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Point cloud recognition using deep learning methods has attracted
increasing research interest recently due to its great potential in real-
world applications such as autonomous driving, robotics, etc. However,
point clouds of similar objects often exhibit notable geometric variations
due to the difference in capturing devices or environmental changes.
This leads to significant performance degradation when a learnt point
cloud recognition model is applied to a new scenario, which is also known
as the domain adaptation issue.

In this thesis, we first provide a comprehensive literature review of
deep learning on visual recognition, unsupervised domain adaptation,
open-set unsupervised domain adaptation, self-supervised learning and
knowledge transfer to introduce the background of the thesis. Then,
an introduction to the problem setting and the commonly used bench-
mark datasets is provided for a better understanding of the task. Next,
a point-level domain adaptive point sampling (DAPS) strategy is pro-
posed to tackle the domain gap in cross-domain point cloud recognition.
In addition, an instance-level domain adaptive cloud sampling (DACS)
strategy is proposed to learn additional target-specific information for
better recognition performance on the target domain. Moreover, we fur-
ther propose a two-stage open-set domain adaptive sampling (OS-DAS)



strategy to learn an open-set recognition model in a coarse-to-fine man-
ner to tackle the open-set unsupervised domain adaptation issue. Fi-
nally, we list some potential research directions for cross-domain point
cloud recognition.
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Chapter 1

Introduction

In this chapter, we first give a short introduction to the unsupervised
domain adaptation techniques for cross-domain point cloud recognition.
Then, we present the main challenges of the existing cross-domain point
cloud recognition methods and briefly discuss the motivations of our
proposed approaches. Finally, we will give the outline of this thesis as
well as our contributions.

1.1 Problem Statement

With the huge demand for real-world applications like autonomous driv-
ing and robotics, point cloud recognition has received increasing research
interest from both academia and industry [43, 70, 16, 59, 83, 98]. Al-
though a variety of methods have been proposed for point cloud recog-
nition, the recognition performance is often unsatisfactory in practical
applications due to the huge data variance and limited model generali-
sation ability. These issues often lead to significant performance degra-
dation of the learnt point cloud recognition model when applied to a
new scenario, which is also known as the unsupervised domain adapta-
tion problem for point cloud recognition.

Fig. 1.1 illustrates the unsupervised domain adaptation problem for
point cloud recognition. In this problem, we are given a labelled source
domain and an unlabeled target domain. Our goal is to learn a point
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labeled source data

unlabeled target data

feature extractor

classifier

source prediction score

target prediction score

Figure 1.1: Illustration of the pipeline of unsupervised domain adapta-
tion methods. We are given a labelled source domain and an unlabeled
target domain. Our goal is to learn a point cloud classification model,
including a feature extractor and a classifier, using data from both the
source domain and the target domain, as well as the labels from the
source domain and can achieve a good classification performance on the
target domain without accessing the labels from the target domain.

cloud classification model that performs well on the target domain with-
out accessing the labels of the samples from the target domain. The clas-
sification model consists of a feature extractor to extract the global fea-
ture of each sample and a classifier to distinguish which class the sam-
ple belongs to. The key to solving the unsupervised domain adaptation
problem is to reduce the domain discrepancy, as illustrated in Fig. 1.2.
We only have labels of the samples from the source domain to train the
classifier, but we have data from both domains to train the feature extrac-
tor. A general idea is to learn a feature extractor that extracts domain-
invariant global features of the samples from both domains, thereby, the
classifier trained on the labelled samples from the source domain is able
to correctly distinguish the samples not only from the source domain but
also the samples from the target domain.



1.2. Challenges and Motivations 3

source sample, class 1
source sample, class 2

target sample, class 1
target sample, class 2

source domain
target domain

class boundary

Figure 1.2: Illustration of the pipeline of unsupervised domain adapta-
tion methods.

1.2 Challenges and Motivations

As discussed in Sec. 1.1, unsupervised domain adaptation techniques
aim to extract domain-invariant features of samples from different do-
mains. The key problem is the data discrepancy of the point clouds from
different domains. First, the 3D capturing devices are diverse. Even for
similar objects, the point clouds collected by different devices are often
quite different. For example, the point clouds collected with CAD are
often dense, while those scanned by depth cameras are usually sparse,
leading to considerable domain gaps. Second, environmental changes
can also affect the acquired point clouds. Even for the same object, the
point clouds scanned by the depth cameras from different angles are
quite different. Finally, the objects from the same semantic category
might exhibit different geometric appearances, which also leads to vari-
ations in point clouds. This data divergence will severely influence the
cross-domain recognition performance. Therefore, the main challenge
of unsupervised domain adaptation on point clouds is to reduce such
data divergence and align samples from different domains. The existing
methods for solving the cross-domain point cloud recognition problem
can be divided into two categories. The first category contains methods
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that are based on adversarial learning methods [61, 79]. However, it is
hard to balance both local feature alignment and global feature align-
ment well through adversarial training. Therefore, most of the recent
works focus on constructing suitable self-supervised tasks to help the
model extract domain invariant features [1, 50, 101, 22, 69]. However,
the point distribution of samples from different datasets is different. If
the network is designed to extract the relationship between all the points
within each point cloud, it may suffer performance degradation due to
the influence of the domain-specific noise or structure. Therefore, we
propose a new domain adaptive point sampling (DAPS) strategy to sam-
ple domain-invariant point cloud structures useful for semantic domain
alignment.

Apart from the challenge of extracting domain-invariant features,
another challenge is how to better adapt the model to the target do-
main. Intuitively, each dataset has its unique distribution. In the unsu-
pervised point clouds domain adaptation problems, even if the feature
divergence is reduced, the feature extracted with the learnt model can
hardly be optimal for recognition on the target domain, as the feature
might lack important target-specific information. To address this chal-
lenge, most of the existing works [101, 22, 69] adopt pseudo-labelling
methods with a self-paced learning paradigm (SPL) to gradually select
confidently predicted target samples as pseudo-labelled samples to fine-
tune the learnt model. However, the model may suffer from incorrect
pseudo-labels, which may perturb the learnt domain-invariant features.
Therefore, we propose a new domain adaptive cloud sampling strategy
(DACS) method to learn target-specific information without disturbing
the learnt domain-invariant features. Specifically, we design a set of
lightweight adapters as add-ons to the learnt model. Then, we fix the
learnt model and gradually use the predictions of the confidently pre-
dicted samples as the pseudo labels to train the adapters only. In this
way, the adapter-based model would be gradually drawn away from
the source domain and move close to the target domain, while prevent-
ing the vanilla model from being disturbed.
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Last but not least, existing cross-domain point cloud recognition ap-
proaches only aim at solving the close-set domain adaptation problem,
i.e., the source domain and the target domain share the same categories.
However, in practical applications, it is unrealistic that the source do-
main and the target domain share the same classes and it is inevitable
that some unknown classes may exist in the target domain, this is also
known as the open-set domain adaptation problem [67, 37, 45]. It be-
comes a great challenge to distinguish those samples from the unknown
classes. Currently, open-set unsupervised domain adaptation on point
cloud recognition remains an untouched field. Therefore, it is desirable
to develop an unsupervised domain adaptation framework to tackle the
open-set cross-domain point cloud recognition problem. To this end, we
propose a two-stage open-set domain adaptive sampling strategy (OP-
DAS), which first learns a coarse open-set recognition model by treating
all target samples as belonging to the target-specific category and then
fine-tunes the recognition model with selected pseudo-labelled target
samples using our newly proposed entropy-based pseudo-label selec-
tion algorithm to get a fine recognition performance.

In summary, this thesis focuses on developing new cross-domain
point cloud recognition strategies to address three main challenges, in-
cluding (a) How to decrease the data divergence between different do-
mains; (2) How to better adapt the model to the target domain; and (3)
How to tackle the open-set cross-domain point cloud recognition issue.

1.3 Thesis Outline and Contributions

The rest parts of this thesis are organised into six chapters. The main
contents of these chapters are summarised as follows:

Chapter 2. Literature Review. In this chapter, we give a comprehen-
sive literature review on the background and development of deep learn-
ing on point clouds. We also discuss existing works related to the three
methods proposed in this thesis.



6 Chapter 1. Introduction

Chapter 3. Background Introduction of Cross-Domain Point Cloud
Recognition. In this chapter, we detail the problem statement and the
currently widely used benchmark datasets for cross-domain point cloud
recognition.

Chapter 4. Point-Level Domain Adaptive Point Sampling for Cross-
Domain Point Cloud Recognition. In this chapter, we propose a new
point-level domain adaptive point sampling strategy (DAPS) to sam-
ple out domain-invariant structures based on geometry consistency to
reduce the data divergence between different domains for better cross-
domain point cloud recognition performance. We validate the effective-
ness of our DAPS strategy on two benchmark datasets, i.e., PointDA-10
dataset [61] and GraspNetPC-10 dataset [69].

- The contributions in this part are included in:

Zicheng Wang, Wen Li, and Dong Xu, “Domain Adaptive
Sampling for Cross-Domain Point Cloud Recognition”, IEEE
Transactions on Circuits and Systems for Video Technology. (Un-
der review)

Chapter 5. Instance-Level Domain Adaptive Cloud Sampling for Cross-
Domain Point Cloud Recognition. In this chapter, we propose a new
domain adaptive cloud sampling strategy (DACS) to learn target-specific
information in addition to the learnt domain-invariant features where
we train a set of lightweight adapters as add-ons to the original learnt
model without modifying the parameters of the learnt model. We also
evaluate the effectiveness of our DACS strategy on the PointDA-10 dataset
and GraspNetPC-10 dataset.

- The contributions in this part are included in:

Zicheng Wang, Wen Li, and Dong Xu, “Domain Adaptive
Sampling for Cross-Domain Point Cloud Recognition”, IEEE
Transactions on Circuits and Systems for Video Technology. (Un-
der review)

Chapter 6. Open-Set Domain Adaptive Sampling for Open-Set Cross-
Domain Point Cloud Recognition. In this chapter, we propose a new
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open-set domain adaptive sampling strategy (OS-DAS) to distinguish
whether the samples from the target domain belong to the source-known
classes or the target-specific class. We come up with a two-stage method
to learn a recognition model in a coarse-to-fine manner to tackle the
open-set cross-domain point cloud recognition problem and then we ver-
ify the effectiveness of our OS-DACS strategy on the PointDA-10 dataset.

Chapter 7. Conclusion and Future Work. In this chapter, we present
conclusions and the contributions of this thesis. We also discuss possible
research directions in future work.
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Chapter 2

Literature Review

In this chapter, we will first present the background of the deep learning
methods for visual recognition. Then we will introduce the unsuper-
vised domain adaptation (UDA) problem and the relative works. In ad-
dition, we will introduce the self-supervised learning (SSL) problem and
the relative works. Finally, we will present relevant research on knowl-
edge transfer.

2.1 Deep Learning on Visual Recognition

2.1.1 Deep Learning on 2D Images Recognition

Deep learning-based methods have shown great success in various fields [43,
13, 14, 25, 42, 100], which is mainly due to the proposal of deep neural
networks (DNNs) like the ResNet [32]. The convolutional neural net-
work (CNN) [40, 39, 71, 73, 32, 8, 7, 9, 10, 80, 99, 29] has dominated
the 2D feature extractor for many years due to its great potential in in-
creasing the parameter of the model and preventing the model from the
over-fitting problem, leading to great recognition performance.

More recently, the Transformer [77] architecture was proposed to
capture long-range relations, which inspires tremendous work to use the
attention mechanism to solve the vision problems [5, 20, 48, 88, 93, 100,
95] and achieves better recognition performance than CNN in various
scenarios.
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2.1.2 Deep Learning on 3D Point Clouds Recognition

3D vision has gained increasing research interest as 3D data can contain
more spatial information than 2D images, which inspires a huge amount
of real-world applications like autonomous driving and robotics [70, 16,
98, 46, 49, 65, 86]. Among the different representations of 3D data, the
point cloud is the closest to the actual object, leading to little information
loss, and the point cloud can be easily converted to other formats by
projection or voxelization, etc [51, 54, 92]. Moreover, the point cloud can
be directly scanned from real objects. Therefore, most of the research on
3D data has been focused on point clouds.

Early research on point clouds mainly focused on extracting features
of point clouds by first pre-processing the point clouds into voxels and
then using 3D convolutional neural networks to extract features from the
voxels [52, 58]. However, voxelization results in a large loss of informa-
tion and is computationally intensive.

The PointNet [57] is a pioneer work that directly uses deep neu-
ral networks to operate on unordered point sets. PointNet uses a set
of multi-layer perceptions (MLPs) to extract features for each point and
then uses a max-pooling operation to aggregate the point features to ob-
tain the global feature of the point set. Moreover, considering that the
input points are unordered, PointNet uses a symmetry function, i.e., a
transformation matrix to multiply the inputs or the features, to make the
model invariant to input permutations.

Based on PointNet, Qi et al. [59] further enhance the model and pro-
pose PointNet++. PointNet++ improves the local representation of the
point clouds by proposing a set abstraction (SA) layer to encode local
features for point clouds. In particular, each SA layer contains a sam-
pling layer, a grouping layer and a PointNet layer. First, a set of key
points are sampled using the farthest point sampling (FPS) algorithm
where the key points can cover the whole point sets. Second, the neigh-
bour points around each key point are sampled using the ball query al-
gorithm, which can find the points within a given radius around the key
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point. Third, the feature of each group is extracted using a mini Point-
Net. In this way, the SA layer can aggregate the features of the point sets
to some down-sampled key points which can contain rich local repre-
sentations, thus contributing to the learning of the global representation.

