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Abstract

The visual scenes are composed of basic elements, such as objects, parts, and other

semantic regions. It is well-acknowledged that humans perceive the world in a compositional

and hierarchical way in which visual scenes are treated as a layout of distinct semantic ob-

jects/attributes/parts. Those separated objects/attributes/parts are linked together via different

relationships, including visual relationships and semantic relationships. Particularly, the

shared parts/attributes/objects of the visual concepts (object, visual relationships), are shared

and thus transferable among different visual concepts. Humans can easily imagine a new

composite concept from the shared parts of different concepts, while one of the important

shortcomings of current deep neural networks is the compositional perception ability and thus

it requires a large scale of data to optimize the deep neural networks. From the perspective of

compositional perception, this thesis thinks one of the limitations of typical neural networks

is that the factor representations of deep neural networks are not sharable and transferable

among different concepts. Therefore, the thesis introduces various techniques, including

compositional learning framework, compositional invariant learning, and BatchFormer mod-

ule, to enable the factor representations of deep neural networks sharable and transferable

among different concepts for hierarchical relationship exploration, involving human-object

interaction, 3D human-object interaction and sample relationships.
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CHAPTER 1

Introduction

The visual scenes are hierarchically layout in a compositional way, composed of parts, objects,

and other semantic regions, while those separated objects/parts are linked together via different

relationships, and transferable among different scenes. Visual relationship is crucial for visual

scene understanding, and understanding interactions between human and object is crucial

for Intelligent driving, Human-centric Content Generation, Argument Reality, Robotics

and Embody AI. Meanwhile, semantic relationships among different samples is beneficial

for achieving better representations. Humans perceive the visual world in a compositional

and hierarchical way, and can usually achieve excellent generalization according to the

visual compositionality. However, it is challenging for deep neural networks to achieve the

compositional perception ability. Humans usually treat the shared element/factor of different

concepts as similar, however the element or factor representations of typical deep neural

networks are not always shared among different concepts and are representative for the

concept, especially for those visual relationships and visual categories. Meanwhile, the visual

relationships and semantic relationships in the visual world usually demonstrate hierarchical

structure, and also crucial to understand the visual world. Besides, the visual relationships

have broad application potential in real world.

Current approaches [175, 224] usually decouple the representations of the visual relationships

or visual concepts into several factor representations or several factor predictions according

to explicit supervisions. The decoupled representations or predictions significantly benefit

the compositional generation of the visual relationships detection. Previous approaches

also introduce to utilize the language embedding to enable the transferability of decoupled

representations among different categories by aligning the representations to corresponding

1
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Hierarchical Relationships

Visual Relationships
<subject, predicate, object> Sematic Relationships

Human-centric Interactions Object-Object Relationship

Human-Object Interaction

Similarity …

FIGURE 1.1. Hierarchical relationship terminologies.

language embeddings. However, the language embedding limits the representation of the

visual features and visual features are not fully transferable among different concepts. There-

fore, this thesis introduces to learn transferable factor/element representations for hierarchical

visual relationships from pure visual perspective without external knowledge. Besides, typical

decomposition and composition approaches require the explicit supervisions, which lim-

its the application of those approaches for typical methods. The thesis further presents a

BatchFormer module to implicitly enable the feature transferability among different samples.

There are two important relationship expressions: one is visual relationships composed

of a triple ⟨subject, predicate, object⟩ (e.g., a person plays basketball), which explicitly

and spatially exist in the visual scenes (e.g., Human-centric interactions and Object-Object

Relationships); another is semantic relationships that are not spatially layout in the visual

scenes, such as similarity (e.g. porpoises and dolphins). Particularly, the two kinds of

relationships always demonstrate the hierarchy. The pair-wise visual relationships in the

scenes hierarchically build the scene structure, while the semantic relationships are usually

built by the class hierarchies (e.g., similar classes usually belong to the same super-category,

porpoises and dolphins are fish and share similar body shapes.). Meanwhile, semantic

relationships are also existing in visual relationships in which the element of different triples

might be the same, i.e., different concepts of visual relationship might also be related. Those

shared elements or semantics of different concepts are usually transferable, i.e., we can transfer
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the shared elements from one concept to another concept. For deep neural networks, we

can achieve better generalization by enabling element/attribute feature transferability among

different concepts or visual relationships. In detail, if we can transfer the elements/attributes

from the concepts with extensive training samples to the concepts with a few training samples,

we can significantly facilitate the learning for few-shot concepts.

There are various kinds of challenges in visual relationship understanding. On the one

hand, the distribution of HOI dataset is usually long-tailed, which significantly hampers

the optimization of HOI models, and limits the performance of few-shot HOI categories.

Meanwhile, HOI requires fine-grained action recognition and 3D understanding. Particularly,

the self-occlusion is serious in 3D Human-Object Interaction. In this thesis, we mainly focus

on 2D human-object interaction in Chapter 2 and present a neural human-object deformation

approach to address the self-occlusion for 3D human-object interaction reconstruction and

rendering in Chapter 4.

Human-Object Interaction (HOI) is widely popular among visual relationships, and demon-

strates great potential applicability for robotics and content generation. Compositionality is

one of the significant characteristics of Human-Object Interaction (HOI), i.e., a Human-Object

Interaction can be decomposed into a person with a specific action and a corresponding object.

Whist massive deep neural approaches are introduced to improve the generalization, the

compositional generalization has been poorly investigated, especially for Human-Object

Interaction. Meanwhile, massive verb samples and object samples form two long-tailed

distributions for verb and object, as a result of which the long-tailed HOI distribution is

more serious according to the compositional long-tailed distribution in HOI. Furthermore,

the compositionality of HOI also provides an effective way to reason the object attribute/af-

fordances, i.e., compositional object attribute/affordance reasoning. Specifically, each factor

in the pair, e.g., verb-object in HOI, has individual semantics. Human-Object Interaction

does not only demonstrate the interaction between human and object, but also illustrates the

affordances of the object, further implying the clues for discovering novel-object pairs. Based

on this observation, the thesis presents two additional relevant tasks, i.e., Object affordance

recognition and HOI concept discovery, and introduces a novel framework, named as visual
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compositional learning or VCL, to mimic the ability of human-level compositional perception

for Human-Object Interaction. The thesis further introduces building pseudo labels from the

verb-pair confidence of the composite HOIs, and devises a self-training strategy with pseudo

labels to optimize all the composite HOIs in an end-to-end way, and finally, significantly

improve few- and zero-shot HOI detection, object affordance recognition, and HOI concept

discovery.

Except for image-level interaction understanding, 3D vision understanding is highly required

for real-world applications. Neural rendering of animatable 3D human avatars has been in-

tensively explored by implicit neural representations, while the rich human-object interactions

(HOIs) are crucial for numerous human-centric scene capturing/understanding applications

such as AR/VR and robotics. Therefore, the thesis also addresses the challenge of HOI anim-

ation in a compositional manner, i.e., animating novel HOIs including the novel interaction,

human and/or object via a sequence of novel driving poses. Specifically, the thesis first adopts

the neural human-object deformation to model and render HOI dynamics based on the neural

representations. Next, the thesis devises new compositional conditional neural radiance fields

(or CC-NeRF), which decomposes the interdependence between the human and object latent

codes to enable compositionally controlling the animation of novel HOIs.

Not only perceiving existing visual relationships in the visual scene but also exploring the

implicit semantic relationships among different samples are important for hierarchical visual

understanding. However, the semantic relationships are implicit, and we usually do not have

any annotations for the categories of semantic relationships, which is challenging for neural

networks to mine the relationships among different samples. Meanwhile, the relationship

graph among different samples is large and it is difficult to mine the relationships from the

whole of the dataset directly. The thesis carefully analyzes previous approaches that mine the

relationships, and introduces a unified way to implicitly transfer the representations among

different samples for exploring the sample relationships.

Existing methods mainly explore sample relationships in a vanilla way from the perspect-

ives of either the input or the loss function for data-scarcity tasks. Differently, the thesis
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proposes a batch transformer module, BatchFormerV1, to equip deep neural networks them-

selves with the ability to explore sample relationships in a learnable way. Basically, the

proposed method enables data collaboration, e.g., head-class samples will also contribute to

the learning of tail classes. Considering that exploring instance-level relationships has very

limited impacts on dense prediction and is impractical to dense prediction tasks, the thesis

presents BatchFormerV2 to enable exploring sample relationships for pixel-/patch-level dense

representations. In addition, to address the train-test inconsistency where a mini-batch of

data samples are neither necessary nor desirable during inference, the thesis also devises a

two-stream training pipeline, i.e., a shared model is first jointly optimized with and without

BatchFormerV2 which is then removed during testing. The proposed module is plug-and-play

without requiring any extra inference cost.

1.1 Background

1.1.1 Knowledge Transfer

Knowledge Transfer is very popular among deep neural networks, especially for data scarcity

tasks. It is well-acknowledged that different samples share similar semantics, and we can

transfer the shared semantics for novel class learning. Therefore, extensive approaches

investigate the transfer learning for few-shot learning [272, 185], in which common paradigms

usually learn to transfer the knowledge from the base classes or pre-trained models to novel

classes. Meanwhile, knowledge transfer is also a significant technical route in the long-tailed

recognition. The long-tailed learning approaches implicitly or explicitly transfer the meta

knowledge between head and tail classes for long-tailed recognition [263, 171]. Out-of-

distribution generalization is a significant challenge, and recently attracts extensive interest

from the community. Those methods aim to transfer the invariant knowledge for domain

generalization [201, 4, 116]. This thesis thinks learning transferable representations are

significant to achieve robust and reliable deep neural networks.
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1.1.2 Hierarchical visual relationship

The visual scenes are composed of basic elements [103], such as objects, parts, and other

semantic regions. Different visual elements in the scene are combined together via different

relationships, including explicit relations and implicit relations. Visual relationships, e.g.,

spatial relations [64, 179] and semantic relations [104], are widely ubiquitous in the visual

world. Currently, visual relationship understanding [175, 78] receives increasing interest from

the community. Those visual relationship approaches [175, 78] usually treat the visual scene

as a hierarchical structure, but rarely aim to improve the compositional generalization in a

learning way. Objects can be treated as a set of attributes [156], and extensive approaches [185,

178] investigate the hierarchical structure among object attributes to improve the compositional

zero-shot learning. The thesis devises to leverage the relationship (e.g., sharing attributes

among different objects) between samples for data-scarcity tasks. The hierarchical visual

relationship is a way to achieve human-level intelligence since human beings understand the

visual scene in a hierarchical and compositional way.

1.1.3 2D Human-Object Interaction

HOI understanding [78] is of great importance for visual relationship reasoning [175, 278]

and action understanding [24, 301]. Different approaches have been investigated for HOI

understanding from various aspects, including HOI detection [28, 157, 161, 305, 131, 33, 318,

234, 290], HOI recognition [26, 128, 117], video HOI [48, 123], compositional action recog-

nition [180], video generation [187], and object affordance reasoning [60]. Compositionality

is a significant characteristic of HOI, which can be decomposed into a verb and an object.

Meanwhile, there is also a popular challenge based on compositionality, i.e., compositional

generalization. For Human-object interaction, compositional zero-shot detection/recognition

and compositional long-tailed detection/recognition have attracted massive interests from

the community. To address the compositional generalization, The thesis presents a novel

framework, visual compositional learning, to compose HOI features from pair-wise images.

Besides, Human-Object Interaction is firmly related to object affordance understanding since

the human-object interaction actually presents what action can be applied for the object. The
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thesis leverages the compositional object affordance reasoning approach to recognize the

object affordance for the novel objects. Meanwhile, DETR-based methods (e.g., Qpic [234])

achieve superior performance on HOI detection. However, these approaches mainly consider

the perception of known HOI concepts and pay no attention to HOI concept discovery. To

fulfill the gap between learning on known and unknown concepts, a novel task, i.e., HOI

concept discovery, is explored in this thesis. Currently, zero-shot HOI detection also attracts

massive interest from the community [224, 9, 204, 111, 110]. However, those approaches

merely consider known concepts and are unable to discover HOI concepts. Some HOI

approaches [204, 9, 258, 257] expand the known concepts via leveraging language priors.

However, that is limited to existing knowledge and can not discover concepts that never appear

in the language prior knowledge. HOI concept discovery is able to address the problem, and

enable unknown HOI concept detection.

1.1.4 Sample Relationship Exploration

The relationships among different samples are rich and ubiquitous in the visual world, and

the sample relationships have been implicitly explored for various vision tasks [293, 168,

105, 184] in the community. On the one hand, those popular data augmentation strategies,

including mixup [292], copy-paste [71] and crass-grad [222]. For example, Zhang et al. [293]

propose to regularize the model to favor simple linear behavior in-between training samples

with mixup. However, mixup [293] merely considers a linear transformation between data

samples, while the thesis aims to investigate the non-linear relationship among samples in

a more powerful way. On the other hand, the sample relationship exploration is also active

among those data scarcity tasks, e.g., few/zero-shot learning, long-tailed recognition, and

domain generalization. The compositionality of samples has also inspired many approaches

to improve few/zero-shot generalization [237, 94, 111, 185], where the parts/attributes shared

among different samples have been explored via the prior knowledge on label relationships.

Several approaches also use sample/class relationships to conduct transductive inference [168,

105, 171, 184], e.g., transductive few-shot classification [168], meta embedding [171, 313],
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and non-parametric transformer [139]. However, those approaches usually require infer-

ence with multiple samples (e.g., query set, or bank features). Meanwhile, many recent

domain generalization methods [201, 4, 116] aim to find casual/invariant representations

across domains, which we think internally utilize the relationship among samples of the

same class but different domains. However, those methods usually investigate the sample

relationships separately. The thesis proposes to facilitate representation learning by exploring

the relationships among different samples.

1.1.5 3D Human-Object Interaction

The visual scene understanding not only requires to perceive the world in the images, but

also the geometry of the objects and scenes. Recently, implicit neural representations [195,

182, 39] dominate the 3D visual scene representation. Meanwhile, NeRF [183] represents 3D

points in the scene with density and color, and renders the scene with volumetric rendering

techniques, achieving photorealistic novel rendering. Human avatar generation [199, 165, 143,

190, 230, 158, 303, 229] has achieved significant progress, especially in novel view rendering

for novel poses. More recently, [151, 255] demonstrate appealing avatar generation under

out-of-distribution poses. For 3D Human-object interaction, early work mainly investigates

synthesizing human pose and object [120], human body reconstruction [62], object recogni-

tion [266], or human 3D pose estimation [2, 133, 38, 160] under the interaction with objects

or environments. Recently, increasing approaches [16, 233, 232, 84, 125, 46, 280, 294, 115,

262, 276] focus on 3D Interactions between Human and its surrounding objects. Zhang et

al. [294] present to reconstruct the spatial arrangements of Human-Object Interaction. [280,

46] reconstruct the meshes of human-object interactions, while recent work [125] introduces

the neural representations to human-object interaction and significantly advances the novel

view synthesis performance. Particularly, a real HOI dataset, BEHAVE [16], consisting of 8

subjects and diverse objects, is introduced with spare views of HD videos and the poses of

humans and objects. The thesis mainly conducts experiments based on BEHAVE. Concurrent

works [85, 262, 276, 115] focus on reconstruction or 3D tracking, significantly ignoring

interaction animations. Besides, though current compositional approaches on human-centric
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interactions have studied the recognition [128], detection [111], object affordance [108],

2D generation [187], and 3D human-scene synthesis [298], the compositional 3D anima-

tion remains unsolved. The thesis investigates 3D human-object interaction from the novel

challenge, compositional human-object neural animation.

1.2 Contributions

The works during my Ph.D. study mainly focus on learning transferable representations

for the hierarchical visual relationship understanding based on Human-Object Interaction,

sample relationships, and 3D Human-Object Interaction. According to the hierarchical

characteristics of the visual world, this thesis has deeply explored the compositional learning

for both 2D Human-Object Interaction and 3D Human-Object Interaction. Meanwhile, sample

relationships are also investigated according to the similarity and dissimilarity between

different samples. In a nutshell, the contributions of this thesis can be summarized as follows,

• Chapter 2 introduces a series of compositional approaches, including visual com-

positional learning, fabricated compositional learning, affordance transfer learning

and self-compositional learning for exploring human-object interaction. A core idea

behind those methods is transferring verb/object representations among different

HOI samples. Visual compositional learning effectively disentangles the verb and

object representations, and thus significantly improves the compositional general-

ization for HOI detection, including Long-tailed HOI detection and zero-shot HOI

detection. Fabricated compositional learning re-balances the distribution for HOI

dataset to facilitate HOI compositional generalization, and thus effectively improves

previous approaches on compositional HOI detection benchmarks. Affordance

transfer learning (ATL) enables object affordance recognition with HOI model by

a novel compositional affordance reasoning strategy. Meanwhile, ATL transfers

the verb representation to the novel object such that it enables the human-novel-

object interaction detection. Lastly, this thesis presents a self-compositional learning

strategy via leveraging a concept confidence matrix to build pseudo labels for all the
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composite HOI features, and thus make use of all the composite features to facilitate

the optimization on object affordance recognition and HOI concept discovery.

• Chapter 3 extends the compositional approaches from pair-wise images to mini-

batch images, and presents a simple yet effective module, named as Batch Trans-

former or BatchFormer, to implicitly explore the sample relationships for robust

representation learning. BatchFormer implicitly enables representation transfer

among different samples. Meanwhile, the chapter introduces a shared classifier

strategy to maintain batch-invariant learning, that is invariant to batch size, as a

result of which the Batchformer module can be removed during inference and thus

increases no additional computation budget. Nevertheless, the proposed Batchformer

module is limited to image classification tasks. This chapter further extends the

BatchFormer module as BatchFormerV2 for dense prediction tasks, in which the

thesis applies the BatchFormerV2 module in the vision Transformer networks in

the batch dimension. Meanwhile, the thesis shares the proposed Batchformerv2

module among different spatial positions. To maintain batch-invariant learning,

the thesis further devises a two-stream pipeline, in which one stream utilizes the

Batchformerv2 modules to explore the samples relationships, and another stream

keeps the typical networks. Among the two streams, the other modules except for

Batchformerv2 module are shared. Extensive experiments demonstrate the proposed

method on over ten popular datasets, including 1) different data scarcity settings such

as long-tailed recognition, zero-shot learning, domain generalization, and contrastive

learning; and 2) different visual recognition tasks ranging from image classification

to object detection and panoptic segmentation.

• Chapter 4 proposes a compositional 3D Human-Object neural animation approach,

which introduces a neural human-object deformation method and compositional

conditional NeRF to enable the compositionally pose-driven control of human-object

interactions for novel humans and objects. Specifically, the proposed method treats

the object as an additional pseudo bone compared to body bones, and leverages

the typical deformation methods to animate the human-object interaction. Besides,

a compositional conditional NeRF is introduced with two latent codes to control
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the identity of human and object. This chapter further presents a compositional

invariant learning to disentangle the interdependence between the two latent codes,

such that we can animate the interaction for novel person and novel objects. The

compositional invariant learning facilitates the animation for novel human-object

pairs, including novel human body and static objects, and improves the pose transfer

among different objects. Extensive experiments show the considerable generalization

on human-object neural animation for novel poses, novel person and novel objects.



CHAPTER 2

Compositional Learning for Human-Object Interaction Exploration

The visual scenes are naturally hierarchical and compositional, which has attracted extensive

interest in compositional generalization. Compositionality is one of the significant characterist-

ics in Human-Object Interaction (HOI), i.e., a Human-Object Interaction can be decomposed

into a person with a specific action and a corresponding object. Meanwhile, the decomposed

elements (e.g. verb or object) are transferable among similar objects, and are able to compose

novel HOI samples. Whilst current compositional approaches focus on the generalization

of recognition/detection, they ignore the compositional reasoning for attribute/affordances

recognition behind the compositional generalization. Specifically, each factor in the pair, e.g.,

verb-object in HOI, has individual semantics, and the compositionality does a significant

favor in reasoning the attributes (e.g., affordances for the object) of the factors. In this chapter,

we explore the compositional generalization and reasoning under Human-Object Interaction

scenarios. Human-Object Interaction does not only demonstrate the interaction between hu-

man and object, but also illustrates the affordances of the object, further implying the clues for

discovering novel-object pairs. Based on this observation, we present two additional relevant

tasks, i.e., Object affordance recognition and HOI concept discovery. To ease those challenges

simultaneously, we introduce a novel framework, named as visual compositional learning or

VCL, to mimic the ability of human-beings in compositional perception for Human-Object

Interaction. Specifically, VCL first decomposes an HOI representation into object and verb

specific features, and then composes new interaction samples in the feature space via stitching

the decomposed features. The integration of decomposition and composition enables VCL

to share object and verb features among different HOI samples and images, and to generate

new interaction samples and new types of HOI. Furthermore, we build pseudo labels from the

verb-pair confidence of the composite HOIs, and devise a self-training strategy with pseudo

12
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FIGURE 2.1. An illustration of Visual Compositional Learning (VCL). VCL
achieves the new concept feature of ⟨ride, horse⟩ from ⟨feed, horse⟩ and
⟨ride, bicycle⟩ via visual compositional learning without external prior know-
ledge.

labels to optimize all the composite HOIs in an end-to-end way, and finally significantly

improve few- and zero-shot HOI detection, object affordance recognition, and HOI concept

discovery. With extensive experiments, we demonstrate the compositional approaches not

only significantly facilitate the generalization of HOI detection, but also enable the model to

recognize object affordance and discover HOI concepts.

2.1 Motivations and Contributions

Human-Object Interaction (HOI) [78, 283] is increasingly popular among the community

due to its broad ranges of potential applications in visual scene understanding [175], action

understanding [77], and meta universe [16]. Although current HOI approaches have achieved

significant progress in common vision tasks, such as recognition [59, 155] and detection [28,

66, 235], the internal structure of HOI, i.e., compositionality, and the compositional reas-

oning have been poorly explored. A few approaches have investigated the compositional

approaches [224, 128, 176] for HOI recognition/detection. However, the compositional

reasoning for object affordance and HOI concept discovery is significantly ignored.

The visual scenes are composed of basic elements, such as objects, parts, and other semantic

regions. It is well-acknowledged that humans perceive the world in a compositional way in
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which visual scenes are treated as a layout of distinct semantic objects [103, 226]. People

usually exhibit the capacity to understand and produce a potentially infinite number of novel

combinations of known components [42], while current deep neural approaches fail to per-

ceive the visual scenes compositionally. There are massive compositional generalization

challenges [144, 132, 5] and methods [36, 166, 189, 130, 178, 5], ranging from natural

language to computer vision. Following those compositional approaches, we can understand

HOIs by decomposing them into objects and human interaction (verb) types. This decompos-

ition helps to solve the rare Human-Object Interactions with compositional generalization,

including compositional zero-shot learning and few-shot learning. For example, in HICO-

DET dataset [28], ⟨hug, suitcase⟩ is a rare case with only one example, while we have more

than 1000 HOI samples including object “suitcase”, and 500 samples including the verb

“hug”. Obviously, object representations can be shared among different HOIs. And samples

with the same verb usually exhibit similar human poses or action characteristics [91]. By

combining the concepts of “suitcase” and “hug” learned from these large number samples,

one can handle the rare case ⟨hug, suitcase⟩. This inspires to reduce the complexity of HOI

detection and handle unseen/rare categories via learning compositional components, i.e.,

human verbs and objects from visual scenes, as illustrated in Figure 2.1.

Inspired by the above analysis, this thesis proposes a conceptually simple yet effective

framework, Visual Compositional Learning (VCL), for Human-Object Interaction Detection,

which performs compositional learning on the visual verb and object representations. However,

it is non-trivial to effectively compose new valid HOI samples due to the limited HOI instances

in each image. Meanwhile, combining verbs and objects from the HOI images might also

hamper the annotated examples in the image. Therefore, we present a novel compositional

learning approach by composing HOI samples in the feature space with verb and object

features from different images and different HOI types. In this way, we can significantly

augment the training samples, and thus relieve the few- and zero-shot challenges in HOI

detection/recognition. Moreover, our VCL encourages the model to learn the shared and

distinctive verb and object representations that are insensitive to variations (i.e., the specific

images and interactions), and achieve better generalization. Compared to other compositional
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ride tiger

horse rideable tiger

Discover novel HOIs
rideable

Recognize Affordances

Affordance Transfer Learning

Å

Å

rideable

FIGURE 2.2. An intuitive example to demonstrate affordance transfer ap-
proach for jointly exploring human interactions with novel objects (e.g., “ti-
ger”), and recognizing the affordance of novel objects. The proposed method
is able to learn from the unseen interaction samples (e.g., “ride tiger”) that
are composed of affordance representations and novel object representations,
which meanwhile transfers the affordance to novel objects and enables the
object affordance recognition.

approaches [128, 208], VCL is an end-to-end framework without the requirements on language

knowledge priors.

However, in real-world scenarios, long-tailed distributions are common for the data perceived

by human vision system, e.g., actions/verbs and objects [171], which poses a significant

challenge for HOI compositional learning. The combinatorial nature of HOI further highlights

the issues of long-tailed distributions in HOI detection, while human can efficiently learn

to recognize seen and even unseen HOIs from limited samples. An intuitive example of
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Tail Classes

Few-Shot Detection

Imbalanced Detection
Zero-Shot Detection

Unseen ClassesHead Classes

ride bear

FIGURE 2.3. Open long-tailed HOI detection addresses the problem of imbal-
anced learning and zero-shot learning in a unified way. We propose to compose
new HOIs for open long-tailed HOI detection. Specifically, the blurred HOIs,
e.g., “ride bear", are composite.

open long-tailed HOI detection is shown in Figure A.2, in which one can easily recognize

the unseen action “ride bear”, nevertheless it never even happened. However, existing HOI

detection approaches usually focus on either the head [66, 161, 264], the tail [277] or unseen

categories [224, 204], leaving the the problem of open long-tailed HOI detection poorly

investigated.

Open long-tailed HOI detection falls into the category of the long-tailed zero-shot learning

problem, which is usually referred into several isolated problems, including long-tailed

learning [122, 93], few-shot learning [61, 246], zero-shot learning [146]. To address the

problem of imbalanced training data, existing methods mainly focus on three strategies: 1)

re-sampling [83, 126]; 2) re-weighted loss functions [45, 22, 92]; and 3) knowledge transfer

[263, 171, 61, 146, 216, 65]. Specifically, re-sampling and re-weighted loss functions are

usually designed for imbalance problems, while knowledge transfer is introduced to relieve

all the long-tailed [263], few-shot [225], and zero-shot problem [271, 65]. Recently, two

popular knowledge transfer methods have received increasing attention from the community,

data generation [263, 264, 271, 171, 61, 146, 216, 129] (transferring head/base classes

to tail/unseen classes) and visual-semantic embedding [65] (transferring from language

knowledge). Along the first way, we address the problem of open long-tailed HOI detection

from the perspective of HOI generation.
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FIGURE 2.4. Illustration of the distribution of the number of object box in
HICO-DET dataset. The categories are sorted by the number of instances.

Inspired by the compositionality of HOI, several zero-and few-shot HOI detection approaches

have been proposed to enforce the factored primitive (verb and object) representation of the

same primitive class to be similar among different HOIs, such as factorized model [224, 9]

and factor visual-language model [277, 204, 9]. However, regularizing factor representation,

i.e., enforcing the same verb/object representation to be similar among different HOIs, is only

sub-optimal for HOI detection. Our previous work [111] presents to compose novel HOI

samples via combining decomposed verbs and objects between pair-wise images and within

images. Nevertheless, it still remains a great challenge to compose massive HOI samples in

each minibatch from images due to the limited number of HOIs in each image, especially

when the distribution of objects/verbs is also long-tailed. We demonstrate the distribution of

the number of objects in Figure 2.4.

The long-tailed distribution of objects/verbs makes it difficult to compose new HOIs from

each mini-batch, significantly degrading the performance of compositional learning-based

methods for rare and zero-shot HOI detection [111]. Inspired by the recent success of visual

object representation generation [271, 86, 264], we thus apply fabricated object representation,

instead of fabricated verb representation, to compose more balanced HOIs. We referred to

the proposed compositional learning framework with fabricated object representation as

Fabricated Compositional Learning or FCL. Specifically, we first extract verb representations

from input images, and then design a simple yet efficient object fabricator to generate object

representation. Next, the generated visual object features are further combined with the verb

features to compose new HOI samples. With the proposed object fabricator, we are able

to generate balanced objects for each verb within the mini-batch of training data as well as

compose massive balanced HOI training samples.
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Furthermore, HOI is different from other compositional generalization challenges, the factors

(i.e., verbs and objects) of HOI also exhibit explicit semantics. In detail, the action in

the HOI also illustrates the affordances of the objects, i.e., what actions can be applied

to a particular object [73]. Different from other compositional methods [128, 208, 176]

that merely focus on compositional generalization, VCL is also capable of compositionally

reasoning the object affordances. VCL treats each HOI into a verb and an object, in which the

verb also indicates one of the possible affordances (or functionalities) of the object [75, 91].

Meanwhile, the integration of different verb and object representations during optimization

actually transfers the verb (affordance) representations to different objects, which we termed

as affordance transfer learning (ATL), and thus empowers the model to discriminate whether

a specific verb-object pair is possible or not, i.e., object affordance recognition. In other

words, VCL makes it possible to transfer the shared verb (that indicates also affordance)

representations to be semantically combinable with objects. We thus devise a compositional

object affordance reasoning method as follows: 1) we maintain a feature bank of decoupled

affordance representations from the HOI detection dataset; 2) we extract object representations

from additional object detection datasets using the same HOI backbone network; and 3) we

combine the object representations with all affordance representations in the feature bank as

the input of the HOI classifier. Finally, we are able to obtain a set of HOI predictions, which

are further used to infer the object affordances. Moreover, as illustrated in Figure 4.1, with the

combination of verb representations from HOI images and object representations from object

images, the affordance transfer approach also enables the HOI detection with novel objects,

and improves the affordance recognition for novel objects in the new domain. For example,

with the shared affordance representation (e.g., “rideable”) between “tiger” and “horse” as

illustrated in Figure 4.1, we are able to compose new HOIs (i.e., “ride tiger”), and thus enable

the detection of unseen HOIs.

Though VCL can facilitate the compositional generalization and enable the compositional

reasoning for object affordance recognition, it merely considers the predefined HOI concepts/c-

ategories and object affordances in the dataset, the same as current HOI approaches [224,

111, 235]. For instance, the preprint work [111] simply removes the composite HOIs that are

out of label space, ignoring a large number of composite samples with unknown categories
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(unlabeled composite samples). As a result, the model is inevitably biased to known object

affordances/verbs, and leads to a similar inferior performance to the one in Positive-Unlabeled

learning [49, 56, 218]. That is, without negative samples for training, the network will tend to

predict high confidence on those impossible verb-object combinations or overfit verb patterns.

Besides, there are still massive reasonable HOI concepts/categories that can be inferred from

decoupled verbs and objects from the dataset. For example, there are only 600 HOI categories

known in HICO-DET [28], while we can find 9,360 possible verb-object combinations from

117 verbs and 80 objects. Meanwhile, given that the distribution of HOI samples is naturally

long-tailed in real-world scenarios, it is quite laborious and challenging to collect all possible

HOI categories, especially for categories composed of rare actions and objects. Therefore, we

further propose to discover the novel reasonable HOI categories/concepts from known HOI

categories and their instances, named as HOI concept discovery.

Object affordance [73] indicates whether each action can be applied into an object, i.e., if

a verb-object combination is reasonable, we then discover a novel HOI concept/category.

At the same time, two objects with similar attributes usually share the same affordance, i.e.,

humans usually interact with similar objects in a similar way [73]. For example, cup, bowl,

and bottle share the same attributes (e.g., hollow), and all of these objects can be used to

“drink with". We can thus infer novel HOI categories, i.e., novel affordances for object classes,

from an object affordance perspective. An illustration of unknown HOI detection via concept

discovery is shown in Figure 2.5.

Nonetheless, the affordance prediction approach is for each object instance, while HOI

concept discovery is for the object class. Though we can estimate the possibility via collecting

the average affordance predictions of a large number of object instances, it is time-consuming

to predict affordances for a large number of objects. By contrast, we introduce an online HOI

concept discovery method, which is able to collect concept confidence in a running mean

manner with verb scores of all composite features in mini-batches during training. with the

online concept confidence, we can then construct pseudo labels [148] for all composite HOIs

belonging to either known or unknown categories. Inspired by this, we further utilize self-

training to improve the visual compositional learning framework, dubbed self-compositional



20 2 COMPOSITIONAL LEARNING FOR HUMAN-OBJECT INTERACTION EXPLORATION

carriable, holdable, fillable, …

HOI Concept Discovery Object Affordance Recognition

HOI Detection With Unknown Concept

Self-Compositional Learning
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FIGURE 2.5. An illustration of unknown HOI detection via concept discovery.
Given some known HOI concepts (e.g., “drink_with cup", “drink_with bottle",
and “hold bowl"), the task of concept discovery aims to identify novel HOI
concepts (i.e., reasonable combinations between verbs and objects). For ex-
ample, here we have some novel HOI concepts, “drink_with wine_glass", “fill
bowl", and “fill bottle". Specifically, the proposed self-compositional learning
framework jointly optimizes HOI concept discovery and HOI detection on
unknown concepts in an end-to-end manner.

learning (or SCL), via jointly optimizing all composite representations and improving concept

predictions in an iterative manner. Specifically, SCL combines the object representations with

different verb representations to compose new samples for optimization, and thus implicitly

pays attention to the object representations and improves the discrimination of composite

representations. By doing this, we can improve object affordance learning, and then facilitate

the HOI concept discovery. Moreover, with the discovered HOI concepts, we can detect HOIs

with unknown concepts.

In a nutshell, we introduce a compositional learning framework to explore Human-Object

Interaction: 1) improve the compositional generalization, including long-tailed HOI detection

and zero-shot HOI detection; 2) enable object affordance recognition with HOI model and
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significantly facilitate the performance; 3) present a novel task HOI concept discovery, and

largely improves the performance.

