1, s2, s3}, so that
s1 ∈ δG∗(a1), s2 ∈ δG∗(a2), δG∗(a4) and s3 ∈ δG∗(a2), δG∗(a3). By Lemma 8, there must
be a non-empty subset I ⊆ {1, 2, 3, 4} so that the symmetric difference of {δG∗(aj) : j ∈ I}
does not contain any of the edges s1, s2 or s3. In particular, the subset I = {2, 3, 4} includes
s1 zero times, and s2 and s3 both twice. Hence, the symmetric difference of δG∗(a4) with
the cycles Γ′ = {γ2, γ3} avoids all three of the edges s1, s2, and s3.

Now we show this symmetric difference indeed satisfies the conditions of Observation 4,
so that it can be applied to yield an upper bound on t with respect to t∗. Recall that
the requirements of Observation 4 are that the set of edges must contain a connected path
between the endpoints of ai that uses only edges in Gi−1. By Lemma 6, the symmetric
difference contains a connected path between the endpoints of ai. By Lemma 8, we have
{δG∗(aj) ∩ S : j ∈ I} = ∅, so therefore the symmetric difference of {δG∗(aj) : j ∈ I} does
not contain any edges of S. This implies that the symmetric difference of {δG∗(ai)} and
Γ′ = {γj : j ∈ J} also does not contain any edges of S. Hence, we have constructed a set of
edges that contains a connected path in Gi−1 between the endpoints of ai, as required.

Observation 4 implies an upper bound on t in terms of the lengths of all the edges in
the symmetric difference of {δG∗(ai)} and Γ′ = {γj : j ∈ J}. In Lemma 9 we formalise this
upper bound. Then, in Lemma 10, we use the fact that the dilation of G∗ is t∗ to obtain
an upper bound on the sum of the lengths in each cycle γj . In Lemma 11, we strengthen
the inequality by giving a lower bound on the length of the edges that are both in γi and S,
and therefore cannot be part of the final symmetric difference. In Theorem 13 we put this
all together and prove the final bound (k + 1) t∗ > t.

138

Let cj be the total length of edges in the cycle γj . Let c
′
j be the total length of edges in

the intersection δG∗(aj) ∩ S. Then Observation 4 implies:

Lemma 9. dG∗(ai) +
∑

j∈J cj −
∑

j∈I c
′
j > t · dM (ai)

Proof. The total length of all edges in δG∗(ai) is dG∗(ai). The total length of all edges in
γj is cj . Taking the sum dGi−1

(ai) +
∑

j∈J cj yields an upper bound on the total length of
all edges in the symmetric difference {δG∗(ai)} and {γj : j ∈ J}. However, this total length
includes edges in S, in particular, it includes the total length of all edges in the intersections
{δG∗(aj)∩ S : j ∈ I}. We know from Lemma 8 that no edge in S appears in the symmetric
difference, so we do not need to include any of the edges in {δG∗(aj) ∩ S : j ∈ I} in the
total length. Hence, dG∗(ai) +

∑
j∈J cj −

∑
j∈I c

′
j is an upper bound on the total length of

the edges in the symmetric difference. Since the symmetric difference contains a connected
path in Gi−1 between the endpoints of ai, Observation 4 implies the stated inequality.

Next, we use the relationship between γj and the graph G∗ to obtain an upper bound
on cj .

Lemma 10. cj ≤ (t∗ + 1) · dM (aj)

Proof. Recall from Definition 7 that the cycle γj is the path δG∗(aj) and the edge aj linked
end to end. Since the dilation of G∗ is t∗, we have dG∗(aj) ≤ t∗ · dM (aj). Therefore,
cj = dG∗(aj) + dM (aj) ≤ (t∗ + 1) · dM (aj).

We strengthen the inequality in Lemma 9 by providing a lower bound on the edges that
are in γj but cannot be part of the final symmetric difference.

Lemma 11. If t ≥ (k + 1) t∗, then k
k+1 · dM (aj) ≤ c′j for all j.

Proof. First, we prove the inequality

dGj−1(aj) ≤ dG∗(aj) +
∑

s∈δG∗ (aj)∩S

dGj−1(s).

We do so in a similar manner to Lemma 9. We construct a path in Gj−1 between the
endpoints of aj that has length dG∗(aj) +

∑
s∈δG∗ (aj)∩S dGj−1

(s). We start with the path

dG∗(aj). We modify it taking the symmetric difference of dG∗(aj) with a set of cycles
β = {βs : s ∈ δG∗(aj)∩S}. The cycle βs is formed by linking the path dGj−1

(s) and the edge
s end to end. The cycle βs replaces every edge s ∈ δG∗(aj)∩S with the path dGj−1

(s) ∈ Gj−1.
Hence, the symmetric difference of dG∗(aj) with the set β is a path in Gj−1 between the
endpoints of aj . Therefore, we have dGj−1(aj) ≤ dG∗(aj) +

∑
s∈δG∗ (aj)∩S dGj−1(s).

Suppose for sake of contradiction that k
k+1 · dM (aj) > c′j . Consider any s ∈ δG∗(aj)∩ S.

Then s is shorter than aj , since dM (aj) >
k

k+1 · dM (aj) > c′j ≥ dM (s). In the graph Gj−1,
the edge aj is a shortest edge satisfying dGj−1(aj) > t · dM (aj). Since s is shorter than aj ,
we must have that dGj−1(s) ≤ t · dM (s). Now,

dGj−1(aj) ≤ dG∗(aj) +
∑

s∈δG∗ (aj)∩S dGj−1
(s)

≤ t∗ · dM (aj) + t ·
∑

s∈δG∗ (aj)∩S dM (s)

= t∗ · dM (aj) + t · c′j
< t∗ · dM (aj) + t · k

k+1dM (aj)

≤ t · 1
k+1dM (aj) + t · k

k+1dM (aj)

= t · dM (aj)

139

where the second last line is given by t ≥ (k + 1) t∗. But we know from Definition 3 that
dGj−1(aj) > t·dM (aj), so we obtain a contradiction. Therefore, we must have k

k+1 ·dM (aj) ≤
c′j .

Using Lemmas 9-11 we are able to prove the main result of this section.

Theorem 12. Suppose the greedy algorithm adds k+1 edges into the graph. Then (k+1) t∗ >
t.

Proof. Combining Lemmas 9 and 10 yields:

t · dM (ai) < dG∗(ai) +
∑

j∈J cj −
∑

j∈I c
′
j

≤ t∗ · dM (ai) +
∑

j∈J(t
∗ + 1)dM (aj)−

∑
j∈I c

′
j

= t∗ ·
∑

j∈I dM (aj) +
∑

j∈J dM (aj)−
∑

j∈I c
′
j

Suppose for sake of contradiction that t ≥ (k+1) t∗. By Lemma 11 we have k
k+1dM (aj) ≤

c′j . Summing over all j ∈ I yields:∑
j∈I c

′
j ≥

∑
j∈I

k
k+1dM (aj)

= k
k+1dM (ai) +

∑
j∈J

k
k+1dM (aj)

≥
∑

j∈J(
k

k+1dM (aj) +
1

k+1dM (ai))

≥
∑

j∈J dM (aj)

The final step is because j < i so aj is not longer than ai. Therefore,

t · dM (ai) < t∗
∑

j∈I dM (aj) +
∑

j∈J dM (aj)−
∑

j∈I c
′
j

≤ t∗
∑

j∈I dM (aj)

≤ t∗ · (k + 1) · dM (ai)

which implies (k + 1) t∗ > t, as required.

5.2.2 Running time analysis

We analyse the running time of the greedy algorithm. Recall that the greedy algorithm sorts
the edges in {V ×V } \E by increasing length and then processes them in order. Processing
an edge e entails a shortest path query. If dG(e) > t · dM (e), then the edge e is added to G,
otherwise it is discarded.

Our algorithm performs efficient shortest path queries by building and maintaining an
all pairs shortest paths (APSP) data structure for each of the graphs Gi. When an edge pq
is added to the graph, the data structure updates the length of the shortest path between
every pair of points u, v ∈ V . We compute the paths u → v, u → p → q → v, and
u→ q → p→ v, and choose the minimum length. For a fixed u, v ∈ V , this can be handled
in constant time, since all pairwise distances are stored.

Hence, the overall running time of the algorithm is as follows. In preprocessing, we build
the APSP data structure in O(mn+ n2 log n) time. Sorting the edges in {V × V } \E takes
O(n2 log n) time. Querying whether dG(e) > t ·dM (e) can be handled in constant time, and
there are at most O(n2) such queries. Updating the APSP data structure takes O(n2) time,
and there are at most k + 1 updates. Putting this all together yields:

Theorem 13. Given an integer k, a real number t and a graph G with n vertices and m
edges, there is an O((m + n log n + kn) · n) time algorithm that returns either t∗ ≤ t or
t∗ > t

k+1 .

140

5.3 Minimising the Dilation

We return to Problem 1, which is to compute a (1+ε)(k+1)-approximation for the minimum
dilation t∗. For any real value t, we can use Theorem 13 to decide whether t∗ ≤ t or t∗ > t

k+1 .
Hence, it remains only to provide some bounded interval that t∗ is guaranteed to be in. Once
we have such an interval, then we can binary search on an ε-grid of the interval to obtain a
(1 + ε)(k + 1)-approximation.

We compute this interval in two steps. Our first step is to identify a set T of O(n4)
real numbers so that at least one of these numbers is an O(n)-approximation of t∗. Our
second step is to use the approximate decision algorithm in Theorem 13 to perform a binary
search on the set T and yield an O(nk2)-approximation for t∗. The O(nk2)-approximation
provides the required interval.

We begin by identifying the set T of O(n4) real numbers.

Lemma 14. Define T = {dM (u,v)
dM (p,q) : u, v, p, q ∈ V, u ̸= v, p ̸= q}. Then there exists an

element t ∈ T such that t ≤ t∗ ≤ n · t.

Proof. Consider the graph G∗ = (V,E ∪ S). Let the dilation of t∗ be attained by the pair
of points u, v ∈ V . Let pq be a longest edge along the shortest path from u to v in G∗. See
Figure 5.5.

p

q
v

u

dM (u, v)

Figure 5.5: The edge pq is a longest edge on the shortest path from u to v.

Recall that dG∗(u, v) is the length of the shortest path from u to v in the graph G∗. The
dilation of t∗ is attained by the pair of points u, v, which implies dG∗(u, v) = t∗ · dM (u, v).
The shortest path from u to v has total length dG∗(u, v) and has at most n edges, where the
length of each edge is at most dM (p, q). This implies dM (p, q) ≤ dG∗(u, v) ≤ n · dM (p, q).
But dG∗(u, v) = t∗ · dM (u, v), so this inequality rearranges to give

dM (p, q)

dM (u, v)
≤ t∗ ≤ n · dM (p, q)

dM (u, v)
,

as required.

Next, we use the approximate decision algorithm in Theorem 13 to binary search the

set T = {dM (u,v)
dM (p,q) : u, v, p, q ∈ V, u ̸= v, p ̸= q} in order to yield an O(nk2)-approximation.

A näıve implementation of the binary search would entail computing and sorting the ele-
ments in T , which would require O(n4 log n) time. To speed up our algorithm, we avoid

141

the O(n4 log n) preprocessing step, and we do so by using the result of Mirzaian and Arjo-
mandi [127]. The result states that given two sorted lists X and Y each of size n, one can
select the ith smallest element of the set X + Y = {x+ y : x ∈ X, y ∈ Y } in O(n) time.

Lemma 15. There is an O((m + n log n + kn) · n log n) time algorithm that computes an
O(nk2)-approximation for t∗.

Proof. In a preprocessing step, construct and sort the sets X = {log(dM (u, v)) : u, v ∈
V, u ̸= v} and Y = {− log(dM (p, q)) : p, q ∈ V, p ̸= q}. To perform the binary search, select

the ith smallest element of X + Y = {log(dM (u,v)
dM (p,q)) : u, v, p, q ∈ V, u ̸= v, p ̸= q}. Reverse the

log transformation to obtain the ith smallest element of T . Call this element ti ∈ T . Apply
Theorem 13 to the two dilation values 2

3 · ti and n(k + 1) · ti. This returns one of three
possibilities:

1. t∗ ≤ 2
3 · ti and t∗ ≤ n(k + 1) · ti, or

2. t∗ > 2
3 ·

ti
k+1 and t∗ ≤ n(k + 1) · ti, or

3. t∗ > 2
3 ·

ti
k+1 and t∗ > n · ti.

The fourth combination cannot occur as it yields a contradiction. Notice that in case
one, we have t∗ < ti, so the element t ∈ T satisfying t ≤ t∗ ≤ n · t must be less than ti. We
can continue the binary search over the elements in T that are less than ti. Similarly, in
case three, we have t∗ > n · ti, so the element t ∈ T satisfying t ≤ t∗ ≤ n · t must be greater
than ti. We can continue the binary search over the elements in T that are greater than ti.
In case two we halt, since we have an O(nk2)-approximation for t∗.

We analyse the running time of this algorithm. Sorting the setsX and Y takesO(n2 log n)
time. For each of the O(log n) binary search step, selecting the ith element of X + Y takes
O(n2) time [127]. For each of the O(log n) binary search steps, applying Theorem 13 takes
O((m+ n log n+ kn) · n). Putting this all together yields the stated running time.

Finally, we apply a multiplicative (1 + ε)-grid to the O(nk2)-approximation to yield an
(1 + ε)(k + 1)-approximation.

Theorem 16. For any fixed ε > 0, there is an O((m+n log n+kn) ·n log n) time algorithm
that computes a (1 + ε)(k + 1)-approximation for t∗.