Inspired by PointNet++, Wang et al. [83] propose DGCNN, which
extends the PointNet++ by using an EdgeConv layer to take the place
of the SA layer and omit the down-sampling operation to obtain richer
local representations. Specifically, each EdgeConv layer can be divided
into a grouping operation and an aggregation operation. The grouping
operation aims at finding the k-nearest neighbour (k-NN) of each point
node and then calculating the shifted features as the edge features. The
aggregation operation applies a channel-wise aggregation operation on
the edge features to update the feature of each point node. With a cou-
ple of EdgeConv layers, the information can pass through the edges of
the point sets, thus enabling each point to contain more semantic infor-
mation. Similar to PointNet and PointNet++, DGCNN also utilises a
max-pooling operation to aggregate the feature of each point to get the
global feature. DGCNN has shown its great power in feature extraction
and has been used in various works.

Recently, inspired by Transformer, Zhao et al. [98] verify that the
attention mechanism can also be applied to the point clouds and they
improve the PointNet++ with PointTransformer. By simply introducing
an attention module after each SA layer in the PointNet++, PointTrans-
former achieves excellent performance on various downstream tasks like
classification and segmentation, etc, and inspires various following works
to explore the application of the Transformer in point clouds [60, 92]. But
relatively, the most widely used feature extractor in cross-domain point
cloud recognition problems is DGCNN due to its great potential and not
easy to overfit.

2.1.3 Weakness

The success of the deep learning methods is mainly due to the huge
amount of fully annotated datasets. However, it usually takes great
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effort to collect precisely labelled data for training the deep learning
models, which limits the practical application of the deep learning mod-
els. Moreover, it is difficult for a deep learning model trained with one
dataset to perform well on another dataset, mainly due to domain gaps
between different datasets, e.g., diverse capturing devices, environmen-
tal changes, different object shapes, etc. These problems often lead to
significant performance degradation of a learnt model when applied to
a new scenario, which is also known as the unsupervised domain adap-
tation (UDA) problem.

2.2 Unsupervised Domain Adaptation

In the UDA problem, we are given a source domain and a target domain.
All of the samples from the source domain are fully annotated while all
of the samples from the target domain are unlabelled. There is a domain
gap between the source domain and the target domain. Our goal is to
learn a model with the labelled source data and the unlabelled target
data that performs well on the target domain. As currently, there are far
more studies focusing on 2D UDA problems than the 3D UDA problem,
and these 2D UDA methods can also give us good insights on the 3D
domain, so in this part, we first introduce some classic 2D UDA methods,
and then introduce 3D UDA methods currently available. Finally, as
there are also some works focusing on domain generalisation on point
clouds, which can also provide us with good insights, we also give a
brief introduction to the current research about domain generalisation
on point clouds.

2.2.1 Unsupervised Domain Adaptation in the 2D Domain

Various methods have been proposed to tackle the UDA problem in the
2D domain. Currently, the 2D UDA methods can be divided into two
main categories, i.e., the adversarial-based methods [26, 75, 96, 97, 66, 27,
38, 33] and the prototype-based methods [17, 94].
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Adversarial-based UDA methods in the 2D domain

Most adversarial-based UDA methods aim at minimizing the domain
gap in the feature space by exploiting the adversarial training frame-
work to directly extract domain-invariant features. Yaroslav et al. [26]
proposed DANN, a pioneer work that proposes to use an adversarial
training framework to extract domain-invariant features. In particular,
DANN trains a domain discriminator in an adversarial manner. On one
hand, DANN encourages the discriminator to distinguish whether the
features extracted by the feature extractor are from the source domain
or the target domain. On the other hand, DANN enforces the feature
extractor to extract features of samples from both domains that cannot
be distinguished by the discriminator. In this way, the model learnt will
recognise the features extracted from the samples belonging to different
domains and can achieve good recognition performance on the target
domain. MCD [66] points out that the current UDA methods do not con-
sider task-specific decision boundaries during the adaptation process,
and most of them only align the features from different domains, ignor-
ing the specific characteristics of each category. To tackle the issue, MCD
iteratively trains two classifiers. In the first step, MCD fixes the feature
extractor and trains two classifiers and enforces the predictions of the
two classifiers to be different. In the second step, MCD fixes the two
classifiers and trains the feature extractor and enforces the predictions
of the two classifiers to be similar. To sum up, MCD uses two classifiers
to replace the discriminator and makes the task-specific decision bound-
aries robust.

Prototype-based UDA methods in the 2D domain

Recently, most state-of-the-art (SOTA) 2D UDA methods are based on
prototype alignment, which share similar ideas with contrastive-based
methods and pseudo-labelling-based methods. CAT [17] utilises a teacher-
student (T-S) framework and encourages the features extracted by the
teacher model from the source data and the target data to update the
corresponding prototypes. It should be noticed that the teacher model is
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updated by the student model to output stable features. After generat-
ing prototypes for the source domain and the target domain, CAT first
aligns the features extracted by the student model from the source data
with the corresponding source prototypes according to the given ground
truth labels and also aligns the features extracted from the target data
with the corresponding target prototypes according to the pseudo-labels
generated by the teacher model. Finally, CAT aligns the source proto-
types with the corresponding target prototypes to minimise the domain
gap. These methods utilise the source data as beacons and use pseudo-
labelling for domain alignment, which shows great potential and in-
spires various works like PCS [94] and PACL [17].

Weakness

The above-mentioned methods mainly focus on 2D images to tackle the
cross-domain recognition problem, but most of these methods can hardly
be adopted to tackle other modalities of the input data directly, e.g., the
point cloud. The main reason is that the domain gaps between different
domains of data of different modalities have different characteristics, for
example, the domain gaps between different domains of 2D images may
lie in the global feature space while the domain gaps between different
domains of 3D point clouds may probably lie in the local feature space.
Therefore, such 2D cross-domain recognition methods may have poor
performance on 3D cross-domain recognition tasks, but they can indeed
provide us with good insights.

2.2.2 Unsupervised Domain Adaptation in the 3D Domain

While various studies have focused on 3D visual recognition, only a few
works focus on the cross-domain point cloud recognition problem [85,
35]. In this chapter, we introduce all of the current 3D UDA methods in
detail and also analyse the weakness of these methods. Currently, the 3D
UDA methods can be divided into two categories, i.e., the adversarial-
based methods [61, 79], and the self-supervised learning (SSL)-based
methods [1, 50, 101, 69, 22, 4].
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Adversarial-Based UDA Methods in the 3D Domain

Inspired by the 2D UDA methods, Qin et al. [61] proposed PointDAN,
which is the first pioneering work to tackle the point cloud UDA prob-
lem. PointDAN analyses the difference between point clouds and 2D im-
ages in detail, i.e., the point cloud contains much more depth information
than 2D images, and the local structures of the point cloud can also con-
tain rich semantic information. Therefore, different from most 2D UDA
methods that focus on global feature alignment, it is usually difficult to
align the global representations of point clouds from different domains,
but it is easy to align the local structures of different point clouds from
different domains. To this end, PointDAN proposes to align multi-scale
features to minimise the domain discrepancy. In particular, on one hand,
PointDAN adopts the idea from MCD and uses the adversarial train-
ing framework for global feature alignment, on the other hand, Point-
DAN also proposes a new concept named the self-adaptive node, which
is used for local geometric alignment. The illuminating findings influ-
enced many subsequent studies on 3D UDA problems.

Inspired by PointDAN, Wang et al. [79] proposed DSDAN, which
first comes up with a two-view network and uses adversarial training
to align the local features of each view with a cross-view consistency
loss. Then, DSDAN further proposes to use a pseudo-labelling method
to align global features from different domains, indicating the effective-
ness of multi-scale feature alignment.

However, although the above-mentioned works [61, 79] have veri-
fied the effectiveness of multi-scale feature alignment, it is hard to bal-
ance local feature alignment and global feature alignment well through
adversarial training. The main reason is that the adversarial training is
unstable and it is difficult to guarantee that the alignment is semantically
meaningful [69].
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Self-Supervised Learning-Based UDA Methods in the 3D Domain

In recent years, various works have been devoted to searching for suit-
able self-supervised tasks to help models extract domain-invariant fea-
tures.

DefRec [1] is the first work that focuses on designing self-supervised
learning (SSL) sub-tasks to tackle the 3D UDA problem. Similar to DRCN [27],
DefRec trains a shared feature extractor for both the source data and the
target data. Then, a classification head is trained to generate proposals
with labelled source data, and an SSL head is trained to reconstruct the
initial input point clouds with the extracted high-level semantic features.
Different from DRCN, DefRec reduces the risk of the feature extractor
being unable to effectively extract meaningful semantic information on
the target domain by allowing reconstruction supervision in both source
and target domains. Moreover, DefRec adopts several data augmenta-
tions to make sure the feature extractor and different task heads, i.e., the
classification head and the SSL head, are robust to generate accurate pre-
dictions. A similar idea is also adopted in [50]. However, the recon-
struction task can only assist the model to extract low-level geometry
features, which may not be that useful for high-level semantic tasks like
recognition.

GAST [101] proposes two fancy SSL tasks to assist the domain-invariant
semantic feature extraction. The first one is the rotation angle prediction
task that uses the features extracted by the shared feature extractor to
predict the rotation angle of the augmented input data. The second one
is the distortion location prediction task which uses the global feature
extracted to predict the distortion location of the input. Different from
DefRec which only uses a reconstruction task to reconstruct the input
using the high-level learnt feature, the two sub-tasks proposed by GAST
can enable the feature extractor to focus on both the local features and
the global features. In addition, GAST also adopts a self-paced learn-
ing (SPL) paradigm, which makes full use of target samples by selecting
confidently predicted target samples as pseudo-labels to fine-tune the
model, which guarantees the semantic meaning of the global features
learnt by the feature extractor from target samples. However, GAST will
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introduce several times training costs and lead to high requirements on
the GPU.

GAI [69] proposes to encode the geometry information of the input
point clouds into a latent space that can maintain both local information
and global information. In particular, GAI adopts the idea of the implicit
function by learning an implicit representation and predicting the dis-
tance from those discrete points to the surface of a given point cloud.
Therefore, the learnt implicit representation can contain rich local geom-
etry information as well as global representations that are suitable for
downstream tasks. However, such a self-supervised task cannot handle
noisy data like the samples from the ScanNet very well. Therefore, GAI
performs poorly in adapting the model learnt using the synthetic data to
the noisy data.

GLRV [22] proposes a global scaling-up-down prediction task to
predict the scale of the augmented input using the generated global se-
mantics. At the same time, GLRV proposes a local 3D-2D-3D projection-
reconstruction task to train the encoder so that it can learn potential
global and local representations of the input point clouds. However, in-
corporating the pseudo-labelling into the training process will make the
training unstable and also requires rigorous parameter adjustments.

MLSP [44] proposes a point cardinality estimation sub-task to learn
potential information from the basic local structures of a point cloud,
a position estimation sub-task to learn an overall geometry of a point
cloud, and a normal estimation task to reduce the influence of the noise.
In this way, MLSP will learn robust target-specific information. How-
ever, as mentioned before, such geometry information is not suitable for
high-level classification tasks.

More recently, SD [4] proposes a self-training-based consistency reg-
ularization framework to align the prediction of each augmented point
cloud with the prediction of the original point cloud, thereby improv-
ing the robustness of the network to deal with the domain gap caused
by noises. In addition, SD further utilises graph neural networks to im-
prove the reliability of predictions and improve the performance of the
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self-training framework. However, such an operation will only mitigate
the influence of predictable noises and can hardly reduce the domain
gap caused by the different shapes of the objects.

Despite the shortcomings of the above-mentioned methods, exten-
sive studies have demonstrated the feasibility of using SSL sub-tasks to
assist the domain-invariant feature extraction in point cloud UDA prob-
lems.

Weakness

Most of the above-mentioned 3D cross-domain recognition methods take
the whole point sets as input and treat each point with equal contribu-
tion. However, the point distributions of samples from different datasets
are different. For example, the point distribution of the ScanNet data is
relatively sparse and the samples are accompanied by much noise. At
the same time, the shapes of samples from different datasets may be dif-
ferent. Therefore, if the network is designed to extract the relationship
between all the points, it may suffer performance degradation due to the
influence of the domain-specific noise or structure. Therefore, it is vi-
tal to search for a domain-invariant structure that is useful for semantic
domain alignment.

2.2.3 Domain Generalisation in the 3D Domain

Currently, there are also some works focusing on domain generalisation
(DG) on point clouds, which aim at training a model with given labelled
source data that can achieve good recognition performance on any given
target dataset [35, 85]. It can be seen that DG is a more critical problem
than the UDA problem.

MetaSets [35] is the first work that studies the DG problem in the 3D
domain. In particular, MetaSets introduces three data augmentations to
simulate the scanned data by the given synthetic data. Then, MetaSets
adopts a meta-learning framework to enable the model to fit different
augmentations. In this way, MetaSets can efficiently improve the ro-
bustness and the generalisation ability of the model. However, such a
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method can only adapt the model from synthetic domains to scanned
domains, and can hardly tackle the domain gap caused by the different
shapes of the objects.

PDG [85] is another work that focuses on the generalisation ability of
the 3D model. In particular, PDG aligns the local features of each point
cloud to a set of calculated part-template features to smooth the local
features for better generalization ability. However, an extra dictionary
containing the calculated part-template features, an extra cross-attention
module and an extra searching operation are required during inference,
which will introduce extra parameters and increase computational com-
plexity. Moreover, problems that existed in MetaSets also persist in PDG.