2.2 Related Work

2.2.1 Human-Object Interaction

HOI understanding [78] is of great importance for visual relationship reasoning [175, 278]

and action understanding [24, 301]. Different approaches have been investigated for HOI

understanding from various aspects, including HOI detection [28, 157, 161, 305, 131, 33,

318, 234, 290], HOI recognition [26, 128, 117], video HOI [48, 123], compositional action

recognition [180], 3D scene reconstruction [294, 47], video generation [187], and object af-

fordance reasoning [60]. Recently, compositional approaches have been intensively proposed

for HOI understanding using the structural characteristic [128, 111, 187, 154]. Meanwhile,

DETR-based methods (e.g., Qpic [234]) achieve superior performance on HOI detection.

However, these approaches mainly consider the perception of known HOI concepts, and

pay no attention to HOI concept discovery. To fulfill the gap between learning on known

and unknown concepts, a novel task, i.e., HOI concept discovery, is explored in this chapter.

Currently, zero-shot HOI detection also attracts massive interest from the community [224, 9,

204, 111, 110]. However, those approaches merely consider known concepts and are unable to

discover HOI concepts. Some HOI approaches [204, 9, 258, 257] expand the known concepts

via leveraging language priors. However, that is limited to existing knowledge and can not

discover concepts that never appear in the language prior knowledge. HOI concept discovery

is able to address the problem, and enable unknown HOI concept detection.

2.2.2 Object Affordance Learning

The notation of affordance is formally introduced in [73], where object affordances are usually

those action possibilities that are perceivable by an actor [191, 73, 72]. Noticeably, the action

possibilities of an object also indicate the HOI concepts related to the object. Therefore,
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object affordance can also represent the existence of HOI concepts. Recent object afford-

ance approaches mainly focus on the pixel-level affordance learning from human interaction

demonstration [138, 63, 60, 87, 186, 51, 288]. Yao et al. [284] present a weakly supervised

approach to discover object functionalities from HOI data in the musical instrument environ-

ment. Zhu et al. [316] introduce to reason affordances in knowledge-based representation.

Recent approaches propose to generalize HOI detection to unseen HOIs via functionality

generalization [9] or analogies [204]. However those approaches focus on HOI detection,

ignoring object affordance recognition. Specifically, our preliminary work et al. [107] in-

troduces an affordance transfer learning (ATL) framework to enable HOI model to not only

detect interactions but also recognize object affordances. Inspired by this, we further develop

a self-compositional learning framework to facilitate object affordance recognition with HOI

model to discover novel HOI concepts for downstream HOI tasks.

2.2.3 Compositional Learning

Disentangled representation learning has attracted increasing attention in various kinds of

visual tasks [15, 100, 172, 101, 19] and the importance of Compositional Learning to build

intelligent machines is acknowledged [15, 145, 69, 13]. Higgins et al.[101] proposed Symbol-

Concept Association Network (SCAN) to learn hierarchical visual concepts. Recently, [19]

proposed Multi-Object network (MONet) to decompose scenes by training a Variational

Autoencoder together with a recurrent attention network. However, both SCAN [101] and

MONet [19] only validate their methods on the virtual datasets or simple scenes.

Besides, Compositional GAN [6] was introduced to generate new images from a pair of objects.

Recently, Label-Set Operations network (LaSO) [1] combined features of image pairs to

synthesize feature vectors of new label sets according to certain set operations on the label sets

of image pairs for multi-label few-shot learning. Both Compositional GAN [6] and LaSO [1],

however, compose the features from two whole images and depend on generative network or

reconstruct loss. In addition, Kato et al.[128] introduced a compositional learning method for

HOI classification [26] that utilizes the visual-language joint embedding model to the feature

of the whole of the image. But [128] did not involve multiple objects detection in the scene.
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Ma et al. [176] present a concept-guided vision transformer with concept-feature dictionary,

to promote relational reasoning and facilitate semantic object-centric correspondence learning.

Our visual compositional learning framework differs from them in following aspects: i)

it composes interaction features from regions of images, ii) it simultaneously encourages

discriminative and shared verb and object representations.

Recently, there are considerable works [153, 208, 185, 5, 178, 127] investigating composi-

tional zero-shot learning. Those approaches usually incorporate language priors or language

embedding to improve the compositional generalization. They do not explore the combinable

between attributes and factors, or the compositional reasoning for the attributes recognition

(e.g., affordance recognition on HOI).

Generalized Zero/Few-Shot Learning. Different from typical zero/few-shot learning [61,

146, 246], generalized zero/few-shot learning [272] is a more realistic variant, since the

performance is evaluated on both seen and unseen classes [216, 29]. The distribution of HOIs

is naturally long-tailed [28], i.e., most classes have a few training examples. Moreover, the

open long-tailed HOI detection aims to handle the long-tailed, low-shot and zero-shot issues

in a unified way. The long-tailed data distribution [122, 93, 114] is one of the challenging

problems in visual recognition. Currently, re-sampling [79, 126], specific loss [163, 45, 22,

92], knowledge transfer [263, 171], and data generation [264, 142, 271, 1] are major strategies

for imbalanced learning [122, 93, 114]. To make full use of the composition characteristic

of HOI, we aim to compose HOI samples by visual feature generation to relieve the open

long-tailed issue in HOI detection. Recent feature generation methods [142, 271] mainly

depend on Variational Autoencoder [135] and Generative Adversarial Network [76], which

usually suffer from the problem of model collapse [214]. Wang et al.[264] present a new

method for low-shot learning that directly learns to hallucinate examples that are useful for

classification. Similar to [264], we compose HOI samples with an object fabricator in an

end-to-end optimization without using the adversarial loss.
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2.2.4 Semi-Supervised Learning

Semi-supervised learning is a learning paradigm for constructing models that use both labeled

and unlabeled data [282]. There are a wide variety of Deep Semi-Supervised Learning

methods, such as Generative Networks [136, 227], Graph-Based methods [249, 74], Pseudo-

Labeling methods [148, 275, 102]. HOI concept discovery shares a similar characteristic to

semi-supervised learning approaches. HOI concept discovery has instances of labeled HOI

concepts, but no instances of unknown concepts. We thus compose HOI representations for

unknown concepts according to [219]. With composite HOIs, concept discovery and object

affordance recognition can be treated as PU learning [49]. Moreover, HOI concept discovery

requires discriminating whether the combinations (possible HOI concepts) are reasonable and

existing. Considering each value of the concept confidences also represents the possibility of

the composite HOI, we construct pseudo labels [148, 219] for composite features from the

concept confidence matrix, and optimize the composite HOIs in an end-to-end way.

2.3 Methods

In this section, we present the proposed Compositional Learning framework for HOI detection.

We first provide an overview of the proposed compositional approaches. Then, we introduce

vanilla compositional learning. Next, we introduce a Fabricated Compositional Learning

method to address the compositional long-tailed challenge, and further leverage a pretrained

HOI model to infer the affordances of an object. Last, we present a method to predict HOI

concept confidence with compositional learning, and build pseudo labels for optimizing all

composite verb-object pairs with self-training.

2.3.1 Overview

To explore Human-Object Interaction from compositional generalization and compositional

reasoning perspectives, we propose the Visual Compositional Learning (VCL) framework to

compose HOI samples in the feature space and optimize the samples in an end-to-end way.
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FIGURE 2.6. Overview of the proposed Compositional Learning framework.
Given two images, we first detect human and objects with Faster-RCNN
[213]. Next, with ROI-Pooling and Residual CNN blocks, we extract verb
features (i.e.the union box of human and object) and object features. Then,
these features are fed into the following branches: HOI branch, compositional
branch and concept discovery branch. In compositional branch and concept
discovery branch, verb and object features are further mutually combined
to generate composite HOI features, while the verb and object features are
combined according to the annotation in HOI branch. Meanwhile, we update
the concept confidence M ∈ RNv×No , where Nv and No are the numbers
of verb classes and object classes respectively, with the predictions of all
composite HOI features. The concept discovery branch is optimized via a self-
training approach to learning from composite HOI features with the concept
confidence M. Note that all the parameters are shared across images and
the newly composited HOI instances can be from a single image if the image
includes multiple HOIs

The proposed visual compositional learning framework is able to facilitate HOI compositional

generalization, e.g., long-tail learning and compositional zero-shot learning, enables object

affordance recognition via compositional reasoning, and discover novel HOI concepts/cat-

egories. As shown in Figure 4.2, to perform compositional learning, our method takes as

input a randomly selected image pair. We first employ a Faster R-CNN [213] to detect human

and objects in images. Subsequently, we use ROI-Pooling and Residual CNN blocks to obtain

features of verbs and objects individually. We input the annotated HOI pairs into the HOI

branch, and compose new HOI samples for compositional branch among image pairs. The

predictions of all verbs and objects in each mini-batch are utilized to update the confidence



26 2 COMPOSITIONAL LEARNING FOR HUMAN-OBJECT INTERACTION EXPLORATION

matrix M ∈ RNv×No , where Nv and No are the numbers of verb classes and object classes

respectively for HOI concept discovery. Next, the confidence matrix M is leveraged to build

pseudo labels for those composite verb-object pairs that we do not know whether they are

reasonable or not. Finally, we optimize all the composite verb-object pairs with pseudo labels

in a self-traing manner. The classifier and network are shared among different branches.

2.3.2 Vanilla Compositional Learning

We first devise a vanilla compositional learning approach for HOI compositional generaliz-

ation based on a popular two-stage HOI detection pipeline. Stitching the verb and object

representations among different images or annotated HOIs generates a large number of

composite verb-object pairs. With the composite HOI samples in the feature space, we signi-

ficantly augment the dataset and diversify the sample space for HOI recognition. Meanwhile,

the combination approach can also generate samples for those unseen categories that do not

have training instances, and thus relieve the unseen distribution challenges.

Given another verb representation x̂v (sharing the same label lv with xv), and another object

representation x̂o (sharing the same label lo with xo), regardless of the sources of the verb and

object representations, an effective composition of verb and object should be

ghoi(x̂v, x̂o) ≈ ghoi(xv, xo), (2.1)

where ghoi indicates the HOI classification network. By doing this, we can compose new

verb-object pair ⟨x̂v, x̂o⟩, which have similar semantic type y to the real pair ⟨xv, xo⟩, to

relieve the scarcity of rare and unseen HOI categories. To generate effective verb-object

pair ⟨x̂v, x̂o⟩, we regularize the verb representation x̂v and object representation x̂o such that

same verbs/objects have similar feature representations. Specifically, the compositional loss

is defined as follows:

Lc = LBCE(ghoi(x̂v, x̂o), ŷ), (2.2)

Where ŷ indicates the labels for the composite HOIs.
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Nevertheless, the composite verb-object pairs might also include infeasible pairs, e.g.,

⟨feed, bicycle⟩. Therefore, it requires to select the feasible HOI samples. We first introduce a

vanilla strategy to select the composite samples. Specifically, we only keep the composite

verb-object pairs in the label space and remove the composite pairs out of label space. Though

simplicity, this strategy also effectively improves the compositional generalization for those

categories that are in the label space.

2.3.3 Fabricated Compositional Learning

The motivation of compositional learning is to decompose a model/concept into several

sub-models/concepts, in which each sub-model/concept focuses on a specific task, and then

all responses are coordinated and aggregated to make the final prediction [17]. Recent

compositional learning method for HOI detection considers each HOI as the combination

of a verb and an object to compose new HOIs from objects and verbs within the mini-batch

of training samples [128, 111]. However, existing compositional learning methods fail to

address the problem of long-tailed distribution on objects.

To address the open long-tailed issue, we propose to generate balanced objects for each

decoupled visual verb as follows. Similar to previous approaches, such as factor visual-

language joint embedding [277, 204] and factorized model [224, 81], when x̂v is similar to xv

and x̂o is similar to xo, we then have that Equation (2.1) can be generalized to HOI detection

via the compositional branch. We refer to the proposed compositional learning framework

with fabricated object representation as Fabricated Compositional Learning or FCL. We train

the proposed fabricated compositional method with composited HOI samples ⟨x̂v, x̂o⟩ in an

end-to-end manner.

2.3.3.1 Object Generation

The HOI is composed of a verb and an object, in which the verb is usually a very abstract

notation compared to the object, making it difficult to directly generate verb features. Recent

visual feature generation methods have demonstrated the effectiveness of feature generation
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FIGURE 2.7. For a given visual verb feature and each jth (0 ≤ j < No),
we firstly select the jth object identity embedding. Then, we concatenate
verb feature, object embedding and Gaussian noise to input to fabricator for
generating a fake object feature. We can fabricate No objects for a verb feature.
We finally remove nonexisting HOIs as described in Section 3.2.2.

for visual object recognition [264, 271]. Therefore, we devise an object fabricator to generate

object feature representations for composing novel HOI samples.

The overall framework of object generation is shown in Figure 2.7. Specifically, we maintain

a pool of object identity embeddings, i.e., vid. In each HOI, the pose of the object is usually

influenced by the human who is interacting the object [294], and the person who is interacting

with the object is firmly related to verb feature representation. Thus, for each extracted verb

and the jth object (0 ≤ j < No and No is the number of all different objects), we concatenate

the jth object identity embedding vjid, the verb feature xv and a noise vector ϵ ∼ N (0, 1), as

the input of the object fabricator, i.e.,

x̂o = fobj({vjid, xv, ϵ}), (2.3)

where x̂o is the fake object feature and f indicates the object fabricator network. Here, the

noise ϵ is used to increase the diversity of generated objects. We then combine the fake

object feature x̂o and the verb xv to compose a new HOI sample ⟨xv, x̂o⟩. Specifically, during

training, both real HOIs and composite HOIs share the same HOI classification network ghoi.

We further devise a regularization loss Lreg to regularize the verb representations as follow,
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Lreg = LBCE(xv, lv) (2.4)

where lv is the label (verb category) of the verb representations. Lreg aims to regularize verb

features. Specifically, object features extracted from a pre-trained object detector backbone

network (i.e.Faster-RCNN [213]) are usually discriminative. Thus, we only regularize verb

representation.

2.3.4 Label Decomposition and Composition

In the proposed method, we should decompose the annotated HOIs into verbs and objects,

and further compose novel HOIs. For the feature decomposition and composition, we

use bounding boxes to decompose and the concatenation operation to compose. For the

corresponding HOI label process, we devise a simple way as follows.

Given two images I1 and I2, we compose new interaction samples within a single image

and between images by first considering all possible verb-object pairs and then removing

infeasible interactions in the HOI label space.

Existing HOI labels mainly contain one object and at least one verb, which set the HOI

detection as a multi-label problem. To avoid frequently checking verb-object pairs, we design

an efficient composing and removing strategy. First, we decouple the HOI label space into a

verb-HOI matrix Av ∈ RNv×C and an object-HOI matrix Ao ∈ RNo×C , where Nv, No, and C

denote the number of verbs, objects and HOI categories respectively. Av (Ao) can be viewed

as the co-occurrence matrix between verbs (objects) and HOIs. Then, given binary HOI

label vectors y ∈ RN×C , where N , C denote the number of interactions and HOI categories

(Annotated in dataset) respectively. We can obtain the object label vector and verb label

vector as follows,

lo = yAT
o , lv = yAT

v , (2.5)
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where lo ∈ RN×No is usually one-hot vectors meaning one object of a HOI example, and

lv ∈ RN×Nv is possibly multi-hot vectors meaning multiple verbs. e.g.⟨{hold, sip}, cup⟩).

Similarly, we can generate new interactions from arbitrary lo and lv as follows,

ŷ = (loAo)&(lvAv), (2.6)

where & denotes the “and” logical operation. The infeasible HOI labels that do not exist

in the given label space are all-zero vectors after the logical operation. And then, we can

filter out those infeasible HOIs. In the implementation, we obtain verbs and objects from two

images by ROI pooling and treat them within and between images as the same. Therefore, we

do not treat two levels of composition differently during composing HOIs.

2.3.5 Affordance Transfer Learning

In addition to demonstrating what the interaction looks like, Human-Object Interaction also

illustrates how to apply the actions to the target objects, i.e., Object Affordance. In this

section, we devise an affordance transfer approach based on the visual compositional learning

framework to transfer the object affordances from HOI images to object images. Specifically,

we first decompose the verb representations from HOI images and the object representation

from object images, and then combine the object representation and verb representation to

compose novel HOI features, and finally optimize the composite features and real features in

an end-to-end way, as illustrated in Figure 2.8.

2.3.5.1 Compositional Object Affordance Reasoning

The compositional approach not only facilitates compositional generalization for HOI de-

tection, but also enables compositional object affordance reasoning. In this subsection, we

introduce how to infer the object affordance during the testing phase. Considering that we

jointly optimize the decoupled components (i.e., object features and affordance features from

object and HOI images) in HOI samples and novel object samples with affordance transfer

learning, the proposed method thus is able to distinguish whether a novel object is combinable
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FIGURE 2.8. An overview of affordance transfer learning or ATL for HOI
detection. We first extract the human, object, and affordance features via the
ROI-Pooling from the feature pyramids [213], respectively. Meanwhile, we
also extract new object features from an additional object dataset using the
same backbone network. After that, we concatenate the affordance and the
object features (from HOI datasets) as the real HOIs. We also compose new
HOIs using the affordance features and the object features extracted from
additional object datasets, which transfer the affordance to novel objects. Both
the composite HOIs and real HOIs share the same HOI classifier. In addition,
human features and spatial pattern features are combined to construct the
spatial HOI branch.

or not with a specific affordance (i.e., valid HOIs). Therefore, we design a simple yet effective

object affordance recognition method using the HOI detection model. Specifically, we first

build an affordance feature bank as follows.

Affordance Feature Bank. We construct the affordance feature bank from HOI datasets

(e.g.HICO-DET and HOI-COCO). In order to reduce storage space and computation, we

randomly choose a maximum of L instances for each affordance in HICO-DET. Then, we

extract the features of those affordances to construct an off-the-shelf affordance feature bank.

Given an object feature extracted from the object image, we combine it with all affordances

in the feature bank to obtain a set of HOIs. As illustrated in Figure 2.9, we obtain all HOI

predictions from the HOI classifier. After that, we are able to convert all HOI predictions to
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FIGURE 2.9. An illustration of compositional object affordance reasoning
with HOI network. Here, we use verb to represent affordance. We first
construct an affordance feature bank from the decoupled affordance repres-
entations. For any object (e.g.strawberry), we extract the object feature by
the Feature Extractor according to the bounding box. Then, the object feature
is combined with all affordances in the bank to input into HOI classifier for
obtaining predicted interactions. The interactions are further converted into
affordances (e.g.eatable).

affordance predictions according to the HOI-verb co-occurrence matrix Av. Specifically, we

remove the predicted affordances whose label is not the same as the corresponding affordance

labels in the feature bank. As a result, we obtain a list of affordances with many repeated

elements. Let Fi denotes the frequency (count) of the affordance i and Si indicate the number

of affordance (or verb) i in the feature bank, we evaluate the probability of the affordance i

as Fi

Si
. Via averaging the prediction for each object class, we can obtain concept discovery

confidence.

2.3.6 Concept Discovery

As shown in Figure 4.2, we keep an HOI concept confidence vector during training, M ∈

RNvNo , where each value represents the concept confidence of the corresponding combination
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between a verb and an object. To achieve this, we first extract all verb and object repres-

entations among pair-wise images in each batch as xv and xo. We then combine each verb

representation and all object representations to generate the composite HOI representations

xh. After that, we use the composite HOI representations as the input to the verb classifier

and obtain the corresponding verb predictions Ŷv ∈ RNN×Nv , where N indicates the number

of real HOI instances (i.e., verb-object pair) in each mini-batch and NN is then the number

of all composite verb-object pairs (including unknown HOI concepts). Let Yv ∈ RN×Nv

and Yo ∈ RN×No denote the label of verb representations xv and object representations xo,

respectively. We then have all composite HOI labels Yh = Yv⊗Yo, where Yh ∈ RNN×NvNo ,

and the superscripts h, v, and o indicate HOI, verb, and object, respectively, ⊗ indicate kro-

necker product. Similar to affordance prediction, we repeat Ŷv by No times to obtain concept

predictions Ŷh ∈ RNN×NvNo . Finally, we update M in a running mean manner [118] as

follows,

M← M⊙C+
∑NN

i Ŷh(i, :)⊙Yh(i, :)

C+
∑NN

i Yh(i, :)
, (2.7)

C← C+
NN∑
i

Yh(i, :), (2.8)

where ⊙ indicates the element-wise multiplication, Ŷh(i, :) ⊙ Yh(i, :) aims to filter out

predictions whose labels are not Yh(i, :), each value of C ∈ RNvNo indicates the total

number of composite HOI instances in each verb-object pair (including unknown HOI

categories). Actually, Ŷh(i, :)⊙Yh(i, :) follows the affordance prediction process [107]. The

normalization with C is to avoid the model bias to frequent categories. Specifically, both M

and C are zero-initialized. With the optimization of HOI detection, we can obtain the vector

M to indicate the HOI concept confidence of each combination between verbs and objects.

2.3.7 Self-Training

Existing HOI compositional learning approaches [111, 110, 107] usually only consider the

known HOI concepts and simply discard the composite HOIs out of label space during

optimization. Therefore, there are only positive data for object affordance learning, leaving a
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large number of unlabeled composite HOIs ignored. Considering that the concept confidence

on HOI concept discovery also demonstrates the confidence of affordances (verbs) that can be

applied to an object category, we thus try to explore the potential of all composite HOIs, i.e.,

both labeled and unlabeled composite HOIs, in a semi-supervised way. Inspired by the way

used in PU learning [49] and pseudo-label learning [148], we devise a self-training strategy

by assigning the pseudo labels to each verb-object combination instance using the concept

confidence matrix M, and optimize the network with the pseudo labels in an end-to-end

way. With the self-training, the online concept discovery can gradually improve the concept

confidence M, and in turn, optimize the HOI model for object affordance learning with the

concept confidence. Specifically, we construct the pseudo labels Ỹv ∈ RNN×Nv from the

concept confidence matrix M ∈ RNv×No for composite HOIs xh as follows,

Ỹv(i, :) =
No∑
j

M(:, j)

max(M)
⊙Yh(i, :, j), (2.9)

where 0 ≤ j < No indicates the index of object category, 0 ≤ i < NN is the index of HOI

representations. Here, N is the number of HOIs in each mini-batch, and is usually very small

on HICO-DET and V-COCO. Thus the time complexity of Equation 2.9 is small. The labels

of composite HOIs are reshaped as Yh ∈ RNN×Nv×No . Noticeably, in each label Yh(i, :, :),

there is only one vector Yh(i, :, j) larger than 0 because each HOI has only one object. As

a result, we obtain pseudo verb label Ỹv(i, :) for HOI xhi
. Finally, we use composite HOIs

with pseudo labels to train the models, and the loss function is defined as follows,

Ld =
1

NN

NN∑
i

(
1

Nv

Nv∑
k

LBCE(
Z(i, k)

T
, Ỹv(i, k))), (2.10)

where Z(i, :) is the prediction of the i-th composite HOI, 0 ≤ k < Nv means the index of

predictions, T is the temperature hyper-parameter to smooth the predictions (the default value

is 1 in the experiment), LBCE indicates the binary cross entropy loss.
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2.3.8 Optimization

During the training stage, we train the proposed method with typical loss Lh for the annotated

HOIs in HOI branch, a loss Lc for compositional branch, which removes infeasible composite

HOIs, and Ld for all composite HOIs with pseudo labels in concept discovery branch. Mean-

while, similar to [66, 157], we can also incorporate spatial patterns via a unique branch to

facilitate HOI detection. We use Lother to indicate this loss. Lastly, the overall training loss

function is defined as follows,

L = λ1Lh + λ2Lc + λ3Ld + Lother + λ4Lreg, (2.11)

where λ1, λ2, λ3 and λ4 are four hyper-parameters to balance different losses. Both the feature

extractors and the classifier modules are jointly trained in an end-to-end manner. Lh, Lh, Lc,

Ld are binary cross entropy losses. Lother can be the additional losses, e.g., the loss for spatial

features, which enhances the HOI representations for classification.

During the testing stage, the compositional learning modules are not necessary.

2.4 Experiments

2.4.1 Datasets and Evaluation Metrics

2.4.1.1 Dataset

We evaluate the proposed method on HICO-DET [28] and V-COCO [80] for HOI detection.

For object affordance recognition, we build HOI-COCO and use HICO-DET for training. We

evaluate the performance of object affordance recognition on HICO-DET test set, HOI-COCO

test set, COCO [164] validation set, and Object365 [223] subset. Those datasets are listed as

follows,

HICO-DET [28] dataset consists of 38,118 images in the training set and 9,658 test images

over 600 types of interactions (80 object categories in COCO dataset and 117 unique verbs)

with over 90,000 HOI instances.
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HOI-COCO is built from the V-COCO dataset [80], which contains 10,346 images with

16,199 person instances. Each annotated person in V-COCO has binary labels for 26 different

actions. V-COCO mainly focuses on verb recognition, and has limited object categories (only

two). Thus we construct a new benchmark HOI-COCO for the evaluation of verb-object

pairs as follows. We use 21 actions from all 26 actions in V-COCO (i.e., five non-interaction

actions, “walk", “run, “smile", “stand" and “point ", are removed). As a result, we build

HOI-COCO benchmark with 222 HOI categories over 21 verbs and 80 objects. Meanwhile,

we use the same train/val split in V-COCO for HOI-COCO. Similar to HICO-DET [28], we

evaluate the performance on HOI-COCO under three different settings: Full (222 types), Rare

(97 types), and NonRare (115 types). The HOI type in Rare category contains less than 10

training instances, and the distribution of HOI categories is long-tailed.

COCO [164] dataset is a widely-used benchmark for common object detection with 80

different object classes. Considering that both HICO-DET [28] and HOI-COCO consist of

the same object label sets to COCO, we thus directly incorporate the COCO dataset as the

additional object dataset in our experiments.

Object365 [223] is a recently proposed large-scale common object detection dataset with

365 object categories. The domain of Object365 is different from COCO [164]. In detail, we

select objects that are labeled as COCO classes from Object365 validation dataset to evaluate

the affordance recognition of objects on new domain. Meanwhile, we choose 12 new types of

objects and label manually the affordance of those objects according to the HICO-DET and

HOI-COCO, respectively. Those objects are used to evaluate affordance recognition on new

types of objects.

Moreover, We extend two popular HOI detection datasets, HICO-DET [28] and V-COCO [80],

to evaluate the performance of different methods for HOI concept discovery. Specifically,

we first manually annotate all the possible verb-object combinations on HICO-DET (117

verbs and 80 objects) and V-COCO (24 verbs and 80 objects). As a result, we obtain 1,681

concepts on HICO-DET and 401 concepts on V-COCO, i.e., 1,681 of 9,360 verb-object

combinations on HICO-DET and 401 of 1,920 verb-object combinations on V-COCO are

reasonable. Besides, 600 of 1,681 HOI concepts on HICO-DET and 222 of 401 HOI concepts
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on V-COCO are known according to existing annotations. Thus, the HOI concept discovery

task requires discovering the other 1,081 concepts on HICO-DET and 179 concepts on

V-COCO.

2.4.1.2 Evaluation Metrics

We follow the standard evaluation metric [66, 277] and report mean average precision for

HICO-DET dataset [28], V-COCO and HOI-COCO. A prediction is a true positive only when

the detected human and object bounding boxes have IoUs larger than 0.5 with reference to

ground truth, and the HOI category is accurately predicted. Object affordance recognition is a

multi-label classification problem (i.e.an object usually has multiple affordances). Thus, we

compare mean Average Precision for evaluating object affordance recognition. HOI concept

discovery aims to discover all reasonable combinations between verbs and objects according

to existing HOI training samples. We report the performance by using the average precision

(AP) for concept discovery and mean AP (or mAP) for object affordance recognition. For

HOI detection, we also report the performance using mAP.

2.4.2 Implementation Details

For HICO-DET, similar to recent methods [10], we use the object detector fine-tuned on

HICO-DET. For HOI-COCO, we directly use the object detector pre-trained on COCO.

Besides, all HOI classifiers consist of two fully-connected layers with 1024 hidden units. To

compare with recent methods on HICO-DET, we use two object images in each mini-batch.

On HOI-COCO, we only use one object image for evaluation. Following [110], we also

include a sigmoid loss for verb representation and the loss weight is 0.3 on HICO-DET.

During training, following [66, 157, 111], we augment the ground truth boxes via random

crop and random shift. During inference, we keep human and objects with the score larger

than 0.3 and 0.1 on HICO-DET respectively. λ1 = 2, λ2 = 0.5, λ3 = 0.5 on HICO-DET,

and λ1 = 0.5, λ2 = 0.5, λ3 = 0.5 on V-COCO/HOI-COCO, respectively. λ4 = 0.3 is only

used for HICO-DET. To prevent composite interactions from dominating the training of the

model, we keep the number of composite interactions not more than the number of objects
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in each mini-batch by randomly sampling composite HOIs. We train the model for 1.2M

iterations on HICO-DET dataset and 300K iterations on HOI-COCO with an initial learning

rare of 0.01. For object affordance recognition, we use the actions of each HOI dataset as

affordances and remove the “no interaction” categories on HICO-DET dataset. We keep

the object affordance predictions if the affordance score is large than 0.5. For self-training

on affordance recognition and concept discovery, we use a modified HOI compositional

learning framework, i.e., we directly predict the verb classes and optimize the composite HOIs

using SCL. For self-training, we remove the composite HOIs when its corresponding concept

confidence is 0, i.e., the concept confidence has not been updated. If not stated, the backbone

is ResNet-101. The Classifier is a two-layer MLP. We train the model for 3.0M iterations

on HICO-DET and 300K iterations on HOI-COCO with an initial learning rate of 0.01. For

zero-shot HOI detection, we keep human and objects with the score larger than 0.3 and 0.1 on

HICO-DET, respectively. In our experiment, L is 100 in consideration of the computation

and efficiency. Experiments are conducted using a single Tesla V100 GPU (16GB), except

for experiments on Qpic [234], which uses four V100 GPUs with PyTorch [197].

2.4.3 HOI detection

2.4.3.1 Fabricated Compositional Learning

We compare FCL with recent state-of-the-art HOI detection approaches [259, 161, 9, 111,

67] using fine-tuned object detector on HICO-DET to validate its effectiveness on long-tailed

HOI detection. For fair comparison, we use the same fine-tuned object detector provided

by [111]. For evaluation, we follow the settings in [28]: Full (600 HOIs), Rare (138 HOIs),

Non-Rare (462 HOIs) in “Default" and “Known Object" on HICO-DET.

HICO-DET In Table 2.1, we find that the proposed method achieves new state-of-the-art

performance, 24.68% and 26.80% mAP on “Default" and “Known Object". Meanwhile, we

achieve a significant performance improvement of 2.82% over the contemporary best rare

performance model [111] under the same object detector, which indicates the effectiveness of

the proposed compositional learning for the long-tailed HOI detection. Furthermore, with the
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TABLE 2.1. Comparison to the state-of-the-art approaches on HICO-DET
dataset [28]. FCL DRG is FCL with object detector provided by [67]. FCL +
VCL means we fuse the result provided in [111] with FCL. VCLDRG uses the
released model of VCL.

Method Default Known Object
Full Rare NonRare Full Rare NonRare

FG [9] 21.96 16.43 23.62 - - -
IP-Net [259] 19.56 12.79 21.58 22.05 15.77 23.92
PPDM [161] 21.73 13.78 24.10 24.58 16.65 26.84
VCL [111] 23.63 17.21 25.55 25.98 19.12 28.03
DRG [67] 24.53 19.47 26.04 27.98 23.11 29.43
Baseline 23.35 17.08 25.22 25.44 18.78 27.43
FCL 24.68 20.03 26.07 26.80 21.61 28.35
FCL + VCL 25.27 20.57 26.67 27.71 22.34 28.93
VCL [111] DRG 28.33 20.69 30.62 30.59 22.40 33.04
BaselineDRG 28.12 21.07 30.23 30.13 22.30 32.47
FCL DRG 29.12 23.67 30.75 31.31 25.62 33.02
(FCL + VCL) DRG 30.11 24.46 31.80 32.17 26.00 34.02
VCL [111] GT 43.09 32.56 46.24 - - -
FCLGT 44.26 35.46 46.88 - - -
(FCL + VCL)GT 45.25 36.27 47.94 - - -

TABLE 2.2. Illustration of Fabricated Compositional Learning on V-COCO
based on PMFNet [248]

Method AProle

PMFNet [248] 52.0
Baseline 51.85
FCL 52.35

same object detection result to [67], our results surprisingly increase to 29.12% on “Default”

mode. Here, we merely change the detection result provided in [111] to that provided in

[67] during inference. Particularly, we find our method is complementary to compose HOIs

between images [111]. By simply fusing the result provided by [111] with FCL, we can

further largely improve the results under different object detectors.

V-COCO We also evaluate FCL on V-COCO. Although the data on V-COCO is balanced,

FCL still improves the baseline (reproduced PMFNet [248]) in Table A.8.
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TABLE 2.3. Comparison to recent state-of-the-art methods with fine-tuned
detector on HICO-DET dataset [28]. The content in brackets indicates the
source of the object images. The last two rows are one-stage HOI detection
results.