To simplify the running time, we note that if k ≥ n − 1, then adding the minimum
spanning tree to any graph makes it an n-spanner, which is a (k+1)-approximation for the
minimum dilation. Plugging in k < n− 1 and m ≤ n2 into Theorem 16 yields:

Theorem 17. For any fixed ε > 0, there is an O(n3 log n) time algorithm that computes
an (1 + ε)(k + 1)-approximation for t∗.

5.4 Approximation factor no better than (1− ε)(k + 1)

We provide a construction to show that the algorithms in Theorem 13 and Theorem 16
cannot yield an approximation factor better than (1− ε)(k + 1).

Theorem 18. For any k ≥ 1 and ε > 0, there exists a graph so that for any t ≤ (1− ε)(k+
1) · t∗, the greedy algorithm in Definition 3 adds at least k + 1 edges to the graph.

142

Proof. Fix h to be a small positive constant less than 1
t , and fix a constant h′ to be arbitrarily

small relative to h. We construct the graph G shown in Figure 5.6.
Let the vertices of G be

a1 = (0, 2h)
bi = (1, 2ih) ∀ 1 ≤ i ≤ k
ci = (2, 2ih) ∀ 1 ≤ i ≤ k
di = (k + 3 + i, 2ih) ∀ 1 ≤ i ≤ k
ei = (k + 3 + i, (2i+ 1)h) ∀ 1 ≤ i ≤ k
fi = (2, (2i+ 1)h− h′) ∀ 1 ≤ i ≤ k
gi = (1, (2i+ 1)h) ∀ 1 ≤ i ≤ k
y1 = (0, (2k + 1)h)
z1 = (0, 3h)

The graph G is a path between these vertices. The edges of G are between consecutive
elements in the sequence a1, b1, c1, d1, e1, f1, g1, b2, c2, . . . , fk, gk, y1, z1. See Figure 5.6.

a1 b1 c1

f1
g1

b2 c2

f2g2

b3
c3

f3g3

d1

e1

d2

e2

d3

e3y1

z1

Figure 5.6: The construction for k = 3.

The pairs of points with the largest dilation are (a1, z1), (bi, gi) and (ci, fi). We can pick
a small enough value of h so that the dilation of all other pairs are relatively insignificant.
The optimal k edges to add are (bi, gi) for all 1 ≤ i ≤ k. After adding these k edges, the
pairs of points with the largest dilation are (a1, z1) and (ci, fi). Of these, the pair of points
(a1, z1) realises the maximum dilation, which is t∗ = (2 + (4k + 1)h)/h ≈ 2/h.

Now let us run the greedy spanner construction for some t ≤ (1− ε)(k+1) · t∗. All pairs
of points (a1, z1), (bi, gi) and (fi, ci) start off with dilation greater than 2(k + 4)/h. But
2(k+4)/h = (k+4) ·2/h > (k+3) ·t∗ > t, where the second inequality is true for sufficiently
small values of h. The pairs of points with highest dilation are (a1, z1), (bi, gi) and (fi, ci),
and the edges connecting these pairs of points satisfies dGi(e) > t · dM (e). The shortest
of these edges will be added first by the greedy t-spanner construction. The pairs (ci, fi)
have distance h− h′, making the edge between them the shortest and first to be considered
by the greedy algorithm. Adding an edge between (ci, fi) does not reduce the dilation of
the other pairs of points (cj , fj). Therefore, the greedy spanner construction first adds the
edges (ci, fi) for all 1 ≤ i ≤ k.

After adding (ci, fi) for all 1 ≤ i ≤ k, the dilation between the pair of points a1 and z1 is
now (2k+2+(4k+1)h)/h. But (2k+2+(4k+1)h)/h = (2k+2+(4k+1)h)/(2+(4k+1)h)·t∗ >
(1 − ε)(k + 1) · t∗ for sufficiently small values of h relative to ε. Therefore, the greedy t-
spanner construction must add the edges (ci, fi) for all 1 ≤ i ≤ k plus at least one additional
edge, so it adds at least k + 1 edges in total.

143

Our construction shows that in Theorem 13 we cannot hope to obtain a bound that
is much better than t∗ > t

k+1 . Similarly, in Theorem 16, our construction implies that
the algorithm may continue searching for higher dilation values up until (1− ε)(k + 1) · t∗.
Therefore, we cannot hope to obtain a much better approximation ratio than (1+ ε)(k+1)
with our algorithm.

5.5 The Bottleneck Algorithm

Farshi et al. [81] studied the special case where k = 1. They achieved a 3-approximation
by adding the bottleneck edge, which is an edge between a pair of points that achieves the
maximum dilation. They also provided a generalisation of their algorithm for k > 1. The
generalisation consists of k stages. In each stage, the dilation of the graph is computed, and
a pair of points that achieves the maximum dilation is identified. Then an edge is added
between those pair of points. Formally, given an initial metric graph G, and an integer k:

Definition 19. Let G0 = G, and for 1 ≤ i ≤ k, let Gi = Gi−1 ∪ bi where bi is an edge
between the pair of points that achieves the maximum dilation of Gi−1.

Farshi et al. [81] conjectured that the dilation of the augmented graph Gk may be
reasonable approximation for the dilation of the optimal graph G∗. We provide a negative
result that states that their algorithm cannot yield an approximation factor better than 2k.

Theorem 20. For any k ≥ 1, there exists a initial graph G where bottleneck algorithm in
Definition 19 yields a graph Gk with dilation 2k times that of the dilation of the optimal
graph G∗.

Proof. Fix h to be a small constant. Let the vertices of G be

x0 = (−1, h)
yi = (0, 2ih) ∀ 1 ≤ i ≤ k + 1
zi = (2i−1, 3 · 2i−1h) ∀ 1 ≤ i ≤ k
x1 = (−1, 2k+1h+ h)

Join the vertices together to form a path x0, y1, z1, y2, z2, . . . , yk, zk, yk+1, x1. See Figure 5.7.

y1

y2

y3

y4

z1

z2

z3

x0

x1

z2z2

Figure 5.7: The construction for k = 3.

144

It is straightforward to check that all edges in G have gradient ±h. Since h is a small
constant, all edges are almost horizontal. Therefore, the pairs of vertices with maximum
dilation are those that are vertically above one another, in other words, the pairs (x0, x1), or
(yi, yi+1) for 1 ≤ i ≤ k. In particular, all the pairs listed have a dilation value of

√
1 + h2/h.

Since (x0, x1) is one of the pairs of vertices with maximum dilation, we can choose the
first bottleneck edge b1 to connect these two points. It is easy to check that since the distance
in the graph between (x0, x1) is twice the distance of any other pair (yi, yi+1), adding the
first bottleneck edge does not reduce the dilation of any of the pairs (yi, yi+1). Inductively,
we can show that for i ≥ 2, bi = (yk−i+2, yk−i+3) is the ith bottleneck edge added. This
is because it initially had the maximum dilation of

√
1 + h2/h, and adding the bottleneck

edges b1, b2, . . . bi−1 did not reduce its dilation factor. Finally, after adding b1, . . . bk, the
dilation of the augmented graph Gk is still

√
1 + h2/h and is attained by (y1, y2).

The optimal placements of k edges would be the edges (y1, y2), . . . (yk, yk+1). Under
this placement of k edges, the maximum dilation value is attained by (x0, x1), and is
2
√
1 + h2/(2k+1 · h) =

√
1 + h2/(2k · h). Hence, the augmented graph Gk has a dilation

of 2k times the dilation of the optimal graph G∗.
Note that in our construction, ties are broken adversarially when choosing the bottleneck

edge to add. If we would like to lift the requirement on the adversarial choice of which
bottleneck edge to add, we can perturb x0 and x1 vertically towards each other, which
guarantees that (x0, x1) is the first bottleneck edge to be added. We can do so similarly for
the other bottleneck edges.

5.6 Conclusion

In Farshi et al. [81] it was conjectured that generalising their algorithm to any positive
integer k may provide a reasonable approximation algorithm. In Section 5.5, we showed an
Ω(2k) lower bound for the approximation factor. We obtained the first positive result for
the general case. Our approximation algorithm runs in O(n3 log n) time and guarantees an
O(k)-approximation factor.

Two obvious open problems are to develop an algorithm with a better approximation
factor, or to show an inapproximability bound.

145

Chapter 6

Bicriteria approximation for
minimum dilation graph
augmentation

6.1 Introduction

Let G be a graph embedded in a metric space M . Let V (G), E(G) be the vertices and edges
of G. For vertices u, v ∈ V (G), define dM (u, v) to be the metric distance between points
u, v ∈ M , and define dG(u, v) to be the shortest path distance between vertices u, v ∈ G.
The dilation or stretch of G is the minimum t ∈ R so that for all u, v ∈ V (G), we have
dG(u, v) ≤ t · dM (u, v).

Dilation measures the quality of a network in applications such as transportation and
communication networks. For now, we restrict our attention to the special case of low
dilation trees.

Problem 1. Given a set of n points V embedded in a metric space M , compute a spanning
tree of V with minimum dilation.

Problem 1 is known across the theory community, as either the minimum dilation span-
ning tree problem [15, 26, 56], the tree spanner problem [47, 82, 87] or the minimum
maximum-stretch spanning tree problem [76, 121, 136]. The problem is NP-hard even if
M is an unweighted graph metric [47] or the Euclidean plane [56]. Problem 1 is closely
related to tree embeddings of general metrics [17], and has applications to communication
networks and distributed systems [136].

The approximability of Problem 1 is an open problem stated in several surveys and pa-
pers [56, 77, 136], and is a major obstacle towards constructing low dilation graphs with few
edges [15, 108]. The minimum spanning tree is an O(n)-approximation [77] for Problem 1,
but no better result is known. Only in the special case where M is an unweighted graph is
there an O(log n)-approximation [76].

Obstacle 2. Is there an O(n1−ε)-approximation algorithm for Problem 1, for any ε > 0?

If we no longer restrict ourselves to trees, we can shift our attention to spanners, which
are low dilation sparse graphs. An advantage of spanners over minimum dilation trees is

146

that spanners are not affected by Obstacle 2. Spanners obtain significantly better dilation
guarantees, at the cost of adding slightly more edges. The trade-off between sparsity and
dilation in spanners has been studied extensively [13, 60, 85, 119]. For an overview of the
rich history and multitude of applications of spanners, see the survey on graph spanners [7]
and the textbook on geometric spanners [134].

Spanner constructions focus on the initial design of the network. However, networks
tend to improve over time. In this chapter, we focus on the improvement step. Given a
graph and a budget k, which k edges do we add to the graph to minimise its dilation?

Problem 3. Given a positive integer k and a metric graph G, compute a set S of k edges
so that the dilation of the graph G′ = (V (G), E(G) ∪ S) is minimised. Note that S ⊆
V (G)× V (G).

Narasimham and Smid [134] stated Problem 3 as one of twelve major open prob-
lems in their reference textbook. Despite this, there were no breakthroughs for over a
decade. Gudmundsson and Wong [108] provided the first positive result for Problem 3,
an O(k)-approximation algorithm that runs in O(n3 log n) time. One downside is that their
approximation factor is linear in k. However, since Problem 1 is a special case of Problem 3,
Obstacle 2 applies to Problem 3 as well.

Obstacle 4. One cannot obtain an O(k1−ε)-approximation algorithm for Problem 3 for any
ε > 0, without first resolving Obstacle 2.

One way to circumvent Obstacle 4 is to consider a bicriteria approximation. An advan-
tage of bicriteria approximations is that we can show significantly better dilation guarantees,
at the cost of adding slightly more edges.

The goal of our bicriteria problem is to investigate the trade-off between sparsity and
dilation. We define the sparsity parameter f to be the number of edges added by our
algorithm divided by k. We define the dilation parameter g to be the dilation of our
algorithm (which adds fk edges) divided by the dilation of the optimal solution (which
adds k edges).

Problem 5. Given a positive integer k, a metric graph G, sparsity f ∈ R and dilation
g ∈ R, construct a set S of fk edges so that the dilation of the graph G′ = (V (G), E(G)∪S)
is at most gt∗, where t∗ is the minimum dilation in Problem 3. Note that S ⊆ V (G)×V (G).

We define an (f, g)-bicriteria approximation to be an algorithm for Problem 5 that
achieves sparsity f and dilation g.

6.1.1 Contributions

Our main result is a (2 r
√
2 k1/r, 2r)-bicriteria approximation for Problem 5 that runs in

O(n3 log n) time, for all r ≥ 1. In other words, if t∗ is the minimum dilation after adding
any k edges to a graph, then our algorithm adds O(k1+1/r) edges to the graph to obtain
a dilation of 2rt∗. Our dilation guarantees are significantly better than the previous best
result [108], at the cost of adding slightly more edges. For example, if r = log(2k) we obtain
a (4, 2 log(2k))-bicriteria approximation. See Table 6.1.

Our approach is to use the greedy spanner construction. The greedy spanner is among
the most extensively studied spanner constructions [13, 60, 85, 119]. Therefore, it is perhaps
unsurprising that greedy spanner can be used for Problem 5. Nonetheless, we believe that
our result shows the utility and versatility of the greedy spanner.

147

Our main technical contribution is our analysis of the greedy spanner. Our main insight
is to construct an auxilliary graph, which we call the girth graph, and to argue that the
approximation ratio is bounded by the length of the shortest cycle in the girth graph.
Moreover, our analysis of the greedy spanner is tight, up to constant factors. In particular,
assuming the Erdős girth conjecture, there is a graph class for which our algorithm is an
(Ω(k1/r), 2r + 1)-bicriteria approximation.