Weakness

Current 3D DG methods adopt all kinds of strong data augmentations
to improve the robustness and the generalisation ability of the model.
However, most of these methods only focus on adapting the model from
synthetic domains to scanned domains, while the cross-domain recogni-
tion performance of the model from scanned domains to synthetic do-
mains is usually very poor. However, these methods can still provide us
with good insights on cross-domain point cloud recognition.

2.3 Open-Set Unsupervised Domain Adaptation

In real-world scenarios, it is hard to make sure that the semantic cat-
egories from the source domain and the target domain are exactly the
same. In most cases, the target domain may contain some categories that
do not exist in the source domain, making domain alignment more dif-
ficult, which is also known as the open-set unsupervised domain adap-
tation (OS-UDA) problem. Currently, most of the research focuses on
the 2D OS-UDA problem and there is no research focusing on the 3D
OS-UDA problem yet [24, 36, 45]. Saito et al. [67] first define the OS-
UDA problem by considering that the target domain contains not only
all of the semantic classes visible in the source domain but also some
semantic categories that are specific to the target domain. In this work,
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Saito adversarial trains a feature extractor and a classifier to obtain a
decision boundary for the source and the target samples. In particular,
during the training process, the classifier aims at classifying all target
samples as belonging to the unknown category while the feature extrac-
tor aims at reducing the probability that the target sample be classified
to the unknown category. How to separate the shared classes and the
target-specific class and how to align the target samples with the source
samples belonging to the shared classes are two critical problems in the
OS-UDA problem, and only a handful of works tackle this problem.

2.4 Self-Supervised Learning

Self-supervised learning (SSL) is a powerful tool that assists feature ex-
traction and has attracted great attention. SSL methods aim at training a
model using unlabelled training data and ensuring that the learnt model
can effectively extract the underlying semantic features of the input data,
while the learnt knowledge can be transferred to multiple downstream
tasks. As the size of the 2D datasets is usually much larger than the 3D
datasets, 2D SSL methods are not identical to 3D SSL methods, but 2D
SSL methods can also provide us with great insights.

2.4.1 Self-Supervised Learning in the 2D Domain

The self-supervised methods dominating the 2D domain can be divided
into two broad categories: contrastive learning-based methods [11, 31,
28, 12] and reconstruction-based methods [30, 89, 2]. The former ap-
proaches aim to search for the relationships between samples and the lat-
ter approaches aim at finding the intrinsic relationship within the given
input.

A representative work of contrastive learning-based SSL methods is
SimCLR [11], proposed by Chen et al., which treats two different aug-
mentations of the same input as positive samples and treats all of the
samples within a minibatch as negative samples. Then, SimCLR aims
at minimizing the cosine similarity between the positive samples and
maximizing the cosine similarity between the negative samples. In this
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way, the model is encouraged to extract similar features for similar sam-
ples and extract dissimilar features for dissimilar samples. SimCLR is
further improved by MoCo [31], which utilises a memory bank to save
the negative samples, reducing the heavy reliance on the GPU memory.
Contrastive learning is further extended by BYOL [28] and SimSiam [12],
which use a non-linear mapping operation to omit the negative samples
and simplify the training. Contrastive learning encourages the model
to treat each input as an isolated sample and extract deep fundamental
information from each sample.

MAE [30] is the representative work of reconstruction-based SSL
methods, aiming at searching for relations between local geometries.
MAE first divides each input into several equal-sized patches. Then,
MAE randomly masks a set of patches by replacing the masked patches
with noise. After that, MAE feeds the masked patches into a Transformer
architecture to encode the high-level semantics for the masked patches
and then decode the semantics to reconstruct the initial unmasked input.
MAE utilises the Transformer to capture long-range relationships within
each input to find the relationships between patches for high-level se-
mantic information.

Due to the large amount of training data, these 2D SSL methods
have shown great success in model pre-training to extract high-level se-
mantic features without acquiring labels.

2.4.2 Self-Supervised Learning in the 3D Domain

The size of the point cloud datasets is usually much smaller than that
of the image datasets, mainly because point clouds are not easy to ob-
tain [69]. Therefore, it is hard to train a point cloud feature extractor
directly using contrastive learning-based SSL methods or MAE-like SSL
methods. In earlier years, most of the works aim at pre-training a point
cloud model using reconstruction, but these methods can only acquire
low-level geometry information, which may not be suitable for high-
level downstream tasks.
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Sauder et al. [68] adopt the idea from reconstruction and then pro-
pose RS, which aims at using the reconstruction method to find the se-
mantic relationship between different parts within a given point cloud.
In particular, RS first divides the initial input point cloud into several
voxels according to the coordinates of the points and then randomly re-
arranges the voxels. Finally, RS trains a model to predict the initial loca-
tion of each voxel, which is able to effectively learn the semantics of the
local structures of the input.

Inspired by contrastive learning-based methods in the 2D domain,
Rao et al. [63, 64] propose PointGLR, which performs contrastive learn-
ing between the features of the local patches and the global representa-
tion. In particular, PointGLR uses a PointNet++ model to extract both the
local features for each patch and the global feature for the whole point
cloud. Then PointGLR treats the patches and the corresponding whole
point clouds as positive pairs. Similarly, PointGLR treats the patches
from different point clouds within a minibatch as negative pairs. Fi-
nally, PointGLR performs a local-to-global contrastive alignment with
InfoNCE loss [31]. To ensure that the model does learn semantic features
and prevent the model from stepping into the trivial solution, PointGLR
also uses a reconstruction sub-task and a norm estimation sub-task to
preserve the semantics of the learnt model. By dividing the point cloud
into different patches, the number of training samples can be increased.
Moreover, PointGLR can encourage the model to capture the local se-
mantic information efficiently.

There are some other 3D SSL methods like PointBERT [92] and Point-
MAE [54]. However, these methods rely heavily on the transformer ar-
chitecture, while the size of the training data is limited in the 3D domain,
and the transformer can easily overfit training data, leading to poor gen-
eralisation ability.

2.5 Knowledge Transfer

With the development of large pre-trained models like CLIP and MAE,
etc. [30, 62, 6, 53, 18], it is efficient to fine-tune the pre-trained model
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to get excellent performance for various downstream tasks. Some stud-
ies further propose to only train a set of light-weighted modules named
Adapters without modifying the learnt parameters, which can also achieve
great performance and can boost the fine-tuning efficiency. More im-
portantly, training the adapters does not require many samples as the
amount of the parameters of the adapters is very small [19, 34, 72, 56].

However, most of the adapter-based works are based on the Trans-
former architecture. Li et al. [41] proposed task-specific adapters at-
tached to the convolutional operation to transfer the knowledge learnt
from one domain to another, which achieves great success and verifies
that the adapter architecture can also be used in other kinds of network
backbones. However, how to effectively use the adapter structure for
knowledge transfer in the point cloud model is still an untouched field.

2.6 Summary

In this chapter, we introduced the background of deep learning meth-
ods and the unsupervised domain adaptation (UDA) problem. More-
over, we introduced some related 2D UDA methods and 3D UDA meth-
ods in detail. In addition, we also gave a brief introduction to some
self-supervised learning methods in both the 2D domain and the 3D do-
main that may contribute to model learning. Finally, we also briefly in-
troduced some related works on knowledge transfer. It should be no-
ticed that while there are various works in these research fields, we only
present some most representative works in this section.

As discussed above, since the annotation and acquisition of 3D data
are more difficult than that of 2D data, the size of 3D datasets is often
small, making it difficult to train various complex 3D models. In addi-
tion, as a 3D model learnt on one dataset can hardly generalise well on
a new dataset, it is necessary to study the 3D UDA problem. Moreover,
as mentioned above, the UDA problem is not that realistic compared to
the open-set UDA (OS-UDA) problem, and there is no research focus-
ing on the 3D OS-UDA problem so far. Therefore, in this thesis, we first
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come up with two 3D UDA methods for domain alignment, and then we
further propose a new method to tackle the 3D OS-UDA problem.

Specifically, in Chapter 3, we detail the problem statement and the
currently widely used benchmark datasets for cross-domain point cloud
recognition.

In Chapter 4, we propose a new domain adaptive point sampling
(DAPS) method to sample out the representative points within each point
cloud so as to extract domain-invariant features and preserve geometric
consistency. In this way, we can shorten the domain gap from the data
level.

In Chapter 5, we propose a new domain adaptive cloud sampling
(DACS) strategy to gradually learn target-specific information with the
selected confidently predicted samples from the target domain using the
self-paced learning (SPL) paradigm. As a result, the model can have a
better recognition performance on the target domain.

In Chapter 6, we propose a new open-set domain adaptive sampling
(OS-DAS) strategy to first learn a coarse recognition model with our
proposed open-set domain adaptive point sampling (OS-DAPS) strategy
and then refine the model with our proposed open-set domain adaptive
cloud sampling (OS-DACS) method.
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Chapter 3

Background Introduction of
Cross-Domain Point Cloud
Recognition

In this chapter, we detail the background of the cross-domain point cloud
recognition task, including the problem statement and the current widely-
used benchmark datasets for cross-domain point cloud recognition.

3.1 Problem Statement

In this section, we briefly introduce the problem statement for the cross-
domain point cloud recognition task, including the close-set unsuper-
vised domain adaptation on point clouds and the open-set unsupervised
domain adaptation on point clouds.

3.1.1 Close-Set Unsupervised Domain Adaptation on Point

Clouds

In the task of unsupervised domain adaptation (UDA) on point clouds,
we are given a labelled source domain and an unlabelled target domain.
Our goal is to learn a point cloud classification model that performs well
on the target domain without accessing the target labels.

Formally, we denote the source domain as S = {P s
n, ys

n}
Ns
n=1, which

consists of Ns point clouds P s with their corresponding category labels
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ys
n, n = {1, 2, · · · , Ns}. Similarly, the target domain T =

{
P t

n, yt
n
}Nt

n=1
consists of Nt samples P t

n and the labels yt
n are only available during test-

ing, n ∈ {1, 2, · · · , Nt}. Each point cloud P s
n or P t

n consists of M three-
dimensional points, (x, y, z), indicating the spatial coordinates of the
points. Let us assume there are C categories in total, i.e. ys

n ∈ {1, 2, · · · , C}
and yt

n ∈ {1, 2, · · · , C} for any samples from the source domain or the
target domain, respectively. For better presentation, below we may ig-
nore the subscript s and t when it is unnecessary to distinguish whether
the point clouds come from the source domain or the target domain. We
also denote the point cloud recognition model as Φ. In the classification
tasks, the model usually consists of a feature extractor Φf that operates
on the raw input of the point sets and outputs the global features of the
point cloud (i.e. g), as well as a classifier Φcls that uses the feature g as
an input and outputs the classification probability of all C classes, which
can be formulated as follows:

Φ(P) = Φcls(Φf(P)) (3.1)

The current deep learning-based recognition models often learn Φcls

and Φf jointly by using the end-to-end training strategy. However, as
we only have the labels for the source data, the feature extractor Φf and
the classifier Φcls would be inevitably biased towards the source domain,
leading to poor performance on the target domain during testing. There-
fore, our task is to leverage the unlabelled target samples, such that we
can use Φf to extract domain-invariant features and employ Φcls to ac-
quire better recognition performance on the target domain.

3.1.2 Open-Set Unsupervised Domain Adaptation on Point

Clouds

In the task of open-set unsupervised domain adaptation (OS-UDA) on
point clouds, we are given a labelled source domain and an unlabelled
target domain. The categories existing in the target domain are not only
all the categories in the source domain but also the categories that are
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specific to the target domain. Our goal is to learn a point cloud classi-
fication model that can not only recognise the target samples from the
shared classes of the two domains, and also recognise the samples be-
longing to the target-specific classes.

The problem statement of 3D open-set unsupervised domain adap-
tation is almost the same as the problem statement of 3D close-set un-
supervised domain adaptation, the only difference is that in the 3D OS-
UDA task, there are C categories in the source domain and C + 1 cate-
gories in the target domain, i.e. ys

n ∈ {1, 2, · · · , C} and yt
n ∈ {1, 2, · · · , C+

1}. It should be mentioned that all of the samples belonging to the classes
that are unique in the target domain can be divided into the C+ 1th class.

The current deep learning-based recognition models often learn Φcls

and Φf jointly by using the end-to-end training strategy. However, as we
only have the labels for the source data, the feature extractor Φf and the
classifier Φcls would be inevitably biased towards the source domain and
the categories belonging to the source domain, leading to poor perfor-
mance on recognising the samples from the target domain or distinguish
the samples from target-specific class during testing. Therefore, our task
is to leverage the unlabelled target samples, such that we can use Φf

to extract domain-invariant features and employ Φcls to acquire better
recognition performance on the target domain.

3.2 Datasets Introduction

In this section, we briefly introduce the two benchmark datasets used for
the cross-domain point cloud recognition task, i.e., PointDA-10 [61] and
GraspNetPC-10 [69].

The PointDA-10 dataset consists of three subsets, ModelNet-10 (M),
ShapeNet-10 (S) and ScanNet-10 (S∗), which are sampled from three widely-
used datasets, ModelNet [78], ShapeNet [87] and ScanNet [15], respec-
tively. The three subsets share the same 10 categories. In particular,
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ModelNet-10 consists of 4,183 training samples and 856 testing sam-
ples, where these samples are generated with CAD by uniformly sam-
pling from synthetic 3D models. ShapeNet-10 consists of 17,387 training
samples and 2,492 testing samples, where the samples are also gener-
ated with CAD, but the shape of the samples in ShapeNet-10 also ex-
hibits more variations than those in ModelNet-10. ScanNet-10 consists
of 6,110 training samples and 1,769 testing samples, and all of the sam-
ples are scanned from real-world indoor scenarios with RGB-D cameras.
The samples in ScanNet-10 are usually sparse with some missing parts
caused by noise and occlusion.