Method Default Known Object
Full Rare NonRare Full Rare NonRare

FG [10] 21.96 16.43 23.62 - - -
IP-Net [259] 19.56 12.79 21.58 22.05 15.77 23.92
PPDM [161] 21.73 13.78 24.10 24.58 16.65 26.84
DRG [67] 24.53 19.47 26.04 27.98 23.11 29.43
VCL [111] 23.63 17.21 25.55 25.98 19.12 28.03
ATL (HICO-DET) 23.67 17.64 25.47 26.01 19.60 27.93
ATL (COCO) 24.50 18.53 26.28 27.23 21.27 29.00
ATL (HICO-DET) DRG 27.68 20.31 29.89 30.05 22.40 32.34
ATL (COCO) DRG 28.53 21.64 30.59 31.18 24.15 33.29
Baseline (One-Stage) 22.77 16.54 24.63 26.31 21.60 27.72
ATL (One-Stage) 23.81 17.43 25.72 27.38 22.09 28.96

2.4.3.2 Affordance Transfer Learning

HICO-DET. We report the performance on three different settings: Full (600 categories),

Rare (138 categories) and NonRare (462 categories) in “Default" and “Known" modes on

HICO-DET. As shown in Table 2.3, the proposed method outperforms recent state-of-the-art

methods among all categories. Furthermore, with better object detection results provided in

[67], the performance of ATL dramatically increases to 28.53%. Meanwhile, we find ATL is

more effective on the Rare category. Specifically, when using the objects from the training set

of HICO-DET, the proposed method is similar to VCL [111] as shown in Table 2.3. ATL also

improves the baseline effectively based on the One-Stage method. Here, the baseline is the

model without compositional learning.

HOI-COCO. We find the proposed method has similar performance to VCL when using

HOI-COCO as the source of object images in Table 2.4. Here, we evaluate the performance of

VCL on HOI-COCO dataset using the official code from [111]. When using the COCO object

dataset, the proposed method signifcantly improves the performance, especially on Rare

categories, e.g., over 1.5% than VCL and 2.9% than the baseline, respectively. Meanwhile,

the proposed method also gives a larger improvement than baseline in NonRare category
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TABLE 2.4. Comparison to recent state-of-the-art methods on HOI-COCO
dataset.

Method object data Full Rare NonRare
Baseline - 22.86 6.87 35.27
VCL [111] HOI-COCO 23.53 8.29 35.36
ATL HOI-COCO 23.40 8.01 35.34
ATL COCO 24.84 9.79 36.51
ATL COCO, HICO-DET 25.29 9.85 37.27

comparing with VCL, suggesting that ATL also increases the diversity of HOIs via composing

new samples. Furthermore, when using both HICO-DET and COCO to provide object images,

we further improve the performance to 25.29%.

2.4.4 Zero-Shot HOI detection

The proposed affordance transfer learning enables the detection of HOIs with novel objects

due to the mechanism of composing HOI samples of unseen classes. Therefore, we eval-

uate the proposed method for zero-shot HOI detection on HICO-DET [28]. We report the

performance on two settings: 1) Unseen Composition and 2) Novel Object. Specifically,

Unseen Composition means there are unseen HOIs in the test but the verbs and objects of

the unseen HOIs exist in training data, while the objects of unseen HOIs in novel object HOI

detection do not exist in training data. For compositional zero-shot learning, we follow [111]

to evaluate on rare-first unseen HOIs (firstly select tail HOIs in HICO-DET as unseen data)

and non-rare first unseen HOIs (firstly select head HOIs in HICO-DET as unseen data). We

evaluate zero-shot HOI detection on three categories: Unseen (120 categories), Seen (480

categories) and Full (600 categories). For novel object HOI detection, similar to [10], we

choose 100 unseen categories (including 12 unseen objects) and 500 seen categories. We

choose the object detector provided in [111] to compare fairly with [111].

2.4.4.1 Fabricated Compositional Learning

There are different settings [9] for zero-shot HOI detection: 1) unseen composition; and 2)

unseen object. Specifically, for the unseen composition setting, it indicates that the training
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TABLE 2.5. Comparison of zero-shot detection results of our proposed
method. UC indicates unseen composition zero-shot HOI detection. UO
indicates unseen object zero-shot HOI detection. For better illustration, we
choose the mean UC result of [9].

Method Type Unseen Seen Full
Shen et al.[224] UC 5.62 - 6.26
FG [9] UC 11.31 12.74 12.45
VCL [111] (rare first) UC 10.06 24.28 21.43
Baseline (rare first) UC 8.94 24.18 21.13
Factorized (rare first) UC 7.35 22.19 19.22
FCL (rare first) UC 13.16 24.23 22.01
VCL [111] (non-rare first) UC 16.22 18.52 18.06
Baseline (non-rare first) UC 13.47 19.22 18.07
Factorized (non-rare first) UC 15.72 16.95 16.71
FCL (non-rare first) UC 18.66 19.55 19.37
FG [9] UO 11.22 14.36 13.84
Baseline UO 12.86 20.77 19.45
FCL UO 15.54 20.74 19.87

data contains all factors (i.e., verbs and objects) but misses the verb-object pairs; for the

unseen object setting, it requires to detect unseen HOIs, in which the object do not appear

in the training data. For unseen composition HOI detection, similar to [111], we select two

groups of 120 unseen HOIs from tail preferentially (rare first) and from head preferentially

(non-rare first) separately, which roughly compares the lowest and highest performances. As

a result, we report our result in the following settings: Unseen (120 HOIs), Seen (480 HOIs),

Full (600 HOIs) in the “Default" mode on HICO-DET dataset. For a better comparison,

we implement the factorized model [224] under our framework for unseen composition

zero-shot HOI detection. For unseen object HOI detection, we use the same HOI categories

for unseen data as [9] (i.e.randomly selecting 12 objects from the 80 objects and picking all

HOIs containing those objects as unseen HOIs). Then, we report our results in the setting:

Unseen (100 HOIs), Seen (500 HOIs), Full (600 HOIs). To compare with the contemporary

work [111], we use the same object detection result released by [111]. Here, our baseline

method is the model without object fabricator, i.e., the compositional branch.

Unseen composition. Table 2.5 shows that FCL achieves large improvement on Unseen

category by 4.22% and 5.19% than baseline, and by 3.10% and 2.44% compared to previous

works [9, 111] on the two selection strategies respectively. Meanwhile, the two selection
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strategies witness a consistent improvement with FCL on nearly all categories, which indicates

that composing novel HOI samples contributes to overcome the scarcity of HOI samples. In

rare first selection, FCL has a similar result to baseline and VCL [111] on Seen category.

But step-wise optimization can improve the result on Seen category and Full category (See

Table 2.14). In addition, the factorized model has a very poor performance in the head

classes compared to our baseline. Noticeably, factorized model achieves better performance

on Unseen category than the baseline in non-rare first selection while has worse results

on Unseen category in the rare first selection. FCL witnesses a consistent improvement in

different evaluation settings. In the remaining data, unseen HOIs of rare first zero-shot have

more rare verbs (less than 10 instances) than that of non-rare first zero-shot.

Unseen object. We further evaluate FCL in novel object zero-shot HOI detection, which

requires to detect HOIs that is interacting with novel objects. Table 2.5 shows FCL effectively

improves the baseline by 2.68% on Unseen Category, although there are no real objects of

unseen HOIs in training set. This illustrates the ability of FCL for detecting unseen HOIs

with novel objects. Here, the same as [9], we also use a generic detector to enable unseen

object detection.

2.4.4.2 Affordance Transfer Learning

Compositional Zero-Shot HOI Detection. In Table 2.6, we find our approach effectively

improves the non-rare first zero-shot HOI detection. Meanwhile, our approach achieves better

result on seen category in rare first zero-shot HOI detection. Particularly, the affordances in

tail part of HOIs are usually rare, the composite samples of tail HOIs with additional objects

are much less than that of head HOIs. Therefore, our approach achieves even worse result on

unseen category.

Novel Object HOI Detection. Table 2.6 demonstrates that transferring affordance representa-

tion to novel objects effectively facilitates the detection of unseen HOIs with novel objects.

Here we use the network without affordance transfer learning as our baseline. We find using

HICO-DET (remove HOIs with unseen objects) as object images even degrades the perform-

ance on unseen categories compared to the baseline because we compose massive seen HOI
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TABLE 2.6. Comparison of Zero Shot Detection results of our proposed
method. UC means unseen composition HOI detection. NO means novel
object HOI detection. * means we only use the boxes of the detection results.
Here, the baseline means we do not use affordance transfer learning.

Method Type Unseen Seen Full
Shen et al.[224] UC 5.62 - 6.26
FG [10] UC 10.93 12.60 12.26
VCL [111] (rare first) UC 10.06 24.28 21.43
ATL (rare first) UC 9.18 24.67 21.57
VCL [111] (non-rare first) UC 16.22 18.52 18.06
ATL (non-rare first) UC 18.25 18.78 18.67
FG [10] NO 11.22 14.36 13.84
Baseline NO 12.84 20.63 19.33
ATL (HICO-DET) NO 11.35 20.96 19.36
ATL (COCO) NO 15.11 21.54 20.47
Baseline* NO 0.00 14.13 11.77
ATL (HICO-DET)* NO 0.00 13.67 11.39
ATL (COCO)* NO 5.05 14.69 13.08

samples but not unseen HOI samples with HICO-DET. Besides, similar to [10], we use a

generic object detector to enable HOI detection with novel objects, which provides a strong

baseline. While we only use the boxes of the detector (not use the object label predicted by

detector), the performances of baseline and ATL (HICO-DET) on unseen categories decrease

to 0. However, ATL (COCO) still achieves 5.05% on the unseen category.

2.4.5 Object Affordance Recognition

Following [107] that has discussed average precision (AP) is more robust for evaluating object

affordance, we evaluate object affordance recognition with AP on HICO-DET. Table A.34

illustrates SCL largely improves SCL− (without self-training) by over 9% on Val2017,

Object365, HICO-DET under the same training iterations. SCL requires more iterations to

converge, and SCL greatly improves previous methods on all datasets with 3M iterations

(Please refer to Appendix for convergence analysis). Noticeably, SCL directly predicts

verb rather than HOI categories, and removes the spatial branch. Thus, SCL without self-

training (SCL−) is a bit worse than ATL. Previous approaches ignore the unknown affordance

recognition. We use the released models of [107] to evaluate the results on novel affordance

recognition. Here, affordances of novel classes (annotated by hand [107]) are the same in the
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TABLE 2.7. Comparison of object affordance recognition with HOI network
(trained on HICO-DET) among different datasets. Val2017 is the validation
2017 of COCO [164]. Obj365 is the validation of Object365 [223] with only
COCO labels. Novel classes are selected from Object365 with non-COCO
labels. ATL∗ means ATL optimized with COCO data. Unknown affordances
indicate we evaluate with our annotated affordances. Previous approaches [111,
107] are usually trained by less 0.8M iterations (Please refer to the released
checkpoint in [111, 107]). We thus also illustrate SCL under 0.8M iterations
by default. SCL− means SCL without self-training. Results are reported by
Mean Average Precision (%).

Method Known Affordances Unknown Affordances
Val2017 Obj365 HICO Novel Val2017 Obj365 HICO Novel

FCL [110] 25.11 25.21 37.32 6.80 - - - -
VCL [111] 36.74 35.73 43.15 12.05 28.71 27.58 32.76 12.05
ATL [107] 52.01 50.94 59.44 15.64 36.80 34.38 42.00 15.64
ATL∗ [107] 56.05 40.83 57.41 8.52 37.01 30.21 43.29 8.52
SCL− 50.51 43.52 57.29 14.46 44.21 41.37 48.68 14.46
SCL 59.64 52.70 67.05 14.90 47.68 42.05 52.95 14.90
SCL (3M iters) 72.08 57.53 82.47 18.55 56.19 46.32 64.50 18.55

TABLE 2.8. Comparison of object affordance recognition with HOI network
among different datasets (based on Mean average Precision). Val2017 is the
validation 2017 of COCO [164]. Subset of Object365 is the validation of
Object365 [223] with only COCO labels. Novel classes are selected from
Object365 with non-COCO labels. Object means what object dataset we
use. ATLZS means novel object zero-shot HOI detection model in Table 3 on
HICO-DET. For ATLZS , we show the results of the 12 classes of novel objects
in Val2017, Subset of Object365 and HICO-DET.

Method HOI Data Object Val2017 of COCO Subset of Object365
Rec Prec F1 Rec Prec F1

Baseline HOI - 28.62 32.34 27.08 21.75 22.20 19.83
VCL [111] HOI HOI 76.93 71.79 72.15 68.60 67.52 65.82
ATL HOI HOI 80.71 72.79 74.44 71.76 67.34 67.13
ATL HOI COCO 90.94 87.33 87.65 82.95 82.13 80.80

two settings. We find SCL improves the performance considerably by over 10% on Val2017

and HICO-DET.
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TABLE 2.9. Comparison of object affordance recognition with HOI network
among different datasets (based on Mean average Precision). Val2017 is the
validation 2017 of COCO [164]. Subset of Object365 is the validation of
Object365 [223] with only COCO labels. Novel classes are selected from
Object365 with non-COCO labels. Object means what object dataset we
use. ATLZS means novel object zero-shot HOI detection model in Table 3 on
HICO-DET. For ATLZS , we show the results of the 12 classes of novel objects
in Val2017, Subset of Object365 and HICO-DET.

Method HOI Data Object HICO-DET Novel classes
Rec Prec F1 Rec Prec F1

Baseline HOI - 36.64 49.83 37.67 12.39 8.63 9.62
VCL [111] HOI HOI 87.98 82.59 83.84 54.75 35.85 40.43
ATL HOI HOI 90.29 83.21 85.30 58.73 37.75 42.75
ATL HOI COCO 93.35 90.77 91.02 53.65 40.94 43.57

2.4.6 HOI Concept Discovery

Baseline and Methods. We perform experiments to evaluate the effectiveness of our proposed

method for HOI concept discovery. For a fair comparison, we build several baselines and

methods as follows,

• Random: we randomly generate the concept confidence to evaluate the performance.

• Affordance: discover concepts via affordance prediction [107] as described in

Sec 2.3.5.1.

• GAT [244]: build a graph attention network to mine the relationship among verbs

during HOI detection, and discover concepts via affordance prediction.

• Qpic* [234]: convert verb and object predictions of [234] to concept confidence

similar as online discovery.

• Qpic* +SCL: utilize concept confidence to update verb labels, and optimize the

network (Self-Training). Here, we have no composite HOIs.

Please refer to the Appendix for more details, comparisons (e.g., re-training, language

embedding), and qualitative discovered concepts with analysis.

Results Comparison. Table 2.10 shows affordance prediction is capable of HOI concept

discovery since affordance transfer learning [107] also transfers affordances to novel objects.
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TABLE 2.10. The performance of the proposed method for HOI concept dis-
covery. We report all performance using the average precision (AP) (%). SCL
means self-compositional learning. SCL− means online concept discovery
without self-training. K indicates Known, while UK indicates UnKnown.

Method HICO-DET V-COCO
UK (%) K (%) UK (%) K (%)

Random 12.52 6.56 12.53 13.54
Affordance [107] 24.38 57.92 20.91 95.71
GAT [244] 26.35 76.05 18.35 98.09
Qpic* [234] 27.53 87.68 15.03 13.21
SCL− 22.25 83.04 24.89 96.70
Qpic* [234] + SCL 28.44 88.91 15.48 13.34
SCL 33.58 92.65 28.77 98.95

Affordance prediction achieves 24.38% mAP on HICO-DET and 21.36% mAP on V-COCO,

respectively, significantly better than the random baseline. With graph attention network, the

performance is further improved a bit. Noticeably, [107] completely ignores the possibility of

HOI concept discovery via affordance prediction. Due to the strong ability of verb and object

prediction, Qpic achieves 27.42% on HICO-DET, better than affordance prediction. However,

Qpic has poor performance on V-COCO. The inference process of affordance prediction for

concept discovery is time-consuming (over 8 hours with one GPU). Thus we devise an efficient

online concept discovery method which directly predicts all concept confidences. Specifically,

the online concept discovery method (SCL−) achieves 22.25% mAP on HICO-DET, which

is slightly worse than the result of affordance prediction. On V-COCO, the online concept

discovery method improves the performance of concept discovery by 3.98% compared to

the affordance prediction. The main reason for the above observation might be due to that

V-COCO is a small dataset and the HOI model can easily overfit known concepts on V-COCO.

Particularly, SCL significantly improves the performance of HOI concept discovery from

22.36% to 33.58% on HICO-DET and from 24.89% to 28.77% on V-COCO, respectively. We

find we can also utilize self-training to improve concept discovery on Qpic [234] (ResNet-50)

though the improvement is limited, which might be because verbs and objects are entangled

with Qpic. Lastly, we meanwhile find SCL largely improves concept discovery of known

concepts on both HICO-DET and V-COCO.



48 2 COMPOSITIONAL LEARNING FOR HUMAN-OBJECT INTERACTION EXPLORATION

2.4.7 HOI Detection with Unknown Concepts

HOI concept discovery enables zero-shot HOI detection with unknown concepts by first

discovering unknown concepts and then performing HOI detection. The experimental results

of HOI detection with unknown concepts are shown in Table 2.11. We follow [111] to

evaluate HOI detection with 120 unknown concepts in two settings: rare first selection and

non-rare first selection, i.e., we select 120 unknown concepts from head and tail classes

respectively. Different from [111, 110] where the existence of unseen categories is known

and the HOI samples for unseen categories are composed during optimization, HOI detection

with unknown concepts does not know the existence of unseen categories. Therefore, we

select top-K concepts according to the confidence score during inference to evaluate the

performance of HOI detection with unknown concepts (that is also zero-shot) in the default

mode [28].

As shown in Table 2.11, with more selected unknown concepts according to concept confid-

ence, the proposed approach further improves the performance on unseen categories on both

rare first and non-rare first settings. Specifically, it demonstrates a large difference between

rare first unknown concepts HOI detection and non-rare first unknown concepts HOI detection

in Table 2.11. Considering that the factors (verbs and objects) of rare-first unknown concepts

are rare in the training set [110], the recall is very low and thus degrades the performance

on unknown categories. However, with concept discovery, the results with top 120 concepts

on unknown categories are improved by relatively 34.52% (absolutely 0.58%) on rare first

unknown concepts setting and by relatively 20.31% (absolutely 1.19%) on non-rare first

setting, respectively. with more concepts, the performance on unknown categories is also

increasingly improved.

We also utilize the discovered concept confidences with SCL to evaluate HOI detection with

unknown concepts on Qpic [234]. For a fair comparison, we use the same concept confidences

to SCL. Without concept discovery, the performance of Qpic [234] degrades to 0 on Unseen

categories though Qpic significantly improves zero-shot HOI detection. Lastly, we show

zero-shot HOI detection (the unseen categories are known) in Table 2.11 (Those rows where
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TABLE 2.11. Illustration of HOI detection with unknown concepts and zero-
shot HOI detection with SCL. K is the number of selected unknown concepts.
HOI detection results are reported by mean average precision (mAP)(%). We
also report the recall rate of the unseen categories in the top-K novel concepts.
“K = all" indicates the results of selecting all concepts, i.e., common zero-shot.
∗ means we train Qpic [234](ResNet-50) with the released code in zero-shot
setting and use the discovered concepts of SCL to evaluate HOI detection with
unknown concepts. Rec indicates Recall. U indicates Unknown/Unseen. S
indicates Known/Seen.

Method K
Rare First Non-rare First

U S Full Rec (%) U S Full Rec (%)
SCL 0 1.68 22.72 18.52 0.00 5.86 16.70 14.53 0.00
SCL 120 2.26 22.72 18.71 10.83 7.05 16.70 14.77 21.67
SCL 240 3.66 22.72 18.91 15.00 7.17 16.70 14.80 25.00
SCL 360 4.09 22.72 19.00 15.83 7.91 16.70 14.94 30.83
SCL all 9.64 22.72 19.78 100.00 13.30 16.70 16.02 100.00
Qpic∗ [234] 0 0.0 30.47 24.37 0.00 0.0 23.73 18.98 0.0
Qpic∗ [234] 120 2.32 30.47 24.84 10.83 14.90 22.19 20.58 21.67
Qpic∗ [234] 240 3.35 30.47 25.04 15.00 14.90 22.79 21.22 25.00
Qpic∗ [234] 360 3.72 30.47 25.12 15.83 14.91 23.13 21.48 30.83
Qpic∗ [234] all 15.24 30.44 27.40 100.00 21.03 23.73 23.19 100.00
ATL [107] all 9.18 24.67 21.57 100.00 18.25 18.78 18.67 100.00
FCL [110] all 13.16 24.23 22.01 100.00 18.66 19.55 19.37 100.00
Qpic + SCL all 19.07 30.39 28.08 100.00 21.73 25.00 24.34 100.00

TABLE 2.12. The branches ablation study of the model on HICO-DET test
set. Verb-object branch only means we train the model without spatial-human
branch.

Method Full Rare NonRare
Two branches 19.43 16.55 20.29
Verb-Object branch only 15.77 13.35 16.49
Verb-Object branch only (w/o VCL) 15.33 10.85 16.67

K is all). We find that SCL significantly improves Qpic, and forms a new state-of-the-art

on zero-shot setting though we merely use ResNet-50 as backbone in Qpic. We consider

SCL improves the detection of rare classes (including unseen categories in rare first and seen

categories in non-rare first) via stating the distribution of verb and object. See Appendix for

more analysis, e.g., SCL improves Qpic particularly for rare categories on Full HICO-DET.
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TABLE 2.13. Composing Strategies study of VCL on HICO-DET test set
Mean average precision (mAP) (%) are reported.

Method Full Rare NonRare
Baseline (w/o VCL) 18.43 14.14 19.71
Within images 18.48 14.46 19.69
Between images 19.06 14.33 20.47
Between and within images 19.43 16.55 20.29

2.4.8 Ablation Studies

Branches. There are two branches in our method and we evaluate their contributions in

Table 2.12. Noticeably, we apply VCL to Verb-Object branch during training, while we do not

apply VCL to Spatial-Human. By keeping one branch each time on HICO-DET dataset during

inference, we can find the verb-object branch makes the larger contribution, particularly for

rare category (3%). This efficiently illustrates the advantage of VCL for rare categories. But

we can improve the performance dramatically from 16.89% to 19.43% with Spatial-Human

Branch. Meanwhile, we can find the proposed VCL is orthogonal to spatial-human branch

from the last two rows in Table 2.12. Noticeably, by comparing verb-object branch only

during inference and verb-object branch only from training, we can find the spatial-human

branch can facilitate the optimization of verb-object branch (improving the mAP from 15.77%

to 16.89%).

Composing interactions within and/or between images. In Table 2.13, we can find compos-

ing interaction samples between images is beneficial for HOI detection, whose performance

in the Full category increases to 19.06% mAP, while composing interaction samples within

images has similar results to baseline. It might be because the number of images including

multiple interactions is few on HICO-DET dataset. Remarkably, composing interaction

samples within and between images notably improves the performance up to 19.43% mAP

in Full and 16.55% mAP in Rare respectively. Those results mean composing interactions

within images and between images is more beneficial for HOI detection.

Verb Feature Regularization. We use a simple auxiliary verb loss to regularize verb

features. Although verb regularization loss can slightly improve the rare and unseen category



2.4 EXPERIMENTS 51

TABLE 2.14. Comparison between step-wise optimization and one step op-
timization. ZS is the setting in our ablation study.

Method Full Rare NonRare Unseen
one step (long-tailed) 24.03 18.42 25.70 -
step-wise (long-tailed) 24.68 20.03 26.07 -
one step (ZS) 19.69 18.22 20.82 17.64
step-wise (ZS) 19.61 18.69 21.13 15.86
one step (rare first ZS) 22.01 15.55 24.56 13.16
step-wise (rare first ZS) 22.45 17.19 25.34 12.12
one step (non-rare ZS) 19.37 15.39 20.56 18.66
step-wise (non-rare ZS) 19.11 17.12 21.02 15.97

TABLE 2.15. Illustration of the effect of fine-tuned detectors on FCL. The
COCO detector is trained on COCO dataset provided in [269]. We fine-tune
the ResNet-101 Faster R-CNN detector based on Detectron2 [269]. Here, the
baseline is our model without fabricator. The last column is object detection
result on HICO-DET test.

Method Detector Full Rare NonRare Object mAP
Baseline COCO 21.24 17.44 22.37 20.82

FCL COCO 21.80 18.73 22.71 20.82
Baseline HICO-DET 23.94 17.48 25.87 30.79

FCL HICO-DET 24.68 20.03 26.07 30.79
Baseline GT 43.63 34.23 46.43 100.00

FCL GT 44.26 35.46 46.88 100.00

performance (See row 1 and row 3 in Table 2.16), FCL further achieves better performance.

This indicates that regularizing factor features is suboptimal compared to the proposed method.

Semantic verb regularization like [277] has a similar result.

Verb and Noise for Fabricator. Table 2.17 demonstrates that performance drops without

verb representation or noise. This shows verb representations can provide useful information

for generating objects and noise efficiently improves the performance by increasing feature

diversity. We meanwhile find the fabricator still effectively improves the baseline without

verb in Table 2.17, which indicates the efficiency of FCL.

Verb Fabricator. The result of fabricating verb features (from verb identity embedding,

object features and noise) is even worse as in Table 2.17. This verifies that it is difficult to

directly generate useful verb or HOI samples due to the complexity and abstraction.
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FIGURE 2.10. Illustration of the improvement in those improved categories
between FCL and baseline on HICO-DET dataset under default setting. The
graph is sorted by the frequency of category samples and the horizontal axis
is the number of training samples for each category. The result is reported in
mAP (%).

TABLE 2.16. Illustration of proposed modules under step-wise optimization.
FCL means proposed Fabricated Compositional Learning. V indicates the
verb regularization loss.

FCL V Full Rare NonRare Unseen
- - 18.12 15.99 20.65 12.41
✓ - 19.08 17.47 20.95 14.90
- ✓ 18.32 16.73 20.82 12.23
✓ ✓ 19.61 18.69 21.13 15.86

TABLE 2.17. Ablation study of fabricator under step-wise optimization. FCL
within image means we compose HOIs within image. + verb fabricator is we
fabricate verb and object features.

Method Full Rare NonRare Unseen
FCL 19.61 18.69 21.13 15.86

FCL w/o noise 19.45 17.69 21.22 15.74
FCL w/o verb 19.20 18.02 21.04 14.71

FCL + verb fabricator 19.47 16.93 21.43 15.89

Step-wise Optimization. Table 2.14 illustrates that step-wise training has better performance

in rare and non-rare categories while has worse performance in unseen categories. We think it

might be because the model with the step-wise training has the bias to seen categories in the

first step since there are no training data for unseen categories.

Object Detector. The quality of detected objects has important effect on two-stage HOI

Detection methods [111]. Table 2.15 shows that the improvement of FCL over baseline

is higher with the fine-tuned detector on HOI data. COCO detector without finetuning on

HICO-DET contains a large number of false positive and false negative boxes on HICO-DET

due to domain shift, which is in fact less useful to evaluate the effectiveness of modeling

human interactions for HOI detection. If the detected boxes during inference are false, the
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FIGURE 2.11. The changing trend of cosine similarity between fabricated
object features and real object features during optimization in long-tailed HOI
detection in step-wise training.

TABLE 2.18. Illustration of the number of object images in each batch on
HICO-DET dataset.

#Images Full Rare NonRare
1 24.07 18.17 25.83
2 24.50 18.53 26.28
3 24.19 17.33 26.24

features extracted from the false boxes are also unreal and have large shift to the fabricated

objects during training. This causes that fabricated objects are less useful for inferring HOIs

during inference. Besides, GT boxes provide a strong object label prior for verb recognition.

The number of object images in each batch. Table 2.18 shows ATL achieves best perform-

ance with 2 object images. We think more object images increase the diversity of object

features and balance the object distribution. However, too many object images also hamper

the performance.

Object detector. Due to the domain shift between HICO-DET and COCO, COCO detector

usually achieves worse result. we thus use the same fine-tuned object detector as [111].

Table 2.19 illustrates better detected object boxes improve the performance largely. Mean-

while, we find ATL is apparently sensitive to worse boxes. Under a worse object detector

(i.e.COCO detector), ATL does not improve the result. It might be because composing
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TABLE 2.19. Illustration of the effect of different object detectors on HOI
detection in HICO-DET. The fine-tuned detector is provided in [111]. GT
means ground truth boxes. The last column is the detection mAP on HICO-
DET test dataset.

Model Detector Full Rare NonRare mAP
Baseline COCO 21.07 16.79 22.35 20.82

ATL COCO 20.08 15.57 21.43 20.82
Baseline Fine-tuned 23.44 16.80 25.43 30.79

ATL Fine-tuned 24.50 18.53 26.28 30.79
Baseline GT 43.32 33.84 46.15 100

ATL GT 44.27 35.52 46.89 100

TABLE 2.20. Illustration of the effect of domain shift on ATL between object
images and HOI images on HOI-COCO dataset. Sub-COCO is a subset of
COCO images that we randomly choose the same number of object instances
to the objects of HICO-DET from COCO dataset.

Method Object images Full Rare NonRare
ATL HICO-DET 24.21 9.52 35.61
ATL Sub-COCO 24.74 9.60 36.50

affordance features and object features from additional images results in poor generalization

to worse boxes. When we transfer affordance representation to objects from a large number

of additional images via composing novel HOI samples, we improve the scene generaliz-

ation (i.e.the model generalizes to novel scenes) of the affordance representation learning,

while degrading the generalization to worse object boxes on HICO-DET test set. The object

affordance recognition in Table 2.8 illustrates the scene generalization of affordance and

object representations. Noticeably, a worse object detector largely hampers HOI detection in

two-stage method. Thus, it is necessary to utilize a better object detector for evaluating HOI

detection, and ATL further improves HOI detection effectively with a better object detector.

Domain difference. From the large performance gap between different object detectors in

Table 2.19, we find the HICO-DET dataset has a different domain to COCO. Table 2.20 shows

with the same number of object instances, COCO dataset improves the performance larger

than HICO-DET dataset due to the domain difference on HOI-COCO. There is a similar

trend in Table 2.3 and Table 2.4. With the same COCO dataset, our method facilitates HOI

detection on HOI-COCO dataset better than that on HICO-DET.
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FIGURE 2.12. Comparison of object affordance recognition (F1) between
ATL and the conversion from object detection results on HICO-DET. Confid-
ence is the object detection confidence for choosing object boxes. Red is our
method and Blue is the conversion from object detection results.

TABLE 2.21. The effect of different number of verbs in affordance feature
bank. Mean average Precision (mAP) (%) is reported. Dataset means the eval-
uation object dataset. HICO-DET means the test set of HICO-DET. Val2017
means the validation set of COCO2017.

#M Dataset 1 5 10 20 40 80 100
Baseline Val2017 13.39 15.90 17.69 18.74 19.25 19.67 19.71
ATL (COCO) Val2017 52.98 53.74 55.40 55.19 54.88 55.77 56.05
Baseline HICO-DET 14.77 18.30 20.22 21.70 22.21 23.00 23.18
ATL (COCO) HICO-DET 56.04 58.03 59.14 57.84 56.61 57.23 57.41

Affordance comparison with object detection results. Our method can also be applied to

detected boxes of an object detector. For a robust comparison, we directly compare ATL with

the object affordance result converted from object detection results according to the object

affordance annotation (i.e.the ground truth affordances of an object category) on HICO-DET

test set. Here we use the detected box of a COCO pretrained Faster-RCNN. We train our

model on HOI-COCO dataset and COCO (2014) dataset, which has the same training set

as COCO pretrained Faster-RCNN. Figure 2.12 illustrates ATL achieves better affordance

recognition results among different confidences. Meanwhile, ATL has better performance

than object affordance detection when the confidence of the detected box is lower.
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FIGURE 2.13. Some rare HOI detections (Top 1 result) detected by the pro-
posed Compositional Learning and the model without Compositional Learning.
The first row is the results of the baseline model without VCL. The second
row is the results of VCL

The effect of the number of verbs on affordance recognition. In affordance recognition,

we randomly choose M instances for those affordances with more than M instances in dataset

and all instances for other affordances. We ablate M in Table 2.21 under the ATL model with

COCO objects and our baseline. The baseline is the model without compositional learning.

Besides, when we use different M , we also update Si. If we keep Si the same as the number

when M = 100, all results will be very small when M < 100.

Table 2.21 shows the number goes stable after 20. This means we do not need to store a large

number of templates of affordance representation.

2.5 Qualitative Analysis

Figure 2.13, we qualitatively show that our proposed Visual Compositional Learning frame-

work can detect those rare interactions correctly while the baseline model without VCL

misclassifies on HICO-DET. The results demonstrate that our proposed Visual Compositional

Learning framework is significantly beneficial for rare categories.

2.5.1 Visualization

Figure 2.14 illustrates the Grad-CAM under different methods. We find the proposed SCL

focus on the details of objects and small objects, while the baseline and VCL mainly highlight
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the region of human and the interaction region, e.g., SCL highlights the details of the

motorbike, particularly the front-wheel (last row). Besides, SCL also helps the model via

emphasizing the learning of small objects (e.g., frisbee and bottle in the last two columns),

while previous works ignore the small objects. This demonstrates SCL facilitates affordance

recognition and HOI concept discovery via exploring more details of objects.

Baseline VCL SCLInput

FIGURE 2.14. A visual comparison of recent methods using the Grad-
CAM [221] tool. The first row is input image, the second row is baseline
without compositional approach, the third row is vanilla VCL [111] and the
last row is the proposed SCL. Here, we compare all models using the same
dataset.

We also illustrate the verb and object features by t-SNE visualization [177]. Figure 2.15

illustrates that VCL overall improves the the discrimination of verb and object features.

There are many noisy points (see black circle region) in Figure 2.15 without VCL and verb

presentation. Meanwhile, we can find the proposed verb representation learning is helpful

for verb feature learning by comparing verb t-SNE graph between the left and the middle.

Besides, the object features are more discriminative than verb. We think it is because the verb

feature is more abstract and complex and the verb representation requires further exploration.
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FIGURE 2.15. Visual illustration of object features (80 classes) (up) and
verb features (117 classes) (bottom) on HICO-DET dataset (20000 samples)
via t-SNE visualization [177]. Left is the visual illustration of baseline, the
middle includes verb representation and the right uses both VCL and verb
representation

Illustration of improvement among categories. In Figure 2.10, we find that the rarer the

category is, the more the proposed method can improve. The result illustrates the benefit of

FCL for long-tailed issues in HOI Detection.