The restriction r ≥ 1 is necessary in our main result. We prove that it is NP-hard to
obtain a (poly(k), 2− ε)-bicriteria approximation, for any ε > 0. Finally, we use ideas from
our proof of NP-hardness to provide a (2k log n, 1)-bicriteria approximation.

Our results are summarised in Table 6.1. For a technical overview of our results, see
Section 6.2.

Sparsity (f) Dilation (g) Complexity Reference

1 k + 1 O(n3 log n) Gudmundsson and Wong [108]

2 + ε Oε(log(k)) O(n3 log n) r = Oε(log(k)) in Theorem 6

4 2 log(2k) O(n3 log n) r = log(2k) in Theorem 6

21+ε kε 2/ε O(n3 log n) r = 1/ε in Theorem 6

2
√
2
√
k 4 O(n3 log n) r = 2 in Theorem 6

4k 2 O(n3 log n) r = 1 in Theorem 6

Theorem 6 is tight under the Erdős girth conjecture Theorem 7

poly(k) 2− ε NP-hard Theorem 8

2k log n 1 O(n6) Theorem 9

Table 6.1: The trade-off between sparsity f and dilation g in bicriteria approximations for
Problem 5. Note that Oε(·) hides dependence on ε.

6.1.2 Related work

Most of the work on Problem 3 focuses on the special case where one edge is added. Farshi,
Giannopoulos and Gudmundsson [81] provide an O(n4) time algorithm as well as an O(n3)
time 3-approximation. Wulff-Nilsen [166] present an O(n3 log n) time algorithm. Luo and
Wulff-Nilsen [122] improves the space requirement to linear. Aronov et al. [14] provide a
nearly-linear time algorithm in the special case where the graph is a simple polygon and an
interior point.

A variant of Problem 3 is to add k edges to a graph to minimise the diameter instead of
the dilation. Frati, Gaspers, Gudmundsson and Mathieson [88] provide a fixed parameter
tractable 4-approximation for the problem. Several special cases have been studied. De-
maine and Zadimoghaddam [64] consider adding k edges of length δ, where δ is small relative
to the diameter. Große et al. [96] present nearly-linear time algorithms for adding one edge
to either a path or a tree in order to minimise its diameter. Follow up papers improve the
running time of the algorithm for paths [157] and for trees [23, 159]. Another variant is to
add k edges to a graph to minimise the radius. Gudmundsson, Sha and Yao [101] provide
a 3-approximation for adding k edges to a graph to minimise its radius. The problem of

148

adding one edge to minimise the radius of paths [115, 158] and trees [99] has also been
studied.

A problem closely related to Problem 1 is to compute minimum dilation graphs. In his
Master’s thesis, Mulzer [130] studies minimum dilation triangulations for the regular n-gon.
Eppstein and Wortman [78] provide a nearly-linear time algorithm to compute a minimum
dilation star. Giannopoulos, Knauer and Marx [92] prove that, given a set of points, it
is NP-hard to compute a minimum dilation tour or a minimum dilation path. Aronov et
al. [15] show that one can construct a graph with n− 1+k edges and dilation O(n/(k+1)).

Our algorithm for Problem 5 uses the greedy spanner, which is among the most ex-
tensively studied spanner constructions. In general metrics, Althöfer et al. [13] show that
the greedy (2k − 1)-spanner has O(n1+1/k) edges. In d-dimensional Euclidean space, Das,
Heffernan and Narasimhan [60] show that the greedy (1 + ε)-spanner has O(nε−2d) edges,
which Le and Solomon [119] improves to O(nε−d+1) edges. In both cases, the sparsity-
dilation trade-off is optimal [85, 119].

6.2 Technical overview

We divide our technical overview into six subsections. In Section 6.2.1, we summarise the
previous algorithm of Gudmundsson and Wong [108]. In Section 6.2.2, we give an overview
of our main result, that is, our (2 r

√
2 k1/r, 2r)-bicriteria approximation for all r ≥ 1. In

Section 6.2.3, we present the main ideas for proving our analysis is tight, assuming the
Erdős girth conjecture. In Section 6.2.4, we summarise our proof that it is NP-hard to
obtain a (poly(k), 2− ε)-bicriteria approximation, for any ε > 0. In Section 6.2.5, we present
a (2k log n, 1)-bicriteria approximation. In Section 6.2.6, we summarise the structure of the
remainder of the chapter.

6.2.1 Previous algorithm of [108]

Gudmundsson and Wong’s [108] algorithm constructs the greedy spanner, which is among
the most extensively studied spanner constructions. The only modification to the algorithm
is: the traditional greedy t-spanner takes as input a set of vertices, but the modified greedy
t-spanner takes as input a graph.

The greedy t-spanner construction has two steps. First, all edges that are not in the
initial graph are sorted by their length. Second, the edges are processed from shortest to
longest. A processed edge uv is added if dG(u, v) > dM (u, v), otherwise the edge uv is not
added.

For Problem 3, Gudmundsson and Wong’s [108] show, in their main lemma, that if the
greedy t-spanner adds at least k + 1 edges, then t ≤ (k + 1) t∗. Here, t∗ is the minimum
dilation if k edges are added to our graph. Using this lemma, they then perform a binary
search over a multiplicative (1+δ)-grid for a t ∈ R such that the greedy (1 + δ) t-spanner adds
at most k edges, but the greedy t-spanner adds at least k+1 edges. Then the greedy (1+δ) t-
spanner adds at most k edges and (1+ δ) t ≤ (1+ δ)(k+1) t∗, so (1+ δ) t is a (1+ δ)(k+1)-
approximation of t∗.

Next, we briefly summarise the proof that if k + 1 edges are added by the greedy algo-
rithm, then t ≤ (k + 1) t∗. In Lemma 2 of [108], the authors use the k + 1 greedy edges
to construct a set of k + 1 vectors in a k-dimensional vector space. They define I to be
a linearly dependent subset of the k + 1 vectors. In Theorem 5 of [108], the authors use

149

the linear dependence property of I to prove that t ≤ |I| · t∗. Since |I| ≤ k + 1, they
obtain t ≤ (k + 1) t∗. Unfortunately, the vector space approach of [108] fails extend to
sublinear dilation factors g in Problem 5, even if we allow polynomial sparsity values.

6.2.2 Greedy bicriteria approximation

Our algorithm is the same as the one in [108]. Our main difference is in the analysis of the
greedy t-spanner, in particular, in our main lemma.

For Problem 5, we show, in our main lemma, that if the greedy t-spanner adds at
least fk + 1 edges, then t ≤ gt∗. Then, we apply the same binary search procedure to find
a t ∈ R where the greedy (1+ δ) t-spanner adds at most fk edges, but the greedy t-spanner
adds at least fk + 1 edges. Then (1 + δ) t is an (f, (1 + δ)g)-bicriteria approximation of t∗.

In Table 6.1, we omit the factor of (1 + δ) from the second column for three reasons
— first, for clarity and ease of comparison, second, to have the dilation factor reflect their
respective main lemmas instead of the less interesting multiplicative (1+ δ)-grid, and third,
because δ has no impact on the sparsity parameter, and has minimal impact on the running
time (see Theorem 6). We make similar omissions in Section 6.1.1 and the abstract.

Next, we briefly summarise our new proof that if fk + 1 edges are added, then t ≤ gt∗.
In order to extend our analysis to sublinear dilation factors g, we abandon the vector space
approach of [108]. Our main idea is to construct an auxiliary graph, which we call the girth
graph. The girth graph is an unweighted graph with 2k vertices and fk + 1 edges. Instead
of defining I to be a linearly dependent subset, we define I to be the shortest cycle in the
girth graph. We use a classical result in graph theory to choose the values f = 2 r

√
2 k1/r

and g = 2r, so that |I| ≤ g. Our final step is to carefully prove t ≤ |I| · t∗, using the cycle
property of I. Therefore, t ≤ gt∗.

Putting this all together, we obtain Theorem 6. For a full proof, see Section 6.3.

Theorem 6. For all r ≥ 1, there is an (f, (1+ δ)g)-bicriteria approximation for Problem 5
that runs in O(n3(log n+ log 1

δ)) time, where

f = 2
r
√
2 k1/r and g = 2r.

6.2.3 Greedy analysis is tight

Our analysis in Theorem 6 is tight. This means one cannot obtain better bounds (up to con-
stant factors) using the greedy spanner. Our proof assumes the Erdős girth conjecture [79].

The girth of an unweighted graph is defined as the number of edges in its shortest cycle.
In the proof of Theorem 6, we cite a classical result stating that a graph with n vertices and
at least n1+1/r edges has girth at most 2r. The Erdős girth conjecture states that there are
graphs with n vertices, at least Ω(n1+1/r) edges and girth 2r+ 2. Several conditional lower
bounds have been shown under the Erdős girth conjecture, namely, the sparsity-dilation
trade-off of the greedy spanner [13], and the space requirement of approximate distance
oracles [154].

We summarise our construction that proves that our analysis is tight. Assuming the
Erdős girth conjecture, there exists a graph H with n = k+1 vertices, m = Ω(n1+1/r) edges,
and girth 2r+2. We construct a graph G so that if we run the algorithm in Theorem 6, the
girth graph of G would be H. We use the properties of H to show that, if there are k edges
that can be added to G so that the resulting dilation is t∗, then if we add m− 1 edges to G
using the greedy t-spanner construction, the resulting dilation is at least (2r + 1) t∗.

150

Putting this all together, we obtain Theorem 7. For a full proof, see Section 6.4.

Theorem 7. For all r ≥ 1, assuming the Erdős girth conjecture, there is a graph class for
which the algorithm in Theorem 6 returns an (f, g)-bicriteria approximation, where

f = Ω(k1/r) and g = 2r + 1.

6.2.4 Set cover reduction

Next, we show that the restriction r ≥ 1 is necessary in Theorem 6. Recall that Theorem 6
states that there is a (2 r

√
2 k1/r, (1 + δ) 2r)-bicriteria approximation algorithm for all r ≥ 1.

We prove that it is NP-hard to obtain a (poly(k), 2−ε)-bicriteria approximation for any ε >
0. Our proof is a reduction from set cover.

We summarise our construction of the Problem 5 instance. We show that every set cover
instance can be reduced to a Problem 5 instance. We represent an element with a pair of
points, and we represent a set with a triple of points. In our Problem 5 instance, we add
edges to connect either the pairs or the triples. We show via an exchange argument that it
is always better to connect the triples. Connecting a triple corresponds to choosing a set,
which lowers the dilation of all elements in that set to below the threshold value. Finally,
we show that a (poly(k), 2− ε)-bicriteria approximation for our Problem 5 would solve set
cover within an approximation factor of poly(k). However, it is NP-hard to approximate
set cover to within a factor of (1 − α) log n, where α > 0 is a constant and n is the size
of the set cover instance [66]. Moreover, k is a constant in the NP-hard instance of [66],
so poly(k)≪ (1− α) log n.

Putting this all together, we obtain Theorem 8. For a full proof, see Section 6.5.

Theorem 8. For all ε > 0, it is NP-hard to obtain an (f, g)-bicriteria approximation for
Problem 5, where

f = poly(k) and g = 2− ε.

6.2.5 Set cover algorithm

Finally, we provide a (2k log n, 1)-bicriteria approximation that runs in O(n6) time. Our
main idea is to formulate the problem into a set cover instance, and then to apply anO(log n)-
approximation algorithm for set cover [57].

We state our algorithm. Let t ∈ R. Define Ge to be the graph if an edge e is added
to G. Define Se = {(u, v) : dGe

(u, v) ≤ t · dM (u, v)}. Apply the algorithm of [57] on {Se :
e ∈ V (G) × V (G)} to obtain a set cover S. We claim that if |S| > 2k2 log n, then t ≤ t∗.
Finally, we perform binary search in the same way as [108] to obtain a (2k log n, 1)-bicriteria
approximation.

To prove correctness, it remains to show our claim. We show the contrapositive. If
t > t∗, from the definition of t∗ there exists k edges that can be added to G to make it
a t-spanner. Consider a clique with vertices that are the endpoints of the k edges. Adding
these 2k2 edges to the graph would also make it a t-spanner. Moreover, each t-path, that is,
a (u, v)-path with length at most t ·dM (u, v), uses at most one edge in the clique. Therefore,
the union of the sets Se, where e is an edge in the clique, forms a set cover over all pairs
of vertices (u, v). The optimal solution of the set cover instance is at most 2k2, so the
algorithm of [57] returns a set S such that |S| ≤ 2k2 log n.

Putting this all together, we obtain Theorem 9.

151

Theorem 9. There is an (f, g)-bicriteria approximation for Problem 5, where

f = 2k log n and g = 1.

This completes the overview of the main results of this chapter.

6.2.6 Structure of chapter

The structure of the remainder of our chapter is summarised in Table 6.2.

Reference Proof

(2 r
√
2 k1/r, (1 + δ) 2r)-bicriteria approximation Theorem 6 Section 6.3

Theorem 6 analysis is tight Theorem 7 Section 6.4

(poly(k), 2− ε)-bicriteria approximation is NP-hard Theorem 8 Section 6.5

Table 6.2: Proofs of Theorems 6, 7, 8 can be found in Sections 6.3, 6.4, 6.5 respectively.

6.3 Greedy bicriteria approximation

In this section, we will prove Theorem 6. We restate the theorem for convenience.

Theorem 6. For all r ≥ 1, there is an (f, (1+ δ)g)-bicriteria approximation for Problem 5
that runs in O(n3(log n+ log 1

δ)) time, where

f = 2
r
√
2 k1/r and g = 2r.