The GraspNetPC-10 dataset is created from GraspNet [23], which
focuses on two challenge scenarios in cross-domain point cloud recog-
nition, i.e., the sim-to-real scenario and the real-to-real scenario. The
synthetic samples in GraspNetPC-10 are re-projected from rendered syn-
thetic scenes while the real depth scanned samples in GraspNetPC-10
are captured by two different depth cameras, i.e., Kinect2 and Intel Re-
alsense, consisting of two domains of real-world point clouds. The sub-
sets also share the same 10 categories. In particular, the synthetic domain
(Syn.) contains 12,000 training samples. The Kinect real-world domain
(Kin.) contains 10,973 training samples and 2,560 testing samples while
the Realsense real-world domain (RS) contains 10,698 training samples
and 2,560 testing samples.

When performing the unsupervised domain adaptation task, we use
the training set of one subset as the source domain, and the training set
of another subset as the target domain, which leads to six domain adap-
tation scenarios in the PointDA-10 dataset, and four domain adaptation
scenarios in GraspNetPC-10 dataset. Note that the labelled training set
from the target domain is not used, while the testing set of the target
subset is used for performance evaluation.

When performing the open-set unsupervised domain adaptation task,
we use the training set of one subset as the source domain, and the train-
ing set of another subset as the target domain, which leads to six domain
adaptation scenarios in the PointDA-10 dataset. Note that all of the three
sub-datasets share the same 10 categories, in this work, we only keep the
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samples belonging to the former 5 categories from the source domain
and omit the remaining samples. In addition, we keep all of the samples
from the target domain and we treat all of the samples belonging to the
latter 5 categories from the target domain as the samples belonging to the
target-specific class, i.e., the number of the shared classes is 5 in this work
and the labels of the samples belonging to the latter five categories from
the target domain are set as 5 (class labels start counting from 0). Also
note that the training labels from the target domain are not used, while
the testing set of the target subset is used for performance evaluation.
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Chapter 4

Point-Level Domain Adaptive
Point Sampling for
Cross-Domain Point Cloud
Recognition

In this chapter, we propose a new domain adaptive point sampling (DAPS)
strategy to enhance the domain-invariant representations of point clouds
by progressively focusing on representative points within each point
cloud based on geometric consistency. We validate our DAPS strategy
on the benchmark datasets, i.e., PointDA-10 and GraspNetPC-10, and
demonstrate the effectiveness of our method.

4.1 Motivations and Contributions

Due to the great success in 3D visual recognition [57, 59, 83, 98, 74], re-
searchers are now focusing on 3D UDA problems. Previous works [61,
79] focus on using the adversarial learning strategy for local and global
feature alignment to increase the generalisation ability of the model. How-
ever, it is hard to balance local feature alignment and global feature align-
ment well with adversarial training [22].

Most recent works focus on searching for proper self-supervised
tasks, like reconstruction [1, 50, 22], rotation prediction [101], and surface
estimation [69], to help the model extract semantic meaningful features
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from both domains. Most of these works take the whole point sets as the
input and treat each point with equal contribution. However, the point
distribution of samples from different datasets is different. For example,
the point distribution of the ScanNet data is relatively sparse and the
samples are accompanied by much noise. Moreover, the shapes of the
samples from different domains are quite different. If the network is de-
signed to extract the relationship between all the points, it could cause
performance degradation, due to the influence of the domain-specific
noise or structure.

ModelNet-10

ShapeNet-10

ScanNet-10

Before 
Sampling

After 
Sampling

Before 
Sampling

After 
Sampling

Figure 4.1: The visualization of the sampled points after using our do-
main adaptive point sampling method on different samples.

Therefore, we aim at finding a domain-invariant structure that is
useful for semantic domain alignment. To this end, we propose a domain
adaptive point sampling (DAPS) strategy to reduce data divergence by
paying more attention to the domain-invariant structures within each
point cloud. Intuitively, the model is prone to distinguish those commonly-
seen geometric structures from those more unique structures, and these
commonly-seen geometric structures are mostly shared across different
domains. For this purpose, on one hand, we need to sample out the
domain-invariant structure, i.e., the representative points, on the other
hand, the representative points should be able to represent the intrinsic
feature of the whole point cloud. Therefore, for each point cloud, we
identify these representative points based on the similarity between a
set of local features from small regions and the global feature from the
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whole point cloud. With the DAPS strategy, we are able to focus our at-
tention on the intrinsic part of each sample that contributes most to the
semantic meaning that it contains. As shown in Figure 4.1, the styles
of chair legs are often diverse and the chair legs are also easy to lose in
the scanned point clouds. With the DAPS strategy, we are able to focus
our attention on the intrinsic part of each chair that contributes most to
recognizing which category it belongs to.

The main contributions in this chapter can be summarised as fol-
lows: (1) We propose a new representative point sampling method to
sample out the representative points within each point cloud so as to
produce domain-invariant features and preserve geometric consistency.
(2) We use our proposed domain adaptive point sampling method to
train the recognition network for unsupervised domain adaptation on
point clouds. Comprehensive experiments on benchmark datasets have
demonstrated the effectiveness of our newly proposed domain adaptive
point sampling approach.

4.2 Methodology

In this section, we will introduce our newly proposed domain adaptive
point sampling strategy (DAPS) in detail. Here we adopt DGCNN [83]
as our backbone, and the pipeline of our DAPS is shown in Figure 4.2. In
particular, we apply the domain adaptive point sampling strategy within
each point cloud based on the geometric consistency to sample out the
representative points for each point cloud in a coarse to fine fashion, as
shown in Figure 4.2 (a). In particular, we come up with two variations
of the backbone, i.e., expand-DGCNN and DAPS-DGCNN, as shown in
Figure 4.2 (b), where the expand-DGCNN is the vanilla DGCNN com-
bined with a classifier, a global-to-local (G2L) consistency module and
a reconstruction module, and the DAPS-DGCNN is the combination of
the expand-DGCNN module and our point sampling module.



34
Chapter 4. Point-Level Domain Adaptive Point Sampling for

Cross-Domain Point Cloud Recognition

g

g

1f

4f

2f

3f

Per-point

similarity

calculation

4̂f

2̂f

3̂f

1̂f

ĝ
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Figure 4.2: Overview of our domain adaptive point sampling (DAPS)
module. (a) Our DAPS method selects the representative points that can
preserve geometric consistency according to the per-point similarity be-
tween the local feature and the global feature, which is combined with
three losses, i.e., a global-to-local (G2L) consistency loss, a classification
loss determined on the source samples only and a reconstruction loss
determined on the target samples only. It consists of K DAPS-DGCNN
modules and an expand-DGCNN module. (b) The detailed network
structure of our proposed DAPS-DGCNN, expand-DGCNN and vanilla
DGCNN.

4.2.1 Representation Learning through Domain Adaptive

Point Sampling

Our approach builds upon the existing work, DGCNN. It consists of L
EdgeConv layers (L = 4 in this work) to aggregate the features from
a certain local region to each point, followed by a pooling operation to
produce the global feature for classification. In particular, given a point
cloud P , we represent the local feature of each point at each EdgeConv
layer as fi,l,n, where i is the index of a point in each point cloud, l is the
index of the layer of the neural network where l = 1, · · · , L, and n is the
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index of the point cloud. Moreover, the global feature of the n-th sample
after the pooling operation is denoted by gn.

Domain Adaptive Point Sampling

When learning the feature representation for 3D point clouds, we design
the DAPS strategy to identify the representative points within each point
cloud and expect the network to pay more attention to these represen-
tative points than the noisy points. In Figure 4.2 (b) we illustrate our
DAPS module. We assume that the model is prone to distinguish those
commonly-seen geometric structures, which are mostly shared across
domains, from those unique structures. As the model has the poten-
tial to capture both the local feature and the global feature, the model
could easily extract semantic features from these commonly-seen geo-
metric structures, which we call the representative points. Therefore,
we further assume that if the local feature of a point is able to infer the
overall semantic meaning of the object, it is likely that the corresponding
point is the representative one. Therefore, we calculate the similarities
between the global feature gn and the local features fi,l,n of each point
at different layers, and then select the points with the average similar-
ity over all layers higher than a defined threshold as the representative
points.

As the feature dimensions of the global feature and the local fea-
tures at different layers are different, we introduce a simple multi-layer
perceptron (MLP) network as the mapping module for the features and
transform different features into a common feature space. Let us denote
Φl

map as the MLP network at the l-th layer, and Φg
map as the MLP net-

work for the global feature. The similarity between the feature of each
point and the global feature in the common space can be calculated as:

sim( fi,l,n, gn) =
Φl

map( fi,l,n) · Φg
map(gn)

||Φl
map( fi,l,n)|| × ||Φg

map(gn)||
(4.1)
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Then we summarise the similarities from different layers to produce the
average similarity value for domain adaptive point sampling, i.e.

Si,n =
1
L

L

∑
l=1

sim( fi,l,n, gn) (4.2)

Only if Si,n is larger than a pre-defined threshold ϵ, we will treat the i-th
point from the n-th point cloud as a representative point, otherwise, we
will treat the point as noise.

Learning Feature Mappings

To learn meaningful feature mapping Φl
map for l = 1, · · · , L and Φg

map,
we introduce a global-to-local (G2L) consistency loss for training these
MLP networks, which forces the network to extract local features from
each point to be similar with the global feature from the same point cloud
and dissimilar with the global features from other point clouds. Here we
formulate the G2L consistency loss [63] as below:

ℓcon( fi,l,n, gn) = −log
Φl

map( fi,l,n) · Φg
map(gn)

∑m Φl
map( fi,l,n) · Φg

map(gm)
(4.3)

and

Lcon =
1

Ns
∑i,l,n ℓ

con
s ( fi,l,n, gn) +

1
Nt

∑i,l,n ℓ
con
t ( fi,l,n, gn)

ML
(4.4)

where ℓcon
s ( fi,l,n, gn) and ℓcon

t ( fi,l,n, gn) are the consistency losses defined
for the point clouds from the source domain and the target domain, re-
spectively, M is the total number of points within each point cloud, while
Ns and Nt represent for the number of samples in the source domain or
the target domain, respectively. Note that we perform the G2L consis-
tency alignment on both the source domain and the target domain. With
the G2L consistency loss, we can train the mapping networks to calcu-
late the similarity between the local features and the global features, thus
enhancing the reliability of our DAPS. Moreover, we can encourage the
network to learn an object from only a part of it, thus increasing the gen-
eralisation ability.
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Semantic Preserving

To ensure that our method can preserve meaningful semantics when ex-
tracting the features, we further impose a classification loss for labelled
data from the source domain and a reconstruction loss for unlabelled
data from the target domain when training our model.

In particular, as the semantic labels are available for the samples
from the source domain, we employ the cross-entropy loss as the classi-
fication loss.

Lcls = − 1
Ns

Ns

∑
n=1

ℓce(Φ(P s
n), ys

n) (4.5)

where ℓce denotes the cross entropy loss, P s
n and ys

n stand for the n-th
sample in the source domain and the corresponding label.

For the target domain, since the semantic labels are not available,
we, therefore, use the reconstruction loss to train our model. In partic-
ular, we follow the design in FoldingNet [91] to build a reconstruction
network Φrec, and use the global feature gn to recover the whole point
sets. Given a target point cloud P t

n, let us denote the reconstructed point
cloud as P̂ t

n, then the reconstruction loss is defined as:

Lrec =
1

Nt

Nt

∑
n=1

ℓrec(P t
n, P̂ t

n) (4.6)

where ℓrec(P t
n, P̂ t

n) = ∑y∈P̂ t
n

min
x∈P t

n

||x − y||2 + ∑x∈P t
n

min
y∈P̂ t

n

||x − y||2 is the

Chamfer distance [21] between P t
n and P̂ t

n.

Progressive Representation Learning

When learning the model, we jointly consider the G2L consistency loss,
the cross entropy loss and the reconstruction loss to learn the model. The
total loss can be written as follows,

LDAPS = λ1Lcls + λ2Lcon + λ3Lrec (4.7)

λ1, λ2 and λ3 are the trade-off parameters.
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However, if we filter out too many points in each point cloud, the
global feature of the point cloud would vary a lot. Some of the represen-
tative points might be treated as noisy points, and the remained points
may be too few to provide useful semantic information. Therefore, we
design a progressive learning strategy to simultaneously perform point
sampling and representation learning by only filtering out a small part
of noisy points within each DAPS-DGCNN training stage, and we per-
form K DAPS-DGCNN training stages in total. As introduced above,
for the first stage of DAPS-DGCNN training, we first feed the complete
point cloud into the model and perform the first round of point sampling
based on the similarity calculated by Eq. (4.2). Then we perform the
next DAPS-DGCNN training stage by using the sampled representative
points as the input of the model. After K (K = 2 in this work) DAPS-
DGCNN training stages, we use the sampled representative points as
the input to finally train an expand-DGCNN. Note that for each feed-
forward process, we calculate the loss LDAPS from the DAPS-DGCNN
and sum all losses from all K DAPS-DGCNN of feed-forward processes
together with the loss Lexpand, which is calculated in the same way as Eq.
(6.1), for the last expand-DGCNN training stage for back propagation.
The final loss Lprl of our progressive representation learning method can
be calculated as:

Lprl =
K

∑
k=1

LDAPS
k + Lexpand (4.8)

where k denotes the k-th DAPS-DGCNN feed-forward process for each
point cloud. Note here no weight coefficients of LDAPS or Lexpand are re-
quired as we treat our DAPS-DGCNN and expand-DGCNN with equal
contribution. With the progressive training strategy, we can make the
gradient backwards propagate multiple times through those representa-
tive points and make the network focus more on learning the features of
these representative points and eventually learn more useful representa-
tions from these representative points.
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4.2.2 Experiments

In this section, we first list the implementation details of our DAPS strat-
egy. We further evaluate our DAPS strategy on the two benchmark
datasets. In addition, we analyse the effectiveness of different modules
in our DAPS strategy. Finally, we present some visualization results to
verify the effectiveness of our DAPS strategy.