Visualized Analysis between fabricated and real object features. Figure 2.11 presents that

cosine similarity between fabricated and real object features gradually goes down to stability

in step-wise training. This demonstrates that end-to-end optimization with a shared HOI

classifier helps fabricate efficient and similar objects during the optimization process.

2.5.2 Fabricated Object Representations

We analyze the real object features and fabricated object features in detail in Figure 2.16, 2.17

by selecting the top 10 frequent classes in HICO-DET. 1) In Figure 2.16 (a) and Figure 2.17

(a), we find the fake object features of the same class are close to each other, while the features

from different classes are separable although they might share the same verb. 2) Figure 2.16

(b) and Figure 2.17 (c) show features of different verbs slightly clustered together within each

object class. We can find there are outliers in some object classes because those outliers

have different verbs. 3) for unseen object ZSL, Figure 2.17 shows all fake object features of
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FIGURE 2.16. The illustration of real object representations, fabricated object
representations and joint representations extracted from long-tailed HOI de-
tection model. We select the top 10 frequent object classes from HICO-DET
training data. For each class, we randomly select 100 instances. Column 1 is
real object representations, Column 2 is fabricated object representations and
Column 3 is the joint representations. In Column 3, a diamond point means
fabricated object representations. Raw a is the base t-SNE figure. In raw b, we
label different verbs with different edges (color) in Raw b.

the same class are also closer to each other. Particularly, the unseen objects (red edge in row

b) are also separable from others. 4) The Column 3 in Figure 2.16 and Figure 2.17 illustrate

fake object features are still separable from its real objects of the same class. However, there

are still some fabricated features that are closer to it’s corresponding real features (e.g.the

dark blue class in Figure 2.16 and the jade-green class in Figure 2.17). We think Column

3 in the two Figures also shows a future direction for fabricating objects, i.e.generate more

realistic objects.

e The Effect of Objects on HOI Detection In the nature, different types of objects form

a long-tail distribution. Then, all those actions that people perform on those objects are

inevitably long-tailed. As a result, those HOIs that we observed are long-tailed. This

motivates us to fabricate balanced objects for composing HOI samples with visual verbs. We

have demonstrated the long-tailed distribution of objects in Figure 2 in the paper and the effect

of different object detector on HOI detection in Table 7 in paper. We further illustrate HOI

detection has roughly similar performance to object detection among most object categories
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FIGURE 2.17. The illustration of real object representations, fabricated object
representations and joint representations extracted from unseen object zero-
shot model. Column 1 is real object representations, Column 2 is fabricated
object representations and Column 3 is the joint representations. In Column 3,
a diamond point means fabricated object representations. Raw a is the base
t-SNE figure. In raw b, we point out the unseen objects with red edges. In
Raw c, we label different verbs with different edges (color).
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FIGURE 2.18. Illustration of Object detection result and HOI detection result
in HICO-DET dataset. Blue is Object result. Yellow is HOI result. We average
HOI detection AP according to the object categories for a direct comparison.

in Figure A.3, which also illustrates the importance of object detectors for HOI detection at

the same time. Meanwhile, it is necessary to balance the distribution of objects.
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FIGURE 2.19. Illustration of unseen object zero-shot detection result (top 5)
between the proposed method and Baseline. The correct results are highlighted
in red.

Visualized Object Affordances

We demonstrate the result of exploring unseen HOIs with novel objects in Figure 2.19. We

find the baseline can not recognize the object at all, while the proposed method effectively

detects the HOI with unseen objects.

2.6 Discussions

Nowadays, the deep learning community has made significant progress on language models,

particularly large language models or LLM [192]. The large language model is able to provide

prior knowledge about the visual world, including the object affordances, action categories,

and their correlations. Current approaches have made use of large language models or visual-

language models [209, 150] to facilitate human-object interaction detection, especially open-

vocabulary HOI detection. While the large language models have included prior knowledge

about object categories and verb categories, it is still challenging to understand how to interact
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with a novel object. Compositional generation is also important when incorporating language

models for visual understanding.

2.7 Summary

In this chapter, we first introduce two HOI-relevant tasks, i.e., compositional object affordance

recognition and Human-Object Interaction Concept Discovery, to enrich the exploration of

Human-Object Interaction. Compositional object affordance reasoning aims to recognize the

affordances of an object instance from HOI model, while HOI concept discovery requires

discovering all reasonable combinations (i.e., HOI concepts) between verbs and objects

according to a few training samples of known HOI concepts/categories. Next, we propose

a simple yet efficient deep Visual Compositional Learning framework, which composes

the interactions from the shared verb and object latent representations between images and

within images, to address HOI compositional generalization, compositional object affordance

reasoning, and HOI concept discovery. The compositional approach also implies transferring

of the verb/affordance representation to object representations, and thus enables compositional

object affordance reasoning. We thus devise a simple yet effective compositional method to

incorporate HOI detection model for object affordance reasoning. Moreover, we introduce

self-compositional learning to facilitate the compositional approach, which maintains an

online updated concept confidence matrix, and assigns pseudo labels according to the matrix

for all composite HOI features, and thus optimize both known and unknown composite HOI

features via self-training. Extensive experiments demonstrate the proposed methods improve

HOI compositional generalization, facilitate compositional object affordance reasoning, and

enable HOI detection with unknown concepts on multiple datasets.



CHAPTER 3

Sample Relationship Exploration

In the last Chapter, the thesis comprehensively investigated the existing relationships (e.g..

Human-Object Interactions) in the visual scenes by transferring verb/object representations

among different HOIs. However, there are also visual relationships, e.g., the similarity,

among different samples, which we named as sample relationship. Despite the great success

achieved, deep learning technologies usually suffer from data scarcity issues in real-world

applications, where existing methods mainly explore sample relationships in a vanilla way

from the perspectives of either the input or the loss function. In this chapter, we propose

a batch transformer module, BatchFormerV1, to equip deep neural networks themselves

with the abilities to explore sample relationships in a learnable way. Basically, the proposed

method enables data collaboration, e.g., head-class samples will also contribute to the learning

of tail classes, and provides an unified way to transfer the representations among different

samples to facilitate the challenging sample recognition (e.g. tail classes). Considering

that exploring instance-level relationships has very limited impacts on dense prediction,

we generalize and refer to the proposed module as BatchFormerV2, which further enables

exploring sample relationships for pixel-/patch-level dense representations. In addition, to

address the train-test inconsistency where a mini-batch of data samples are neither necessary

nor desirable during inference, we also devise a two-stream training pipeline, i.e., a shared

model is first jointly optimized with and without BatchFormerV2 which is then removed

during testing. The proposed module is plug-and-play without requiring any extra inference

cost. Lastly, we evaluate the proposed method on over ten popular datasets, including 1)

different data scarcity settings such as long-tailed recognition, zero-shot learning, domain

generalization, and contrastive learning; and 2) different visual recognition tasks ranging from

image classification to object detection and panoptic segmentation.

63
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3.1 Motivations and Contributions

The recent success of deep learning heavily relies on collecting and annotating large-scale

training data [95, 97], while data scarcity issues have been repeatedly found in real-world

applications. Among the methods for handling data scarcity issues, sample relationship

has received much attention from the community, especially for the tasks without proper

training data distributions to guarantee good generalization performances, such as long-tailed

recognition [265], zero-shot learning [185], and domain generalization [25]. An intuitive

example revealing the effectiveness of sample relationships is shown in Figure 3.1.

Different Classes
Shared Knowledge Transferring

Same Class
Invariant Feature Learning

BatchFormerV1

Long-Tailed Recognition
Zero-Shot Learning

Domain Generalization
Contrastive Learning

FIGURE 3.1. An illustration of sample relationships. Specifically, similar
classes tend to share some parts (e.g., cock, robin, vulture share body shape,
and claw shape), and transferring the shared knowledge from head to tail
classes thus facilitates learning with long-tailed distributions.

Sample relationships have been intensively explored using an explicit scheme [222, 293, 152,

71, 263, 250, 313]. Specifically, a simple yet very effective way is to generate new samples
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from existing training data [152], such as mixup [293], copy-paste [71], crossgrad [222], and

compositional learning [128, 111, 5, 185]. Another way is to transfer knowledge between

different samples, e.g., 1) transferring the meta knowledge between head and tail classes

for long-tailed recognition [263, 171]; 2) transferring the knowledge from seen to unseen

classes for zero-shot learning [272, 185]; and 3) transferring the invariant knowledge for

domain generalization [201, 4, 116]. However, all above-mentioned methods explore sample

relationships from either the input or the loss function, failing to enable deep neural networks

themselves with the abilities to automatically explore sample relationships, i.e., no interaction

appears in the batch dimension during representation learning.

B

H,W

C

B

H,W

C

B

H,W

C

Channel Attention (CNN) Visual Transformer (ViT) Batch Transformer (Ours)

FIGURE 3.2. An illustration of the attention mechanisms on channel, spatial,
and batch dimensions.

The transformer architecture has been very widely used to explore spatial-temporal rela-

tionships [242, 53, 170, 286, 43, 32], while it is non-trivial to apply attention mechanism

in the batch dimension due to the train-test inconsistency [118, 171, 313]. For example, a

mini-batch of data samples is neither necessary nor desirable during inference, while it always

requires to track training statistics as the running mean and variance when applying the batch

normalization [118]. Another example keeps all category centers during training, which

is then used to enhance the tail/unseen categories during testing [171, 313]. To empower

deep neural networks with structural advances for sample relationship learning, we introduce

the attention mechanism to the batch dimension and address the train-test inconsistency as

follows. Specifically, we capture the sample relationships within each mini-batch of training

data by applying a transformer encoder into the batch dimension, and refer to it as Batch

Transformer or BatchFormerV1. An intuitive example showing the differences between the

channel, spatial, and batch attentions is illustrated in Figure 3.2. To address the train-test
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inconsistency, we then utilize a shared classifier before and after the proposed BatchFormerV1

module to achieve the batch-invariant learning, i.e., learn representations invariant to with and

without mini-batch. By doing this, BatchFormerV1 is only required during training, and we

do not need to change the inference structure of the original model.

Inspired by BatchFormerV1 for instance-level visual recognition, we further propose to enable

exploring the sample relationships for pixel-/patch-level dense representation learning. That is,

exploring sample relationships with only instance-level representations that are usually from

the last fully connected layer has very limited influences on dense representation learning.

Therefore, we generalize BatchFormerV1 such that it can be used in different intermediate

layers to explore semantics at different scales, ranging from the pixel to the patch and the

whole image. Nevertheless, it is difficult to setup a shared classifier before and after each layer

for the batch-invariant learning. We thus introduce a generalized module, BatchFormerV2, to

enable the information propagation between different data samples at multiple semantic levels

by learning the batch-invariant representations. By doing this, the proposed BatchFormerV2

module can be applied in different intermediate layers of popular vision transformers. The

train-test inconsistency is addressed by a two-stream training pipeline, i.e., one stream with

BatchFormerV2 and the other stream without, while all other layers are shared by both

streams. All shared layers will be jointly optimized to generalize on the inputs with and

without BatchFormerV2. During testing, we can directly remove all BatchFormerV2 modules

without sacrificing model performance.

During training, the proposed method enables the information propagation of all samples in

each mini-batch. Therefore, all samples can contribute to the learning on each categories.

Intuitively, it implicitly enriches current training samples with hallucinated features from the

whole mini-batch (e.g., the shared parts between two categories). For example, in long-tailed

recognition, such hallucinated features can also improve the feature space of the tail classes.

Meanwhile, the loss function also emphasizes on the rare classes via propagating larger

gradients of rare classes in each mini-batch. In addition, we also find two obvious changes on

the learned representations with the proposed module, i.e., it effectively facilitates the model

to learn 1) comprehensive representations by focusing on almost all different object parts; and
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2) invariant representations by focusing on the object itself rather than complex backgrounds

(See more results in Section 3.3.6, Section A4.3, and Appendix).

A preliminary version of BatchFormerV1 has been published in [106] on the IEEE/CVF

Computer Vision and Pattern Recognition Conference (CVPR2022). The description of

BatchFormerV2 also appears in the preprint [109], which is not submitted to any other

conference or journal. Our main contributions can be summarized as follows:

• We propose to learn sample relationships from the perspective of improving the

internal structure of deep neural networks during training.

• We devise a simple yet effective module termed as BatchFormerV1 to explore sample

relationships for different data scarcity tasks.

• We introduce a generalized module, BatchFormerV2, to enable sample relationship

learning for dense prediction.

• We develop a two-stream training strategy to address the train-test inconsistency,

such that the proposed module can improve model performance without any extra

inference cost.

• We perform extensive experiments in different settings and tasks, which show the

effectiveness of the proposed method, including long-tailed recognition, zero-shot

learning, domain generalization, self-supervised representation learning, image

classification, object detection, and panoptic segmentation.

…… ……
Transformer
Encoder …… Classifier

TrainingClassifier

BatchFormerV1

Backbone

FIGURE 3.3. The main deep representation learning framework with Batch-
FormerV1. Specifically, we apply BatchFormerV1 between the backbone
network (e.g., ResNet) and the classifier to explore sample relationships. With
a shared classifier for training, we can remove BatchFormerV1 during testing.
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3.2 Related Work

3.2.1 Sample Relationship

There are rich relationships among different samples, which have been widely used via various

strategies [293, 168, 105, 184]. Specifically, Zhang et al. [293] propose to regularize the

model to favor simple linear behavior in-between training samples with mixup. However,

mixup [293] merely considers a linear transformation between data samples, while we aim

to investigate the non-linear relationship among samples in a more powerful way. The

compositionality of samples has also inspired many approaches to improve few/zero-shot

generalization [237, 94, 111, 185], where the parts/attributes shared among different samples

have been explored via the prior knowledge on label relationships. Several approaches also

use sample/class relationships to conduct transductive inference [168, 105, 171, 184], e.g.,

transductive few-shot classification [168], meta embedding [171, 313], and non-parametric

transformer [139]. However, those approaches usually require to inference with multiple

samples (e.g., query set, or bank features). Meanwhile, many recent domain generalization

methods [201, 4, 116] aim to find casual/invariant representations across domains, which we

think them internally utilize the relationship among samples of the same class but different

domains.

3.2.2 Data Scarcity Learning

. Learning with limited and imperfect data has turned out to be very challenging in a variety

of data scarcity tasks. For example, in many real-world applications, the data from different

classes usually follow a long-tailed distribution where a large portion of classes have very

few instances. Current long-tailed learning approaches can be roughly categorized into 1)

distribution re-balancing (e.g., re-sampling [31, 83, 93], re-weighting [20, 45, 236, 306, 121]);

2) ensemble of diverse experts [308, 265, 21]; and 3) knowledge transfer [263, 171, 313, 99,

250]. Other data scarcity tasks include zero-shot learning and domain generalization [18,

310, 252]. Specifically, zero-shot learning aims to recognize unseen classes without training
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samples, while domain generalization aims at generalizing from seen to unseen domains.

Current zero-shot learning approaches [146, 194, 272, 260] usually transfer knowledge

of seen classes to unseen classes via modern techniques (e.g., graph network [185], data

generalization [315], and compositional learning [185, 111]). Recently, compositional zero-

shot learning has been widely explored in different tasks [128, 111, 5, 185], and we thus

mainly evaluate the proposed module on compositional zero-shot learning [185]. In addition,

recent domain generalization methods usually include data augmentation [311, 310], meta

learning [8, 300], and disentangled/invariant representation learning [201, 4, 30, 206]. The

proposed method facilitates robust representation learning without any assumptions on the

dataset distributions and can thus be used for different tasks and datasets.

3.2.3 Vision Transformer

Transformer was first introduced by Vaswani et al.[242] for machine translation. As a core

part, attention mechanism aggregates information from the entire input sequence and then

update it [7]. In the past few years, transformer-based architectures have dominated in natural

language processing (NLP), e.g., BERT [52] has shown superior performance among massive

downstream NLP tasks. Besides, self-attention mechanism also demonstrates powerful

modeling ability for non-grid data [243], and thus improves graph representation learning.

In addition, transformer models have presented a new paradigm for computer vision tasks,

including classification [53, 170], detection [23, 314, 181, 68], segmentation [23, 41, 302,

228, 261, 274], and representation learning [34, 11, 96]. Specifically, Dosovitskiy et al. [53]

introduced a pure vision transformer model, termed as ViT, by applying a sequence of image

patches, which achieves impressive performance on image classification. Recently, vision

transformer [53, 170] has gradually become the new backbone for vision tasks, and massive

large models based on transformers have emerged in computer vision, including CLIP [209],

MoCo [98], DALL-E [210], and MAE [96]. Except for the backbone, transformer-based

models, e.g., DETR [23], have also reformed the pipeline of detection and segmentation.

Specifically, DETR [23], constructed upon the encoder-decoder transformer architecture,

demonstrates a clear set-based method for detection and greatly simplifies the traditional
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pipeline which includes many hand-designed components. Recently, Zhu et al. [314] present

Deformable-DETR, which largely accelerates the convergence and improves the performance.

Though the great success of transformer in computer vision, current approaches merely

investigate the spatial self-attention, while ignoring the pixel-/patch-level relationships among

different data samples.

3.3 Methodology

In this section, we first provide an overview of the main deep representation learning frame-

work with BatchFormerV1. We then review vanilla vision transformer architecture and

introduce BatchFormerV1 in detail. After that, we present a generalized BatchFormerV2 with

the two-stream training strategy. Lastly, we provide some insights and give a discussion on

the proposed method.

3.3.1 Overview

We aim to enable deep neural networks themselves with the ability to learn the relationships

from a mini-batch of data samples during the end-to-end deep representation learning. The

main deep representation learning framework with BatchFormerV1 is shown in Figure 3.3.

Specifically, a backbone network is first used to learn representations for individual data

samples, i.e., there is no interaction between different samples in each mini-batch. After

this, a new module is introduced to capture the relationships between different samples by

using the cross-attention mechanism in transformer, and we refer to it as Batch Transformer

or BatchFormerV1. The output of BatchFormerV1 is then used as the input of the final

classifier. To address the train-test inconsistency, we utilize an auxiliary classifier before

BatchFormerV1, i.e., by sharing its weights with the final classifier, we can transfer the

knowledge learned from sample relationships to the backbone and the auxiliary classifier.

During testing, we can thus remove BatchFormerV1 and directly use the auxiliary classifier

for classification.
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3.3.2 Revisiting Vision Transformer

The great success of transformer architecture in NLP has recently spread to almost every

region of computer vision known as vision transformers [53, 170, 23]. The transformer

architecture not only achieves superior performance in different vision tasks [170] (e.g.,

image classification, object detection, and semantic segmentation), but also brings novel

paradigms for some fundamental tasks (e.g., DETR [23] for object detection and MAE [96]

for self-supervised learning). Among typical vision Transformers, the overall model usually

consists of a stack of multiple Transformer encoder blocks [242], where each transformer

encoder block contains a multi-head self-attention layer (MSA) followed by a feed-forward

network (FFN). Specifically, the self-attention mechanism used in vision Transformer can

be described as follows. Given Q, K, V ∈ RN×C as the query, key, and value, respectively,

where N is the number of image patches (or tokens) and C is the embedding dimension. We

then have the output Z for the self-attention module:

Z = softmax(
QK⊤
√
C

)V, (3.1)

where Q, K, and V are learned from the same input. Specifically, multi-head self-attention

module applies attention by splitting the input into multiple representation subspaces and

then concatenates the representations from different heads. From a perspective of information

propagation, the transformer architecture aggregates the feature of the tokens via spatial

attention. Different from attention layers in a typical vision transformer, the proposed method

performs self-attention on the batch dimension, i.e., it aggregates the feature of the tokens

from different samples within each mini-batch in an end-to-end learning way.

3.3.3 BatchFormerV1

We introduce the detailed structures of BatchFormerV1, including the transformer encoder

and the shared classifier, as follows.

Transformer Encoder. The transformer encoder includes multi-head self-attention (MSA)

and MLP blocks. A LayerNorm (LN) is used after each block. Let X ∈ RN×C denote



72 3 SAMPLE RELATIONSHIP EXPLORATION

a sequence of input features, where N is the length of the sequence and C indicates the

dimension of input features. We then have the output of the transformer encoder as follows,

X̂l = LN(MSA(Xl−1) +Xl−1), (3.2)

Xl = LN(MLP (X̂l) + X̂l), (3.3)

where l indicates the index of layers in the transformer encoder. The multi-head self-attention

layers have been widely used to model the relationships from channel and spatial dimen-

sions [242, 53, 112]. Therefore, we argue that it can also be extended to explore the rela-

tionships in the batch dimension. As a result, different from typical usage of transformer

layers, the input of BatchFormerV1 will be first reshaped to enable the transformer layers

working on the batch dimension of the input data. By doing this, the self-attention mech-

anism in transformer layers then becomes the cross-attention between different samples for

BatchFormerV1.

Shared Classifier. Since we can not assume batch statistics for testing, such as sample

relationships, there might be a gap between the features before and after the BatchFormerV1

module. That is, we can not perform inference on new samples by directly removing Batch-

FormerV1. Therefore, apart from the final classifier, we also introduce a new auxiliary

classifier to not only learn from the final classifier but also keep consistent with the features

before BatchFormerV1. To achieves this, we simply share the parameters/weights between

the auxiliary classifier and the final classifier. We refer to this simple yet effective strategy as

“shared classifier". With the proposed “shared classifier", we can thus remove BatchFormerV1

during testing. BatchFormerV1 is thus a plug-and-play module for robust deep representation

learning. BatchFormerV1 is also easy to implement using typical deep learning packages,

e.g., Figure 3.4 shows how to implement BatchFormerV1 with several lines of python code

based on Pytorch [198].
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def batchformer_v1(x, y, encoder, is_training):

# encoder: TransformerEncoderLayer(C,4,C)

if not is_training:

return x, y

orig_x = x

x = encoder(x.unsqueeze(1)).squeeze(1)

x = torch.cat([orig_x, x], dim=0)

y = torch.cat([y, y], dim=0)

return x, y

FIGURE 3.4. Python Code of BatchFormerV1 based on Pytorch.
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FIGURE 3.5. The two-stream training pipeline for BatchFormerV2. For ex-
ample, the input indicates the feature map from backbone for DETR [23],
while the input is the feature map after the patch embedding layer for ViT [53].
The outputs of two streams are the input of the shared prediction module. In
addition, the transformer blocks and the prediction module, e.g., the trans-
former decoder in DETR [23] and the classification head in ViT [53], are
shared by two streams. During inference, the stream with BatchFormerV2 is
removed.

3.3.4 BatchFormerV2

To generalize the batch attention mechanism into pixel/patch level feature maps for dense

representation learning, we devise BatchFormerV2 as follows. Given Q, K, V ∈ RB×N×C ,

we then have

Zi = softmax(
QiK

⊤
i√

C
)Vi, Z = concat(Z1, . . . ,ZN), (3.4)

where Qi, Ki, Vi ∈ RB×C and Z ∈ RB×N×C . Given the input for a specific layer/block

with the spatial dimensions H, W , i.e., the number of image patches is N = H × W .

During training, at each spatial position i = 1, . . . , N , we treat the batch of patch features
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in current position as a sequence, i.e., we have N sequences each with the length of B. All

above-mentioned sequences are then fed into a shared transformer block.

Two reasons that we use a shared transformer block are as follows: 1) it will increase the

computation and memory consumption considerably if we use different blocks at different

spatial positions; 2) it will be difficult to dense prediction with different sizes of input

images, which is in line with the motivation of fully convolutional networks (FCNs) for dense

prediction [173] as well as the convolution operations [147] and channel-wise attentions [113].

Therefore, we share the transformer block among the spatial dimensions in BatchFormerV2.

By doing this, the proposed BatchFormerV2 can be implemented by simply transposing the

spatial and batch dimensions before the standard multi-head self-attention layer. Noticeably,

as illustrated in Figure 3.6, BatchFormerV2 can also be easily implemented with a few lines

of code using popular deep learning packages such as PyTorch [198].

def batchformer_v2(x, encoder, is_training, is_first):

# x: input with the shape (B, N, C).

# encoder: TransformerEncoderLayer(C, nhead, C, batch_first=False)

if not is_training:

return x

orig_x = x

if not is_first:

orig_x, x = torch.split(x, len(x)//2)

x = encoder(x)

x = torch.cat([orig_x, x], dim=0)

return x

FIGURE 3.6. Python code of BatchFormerV2 based on PyTorch.

3.3.5 Two-Stream Training

One significant challenge for applying batch attention is the train-test inconsistency. Spe-

cifically, in BatchFormerV1, we address the train-test inconsistency by introducing a shared

classifier, which enables removing the proposed module during inference. Inspired by this,

we generalize this solution to dense representation learning in a similar way, i.e., learning

batch-invariant representations. Therefore, we introduce a new two-stream training strategy

as follows. When applying the proposed BatchFormerV2 module to a specific block of vision

transformers, we create a new siamese stream followed by a BatchFormerV2 module, leaving
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the original stream unchanged. That is, both two streams share the same Transformer block.

By doing this, during training, all shared blocks are trained on a mixture of the distributions

with or without a BatchFormerV2 module. Therefore, during testing, the original stream

can work well for both with and without a mini-batch of testing data available. To avoid

introducing any extra inference load, we thus remove the BatchFormerV2 module for testing.

In addition, from the perspective of regularization, BatchFormerV2 also serves as a strong

regularization during training, which has turned out to be very useful in vision transformers.

Lastly, with the proposed two-stream training strategy, BatchFormerV2 can be easily integ-

rated into existing transformer architectures for different visual applications in a plug-and-play

manner, such as ViT [53] for image classification and DETR [23]/Deformable-DETR [314]

for object detection.

3.3.6 Discussion

To better understand how the proposed method helps representation learning by exploring

sample relationships, we also provide an intuitive explanation from the perspective of gradient

propagation for optimization. For simplicity, we use BatchFormerV1 as an example.

Intuitively, without BatchFormerV1, all losses only propagate gradients on the corresponding

samples and categories, i.e., one-to-one, while there are gradients on other samples with

BatchFormerV1 (the dashed line) as illustrated in Figure 3.7. Specifically, given samples

X(X = X0, X1, Xi, ..., XN−1) and the corresponding losses L0, L1, Li, ..., LN−1 in the mini-

batch, with BatchFormerV1, we then have

∂Li

∂X
=

∂Li

∂Xi

+
N−1∑
j ̸=i

∂Li

∂Xj

. (3.5)

That is, BatchFormerV1 brings new gradient terms ∂Li

∂Xj
, where i ̸= j. From a perspective of

gradient optimization, Li also optimizes the network according to sample Xj(j ̸= i), that

is a significant difference compared to the model without BatchFormerV1. In other word,

Xj(j ̸= i) can be regarded as a virtual sample [293, 99] of yi, where yi is the label of Xi.

We consider that both BatchFormerV1 and Mixup [293] can be regarded as data-dependent
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augmentations. BatchFormerV1 implicitly draws virtual examples [293] from the vicinity

distribution of samples via cross-attention module. From this perspective, BatchFormerV1

has implicitly augmented N−1 virtual samples for each label yi via the relationship modeling

among samples in the mini-batch. Previous approaches [8, 315] have demonstrated data

augmentation is helpful for long-tailed recognition [99, 250], zero-shot learning [315], and

domain generalization [311, 310]. Our gradients analysis in Section 3.4.5 also demonstrates

the tail classes have larger gradients on other samples compared to head classes.
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FIGURE 3.7. The gradient propagation scheme with the proposed Batch-
FormerV1 module. Dashed lines represent the new gradient propagation
among data samples.

3.4 Experiments

In this section, we perform extensive experiments to show the effectiveness of the proposed

method in 1) a variety of data scarcity learning settings, including long-tailed recognition,

zero-shot learning, domain generalization, and contrastive learning; and 2) different visual

recognition tasks, including image classification, object detection, and panoptic segmentation.

For simplicity, we use BFV1 for BatchFormerV1 and BFV2 for BatchFormerV2 in all Tables.

3.4.1 Long-Tailed Recognition

In this subsection, we evaluate BatchFormerV1 on long-tailed recognition by using recent

state-of-the-art methods, Balanced-Softmax [212], RIDE [265], and PaCo [44], as our baseline.
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We use four popular datasets as follows: 1) CIFAR-100-LT has 50,000 training images and

10,000 validation images with 100 categories; 2) ImageNet-LT [171] contains 115.8K images

of 1000 classes from ImageNet2012. The number of images in each class ranges from 5 to

1,280; 3) iNaturalist2018 [241] is a large-scale fine-grained dataset with 437.5K images from

8,142 categories; and 4) Places-LT [171] is a long-tailed scene classification dataset derived

from [307] with 184.5K images from 365 categories with the number of per-category images

ranging from 5 to 4,980. If not otherwise stated, we follow the same settings used in baseline

methods. Particularly, there is a small difference for RIDE [265]. We train the model with the

batch size 400 on four V100 GPUs for 100 epochs with an initial learning rate of 0.1 and 0.2

on ImageNet-LT and iNaturalist2018, respectively. The learning rate is decayed with cosine

schedule on iNaturalist2018.

Results on CIFAR-100-LT. Table 3.1 shows that the proposed BatchFormerV1 is orthogonal

to recent state-of-the-art methods such as Balanced-Softmax [212] and Paco [44]. We notice

that BatchFormerV1 improves Balanced-Softmax by 2.4% for Few classes when the imbalance

ratio is 100, and by 1.8% on Medium classes and by 1.2% on Few classes, respectively, when

the imbalance ratio is 200. Besides, the performance of PaCo on imbalance ratio 200 also

increases by 1.5% on Medium classes and 0.7% on Few classes, respectively. For ratio 100,

BatchFormerV1 mainly improves Many classes since Paco has achieved good performance

on Few classes. Overall, BatchFormerV1 improves the recognition of tail classes while

maintaining the performance of head classes.

TABLE 3.1. Illustration of imbalance ratio 100 and 200 on CIFAR-100-LT. ∗
indicates the model is trained with the official code in one stage (e.g., [212]).

Method 100 200
All Many Med Few All Many Med Few

RIDE [265] 48.0 68.1 49.2 23.9 - - - -
Balanced [212]∗ 50.7 68.0 49.7 31.9 46.4 70.0 51.5 24.3
+ BFV1 51.7 68.4 49.3 34.3 47.5 70.2 53.3 25.5
Paco [44] 51.9 63.9 53.0 36.5 47.1 68.1 51.5 27.5
+ BFV1 52.4 68.4 52.1 34.0 47.8 68.1 53.0 28.2

Results on ImageNet-LT. In Table 3.2, BatchFormerV1 improves Balanced-Softmax by 2.4%

on medium classes and 6.9% on few classes respectively. Meanwhile, when using a ResNet-50
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TABLE 3.2. Illustration of ResNet-10/50 on ImageNet-LT. ∗ indicates the
model is trained with released code in one stage. RIDE-3e indicates three
experts used in RIDE.

Method ResNet-10 ResNet-50
All Many Med Few All Many Med Few

OLTR [171] 35.6 43.2 35.1 18.5 - - -
LFME [273] 38.8 47.0 37.9 19.2 - - - -
Balanced [212]∗ 41.0 52.6 38.3 18.0 50.1 61.1 47.5 27.6
+ BFV1 43.2 52.8 40.7 24.9 51.1 61.4 47.8 33.6
RIDE-3e [265]∗ 44.7 57.0 40.3 25.5 53.6 64.9 50.4 33.2
+ BFV1 45.7 56.3 42.1 28.3 54.1 64.3 51.4 35.1
PaCo [44] - - - - 57.0 64.8 55.9 39.1
+ BFV1 - - - - 57.4 62.7 56.7 42.1
two stage
RIDE-3e [265] 45.9 57.6 41.7 28.0 54.9 66.2 51.7 34.9
+ BFV1 47.6 55.3 45.5 33.3 55.7 64.6 53.4 39.0

TABLE 3.3. Ablation studies of batch size. The backbone is ResNet-10.

B=16 B=32 B=64 B=128 B=256 B=512
All 43.2 43.6 43.3 43.2 42.4 42.5
Many 53.8 53.7 52.9 52.8 52.2 52.0
Medium 40.2 40.7 40.8 40.7 39.5 39.6
Few 23.9 24.9 25.3 24.9 25.2 25.8

TABLE 3.4. Ablation studies on the shared classifier. The backbone is ResNet-
50.

All Many Medium Few
Balanced [212] + BFV1 (shared) 50.9 60.7 47.7 34.1
Balanced [212] + BFV1 42.4 41.3 43.3 42.2

backbone, BatchFormerV1 improves Balanced-Softmax on the Few category by 5%. When

BatchFormerV1 is applied in RIDE [265], the results on Medium classes and Few classes

increase by 1.8% and 2.8%, respectively. With a ResNet-50 backbone, BatchFormerV1 also

improves Medium and Few classes by 1% and 1.9%, respectively. BatchFormerV1 achieves

clear improvement overall, while the performance on Many classes drops. Furthermore,

BatchFormerV1 also effectively improves RIDE under two-stage training strategy (RIDE

uses a larger model to teach small model with distilling loss). Here, different from RIDE,

we use a pre-trained model (the same model) to initialize the model and train the model
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again with BatchFormerV1. PaCo [44] is recently introduced for long-tailed recognition with

supervised contrastive learning. We also find BatchFormerV1 can facilitate ImageNet-LT

on Medium classes and Few classes. Noticeably, PaCo uses a strong data augmentation

strategy from supervised contrastive learning with 400 training epochs. We consider that data

augmentation degrades the improvement of BatchFormerV1 on ImageNet-LT. We also show

that BatchFormerV1 achieves comparable results on balanced ImageNet in the appendix.

In addition, we show the influences of different batch size and the shared classifier in Table 3.3

and Table A.24, respectively. Specifically, in Table 3.3, we find that BatchFormerV1 is less

sensitive to the batch size that is small than 128, while the best performance on Few category

is achieved with the batch size 512; In Table A.24, we see that BatchFormerV1 without a

shared classifier achieves the similar performance on three categories, while BatchFormerV1

with a shared classifier maintains the performance on Many category. This demonstrates the

effectiveness of a shared classifier and the re-balancing ability of BatchFormerV1.