Recall from Section 6.1 that the vertices and edges of G are V (G) and E(G) respectively.
Let e ∈ V (G) × V (G) be an edge not necessarily in E(G). Let dM (e) denote the length of
the edge e in the metric space M and let dG(e) denote the shortest path distance between
the endpoints of e in the graph G. Consider a minimum dilation graph G∗ after adding an
optimal set S∗ of k edges to G. Let t∗ be the dilation of G∗.

Recall from Section 6.2 that our approach is to use the greedy t-spanner construction.
We formalise the construction in the definition below.

Definition 10. Define G0 = G, and for i ≥ 1, define Gi = Gi−1 ∪ {ai}, where ai is the
shortest edge in V (G) × V (G) satisfying dGi−1

(ai) > t · dM (ai). The process halts if no
edge ai exists.

We have two cases: either the process halts after adding at most fk edges, or after adding
more than fk edges. If more than fk edges are added, we show a dilation bound on t. In
particular, Lemma 15 states that if there is an edge ai satisfying dGi−1

(ai) > t · dM (ai)
for all 1 ≤ i ≤ fk + 1, then we have the dilation bound t ≤ gt∗. We will specify the
parameters f, g ≥ 1 at a later point in this section.

Our approach is to construct an auxilliary graph H, which we will also refer to as the
girth graph. Define the vertices of H to be V (H) = {v1, . . . , v2k}. Each vertex in V (H)
corresponds to an endpoint of an edge in the optimal set of k edges S∗. In particular, let
S∗ = {s1, . . . , sk}, and let v2i−1, v2i ∈ V (H) correspond to the endpoints of si. Define the

152

edges of H to be E(H) = {e1, . . . , efk+1}. We will describe the procedure for constructing
each edge ei.

Consider the greedy edge ai, see Figure 6.1. Define δG∗(ai) to be the shortest path
between the endpoints of ai in G∗, shown in grey in Figure 6.1. Note that δG∗(ai) denotes
a path, whereas dG∗(ai) denotes a length. Suppose that there are no edges in S∗ along the
path δG∗(ai), for some 1 ≤ i ≤ fk + 1. Then,

t∗ · dM (ai) ≥ dG∗(ai) = dG(ai) ≥ dGi
(ai) > t · dM (ai),

so t < t∗ ≤ gt∗, which would already imply Lemma 15.

vj

v`
ei

H
ai

δG∗(ai)
vj v`

G

Figure 6.1: Left: The graph G (black), the greedy edge ai (blue), the path δG∗(ai) (grey),
and the edges δG∗(ai) ∩ S∗ (red). Right: The girth graph H and the edge ei (orange).

Therefore, we can assume that δG∗(ai) contains at least one edge in S∗, for every i =
1, . . . , fk + 1. Consider the edges δG∗(ai) ∩ S∗, shown in red in Figure 6.1. Choose a
direction for the path δG∗(ai), sort the list of endpoints of δG∗(ai)∩ S∗ with respect to this
direction, and let the first and last endpoints in the sorted list be vj and vℓ. Another way to
characterise vj (respectively vℓ) is that vj is an endpoint of an edge in δG∗(ai)∩S∗ so that the
shortest path between vj and one of the endpoints of ai contains no edges in S∗ (respectively
the other endpoint of ai). Finally, we define ei to be the edge in H connecting vj to vℓ. Note
that ei is an undirected, unweighted edge, shown in orange in Figure 6.1. This completes
the construction of H.

In Figure 6.2, we provide a more complete example of a graph G and its girth graph H.
The optimal set of k = 4 edges is S∗ = {s1, s2, s3, s4}, which is shown in red. The five greedy
edges {a1, a2, a3, a4, a5} are shown in blue. The first and last endpoints of δG∗(a1)∩S∗ are v1
and v3, so e1 = v1v3. Similarly, e2 = v3v5, e3 = v5v7, e4 = v1v7 and e5 = v5v6.

Next, define J to be the shortest cycle in H, and define I = {j : ej ∈ J}. Recall that
the girth of a graph is the length of its shortest cycle. Therefore, the girth of H is |J | = |I|.

We use a classical result in graph theory to set the parameters f and g.

Lemma 11. A graph with n vertices and at least n1+1/r edges has girth at most 2r.

Proof. The lemma is a classical result [24]. The survey on graph spanners by Ahmed et al.
provides a self-contained proof, see Proposition 2.3 in [7].

With Lemma 11 in mind, we set f = 2 r
√
2 k1/r and g = 2r, where r ≥ 1. Then, the

graph H has 2k vertices, (2k)1+1/r + 1 edges, and therefore H has girth |I| ≤ g = 2r.
Having defined the girth graph H, the indices I, and the parameters f and g, the next

step is to prove Lemmas 12, 13 and 14. The three lemmas will be combined to prove our

153

v4
v6

G

a2a4

a1

a3

s2s1

s4 s3

v3

v5v7

v1

v8
v2

a5

v1 v2

v3

v4

v5v6

v8

v7

e1

e2
e3

e4

e5

H

Figure 6.2: Left: The graph G (black), the optimal edges s1, . . . , s4 (red), and the greedy
edges a1, . . . , a5 (blue). Right: The girth graph H has edges e1, . . . , e5 (orange) and a girth
of 4.

main lemma, Lemma 15, which states that t ≤ gt∗. We start with Lemma 12, in which we
construct a path.

Lemma 12. Let i = max I. There is a path in H between the endpoints of ai using only
edges in

{G ∩ δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}.

Proof. Recall that J = {ej : j ∈ I} is a cycle in H. After removing the edge ei, there
is still a path in J ⊆ H between the endpoints of ei. Let the vertices along this path
be w1, . . . , wm, where ei = w1wm, and wℓwℓ+1 ∈ J for all ℓ = 1, . . . , k − 1. In Figure 6.3,
the path w1, . . . , wm is shown in orange. Let the endpoints of ai be ai(0) and ai(1). Our
approach is to use the path w1, . . . , wm ⊂ H to construct a path between ai(0) and ai(1)
that only uses edges in {G ∩ δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}.

G H

Jei

wm

w1

w1

wm

ai(0)

ai(1)

ai δG∗(ai)

Figure 6.3: Left: The graph G (black), the greedy edge ai (blue), the path δG∗(ai) (grey),
and the edges δG∗(ai) ∩ S∗ (red). Right: The girth graph H, the cycle J (orange), and
edge ei (dashed).

First, we consider the edge ei = w1wm. Recall from the definition of V (H) that w1

and wm are endpoints of edges in the optimal set S∗. Moreover, from the definition of

154

ei ∈ E(H), we know that w1 and wm are the first and last endpoints of S∗ along the
path δG∗(ai). The path δG∗(ai) is shown in grey in Figure 6.3. The endpoints of δG∗(ai)
are ai(0) and ai(1). Therefore, the subpath of δG∗(ai) between ai(0) and w1 only uses edges
in G and no edges in S∗ = G∗ \G. Therefore, the subpath only uses edges in G ∩ δG∗(ai).
The subpath from ai(0) to w1 is shown in black in Figure 6.3. Similarly, there is a path
between wm and ai(1) using only edges in G ∩ δG∗(ai).

Next, we consider the edge ej = wℓwℓ+1, where 1 ≤ ℓ ≤ k − 1, j ∈ I and j < i. Let the
endpoints of aj be aj(0) and aj(1). From the definition of ej = wℓwℓ+1, there is a subpath
of δG∗(aj) between wℓ and aj(0) that only uses edges in G ∩ δG∗(aj). Similarly, there is
subpath of δG∗(aj) between aj(1) and wℓ+1 that only uses edges in G∩ δG∗(aj). Therefore,
there is a path between wℓ and wℓ+1 that uses only edges in {G ∩ δG∗(aj)} ∪ aj .

See Figure 6.4 for an example. Consider the edge e1 = w1w2. There is a path between w1

and w2 that only uses edges in {G∩ δG∗(aj)}, which are black edges, and the blue edge a1.
Similarly arguments apply for e2 = w2w3 and e3 = w3w4.

G

a2

a1

a3

w1 w2

w4 w3

a4(0)

a4(1)

e1

e2
e3

H w1

w2

w3

w4

Figure 6.4: The path w1, w2, w3, w4 is shown on the right. There is a path between a4(0)
and a4(1) only using the blue edges a1, a2, a3 and black edges in δG∗(a1), δG∗(a2), δG∗(a3)
or δG∗(a4).

The final step is to put it all together. There is a path between ai(0) and w1 that only
uses edges in G∩δG∗(ai). For ℓ = 1, . . . , k−1, there is a path between wℓ and wℓ+1 that only
uses edges in {G ∩ δG∗(aj)} ∪ aj , where j ∈ I \ {i}. There is a path between wm and ai(1)
that only uses edges in G∩ δG∗(ai). Therefore, there is a path between ai(0) and ai(1) that
only uses edges in {G ∩ δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}, as required.

In Lemma 13, we show a lower bound on the length of the path in Lemma 12.

Lemma 13. The length of the path in Lemma 12 is at least t · dM (ai).

Proof. From Definition 10, we have dGi−1
(ai) > t · dM (ai). Therefore, any path in Gi−1

between the endpoints of ai has length at least t · dM (ai). It suffices to show that the path
is in Gi−1. By Lemma 12, all of the edges in the path are in {G ∩ δG∗(aj) : j ∈ I} or
{aj : j ∈ I \ {i}}. But {G ∩ δG∗(aj) : j ∈ I} ⊆ G ⊆ Gi−1 and {aj : j ∈ I \ {i}} ⊆ Gi−1. So
the path is in Gi−1 and its length is at least t · dM (ai).

In Lemma 14, we upper bound the length of the path in Lemma 12.

Lemma 14. The length of the path in Lemma 12 is at most |I| · t∗ · dM (ai).

155

Proof. Given a set of edges E, let total(E) denote the total sum of edge lengths in E. Recall
that the path in Lemma 12 only uses edges in {G ∩ δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}. A
näıve approach to prove the lemma is to bound total({δG∗(aj) : j ∈ I} ∪ {aj : j ∈ I \ {i}}).
Note that G is removed from the first set of braces. We have

total({δG∗(aj) : j ∈ I}) ≤
∑

j∈I t
∗ · dM (aj) ≤ |I| · t∗ · dM (ai),

total({aj : j ∈ I \ {i}}) =
∑

j∈I\{i} dM (aj) ≤ (|I| − 1) · dM (ai).

Therefore, the total length of the path is at most (|I|·t∗+|I|−1)·dM (ai) < |I|·(t∗+1)·dM (ai).
Since (t∗ + 1) ≤ 2t∗, we have proven Lemma 14 up to a factor of 2. This analysis would
already yield an (f, 2g)-bicriteira approximation. However, to shave off the factor of 2 and
obtain a tight analysis, we need a more sophisticated argument.

We strengthen our upper bound by re-introducing G back into the first set of braces, in
other words, by bounding total({G ∩ δG∗(aj)}). Since G = G∗ \ S∗, we write

total({G ∩ δG∗(aj)}) = total({δG∗(aj)})− total({S∗ ∩ δG∗(aj)}).

We have two cases, depending on the size of total({S∗ ∩ δG∗(aj)}).
Case 1. total({S∗ ∩ δG∗(aj)}) ≥ (1− 1

|I|) · dM (aj) for all j ∈ I. Then,

t · dM (ai) ≤ total({G ∩ δG∗(aj) : j ∈ I}) + total({aj : j ∈ I \ {i}})
= total({δG∗(aj) : j ∈ I})− total({S∗ ∩ δG∗(aj) : j ∈ I}) +

∑
j∈I\{i} dM (aj)

≤
∑

j∈I t
∗ · dM (aj)−

∑
j∈I(1−

1
|I|) · dM (aj) +

∑
j∈I\{i} dM (aj)

=
∑

j∈I t
∗ · dM (aj)− (1− 1

|I|) · dM (ai) +
∑

j∈I\{i}
1
|I| · dM (aj)

≤ |I| · t∗ · dM (ai)− (1− 1
|I|) · dM (ai) + (|I|−1

|I|) · dM (ai)

= |I| · t∗ · dM (ai),

where the first line uses Lemma 12 and 13, the second line uses G = G∗ \ S∗, the third
line uses the assumption from the case distinction, and the final three lines simplify the
expression. Therefore, t ≤ L ≤ |I| · t∗ = gt∗, where L is the length of the path in Lemma 12.

Case 2. total({S∗ ∩ δG∗(aj)}) < (1 − 1
|I|) · dM (aj) for some j ∈ I. Then for every s ∈

{S∗ ∩ δG∗(aj)}, it holds that dM (s) < dM (ai). Therefore, dGj−1(s) ≤ t · dM (s), since aj is
the shortest edge in Gj−1 satisfying dGj−1

(aj) > t ·dM (aj). Let the endpoints of aj be aj(0)
and aj(1). Let the edges of δG∗(aj))∩S∗ be s1, . . . , sm, and let the endpoints of si be w2i−1

and w2i. Assume without loss of generality that the endpoints w1, . . . , w2m are in sorted

156

order along the path δG∗(aj). Then,

dGj−1
(aj) ≤ dGj−1

(aj(0), w1) +
∑m

i=1 dGj−1
(w2i−1, w2i) +

∑m−1
i=1 dGj−1

(w2i, w2i+1)

+dGj−1
(w2m, aj(1))

= dGj−1(aj(0), w1) +
∑m

i=1 dGj−1(si) +
∑m−1

i=1 dGj−1(w2i, w2i+1)

+dGj−1
(w2m, aj(1))

≤ dGj−1
(aj(0), w1) +

∑m−1
i=1 dGj−1

(w2i, w2i+1) + dGj−1
(w2m, aj(1))

+
∑m

i=1 t · dM (si)

≤ dG(aj(0), w1) +
∑m−1

i=1 dG(w2i, w2i+1) + dG(w2m, aj(1))

+
∑m

i=1 t · dM (si)

= dG∗(aj(0), w1) +
∑m−1

i=1 dG∗(w2i, w2i+1) + dG∗(w2m, aj(1))

+
∑m

i=1 t · dM (si)

= dG∗(aj) +
∑m

i=1 t · dM (si),

where the first line uses the triangle inequality, the second line uses si = w2i−1w2i, the third
line uses dGj−1

(s) ≤ t · dM (s), the fourth line uses G ⊂ Gi−1, the fifth line uses that all the
subpaths no longer use edges in S∗, and the sixth line uses that all edges are a subset of the
edges in δ∗G(aj). Therefore,

t · dM (aj) < dGj−1(aj) ≤ dG∗(aj) +
∑m

i=1 t · dM (si)

= t∗ · dM (aj) + t · total({S∗ ∩ δG∗(aj)})
= t∗ · dM (aj) + t · (1− 1

|I|) · dM (aj).