Implementation Details

Here, we follow the previous works [1, 101, 69] and adopt DGCNN as
the backbone. We use two-layer MLPs with a hidden layer dimension
of 512 to map the output features of each EdgeConv layer as well as the
global features to the same dimension of 512. Our methods are trained
on the server with four NVIDIA RTX A6000 GPUs, and our implemen-
tation is based on the PyTorch framework. During training, we use the
Adam optimizer together with an epoch-wise cosine annealing learning
rate scheduler in which we set the learning rate to 0.001 and the weight
decay as 0.00005. We set the hyper-parameters λ1, λ2 and λ3 to 0.5, 0.5
and 0.5, respectively. Moreover, we set the number of DAPS-DGCNN
training stages (i.e., K) as 2 and the sampling ratio as 0.9, which means
we perform domain adaptive sampling for twice and use the sampled
points to train the expand-DGCNN. We train our DAPS module for 100
epochs with a batch size of 18.

Experimental Results

We compare our proposed approach with the recent state-of-the-art (SOTA)
point cloud-based unsupervised domain adaptation methods, including
PointDAN [61], RS [68], DefRec with PCM [1], GAST [101] and the latest
GAI [69] and GLRV [22]. Moreover, we include the popular 2D UDA
method DANN [26] for a fair comparison. In addition, we also include
the results of supervised learning methods that directly train the model
with only labelled source data for comparison (denoted as “w/o DA”).
The Oracle method [83] that trains the model by using labelled target
data is also listed for comparison (denoted as “Oracle”). Moreover, as
most of the recent 3D UDA methods are based on a self-paced learning
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Table 4.1: The classification accuracies (mean ± SEM) of different meth-
ods over 3 rounds of experiments on the GraspNetPC-10 dataset. The
numbers in the brackets denote the year of the compared methods.

Methods Syn. → Kin. Syn. → RS Kin. → RS RS → Kin. Avg.
Oracle (2019) [83] 97.2 ± 0.8 95.6 ± 0.4 95.6 ± 0.3 97.2 ± 0.4 96.4
w/o DA 61.3 ± 1.0 54.4 ± 0.9 53.4 ± 1.3 68.5 ± 0.5 59.4
Baseline 80.3 ± 2.3 66.3 ± 2.0 65.5 ± 0.5 73.0 ± 1.8 71.3
DANN (2016) [26] 78.6 ± 0.3 70.3± 0.5 46.1 ± 2.2 67.9 ± 0.3 65.7
PointDAN (2019) [61] 77.0 ± 0.2 72.5 ± 0.3 65.9 ± 1.2 82.3 ± 0.5 74.4
RS (2019) [68] 67.3 ± 0.4 58.6 ± 0.8 55.7 ± 1.5 69.6 ± 0.4 62.8
DefRec+PCM (2021) [1] 80.7 ± 0.1 70.5 ± 0.4 65.1 ± 0.3 77.7 ± 1.2 73.5
GAST (2021) [101] 81.3 ± 1.8 72.3 ± 0.8 61.3 ± 0.9 80.1 ± 0.5 73.8
GAI (2022) [69] 94.6 ± 0.4 80.5 ± 0.2 76.8 ± 0.4 85.9 ± 0.3 84.4
DAPS 97.0 ± 0.2 79.6 ± 0.8 79.1 ± 0.7 95.7 ± 0.7 87.8

paradigm, we construct another baseline by first training the model with
labelled source data which is then fine-tuned with the pseudo-labelled
target data based on the self-paced learning paradigm (denoted as “Base-
line”). It should be noticed that for a fair comparison, our DAPS is also
implemented based on a self-paced learning paradigm.

We first validate our method on the newly proposed GraspNetPC-
10 dataset. For each method, we run the experiments on each domain
adaptation scenario for 3 rounds. The recognition accuracy and standard
error of the mean (SEM) of each method on each scenario are reported
in Table 4.1. Here we use ‘Syn.’, ‘Kin.’ and ‘RS’ to denote the synthetic
domain, the Kinect real-world domain, and the Realsense real-world do-
main, respectively. For example, Syn. → Kin. means we use the syn-
thetic domain as the source domain and the Kinect real-world domain as
the target domain. We observe that our proposed method achieves the
state-of-the-art (SOTA) results on GraspNetPC-10, exceeding the current
SOTA method GAI by a notable margin of 3.4%. Specifically, when using
the Realsense real-world domain (RS) as the source domain and using
the Kinect real-world domain (Kin.) as the target domain, our proposed
DAPS strategy surpasses the SOTA method GAI by 9.8%, demonstrating
the effectiveness of our proposed approach.

We further validate our method on the widely used PointDA-10
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Table 4.2: The classification accuracies (mean ± SEM) of different meth-
ods over 3 rounds of experiments on the PointDA-10 dataset. The num-
bers in the brackets denote the year of the compared methods.

Methods M → S M → S∗ S → M S → S∗ S∗ → M S∗ → S Avg.
Oracle (2019) [83] 93.9 ± 0.2 78.4 ± 0.6 96.2 ± 0.1 78.4 ± 0.6 96.2 ± 0.1 93.9 ± 0.2 89.5
w/o DA 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8 62.2
Baseline 85.4 ± 0.3 56.9 ± 0.2 76.5 ± 0.2 53.5 ± 0.7 76.9 ± 0.4 73.6 ± 1.3 70.5
DANN (2016) [26] 74.8 ± 2.8 42.1 ± 0.6 57.5 ± 0.4 50.9 ± 1.0 43.7 ± 2.9 71.6 ± 1.0 56.8
PointDAN (2019) [61] 83.9 ± 0.3 44.8 ± 1.4 63.3 ± 1.1 45.7 ± 0.7 43.6 ± 2.0 56.4 ± 1.5 56.3
RS (2019) [68] 79.9 ± 0.8 46.7 ± 4.8 75.2 ± 2.0 51.4 ± 3.9 71.8 ± 2.3 71.2 ± 2.8 66.0
DefRec+PCM (2021) [1] 81.7 ± 0.6 51.8 ± 0.3 78.6 ± 0.7 54.5 ± 0.3 73.7 ± 1.6 71.1 ± 1.4 68.6
GAST (2021) [101] 84.8 ± 0.1 59.8 ± 0.2 80.8 ± 0.6 56.7 ± 0.2 81.1 ± 0.8 74.9 ± 0.5 73.0
GLRV (2022) [22] 85.4 ± 0.4 60.4 ± 0.4 78.8 ± 0.6 57.7 ± 0.4 77.8 ± 1.1 76.2 ± 0.6 72.7
GAI (2022) [69] 86.2 ± 0.2 58.6 ± 0.1 81.4 ± 0.4 56.9 ± 0.2 81.5 ± 0.5 74.4 ± 0.6 73.2
MLSP (2022) [44] 85.7 ± 0.6 59.4 ± 1.3 82.3 ± 0.9 57.3 ± 0.7 82.2 ± 0.5 76.4 ± 0.5 73.8
DAPS 86.9 ± 0.5 59.7 ± 0.5 78.7 ± 1.2 55.5 ± 1.1 82.0 ± 2.0 80.5 ± 0.7 73.9

dataset. We follow a similar setting to the experiments of the GraspNetPC-
10 dataset by running the experiments on each domain adaptation sce-
nario for 3 rounds. The recognition accuracy and standard error of the
mean (SEM) of each method on each scenario are reported in Table 4.2.
Here we use ‘M’, ‘S’ and ‘S∗’ to denote the ModelNet-10, ShapeNet-10,
and ScanNet-10 subsets, respectively. For example, M → S means we
use ModelNet-10 as the source domain and ShapeNet-10 as the target
domain. We observe that our proposed method achieves the SOTA re-
sults on PointDA-10. With the help of our DAPS method, we achieve an
average accuracy of 73.9%. The results clearly demonstrate the effective-
ness of our proposed approach.

Specifically, when using ScanNet-10 (i.e., S∗) as the source domain,
the results of our DAPS strategy are boosted significantly. A possible ex-
planation is as follows. When compared to ModelNet-10 and ShapeNet-
10, the point clouds in ScanNet-10 are quite sparse and often with missed
parts, which leads to considerable variation within each point cloud from
the same class. With our proposed DAPS module, the model is able to fo-
cus on the representative points, which reduces the divergence between
ScanNet-10 and the other two subsets, and leads to better performance.
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Table 4.3: The classification accuracies when using different losses with
or without the sampling strategy in DAPS-DGCNN training on the
PointDA-10 dataset.

con rec sampling Avg.
✓ 68.5

✓ 68.9
✓ ✓ 69.0

✓ ✓ 69.7
✓ ✓ 70.5
✓ ✓ ✓ 70.8

Ablation Study

In this section, we analyse the effectiveness of the detailed modules de-
signed for our domain adaptive point sampling (DAPS) on the PointDA-
10 dataset. In DAPS, three losses are used to learn the feature mappings
and preserve the feature semantics. As the cross entropy loss is compul-
sory for training the model, we now investigate the individual contri-
butions of the G2L consistency loss and the reconstruction loss, as well
as the contribution of our sampling method. Here we discard the SPL
paradigm and only focus on the performance of our DAPS module.

We conduct the experiments for 3 rounds on 6 domain adaptation
scenarios. In Table 4.3, we report the mean accuracies over 6 cases, where
the “con” represents the G2L consistency loss, “rec” represents the recon-
struction loss and “sampling” represents our representative points sam-
pling strategy. The SEM results are not included for simplicity. We ob-
serve that the alternative methods by using either G2L consistency loss
or the reconstruction loss can contribute to domain alignment as these
two methods both enable the model to learn domain-invariant informa-
tion in a self-supervised learning fashion. Our domain adaptive point
sampling process can further help the model to learn domain-invariant
features for achieving better recognition results, with an improvement of
more than 1%. If we only apply representative point sampling and the
reconstruction loss, the sampling process would be random, as there is
no supervision for training the mapping functions in MLPs. Therefore,
the model would only learn the global semantic meaning from the part
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Table 4.4: The classification accuracies (mean ± SEM) of different sam-
pling methods over 3 rounds of experiments on the PointDA-10 dataset.

Methods M → S M → S∗ S → M S → S∗ S∗ → M S∗ → S Avg.
Oracle 93.9 ± 0.2 78.4 ± 0.6 96.2 ± 0.1 78.4 ± 0.6 96.2 ± 0.1 93.9 ± 0.2 89.5
w/o DA 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8 62.2
FPS 79.6 ± 1.0 45.5 ± 0.9 76.7 ± 0.7 43.1 ± 0.4 65.7 ± 1.2 62.3 ± 0.7 62.1
RPS 80.5 ± 0.8 48.3 ± 2.2 74.3 ± 0.5 49.9 ± 1.3 62.7 ± 1.4 66.5 ± 1.7 63.7
DAPS 84.6 ± 0.9 59.2 ± 0.4 77.1 ± 0.6 56.0 ± 0.8 73.1 ± 0.8 76.2 ± 0.9 70.8

missing point cloud, namely, only the robustness would be improved.
However, if we apply the G2L consistency loss, we can filter out the
noisy points for domain-invariant feature learning, thus the recognition
accuracy is improved by 1.6%, which verifies the effectiveness of our
sampling module. Moreover, if we apply all of the three losses, the se-
mantic meaning would be best preserved, thus leading to an average
accuracy of 70.8%. The experiments demonstrate that it is effective to
learn the feature mappings and preserve the semantic meaning during
the domain adaptive point sampling process.

We then verify the effectiveness of our DAPS method on the PointDA-
10 dataset by comparing our domain adaptive point sampling (DAPS)
method with the farthest point sampling (FPS) method and random point
sampling (RPS) method on the PointDA-10 dataset. Note that we per-
form DAPS twice with a sampling ratio of 0.9, meaning we use around
81% points for our extend-DGCNN training. Therefore, we set the sam-
pling ratio of FPS and RPS as 0.81. We also include the results of super-
vised learning methods that directly train the model with only labelled
source data for comparison (denoted as “w/o DA”). The Oracle method
that trains the model using labelled target data is also listed for compari-
son (denoted as “Oracle”). For each method, we run the experiments on
each domain adaptation scenario for 3 rounds. The recognition accuracy
and standard error of the mean (SEM) of each method on each scenario
are reported in Table 4.4. Note that all of the experiments are conducted
without pseudo-labelled target data fine-tuning.

We can see that our DAPS outperforms FPS and RPS by a large mar-
gin on all 6 domain adaptation scenarios. The main reason is that when
performing farthest point sampling or random point sampling, not only
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Table 4.5: The overall classification accuracies when using different
DAPS-DGCNN training stages on the PointDA-10 dataset.

# DAPS-DGCNN training stages (i.e., K) Avg.
w/o DAPS-DGCNN training 69.1

K = 1 69.7
K = 2 70.8
K = 3 70.3
K = 4 69.9

the points that contain domain-specific information will be sampled out,
but some points that contain domain-invariant information which is use-
ful for cross-domain recognition will also be sampled out, leading to the
recognition performance decrease. Our DAPS method will only sam-
ple out those points containing domain-specific information and those
points containing domain-invariant information will remain, thus im-
proving the cross-domain recognition performance of our model. More-
over, it can be inferred from the table that the performance of the FPS
method and the w/o DA method is not much different, the main reason
is that the points in the PointDA-10 dataset are obtained in order us-
ing the FPS method. Sampling 1024 points or 830 points through the
FPS method will not have a large impact on the overall geometry of
the point cloud. On the contrary, the RPS method will outperform the
FPS method, the main reason is that the RPS method is prone to miss
the points distributing on the sparse parts like the chair legs, thus the
remained points after sampling will be more likely distributed on the
cushion of the chairs, reducing the domain gap in a degree, but still, RPS
method is far worse than our DAPS method.