Results on iNaturalist2018. We only evaluate BatchFormerV1 on RIDE since Balanced-

Softmax has very limited performance on iNaturalist2018 while training PaCo requires over 36

GPU days. We train RIDE with cosine decay learning-rate scheduler in one stage and obtain a

baseline slightly better than reported with 72.5%. As illustrated in Table 3.5, BatchFormerV1

improves the Medium and Few by 1.8% and 2.6%, respectively.

TABLE 3.5. Results on iNaturalist2018.

Method All Many Medium Few
BBN [308] 66.3 49.4 70.8 65.3
cRT [126] 65.2 69.0 66.0 63.2
RIDE-3e [265] 72.2 70.2 72.2 72.7
PaCo [44] 73.2 - - -
RIDE-3e [265]∗ 72.5 68.1 72.7 73.2
+ BFV1 74.1 65.5 74.5 75.8

Results on Places-LT. Table 3.6 illustrates that BatchFormerV1 improves BALMS on the Few

category. Besides, BatchFormerV1 effectively improves PaCo [44], which also delivers a new

state-of-the-art on Places-LT. Different from the results on CIFAR-100-LT and ImageNet-LT,

here BatchFormerV1 mainly improves the Many category, which is possibly because PaCo
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has much worse performance on the Many category and BatchFormerV1 can re-balance the

learning on imbalanced training data.

TABLE 3.6. Results on Places-LT. The backbone is ResNet-152.

Method All Many Medium Few
OLTR [171] 35.9 44.7 37.0 25.3
τ -normalized [126] 37.9 37.8 40.7 31.8
BALMS [212] 37.8 41.4 38.8 29.1
+ BFV1 38.2 39.5 38.3 35.7
PaCo [44] 41.2 37.5 47.2 33.9
+ BFV1 41.6 44.0 43.1 33.7

TABLE 3.7. Results on compositional zero-shot learning. * means we use
the released code to reproduce the results. S means seen, U means unseen, s
means state and o means object.

Method MIT-States UT-Zap50K C-GQA
AUC HM S U s o AUC HM S U s o AUC HM S U s o

CompCos [178] 4.5 16.4 25.3 24.6 27.9 31.8 28.7 43.1 59.8 62.5 44.7 73.5 - - - - - -
CGE [185] 6.5 21.4 32.8 28.0 30.1 34.7 33.5 60.5 64.5 71.5 48.7 76.2 3.6 14.5 31.4 14.0 15.2 30.4
CGE [185]∗ 6.3 20.0 31.6 27.3 30.3 34.5 31.5 46.5 60.3 64.5 46.3 74.4 3.7 14.9 30.8 14.7 15.8 29.0
+ BFV1 6.7 20.6 33.2 27.7 30.8 34.7 34.6 49.0 62.5 69.2 49.7 75.6 3.8 15.5 31.3 14.7 15.3 30.0

3.4.2 Zero-Shot Learning

We evaluate BatchFormerV1 for compositional zero-shot learning on three popular datasets:

1) MIT-States [119] consists of 30,000 training images of natural objects with 1,262 seen

compositions (23.8 image per composition, 115 states and 245 objects), and 13,000 test images

with 400 seen compositions and 400 unseen compositions; 2) UT-Zappos [285] includes

23,000 training images of shoes catalogue and we use the splits from [208]. UT-Zappos has

83 seen compositions for training (277.1 images per composition, 16 states, 12 objects) and

18 seen compositions and unseen compositions in test set; 3) C-GQA [185] provides 26,000

training images with 6,963 seen compositions (3.7 images per composition, 453 states, 870

objects) and 3,000 test images with 18 seen compositions and unseen compositions. All

experiments are evaluated following the same settings in [185]. We adopt the evaluation

protocol of [208] and report the Area Under the Curve (AUC) (in %) between the accuracy

on seen and unseen compositions. Similar to [185], we also report unseen accuracy, seen

accuracy, and the best harmonic mean.
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Results. Table 3.7 shows that BatchFormerV1 effectively improves the AUC and HM

among all datasets compared to the baseline. For fair comparison, we use the official code

and the same setting to reproduce [185] as our baseline. We notice that BatchFormerV1

mainly improves the Seen category on MIT-States and C-GQA, while it largely improves the

Unseen category by nearly 5% on UT-Zap50K. This might be because the number of seen

composition instances on MIT-States and C-GQA is few, e.g.23.8 image per seen composition

on MIT-States and 3.7 images per seen composition. In other words, the recognition of seen

compositions on MIT-States and C-GQA is few-shot learning. We think BatchFormerV1 can

find invariant features among images of the same class on two datasets.

3.4.3 Domain Generalization

In this subsection, we first show that BatchFormerV1 effectively improves the baseline without

other domain generalization techniques on PACS [149]. We then apply BatchFormerV1 to a

recent popular domain generalization method, e.g., SWAD [25].

We perform experiments on four popular domain generalization datasets: 1) PACS [149]

covers 7 object categories and 4 domains (Photo, Art Paintings, Cartoon and Sketches); 2)

VLCS [58] contains 10,729 images from 4 domains and 5 classes; 3) OfficeHome [245]

contains 15,588 images from 4 domains and 65 classes; and 4) TerraIncognita [14] contains

24,788 images from 4 domains and 10 classes. For the baseline, we use ResNet-18 as the

backbone. The model is then trained with the SGD optimizer for 30 epochs using an initial

learning rate of 0.001 for the first 24 epochs and 0.0001 for the last 6 epochs. For fair

comparison, we only use common data augmentations, e.g., flip, color-jiter, and scale. All

models are trained for five times and the average performance is applied. When comparing

with others methods, the implementations are based on [124]. For SWAD [25], we use the

official code and always follow the same setting (see more details in the appendix).

Results. We show the experimental results on the domain generation in Table 3.8 and

Table 3.9. Specifically, Table 3.8 illustrates that BatchFormerV1 consistently improves the
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baseline methods: CORAL [231] and MixStyle [309]. In Table 3.9, we see that Batch-

FormerV1 clearly improves recent state-of-the-art method [25] on all four datasets. Batch-

FormerV1 improves [25] by over 2% on both OfficeHome and TerraIncognita, indicating that

it can facilitate invariant representation learning to improve cross-domain generalization.

TABLE 3.8. Illustration of BatchFormerV1 for domain generalization on
PACS [149].

Method art_paint cartoon sketches photo Avg.
Baseline 79.9± 1.0 73.0±1.5 67.7± 3.0 95.7±0.4 79.1
+ BFV1 80.4±0.2 73.8±2.0 68.6±1.8 96.3±0.2 79.8
CORAL [231] 79.2±1.7 75.5 ±1.1 71.4±3.1 94.7±0.3 80.2
+ BFV1 80.6±0.9 74.7±1.9 73.1±0.3 95.1±0.3 80.9
MixStyle [309] 81.7±0.1 76.8±0.0 80.8±0.0 93.1±0.0 83.1
+ BFV1 84.8 ±0.4 75.3±0.0 81.1 ±0.4 93.6±0.0 83.7

TABLE 3.9. Illustration of BatchFormerV1 for domain generalization based
on SWAD [25]. The backbone is ResNet-18.

Method PACS VLCS OfficeHome TerraIncognita
SWAD [25] 82.9 76.3 62.1 42.1
+ BFV1 83.7 76.9 64.3 44.8

3.4.4 Contrastive Learning

Contrastive learning aims to learn representations that attract similar samples and dispel

different samples, while BatchFormerV1 builds a transformer network among samples to

implicitly explore sample relationships for representation learning. Therefore, BatchFormerV1

can also be easily applied to contrastive learning. We mainly evaluate BatchFormerV1 with

MoCo-v2 [35] and MoCo-v3 [40] using linear classification protocol. We also show object

detection results based on these pretrained backbone models in the appendix. As shown in

Table 3.10, when using ResNet-50 as backbone, BatchFormerV1 can consistently improve

self-supervised learning via contrastive learning, e.g., BatchFormerV1 improves both MoCo-

v2 and MoCo-v3 by around 1.% on ImageNet-1k.
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TABLE 3.10. Illustration of BatchFormerV1 for contrastive learning.

Method Epochs Top-1 Top-5
MoCo-v2 [35] 200 67.5 -
+ BFV1 200 68.4 88.5
MoCo-v3 [40] 100 68.9 -
+ BFV1 100 69.8 89.5

FIGURE 3.8. Visualization of BatchFormerV1 on low-shot test images using
Grad-Cam [212]. The first row is baseline, and the second row is Batch-
FormerV1. The left part of the figure shows that BatchFormerV1 enables the
model to pay attention to more details when the scene is simple and clean,
while the right part of the figure shows that BatchFormerV1 facilitates to
ignore the spurious correlation in the image. More figures are shown in the
appendix.
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FIGURE 3.9. The gradient of each class to other images in mini-batch on
CIFAR-100-LT and ImageNet-LT (based on [212]). For each class, we obtain
the gradient norm to other images in all mini-batches, and then average the
gradients of each class. The classes are sorted by descending order according
to the number of instances.
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3.4.5 Analysis

In this subsection, we provide some analyses of BatchFormerV1, including visual and gradient

analyses.

Visual Analysis. We illustrate the visualized comparison with Grad-CAM [220] between

the baseline and BatchFormerV1 in Figure 3.8. We find BatchFormerV1 focuses on more

details of objects and ignores spurious correlations. On the one hand, when the image

includes complex scenes with many disturbing factors, BatchFormerV1 effectively improves

the attention of the network on the corresponding object regions (e.g., the sea snake on the

sandbeach, the dog on the snow and the insect on the leaf in Figure 3.8). On the other hand,

BatchFormerV1 also pays more attention on regions of the object when the scene is clear

(e.g., the bird, dog, and spider). See more results in the appendix.

Gradients Analysis. BatchFormerV1 has increased new gradient backward: the loss of each

label has the gradients on other images. In other words, we have implicitly augmented the

samples for the class of each image in the mini-batches. The other images in the mini-batch

can also be regarded as the virtual instances of current image class. The gradient is firmly

related to the effect of each image label on other images. Figure 3.9 illustrates the rarer

the class is, the larger the gradients of the class have on other images in the mini-batch.

Thus, BatchFormerV1 actually utilizes the other images to facilitate low-shot recognition via

increasing gradients of few-shot labels on other images.

3.4.6 Image Classification

In this subsection, we evaluate BatchFormerV2 for image classification using vanilla vision

transformer or ViT [53].

To compare with baseline methods, we follow the same training strategy with DeiT [238].

We perform image classification experiments on two popular datasets, CIFAR-100 [140] and

ImageNet [50]. For CIFAR-100, we follow the setups in [34] and train all models with an

initial learning rate 6e-4 and the batch size 1024. For ImageNet, we train all models for
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300 epochs with an initial learning rate 1e-3 and the batch size 1024. All experiments are

conducted on a cluster with eight NVIDIA A100 GPUs (40GB). When applying the proposed

BatchFormerV2 module, we always use the same number of heads with the corresponding

baseline model. For CIFAR-100, we insert BatchFormerV2 for all layers. For ImageNet, we

insert BatchFormerV2 in the eighth layer. Empirically, we observe frequent crashes during

training if we apply BatchFormerV2 in very early layers on ImageNet. More details and

discussions are provided in the appendix.

Results on CIFAR-100. Current vision transformer architectures (e.g., ViT [53]) usually

require large-scale training data or strong regularization to avoid the overfitting problem.

Therefore, it still remains challenging to train vision transformers from scratch on small

datasets. In this chapter, we also find that the proposed BatchFormerV2 module can signific-

antly improves the performance of vision Transformer on small datasets. As illustrated in

Table 3.11, BatchFormerV2 significantly improves the performance of DeiT-B from 52.2% to

66.6 % by 14.4%, DeiT-S from 57.5% to 68.5% by 11%, DeiT-Ti from 49.2% to 58.7% by

9.5%. When we train all models with more epochs, i.e., 300 epochs, the improvement is also

considerable. The possible reason is that BatchFormerV2 enables the information propagation

among patches in different images, which benefits the optimization and generalization when

learning on small datasets. Specifically, we may find that DeiT-B does not achieve better

performance compared to DeiT-S. This is possibly because DeiT-B is a too large model for a

small dataset such as CIFAR-100.

TABLE 3.11. Image classification results on CIFAR-100. Specifically, fol-
lowing the experimental setups in [34], we train all models from scratch and
report the top-1 accuracy (%).

Model #Params Input Epochs=100 Epochs=300
DeiT-Ti [238] 5M 2242 49.2 69.2
+ BFV2 5M 2242 58.7 73.4
DeiT-S [238] 22M 2242 57.5 72.5
+ BFV2 22M 2242 68.5 75.2
DeiT-B [238] 86M 2242 52.2 71.8
+ BFV2 86M 2242 66.6 74.8
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TABLE 3.12. Illustration of BatchFormerV2 on common object detection
using DETR [23] and Deformable-DETR [314] as baselines. Following [314],
we train all models with 50 epochs using the official code. ∗ indicates using
iterative bounding box refinement.

Method Backbone AP AP50 AP75 APS APM APL

DETR [23] ResNet-50 34.8 55.6 35.8 14.0 37.2 54.6
+ BFV2 ResNet-50 36.9 57.9 38.5 15.6 40.0 55.9
Conditional-DETR [181] ResNet-50 40.9 61.8 43.3 20.8 44.6 59.2
+ BFV2 ResNet-50 42.3 63.2 45.1 21.9 46.0 60.7
SMCA (single scale) [68] ResNet-50 41.0 - - 21.9 44.3 59.1
+ BFV2 ResNet-50 42.3 63.5 45.4 22.5 45.7 60.1
Deformable-DETR [314] ResNet-50 43.8 62.6 47.7 26.4 47.1 58.0
+ BFV2 ResNet-50 45.5 64.3 49.8 28.3 48.6 59.4
Deformable-DETR∗ [314] ResNet-50 45.4 64.7 49.0 26.8 48.3 61.7
+ BFV2 ResNet-50 46.7 65.6 50.5 28.8 49.7 61.8
Deformable-DETR [314] ResNet-101 44.5 63.7 48.3 25.8 48.6 59.6
+ BFV2 ResNet-101 46.0 65.2 50.5 28.4 49.8 60.7

Results on ImageNet. Table 3.13 shows that BatchFormerV2 consistently improves the

performance among different ViT models. We observe BatchFormerV2 achieves similar

improvement, i.e., around 0.5%, compared to the baseline. Compared to the improvement

on object detection and panoptic segmentation, the improvement on image classification is

relatively small. It might be because dense prediction requires to localize the objects in the

images, i.e., there are multiple targets in the image, while image classification treats the whole

image as the target and requires to recognize the image. Furthermore, we think the strong data

augmentation in classification might be also a limitation for BatchFormerV2 on ImageNet.

TABLE 3.13. Image classification results on ImageNet.

Model #Params Input Top-1 Top-5
DeiT-Ti [238] 5M 2242 72.2 91.1
+ BFV2 5M 2242 72.7 91.5
DeiT-S [238] 22M 2242 79.8 95.0
+ BFV2 22M 2242 80.4 95.2
DeiT-B [238] 86M 2242 81.7 95.5
+ BFV2 86M 2242 82.2 95.8
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3.4.7 Object Detection

In this subsection, we evaluate BatchFormerV2 for common object detection using popular

transformer-based object detectors such as DETR [23], Conditional-DETR [181], SMCA [68],

and Deformable-DETR [314].

We perform all experiments on the most popular common object detection benchmark dataset,

COCO 2017 [164], which contains 118k training images and 5k validation images. During

training, the backbone network is initialized from the weights pretrained on ImageNet-1K [50].

We run experiments on eight NVIDIA V100 GPUs (16GB) for DETR, and eight NVIDIA

A100 GPUs (40GB) for Deformable DETR. If not otherwise stated, the batch-size for DETR,

Conditional-DETR and SMCA is 16 and the default batch size for Deformable-DETR is

24. We insert the BatchFormerV2 module in the first transformer encoder layer in all

experiments. The number of heads in BatchFormerv2 is 4. For fair comparison, all other

hyperparameters follow the default configurations described in DETR [23], Conditional-

DETR [181], SMCA [68] and Deformable-DETR [314].

Results on COCO. In Table 3.12, BatchFormerV2 significantly improves the corresponding

baseline methods. For example, without bells and whistles, BatchFormerV2 improves DETR

by 2.1% and Deformable-DETR by 1.7% when using a ResNet-50 backbone. We observe

consistent improvement on Conditional-DETR and SMCA. Moreover, we find that Batch-

FormerV2 mainly improves the object detection performance on small and medium objects.

For example, BatchFormerV2 increases Deformable-DETR in APS by 1.9% and APM by

1.5%, respectively. For DETR, BatchFormerV2 increases APS and APM by 1.6% and 2.8%,

respectively. We think via building Transformer along the pixel of the feature map in the batch

dimension, BatchFormerV2 utilizes features from other images to facilitates object detection

in current image. For small objects which is usually challenging to detect, BatchFormerV2

is able to incorporate objects from other images to detect (See visualization results in this

section). Therefore, BatchFormerV2 significantly improves corresponding baselines. To

better understand BatchFormerV2 for object detection, we also perform ablation studies on

some key factors that may have influences on model performance as follows.
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FIGURE 3.10. Visualization of the attention maps. We apply BatchFormerV2
in the first transformer layer in Deformable-DETR.

Ablation Study on Batch Size. Considering that BatchFormerV2 aims to learn sample

relationships among each mini-batch during training, we evaluate the influence of different

mini-batch size on BatchFormerV2 as follows. As shown in Table 3.14, 1) when increasing

the batch-size from 16 to 24, the performance can be further improved with a small margin;

and 2) when further increasing the batch-size to 32, the performance is comparable, i.e., no

additional improvements. Here, we maintain other hyper-parameters when increasing the

batch size. We consider that it may require to tune other hyperparameters after increasing the

batch size to achieve further improvements.

TABLE 3.14. Ablation study on batch size. Specifically, we use Deformable-
DETR as our baseline and insert BatchFormerV2 module in the last trans-
former layer.

Batch Size Epochs AP AP50 AP75 APS APM APL

16 50 44.7 63.5 48.9 27.3 48.1 59.1
24 50 45.1 64.1 49.3 28.5 48.4 59.4
32 50 44.9 63.8 48.8 27.7 48.3 60.0

Ablation Study on Insert Position. We perform ablation studies on different insert positions

of BatchFormerV2 and show the influences on model performance. Specifically, we use

Deformable-DETR as the baseline, which contains six transformer layers. As shown in

Table 3.15, we find that: 1) the insert positions do have an important effect on the performance;
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and 2) the number of BatchFormerV2 modules does not have significant influence on the final

performance, i.e., more BatchFormerV2 modules cannot further improve the object detection

performance; and 3) applying BatchFormerV2 in early layers seems to be more effective for

dense prediction tasks.

TABLE 3.15. Ablation study on insert position. Specifically, “L1-3” indicates
that we apply BatchFormerV2 modules from the first layer to the third layer.

L1-2 L1-3 L3-6 L4-6 L5-6 L1 L2 L3 L4 L5 L6
AP 45.2 44.9 45.4 44.9 45.0 45.5 45.3 45.2 45.2 45.2 45.1

Ablation Study on Shared Modules. We evaluate whether sharing all BatchFormerV2

modules among different layers will benefit dense prediction tasks. As shown in Table 3.16,

we find that, without sharing the modules, it could bring 0.5% improvement compared to the

shared scheme. It may suggest that the dense sample relationships are varying among different

layers/levels, which also explains that, in different visual recognition tasks, BatchFormerV2

may need to be added into different layers.

TABLE 3.16. Ablation study on shared modules. Specifically, here we apply
BatchFormerV2 from the third to the sixth layers. All models are trained with
50 epochs.

Method AP AP50 AP75 APS APM APL

Deformable-DETR 43.8 62.6 47.7 26.4 47.1 58.0
+ BFV2 (shared) 44.9 63.6 49.1 27.7 47.9 59.6
+ BFV2 45.4 64.3 49.5 28.6 48.5 59.9

Visualization. BatchFormerV2 is applied into transformer encoder layers along each spatial

position, and it enables the information propagation among samples in a mini-batch via

attention mechanism. Here, we visualize the attention of each slot on other slots along with

the same position among the batch dimension. Specifically, we show the feature map in the

first transformer encoder layer of Deformable-DETR. Figure 3.10 shows that BatchFormerV2

mainly focuses on the objects (e.g., person, chairs), while paying less attention on the

background (e.g., play ground, grass). This actually demonstrates that BatchFormerV2

improves the object localization via the attention among different samples. This is also
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consistent to the panoptic segmentation results in Section 3.4.8, where the improvements on

the things categories are significant than those on the stuff categories. In addition, we observe

that self-attention highlights all the regions of the objects with clear boundaries.

FIGURE 3.11. A visual comparison between DETR [23] with and without
BatchFormerV2. Specifically, the first row is the original image, the second
row is the result without BatchFormerV2, and the last row is the result with
BatchFormerV2.

TABLE 3.17. Panoptic segmentation with DETR [23] on the COCO val
dataset.

Method PQ SQ RQ PQth SQth RQth PQst SQst RQst AP
DETR [23] 43.4 79.3 53.8 48.2 79.8 59.5 36.3 78.5 45.3 31.1
+ BFV2 45.1 80.3 55.3 50.5 81.1 61.5 37.1 79.1 46.0 33.4

3.4.8 Panoptic Segmentation

In this subsection, we evaluate BatchFormerV2 for panoptic segmentation, i.e., a combination

of instance and semantic segmentation, on the MS-COCO dataset. We use the panoptic

annotation in [137], which contains additional 53 stuff categories in addition to 80 things

categories from the original MS-COCO dataset. We use DETR [23] as our baseline, i.e., we

utilize a mask head to generate panoptic segmentation results for both stuff and things classes

in a unified way [137]. Following [23], we first train the model with BatchFormerV2 for
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object detection to predict bounding boxes around stuff and things classes 300 epochs. We

then finetune the new mask head for extra 25 epochs.

Results. We report the panoptic quality (PQ) and the breakdown performances on things

(PQth) and stuff (PQst) in Table 3.17. Specifically, we observe that BatchFormerV2 signi-

ficantly improves AP by 2.3% and PQ by 1.7%. We also notice the improvement on PQth

is much larger than PQst. That is, BatchFormerV2 improves PQth by 2.3%, while the im-

provement on PQst is only 0.8%. This result is consistent with the results of object detection:

by enabling the information propagation, BatchFormerV2 mainly facilitates object detection

and instance segmentation. Furthermore, following [23], we actually freeze the bounding

box branch and transformer layers (include BatchFormerV2) when finetuning the mask head,

we find that the performance of panoptic segmentation is also significantly improved. A

possible explanation is that BatchFormerV2 improves the optimization of the backbone and

the transformer encoder for better object detail modeling for bounding box detection and

subsequently facilitates the segmentation performance when finetuning the mask head.

Visualization. To better understand how BatchFormerV2 helps dense prediction, we provide

visualization results in Figure 3.11. Specifically, BatchFormerV2 mainly improves the

segmentation details and the small object segmentation. For example, the segmentation

boundaries of the door have been significantly improved, while the baseline model mistakenly

segments the door as the wall in Figure 3.11. Meanwhile, the legs of the desk are more clear

with the help of BatchFormerV2. In the second column, the segmentation details of airplane

become better with BatchFormerV2, e.g., the tail and front wheels. In the last column, the

baseline model ignores the segmentation of the grass (i.e., small stuffs), while it can correctly

segment the grass with BatchFormerV2.

3.4.9 HOI Detection

This chapter proposes a novel BatchFormer module for sample relationship exploration.

Chapter 2 demonstrates the compositional learning framework for Human-Object Interaction

Exploration, which actually explicitly leverages the relationships among different HOI images,
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i.e., different interactions might share similar objects or verbs. Different from explicit or

supervised compositional learning according to bounding boxes and the corresponding verb or

object labels in Human-Object Interaction, BatchFormer presents an implicit way to explore

the sample relationship. Table 3.18 presents the results when we apply BatchFormer to HOI

detection approaches. BatchFormer is also able to effectively improve HOI detection based

on DETR-based methods, particularly for rare category.

TABLE 3.18. Evaluation of BatchFormerV2 on HICO-DET

Method Full Rare NonRare
Baseline 28.16 19.48 30.76
+ BFV2 28.46 21.55 30.52

3.5 Summary

In this chapter, we propose to enable deep neural networks themselves with the abilities to

explore the sample relationships and enable the implicit representation transfer from each

training mini-batch. Specifically, we consider each image in a mini-batch as one node of

a sequence, and employ a transformer encoder network among all images to learn sample

relationships among them. The proposed BatchFormerV1 enables the gradient propagation

of each label to all images in the mini-batch, which can be intuitively seen as virtual sample

augmentation, and thus benefits robust representation learning. To further explore multi-

scale sample relationships for dense prediction tasks, we generalize the proposed module as

BatchFormerV2. Meanwhile, we introduce a two-stream training pipeline, where two streams

share all other layers/blocks except the proposed modules. By doing this, the proposed module

can be a plug-and-play module and easily integrated into different vision transformers without

any extra inference cost. To evaluate the proposed module. We perform extensive experiments

on over ten datasets, which show that the proposed method achieves significant improvements

in 1) different data scarcity settings, including long-tailed recognition, zero-shot learning,

domain generalization, and contrastive learning; and 2) different visual recognition tasks,

including image classification, object detection, and panoptic segmentation.



CHAPTER 4

3D Human-Object Interaction Animation

After exploring the hierarchical visual relationships from existing relationships and sample

relationships in the 2D perspective, the thesis further investigates the 3D visual relationships

based on the 3D human-object interaction and learns to transfer the poses for novel objects.

Neural rendering of animatable 3D human avatars has been intensively explored by implicit

neural representations, while the rich human-object interactions (HOIs) are crucial for numer-

ous human-centric scene capturing/understanding applications such as AR/VR and robotics.

In this thesis, we address the challenge of HOI animation in a compositional manner, i.e.,

animating novel HOIs including the novel interaction, human and/or object via a sequence

of novel driving poses. Specifically, we first adopt the neural human-object deformation

to model and render HOI dynamics based on the neural representations. We then devise

a new compositional conditional neural radiance field (or CC-NeRF), which decomposes

the interdependence between the human and object latent codes to enable compositionally

controlling the animation of novel HOIs. Extensive experiments show that the proposed

method generalizes well to novel HOI animation.

4.1 Motivations and Contributions

Rendering 3D human-object animation is of great importance for human-centric generation

with a wide range of real-world applications such as telepresence, video games, films, AR/VR

and robotics. However, reconstructing and rendering human avatars with the interactive ob-

jects remains poorly investigated. Since traditional 3D reconstruction methods highly depend

on dense cameras or depth sensors [215, 54, 55], implicit neural representations for graphical
93
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Novel Pair

New Person/Object

Novel Pose

Input: spare multi-view interaction videos, individual person and object Output: Compositional Human-Object Animation

FIGURE 4.1. An illustration of compositional human-object neural animation.
Given a set of sparse multi-view RGB HOI short videos with less than 50
frames, we render the neural animation of novel HOIs with novel pose, human,
and object. Specifically, most faces in the training dataset are partly blurred.

objects present appealingly realistic results without the requirement of complex hardware and

thus receive increasing attention from the community [182, 183, 12, 188]. Specifically, [183]

introduces an implicit representation, i.e., neural radiance fields (NeRF), which represents

static or rigid 3D objects/scenes as color and density fields and is capable of efficiently

learning 3D geometry from images with differentiable volume rendering techniques.

To explore dynamic non-rigid scenes and objects, vanilla NeRF has been recently extended

to handle deforming scenes [196, 240, 200] and motion modeling [159, 270, 207]. On the

one hand, several methods propose to represent multiple frames of human body with implicit

neural representations under the control of skeleton [199, 165, 230, 143, 279, 190, 303, 151,

255], achieving considerable performance in free-viewpoint human avatar rendering and

demonstrating good generalization to novel human poses. However, the above-mentioned

methods usually focus on the animation of either individual human body or object, leaving

the interactions between human and object poorly investigated. On the other hand, several

methods propose to explore the interactions between human and the surrounding objects

or environments [233, 88, 82, 299, 46, 294, 280, 169]. Nevertheless, they mainly aim to

reconstruct human/object shape and appearance rather than rendering animatable HOIs.
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To jointly capture dynamic human body and objects, we thus generalize deformable neural

radiance fields for human-object interaction. Specifically, the objects are regarded as discon-

nected joints in correspondence to the human body, and we then construct “pseudo bones”

based on the object joint together with human body bones to model and control the dynamics

of human-object interactions. By doing this, we extend the idea of animatable volumet-

ric avatars to human-object interactions with non-linear pose-dependent deformation fields.

Therefore, with the carefully designed canonical human-object pose, the generalized de-

formation fields and coordinate-based volumetric rendering, we can reconstruct and animate

existing HOIs. Notably, recent animation approaches usually leverage meshes or poses to

control the rendering for human or animals [199, 230, 190, 303, 151, 255, 229]. Considering

that mesh or prior model is not always available for novel objects, and we thus adopt 3D

human pose and 6-DoF object pose to simplify the control of HOI animation, which requires

only the person skeleton and object 6-DoF pose and multi-view images. We introduce the

details of neural human-object deformation in Section 4.3.3.

Considering the compositional nature of HOI, which is composed of a person, a verb/action,

and an object, the animation of HOIs is thus not only related to novel poses/actions but also

novel human and object. Specifically, due to the combinatorial explosion, it is impractical to

collect all possible interactions between human and object, involving various kinds of objects

and human with different appearances and shapes. Therefore, we proposed to compositionally

animate human-object interaction by introducing a new compositional conditional neural

radiance fields (CC-NeRF). Specifically, we first utilize the conditional latent variables to

control different people and objects [217, 167, 188], and then decompose the human and

object latent codes via the compositional invariant learning. By doing this, we thus enable

the controllable animation for novel human-object interactions. We introduce the details of

compositional animation in Section 4.3.4.

In this thesis, we present a novel approach, named as compositional 3D human-object neural

animation or CHONA, to implicitly reconstruct HOIs from sparse multi-view videos via

coordinate-based neural representations, and compositionally animate HOIs under novel
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poses/interactions, novel person and novel object. An illustration of compositional HOI

animation is shown in Figure 4.1. Our contributions can be summarized as:

• We introduce an HOI animation framework by exploring neural HOI deformations.

• We devise a compositional conditional NeRF for compositional HOI animation,

which enables generalizing to novel human and object.

• We perform comprehensive experiments to demonstrate that the proposed method not

only improves the animation performance but also the compositional generalization.

4.2 Related Work

4.2.1 3D Human-Object Modeling

The interaction with objects is common in the people’s daily life [120, 78]. Early work mainly

investigate synthesizing human pose and object [120], human body reconstruction [62], object

recognition [266], or human 3D pose estimation [2, 133, 38, 160] under the interaction with

objects or environments. Recently, Human-Scene Synthesis [295, 296, 89, 298, 251, 90, 253]

has attracted extensive interests from the community due to the potential applications in the

meta universe. Those methods usually depend on the prior human model (e.g., SMPL) and

only synthesize the human motion in the scenes, while compositional Human-Object neural

animation aims to animate both human and object in a compositional manner. Recently,

increasing approaches [16, 233, 232, 84, 125, 46, 280, 294, 115, 262, 276] focus on 3D

Interactions between Human and its surrounding objects. Zhang [294] present to reconstruct

the spatial arrangements of Human-Object Interaction. [280, 46] reconstruct the meshes of

human-object interactions, while recent work [125] introduces the neural representations to

human-object interaction and significantly advances the novel view synthesis performance.

Particularly, a real HOI dataset, BEHAVE [16], consisting of 8 subjects and diverse objects,

is introduced with spare views of HD videos and the poses of human and object. We mainly

conduct our experiments based on BEHAVE. Concurrent work [85, 262, 276, 115] focus

on reconstruction or 3D tracking, significantly ignoring interaction animations. Besides,
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though current compositional approaches on human-centric interactions have studied the

recognition [128], detection [111], object affordance [108], 2D generation [187], and 3D

human-scene synthesis [298], the compositional 3D animation remains unsolved.

4.2.2 Animatable Avatars

3D Avatars [174, 200, 255, 151, 37] have been through a significant progress. Early work

usually leverages SMPL [174] model to reconstruct or synthesize human body, however the

body is usually naked. Recently, neural fields have dominated 3D shape representations

and novel view synthesis. Peng et al. [200] present to implicitly reconstruct human body

from spare videos with neural radiance fields with a carefully designed skinning deformation.

Next, [199, 165, 143, 190, 230, 158, 303, 229] significantly facilitate the performance in

novel view rendering for novel poses. More recently, [151, 255] demonstrate appealing

avatar generation under out of distribution poses. Meanwhile, [158] presents to reconstruct

high-fidelity human avatars from the monocular RGB video observation and the avatar

prior. Specifically, [229, 151] requires only 3D skeletons and multiple multi-view frames

to construct an animatable Avatar, while [255] requires a pre-trained body SDF model to

control the animation. Considering the fewer requirements on body models (e.g., SMPL) of

pose-dependent animation, we follow [229, 151] to compositionally control the animation

with poses.

4.2.3 Neural 3D Representations

Neural representations [195, 182, 39] have revolutionized the 3D surface representation,

and achieved continuous, high resolution outputs of arbitrary shape. Recently, NeRF [183]

represents 3D points in the scene with density and color, and renders the scene with volumetric

rendering techniques, achieving photorealistic novel rendering. Next, [12] extends NeRF

to represent the scene at a continuously-valued scale with conical frustum. GRAF [217]

represents the neural radiance conditioned on shape/appearance latent codes. GIRAFFE [188]

further presents controllable image synthesis with Compositional Generative Neural Feature
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Fields. However, those approaches [217, 188] mainly learn the representations from static

scenes, in which the objects are not frequently occluded. Differently, Compositional Human-

Object animation requires to control the synthesis from spare multi-view HOI videos, which

includes massive occlusion for human body and objects. Meanwhile, [217, 188, 281] mainly

control the image synthesis for the static 3D scenes with rigid objects via linear transformation,

while our approach is able to deform the interaction in a non-linear way.