Simplifying, we get t < t∗ + t− t
|I| , which implies t < |I| · t∗ = gt∗.

Lemma 15 summarises the previous three lemmas.

Lemma 15. If aj exists for all j = 1, . . . , fk + 1, then t ≤ gt∗.

Finally, we use Lemma 15 to prove Theorem 6. The idea is to combine the sparsity
bound in the case where the greedy construction halts after adding at most fk edges, with
the dilation bound t ≤ gt∗ in the case where the greedy construction halts after adding at
least fk + 1 edges.

Theorem 6. For all r ≥ 1, there is an (f, (1+ δ)g)-bicriteria approximation for Problem 5
that runs in O(n3(log n+ log 1

δ)) time, where

f = 2
r
√
2 k1/r and g = 2r.

Proof. First, we describe the decision algorithm. Given any t ∈ R, the decision algorithm
is to construct the greedy t-spanner as described in Definition 10. If at most fk edges are
added, then we continue searching over dilation values that are less than t. If at least fk+1
edges are added, then we continue searching over dilation values that are greater than t.

Second, we perform a binary search to obtain an (f, (1+δ)g)-bicriteria approximation for
Problem 5. Given a set of vertices, Gudmundsson and Wong [108] show how to (implicitly)
binary search a set of O(n4) critical values, so that the dilation of any graph with those

157

vertices will be within a factor of O(n) of one of the critical values. We refine the search to
a multiplicative (1 + δ)-grid. As a result, we obtain a t ∈ R where a greedy t-spanner adds
at least fk + 1 edges, but a greedy (1 + δ)t-spanner adds at most fk edges. By Lemma 15,
we have t ≤ gt∗, so (1+δ)t ≤ (1+δ)gt∗. The greedy (1+δ)t-spanner adds at most fk edges
to the graph and its dilation is at most (1 + δ)gt∗, so we have an (f, (1 + δ)g)-bicriteria-
approximation.

Third, we analyse the running time. The running time of the decision algorithm isO(n3) [108].
We perform the binary search by first calling the decider O(log n) times on the critical values,
and an additional O(log 1

δ) times on the multiplicative (1 + δ)-grid.

6.4 Greedy analysis is tight

In this section, we will prove Theorem 7. We restate the theorem for convenience.

Theorem 7. For all r ≥ 1, assuming the Erdős girth conjecture, there is a graph class for
which the algorithm in Theorem 6 returns an (f, g)-bicriteria approximation, where

f = Ω(k1/r) and g = 2r + 1.

Recall that the Erdős girth conjecture [79] states that, for all positive integers n and r,
there exists a graph H with n vertices, m = Ω(n1+1/r) edges, and girth 2r + 2. Recall
that the girth of a graph is the length of its shortest cycle. Note that Theorem 7 does not
contradict Theorem 6, as the constant in Ω(k1/r) is less than 2 r

√
2. One would need to

resolve the Erdős girth conjecture to determine the precise constant.
We summarise our approach. We construct a graph G so that its girth graph is H.

Using the properties of the girth graph, we show that the greedy spanner gives an (f, g)-
bicriteria approximation where f = Ω(k1/r) and g = (1 + δ)(2r+ 1). Our result shows that
constructing the girth graph is essentially the “correct” way to analyse the greedy spanner,
up to constant factors, since lower bounds on the girth of H directly translates to lower
bounds on the dilation factor of the greedy algorithm for Problem 5.

We divide our proof of Theorem 7 into six parts. First, we define the underlying metric
space M . Second, we define the graph G. Third, we define our Problem 5 instance. Fourth,
we upper bound t∗ in our Problem 5 instance. Fifth, we show that if t ≤ gt∗ in our Problem 5
instance, then the greedy t-spanner adds at least fk + 1 edges to G. Sixth, we analyse the
algorithm in Theorem 6.

Part 1. We define the underlying metric space M . Assume that the vertices of the
girth graph H are V (H) = {w1, . . . , wn} and its edges are E(H) = {e1, . . . , em}, where m =
Ω(n1+1/r). The vertices of M are V (M) = {ui,j : 1 ≤ i ≤ n, 0 ≤ j ≤ m}. For an example
of the vertices ui,j where 1 ≤ i ≤ 4, and 0 ≤ j ≤ 5, see Figure 6.5.

The metric is a graph metric, where distances are shortest path distances in the graphM =
(V (M), E(M)). It remains to construct the edges E(M). We divide the edges E(M) into
three subsets: M1, M2 and M3. Choose ε = 1/4rn. Refer to Figure 6.5.

• (Black) Define M1 = {ui,0ui,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Each edge in M1 has length
1.

• (Red) Define M2 = {ui,0ui+1,0 : 1 ≤ i ≤ n− 1}. Each edge in M2 has length 2ε.

• (Blue) Define M3 = {ua,jub,j : ej = (wa, wb), 1 ≤ j ≤ m}. Each edge in M3 has
length ε.

158

w1

w2

w3

w4

H

e1

e2
e3

e4

M

u1,3

u1,4

u2,0

u2,1

u2,4

u3,0 u3,2

u3,1

u3,4

u4,2

u4,1

u1,0

u4,0

u1,2

u4,3 u2,3

1

u1,1

u4,4

u3,3

u2,2

ε

ε

ε

ε

2ε 2ε

2ε

1

1

1

Figure 6.5: The girth graph H (orange), the vertices ui,j ∈ V (M) (black), the edges M1

with length 1 (grey), the edges M2 with length 2ε (red), and the edges M3 with length ε
(blue).

This completes the definition of the metric M .
Part 2. We define the graph G. Let V (G) = V (M), and set E(G) = M1. In Figure 6.5,

the graph G only uses the black edges.
Part 3. We define our Problem 5 instance. Let M be the metric in part 1, G be the

graph in part 2, k = n − 1 and f = (m − 1)/(n − 1). We will prove that the dilation
parameter is at least g = 2r + 1.

Part 4. We upper bound t∗ in our Problem 5 instance. Define S∗ = M2 and define G∗ =
G ∪ S∗. Since |M2| = n− 1, the dilation of G∗ is at least t∗, so dG∗(ui,0, uj,0) = 2ε · |i− j|.
If (i, a) ̸= (j, b), then dG∗(ui,a, uj,b) = 2ε · |i − j| + 2. Thus, the diameter of G∗ is at
most 2εn+2. The metric distance between any pair of points in G∗ is at least ε. Therefore,
the dilation of G′ is at most (2nε+ 2)/ε, so t∗ ≤ 2n+ 2/ε.

Part 5. We show that if t ≤ gt∗ in our Problem 5 instance, then the greedy t-spanner
adds at least fk+1 edges to G. We prove by induction that the first fk+1 edges added by
the greedy t-spanner are all edges from M3. The base case of i = 0 is trivially true. Assume
the inductive hypothesis that the first i edges are from M3, where 0 ≤ i ≤ fk. Consider
the graph Gi, and an edge e ∈ M3 not currently in Gi. Then dM (e) = ε. Let e = ua,jub,j ,
where a ̸= b. Next, we compute dGi

(e) by considering the shortest path between ua,j

and ub,j in Gi. If there is no shortest path, then dGi(e) = ∞, and by Definition 10, the
greedy t-spanner would add either e or another edge with length ε to Gi to obtain Gi+1.
Otherwise, the shortest path must use edges in M3, since the edges in M1 alone cannot
connect ua,j to ub,j , since a ̸= b. Let the edges of M3 along the shortest path from ua,j

to ub,j , in order, be {(ua1,j1 , ub1,j1), . . . , (uad,jd , ubd,jd)} for some 1 ≤ d ≤ m−1. Note for all
1 ≤ c ≤ d, each of the vertices uac,jc , ubc,jc ∈ V (G) are distinct, since no edges in M3 share
an endpoint. Consider the path from ua,j to ua1,j1 . All edges along this path are in M1,

159

and there are at least two edges, since j ̸= 0 and j1 ̸= 0. Therefore, dGi(ua,j , ua1,j1) ≥ 2,
and a = a1. Applying the same argument between ubd,jd and ub,j , we get dGi(ubd,jd , ub,j) ≥
2. Applying the same argument between ubc,jc and uac+1,jc+1

for all 1 ≤ c ≤ d − 1, we
get dGi

(ubc,jc , uac+1,jc+1
) ≥ 2. Summing this all together, the length of the shortest path

from ua,j to ub,j is at least 2(d + 1) + 2dε. Next, we show d ≥ 2r + 1. Since there
is an edge ua,jub,j in M3, there is an edge between wa and wb in H. Since there is an
edge uac,jcubc,jc in M3, there is an edge between wac and wbc in H. But there is a path
from ua,j to ua1,j1 using edges only in M1, so a = a1. Similarly, b1 = a2,. . . , bd−1 = ad,
bd = b. So there is a cycle wa1

, wa2
, . . . , wad

, wbd of length d + 1 in the graph H. But the
girth of H is 2r + 2, so d ≥ 2r + 1, as claimed. The length of the shortest path from ua,j

to ub,j is at least 2(d+ 1) + 2dε, which is at least 2(2r + 2) + 2(2r + 1)ε. But now,

dGi
(ua,j , ub,j) ≥ 2(2r + 2) + 2(2r + 1)ε

≥ (2r + 1) · ε · (2/ε+ 1
2r+1 · (2/ε) + 2)

> g · dM (ua,j , ub,j) · (2/ε+ 2n)

= gt∗ · dM (ua,j , ub,j)

≥ t · dM (ua,j , ub,j).

Therefore, dGi
(ua,j , ub,j) > t · dM (ua,j , ub,j), so by Definition 10, the greedy t-spanner

would add either ua,jub,j or another edge in M3 to Gi to obtain Gi+1. This completes the
induction, so the first fk + 1 edges added by the greedy t-spanner are all edges from M3.
As a consequence, t ≤ gt∗ implies that the greedy t-spanner adds at least fk+1 edges to G,
completing the proof.

Part 6. We analyse the algorithm in Theorem 6. If at most fk edges are added, then we
continue searching for dilation values less than t, whereas if at least fk+1 edges are added,
then we continue searching for dilation values greater than t. Therefore, for all t ≤ gt∗, the
algorithm in Theorem 6 would continue searching for values greater than t. The dilation
value returned by the algorithm is at least gt∗. So Theorem 6 returns an (f, (1 + δ)g)-
bicriteria approximation, where f = m− 1/n− 1 = Ω(k1/r), and g = 2r + 1, as required.

Finally, putting all six parts together, we obtain Theorem 7.

6.5 Set cover reduction

In this section, we will prove Theorem 8. We restate the theorem for convenience.

Theorem 8. For all ε > 0, it is NP-hard to obtain an (f, g)-bicriteria approximation for
Problem 5, where

f = poly(k) and g = 2− ε.

We reduce from set cover. Our set cover instance consists ofm elements E = {e1, . . . , em}
and L sets S = {S1, . . . , SL}, where Sℓ ⊆ E for all 1 ≤ ℓ ≤ L. Dinur and Steurer [66] state
that, for every constant α > 0, there exists a constant k for which it is NP-hard to decide
whether (i) there exists a cover consisting of k sets, or (ii) any cover consists of more
than k(1 − α) log n sets. Here, n denotes the complexity of the set cover input. Note

that n = O(mL) since
∑L

ℓ=1 |Sℓ| ≤ mL.
We summarise our approach. We show that every set cover instance can be reduced to a

Problem 5 instance. If there is an (f, g)-bicriteria approximation for Problem 5 that can be

160

computed in polynomial time, where f = (1−α) log n and g = 2−ε, then one would be able
to approximate set cover to within a factor of (1−α) log n in polynomial time, contradicting
the result of [66].

We divide our proof of Theorem 8 into six parts. First, we define the underlying metric
space M . Second, we define the graph G. Third, we define our Problem 5 instance. Fourth,
we upper bound the dilation, assuming the set cover instance is a YES-instance. Fifth, we
lower bound the dilation, assuming the set cover instance is a NO-instance. Sixth, we show
that it is NP-hard to obtain an (f, g)-bicriteria approximation.