We finally verify the importance of our progressive representation
learning strategy on the PointDA-10 dataset. We conduct the experi-
ments by varying the number of DAPS-DGCNN training stages K with
a fixed sampling ratio 0.9, i.e., we sort the similarity between the feature
of each point and the global feature according to Eq. (4.2) and only keep
the top 90% points as the representative points. The results are listed
in Table 4.5, we report the mean accuracies when training DAPS with-
out adopting the SPL strategy over 6 cases and we also discard the SEM
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results. We can see that when we only train the last expand-DGCNN
without using DAPS, i.e., “w/o DAPS-DGCNN training”, the overall
accuracy is only 69.1%. After applying our DAPS strategy, we can see
even when we only perform DAPS once, (namely, we only filter out
10% noisy points), we can achieve a performance improvement of 0.6%.
When K = 2, the model can achieve the best performance, with the mean
accuracy of 70.8%, where around 20% points are filtered. When we filter
out too many points, (i.e., the number of training iterations is larger than
2), the performance drops, as the remained points are too few to contain
useful semantic information for recognition.

Visualization Results

In this section, we illustrate some visualizations of whether applying our
domain adaptive sampling (DAPS) method on point cloud samples from
different datasets in PointDA-10 dataset i.e., ModelNet-10, ScanNet-10
and ShapeNet-10, as shown in Figure 4.3.

We observe that the shape of the legs of most chair samples from the
ModelNet-10 dataset varies a lot. For example, some chairs have legs
that look like octopuses, and some other chairs have integrated legs, as
shown in Figure 4.3 (a). But most point clouds of the chairs from the
ShapeNet-10 dataset have four legs, as shown in Figure 4.3 (b). More-
over, most of the chair samples from the ScanNet-10 have some legs
missing, and some of them even may have no legs visible, as shown in
Figure 4.3 (c). These multiple forms of chair legs may confuse the model
severely. However, the design of the cushions and backrests of the chair
samples is similar across different datasets, and they are easy to classify
from other categories. Our DAPS method can successfully sample out
the points distributed on the cushions or backrests and drop the points
distributed on the legs, thus the remained representative points share a
similar geometric structure across different datasets and are easy to clas-
sify. Thus improving the cross-domain recognition performance.

The category lamp has a similar question, where the design of the
lamp holder of different samples from different datasets is quite dif-
ferent, for example, most of the lamp holders from the ModelNet-10
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Figure 4.3: The visualization of the point cloud with or without using
our domain adaptive point sampling (DAPS) method on different sam-
ples.
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are quite simple (see Figure 4.3 (d)) while some lamp holders from the
ShapeNet-10 have complex structure (see Figure 4.3 (e)), and most of the
samples from the ScanNet-10 may miss parts of all of the lamp holders
due to the occlusion or noise (see Figure 4.3 (f)). However, the shape
of the lampshades is usually curved. Our DAPS method can focus on
the domain-invariant structure of lampshades and sample out the point
distributed on the lampshades for classification.

Moreover, we also observe that some samples of plant from ModelNet-
10 have no vase (see Figure 4.3 (g)), while most point clouds of plants
from ShapeNet-10 have complete vases (see Figure 4.3 (h)) and plant
point clouds from ScanNet-10 usually have parts of the vase missing (see
Figure 4.3 (i)). The existence of the vase may cause the attention of the
model to be different. However, we also observe that the shape of the
vase is also curved and can be indistinguishable from the lampshade,
which may also degrade the recognition performance of the model. Our
DAPS method can filter out those points distributed on the vase and fo-
cus on the representative points on the branches and leaves of the plants,
which can also represent the plants and are easy to classify from samples
belonging to other categories.

4.3 Summary

In this chapter, we have proposed a new domain adaptive point sam-
pling (DAPS) strategy for cross-domain point cloud recognition. Our
DAPS strategy selects representative points within each point cloud and
uses the sampled points to learn robust domain-invariant representa-
tions based on a new progressive learning pipeline. Comprehensive
experiments on two benchmark datasets have demonstrated the effec-
tiveness of our newly proposed DAPS strategy. However, as our DAPS
method can only extract domain-invariant features, the lack of target-
specific information might influence the cross-domain recognition per-
formance.





49

Chapter 5

Instance-Level Domain Adaptive
Cloud Sampling for
Cross-Domain Point Cloud
Recognition

In this chapter, we propose an instance-level domain adaptive cloud
sampling (DACS) strategy which can be combined with the point-level
domain adaptive point sampling (DAPS) strategy to learn target-specific
information. Our proposed DACS strategy is based on the self-paced
learning (SPL) paradigm, where we select a set of pseudo-labelled tar-
get point clouds to train our designed light-weighted adapters without
modifying the learnt domain-invariant representation. We validate our
DACS method on the benchmark datasets, i.e., PointDA-10 and GraspNetPC-
10, and demonstrate the effectiveness of our method.

5.1 Motivations and Contributions

In Chapter 4, we have proposed the DAPS strategy to extract domain-
invariant representations. However, even though the point-level diver-
gence is reduced, the feature extracted with the learnt model can hardly
be optimal for point cloud recognition on the target domain, as the domain-
invariant features might lack important target-specific information. Most
of the works focusing on the cross-domain point cloud recognition task
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ignored the issue and only a few recent works [101, 69, 22] noticed the
problem. However, these works only use a pseudo-labelling method to
fine-tune the learnt mode, while the training is unstable and may suf-
fer from the confirmation bias problem, i.e., the model would be misled
by the wrongly selected pseudo-labels and degrade the recognition per-
formance. Moreover, the learnt domain-invariant features may also be
disturbed [90, 84, 82, 47].

Adapters have been widely used in various knowledge transfer tasks
in the 2D or the NLP domain [34, 81, 55, 41, 3]. Most of the works
use a set of light-weighted adapters for fine-tuning the large pre-trained
model to various downstream tasks [34, 81]. More recently, some works
proposed to learn a set of task-specific adapters based on the pre-trained
task-agnostic model to filter useful knowledge from the learnt model to
new tasks or domains [41, 3]. These works have shown a great trans-
fer ability to learn task-specific information with adapters based on the
learnt task-agnostic information. The adapter structure has the potential
to learn target-specific information without modifying the learnt domain-
invariant information. However, how to effectively integrate adapter
modules into 3D feature extractors to solve the 3D UDA problem is still
unknown. Therefore, in this work, we aim to design a proper adapter
architecture that is suitable for cross-domain 3D point cloud recogni-
tion by learning target-specific information based on the learnt domain-
invariant information.

Therefore, based on the model learnt in the DAPS stage, we further
propose a domain adaptive cloud sampling (DACS) strategy to gradu-
ally learn target-specific information with the selected confidently pre-
dicted samples from the target domain using a self-paced learning (SPL)
paradigm. Specifically, we design a set of light-weighted adapters as
add-ons to the initial learnt model. Then, we fix the learnt model and
gradually use the predictions of the confidently predicted samples as the
pseudo-labels to train the adapters. In this way, the adapter-based model
would be gradually drawn away from the source domain, and move
close to the target domain, while preventing the vanilla model from be-
ing disturbed. In this way, the model will learn potential target-specific
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information in addition to the domain-invariant features learnt by the
DAPS model.

The main contributions in this chapter can be summarised as fol-
lows: (1) We propose a new adapter architecture to learn target-specific
information. (2) We propose a new domain adaptive cloud sampling
(DACS) method based on the adapter architecture to train the recogni-
tion network for unsupervised domain adaptation on point clouds. (3)
Our proposed DACS method can be combined with the domain adap-
tive point sampling (DAPS) strategy for better cross-domain point cloud
recognition. Comprehensive experiments on benchmark datasets have
demonstrated the effectiveness of our newly proposed domain adaptive
cloud sampling method.

5.2 Methodology

In this section, we will introduce our newly proposed domain adaptive
cloud sampling (DACS) method in detail. In particular, our DACS is
based on a self-paced learning paradigm (SPL) with several training cir-
cles. Each training circle can be further divided into a target pseudo-label
selection operation and an adapter training operation, as shown in Fig-
ure 5.1 (a). In particular, we come up with a variation of the DGCNN [83],
i.e., Adapter-DGCNN for adapter training, (see Figure 5.1 (b)) and adapter-
based EdgeConv architecture (see Figure 5.1 (c)).

5.2.1 Target-Specific Information Learning through Do-

main Adaptive Cloud Sampling

Target Pseudo-Label Selection

The category labels of the target samples are absent, so we use the predic-
tions of the samples to generate pseudo-labels for the target point clouds.
Then, we select the pseudo-labelled target point clouds with high pre-
diction scores to fine-tune the model. Given a target point cloud P t

n, its
pseudo-label can be written as ŷt

n = arg maxc Φ[c](P t
n), where Φ[c](P t

n)

is the c-th dimension of the prediction scores of P t
n, and c = {1, . . . , C}
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Figure 5.1: Overview of our domain adaptive cloud sampling (DACS)
module. (a) Our DACS method is based on a self-paced learning
paradigm (SPL). During each training circle in SPL, we select confi-
dently predicted target samples as pseudo-labelled samples and use
the pseudo-labelled samples to train the adapter module in adapter-
DGCNN so as to better exploit target-specific information. During
adapter-DGCNN training, the parameters of other modules except the
adapters are fixed. (b) The detailed network structure of our proposed
Adapter-DGCNN. (c) The detailed network structure of our proposed
Adapter-EdgeConv.

represents the index of the categories. We apply the cross-entropy loss to
fine-tune the model, and the classification loss in the target domain can
be formulated as below:

L̃cls
t = − 1

|T̂ | ∑
(P t

n,ŷt
n)∈T̂

ℓce(Φ(P t
n), ŷt

n) (5.1)

where T̂ = {(P t
n, ŷt

n)|maxc Φ[c](P t
n) > ε, ∀n = 1, . . . , Nt} is the set of

sampled target point clouds together with their pseudo-labels, and ε is a
pre-defined threshold.

In addition, we follow [101] and use an easy-to-hard training strat-
egy and gradually raise the threshold for selecting the confidently pre-
dicted samples, i.e. we train the network with a fixed ε for each circle
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(i.e., a few epochs) and update ε = ε + ∆ at the end of each circle. Intu-
itively, the model will gradually move close to the target domain during
the training procedure, and the prediction scores of the accurately pre-
dicted target samples will be higher. Therefore, it is beneficial to use a
higher threshold in later circles, which can help us to focus on those most
reliable pseudo-labelled target samples that can better adapt the model
to the target domain [101, 96].

Adapter Training

When using the selected pseudo-labelled target point clouds to fine-tune
the model, it is unrealistic to fine-tune the whole model with a large
number of parameters if the number of the selected pseudo-labelled tar-
get data is too small. Moreover, the inaccurate pseudo-labels can make
the model training unstable. We tackle these problems by only train-
ing a set of light-weighted adapters without updating the whole learnt
model. In this way, the adapters can learn target-specific information in
addition to the domain-invariant features learnt in the DAPS stage. Each
adapter has a similar network architecture, i.e., an MLP that maps the in-
put features with a dimension of D1 to a low dimension Da and another
MLP that maps the features from Da to an output dimension D2, where
D1 ∗ Da + Da ∗ D2 is smaller than D1 ∗ D2. During training, we only
keep the vanilla DGCNN model in expand-DGCNN and introduce the
light-weighted adapters to short-circuit each neural unit in the vanilla
DGCNN network, including the MLP in each EdgeConv layer and the
final MLP operation. Let Φf,l denote the l-th EdgeConv layer in vanilla
DGCNN and Φf,cat be the final mapping MLP operation. Similarly, let fl

represent the output feature of the l-th EdgeConv layer while fcat be the
concatenated features from all four EdgeConv layers. We rename Edge-
Conv with adapters as Adapter-EdgeConv and also rename the adapter
for the l-th Adapter-EdgeConv layer as Φad,l, we illustrate the architec-
ture of each Adapter-EdgeConv in Figure 5.1 (c). Also, we rename the
adapter paralleled with Φf,cat as Φad,cat, then we can calculate the fl out-
puts by each Adapter-EdgeConv and the fcat outputs by Φf,cat as:

fl = Φf,l( fl−1) + Φad,l( fl−1) (5.2)
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and
fcat = Φf,cat( fcat) + Φad,cat( fcat) (5.3)

During fine-tuning, we fix the parameters of the vanilla DGCNN
and only train the adapters. In this way, the adapters can learn extra
target-specific information using the selected pseudo-labelled target data
based on the domain-invariant feature learnt with DAPS. Moreover, the
hidden layer dimension of the adapter is small, therefore, the amount
of tuning parameters is low, which makes it easy to learn the robust
adapters using a small number of selected pseudo-labelled target sam-
ples.

5.2.2 Experiments

In this section, we first list the implementation details of our DACS method.
We further evaluate our DACS on the two benchmark datasets. In addi-
tion, we analyse the effectiveness of the detailed modules of our DACS
strategy. Finally, we present some visualization results to verify the ef-
fectiveness of our DACS strategy.