4.3 Methodology

In this section, we introduce the proposed compositional 3D human-object animation approach.

Specifically, we first provide an overview of HOI animation and the popular neural radiance

fields (NeRF). We then introduce the neural human-object deformation and the compositional

conditional radiance fields in detail.

4.3.1 Overview

Given sparse multi-view inputs, including interaction videos, single person videos, and objects,

Compositional 3D Human-Object Animation enables to not only render the interaction under

novel interaction pose, but also animate the interaction between a novel person and novel

objects. Specifically, we build a pseudo bone for the object, and then treat the pseudo

bone equally with body bones. Next, following the popular body skinning deformation

techniques [199, 303, 151, 255], we devise a neural Human-Object deformation method to

construct animatable human-object interactions as illustrated in Figure 4.2. Moreover, in order

to control the interaction animation with novel people or objects, we devise compositional

conditional radiance fields with two conditional latent codes, representing human and object

respectively, to control the human-object identity. Specifically, we devise a compositional

invariant learning strategy to decompose the interdependence between human and object

latent codes, and thus enable to compositionally control the animation for novel objects or

people.
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FIGURE 4.2. Overview of the proposed approach. The proposed composi-
tional human-object neural animation approach leverages the neural Human-
Object deformation module to deform the canonical points to posed points,
and identify the corresponding canonical points of observed points via inverse
skinning. Next, we obtain the density and color of the ray points conditioned
on human and object latent codes, and accumulate the samples to render the
pixel color. In addition, a compositional invariant learning strategy is intro-
duced to decompose the interdependence between the two latent codes, and
facilitate compositional human-object animation.

4.3.2 Neural Radiance Fields

NeRF [183] leads to significant progress in a wide range of 3D vision topics. It implicitly

represents the geometry and appearance of the scene with a multi-layer perceptron neural

network and volumetric rendering techniques. For a ray r and the viewing direction (θ, ϕ),

NeRF first queries the emitted color c and density σ at the 3D point x = (x, y, z) in the

ray r, then uses volumetric rendering to get the pixel color C(r) via accumulating the

view-dependent colors along the ray r as follow,

C(r) =
N∑
i

Ti(1− exp(σiδi))ci, (4.1)

where Ti = exp(−
∑i−1

j=1 σjδj), δi indicates the distances between the sample points along

the ray. Then, it optimizes the network via calculating the distance loss between C(r) and

ground truth pixel color. Recently, Mip-NeRF [12] extends NeRF via taking each point in the

ray as a cone, the samples x along the ray as conical frusta modeled as multivariate Gaussians

(µ, Σ). Mip-NeRF accumulates the pixel color in a similar way to NeRF [183].
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4.3.3 Neural Human-Object Deformation

To represent the human-object interaction via neural volumetric representation, we devise a

canonical Human-Object representation as follows. For each point xp in the observed/posed

space, we have a corresponding point xc in the canonical space, which can be deformed into

xp via neural skinning deformation. The canonical representation includes a Lambertian

neural radiance field FΘr : (xc,Σ) → (c, δ), where r denotes the pixel ray, c = (r, g, b)

indicates the material color, δ represents the material density respectively. Besides, we follow

Mip-NeRF [12] to accumulate the samples (xp,Σ) (a multivariate Gaussian) to render the

pixel color at each ray. As illustrated in Figure 4.2, the canonical human-object space includes

a T-pose body and an object placed in front of the body. We denote the transformation of each

body bone as T i, 0 ≤ i < B , where B is the number of body bones and T i ∈ R4×4. We

represent the 6 DoF transformation (t, r) of the object from canonical space to the observed

space as TB. As a result, we have P = {T 0,T 1, ...,TB} ∈ R(B+1)×4×4 representing the

transformation of a human-object interaction.

Forward Skinning. Following the popular animatable avatar methods [37, 256, 255, 151], we

revise the traditional linear blend skinning (LBS) [3, 174, 193] into neural skinning to deform

a canonical Human-Object pose according to rigid bone transformations. We treat background

as an additional bone. Thus, we have B + 2 bones for the human-object interaction. Similar

to [199, 255, 151], a MLP function FΘs : xc → w is used to project a canonical point xc into

corresponding weights w. Given the skinning weights w = (w0, w1, ..., wB−1, wB, wbg) ∈

RB+2 and a pose P = {T 0,T 1, ...,TB}, we use forward LBS to define the deformation of a

sample xc in the canonical space to xp in the view space:

xp = LBS(FΘs(xc),P ,xc) + FΘ∇(xc,P )

= [
B+1∑
j=0

FΘs,j(xc) · T j + wbg · I] · xc + FΘ∆
(xc,P ),

(4.2)

where I ∈ R4×4 denotes identity matrix, FΘ∆
: (xc,P ) → ∆w ∈ R3 is for modeling

the non-linear deformations [151]. Similar to [267, 151], rather than the surface points as
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traditional LBS, we skin all points in the 3D space with wbg · I , which stops deforming the

points in the background and empty space.

Inverse Skinning. It requires to transformer the observed points into canonical space for

rendering the model. Similar to [37, 255, 151], we leverage the root finding strategy [37] to

deform xp to x
′
c subject to,

f(x
′

c) = LBS(FΘs(x
′

c),P ,x
′

c) + FΘ∆
(x

′

c,P )− xp = 0, (4.3)

where x
′
c denotes the potential canonical point of xp. Then we solve it numerically via

Newton’s method similar to [255, 151]. Following [151], we simply use the K = 5 nearest

bones of the point in observed space to initialize the Newton’s method, such that the com-

putational burden for the inverse skinning can be significantly reduced. Then, we get K

corresponding points {x′
c,0,x

′
c,1, ...,x

′
c,K−1} for the observed point xp. The same as [151,

37], we analytically compute the gradients of the network parameters for the inverse skinning.

During volumetric rendering, similar to previous works [37, 151], we choose the density and

color for the observed point xv as follow,

cv = c
′

c,m,σv = σ
′

c,m, (4.4)

where m = argmaxi(σ
′
c,i), 0 ≤ i < K. we then use (cv,σv) for volumetric rendering.

4.3.4 Compositional Conditional Radiance Fields

Though the proposed human-object neural deformation enables the animation for a given

human-object interaction, it fails to animate novel combinations, i.e.an interaction involves

a novel person or a novel object. Due to the combinatorial explosion of Human-Object

interactions, we can not collect the multi-view videos for all possible interactions, which

significantly limits the potential applications of the proposed human-object neural deformation.

Therefore, we devise Compositional Conditional Radiance Fields to enable compositionally

animating the interactions from novel combinations, and even novel person and objects. To

decouple the controlling of human and object, we use two latent codes for the Conditional
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Radiance Fields. Denote vh ∈ RNh×C and vo ∈ RNo×C , where Nh and No are the number of

person and object categories, as the latent codes of human and object respectively, we have

the conditional radiance fields as follows,

FΘr : (xc,Σ,vh,j,vo,k)→ (c, δ), (4.5)

where 0 ≤ j < Nh and 0 ≤ k < No denote the corresponding person and object for observed

interaction. With the conditional radiance fields, we can control the rendering for different

human-object pairs with vh and vo. However, the two latent codes vh and vo are entangled

together, i.e., the rendering is controlled jointly by two latent codes. Therefore, the conditional

radiance field in Eq. (4.5) fails to animate the interactions of novel human or objects.

Compositional Invariant Learning. To decouple the interdependence between the human

and object latent codes, we further introduce a compositional invariant learning strategy for

conditional radiance fields, named as Compositional Conditional Radiance Fields, to ease the

spurious correlation between human and object latent codes, and thus enable compositional

neural animation. Specifically, for the pixel in human body, we expect (c, δ) only dependent

on vh, regardless of the value of vo. Thus, when the ray r is located in the human body, we

randomly set the value for the object latent codes, and vice versa for rays in the object. Then,

the color and density of the Compositional Conditional Radiance Fields for the points in ray

r are presented as follows,

c, δ =

 FΘr(xc,Σ,vh,j′ ,vo,k) r ∈ O

FΘr(xc,Σ,vh,j,vo,k
′ ) r ∈ H

(4.6)

where H ∩O = ∅, H and O represent the rays set of human and object respectively. j ′ and

k
′ are random latent human and object codes respectively. Via randomly setting the latent

codes, we can decouple the interdependence of the Human-Object pairs in the training set.

Therefore, we can control the animation via human or object latent codes individually.
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4.4 Implementation Details

In this thesis, we follow the linear blender skinning deformation [199, 255, 303, 151] to devise

an additional pseudo bone for human-object interaction and two latent codes for compositional

animation. We localize the human and object rays according to the provided segmentation

in [16]. We model the shading effect similar to [151], and sample 64 points along a ray. Due to

the camera distance difference between different datasets, we sample 2048 rays for BEHAVE

images, 1024 rays for ZJU-mocap images, and 512 rays for CO3D images in each mini-batch.

Meanwhile, we utilize two additional losses for skinning weights and non-linear deformations

in [151] for optimization. The overall loss function thus is L = Limg + λLw + βL∆, where

Limg indicates image loss similar to [183], Lw represents the loss to encourage the onehot

skinning weights w, L∆ is to encourage the non-linear deformation term FΘ∆
(xc,P ) close

to zero. Both Lw and L∆ are MSE losses. In our experiments, we set λ to 1.0 and β to 0.1.

The Adam optimizer [134] is adopted for the training with an initial learning rate 5e-4 and an

exponentially decay strategy to 5e-6.

4.5 Experiments

In this section, we perform experiments and show quantity results on HOI reconstruction,

quality results on HOI animation, to evaluate the proposed method.

Datasets We leverage three datasets, i.e., BEHAVE [16], ZJU-mocap [200] and CO3D [211]

for the compositional human-object neural animation. BEHAVE [16] is a 4D datasets with

8 subjects performing a wide range of interactions with 20 common objects from 4 camera

views. BEHAVE provides estimated body poses and object poses for each interaction, while

each interaction has less than 50 frames. BEHAVE includes many blurred faces and frames,

which we provide the analysis in Appendix. ZJU-mocap [200] consists of 10 sequences

captured with 23 calibrated cameras. We select one subject (386) and four cameras for

evaluating compositional HOI animation on novel persons. CO3D is a large 3D object dataset
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TAVA Ours GT

FIGURE 4.3. Visualized Comparisons between the proposed method and
baseline method (TAVA [151]). We demonstrate the results of “yogaball”,
“boxsmall”, “chairwood”, “boxlarge” with two distinct views.

with multiple sequences. We select "bowl" for evaluation on novel objects. More objects are

illustrated in Appendix.

Metrics We mainly adopt the popular metrics in animatable avatars, peak signal-to-noise

ratio (PSNR) and structural similarity index (SSIM), for evaluating Human-Object animation.

Meanwhile, for novel object and human, we mainly provide qualitative results.

4.5.1 Novel Pose Animation

In order to evaluate the novel pose animation, we select the first subject (S01), five kinds of

different boxes, and seven classes of objects with distinct interactions from the BEHAVE data-

set to construct a benchmark for novel pose animation. The objects with distinct interactions,

including “backpack”, “chairwood”, “chairblack”, “suitcase”, “tablesmall”, “tablesquare” and

“yogaball” are utilized to evaluate novel actions animation. The boxes consist of five scales,
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i.e., “boxtiny”,“boxsmall”,“boxmedium”,“boxlarge” and “boxlong”, and we leverage it to

demonstrate the effectiveness of the proposed method on different scales of objects. We

randomly split the training and validation set for boxes, while we randomly choose two or

one interaction in other classes for training and the remaining one for validation. The details

can be found in Appendix. Previous work mainly reconstructs the Human-Object, while

ignoring the HOI animation from sparse videos. We thus utilize the template-free animatable

avatar method, TAVA [151], as our baseline method to demonstrate the deficiency without the

modeling of objects for Human-Object Interaction. For each interaction in BEHAVE [16],

there are only less than 50 frames. Therefore, we use one V100 GPU to run our experiments

with 100,000 iterations.

Quantitative comparisons Table C.3 demonstrates that the proposed method consistently

improves the baseline method. We notice the larger the box is, the better the performance of

the proposed method is. It is because the human body dominates the statistics of PSNR and

SSIM when the object is small. For novel action evaluation, Table 4.2 illustrates the proposed

method considerably improves the baseline among different objects.

Qualitative comparisons The person usually occupies the main region of the interaction

in the image. As a result, the proposed method does not improve the numbers significantly

compared to the baseline for small objects if the person animation achieves good results as

illustrated in Table C.3. Therefore, we further present the qualitative comparisons. Figure 4.3

shows our method can effectively animate the human-object interactions with the control of

poses. Without the modeling of objects, the baseline method achieves poor performance on

object rendering though it can still render the human body correctly. Meanwhile, we find the

small object, e.g., “boxsmall”, only occupies a small region in the Human-Object Interaction

images. Therefore, for those interactions, the PNSR and SSIM can not demonstrate the

performance well.
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TABLE 4.1. Human-Object Animation for the boxes, i.e., different sizes of
objects.

Method boxlarge boxlong boxmedium boxsmall boxtiny
PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

TAVA [151] 22.6 0.949 26.8 0.966 25.9 0.967 26.8 0.970 27.5 0.973
CHONA (ours) 27.2 0.971 28.1 0.974 28.5 0.976 28.0 0.974 28.3 0.976

TABLE 4.2. Human-Object Animation under novel interactions.

Method backpack chairblack chairwood suitcase
PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

TAVA [151] 27.9 0.960 28.3 0.959 26.0 0.960 28.9 0.964
CHONA (ours) 28.4 0.971 29.1 0.971 27.3 0.969 29.4 0.974

TABLE 4.3. Human-Object Animation under novel interactions.

Method tablesmall tablesquare yogaball
PNSR SSIM PNSR SSIM PNSR SSIM

TAVA [151] 25.7 0.965 22.8 0.943 24.6 0.950
CHONA (ours) 27.9 0.974 27.9 0.966 28.2 0.974

4.5.2 Compositional Animation

In this section, we provide experiments to evaluate the proposed method on the compositional

Human-Object Animation. We first construct a compositional benchmark for compositional

animation with two subjects (S01, S02) and nine objects, totally 18 combinations, from

BEHAVE to construct a sub-dataset. Human-Object Interaction is composed of person, action,

and object. There are at most three actions in BEHAVE. Therefore, the subset includes

37 combinations of < person, action, object >. Given a person, there are different novel

compositions as follows,

• Novel Action, i.e., the combination of the object and the person exists in the training

set, but the action is novel. This is similar to novel pose animation.

• Novel Object, i.e., there are no combinations of the person and the object in the

training set, but the combination of the action and the object exists in the training set.

• Novel Action and Object, i.e., the combination of the action and the object does not

exist in the training set.
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TABLE 4.4. Compositional Human-Object Animation. The subscripts of
a, o and ao indicate the results of novel action set, novel object set, novel
action-object set respectively. The baseline is CHONA without compositional
invariant learning.

Method PSNRa SSIMa PSNRo SSIMo PSNRao SSIMao

Baseline 28.2 0.967 26.5 0.961 27.4 0.964
CC-NeRF 28.1 0.966 27.0 0.966 28.0 0.968

Then, we split the dataset into a training set and three validation sets, i.e., novel action

validation, novel object validation and novel action-object validation. For similar objects,

we treat the actions with the same name equally. For example, the action “sit” between

“chairwood” and “chairblack” is treated equally. Then, we randomly select 13 (around 1/3)

combinations as the training set, and split the remaining combinations into three novel

categories according to the description above. There are 614 frames in the training set, we

thus use two V100 GPUs to run our experiments with 300,000 iterations.

Quantitative Comparisons The proposed Compositional Conditional Radiance Fields ef-

fectively improves the rendering for both human and object as illustrated in Table 4.4. We

notice CC-NeRF achieves similar performance to the network without compositional invariant

learning on novel action/pose animation. However, for the novel object split and novel action-

object split, The proposed method effectively decomposes the control of different people and

objects, and thus illustrates better performance on the compositional animation.

Qualitative Comparisons Figure 4.4 demonstrates that the model without compositional

invariant learning strategy fails to render the novel human-object interactions. We notice the

head (the mask is missing) in the baseline is dissimilar to the ground truth, but more similar

to another subject. The objects of the baseline become red due to the entangling of the two

latent codes. Those cases indicate the proposed Compositional Conditional NeRF effectively

decomposes the latent codes and achieves compositional animation.



108 4 3D HUMAN-OBJECT INTERACTION ANIMATION

FIGURE 4.4. Visualized Comparisons between Compositional Conditional
Radiance Fields and baseline method (w/o compositional invariant learning).
The first row is the baseline, the second row is the proposed method, while the
last row is the Ground Truth. The first three columns indicate the novel object
categories, and the last three columns show the novel action-object categories.

4.5.3 Novel Person and Object

To demonstrate the effectiveness of the proposed method on novel object and novel person

without interactions, we leverage the person (386) in ZJU-mocap and object bowl in CO3D to

jointly train with BEHAVE. Here, for the dataset in BEHAVE, we directly adopt the subset

in Section 4.5.2. Given that we do not have the ground truth for this experiment, we show

the results qualitatively in Figure 4.5. We observe the Compositional Conditional NeRF

significantly improves the animation for novel object and person as illustrated in Figure 4.5.

We find the baseline method will incur wired color on the object (e.g., the suitcase) or render

the color of the novel person into the object (e.g., the “tablesquare” is green). Besides, for

the novel object, we observe the baseline without compositional invariant learning fails to

render the human body. More visualized demonstration with additional objects and persons is

provided in Appendix.
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FIGURE 4.5. Visualized Comparisons between Compositional Conditional
Radiance Fields and baseline (without compositional invariant learning) on
novel object and person animation. The first column is novel/object, the second
column is the baseline method, the third column is the proposed method, and
the last column is the given pose. The first three rows indicate the novel person
animation, while the last two rows show the novel object animation.
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4.6 Summary

In this thesis, we address the challenge of compositional human-object animation via neural

Human-Object skinning deformations and compositional conditional radiance fields. Spe-

cifically, we construct a pseudo bone for the object, and devise a human-object skinning

deforming approach to model the interactions between human and object. Moreover, to enable

compositional Human-Object animation, we further present compositional conditional neural

radiance fields, which decompose the human and object latent codes via compositional invari-

ant learning, to compositionally control the animation for novel human-object combinations,

and even novel person and objects. Comprehensive experiments demonstrate the proposed

method significantly improves the animation performance, as well as the compositional

generalization.

Though we achieve considerable performance with the proposed methods, there still are some

challenges in the human-object neural animations, e.g., the interactions with non-rigid objects.

We think we can extend the deformation module by designing multiple pseudo bones for

the non-rigid object, which we leave to future work. There is also another challenge that is

how to understand the interaction region (i.e., affordance region of the object). As human

interacts with similar objects in a similar way, we think we can make use of the similarity

of affordances among similar objects for the affordance localization to novel objects in the

future.
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Conclusion

hierarchical relationship understanding is one of the most challenges in visual perception

and the visual scenes are usually layout in a hierarchical and compositional way. Composi-

tionality and Hierarchy are of importance for the visual scene understanding. However, the

compositionality and hierarchy, especially the knowledge transfer among different concepts,

are poorly investigated by previous approaches. The thesis focuses on learning transferable

representations for the hierarchical relationship exploration from the hierarchical and compos-

itional perspective. In this thesis, we first propose a visual compositional learning framework

to facilitate the compositional generalization for HOI detection. Then, we introduce a trans-

fer learning approach to transfer the verb/affordance representations to novel objects for

reasoning object categories. Next, we devise a self-compositional learning framework with

a pseudo-label strategy to reason novel possible HOI categories. Except for the existing

visual relationship reasoning, the thesis further devises a simple yet effective module, Batch

Transformer or BatchFormer, to implicitly explore the sample relationships in the penultimate

layer for robust representation learning. We further extend the idea of BatchFormer into vision

transformer networks, and achieve consistent improvement among different DETR-based

methods. Lastly, the thesis presents a novel 3D compositional human-object animation to

explore the 3D geometry and animation for the hierarchical visual relationship understand-

ing with a neural human-object deformation and compositional invariant learning strategy.

Overall, the content of this thesis can be categorized as follows,

Chapter 3 comprehensively explores the compositional learning approach for Human-Object

Interaction understanding. This chapter first presents a new visual compositional learning

framework, which first decomposes the verb and object representation according to bounding

111
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boxes, and then stitches the verb and object representations among pair-wise images to gener-

ate composite HOI features for end-to-end optimization. The visual compositional learning

framework effectively improves Long-tailed HOI detection and compositional zero-shot HOI

detection. To address the open long-tailed HOI detection, this chapter further introduces an

object representation fabricator to balance the distribution, named as fabricated compositional

learning, to significantly improve the few-shot and compositional zero-shot HOI detection.

Next, a transfer learning framework is introduced to transfer the object affordance representa-

tion to novel objects, and enables the HOI model for human-novel-object interaction detection

and object affordance recognition. Lastly, this chapter presents a self-training strategy to build

pseudo labels from the online concept discovery to facilitate compositional learning, and thus

significantly improve concept discovery and object affordance recognition.

Chapter 4 mainly investigates the sample relationship exploration for representation learning.

While previous approaches implicitly explore the sample relationships from a perspective of

either the input or the loss function, we introduce a batch transformer, BatchFormerV1, to

equip the deep neural networks themselves with the ability to explore the sample relationships

in a learnable way. With shared classifier strategy, the module can consistently improve

those data-scarcity tasks without incurring any computational budget during inference. Batch-

FormerV2 module is introduced to explore the sample relationships for pixel-/patch-level

dense representations. Meanwhile, BatchFormerV2 module is shared among the spatial

positions in the network, and a two-stream pipeline is introduced for achieving batch-invariant

learning for dense prediction tasks. Extensive experiments demonstrate the effectiveness for

data-scarcity tasks and visual recognition tasks ranging from image classification to object

detection and panoptic segmentation.

Chapter 5 focuses on the 3D Compositioanl human-object animation (CHONA) based on

the neural radiance fields. The chapter first introduces a neural human-object deformation

for achieving pose-driven human-object interaction animation. Considering the limitation

of collecting enough interaction poses, a compositional conditional NeRF or CC-NeRF is

introduced to enable the transfer of poses among different person and objects, and thus

compositionally control the animation for human-object interaction under novel poses, novel

person and novel object. Extensive experiments demonstrate the proposed method for 3D
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Human-Object Animation under novel poses, novel person, novel objects and even non-

interactive person and static objects.

5.1 Future outlook

Hierarchical relationship understanding is significant for the intelligent agent to achieve

the ability of human-level perception and reasoning. There are still extensive challenging

directions that are worth exploring in the future and I list a few directions here.

• 3D Compositions: With the gradual slowdown of 2D computer vision, the com-

munity has show great interest in 3D vision. Compared to 2D semantic understand-

ing, 3D vision consists of more compositionality and hierarchy challenges. First

of all, the scene in the 3D vision is composed of multiple objects that are spatially

distributed in the scene and can be redistributed into new scenes. Compared to 2D

vision, in which we can usually collect enough images, 3D vision might suffer from

the data scarcity tasks more seriously. Exploring compositionality and hierarchy is

beneficial for understanding the 3D world. Meanwhile, the deformation reasoning is

also interesting when we combine different parts or objects in the new scene.

• Hierarchical Neural Architectures: While current deep neural networks are in-

ternally built in a hierarchical way, there is still valuable potential to redesign the

basic architectures from the perspective of hierarchy and composition. Current deep

neural networks highly rely on the large scale of data, and usually achieve poor

performances in those data scarcity tasks, regardless of rare class samples and rare

domain samples. However, the class correlations and sample correlations are crucial

for addressing the data scarcity challenges. Though the deep neural network is

hierarchically built, the current architectures do not consider the hierarchical rela-

tions for the network design. Therefore, it is valuable to design a new architecture

that is internally useful for data scarcity tasks and simultaneously achieves good

interpretability from the perspective of hierarchy.
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• Compositional Theory: Though compositionality and hierarchy are ubiquitous in

the visual world, the community lacks the corresponding theory for generalization.

Currently, there are several benchmarks for compositional generalization, e.g., com-

positional zero-shot learning. Those approaches mainly focus on proposing novel

approaches to improve compositional generalization. However, due to the correla-

tion (e.g. shared elements) between the training set and test set in compositional

generalization settings, there might be possible to infer the generalization boundary

according to the side of the training set.
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APPENDIX A

Appendix of Chapter 2

A1 Visual Compositional Learning

A1.1 Hyper-Parameters

In our proposed framework, there are two hyper-parameters λ1 and λ2. We evaluate the

performance when we set different values for the two hyper-parameters.

From Table A.1, we can find when we increase the value of λ1. We can witness a considerable

increase in the Full category. If we choose the value more than 2.0 for λ1, the performace

slightly decreases. From Table A.2, if we set 0.5 or 0.1, the performance is similar. But, when

λ2 is more than 1.0 or less than 0.1, the performance drops quickly.

Like [66, 157], we first detect the objects in the image and then use the object detection results

to infer the HOI categories during test. we use the same score threshold (0.8 for human and

0.3 for object ) as [157] in resnet50 coco detector. We use 0.3 for human and 0.1 for object in

resnet101 detector that is finetuned on HICO-DET dataset since the object detection result is

largely better.

TABLE A.1. The results of setting different values for λ1 when λ2 is 0.5 in
HICO-DET.

λ1 1.0 1.5 2.0 2.5 3
Full 18.96 18.95 19.43 19.29 19.34
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TABLE A.2. The results of setting different values for λ2 when λ1 is 2.0 in
HICO-DET.

λ2 0.05 0.1 0.5 1.0 1.5
Full 19.18 19.30 19.43 19.10 18.90

TABLE A.3. The results of the number of interactions in minibatch in HICO-
DET.

the number of interactions VCL Full Rare NonRare
1 - 18.41 14.17 19.68
1 ✓ 18.85 14.98 20.01
5 - 18.43 14.14 19.71
5 ✓ 19.43 16.55 20.29

A1.2 The effect of the number of interactions in minibatch

In order to compose enough interactions for Visual Compositional Learning, we increase the

number of interactions in each minibatch while reducing the number of augmentations for

each interaction and the number of negative interactions to keep the batch size unchanged

in our experiment. We evaluate the effect in this section. We set the maximum number of

interactions 5 in our experiment. Noticeably, most training images in HICO-DET only contain

one interaction.

From Table A.3, we can find the baseline model of different iteractions has similar results

with 18.43 mAP and 18.47 mAP respectively. However, we witness a better improvement

(1.0 mAP vs 0.44 mAP) if we increase the interaction classes in the minibatch. It shows that

increasing the number of interactions is considerably beneficial for Visual Compositional

Learning.

A1.3 The two branches in zero-shot HOI detection

From Table A.4, we can find the performance of verb-object branch in Seen category and Full

category is similar to that of spatial-human branch, while verb-object branch is 3.52% and

4.90% better than spatial branch in selecting rare first and selecting non-rare first respectively
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TABLE A.4. Two branches ablation study of the proposed Visual Composi-
tional Learning framework in zero-shot HOI detection on HICO-DET test set
during inference.

Method Unseen Seen Full
Verb-Object branch (rare first) 7.85 15.48 13.95
Spatial-Human branch (rare first) 4.33 15.92 13.60
Two branches (rare first) 7.55 18.84 16.58
Verb-Object branch (non-rare first) 10.61 10.95 10.88
Spatial-Human branch (non-rare first) 5.71 11.82 10.60
Two branches (non-rare first) 9.13 13.67 12.76

TABLE A.5. Illustrations of VCL with language priors.

Strategy Full (mAP %) Rare (mAP %) NonRare (mAP %)
VCL 19.43 16.55 20.29
VCL + Language prior 19.56 16.27 20.55

in the Unseen category. Particularly, after we fuse the result of the two branches, the

Unseen category witnesses a considerable decrease in the two selecting strategies.

A1.4 Verb Polysemy Problem

There is a verb polysemy problem in HOI detection, that is the verb “play” has different

meanings between “play guita” and “play football”. But, HICO restricts itself to a single

sense of a verb (with the exceptions of a couple of verbs) [27, 70], which means that the

verb polysemy problem is not serious. Previous HOI approaches [224, 277, 205] usually

regard the verb from different HOIs as same, and successfully achieve good performance.

We also conduct a simple experiment to validate this problem. We use the language priors to

choose the suitable composited HOIs according to the object similarity of word embedding in

Table A.5. We can find the improvement of language priors is very limited.
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FIGURE A.1. Some HOI detections detected by the proposed Compositional
Learning and the model without Compositional Learning in zero-shot HOI
detection (selecting nonrare first). The first row is the results of our baseline
model without VCL. The second row is the results of the proposed composition
learning. The unseen interactions are marked with purple. We illustrate top 5
score results for the human object pair.

A2 Fabricated Compositional Learning

A2.1 Visual Illustration of zero-shot HOI detection

Similar to Figure 4 in the paper, we qualitatively show that our proposed Visual Compositional

Learning framework can detect those unseen interactions efficiently in Figure A.1 while the

baseline model without Visual Compositional Learning is misdetected on HICO-DET. It

shows our proposed Visual Compositional Learning framework is significantly beneficial for

Unseen categories.

A2.2 Unseen labels on HICO-DET dataset

In zero-shot detection in HICO-DET, we select randomly unseen labels for zero-shot detection.

In detail, we first sorted the labels according to the number of instances of categories. Then

we select the HOIs out for unseen data according to the sorted label list and meanwhile make

sure that all types of objects and verbs exist in seen data. we provide the unseen label id in

two zero-shot learning settings.
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rare first ids: 509, 279, 280, 402, 504, 286, 499, 498, 289, 485, 303, 311, 325, 439, 351, 358,

66, 427, 379, 418, 70, 416, 389, 90, 395, 76, 397, 84, 135, 262, 401, 592, 560, 586, 548, 593,

526, 181, 257, 539, 535, 260, 596, 345, 189, 205, 206, 429, 179, 350, 405, 522, 449, 261,

255, 546, 547, 44, 22, 334, 599, 239, 315, 317, 229, 158, 195, 238, 364, 222, 281, 149, 399,

83, 127, 254, 398, 403, 555, 552, 520, 531, 440, 436, 482, 274, 8, 188, 216, 597, 77, 407,

556, 469, 474, 107, 390, 410, 27, 381, 463, 99, 184, 100, 292, 517, 80, 333, 62, 354, 104, 55,

50, 198, 168, 391, 192, 595, 136, 581

non-rare first ids: 38, 41, 20, 18, 245, 11, 19, 154, 459, 42, 155, 139, 60, 461, 577, 153, 582,

89, 141, 576, 75, 212, 472, 61, 457, 146, 208, 94, 471, 131, 248, 544, 515, 566, 370, 481,

226, 250, 470, 323, 169, 480, 479, 230, 385, 73, 159, 190, 377, 176, 249, 371, 284, 48, 583,

53, 162, 140, 185, 106, 294, 56, 320, 152, 374, 338, 29, 594, 346, 456, 589, 45, 23, 67, 478,

223, 493, 228, 240, 215, 91, 115, 337, 559, 7, 218, 518, 297, 191, 266, 304, 6, 572, 529, 312,

9, 308, 417, 197, 193, 163, 455, 25, 54, 575, 446, 387, 483, 534, 340, 508, 110, 329, 246,

173, 506, 383, 93, 516, 64

A2.3 Additional Details

A2.3.1 More examples of Open Long-tailed HOI Detection

Figure A.2 provides more clear illustration of open long-tailed HOI detection. Open long-

tailed HOI detection aims to detect head, tail and unseen classes in one integrated way from

long-tailed HOI examples.

A2.3.2 Factorized model

We implement the factorized model under our framework. In details, we replace the HOI

branch in Figure 3 in the paper with verb and object stream. The two streams predict the verb

and object respectively. During inference, we merge the score of verb and object to obtain

HOI score as follows,
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Tail Classes

Few-Shot Detection

Imbalanced Detection

Zero-Shot Detection

Unseen ClassesHead Classes

Open Long-Tailed Human-Object Interaction Detection via Composition

ride motorbike

ride cowride cow

ride bearcut sandwich

cut donut

ride zebra

FIGURE A.2. Open long-tailed HOI detection addresses the problem of imbal-
anced learning and zero-shot learning in a unified way. We propose to compose
new HOIs for open long-tailed HOI detection. Specifically, the blurred HOIs,
e.g., “ride bear", are composite, while the black HOIs are real.

FIGURE A.3. Illustration of Object detection result and HOI detection result
in HICO-DET dataset. Blue is Object result. Yellow is HOI result. We average
HOI detection AP according to the object categories for a direct comparison.

Shoi = (SoAo) + (SvAv), (A.1)

where Av (Ao) is the co-occurrence matrix between verbs (objects) and HOIs, So is the score

from object stream and Sv is the score from verb stream.

A2.3.3 The Effect of Objects on HOI Detection

In the nature, different types of objects form a long-tail distribution. Then, all those actions

that people perform on those objects are inevitably long-tailed. As a result, those HOIs that
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we observed are long-tailed. This motivates us to fabricate balanced objects for composing

HOI samples with visual verbs. We have demonstrated the long-tailed distribution of objects

in Figure 2 in the paper and the effect of different object detector on HOI detection in Table

6 in paper. We further illustrate HOI detection has roughly similar performance to object

detection among most object categories in Figure A.3, which also illustrates the importance

of object detector for HOI detection at the same time. Meanwhile, it is necessary to balance

the the distribution of objects.