Part 1. We define the underlying metric space M . For each element ei where 1 ≤ i ≤ m,
construct 2k+2 vertices Ui = {ui,1, u

′
i,1, . . . , ui,k+1, u

′
i,k+1}. For each set Sℓ where 1 ≤ ℓ ≤ L,

construct three vertices Vℓ = {vℓ, v′ℓ, wℓ}. For an example of the vertices ui,j , u
′
i,j , vℓ, v

′
ℓ, wℓ

where 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, and 1 ≤ ℓ ≤ 2, see Figure 6.6. Define the vertices V (M) =
U1 ∪ . . . Um ∪ V1 ∪ . . . VL.

w1

w2

v1

v′1

v2

v′2

u1,1

u′
1,1

u′
1,2

u′
2,1

u2,2

u′
2,2

u′
3,1

u3,2

u′
3,2

u1,2

u2,1

u3,1

1

1

1

1

1

1

1

1

2/ε

2/ε

2/ε

2/ε

2/ε

2/ε

2/ε

2/ε

2/ε

Figure 6.6: The graph metric M for a set cover instance where k = 1, S1 = {e1} and S2 =
{e2, e3}. The edges M1 ∪M2 are shown in grey, and have length 1. The edges M3 ∪M4

are shown in pink, and have length 2/ε. The edges M5 ∪M6 are shown in orange, and have
length 2/ε.

The metric distances between any pair of vertices in V (M) is the shortest path between
them in the weighted graph M = (V (M), E(M)). We divide the edges E(M) into six
subsets: M1, . . . ,M6. Refer to Figure 6.6.

• (Grey) Define M1 = {ui,ju
′
i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ k + 1}. Each edge in M1 has

length 1.

• (Grey) Define M2 = {vℓv′ℓ : 1 ≤ ℓ ≤ L}. Each edge in M2 has length 1.

• (Pink) Define M3 = {ui,jvℓ : ei ∈ Sℓ, 1 ≤ j ≤ k+1}. Each edge in M3 has length 2/ε.

161

• (Pink) Define M4 = {u′
i,jv

′
ℓ : ei ∈ Sℓ, 1 ≤ j ≤ k+1}. Each edge in M4 has length 2/ε.

• (Orange) Define M5 = {vℓwℓ : 1 ≤ ℓ ≤ L}. Each edge in M5 has length 2/ε.

• (Orange) Define M6 = {v′ℓwℓ : 1 ≤ ℓ ≤ L}. Each edge in M6 has length 2/ε.

This completes the definition of the metric M .
Part 2. We define the graph G. Define the vertices of G to be V (G) = V (M). Define

the edges of G to be E(G) = M3 ∪M4 ∪M5 ∪M6. This completes the definition of G. In
Figure 6.6, the graph G uses only the pink and orange edges.

Part 3. We define our Problem 5 instance. The metric space M , graph G, and param-
eter k are defined as above. We will show that if the set cover instance is a YES-instance,
then there are k edges that one can add to the graph so the resulting dilation is t∗ ≤ 4/ε+1.
We will show that if the set cover instance is a NO-instance, then there are no fk edges that
one can add to the graph so that the resulting dilation is at most gt∗, where f = (1−α) log n
and g = 2− ε. This completes the definition of the Problem 5 instance.

Part 4. We show t∗ ≤ 4/ε+1, assuming the set cover instance is a YES-instance. In par-
ticular, there exists k sets {Sℓ1 , . . . , Sℓk} in S that covers E. Define S∗ = {vℓ1v′ℓ1 , . . . , vℓkv

′
ℓk
},

and define G∗ = G ∪ S∗. For all graph metrics M , the maximum dilation is obtained be-
tween a pair of points where the shortest path in M between them only uses a single edge
in E(M). This is because, if the shortest path has multiple edges in E(M), then the dilation
between the endpoints of one of those edges would be at least as large. Therefore, it suffices
to consider the dilation between the endpoints of the edges in M1, . . . ,M6. However, the
dilation between the endpoints of edges in M3, . . . ,M6 is 1. Therefore, it suffices to consider
endpoints of edges in M1 and M2. For M2,

dG∗(vℓ, v
′
ℓ) ≤ dG∗(vℓ, wℓ) + dG∗(wℓ, v

′
ℓ) ≤ 4/ε.

For M1, recall that {Sℓ1 , . . . , Sℓk} covers E. So, for each ui,ju
′
i,j ∈ M1 there exists an ℓ

satisfying ui,jvℓ ∈M3, vℓv
′
ℓ ∈ S∗, and v′ℓu

′
i,j ∈M4. Therefore,

dG∗(ui,j , u
′
i,j) ≤ dG∗(ui,j , vℓ) + dG∗(vℓ, v

′
ℓ) + dG∗(v′ℓ, u

′
i,j) ≤ 4/ε+ 1.

Hence, the dilation of G∗ is at most 4/ε+ 1, completing the proof that t∗ ≤ 4/ε+ 1.
Part 5. We show that there are no fk edges that one can add to G to obtain a dilation of

at most gt∗, assuming the set cover instance is a NO-instance. Recall that f = (1−α) log n
and g = 2− ε. Suppose for the sake of contradiction that there exists fk edges so that the
final dilation is at most gt∗ = (2− ε)(4/ε+1) < 8/ε. Let the set of fk edges be F . Suppose
that one of the edges in F is from the setM1. Let the edge be ui,ju

′
i,j ∈ F∩M1. For all ei ∈ E

there exists an Sℓ so that ei ∈ Sℓ. We exchange the edge ui,ju
′
i,j with vℓv

′
ℓ. We show that this

exchange does not affect the property that the final dilation is at most gt∗ < 8/ε. Similarly
to in part 4, it suffices to consider pairs of points that are endpoints of M1∪M2. For M2, any
path between vp and v′p that uses the edge ui,ju

′
i,j must pass through vℓ and v′ℓ, so exchanging

the edge ui,ju
′
i,j with vℓv

′
ℓ decreases the shortest path distance between all vpv

′
p ∈M2. For

M1, any path from up,q to u′
p,q that uses the edge ui,ju

′
i,j has length at least 8/ε+ 1, so it

cannot be the shortest path between up,qu
′
p,q ∈M1. Therefore, after performing exchanges

for all ui,ju
′
i,j ∈ F ∩M1, we can assume that F ⊆ M2. Since |F | = k(1 − α) log n and the

set cover instance is a NO-instance, the set F cannot be a set cover for the elements ei ∈ E.
Therefore, there exists an i so that vℓv

′
ℓ ̸∈ F for all Sℓ where ei ∈ Sℓ. For all vℓv

′
ℓ ̸∈ F , we

have dG∪F (vℓ, v
′
ℓ) ≥ dG∪F (vℓ, wℓ) + dG∪F (wℓ, v

′
ℓ) = 4/ε. Therefore,

dG∪F (ui,j , u
′
i,j) ≥ max

ℓ:ei∈Sℓ

(
dG∪F (ui,j , vℓ) + dG∪F (vℓ, v

′
ℓ) + dG∪F (v

′
ℓ, u

′
i,j)

)
≥ 8/ε,

162

contradicting the fact that the final dilation is at most gt∗. This completes the proof that
there are no fk edges that one can add to G to obtain a dilation of at most gt∗, assuming
the set cover instance is a NO-instance.

Part 6. We show that it is NP-hard to obtain an (f, g)-bicriteria approximation. If there
is an (f, g)-bicriteria approximation for Problem 5, one would be able to decide whether (i)
there exists a set of k edges to add to G to obtain a dilation of t∗, or (ii) there are no fk
edges that one can add to G to obtain a dilation of at most gt∗. Therefore, one would be
able to decide whether the set cover instance is a YES-instance or a NO-instance. Since set
cover is NP-hard, it follows that an (f, g)-bicriteria approximation is NP-hard, where f =
(1 − α) log n and g = 2 − ε. In our reduction, the size of the graph is proportional to the
size of the set cover instance, so |G| = Ω(n).

Finally, putting all six parts together, we obtain Lemma 16.

Lemma 16. For all α > 0, ε > 0, it is NP-hard to obtain an (f, g)-bicriteria approximation
for Problem 5, where

f = (1− α) log |G| and g = 2− ε.

In the set cover instance of [66], k is a constant, so h(k) = o(log n) for all functions h.

Corollary 17. For all functions h, it is NP-hard to obtain an (f, g)-bicriteria approximation
for Problem 5, where

f = h(k) and g = 2− ε.

Setting h(k) = poly(k) in Corollary 17 gives us Theorem 8.

6.6 Conclusion

We provide bicriteria approximation algorithms for the problem of adding k edges to a graph
to minimise its dilation. Our main result is a (2 r

√
2 k1/r, 2r)-bicriteria approximation for

all r ≥ 1, that runs in O(n3 log n) time. Our analysis is tight and it is NP-hard to obtain
a (poly(k), 2− ε)-bicriteria approximation for any ε > 0. We provide a simple (2k2 log n, 1)-
bicriteria approximation.

We conclude with directions for future work. Problem 1 remains open. In particular,
Obstacle 2 asks: is there an ε > 0 for which there is an O(n1−ε)-approximation algorithm for
the minimum dilation spanning tree problem? The linear approximation factor of Problem 3
cannot be improved unless Obstacle 4 is resolved. Another way to circumvent Obstacle 4 is
to consider Problem 3 in the special case of an unweighted graph metric. Finally, Problem 5
offers several directions for future work. Can one obtain a trade-off between sparsity and
dilation that is better than the greedy t-spanner construction? What is the sparsity-dilation
trade-off when 1 < f < 2? Can the lightness of the greedy t-spanner be bounded in
Problem 5? Can the approximation factor or the running time of Theorem 9 be improved?

163

Bibliography

[1] Mohammad Ali Abam, Mark de Berg, Mohammad Farshi, and Joachim Gudmunds-
son. Region-fault tolerant geometric spanners. Discret. Comput. Geom., 41(4):556–
582, 2009.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness
results for LCS and other sequence similarity measures. In IEEE 56th Annual Sympo-
sium on Foundations of Computer Science, FOCS 2015, pages 59–78. IEEE Computer
Society, 2015.

[3] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range report-
ing: query lower bounds, optimal structures in 3-d, and higher-dimensional improve-
ments. In David G. Kirkpatrick and Joseph S. B. Mitchell, editors, Proceedings of
the 26th Symposium on Computational Geometry, SoCG 2010, pages 240–246. ACM,
2010.

[4] Peyman Afshani and Anne Driemel. On the complexity of range searching among
curves. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2018, pages 898–917. SIAM, 2018.

[5] Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan,
and Erin Taylor. Subtrajectory clustering: Models and algorithms. In Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, 2018, pages 75–87. ACM, 2018.

[6] Pankaj K. Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic
time warping and edit distance for a pair of point sequences. In Sándor P. Fekete and
Anna Lubiw, editors, 32nd International Symposium on Computational Geometry,
SoCG 2016, volume 51 of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[7] Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad
Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A
tutorial review. Computer Science Review, 37:100253, 2020.

[8] Hee-Kap Ahn, Mohammad Farshi, Christian Knauer, Michiel H. M. Smid, and Yajun
Wang. Dilation-optimal edge deletion in polygonal cycles. International Journal of
Computational Geometry & Applications, 20(1):69–87, 2010.

[9] Hugo A. Akitaya, Frederik Brüning, Erin W. Chambers, and Anne Driemel. Covering
a curve with subtrajectories. CoRR, abs/2103.06040, 2021.

164

[10] Mohamed H. Ali, John Krumm, Travis Rautman, and Ankur Teredesai. ACM
SIGSPATIAL GIS cup 2012. In Proceedings of the 20th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, SIGSPATIAL
2012, pages 597–600. ACM, 2012.

[11] Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. J.
Algorithms, 49(2):262–283, 2003.

[12] Helmut Alt and Michael Godau. Computing the Fréchet distance between two polyg-
onal curves. Int. J. Comput. Geom. Appl., 5:75–91, 1995.

[13] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On
sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100,
1993.

[14] Boris Aronov, Kevin Buchin, Maike Buchin, Bart M. P. Jansen, Tom de Jong, Marc J.
van Kreveld, Maarten Löffler, Jun Luo, Rodrigo I. Silveira, and Bettina Speckmann.
Connect the dot: Computing feed-links for network extension. Journal of Spatial
Information Science, 3(1):3–31, 2011.

[15] Boris Aronov, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, Herman J.
Haverkort, Michiel H. M. Smid, and Antoine Vigneron. Sparse geometric graphs with
small dilation. Computational Geometry, 40(3):207–219, 2008.

[16] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. Spatio-temporal data mining: A
survey of problems and methods. ACM Comput. Surv., 51(4):83:1–83:41, 2018.

[17] Mihai Badoiu, Piotr Indyk, and Anastasios Sidiropoulos. Approximation algorithms
for embedding general metrics into trees. In Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007.

[18] Julian Baldus and Karl Bringmann. A fast implementation of near neighbors queries
for Fréchet distance (GIS cup). In Proceedings of the 25th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, SIGSPATIAL
2017, pages 99:1–99:4. ACM, 2017.

[19] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm
for computing sparse spanners in weighted graphs. Random Structures & Algorithms,
30(4):532–563, 2007.

[20] Selcan Kaplan Berkaya, Alper Kursat Uysal, Efnan Sora Gunal, Semih Ergin, Serkan
Gunal, and M Bilginer Gulmezoglu. A survey on ECG analysis. Biomedical Signal
Processing and Control, 43:216–235, 2018.

[21] Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In Usama M. Fayyad and Ramasamy Uthurusamy, editors, Knowledge
Discovery in Databases: Papers from the 1994 AAAI Workshop, Seattle, Washington,
USA, July 1994. Technical Report WS-94-03, pages 359–370. AAAI Press, 1994.

[22] Krishnan Bhaskaran, Antonio Gasparrini, Shakoor Hajat, Liam Smeeth, and Ben
Armstrong. Time series regression studies in environmental epidemiology. Interna-
tional Journal of Epidemiology, 42(4):1187–1195, 2013.

165

[23] Davide Bilò. Almost optimal algorithms for diameter-optimally augmenting trees.
Theoretical Computer Science, 931:31–48, 2022.