Implementation Details

Here, we follow the previous works [1, 101, 69] and adopt DGCNN as the
backbone. The hidden layer dimension of each adapter is set to 32. Our
methods are trained on the server with four NVIDIA RTX A6000 GPUs,
and our implementation is based on the PyTorch framework. During
training, we use the Adam optimizer together with an epoch-wise cosine
annealing learning rate scheduler in which we set the learning rate to
0.001 and the weight decay as 0.00005. We set the initial threshold ε for
determining the pseudo-labels as 0.8 and the increasing step ∆ as 0.01.
With the batch size of 18, we fine-tune the adapters for 10 epochs within
one circle except for the first circle, where we train the adapters for 50
epochs as the adapters are randomly initialised in the first circle. The
DACS training stage consists of 10 circles in total.
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Table 5.1: The classification accuracies (mean ± SEM) of different meth-
ods over 3 rounds of experiments on the GraspNetPC-10 dataset. The
numbers in the brackets denote the year of the compared methods.

Methods Syn. → Kin. Syn. → RS Kin. → RS RS → Kin. Avg.
Oracle (2019) [83] 97.2 ± 0.8 95.6 ± 0.4 95.6 ± 0.3 97.2 ± 0.4 96.4
w/o DA 61.3 ± 1.0 54.4 ± 0.9 53.4 ± 1.3 68.5 ± 0.5 59.4
Baseline 80.3 ± 2.3 66.3 ± 2.0 65.5 ± 0.5 73.0 ± 1.8 71.3
DANN (2016) [26] 78.6 ± 0.3 70.3± 0.5 46.1 ± 2.2 67.9 ± 0.3 65.7
PointDAN (2019) [61] 77.0 ± 0.2 72.5 ± 0.3 65.9 ± 1.2 82.3 ± 0.5 74.4
RS (2019) [68] 67.3 ± 0.4 58.6 ± 0.8 55.7 ± 1.5 69.6 ± 0.4 62.8
DefRec+PCM (2021) [1] 80.7 ± 0.1 70.5 ± 0.4 65.1 ± 0.3 77.7 ± 1.2 73.5
GAST (2021) [101] 81.3 ± 1.8 72.3 ± 0.8 61.3 ± 0.9 80.1 ± 0.5 73.8
GAI (2022) [69] 94.6 ± 0.4 80.5 ± 0.2 76.8 ± 0.4 85.9 ± 0.3 84.4
DACS 86.3 ± 0.9 70.5 ± 0.4 71.5 ± 1.7 80.0 ± 0.8 77.1
DAS 97.2 ± 0.1 84.4 ± 1.6 79.9 ± 0.4 97.0 ± 0.7 89.6

Experimental Results

We compare our proposed DACS approach with the recent SOTA point
cloud-based unsupervised domain adaptation methods, including Point-
DAN [61], RS [68], DefRec with PCM [1], GAST [101] and the latest
GAI [69] and GLRV [22]. Moreover, we include the popular 2D UDA
method DANN [26] for a fair comparison. In addition, we also include
the results of supervised learning methods that directly train the model
with only labelled source data for comparison (denoted as “w/o DA”).
The Oracle method [83] that trains the model by using labelled target
data is also listed for comparison (denoted as “Oracle”). Moreover, as
most of the recent 3D UDA methods are based on a self-paced learning
paradigm, we construct another baseline by first training the model with
labelled source data which is then fine-tuned with the pseudo-labelled
target data based on the self-paced learning paradigm (denoted as “Base-
line”). It should be noticed that we name the combination of our pro-
posed DAPS strategy and DACS method as domain adaptive sampling
(DAS) and our DACS is based on a pre-trained w/o DA model.

We first validate our method on the newly proposed GraspNetPC-
10 dataset. For each method, we run the experiments on each domain
adaptation scenario for 3 rounds. The recognition accuracy and standard
error of the mean (SEM) of each method on each scenario are reported
in Table 5.1. Here we use ‘Syn.’, ‘Kin.’ and ‘RS’ to denote the synthetic
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domain, the Kinect real-world domain, and the Realsense real-world do-
main, respectively. For example, Syn. → Kin. means we use the syn-
thetic domain as the source domain and the Kinect real-world domain as
the target domain. We observe that our proposed DAS method achieves
the state-of-the-art (SOTA) results on GraspNetPC-10, including all 4 do-
main adaptation scenarios and the overall performance, exceeding the
current SOTA method GAI by a notable margin of 5.2%. Specifically,
when using the Kinect real-world domain (Kin.) as the target domain,
our proposed DAS method can approach the upper bound, i.e., the Ora-
cle method, demonstrating the effectiveness of our proposed approach.
Moreover, as shown in the table, our DACS method can also exceed the
baseline, i.e., the Baseline method, by a large margin.

Table 5.2: The classification accuracies (mean ± SEM) of different meth-
ods over 3 rounds of experiments on the PointDA-10 dataset. The num-
bers in the brackets denote the year of the compared methods.

Methods M → S M → S∗ S → M S → S∗ S∗ → M S∗ → S Avg.
Oracle (2019) [83] 93.9 ± 0.2 78.4 ± 0.6 96.2 ± 0.1 78.4 ± 0.6 96.2 ± 0.1 93.9 ± 0.2 89.5
w/o DA 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8 62.2
Baseline 85.4 ± 0.3 56.9 ± 0.2 76.5 ± 0.2 53.5 ± 0.7 76.9 ± 0.4 73.6 ± 1.3 70.5
DANN (2016) [26] 74.8 ± 2.8 42.1 ± 0.6 57.5 ± 0.4 50.9 ± 1.0 43.7 ± 2.9 71.6 ± 1.0 56.8
PointDAN (2019) [61] 83.9 ± 0.3 44.8 ± 1.4 63.3 ± 1.1 45.7 ± 0.7 43.6 ± 2.0 56.4 ± 1.5 56.3
RS (2019) [68] 79.9 ± 0.8 46.7 ± 4.8 75.2 ± 2.0 51.4 ± 3.9 71.8 ± 2.3 71.2 ± 2.8 66.0
DefRec+PCM (2021) [1] 81.7 ± 0.6 51.8 ± 0.3 78.6 ± 0.7 54.5 ± 0.3 73.7 ± 1.6 71.1 ± 1.4 68.6
GAST (2021) [101] 84.8 ± 0.1 59.8 ± 0.2 80.8 ± 0.6 56.7 ± 0.2 81.1 ± 0.8 74.9 ± 0.5 73.0
GLRV (2022) [22] 85.4 ± 0.4 60.4 ± 0.4 78.8 ± 0.6 57.7 ± 0.4 77.8 ± 1.1 76.2 ± 0.6 72.7
GAI (2022) [69] 86.2 ± 0.2 58.6 ± 0.1 81.4 ± 0.4 56.9 ± 0.2 81.5 ± 0.5 74.4 ± 0.6 73.2
MLSP (2022) [44] 85.7 ± 0.6 59.4 ± 1.3 82.3 ± 0.9 57.3 ± 0.7 82.2 ± 0.5 76.4 ± 0.5 73.8
DACS 85.5 ± 0.3 57.2 ± 0.3 76.6 ± 0.6 54.6 ± 1.2 80.0 ± 0.7 77.9 ± 1.6 71.9
DAS 87.2 ± 0.9 60.5 ± 0.2 82.4 ± 0.7 58.1 ± 0.8 84.8 ± 2.3 82.3 ± 1.5 75.9

We further validate our method on the widely used PointDA-10
dataset. We follow a similar setting to the experiments on the GraspNetPC-
10 dataset by running the experiments on each domain adaptation sce-
nario for 3 rounds. The recognition accuracy and standard error of the
mean (SEM) of each method on each scenario are reported in Table 5.2.
Here we use ‘M’, ‘S’ and ‘S∗’ to denote the ModelNet-10, ShapeNet-10,
and ScanNet-10 subsets, respectively. For example, M → S means we
use ModelNet-10 as the source domain and ShapeNet-10 as the target
domain. We observe that our proposed method achieves the state-of-
the-art (SOTA) results on PointDA-10, including all 6 domain adaptation
scenarios and the overall performance. With the help of both the DAPS
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and DACS modules, we achieve an average accuracy of 75.9%, which
outperforms the current SOTA method MLSP by a notable margin of
2.1%. The results clearly demonstrate the effectiveness of our proposed
approach.

Specifically, we observe that our DACS method outperforms the
Baseline method on all 6 domain adaptation scenarios, especially when
using S∗ as the source domain. A possible explanation is that the sam-
ples from the target domains are synthetic and are easy to be recognised
in this situation, thus we can learn plentiful target-specific information
from the pseudo-labelled target data, demonstrating the effectiveness of
our proposed DACS module.

Ablation Study

Table 5.3: Ablation study on the effectiveness of our newly proposed
adapter architecture.

# dimension of the hidden layer (i.e., Da) Avg.
DAPS 70.8
Da = 4 73.7
Da = 8 74.1
Da = 16 75.0
Da = 32 75.9
Da = 64 75.5

In this section, we first analyse the effectiveness of our newly pro-
posed adapter architecture. We vary the dimension of the hidden layer
in the adapters to verify how a light-weighted adapter architecture can
be beneficial to target-specific information learning. We conduct the ex-
periments for 3 rounds on 6 domain adaptation scenarios on PointDA-
10. We conduct the experiments by varying the dimension of the hidden
layer, Da, in the adapters and the results are listed in Table 5.3, here we
report the mean accuracies. It should be noticed that our DACS method
is based on the learnt model by DAPS. Therefore, we also list the results
without using our DACS method, i.e., DAPS, as the baseline result.

We can observe that when the dimension of the adapters is too small,
e.g., Da = 4, the adapters would be too light-weighted to capture useful
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semantic information, leading to poor cross-domain recognition perfor-
mance. However, when the dimension of the adapters is too large, e.g.,
Da = 64, the amount of the parameters would be large, and the selected
pseudo-labels would be too little to fine-tune such a complex module,
leading to a poor fine-tune result. When the dimension of the adapters
is 32, we can have the best cross-domain recognition performance.

Visualization Results

To further investigate the capacity of our proposed domain adaptive
sampling (DAS) approach for addressing the domain shift issue on point
clouds, in Figure 5.2 we visualise the features of point clouds from the
target domain by using t-SNE [76], where different colours denote dif-
ferent classes. Here we take two difficult domain adaptation scenarios
in GraspNetPC-10 as examples, i.e., Syn-to-RS and Kin-to-RS. Due to the
domain shift, we observe that the target features extracted by the w/o
DA method are less discriminative, and sometimes the instances from
different categories are mixed with each other. With our DAS strategy,
the learnt features of the target samples are more discriminative, which
leads to a huge performance improvement for point cloud recognition
on the target domain.

Syn - RS Kin - RS
w/o Adap. w/o Adap.DAS DAS

Figure 5.2: The t-SNE visualization results of the target domain samples
with or without using our domain adaptive sampling strategy (DAS).
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5.3 Summary

In this chapter, we have proposed a new domain adaptive cloud sam-
pling (DACS) method for cross-domain point cloud recognition. Our
DACS method conducts domain adaptive cloud sampling by using the
newly proposed adapter structure to learn target-specific information,
such that the model can be better adapted to the target domain for point
cloud recognition. Comprehensive experiments on two benchmark datasets
have demonstrated the effectiveness of our newly proposed DACS method.
However, the introduction of the adapters will bring additional parame-
ters, which may increase the dependence of the model on the GPU mem-
ory.
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Open-Set Domain Adaptive
Sampling for Open-Set
Cross-Domain Point Cloud
Recognition

In Chapter 4 and Chapter 5, we have proposed a new domain adaptive
sampling (DAS) method, including a point-level domain adaptive point
sampling (DAPS) strategy and an instance-level domain adaptive cloud
sampling (DACS) method, for cross-domain point cloud recognition. In
this chapter, we extend our DAS method and propose a new open-set
domain adaptive sampling (OS-DAS) method for open-set cross-domain
point cloud recognition, which includes an open-set domain adaptive
point sampling (OS-DAPS) module and an open-set domain adaptive
cloud sampling (OS-DACS) module. In particular, we first use OS-DAPS
to enable the model to extract domain-invariant features from each sam-
ple to learn a coarse classifier. Then, we select two sets of confidently
predicted target samples belonging to the source-known classes and the
target-specific class according to the entropy of the predictions, respec-
tively. After the pseudo-labelled sample selection module, we use the
predictions of the selected target samples as pseudo-labels to fine-tune
the model using our proposed OS-DACS method. We validate our OS-
DAS strategy on the benchmark dataset PointDA-10 to demonstrate the
effectiveness of our method.
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source sample, class 1
source sample, class 2

target sample, class 1
target sample, class 2

source domain
target domain

class boundary target sample, target-specific class

Figure 6.1: Visualization of the process of minimizing the domain dis-
crepancy in the open-set scenario.

6.1 Motivations and Contributions

Existing unsupervised cross-domain point cloud recognition approaches
only aim at solving the close-set domain adaptation problem, i.e., the
source domain and the target domain share the same categories. How-
ever, in practical applications, it is unrealistic that the samples from the
source domain and the target domain belong to the same classes. The
model would inevitably come across several unknown classes when ap-
plied to a new scenario and the learnt model is prone to generate in-
correct predictions from those samples belonging to a source-unknown
category. Therefore, it is necessary to train a model to identify whether
the target sample belongs to a certain source-known class or the source-
unknown class. This is known as the open-set domain adaption (OSDA)
problem.