A2.4 Additional Quantitative analysis

A2.4.1 Object Identity

In Table A.6, we compare three kinds of object identity. The object variables are identified

after we fine-tune the fabricator in the first step. Meanwhile, in the end-to-end optimization,

the object variables can maintain object semantic information. We find word embedding and

object variables achieve similar performance ( 24.78% vs 24.68%), while the performance

of one-hot representation is a bit worse. Particularly, the HOI model is initialized with a

pretrained object detector model. Thus, one-step optimization can also optimize the Fabricator

according to the pre-trained backbone.

A2.4.2 V-COCO

We evaluate V-COCO based on the state-of-the-art method PMF [248]. Thus, our baseline is

PMFNet. For V-COCO, we do not use auxiliary verb loss since there are only two kinds of

objects (stru, obj) on V-COCO. We set λ1 as 1 and λ2 as 0.25. We find although the data on

V-COCO is balanced, FCL still improves the baseline in Table A.8. In fact, we only change a

few codes based on PMFNet. Our code is provided in the supplementary material.

A2.4.3 Visual Relation Detection

We also present the efficiency of FCL in Predicate Detection on Visual Relation Detection

[175] in Table A.7. Here, we combine subject, predicate and fabricated object to generate
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TABLE A.6. Illustration of the effect of different object identity in the pro-
posed fabricator on HICO-DET dataset[28].

Method Full Rare NonRare
object variables 24.78 20.05 26.19
word embedding 24.68 20.03 26.07
one-hot 24.38 19.49 25.84

Method Zero-Shot All
MFURLN [289] - 58.2
MFURLN [289]* 25.26 57.87
Ours 27.31 58.31

TABLE A.7. Illustration of Predicate Detection in Visual Relation Detection.
Zero-shot means the relation (subject, predicate, object) do not exist in the
training data.

Method AProle

PMFNet (reproduced) 51.85
FCL 52.35

TABLE A.8. Illustration of Fabricated Compositional Learning on V-COCO
based on PMF [248]

novel relation samples [289]. Table A.7 illustrates an important improvement on zero-shot

predicate detection compared to the state-of-the-art approach with FCL.

A2.4.4 Semantic Verb Regularization

We also experiment with semantic verb regularization similar to [277] with Graph Convolu-

tional Network and verb word embeddings graph. In details, we use the cosine distance loss to

regularize the visual verb representation to be similar to the corresponding word embedding.

Here, similar to [277], we equally treat same category of verbs among different HOIs as same.

Table A.9 illustrates FCL is orthogonal to semantic regularization. Meanwhile, auxiliary verb

loss achieve similar performance compared to semantic verb regularization [277]. When we

incorporate both semantic regularization and auxiliary verb loss, the improvement is limited.

This means verb regularization loss in the paper and semantic verb regularization have similar

effect on the model.
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FCL S V Full Rare NonRare Unseen
- ✓ - 18.22 15.69 20.74 12.98
✓ ✓ - 19.39 17.99 21.21 14.83
✓ - ✓ 19.61 18.69 21.13 15.86
✓ ✓✓ 19.62 18.38 21.61 14.73

TABLE A.9. Illustration of semantic regularization modules based on the ab-
lated setting in paper. FCL Means proposed Compostional Learning. S means
semantic regularize loss. V means auxiliary verb loss (verb regularization loss
in paper).

TABLE A.10. Illustration of auxiliary object loss on HICO-DET dataset[28].
Here, auxiliary object loss aims to regularize visual objects

Method Full Rare NonRare
w/o object loss 24.78 20.05 26.19
auxiliary object loss 24.54 19.93 25.92

A2.4.5 Object Feature Regularization

visual object feature regularization. Object features are usually more discriminative.

Meanwhile, we initialize our backbone with the faster-rcnn pre-trained in COCO dataset,

which largely helps us to obtain discriminative object features. Thus, it is unnecessary to use

auxiliary object loss to regularize object features (See Table A.10). Meanwhile, we find the

object features is more discriminative from the t-SNE graph in Figure A.5.

A2.4.6 The Effect of Union Box on FCL

We extract verb representation from the union box of human and object. In Table A.11, we

illustrate with human box verb, FCL still effectively improves the baseline. This shows the

proposed method is orthogonal to the verb representation. Noticeably, although the union box

contains the object, the HOI model mainly learns the verb representation via compositional

learning, and largely ignores the identity information of the object. Thus, the object in the

union box do not have much effect on Fabricator. By comparing human box and union box

for verb representation in Table 2 in paper and Table A.11, we find verb representation from

union box largely improves the performance since it provides more context information for

verb representation.
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TABLE A.11. Illustration of the box for verb representation on HICO-DET
dataset[28].

Method Full Rare NonRare
baseline(human box) 22.91 16.66 24.77
FCL (human box) 23.83 18.62 25.39

TABLE A.12. The result while filtering out the composite HOIs according to
the similarity between the fake objects and original objects. Neighbors (K)
means top K neighbors according to similarity. This experiment is based on
ablated setting in Table 3 in paper. When the number of neighbors is 80, it
means we do not filter out composite HOIs according to similarity.

#Neighbors (K) 1 5 10 20 40 80
FCL (Full) 18.70 19.15 19.19 19.48 19.60 19.61

TABLE A.13. Comparison between step-wise optimization and one step op-
timization in unseen object HOI detection.

Method Full Rare NonRare Unseen
one step 19.87 15.01 22.51 15.54
step-wise 20.13 16.71 22.82 13.85

A2.4.7 Verb Analysis

The same verb might has different meanings in different HOIs. However, the verb in HOI

dataset (e.g. HICO-DET) mainly represents action. Thus, the verb in HOI dataset is usually

not ambiguous. Meanwhile, the deep convolutional network (e.g.Resnet) is able to fit some

ambiguous and even random data [291]. Therefore, we can use factorized method [277]

for HOI detection and the ambiguous verbs do not affect the compositional learning on

HICO-DET [111], even if there are still some ambiguous verbs (e.g. hold) who can be related

to multiple objects.

Besides, we further demonstrates the improvement of FCL among different categories of

verbs in Figure A.4. We find the ambiguity does not affect the performance of those verbs in

fact. For example, although the verb “hold” is related to 61 kinds of objects in HICO-DET,

the correpsonding HOIs of “hold” still achieves considerable improvement.
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FIGURE A.4. The improvement among the classes of verbs on HICO-DET.
The verbs are sorted by the number of HOIs that the particular verb is related.
The clear figure is in the directory of Compressed package.

Inspired by that people interact similar objects in a similar manner. we also design an approach

to select composite HOIs according to the similarity between different object of objects, i.e.we

only keep those composite HOIs whose object is in the top K neighbors of the verb’s original

object. The original object of the verb is the visual object paired with the verb in the HOI

annotation. This helps us to filter out those ambiguous composite HOIs. Specifically, we

calculate the similarity between different classes of objects by its word embedding [203].

Then we can obtain the top K neighbors for each class of objects. Table A.12 shows with

more similar objects, the performance steadily improves. Particularly, there are only one verb

relating to more than 40 HOIs, and 4 verbs with more than 20 HOIs in HICO-DET. When

K = 1, we only keep composite HOIs whose objects have the same label to the original

object.

A2.4.8 Complementarity and Orthogonality to previous methods

Complementary to previous zero-shot method. We incorporate VCL [111] ( the released

code and model) to evaluate the complementarity of FCL to previous zero-shot approach.

Table A.14 shows FCL is complementary to the compositional approach [111] between

pair-wise images by fusing FCL and VCL (See Table 2 in Paper).
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TABLE A.14. Illustration of the fusion of FCL and VCL on HICO-DET
dataset[28] under ground truth object result.

Method Detector Full Rare NonRare
VCL GT 43.09 32.56 46.24
FCL GT 44.11 36.62 46.35
FCL + VCL GT 45.25 36.27 47.94

TABLE A.15. Illustration of FCL without re-weighting on long-tailed HOI
detection.

FCL Full Rare NonRare
- 20.79 13.19 23.06
✓ 21.20 15.48 22.90

TABLE A.16. Illustration of proposed modules on long-tailed HOI detection.
FCL Means proposed Fabricated Compostional Learning. V means verb
regularization loss.

FCL V Full Rare NonRare
- - 23.35 17.08 25.22
✓ - 23.86 18.16 25.56
- ✓ 23.94 17.48 25.87
✓ ✓ 24.78 20.05 26.19

Orthogonal to spatial pattern. Table A.18 illustrates that the spatial pattern strategy [66,

157, 312, 248] largely improves the performance, and the proposed compositional learning is

orthogonal to spatial pattern.

Orthogonal to re-weighting. In our baseline, we utilize the re-weighting strategy that is

used in [157, 111] to compare directly with [111]. We demonstrate FCL is orthogonal to

re-weighting in Table A.15. Without the useful re-weighting strategy, FCL still achieves

similar improvement than baseline.

A2.4.9 Complementary Analysis of fabricator

In this section, we conduct analysis of fabricator on HOI detection without unseen data (the

full long-tailed HOI detection). We witness the similar trend compared to the ablation study

in the paper.
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Method Full Rare NonRare
FCL 24.78 20.05 26.19
FCL w/o noise 24.22 19.23 25.72
FCL w/o verb 24.29 18.98 25.87
verb fabricator 23.93 17.10 25.97

TABLE A.17. Ablation study of fabricator. Verb fabricator means we fabricate
verb features.

FCL SP ZS Full Rare NonRare Unseen
- - - 21.07 14.11 23.15 -
✓ - - 21.68 16.92 23.11 -
✓ ✓ - 24.78 20.05 26.19 -
- - ✓ 15.29 14.45 17.85 8.27
✓ - ✓ 16.82 16.57 18.17 12.94
✓ ✓ ✓ 19.61 18.69 21.13 15.86

TABLE A.18. Illustration of spatial pattern. SP means we use spatial pattern.
ZS means zero-shot setting.

FIGURE A.5. The comparison between verb features and object features.

Verb and Noise for fabricating objects. Table A.17 demonstrates the efficiency of verb

and noise. Particularly, the performance in the full HOI detection drops larger than that in

zero-shot study in the paper. We think it is because the improvement on unseen category is

large, while there are no unseen category in the full HOI detection.

Verb Fabricator. Table A.17 illustrates if we fabricate verb features to augment HOI samples,

the performance apparently decreases to 23.93% in long-tailed HOI detection. This again

illustrates that the verb feature is more complex and it is difficult to generate efficient verb

features to facilitate HOI detection.
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FIGURE A.6. Visual Comparison between FCL and our baseline. The two
models use same detector.

FIGURE A.7. Illustration of failure cases.
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TABLE A.19. Illustration of ablated study on λ3 in HICO-DET based on open
long-tailed HOI detection (corresponding to Table 3 in paper).

λ3 0.1 0.3 0.5
FCL 19.30 19.61 19.10

A2.5 Additional Ablation Study

Step-wise optimization. We also provide the comparison between step-wise optimization

and one-step optimization in unseen object HOI detection in Table A.13.

Hyper-Parameters. We follow the hyper-parameters in [111] for λ1 and λ2. For λ3, we

provide the ablated experiment in Table A.25 based on 0.5 because we think Lreg is less

important than LCL.

A2.6 Qualitative Analysis

A2.6.1 Primitive Features

Figure A.5 illustrates verb features are apparently more difficult to distinguish. The verb

representation is abstract and complicated. By contrast, object representations extracted from

modern object detector are more discriminative.

A2.6.2 Qualitative Comparison

In Figure A.6, we compare our baseline with our proposed method. Apparently, our proposed

method efficiently detects rare categories, while the corresponding baseline can not. In fact,

all the HOIs detected by our method in Figure A.6 have less than five samples in training set

which is much less than the rare setting (less than 10 samples).

A2.6.3 Failure cases analysis

We provide some false positive results on Rare category in Figure A.7. All failure cases can

be separated into four groups: blurry image, wrong verb, wrong object, wrong match. If the
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3/25/2021

<person, sit_on, bench>

The bench is sittable

<person, carry, baseball bat>

The baseball bat is carriable

FIGURE A.8. The examples about HOI and Affordance.

image is blurry or has partial occlusion, it is hard to detection the interaction right. Besides,

verb is usually hard to classify. Meanwhile, small objects also cause that the network detect

object wrongly (e.g.the carrot in Figure A.7). Lastly, even though the network can recognize

action and object correctly, it also possibly mismatches the interaction. For example, in

Figure A.7, the women do not interact with the banana on the corner of the table.

A3 Affordance Transfer Learning

A3.1 More Examples of HOI and Object Affordance

Images labeled with HOI annotations simultaneously show the affordance of the objects.

Therefore, we can not only learn to detect HOIs, but also recognize the affordance of the

objects as illustrated in Figure A.8. By combining the affordance representation with various

kinds of its corresponding objects, we then enable the model to recognize the affordance of

novel objects.

A3.2 Non-COCO classes in Object365

For evaluating ATL on affordance recognition of unseen classes, we manually select 12 non-

coco classes from object365: glove, microphone, american football, strawberry, flashlight,
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TABLE A.20. Affordances of Non-COCO classes in Object365 based on
HOI-COCO.

name verbs/affordances
glove carry, throw, hold
microphone talk_on_phone, carry, throw, look, hold
american football kick, carry, throw, look, hit, hold
strawberry cut, eat, carry, throw, hold
flashlight carry, throw, hold
tape carry, throw, hold
baozi eat, carry, look, hold
durian eat, carry, hold
boots carry, hold
ship ride, sit, lay, look
flower look, hold
basketball throw, hold

TABLE A.21. Affordances of Non-COCO classes in Object365 based on
HICO-DET.

name verbs/affordances
glove buy, carry, hold, lift, pick_up, wear
microphone carry, hold, lift, pick_up
american football block, carry, catch, hold, kick, lift, pick_up, throw
strawberry buy, eat, hold, lift, move
flashlight buy, hold, lift, pick_up
tape buy, hold, lift, pick_up
baozi buy, eat, hold, lift, pick_up
durian buy, hold, lift, pick_up
boots buy, hold, lift, pick_up, wear
ship adjust, board
flower buy, hold, hose, lift, pick_up
basketball block, hold, kick, lift, pick_up, throw

tape, baozi, durian, boots, ship, flower, basketball. The actions that we can act on those

objects (i.e.affordance) are list on Table A.20 and Table A.21.

A3.3 Detailed Analysis for the Motivation

Actually, after we generate the composite HOI features, we have features for both known and

unknown concepts. We merely know the HOI features of the known concepts are existing,
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while we do not know whether the HOI features of unknown concepts are reasonable or not.

This actually fall into a typical semi-supervised learning, in which part of samples are labeled

(known). Therefore, inspired by the popular semi-supervised learning method, we propose to

design a self-training strategy with pseudo labels.

SCL largely improves concept discovery. At first, during training, SCL involves both HOI

instances from known or unknown concepts (via pseudo-labeling). Another important thing

is that SCL uses both positive and negative unknown concepts, which prevents the model

from only fitting the verb patterns. For example, the classifier may predict a reasonable concept for

the verb “eat" regardless of the object representation, if there are no negative unknown concepts, e.g.,

“eat TV". Lastly, as shown in Figure A.9, SCL also reduces the risk of overfitting known concepts

compared with ATL. e.g., we observe high confidence for the novel concept "squeeze banana"(sort in

2027) in SCL, while the confidence of "squeeze banana" is merely 0.0017 (sort in 7554) in ATL.

A3.4 Annotation

In order to evaluate the proposed method, we manually annotate the novel concepts for both

HICO and V-COCO dataset. Specifically, we annotate the concepts that people can infer from

existing concepts. The final set of concepts are provided in the supplemental material.

Statistically, there are about 1.3% and 1.9% mislabeled pairs on HICO-DET and V-COCO,

respectively. Meanwhile, there are about 1.7% and 1.1% unlabeled pairs (including ambiguous

verbs) on the remaining categories of HICO-DET and V-COCO.

To evaluate the effect of annotation quality of concept annotation on HOI concept discovery,

we illustrate the result of different models with different annotations. We compare two

versions of annotations, both of which are provided in supplemental materials. Specifically,

the file “label_hoi_concept.csv" is the worse version, while “label_hoi_concept_new.csv"

is the refined version. Table A.22 shows SCL even achieves better performance when

evaluate SCL with better annotation, while the performance of baseline is not improved. This

experiments together with Table 1 in the main paper show the quality of current annotation is

enough for the evaluation of the proposed method.
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TABLE A.22. The performance of the proposed method for HOI concept
discovery under different annotations. Better Annotation indicates we remove
some wrongly labeled concepts in annotation. We report all performance using
the average precision (AP) (%). UC means unknown concepts and KC means
known concepts. SCL means self-compositional learning. SCL−means online
concept discovery without self-training.

Method Better Annotation UC KC
SCL− 22.36 83.04
SCL 33.26 93.06
SCL− ✓ 22.25 83.04
SCL ✓ 33.58 92.65

TABLE A.23. The illustration of discovered concepts.

Method Concepts with high confidence Concepts with low confidence
SCL− type_on sink,inspect refrigerator,feed

suitcase, inspect chair,carry stop_sign
zip zebra, sign dog, chase broccoli, set
parking_meter, tag teddy_bear

SCL ride bear, board truck, carry bowl, wash
fire_hydrant, hop_on motorcycle

zip zebra, flush parking_meter, stop_at
hair_drier, stop_at microwave

A3.5 Qualitative illustration

We also illustrate the discover concepts in this Section. Here, we choose the concepts after

removing the known concepts from the prediction list because the confidence of known

concepts in the prediction of SCL is usually very higher. We choose 5 concepts with high

confidence and 5 concepts with low confidence to illustrate. Table A.23 shows the discovered

concepts in SCL are usually more reasonable.

A3.6 Ablation Studies

A3.6.1 Modules

We conduct ablation studies on three modules: verb auxiliary loss [110], union verb [111],

and spatial branch [66]. Union verb indicates that we extract verb representation from the

union box of human and object. When we remove the union verb representation, we directly

extract verb representation from the human bounding box; In our experiment, we remove

the spatial branch. Here, we demonstrate we achieve better performance without the spatial

branch.
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TABLE A.24. Ablation studies of different modules on HICO-DET. UC means
unknown concepts and KC means known concepts. Verb aux loss means Verb
auxiliary loss (i.e., binary cross entropy loss). Results are reported by average
precision (%).

Spatial branch Verb aux loss Union Verb UC KC
✓ ✓ ✓ 32.56 94.39
- ✓ ✓ 33.26 93.06
✓ - ✓ 29.56 93.36
✓ ✓ - 28.30 94.27

Spatial branch. We remove the spatial branch in [66], which is very effective for HOI

detection. We find that the spatial branch degrades the performance of HOI concept discovery:

the performance of HOI concept discovery increases from 32.56% to 33.26% without spatial

branch, as shown in Table A.24. We thus remove spatial branch.

Verb auxiliary loss. We follow [110] to utilize a verb auxiliary loss to regularize verb

representations. As shown in Table A.24, the model without using a verb auxiliary loss drops

by nearly 3% on unseen concepts, which demonstrates the importance of verb auxiliary loss

for HOI concept discovery.

Union verb. Table A.24 demonstrates that extracting verb representation from union box is

of great importance for HOI concept discovery. When we extract verb representation from

human bounding box, the result of HOI concept discovery apparently drops from 32.56% to

28.30%.

Though verb auxiliary loss and union verb representation are very helpful for concept dis-

covery, the performance without the two strategies still outperform our baseline, i.e., online

concept discovery without self-training.

A3.6.2 Convergence Analysis

To some extent, the self-training approach makes use of all composite HOIs, and thus

significantly enriches the training data. As a result, the self-training strategy usually requires

more iterations to converge to a better result. Figure A.9 illustrates the comparison of

convergence between online concept discovery and self-training. For online concept discovery,
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FIGURE A.9. Illustration of the convergence with self-training strategy.

we observe that the model begins to overfit the known concepts after 2,000,000 iterations,

and we thus have an early stop during the optimization. We notice that the result on unknown

concepts of self-training increases to 32.%, while the baseline (i.e., online concept discovery)

begins to overfit after 800,000 iterations. This might be because the self-training utilizes all

composite HOIs including many impossible combinations (i.e., negative samples for HOI

concept discovery).
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TABLE A.25. Ablation studies of hyper-parameters on V-COCO. UC means
unknown concepts and KC means known concepts. Results are reported by
average precision (%).

λ3 0.5 0.5 0.5 0.25 1. 2. 4.
T 1 2 0.5 1. 1. 1. 1.
UC (%) 29.52 28.60 29.69 28.06 29.94 31.33 29.78
KC (%) 97.57 96.76 97.57 95.32 97.87 97.81 97.94

A3.6.3 Hyper-parameters

In the main paper, we have several hyper-parameters (i.e.λ1, λ2, λ3, T , where λ1 = 2.,

λ2 = 0.5, λ3 = 0.5 and T = 1.). For λ1 and λ2, we follow the settings in [111]. For λ3 and

T , we perform ablation studies on V-COCO as shown in Table A.25. We notice that both T

and λ3 have an important effect on the HOI concept discovery. As shown in Table A.25, the

performance increases from 29.52% to 31.33% on unseen concepts when we set λ3 = 2.,

which is much better than the results reported in the main paper. This also illustrates that Ld

is more important than LCL for HOI concept discovery.

In our experiment, we apply the temperature T to predictions. As shown in Table A.25, we find

that when T decreases to 0.5, the performance also slightly increases from 29.52% to 29.69%.

Thus, we further conduct ablation experiments on T in Table A.26. Specifically, to quickly

evaluate the effect of T , we remove spatial branch and run all experiments with 1,000,000

iterations. Noticeably, when we set T = 0.25, the performance on concept discovery further

increases from 30.36% to 33.66%, which indicates a smaller temperature helps HOI concept

discovery. In our experiments, we also find this result further increases to over 35.% when

T = 0.5 after convergence, which is much better than the result (33.26%) of T = 1. This

might be because smaller temperature is less sensitive to noise data, since composite HOIs

can be regard as noise data.

A3.6.4 Normalization for Pseudo-labels

In our experiment, we normalize the confidence matrix for pseudo-labels. Table A.27 illus-

trates the normalization approach has a slight effect on the concept discovery performance.
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TABLE A.26. Ablation studies of hyper-parameter T on HICO-DET. Here,
we run all experiments with only 1,000,000 iterations and remove the spatial
branch to evaluate T . UC means unknown concepts and KC means known
concepts. Results are reported by average precision (%).

T 2 1 0.5 0.25 0.125
UC (%) 27.15 30.36 33.54 33.66 33.25
KC (%) 85.53 88.72 91.71 93.62 94.32

TABLE A.27. Illustration of normalized pseudo labels on HICO-DET and
V-COCO. Experiments results are reported by average precision (%). Here,
the SCL model uses spatial branch.

Method HICO-DET V-COCO
UC (%) KC (%) UC (%) KC (%)

SCL 32.56 94.39 29.52 97.57
w/o normalization 32.30 94.2 29.32 97.93

A4 Self-Compositional Learning

A4.1 HOI Detection with Unknown Concepts

A4.1.1 Additional Comparisons

Table A.28 demonstrates SCL consistent improves the baseline (i.e., SCL without Self-

Training). Here, we use the same concepts for a fair comparison. Thus, the recall is the same.

Meanwhile, Table A.28 also shows Self-Training effectively improves the HOI detection.

when we select all concepts to evaluate HOI detection, it is common zero-shot HOI detection,

i.e., all unseen classes are known. Particularly, for application, one can directly detect

unknown concepts with concept discovery from the model itself, e.g., Qpic [234]. Here, we

mainly demonstrate different methods with the same concept confidence for a fair comparison.

A4.1.2 Novel Objects

In the main paper, we illustrate the result on two compositional zero-shot settings. Here, we

further illustrate the effectiveness of HOI concept discovery for novel object HOI detection.

Novel object HOI detection requires to detect HOI with novel objects, i.e., the object of an
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TABLE A.28. Illustration of HOI detection with unknown concepts and zero-
shot HOI detection with SCL. K is the number of selected unknown concepts.
HOI detection results are reported by mean average precision (mAP)(%). We
also report the recall of the unseen categories in the top-K novel concepts. K
= all indicates the results of selecting all concepts, i.e., common zero-shot. ∗
means we train Qpic [234](ResNet-50) with the released code in zero-shot
setting and use the discovered concepts of SCL to evaluate HOI detection with
unknown concepts.

Method K
Rare First Non-rare First

Unknown Known Full Recall (%) Unknown Known Full Recall (%)
Baseline 0 1.68 22.10 18.52 0.00 5.86 16.30 14.21 0.00
Baseline 120 3.06 22.10 18.29 10.83 6.16 16.30 14.27 21.67
Baseline 240 3.28 22.10 18.34 13.33 6.90 16.30 14.42 25.00
Baseline 360 3.86 22.10 18.45 15.83 7.29 16.30 14.50 30.83
Baseline all 9.62 22.10 19.61 100.00 12.82 16.30 15.60 100.00
SCL 0 1.68 22.72 18.52 0.00 5.86 16.70 14.53 0.00
SCL 120 2.26 22.72 18.71 10.83 7.05 16.70 14.77 21.67
SCL 240 3.66 22.72 18.91 15.00 7.17 16.70 14.80 25.00
SCL 360 4.09 22.72 19.00 15.83 7.91 16.70 14.94 30.83
SCL all 9.64 22.72 19.78 100.00 13.30 16.70 16.02 100.00

unseen HOI is never seen in the HOI training set. We follow [107] to select 100 categories as

unknown concepts. The remaining categories do not include the objects of unseen categories.

Here we use a unique object detector to detect objects. To enable the novel object HOI

detection and novel object HOI concept discovery, we follow [107] to incorporate external

objects (e.g.COCO [164]) to compose novel object HOI samples. Specifically, we only choose

the novel types of objects from COCO [164] as objects images in the framework [107] for

novel object HOI detection with unknown concepts.

Table A.29 demonstrates concept discovery largely improves the performance on unseen

category from 3.92% to 11.41% (relatively by 191%) with top 100 unknown concepts. We

meanwhile find the recall increases to 41.00% with only the top 100 unknown concepts.

Nevertheless, when we select all unknown concepts, the performance on unseen category is

17.19%. This shows we should improve the performance of concept discovery.
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TABLE A.29. Illustration of the effectiveness of HOI concept discovery for
HOI detection with unknown concepts (novel objects). K is the number
of selected unknown concepts. HOI detection results are reported by mean
average precision (mAP)(%). Recall is evaluated for the unseen categories
under the top-k novel concepts. The last row indicates the results of selecting
all concepts.

K Unseen Seen Full Recall (%)
0 3.92 19.45 16.86 0.00
100 11.41 19.45 18.11 41.00
200 12.40 19.45 18.28 48.00
300 13.52 19.45 18.46 52.00
400 13.52 19.45 18.46 52.00
500 13.91 19.45 18.53 56.00
600 13.91 19.45 18.53 56.00
all 17.19 19.45 19.07 100.00

TABLE A.30. Additional Comparison on HOI concept discovery. We report
all performance using the average precision (AP) (%). UC means unknown
concepts and KC means known concepts. SCL means self-compositional
learning. SCL− means online concept discovery without self-training. SCL
(COCO) means we train the network via composing between verbs from HICO
and objects from COCO 2014 training set.

Method HICO-DET V-COCO
UC (%) KC (%) UC (%) KC (%)

Random 12.52 6.56 12.53 13.54
language embedding 16.08 29.64 - -
Re-Training 26.09 50.32 - -
SCL− (COCO) 17.01 55.50 26.04 81.47
SCL (COCO) 31.92 86.43 27.90 90.04
SCL− 22.36 83.04 26.64 95.59
SCL 33.26 93.06 29.52 97.57

TABLE A.31. Illustration of the effectiveness of self-training on HOI detection
based on ground truth box. Results are reported by mean average precision
(%).

Method Full Rare NonRare
SCL 42.92 36.60 44.81

w/o Self-Training 42.66 35.81 44.70
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TABLE A.32. Illustration of the effectiveness of self-training for Qpic
(ResNet-50). Results are reported by mean average precision (%). ∗ means we
use the released code to reproduce the results for a fair comparison. S1 means
Scenario 1, while S2 means Scenario 2.

Method HICO-DET V-COCO
Full Rare NonRare S1 S2

GGNet [304] 23.47 16.48 25.60 - 54.7
ATL [107] 23.81 17.43 25.72 - -

HOTR [131] 25.10 17.34 27.42 55.2 64.4
AS-Net[33] 28.87 24.25 30.25 - 53.9
Qpic [234] 29.07 21.85 31.23 58.8 61.0

Qpic* [234] 29.19 23.01 31.04 61.29 62.10
Qpic + SCL 29.75 24.78 31.23 61.55 62.38

A4.2 HOI Detection

One-Stage Method. We also evaluate SCL on Qpic [234], i.e., the state-of-the-art HOI

detection method based on Transformer, for HOI detection. Code is provided in https:

//github.com/zhihou7/SCL. We first obtain concept confidence similar as Section

3.3.2 in the main paper. Denote Ŷv ∈ RN×Nv as verb predictions, Ŷo ∈ RN×No as verb

predictions, we obtain concept predictions Ŷh as follows,

Ŷh = Ŷv ⊗ Ŷo. (A.2)

Then, we update M according to Equation 2 and Equation 3 in the main paper. After training,

we evaluate HOI concept discovery with M .

For self-training on Qpic [234], we use M to update the verb label Yv ∈ RN×Nv for annotated

HOIs. Here, we do not have composite HOIs because Qpic has entangled verb and object

predictions, and we update verb labels with M. Specifically, given an HOI with a verb labeled

as yv ∈ RN
v and an object labeled as yo ∈ RN

o , where 0 ≤ yo < No denotes the index of

object category, we update yv as follows,

ỹv = max(yv +M(:, yo), 1) (A.3)

https://github.com/zhihou7/SCL
https://github.com/zhihou7/SCL
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where max means we clip the value to 1 if the value is larger than 1. Then, we obtain

pseudo verb label ỹv to optimize the samples of the HOI similar as Equation 7 (here, we only

have annotated HOI samples). We think the running concept confidence M have implicitly

counted the distribution of verb and object in the dataset. Meanwhile, the denominator in

Equation 2 can also normalize the confidence according to the frequency, and thus ease the

long-tailed issue. Thus, with the pseudo labels constructed from M, we can re-balance the

distribution of the dataset, which is a bit similar to re-weighting strategy [20, 45]. However,

SCL does not require to set the weights for each class manually.

Table A.33 demonstrates SCL greatly improves Qpic on Unseen category on rare first zero-

shot detection, while SCL significantly facilitates rare category on non-rare first zero-shot

detection. In Full HOI detection on HICO-DET, Table A.32 shows SCL largely facilitates

HOI detection on rare category. Particularly, the seen category in rare first setting includes

120 rare classes, while the seen category in non-rare first setting only includes 18 classes (all

rare classes are in unseen category in non-rare first setting). Thus, SCL actually improves

HOI detection for rare category. We think the concept confidence matrix internally learns

the distribution of verb and objects and in the dataset. e.g., given an object, M illustrates the

corresponding verb distribution.

TABLE A.33. Zero-Shot HOI detection based on Qpic. Results are reported
by mean average precision (%). Here, we split the classes of HOI into four
categories in zero-shot setting, i.e., Seen are categorized into rare and non-rare.

Method Unseen Rare NonRare Full
Qpic [234] (non-rare first) 21.03 19.12 25.59 23.19
Qpic+SCL (non-rare first) 21.73 22.43 26.03 24.34

Qpic [234] (rare first) 15.24 16.72 30.98 27.40
Qpic+SCL (rare first) 19.07 16.19 30.89 28.08

Two-Stage method. Considering the HOI concept discovery is mainly based on two-stage

HOI detection approaches [111], it is direct and simple to evaluate the performance of self-

training on HOI detection. Table A.31 demonstrates the HOI detection results on ground truth

boxes. Noticeably, we directly predict the verb category, rather than HOI category. Thus, the

baseline of HOI detection (i.e.visual compositional learning [111]) is a bit worse. We can find

self-training also slightly improves the performance, especially on rare category.
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FIGURE A.10. Visualized Illustration of SCL+Qpic and Qpic [234].

A4.3 Visualization

In this section, we provide more visualized illustrations.

More Grad-CAM Visualizations Figure A.10 demonstrates the visualization of Qpic and

Qpic+SCL: the second row is Qpic and the third row is Qpic+SCL, where we observe a

similar trend to the Gram-CAM illustration in main paper.

Concept Visualization. We illustrate the visualized comparisons of concept discovery

in Figure A.11. According to the ground truth and known concepts, we find some verb

(affordance) classes can be applied to most of objects (the row is highlighted in the ground

truth figure). This observation is reasonable because some kinds of actions can be applied to

most of objects in visual world, e.g., hold. As shown in Figure A.11, there are many false

positive predictions in the results of affordance prediction, and affordance prediction tends

to overfit the known concepts, especially those with frequently appeared verbs. Methods of

online HOI concept discovery on V-COCO have fewer false positive predictions compared

to affordance prediction. However, the two methods tend to predict concepts composed of
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FIGURE A.11. Visualized Comparison of different methods on V-COCO
dataset. The column is the object classes and the row represents the verb
classes. Known Concepts are the concepts that we have known. SCL− means
online concept discovery without self-training. For better illustration, we
filter out known concepts in proposed methods. “+ Novel Objects" means
self-training with novel object images.

frequent verbs in known concepts due to the verb and object imbalance issues in HOI dataset

[110]. Particularly, the false positive predictions are largely eased with self-training (e.g., the

top right region). In addition, the blank columns in Figure A.11 are because there are only 69

objects in V-COCO training set, and we can ease it via training network with additional object

images [107] as illustrated in the last figure of Figure A.11. See more visualized results on

HICO-DET and V-COCO in the supplemental material. Particularly, we further notice there

are dependencies between verb classes (See verb dependency analysis).