[24] Béla Bollobás. Extremal graph theory. Courier Corporation, 2004.

[25] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-
matching vehicle tracking data. In Proceedings of the 31st International Conference
on Very Large Data Bases, VLDB 2005, pages 853–864. ACM, 2005.

[26] Aléx F. Brandt, Miguel F. A. de Gaiowski, Pedro J. de Rezende, and Cid C. de Souza.
Computing minimum dilation spanning trees in geometric graphs. In Proceedings of
the 21st Annual International Computing and Combinatorics Conference, COCOON
2015.

[27] Milutin Brankovic, Kevin Buchin, Koen Klaren, André Nusser, Aleksandr Popov, and
Sampson Wong. (k, ℓ)-medians clustering of trajectories using continuous dynamic
time warping. In SIGSPATIAL ’20: 28th International Conference on Advances in
Geographic Information Systems, pages 99–110. ACM, 2020.

[28] Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014, pages 661–670. IEEE Computer So-
ciety, 2014.

[29] Karl Bringmann, Anne Driemel, André Nusser, and Ioannis Psarros. Tight bounds
for approximate near neighbor searching for time series under the Fréchet distance. In
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
pages 517–550. SIAM, 2022.

[30] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for
string problems and dynamic time warping. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, pages 79–97. IEEE Computer Society,
2015.

[31] Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet dis-
tance on c-packed curves matching conditional lower bounds. Int. J. Comput. Geom.
Appl., 27(1-2):85–120, 2017.

[32] Karl Bringmann, Marvin Künnemann, and André Nusser. Fréchet distance under
translation: Conditional hardness and an algorithm via offline dynamic grid reach-
ability. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, pages 2902–2921. SIAM, 2019.

[33] Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet dis-
tance. J. Comput. Geom., 7(2):46–76, 2016.

[34] Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera
Sacristán, Rodrigo I. Silveira, Frank Staals, and Carola Wenk. Clustering trajectories
for map construction. In Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS 2017, pages 14:1–
14:10. ACM, 2017.

166

[35] Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Jorren Hendriks, Erfan Hos-
seini Sereshgi, Vera Sacristán, Rodrigo I. Silveira, Jorrick Sleijster, Frank Staals, and
Carola Wenk. Improved map construction using subtrajectory clustering. In Lo-
calRec’20: Proceedings of the 4th ACM SIGSPATIAL Workshop on Location-Based
Recommendations, Geosocial Networks, and Geoadvertising, LocalRec@SIGSPATIAL
2020, pages 5:1–5:4. ACM, 2020.

[36] Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Maarten Löffler, and Jun Luo.
Detecting commuting patterns by clustering subtrajectories. Int. J. Comput. Geom.
Appl., 21(3):253–282, 2011.

[37] Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets
walk the dog: Improved bounds for computing the Fréchet distance. Discret. Comput.
Geom., 58(1):180–216, 2017.

[38] Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve
matching via the fréchet distance. In Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2009, pages 645–654. SIAM, 2009.

[39] Kevin Buchin, Yago Diez, Tom van Diggelen, and Wouter Meulemans. Efficient tra-
jectory queries under the Fréchet distance (GIS cup). In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems, SIGSPATIAL 2017, pages 101:1–101:4. ACM, 2017.

[40] Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostit-
syna, Maarten Löffler, and Martijn Struijs. Approximating (k, ℓ)-center clustering for
curves. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, pages 2922–2938. SIAM, 2019.

[41] Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel,
and Marcel Roeloffzen. Fréchet distance for uncertain curves. In Artur Czumaj, Anuj
Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany
(Virtual Conference), volume 168 of LIPIcs, pages 20:1–20:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[42] Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet
distance is faster, but only if it is continuous and in one dimension. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,
pages 2887–2901. SIAM, 2019.

[43] Maike Buchin. On the computability of the Fréchet distance between triangulated
surfaces. PhD thesis, Freie Universität Berlin, 2007.

[44] Maike Buchin, Anne Driemel, and Dennis Rohde. Approximating (k, ℓ)-median clus-
tering for polygonal curves. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages
2697–2717. SIAM, 2021.

[45] Maike Buchin and Bernhard Kilgus. Fréchet distance between two point sets. In
J. Mark Keil and Debajyoti Mondal, editors, Proceedings of the 32nd Canadian Con-
ference on Computational Geometry, CCCG 2020, August 5-7, 2020, University of
Saskatchewan, Saskatoon, Saskatchewan, Canada, pages 249–257, 2020.

167

[46] Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I. Sil-
veira, and Frank Staals. Efficient Fréchet distance queries for segments. CoRR,
abs/2203.01794, 2022.

[47] Leizhen Cai and Derek G. Corneil. Tree spanners. SIAM Journal on Discrete Math-
ematics, 8(3):359–387, 1995.

[48] Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, Megan Owen, and Michiel
H. M. Smid. A note on the unsolvability of the weighted region shortest path problem.
Comput. Geom., 47(7):724–727, 2014.

[49] Erin W. Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. Map-
matching using shortest paths. ACM Trans. Spatial Algorithms Syst., 6(1):6:1–6:17,
2020.

[50] Hubert T.-H. Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hier-
archical routing in doubling metrics. In Proceedings of the 16th Annual Symposium
on Discrete Algorithms, SODA, pages 762–771. SIAM, 2005.

[51] Cheng Chang and Baoyao Zhou. Multi-granularity visualization of trajectory clusters
using sub-trajectory clustering. In ICDM Workshops 2009, IEEE International Con-
ference on Data Mining Workshops, 2009, pages 577–582. IEEE Computer Society,
2009.

[52] Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. A survey on map-matching
algorithms. In Proceedings of the 31st Australasian Database Conference, ADC 2020,
volume 12008 of Lecture Notes in Computer Science, pages 121–133. Springer, 2020.

[53] Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk.
Approximate map matching with respect to the Fréchet distance. In Proceedings of
the 13th Workshop on Algorithm Engineering and Experiments, ALENEX 2011, pages
75–83. SIAM, 2011.

[54] Daniel Chen, Leonidas J Guibas, Qixing Huang, and Jian Sun. A faster algorithm
for matching planar maps under the weak Fréchet distance. Unpublished, December,
2008.

[55] Daniel Chen, Christian Sommer, and Daniel Wolleb. Fast map matching with vertex-
monotone Fréchet distance. In Proceedings of the 21st Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2021,
volume 96 of OASIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2021.

[56] Otfried Cheong, Herman J. Haverkort, and Mira Lee. Computing a minimum-dilation
spanning tree is NP-hard. Computational Geometry, 41(3):188–205, 2008.

[57] Vasek Chvátal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

[58] Ian R Cleasby, Ewan D Wakefield, Barbara J Morrissey, Thomas W Bodey, Steven C
Votier, Stuart Bearhop, and Keith C Hamer. Using time-series similarity measures to
compare animal movement trajectories in ecology. Behavioral Ecology and Sociobiol-
ogy, 73(11):1–19, 2019.

168

[59] Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. J.
ACM, 34(1):200–208, 1987.

[60] Gautam Das, Paul J. Heffernan, and Giri Narasimhan. Optimally sparse spanners
in 3-dimensional euclidean space. In Proceedings of the 9th Annual Symposium on
Computational Geometry, SoCG 1993.

[61] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Com-
putational Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008.

[62] Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi. A dynamic data struc-
ture for approximate proximity queries in trajectory data. In Proceedings of the 25th
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, SIGSPATIAL 2017, pages 48:1–48:4. ACM, 2017.

[63] Mark de Berg, Ali D. Mehrabi, and Tim Ophelders. Data structures for Fréchet queries
in trajectory data. In Proceedings of the 29th Canadian Conference on Computational
Geometry, CCCG 2017, pages 214–219, 2017.

[64] Erik D. Demaine and Morteza Zadimoghaddam. Minimizing the diameter of a network
using shortcut edges. In Proceedings of the 12th Scandinavian Workshop on Algorithm
Theory, SWAT 2010.

[65] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[66] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings
of the 46th ACM Symposium on Theory of Computing, STOC 2014.

[67] Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet
distance with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013.

[68] Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet dis-
tance for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94–127,
2012.

[69] Anne Driemel, Amer Krivosija, and Christian Sohler. Clustering time series under the
Fréchet distance. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2016, pages 766–785. SIAM, 2016.

[70] Anne Driemel and Ioannis Psarros. ANN for time series under the Fréchet distance. In
Proceedings of the 17th International Symposium on Algorithms and Data Structures,
WADS 2021, volume 12808 of Lecture Notes in Computer Science, pages 315–328.
Springer, 2021.

[71] Anne Driemel, Ioannis Psarros, and Melanie Schmidt. Sublinear data structures for
short Fréchet queries. CoRR, abs/1907.04420, 2019.

[72] Richard M Dudley. Metric entropy of some classes of sets with differentiable bound-
aries. Journal of Approximation Theory, 10(3):227–236, 1974.

[73] Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov. Balanced
aspect ratio trees: Combining the advantages of k-d trees and octrees. J. Algorithms,
38(1):303–333, 2001.

169

[74] Fabian Dütsch and Jan Vahrenhold. A filter-and-refinement-algorithm for range
queries based on the Fréchet distance (GIS cup). In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems, SIGSPATIAL 2017, pages 100:1–100:4. ACM, 2017.

[75] Alon Efrat, Quanfu Fan, and Suresh Venkatasubramanian. Curve matching, time
warping, and light fields: New algorithms for computing similarity between curves. J.
Math. Imaging Vis., 27(3):203–216, 2007.

[76] Yuval Emek and David Peleg. Approximating minimum max-stretch spanning trees
on unweighted graphs. SIAM Journal of Computing, 38(5):1761–1781, 2008.

[77] David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge Urrutia,
editors, Handbook of Computational Geometry, pages 425–461. Elsevier, 2000.

[78] David Eppstein and Kevin A. Wortman. Minimum dilation stars. In Proceedings of
the 21st Annual Symposium on Computational Geometry, SoCG 2005.

[79] Paul Erdős. On some extremal problems in graph theory. Israel Journal of Mathe-
matics, 3:113–116, 1965.

[80] Philippe Esling and Carlos Agón. Time-series data mining. ACM Comput. Surv.,
45(1):12:1–12:34, 2012.

[81] Mohammad Farshi, Panos Giannopoulos, and Joachim Gudmundsson. Improving
the stretch factor of a geometric network by edge augmentation. SIAM Journal of
Computing, 38(1):226–240, 2008.

[82] Sándor P. Fekete and Jana Kremer. Tree spanners in planar graphs. Discrete Applied
Mathematics, 108(1-2):85–103, 2001.

[83] Arnold Filtser and Omrit Filtser. Static and streaming data structures for Fréchet
distance queries. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, pages 1150–1170. SIAM, 2021.

[84] Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate nearest neighbor
for curves - simple, efficient, and deterministic. In 47th International Colloquium on
Automata, Languages, and Programming, ICALP 2020, volume 168 of LIPIcs, pages
48:1–48:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[85] Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. SIAM
Journal on Computing, 49(2):429–447, 2020.

[86] Omrit Filtser. Universal approximate simplification under the discrete Fréchet dis-
tance. Inf. Process. Lett., 132:22–27, 2018.

[87] Fedor V. Fomin, Petr A. Golovach, and Erik Jan van Leeuwen. Spanners of bounded
degree graphs. Information Processing Letters, 111(3):142–144, 2011.

[88] Fabrizio Frati, Serge Gaspers, Joachim Gudmundsson, and Luke Mathieson. Aug-
menting graphs to minimize the diameter. Algorithmica, 72(4):995–1010, 2015.

170

[89] Bin Fu, Robert T. Schweller, and Tim Wylie. Discrete planar map matching. In
Proceedings of the 31st Canadian Conference on Computational Geometry, CCCG
2019, pages 218–224, 2019.

[90] Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dy-
namic algorithms for monotonic interval scheduling problem. Theor. Comput. Sci.,
562:227–242, 2015.

[91] Panos Giannopoulos, Rolf Klein, Christian Knauer, Martin Kutz, and Dániel Marx.
Computing geometric minimum-dilation graphs is NP-hard. International Journal of
Computational Geometry & Applications, 20(2):147–173, 2010.

[92] Panos Giannopoulos, Christian Knauer, and Dániel Marx. Minimum-dilation tour
(and path) is NP-hard. In Proceedings of the 23rd European Workshop on Computa-
tional Geometry, EuroCG 2007.

[93] Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance:
Breaking the quadratic barrier. ACM Trans. Algorithms, 14(4):50:1–50:17, 2018.

[94] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985.

[95] Lee-Ad Gottlieb. A light metric spanner. In Proceedings of the 56th Symposium on
Foundations of Computer Science, FOCS, pages 759–772, 2015.

[96] Ulrike Große, Christian Knauer, Fabian Stehn, Joachim Gudmundsson, and Michiel
H. M. Smid. Fast algorithms for diameter-optimally augmenting paths and trees.
International Journal of Foundations of Computer Science, 30(2):293–313, 2019.

[97] Joachim Gudmundsson, Michael Horton, John Pfeifer, and Martin P. Seybold. A
practical index structure supporting Fréchet proximity queries among trajectories.
ACM Trans. Spatial Algorithms Syst., 7(3):15:1–15:33, 2021.

[98] Joachim Gudmundsson and Christian Knauer. Dilation and detours in geometric
networks. In Teofilo F. Gonzalez, editor, Handbook of Approximation Algorithms and
Metaheuristics. Chapman and Hall/CRC, 2007.

[99] Joachim Gudmundsson and Yuan Sha. Algorithms for radius-optimally augmenting
trees in a metric space. In Proceedings of the 17th Algorithms and Data Structures
Symposium, WADS 2021.

[100] Joachim Gudmundsson, Yuan Sha, and Sampson Wong. Approximating the packed-
ness of polygonal curves. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors,
31st International Symposium on Algorithms and Computation, ISAAC 2020, volume
181 of LIPIcs, pages 9:1–9:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

[101] Joachim Gudmundsson, Yuan Sha, and Fan Yao. Augmenting graphs to minimize
the radius. In Proceedings of the 32nd International Symposium on Algorithms and
Computation, ISAAC 2021.

[102] Joachim Gudmundsson and Michiel H. M. Smid. On spanners of geometric graphs.
International Journal of Foundations of Compututer Science, 20(1):135–149, 2009.

171

[103] Joachim Gudmundsson and Michiel H. M. Smid. Fast algorithms for approximate
Fréchet matching queries in geometric trees. Comput. Geom., 48(6):479–494, 2015.

[104] Joachim Gudmundsson, Andreas Thom, and Jan Vahrenhold. Of motifs and goals:
mining trajectory data. In SIGSPATIAL 2012 International Conference on Advances
in Geographic Information Systems, SIGSPATIAL 2012, pages 129–138. ACM, 2012.

[105] Joachim Gudmundsson and Nacho Valladares. A GPU approach to subtrajectory clus-
tering using the Fréchet distance. IEEE Trans. Parallel Distributed Syst., 26(4):924–
937, 2015.

[106] Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong.
Translation invariant Fréchet distance queries. Algorithmica, 83(11):3514–3533, 2021.

[107] Joachim Gudmundsson and Thomas Wolle. Football analysis using spatio-temporal
tools. Comput. Environ. Urban Syst., 47:16–27, 2014.

[108] Joachim Gudmundsson and Sampson Wong. Improving the dilation of a metric graph
by adding edges. ACM Transactions on Algorithms, 18(3):20:1–20:20, 2022.

[109] Sariel Har-Peled and Mitchell Jones. Proof of Dudley’s convex approximation. arXiv
preprint arXiv:1912.01977, 2019.

[110] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional
metrics and their applications. SIAM Journal of Computing, 35(5):1148–1184, 2006.

[111] Mahdi Hashemi and Hassan A. Karimi. A critical review of real-time map-matching
algorithms: Current issues and future directions. Comput. Environ. Urban Syst.,
48:153–165, 2014.

[112] Jan-Henrik Haunert and Wouter Meulemans. Partitioning polygons via graph aug-
mentation. In Jennifer A. Miller, David O’Sullivan, and Nancy Wiegand, editors, Pro-
ceedings of the 9th Geographic Information Science, GIScience, volume 9927, pages
18–33, 2016.

[113] Ferran Hurtado and Csaba D Tóth. Plane geometric graph augmentation: a generic
perspective. In Thirty Essays on Geometric Graph Theory, pages 327–354. Springer,
2013.

[114] Piotr Indyk. Approximate nearest neighbor algorithms for frechet distance via product
metrics. In Proceedings of the 18th Symposium on Computational Geometry, SoCG
2002, pages 102–106. ACM, 2002.

[115] Christopher Johnson and Haitao Wang. A linear-time algorithm for radius-optimally
augmenting paths in a metric space. Computational Geometry, 96:101759, 2021.

[116] Koen Klaren. Continuous dynamic time warping for clustering curves. Master’s thesis,
Eindhoven University of Technology, 2020.

[117] Rolf Klein, Christian Knauer, Giri Narasimhan, and Michiel H. M. Smid. On the
dilation spectrum of paths, cycles, and trees. Computational Geometry, 42(9):923–
933, 2009.

172

[118] Matej Kubicka, Arben Çela, Hugues Mounier, and Silviu-Iulian Niculescu. Compara-
tive study and application-oriented classification of vehicular map-matching methods.
IEEE Intell. Transp. Syst. Mag., 10(2):150–166, 2018.

[119] Hung Le and Shay Solomon. Truly optimal Euclidean spanners. In Proceedings of the
60th Annual Symposium on Foundations of Computer Science, FOCS 2019.

[120] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-
and-group framework. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Beijing, China, June 12-14, 2007, pages 593–604. ACM,
2007.

[121] Lan Lin and Yixun Lin. Optimality computation of the minimum stretch spanning
tree problem. Applied Mathematics and Computation, 386:125502, 2020.

[122] Jun Luo and Christian Wulff-Nilsen. Computing best and worst shortcuts of graphs
embedded in metric spaces. In Proceedings of the 19th International Symposium on
Algorithms and Computation, ISAAC 2008.

[123] Ting Luo, Xinwei Zheng, Guangluan Xu, Kun Fu, and Wenjuan Ren. An improved
DBSCAN algorithm to detect stops in individual trajectories. ISPRS Int. J. Geo Inf.,
6(3):63, 2017.

[124] Anil Maheshwari, Jörg-Rüdiger Sack, and Christian Scheffer. Approximating the in-
tegral Fréchet distance. Comput. Geom., 70-71:13–30, 2018.

[125] Jessica Meade, Dora Biro, and Tim Guilford. Homing pigeons develop local route
stereotypy. Proceedings of the Royal Society B: Biological Sciences, 272(1558):17–23,
2005.

[126] Nimrod Megiddo. Applying parallel computation algorithms in the design of serial
algorithms. J. ACM, 30(4):852–865, 1983.

[127] Andranik Mirzaian and Eshrat Arjomandi. Selection in X+Y and matrices with sorted
rows and columns. Information Processing Letters, 20(1):13–17, 1985.

[128] Joseph S. B. Mitchell and Christos H. Papadimitriou. The weighted region problem:
Finding shortest paths through a weighted planar subdivision. J. ACM, 38(1):18–73,
1991.

[129] Meinard Müller. Dynamic time warping. In Information Retrieval for Music and
Motion, pages 69–84. Springer, 2007.

[130] Wolfgang Mulzer. Minimum dilation triangulations for the regular n-gon. Master’s
thesis Freie Universität Berlin, Germany, 2004.

[131] Mario E. Munich and Pietro Perona. Continuous dynamic time warping for
translation-invariant curve alignment with applications to signature verification. In
Proceedings of the International Conference on Computer Vision, 1999, pages 108–
115. IEEE Computer Society, 1999.

[132] Cory Myers, Lawrence Rabiner, and Aaron Rosenberg. Performance tradeoffs in dy-
namic time warping algorithms for isolated word recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 28(6):623–635, 1980.

173

[133] Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks. Cambridge
University Press, 2007.

[134] Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks. Cambridge
University Press, 2007.

[135] David Peleg. Distributed Computing: a Locality-Sensitive Approach. SIAM, 2000.

[136] David Peleg. Low stretch spanning trees. In Proceedings of the 27th International
Symposium of Mathematical Foundations of Computer Science, MFCS 2002.

[137] Mohammed A Quddus, Washington Y Ochieng, and Robert B Noland. Current map-
matching algorithms for transport applications: State-of-the art and future research
directions. Transportation research part c: Emerging technologies, 15(5):312–328,
2007.

[138] Peter Ranacher and Katerina Tzavella. How to compare movement? A review of
physical movement similarity measures in geographic information science and beyond.
Cartography and Geographic Information Science, 41(3):286–307, 2014.

[139] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,
pages 1260–1268. ACM, 2018.

[140] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 26(1):43–49, 1978.

[141] Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments.
Inf. Process. Lett., 60(3):121–127, 1996.

[142] Pavel Senin. Dynamic time warping algorithm review. Information and Computer
Science Department University of Hawaii at Manoa Honolulu, USA, 855(1-23):40,
2008.

[143] Bruno Serra and Marc Berthod. Subpixel contour matching using continuous dynamic
programming. In Conference on Computer Vision and Pattern Recognition, CVPR
1994, pages 202–207. IEEE, 1994.

[144] Martin P. Seybold. Robust map matching for heterogeneous data via dominance
decompositions. In Proceedings of the 2017 SIAM International Conference on Data
Mining, SDM 2017, pages 813–821. SIAM, 2017.

[145] Junichi Shigezumi, Tatsuya Asai, Hiroaki Morikawa, and Hiroya Inakoshi. A fast
algorithm for matching planar maps with minimum Fréchet distances. In Proceedings
of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial
Data, BigSpatial@SIGSPATIAL 2015, pages 25–34. ACM, 2015.

[146] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
J. Comput. Syst. Sci., 26(3):362–391, 1983.

[147] Michiel H. M. Smid. Closest-point problems in computational geometry. In Jörg-
Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages
877–935. Elsevier, 2000.

174

[148] E. Sriraghavendra, K. Karthik, and Chiranjib Bhattacharyya. Fréchet distance based
approach for searching online handwritten documents. In 9th International Conference
on Document Analysis and Recognition, ICDAR 2007, pages 461–465. IEEE Computer
Society, 2007.

[149] Panagiotis Tampakis, Nikos Pelekis, Christos Doulkeridis, and Yannis Theodoridis.
Scalable distributed subtrajectory clustering. In 2019 IEEE International Conference
on Big Data (Big Data), pages 950–959. IEEE, 2019.

[150] Bo Tang, Man Lung Yiu, Kyriakos Mouratidis, and Kai Wang. Efficient motif discov-
ery in spatial trajectories using discrete Fréchet distance. In Proceedings of the 20th
International Conference on Extending Database Technology, EDBT 2017, Venice,
Italy, March 21-24, 2017, pages 378–389. OpenProceedings.org, 2017.

[151] Yaguang Tao, Alan Both, Rodrigo I Silveira, Kevin Buchin, Stef Sijben, Ross S Purves,
Patrick Laube, Dongliang Peng, Kevin Toohey, and Matt Duckham. A comparative
analysis of trajectory similarity measures. GIScience & Remote Sensing, pages 1–27,
2021.

[152] Charles C. Tappert, Ching Y. Suen, and Toru Wakahara. The state of the art in
online handwriting recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(8):787–808, 1990.

[153] Stephen J Taylor. Modelling financial time series. World Scientific, 2008.

[154] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM,
52(1):1–24, 2005.

[155] Kevin Toohey and Matt Duckham. Trajectory similarity measures. ACM SIGSPA-
TIAL Special, 7(1):43–50, 2015.

[156] Taras K Vintsyuk. Speech discrimination by dynamic programming. Cybernetics,
4(1):52–57, 1968.

[157] Haitao Wang. An improved algorithm for diameter-optimally augmenting paths in a
metric space. Computational Geometry, 75:11–21, 2018.

[158] Haitao Wang and Yiming Zhao. A linear-time algorithm for discrete radius optimally
augmenting paths in a metric space. International Journal of Computational Geometry
and Applications, 30(3&4):167–182, 2020.

[159] Haitao Wang and Yiming Zhao. Algorithms for diameters of unicycle graphs and
diameter-optimally augmenting trees. Theoretical Computer Science, 890:192–209,
2021.

[160] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and
Eamonn J. Keogh. Experimental comparison of representation methods and distance
measures for time series data. Data Min. Knowl. Discov., 26(2):275–309, 2013.

[161] Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching by Fréchet
distance and global weight optimization. Technical Paper, Departement of Computer
Science and Engineering, page 19, 2013.

175

[162] Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching: comparison
of approaches using sparse and noisy data. In Proceedings of the 21st SIGSPATIAL
International Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL 2013, pages 434–437. ACM, 2013.

[163] Carola Wenk, Randall Salas, and Dieter Pfoser. Addressing the need for map-matching
speed: Localizing Globalb curve-matching algorithms. In Proceedings of the 18th
International Conference on Scientific and Statistical Database Management, SSDBM
2006, pages 379–388. IEEE Computer Society, 2006.

[164] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci., 348(2-3):357–365, 2005.

[165] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and
complexity. In Proceedings of the International Congress of Mathematicians: Rio
de Janeiro 2018, pages 3447–3487. World Scientific, 2018.

[166] Christian Wulff-Nilsen. Computing the dilation of edge-augmented graphs in metric
spaces. Computational Geometry, 43(2):68–72, 2010.

[167] Tim Wylie and Binhai Zhu. Intermittent map matching with the discrete Fréchet
distance. CoRR, abs/1409.2456, 2014.

[168] Öz Yilmaz. Seismic data analysis: Processing, inversion, and interpretation of seismic
data. Society of exploration geophysicists, 2001.

[169] Yu Zheng and Xiaofang Zhou, editors. Computing with Spatial Trajectories. Springer,
2011.

176

	Introduction
	Computational geometry
	Trajectory similarity
	Graph dilation
	Contributions
	Other projects during PhD

	Cubic upper and lower bounds for subtrajectory clustering under the continuous Fréchet distance
	Introduction
	Preliminaries
	Technical Overview
	Discrete Fréchet Distance
	Continuous Fréchet Distance
	Lower bound

	Map matching queries on realistic input graphs under the Fréchet distance
	Introduction
	Preliminaries
	Technical Overview
	Stage 1: Straightest path queries
	Stage 2: Map matching segment queries
	Stage 3: Map matching queries
	Lower bound for geometric planar graphs
	Conclusion

	Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time
	Introduction
	Preliminaries
	Algorithm
	Proofs of Lemmas 7, 10 and 14
	Conclusion

	Improving the dilation of a metric graph by adding edges
	Introduction
	The Greedy Construction
	Minimising the Dilation
	Approximation factor no better than (1-eps)(k+1)
	The Bottleneck Algorithm
	Conclusion

	Bicriteria approximation for minimum dilation graph augmentation
	Introduction
	Technical overview
	Greedy bicriteria approximation
	Greedy analysis is tight
	Set cover reduction
	Conclusion