A4.4 Additional Concept Discovery Approaches

We provide More comparisons in this Section. For a fair comparison with ATL [107] (i.e.,

affordance prediction), we use the same number of verbs (21 verbs) on V-COCO. The code
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includes how to convert V-COCO to 21 verbs, i.e.merge “_instr” and “_obj” and remove

actions without object (e.g., stand, smile, run).

Language embedding baseline. In the main paper, we illustrate a random baseline. Here

we further illustrate the results with language embedding [203]. Different from extracting

verb/object features from real HOI images, we use the corresponding language embedding

representations of verb/object as input, i.e.discovering concepts from language embedding.

Table A.30 shows the performance is just a bit better than random result, and is much worse

than online concept discovery. Similar to the main paper, when we evaluate the unknown

concepts, we mask out the known concepts to avoid the disturbance from known concepts.

Re-Training. We first train the HOI model via visual compositional learning [111], and then

predict the concept confidence. Next, we use the predicted concept confidence to provide

pseudo labels for the composite HOIs. Table A.30 shows the performance of Re-Training is

worse than SCL.

With COCO dataset. Table A.30 also demonstrates the baseline (SCL−) with COCO

datasets has poor performance on concept discovery. We think it is because the domain shift

between COCO dataset and HICO-DET dataset. However, SCL still achieves significant

improvement on concept discovery.

Qpic+SCL. The details are provided in Section D.

A4.5 Object Affordance Recognition

SCL requires more iterations to converge, and achieves better performance on object afford-

ance recognition. Table A.34 shows the performance of the model without self-training does

not improve with more training iterations.
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TABLE A.34. Comparison of object affordance recognition with HOI network
(trained on HICO-DET) among different datasets. Val2017 is the validation
2017 of COCO [164]. Here we illustrate the result of SCL− under different
training iterations.

Method Type Val2017 Obj365 HICO Novel
SCL− (0.8M iters) U 43.61 41.14 47.56 14.46
SCL− (1.5M iters) U 44.07 39.05 50.27 10.19
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Appendix of Chapter 3

B1 Additional Experiments

In this section, to better demonstrate the effectiveness of BatchFormerV1, we provide more

experimental results.

B1.1 Long-Tailed Recognition

We notice BatchFormer mainly improves PaCo on Many category on CIFAR-100-LT (imbal-

ance ratio 100). We thus conduct additional ablation study on BatchFormer for PaCo. Here,

we remove the PaCo loss with Balanced loss [44] to build the baseline. we observe consistent

results in the Table B.1. Noticeably, the baseline without PaCo loss is even better than the one

in the main paper.

B1.2 Generalized Zero-Shot Learning

We also evaluate BatchFormerV1 on generalized zero-shot learning task. Specifically, we

report the accuracy of “seen", “unseen", and the harmonic mean of them (unseen and seen).

TABLE B.1. Illustration of BatchFormer without PaCo loss [44] on CIFAR-
LT-100.

Method 100 200
All Many Med Few All Many Med Few

Baseline [52] 52.0 68.1 53.2 31.6 47.31 67.8 52.6 27.3
+ BFV1 52.6 68.7 53.2 33.1 48.13 68.9 53.1 28.2

170
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TABLE B.2. Illustration of BatchFormerV1 for MoCo on VOC2007 [57].
Here, for fair comparison, we use the official code of MoCo-v2 and MoCo-v3
to run all experiments in the same setting.

Methods AP AP50 AP75
MoCo-v2* [35] 56.4 82.1 63.1
+ BFV1 56.7 82.0 63.6
MoCo-v3 [35] 46.6 78.2 48.9
+ BFV1 48.0 78.8 51.1

We perform experiments on one of the most popular datasets for generalized zero-shot

learning, CUB [247], which includes 11,788 images from 200 bird species. We build a

baseline with the released code of [254] and achieve better results than [254]. As shown

in Table ??, the proposed BatchFormerV1 achieves a new state-of-the-art on Unseen and

Harmonic mean.

B1.3 Self-Supervised Learning

Object detection on VOC2007. We also evaluate Object Detection of MoCo on VOC2007 [57]

in Table B.2. Similar as MoCo-v2 [35], we use the pre-trained model to fine-tune Faster-

RCNN on VOC2007 based on Detectron2 [269]. We find MoCo-v3 achieves worse result on

VOC2007. However, BatchFormerV1 consistently improves the object detection on VOC2007.

Here, we train MoCo-v2 for 200 epochs, and MoCo-v3 for 100 epochs. Specifically, we

think that the number of training epochs (only 100 epochs) of MoCo-v3 might limit the

performance on VOC2007.

B1.4 Image Recognition

Table B.3 demonstrates BatchFormerV1 for image classification. We find BatchFormerV1

achieves comparable performance among ResNet50 and Swin Transformer [170]. This

shows BatchFormerV1 does not degrade the performance when the distribution of data is

balanced. Table B.3 also shows our updated experiment on ViT [53, 239]. We find that

BatchFormerV1 effectively improves the baseline. Here, we apply BatchFormerV1 before

the last normalization layer since there is no average pooling.
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TABLE B.3. Illustration of BatchFormerV1 for image recognition.

Method Epochs Top-1 Top-5
ResNet50 [268] 200 78.9
+ BFV1 200 78.9 -
Swin-T [170] 300 81.3 95.5
+ BFV1 300 81.3 95.6
DeiT-S [239] 300 79.8 95.0
+ BFV1 300 80.3 95.1

TABLE B.4. Illustration of BatchFormerV1 for domain generalization on
PACS [149]. Here, the baseline is from [124]. SWAD [25] is reproduced
based on the official code.

Method art_paint cartoon sketches photo Avg.
Baseline 81.3±0.7 76.1±0.6 75.5±2.6 95.4 ±0.2 82.0
+ BFV1 82.4±1.5 76.4±1.2 75.7±1.0 95.1±0.4 82.4
CORAL [231] 79.2±1.7 75.5 ±1.1 71.4±3.1 94.7±0.3 80.2
+ BFV1 80.6±0.9 74.7±1.9 73.1±0.3 95.1±0.3 80.9
IRM [4] 81.0±0.6 71.4±4.1 68.1±7.1 95.0±0.6 78.9
+ BFV1 78.9±3.1 71.0±7.1 71.5±2.8 96.0±0.3 79.4
V-REx [141] 80.8±1.8 75.3±1.4 73.3±0.9 95.9±0.0 81.3
+ BFV1 82.0±0.3 76.3±0.7 75.2±1.7 95.3±0.1 82.2
MixStyle [309] 81.7±0.1 76.8±0.0 80.8±0.0 93.1±0.0 83.1
+ BFV1 84.8 ±0.4 75.3±0.0 81.1 ±0.4 93.6±0.0 83.7
SWAD* [25] 83.1±1.5 75.9±0.9 77.1±2.4 95.6±0.6 82.9
+ BFV1 84.3±0.8 76.9 ±1.2 78.2±1.8 95.7±0.6 83.9
ResNet50
V-REx [141] 83.8±4.8 81.0±0.0 97.7±0.4 77.7±3.1 85.0
+ BFV1 87.3 ±5.0 80.2±4.6 97.1±1.7 77.9±4.4 85.6
IRM [4] 88.2±0.6 79.8±1.0 97.6±0.5 77.6±0.7 85.8
+ BFV1 89.0±0.98 80.1 ±1.0 98.0±0.4 79.8±0.4 86.8
SWAD [25] 89.4±0.7 83.7±1.2 97.7±0.6 82.5±0.8 88.1
+ BFV1 90.2±0.5 84.0±1.0 97.3±0.3 83.0±0.6 88.6

B1.5 Domain Generalization

We provide more experimental results based on [124] in Table B.4. Experiments on Office-

Home, VLCS, TerraIncognita are provided in Table B.5, Table B.6 and Table B.7 respectively.

If not otherwise stated, the default backbone is ResNet-18.
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TABLE B.5. Illustration of BatchFormerV1 for domain generalization on
OfficeHome using [25] as the baseline.

Method Art Clipart Product RealWorld Avg.
SWAD* [25] 54.5±0.8 49.4±0.1 70.9±0.1 72.7±0.2 62.1
+ BFV1 57.8±0.1 51.0±0.1 73.4±0.2 75.1±0.1 64.3
ResNet-50
IRM [4] 66.8±0.2 54.9±0.8 77.5±0.7 80.5±0.4 69.9
+ BFV1 67.7 ±0.2 55.5±0.8 78.4±0.5 81.0±0.3 70.6
SWAD* [25] 65.9±0.8 58.0±0.1 78.5±0.5 80.2±0.7 70.6
+ BFV1 66.7±0.3 57.9±0.3 79.2±0.4 80.6±0.7 71.1

TABLE B.6. Illustration of BatchFormerV1 for domain generalization on
VLCS using [25] as the baseline. The backbone is ResNet-18.

Method Caltech101 LabelMe SUN09 SUN09 Avg.
SWAD* [25] 97.2±1.4 61.4±0.1 71.2±1.7 75.5±0.8 76.3
+ BFV1 97.2±0.8 61.3±1.1 71.7±1.0 77.4±0.4 76.9

TABLE B.7. Illustration of BatchFormerV1 for domain generalization on
TerraIncognita using a recent work [25] as the baseline. The backbone is
ResNet-18.

Method Art Clipart Product RealWorld Avg.
SWAD* [25] 47.6±3.0 33.8±4.5 53.6±1.8 33.3±0.6 42.1
+ BFV1 49.8±1.8 40.3±2.0 55.2±1.2 34.0±1.1 44.8

TABLE B.8. Illustration of BatchFormerV1 for domain adaption on
VisDA2017 [202]. The backbone is ResNet-101. Experiments are based
on [124].

Method Synthetic − > Real
MDD [297] 76.8±1.5
+ BFV1 77.8 ±2.0

B1.6 Domain Adaption

We also demonstrate BatchFormerV1 on Domain Adaption on VisDA2017 [202]. Table B.8

shows BatchFormerV1 effectively improves the corresponding baseline, i.e., MDD [297].
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Method Insert Position All Many Med Few
Deit-S - 32.8 52.5 24.3 7.0
+ BFV2 1-12 35.5 55.4 27.2 8.6
+ BFV2 8-12 34.7 54.7 26.3 7.2
+ BFV2 4-12 35.5 55.3 26.8 8.4
+ BFV2 (non-shared) 1-12 35.2 55.3 26.7 8.3

TABLE B.9. Illustration of Deit-S on ImageNet-LT. By default, we share
all the modules among different layers on this experiments. BatchFormerV2
(non-shared) indicates we do not share the modules among different layers.
We observe sharing BatchFormerV2 on image classification achieves a bit
better performance.

B2 Additional Experiments

In this section, we provide more experimental results for BatchFormerV2.

B2.1 Long-Tailed Recognition

In Table B.9, we show the model performances with BatchFormerV2 on ImageNet-LT. Here,

all experiments are based on DeiT-S [238] and we do not use any re-balance strategies. We

find that BatchFormerV2 can significantly improve model performance comparing with the

baseline.

B2.2 3D Hand Reconstruction

In addition to object detection and panoptic segmentation, we further provide results on

another important pixel-level task, i.e., 3D Reconstruction. Specifically, we use the pop-

ular 3D hand reconstruction benchmark, i.e., FreiHAND [317] and evaluate the proposed

BatchFormerV2 module for 3D hand mesh reconstruction using a recent state-of-the-art

method [162], MeshGraphormer. Here, we report the performance on FreiHand dataset

under single-scale inference for a quick evaluation. As shown in Table B.10, the proposed

BatchFormerV2 module clearly improves the baseline by over 1.% on both two metrics,

PA-MPVPE and PA-MPJPE.
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TABLE B.10. BatchFormerV2 for 3D Hand Mesh Reconstruction. ∗ indicates
we train the network with the released official code of Mesh-Graphormer [162].

Method PA-MPVPE ↓ PA-MPJPE ↓ F@5 mm ↑ F@15 mm ↑
Lin et al. [162]* 62.8 64.3 74.7 98.3
+ BFV2 61.3 62.6 75.4 98.5

TABLE B.11. MAE with BatchFormerV2. * indicates we use the released
code to MAE for 800 epochs. We illustrate the result of Linear Probe.

Method Epochs ViT-Base ViT-Large
MAE [96]* 800 65.6 73.5
+ BFV2 800 66.1 73.9

B2.3 Masked AutoEncoder

Here, we also utilize a simple experiment to evaluate BatchFormerV2 on recent self-supervised

learning framework, i.e., Masked Auto Encoder [96](MAE). We insert BatchFormerV2 into

all layers in the decoder in MAE [96]. We use the ViT-Base model to evaluate BatchFormerV2.

Here, due to the computation limitation, we train the network 800 epochs with the released

code of [96], and verify the model via linear probe. All other hyper-parameters are follow-

ing [96]. Table B.11 demonstrates BatchFormerV2 is also beneficial for MAE. Without bells

and whistles, BatchFormerV2 improves the baseline by 0.5%.

B2.4 Without Two-Stream Strategy

We conduct experiments about the two-stream training strategy. As shown in Table B.12, the

performance significantly drops if we use a single stream with BatchFormerV2, since the

distribution between with and without BatchFormerV2 changes in each layer. Therefore, a

single-stream network can not enable the inference without BatchFormerV2 modules.

TABLE B.12. Ablation study on two-stream training strategy. Here, TS
indicates the two-stream strategy. The backbone is ResNet-50.

Method AP AP50 AP75 APS APM APL

w/ TS 45.5 64.3 49.8 28.3 48.6 59.4
w/o TS 12.3 33.9 6.3 5.3 21.1 14.6
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B2.5 Mini-batch Inference

In our experiment, we remove BatchFormerV2 for inference, since we can not always assume

a mini-batch of testing data. In Table B.13, we also show the inference results of Batch-

FormerV2 with a mini-batch testing data. Here, we apply BatchFormerV2 in the first layer,

and use the model to evaluate via mini-batch inference. We find that “inference without Batch-

FormerV2" achieves similar performance comparing with “inference with BatchFormerV2".

Therefore, we consider that the two-stream strategy enables the semantically invariant learning,

and thus make it possible to remove BatchFormerV2 during inference.

TABLE B.13. Ablation study on mini-batch inference with BatchFormerV2.
“BFV2 (BI)” indicates mini-batch inference. The backbone is ResNet-50.

Method AP AP50 AP75 APS APM APL

BFV2 45.6 64.5 49.8 28.3 48.8 59.7
BFV2 (BI) 45.6 64.4 49.8 28.3 48.7 59.7

B2.6 Inference with Feature Fusion

We observe that the inference strategy with and without BatchFormerV2 achieve similar

performance in previous section. Taking a further step, we design a feature fusion to evaluate

the feature around the current feature space. Specifically, let x denote the feature without

BatchFormerV2 (i.e., the feature we use for inference in main paper), x̂ denote the feature

with BatchFormerV2 during inference, we then update x as follows,

x = λx+ (1− λ)x̂, (B.1)

where λ indicates the weight of feature without BatchFormerV2. Interestingly, Table B.14

shows that the models with different λ achieve similar performances. Here, we fix the order

of images during inference. We think this experiment shows all the features between the

features with and without BatchFormerV2 in the feature space are valid for prediction, i.e.,

the two-stream training strategy also augment the feature space. As illustrated in Figure B.4,

these two features are actually different.
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TABLE B.14. Feature fusion between with and without BatchFormerV2 dur-
ing inference. λ indicates the weights for the feature without BatchFormerV2.

Method λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9
Fusion 45.6 45.6 45.6 45.6 45.6

TABLE B.15. Illustration the effect of mixup [293] and cutmix [287] on
BatchFormerV2. Experiments are conducted on Tiny-ImageNet. We follow
the same experimental setups described in DeiT [238]. “w/o mixup" indicates
that we remove both mixup and cutmix.

Model #Params Input Top-1 Top-5
DeiT-S [238] 22M 2242 81.8 94.1
+ BFV2 22M 2242 82.9 94.3
DeiT-S [238] (w/o mixup) 22M 2242 75.80 89.6
+ BFV2 (w/o mixup) 22M 2242 78.2 95.6
DeiT-S [238] (w/o cutmix) 22M 2242 79.8 92.5
+ BFV2 (w/o cutmix) 22M 2242 81.1 92.3

B2.7 Classification Without Mixup

We notice that there are frequent training crashes when applying BatchFormerV2 with

multiple layers on large datasets. We also evaluate BatchFormerV2 without mixup on Tiny-

ImageNet. Except for BatchFormerV2 modules, all configurations follow [238]. We run the

experiments on four NVIDIA V100 (16GB) GPUs. Table B.15 demonstrates that without

using cutmix [287] or mixup [293], BatchFormerV2 significantly improves the baseline with

a larger margin.

B2.8 Shared BatchFormerV2 Modules

We can also share BatchFormerV2 modules among different layers on image classification.

The motivation behind of this setting is that we further encourage different layers to discover

the same batch attention pattern. Here, we illustrates the effect of sharing modules among

different layers on ImageNet-LT. As shown in Table B.9, it achieves a bit better performance

on small datasets if we share the modules among different layers. This is different from

the observation on object detection, possibly because that sharing modules plays a role of

regularization which benefits the learning on small datasets. Meanwhile, it is also challenging



178 B APPENDIX OF CHAPTER 3

to optimize the DeiT model with BatchFormerV2 modules if we do not share the modules

among different layers. In this thesis, we mainly focus on a general BatchFormerV2 module

which can be well generalized for different levels of tasks. We leave the further exploration

of sharing strategy, and crash collapse on ImageNet when inserting BatchFormerV2 into

multiple layers to future work.

B3 Visualization

In this section, we provide more visualization results for BatchFormerV1 and BatchFormerV2.

B3.1 Visualization Results on ImageNet-LT.

We provide more comparisons in Figure B.1, Figure B.2, and Figure B.3, where the top 100

classes on ImageNet are chosen for demonstration.

B3.2 Visualization of Features

Table B.13 shows BatchFormerV2 without mini-batch inference achieves similar performance

to that with mini-batch inference. To further analyze this phenomenon, we visualize the

feature maps between with and without BatchFormerV2. As shown in Figure B.4, we

find that there are significant differences (i.e., different distribution) between the above-

mentioned two feature maps during inference. We think the two feature maps represent

similar semantics though the distribution is diverse, i.e., representing similar semantics for

the the same prediction modules.

B3.3 Visualization of Panoptic Segmentation

We further provide more panoptic segmentation examples in Figure B.5. We find that

BatchFormerV2 usually helps object segmentation and improves the segmentation boundaries

of the stuffs.
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B3.4 Visualization of Attention

Visualization of the multi-head self-attention provides rich semantic interpretations. Here

we provide more observations from the visualization of attentions in Figure B.6. First, we

observe that the images with objects usually have higher attentions to other images, i.e., the

objects are usually highlighted as illustrated in Figure B.6. Second, and more importantly, the

attention of background in current image is suppressed if the corresponding positions in other

images have objects. For example, the region (grass) under the zebra in row 2 in Figure B.6

is suppressed because there is a person in the first image. There is a region suppressed like

a person in “row 4, column 3" in Figure B.6 because there is a person in second column.

However, if the region has objects, the region will not be suppressed. For example, the

airplane is highlighted in “row 4, column 1" though the corresponding region is object in

“row 4, column 2".
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FIGURE B.1. Additional visualization results of BatchFormerV1 on low-shot
test images based on [212].
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FIGURE B.2. Additional visualization results of BatchFormerV1 on low-shot
test images based on [212].
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FIGURE B.3. Additional visualization results of BatchFormerV1 on low-shot
test images based on [212].
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FIGURE B.4. Visualization of the difference between the representations with
and without BatchFormerV2 during inference. Here, we choose the largest
feature map and use the model that we trained with BatchFormerV2 which is
inserted into the first Transformer Encoder layer. The first row is image, the
second row is the feature without BatchFormerV2, and the last row indicates
the feature with BatchFormerV2 (mini-batch inference).
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FIGURE B.5. Visualization of additional panoptic segmentation examples.
The first row is original image, the second row is DETR and the thrid row is
DETR with BatchFormerV2.
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FIGURE B.6. Visualization of self-attention in the same mini-batch. Each
row represents a mini-batch during inference. The model and settings are the
same as those in Figure 5 in main paper
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Appendix of Chapter 4

C1 More Implementation Details

To construct a “pseudo bone” for the object, and make it more convenient to implement and

calculate the distance between the points in the ray and the object bone, we build the “pseudo

bone” as a segment which starts from the center point of the object and ends at a point very

close to the center point (≤ 0.01). Then, we can equally treat the “pseudo bone” as body

bones in the code implementation. In our experiment, the dimension of the latent code is 64.

Neural Human-Object Deformation Similar to [267, 151], rather than the surface points as

traditional LBS, we skin all points in the 3D space with wbg · I , which stops deforming the

points in the background and empty space in Equation (2) in main paper. After Equation (3),

the same as [151, 37], we analytically compute the gradients of the network parameters for

the inverse skinning. During volumetric rendering, similar to previous works [37, 151], we

choose the density and color for the observed point xv as follow,

cv = c
′

c,m,σv = σ
′

c,m, (C.1)

where m = argmaxi(σ
′
c,i), 0 ≤ i < K. we then use (cv,σv) for volumetric rendering.

Training loss The overall loss function is

L = Limg + λLw + βL∆ (C.2)

where Limg indicates image loss similar to [183], Lw represents the loss to encourage the

onehot skinning weights w, L∆ is to encourage the non-linear deformation term FΘ∆
(xc,P )

186
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close to zero. Both Lw and L∆ are MSE losses. The learning rate and training iteration are

provided in the experimental sections. For ARAH, we follow the default hyper-parameters.

C2 Baseline Method Details Analysis

In our experiments, we leverage two state-of-the-art Animatable Avatar methods (i.e., TAVA [151]

and ARAH [255]) as our baselines. We find the both the two methods fail to animate the

object. Meanwhile, we also apply the neural human-object deformation method in ARAH,

which we named it as ARAH∗. In ARAH∗, we treat the object as a unique bone, and use

the object meshes to guide the optimization of SDF model. we observe the model fails

to reconstruct the geometry of the complex object (e.g., chairs). However, we notice the

implicit model (SDF) of simple objects (e.g., yogaball, suitcase, boxes) can be successfully

reconstructed and animated.

Besides, we devise a baseline method which first localize the object position, and then leverage

the implicit object code embedding to model the rotation of the object. According to the

visualization in Figure 3 in main paper, we notice the model can reconstruct the simple object,

e.g., yogaball. For the complex objects, e.g., chairwood, it fails to reconstruct the object.

Lastly, we notice the “chairblack”, “suitcase” and “backpack” are usually black, which is

similar to the background. Therefore, the numbers do not always indicate the results well.

C3 Benchmark Construction

In our experiment, we randomly choose one action as validation set for each subject-object

pair to evaluate the performance on out-of-distribution poses.

Here we provide the interactions splits of our experiments in Table C.1. For boxes, we

randomly split the frames into training set and validation set because there is only a single

interaction for each box. For compositional animation, we select “yogaball”, “chairblack”,

“chairwood”,“tablesquare”, “tablesmall”, “suitcase”, “boxmedium”, “boxlarge”, “boxsmall”
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TABLE C.1. Dataset splits for novel pose animation.

Objects training set validation set
backpack Sub01_backpack_hug,Sub01_backpack_back Sub01_backpack_hand
chairwood Sub01_chairwood_hand,Sub01_chairwood_sit Sub01_chairwood_lift
chairblack Sub01_chairblack_lift,Sub01_chairblack_hand Sub01_chairblack_sit
suitcase Sub01_suitcase_lift Sub01_suitcase
tablesmall Sub01_tablesmall_lift,Sub01_tablesmall_move Sub01_tablesmall_lean
tablesquare Sub01_tablesquare_hand,Sub01_tablesquare_lift Sub01_tablesquare_sit
yogaball Sub01_yogaball Sub01_yogaball_play

TABLE C.2. Dataset splits for compositional animation.

training set novel action validation
Sub01_chairwood_hand,
Sub01_chairwood_lift,
Sub01_tablesmall_lean,
Sub01_tablesmall_lift,
Sub01_yogaball_play,
Sub02_boxmedium_hand,
Sub02_boxsmall_hand,
Sub02_chairblack_hand,
Sub02_chairblack_lift,
Sub02_suitcase_ground,
Sub02_tablesquare_sit,
Sub02_tablesquare_lift,
Sub01_boxlarge_hand

Sub01_yogaball,
Sub02_suitcase_lift,
Sub01_chairwood_sit,
Sub02_chairblack_sit,
Sub01_tablesmall_move,
Sub02_tablesquare_move,
Sub01_suitcase

novel object validation novel action object validation
Sub01_chairblack_sit,
Sub02_chairwood_sit,
Sub01_suitcase_lift,
Sub02_yogaball_sit,
Sub02_tablesmall_move,
Sub01_tablesquare_hand

Sub01_chairblack_hand,
Sub01_chairblack_lift,
Sub02_chairwood_hand,
Sub02_yogaball_play,
Sub02_tablesmall_lean,
Sub02_tablesmall_lift,
Sub01_tablesquare_sit,
Sub01_tablesquare_lift,
Sub02_boxlarge_hand,
Sub01_boxmedium_hand,
Sub01_boxsmall_hand

from BEHAVE [16] to construct the benchmark. Table C.2 present the splits of compositional

animation.
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TABLE C.3. Human-Object Animation for the “boxlong”. This is a comple-
mentary table to Table 2 in main paper.

Method boxlarge boxlong boxmedium boxsmall boxtiny
PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

TAVA [151] 22.6 0.949 26.8 0.966 25.9 0.967 26.8 0.970 27.5 0.973
CHONA 27.2 0.971 28.1 0.974 28.5 0.976 28.0 0.974 28.3 0.976

TABLE C.4. Human-Object Animation for the boxes, i.e., different sizes of
objects.

Method boxlarge boxmedium boxsmall boxtiny
PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

TAVA [151] 22.6 0.949 25.9 0.967 26.8 0.970 27.5 0.973
ARAH [255] 23.3 0.963 26.3 0.972 27.0 0.974 27.7 0.977
ARAH∗ 27.8 0.975 28.5 0.978 28.7 0.978 27.9 0.978
Baseline 26.2 0.968 27.9 0.973 28.2 0.974 28.3 0.975
CHONA 27.2 0.971 28.5 0.976 28.0 0.974 28.3 0.976

TABLE C.5. Comparison on the novel non-interactive person (Sub02). Here,
we use the shared body shape. We evaluate it on the object “chairblack”.
Therefore, the baseline is also good. CIL indicates compositional invariant
learning.

Method PNSRind SSIMind PNSRood SSIMood

w/o CIL 25.4 0.951 26.5 0.959
CC-NeRF 25.6 0.951 26.7 0.958

C4 Challenges Analysis on BEHAVE

Occlusions BEHAVE [16] is a real-world 3D HOI dataset with only four camera views and

extensive occlusions, which poses a significant challenge for the detailed reconstruction of

Human and Object. Meanwhile, each interaction has less than 50 frames, which is challenging

for the model to implicitly reconstruct the human body and object.

Blurry faces and frames To protect privacy, BEHAVE [16] uses the mask or fuzzy technique

to blur most of the faces as illustrated in Figure C.1. This makes it very difficult to reconstruct

the face of Subject01. Meanwhile, there are also blurry frames in BEHAVE. This further

poses a significant challenge for a detailed reconstruction of HOI as illustrated in Figure C.1.
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FIGURE C.1. Illustration of the blurry faces and frames.

Inaccurate Segmentation Besides, the segmentation mask in BEHAVE [16] is not much

accurate due to the occlusion and complex background as illustrated in Figure C.2. One

can find more inaccurate segmentation in the ground truth of the video comparison. In our

experiment, we find the proposed method is able to marginally implicitly reconstruct the

object and human body. However, the segmentation problem also degrades the accuracy of

reconstruction.

C5 Demonstration of different pose quality

Without ground truth poses, we can also transfer the interaction poses (actions) among similar

objects as shown in the novel person or novel object animation. Besides, Table. C.6 also

shows the effectiveness when using noised and predicted object poses for animation.

C6 Comparison on different boxes

Table C.3 shows the effect of object size on evaluation metrics. Figure C.3 illustrates TAVA

completely fails to reconstruct the object. Figure C.4 demonstrates neural human-object
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FIGURE C.2. Illustration of inaccurate masks. The boundary between the
yogaball and human is not correct. The wrong boundary even causes the shape
of yogaball changes.

TABLE C.6. The left table is for evaluation on different object poses on a
subset of Mediumbox. “Predicted” is we predict the object poses with the
method in BEHAVE[4]. “Noised” indicates we add Gaussian noise to the
ground truth. The right part is for quantitative evaluation on a novel static
object (“chairwood”).

GT Predicted Noised Baseline
PNSR 27.7 27.2 27.0 26.5
SSIM 0.975 0.973 0.973 0.966

deformation can also reconstruct the boxes based on ARAH. Here, we leverage the box

meshes to guide the SDF model optimization. Nevertheless, we still found it is challenging to

reconstruct the complex object (e.g. chairs) in the main paper. Meanwhile, we can not make

sure we have the meshes for the object. Therefore, we mainly evaluate the compositional

human-object animation based on the template-free methods.
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TAVA Ours GT

FIGURE C.3. Visualized Comparisons between the proposed method and
baseline method (TAVA [151]). We demonstrate the results of “yogaball”,
“boxsmall”, “chairwood”, “boxlarge”.

Besides, Table C.4 and Figure C.4 show we can achieve better performance when we utlize

the SDF-based neural animation methods. But the limitation of those methods is that we can

not always have the prior models for the object, even for the novel objects.

C7 Additional Experiments on Novel Non-interactive Person

and static Objects

In this section, we first provide experiments on the person (ZJU subject 387) and the object

(chair in CO3D) in Figure C.5. Because the object segmentation in CO3D [211] is usually

not accurate, we select two objects with relatively better segmentation to demonstrate the

proposed method on novel static objects. Figure C.5 demonstrates the baseline achieves worse

rendering results on human body, while CC-NeRF with compositional invariant learning
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FIGURE C.4. Visualized Illustration between ARAH∗ (with the proposed
neural human-object deformation) and ARAH [255]. We demonstrate the
results of “boxlarge”, “boxsmall”, “boxmedium”.

significantly improves the baseline. Particularly, the objects in CO3D [211] are not fully

scanned, i.e., the objects have some views (e.g., the bottom) that are unseen. As a result,

the rendering result is poor when the object is transformed into a novel view during the

interaction.

Figure C.6 also demonstrates CC-NeRF with compositional invariant learning achieves better

rendering performance on human body. We observe the face of the baseline tends to be

similar to Subject01 or Subject02 in BEHAVE, while the proposed method achieves better

controllable rendering with the latent codes.

Additional Quantitative comparison. Table C.5 shows that the proposed method is also able

to improve the animation on novel non-interactive person. Here, we first choose a single frame

from subject02 without the object. We then train the network together with the “chairwood”

HOI videos from subject01. We evaluate the animation on the interaction between subject02

and “chairwood”. For the actions in validation that are similar to the training set, we treat it

as the similar distribution generalization (ind), while we treat the validation samples that have

different actions as out-of-distribution evaluation (ood). In our experiments, “chairwood_hand"

and “chairwood_lift” are training actions and we choose “chairwood_sit” as ood validation.
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For the experiments on novel object animation in the main paper (Table 4), we choose a single

frame of “chairwood” and the two actions (“hand” and ”lift”) from “chairblack” in subject01

as training set. We use the interactions between subject01 and “chairwood” as validation set.

Figure C.7 illustrates that the model without compositional invariant learning fails to render

the person. Compared to the experiments in Figure 5 in the main paper, we here do not have

a lot of objects and person in the training set. As a result, it is more difficult to render the

person for the novel object. Therefore, the baseline method totally fails to render the person.

However, the proposed method still effectively renders the person. Besides, this experiment

also demonstrates Compositional Invariant Learning is more beneficial for decoupling the

object and person latent code compared to the baseline when the number of HOI classes is

limited in the training.

C8 Potential Applications

The proposed compositional neural animation approach is also able to reconstruct the human

body or object separately from the interaction scenes as illustrated in Figure C.8. It is

expensive to obtain dense cameras to scan all the 3D surfaces of the object. With the proposed

method, we think we can reconstruct the full object by moving and rotating the objects under

a single camera. Figure C.8 shows we can reconstruct the object with massive occlusions and

render the objects individually from a few camera views.

Besides, Human-Object animation is important for Human-centric generation. We can

generate the interaction videos according to the poses. Furthermore, we can also use the

language-to-motion model (e.g. MotionDiffusion [tevet2022human]) to generate poses given

the language description.

C9 Animation from Monocular Videos

We further present compositional 3D Human-Object Animation from a single monocular

video (single view). We notice the proposed method is able to achieve remarkable performance
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FIGURE C.5. Illustration of Compositional 3D Human-Object Neural Anima-
tion on Novel static object and non-interactive person. The first column is the
guided person/object, the second column is the baseline, the third column is
CC-NeRF with compositional invariant learning, and the last column is guided
poses.
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FIGURE C.6. Illustration of Compositional 3D Human-Object Neural Anima-
tion on non-interactive person (ZJU386). The first column is baseline without
compositional invariant learning, the second column is CC-NeRF, and the last
is guided poses.

as illustrated in Figure C.9. Compared with the experiments from four views, we notice the

details of a single view are worse, (e.g., the legs in the left images and the medium boxes in

the right images).
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FIGURE C.7. Illustration of Compositional Human-Object Animation on
novel static object. Here, we have only two objects (“chairblack” and “chair-
wood”) in the training set. The first column is the model without compositional
invariant learning. The second column is the model with compositional invari-
ant learning.
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FIGURE C.8. Illustration of Object Reconstruction and Rendering. Here we
directly disable the human rendering via changing the person latent code.
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FIGURE C.9. Illustration of Compositional 3D Human-Object Neural An-
imation from a single view video. The left images indicate the novel action
validation, while the right images present the novel object validation. The first
column is CHONA from four views, the second column is CHONA from a
monocular video, and the third column is ground truth. For each interaction,
we choose two views (not the training view) for demonstration.
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