The main difficulties of the OSDA problem lie in two manifolds,
the first one is how to separate the source-known classes and the target-
specific class and the second one is how to align the target samples with
the source samples belonging to the source-known classes, as shown
in Fig. 6.1. OSBP [67] is a classic adversarial-based domain adaption
method to solve the open-set cross-domain recognition problem in the
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2D domain. However, such an adversarial-based method is not suitable
for 3D domain alignment. In contrast, our proposed domain adaptive
sampling (DAS) method in Chapter 4 and Chapter 5 can efficiently
tackle the domain gap from a self-supervised learning paradigm, which
is irrelevant to the specific category.

Therefore, in this work, we aim at extending our DAS method to
tackle the open-set domain adaptation issue. Specifically, we first use our
proposed open-set domain adaptive point sampling (OS-DAPS) strategy
to sample a domain-invariant structure for each point cloud and extract
features from the sampled domain-invariant structures. Then, we learn
a coarse classifier to map the features extracted to corresponding cate-
gories. It should be noticed that only the labels from the source domain
are available while the target domain contains an unknown class. We ar-
gue that the classifier learnt by the annotated source data can also recog-
nise the samples from the source-known classes belonging to the target
domain since our OS-DAPS method will reduce the domain gap. There-
fore, during the training process, we treat all samples from the target do-
main as belonging to the target-specific class and reweight the classifica-
tion loss to learn a coarse classifier for coarse recognition. Furthermore,
we argue that the entropy calculated by the predictions of the samples
belonging to the target-specific class is higher than the entropy calcu-
lated by the predictions of the samples from the source-known classes.
Therefore, we select a set of confidently predicted samples from the pre-
dictions with low entropy, which we believe belong to the source-known
classes, and we also select another set of samples with high entropy,
which we believe belong to the target-specific category. We use the pre-
dictions of these selected samples as pseudo-labels, and finally, we use
our proposed open-set domain adaptive cloud sampling (OS-DACS) strat-
egy to fine-tune the model to obtain precise predictions.

The main contributions in this chapter can be summarised as fol-
lows: (1) We propose a new open-set domain adaptive sampling (OS-
DAS) for open-set cross-domain point cloud recognition. (2) We propose
a new training strategy for learning a coarse recognition model which
can extract domain-invariant representations and distinguish target-specific
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Figure 6.2: Overview of our open-set domain adaptive sampling (OS-
DAS) method. Our OS-DAS method combines an open-set domain
adaptive point sampling (OS-DAPS) module and an open-set domain
adaptive cloud sampling (OS-DACS) module. (a) Our OS-DAPS method
trains a coarse classification model to roughly distinguish whether the
sample belongs to the source-known classes or the target-specific class.
(b) The detailed network structure of our proposed DAPS-DGCNN,
expand-DGCNN and vanilla DGCNN. (c) Our OS-DACS method is
based on a self-paced learning paradigm (SPL) for fine-grained recog-
nition. (d) The detailed network structure of our proposed Adapter-
DGCNN. (e) The detailed network structure of our proposed Adapter-
EdgeConv.

samples. (3) We propose a new entropy-based pseudo-label selection
algorithm for model fine-tuning to get a fine recognition performance.
Comprehensive experiments on the benchmark dataset have demonstrated
the effectiveness of our newly proposed OS-DAS method.

6.2 Methodology

In this section, we will introduce our newly proposed open-set domain
adaptive sampling strategy (OS-DAS) in detail. Our OS-DAS method
is based on the domain adaptive point sampling (DAPS) strategy illus-
trated in Chapter 4 and the domain adaptive cloud sampling (DACS)
method introduced in Chapter 5. The pipeline of our OS-DAS method
is shown in Figure 6.2. We will only briefly introduce our DAPS and
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DACS here and we mainly show the difference between our OS-DAS
and DAS in this chapter.

6.2.1 Open-Set Domain Adaptive Point Sampling

As introduced before, there are two core difficulties in OSDA, the first
one is the separation of the source-known classes and the target-specific
class, and the second one is the domain alignment of the source-known
categories. Recall that as illustrated in Chapter 4, our proposed DAPS
strategy aims at searching for a domain-invariant structure for each sam-
ple to perform a low-level domain alignment so as to extract domain-
invariant features, which performs domain alignment in a self-supervised
manner. Intuitively, the model is prone to distinguish those commonly-
seen geometric structures from those more unique structures, and these
commonly-seen geometric structures are mostly shared across different
domains, indicating that our DAPS strategy can efficiently shorten the
domain discrepancy of the source-known categories.

However, it is still difficult to separate the source-known classes and
the target-specific class. Inspired by OSBP, we hereby set a pseudo-label
ŷ for all of the samples belonging to the target domain as C + 1 and
we train a classifier based on the extracted domain-invariant features
to roughly distinguish whether the sample belongs to the source-known
classes or the target-specific class. The only difference between our OS-
DAPS and our DAPS is Eq. 6.1 where LOS−DAPS can be calculated as:

LOS−DAPS = λ1Lcls + λ2Lcon + λ3Lrec + λ4Lpseudo (6.1)

and

Lpseudo = − 1
Nt

Nt

∑
n=1

ℓce(Φ(P t
n), ŷt

n) (6.2)

We argue that training with Lcls enables the model to generate the
decision boundary of the source-known classes as the classifier maps the
high-dimensional domain-invariant features to the corresponding cat-
egories. Training with Lpseudo will do harm to the decision boundary
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of the source-known classes as the pseudo-labels set for the target sam-
ples belonging to the source-known classes are also set as C + 1, but it
will also contribute to generating the decision boundary of the target-
specific class. Moreover, the harm to decision boundaries for source-
known classes can be mitigated by reweighing the weight of the pseudo-
labelling loss function Lpseudo. Intuitively, a small weight λ4 for Lpseudo

will mitigate the influence of the damage to the decision boundaries for
source-known classes and a high weight λ4 for Lpseudo will contribute to
generating the decision boundary for the target-specific class.

The training process of our OS-DAPS is similar to the training of our
DAPS, and we omit the details in this chapter.

6.2.2 Open-Set Domain Adaptive Cloud Sampling

Our proposed OS-DAPS enables the model to extract domain-invariant
features for samples belonging to different domains and also searches for
a coarse decision boundary for samples belonging to the source-known
classes and the target-specific class. However, the decision boundary is
not that precise. Therefore, we further propose a new open-set domain
adaptive cloud sampling (OS-DACS) method which is based on our pro-
posed OS-DAPS to refine the decision boundary. The training process of
our OS-DACS is listed in Fig. 6.2 (c), which is similar to the training of
our DACS. In particular, we propose a new entropy-based target pseudo-
label selection algorithm for a better open-set cross-domain point cloud
recognition performance.

Recall that a small weight λ4 for Lpseudo will mitigate the influence
of the damage to the decision boundaries for source-known classes and
can also contribute to generating the decision boundary for the target-
specific class in a degree. We argue that the decision boundary is not
precise and only a portion of the samples can be correctly classified.
However, the target labels cannot be reached, indicating that which tar-
get samples can be correctly classified is unknown. To tackle the issue, in
this section, we propose an entropy-based target pseudo-label selection
algorithm to select a set of target samples with low entropy and use the
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predictions as the pseudo-labels of the source-known classes. We also
select a set of target samples with high entropy and use the predictions
as the pseudo-labels of the target-specific class.

Given a target point cloud P t
n, the prediction scores of the point

clouds can be written as yt
n = Φ[c](P t

n), where yt
n is a C + 1-dimensional

vector and yt
n,c indicates the prediction score of the c-th dimension. Thus,

we can get the pseudo label ŷt
n and the entropy Et

n as:

ŷt
n = arg max

c
Φ[c](P t

n) (6.3)

and

Et
n =

C+1

∑
c=1

−yt
n,c × log yt

n,c (6.4)

According to the predicted pseudo-labels of the samples and the
corresponding calculated entropy, we divide samples into C + 1 mem-
ory banks M = {Mc}C+1

c=1 . Recall that there are C source-known classes
across domains and 1 target-specific class, we use the first C memory
banks to save the target samples with the corresponding pseudo-labels
and the entropy values, i.e., Mc = {(P t

n, ŷt
n, Et

n)|ŷt
n = c, ∀n = 1, . . . , Nt, c =

1, . . . , C}. The last memory saves all of the target samples, i.e., MC+1 =

{(P t
n, ŷt

n, Et
n), ∀n = 1, . . . , Nt}. We argue that the predictions generated

by the model are not that accurate. On one hand, a small set of confi-
dently predicted samples belonging to the source-known classes can be
correctly classified. These samples are usually accompanied by low en-
tropy values. On the other hand, the model cannot generate precise pre-
dictions for the samples belonging to the target-specific class, but these
samples are easily to be misclassified into other classes. Thereby, the
entropy value of these samples is relatively high. Based on the observa-
tions, we sample out two sets of target samples and use the predictions
as the pseudo-labels to fine-tune the model. The first set of samples in-
cludes the samples belonging to the first C memory banks with low en-
tropy values. The second set of samples includes the samples belonging
to the last memory bank with high entropy values. In this work, we
determine the number of the samples selected as 10% of the size of the
corresponding memory bank.
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When using the two sets of selected pseudo-labelled target point
clouds to fine-tune the model, we follow the same fine-tuning strategy
as our DACS introduced in Chapter 5 and we omit the details in this
chapter.

6.2.3 Experiments

In this section, we first list the implementation details of our OS-DAS
method. We further evaluate our OS-DAS method on the benchmark
dataset. Finally, we analyse the effectiveness of the detailed module de-
sign of our OS-DAS method.

Implementation Details

Here, we follow the previous works [1, 101, 69] and adopt DGCNN as
the backbone. We use two-layer MLPs with a hidden layer dimension
of 512 to map the output features of each EdgeConv layer as well as the
global feature to the same dimension of 512. The hidden layer dimen-
sion of each adapter is set to 32. Our methods are trained on the server
with four NVIDIA RTX A6000 GPUs, and our implementation is based
on the PyTorch framework. During training, we use the Adam optimizer
together with an epoch-wise cosine annealing learning rate scheduler in
which we set the learning rate to 0.001 and the weight decay as 0.00005.
We set the hyper-parameters λ1, λ2, λ3 and λ4 to 1.0, 1.0, 1.0 and 0.2,
respectively. Moreover, we set the number of DAPS-DGCNN training
stages (i.e., K) as 2 and the sampling ratio as 0.9, which means we per-
form domain adaptive sampling for twice and use the sampled points
to train the expand-DGCNN. We train our OS-DAPS module for 100
epochs on the PointDA-10 dataset with a batch size of 18. In our OS-
DACS module, we set the initial threshold ε for determining the pseudo
labels as 0.8, and the increasing step ∆ as 0.01 after each training circle.
With the batch size of 18, we fine-tune the adapters for 10 epochs within
one circle except for the first circle we train the adapters for 50 epochs as
the adapters are randomly initialised in the first circle, and the OS-DACS
training stage consists of 10 circles in total.
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Experimental Results

We first come up with a baseline method by training a DGCNN with Lcls

and Lpseudo (denoted as “Baseline”), then we re-implement the classic 2D
open-set domain adaptation approach OSBP [67] for comparison.

For each method, we run the experiments on each domain adapta-
tion scenario for 3 rounds. The recognition accuracy and standard error
of the mean (SEM) of each method on each scenario are reported in Table
6.1. Here we use ‘M’, ‘S’ and ‘S∗’ to denote the ModelNet-10, ShapeNet-
10, and ScanNet-10 subsets, respectively. For example, M → S means we
use ModelNet-10 as the source domain and ShapeNet-10 as the target
domain.

We observe that our proposed method achieves the state-of-the-art
(SOTA) results on PointDA-10, including all 6 domain adaptation sce-
narios and the overall performance. With the help of both the OS-DAPS
and OS-DACS modules, we achieve an average accuracy of 62.7%, which
outperforms OSBP by a notable margin of 20% and surpasses the Base-
line method by 23.2%. The results clearly demonstrate the effectiveness
of our proposed approach.

Table 6.1: The classification accuracies (mean ± SEM) of different meth-
ods over 3 rounds of experiments on the PointDA-10 dataset. The num-
bers in the brackets denote the year of the compared methods.

Methods M → S M → S∗ S → M S → S∗ S∗ → M S∗ → S Avg.
Baseline 30.8 ± 0.2 42.6 ± 0.4 42.5 ± 0.4 48.0 ± 0.7 42.3 ± 1.3 30.5 ± 1.1 39.5
OSBP (2018) [67] 42.0 ± 0.4 47.1 ± 1.8 44.5 ± 0.3 49.2 ± 0.4 35.3 ± 2.1 36.7 ± 2.7 42.6
Ours (w/o DACS) 64.3 ± 0.4 48.2 ± 1.2 56.0 ± 0.3 56.5 ± 0.8 51.9 ± 1.1 70.6 ± 0.7 57.9
Ours 70.2 ± 0.6 49.7 ± 0.8 63.3 ± 0.2 58.2 ± 0.9 54.2 ± 1.6 80.5 ± 0.4 62.7

To further analyse the two modules, we also report the results using
only the OS-DAPS module (i.e., Ours (w/o OS-DACS)). We observe that
our OS-DAPS method can also gain reasonable performance improve-
ment over the Baseline method, validating the effectiveness of each indi-
vidual module.

It should be mentioned that when using the ScanNet-10 (i.e., S∗) as
the source domain and using the ShapeNet-10 (i.e., S) as the target do-
main, the results of our OS-DAS approach surpasses the baseline method
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by a large margin of around 50%. One main reason is that our method
performs a self-supervised domain alignment, which is agnostic to the
specific category. Therefore, our method can correctly classify the sam-
ples belonging to the source-known classes. Another reason is our entropy-
based pseudo-label selection mechanism and our adapter-based fine-
tuning strategy can refine the recognition model.

Ablation Study

In this part, we analyse the effectiveness of Lpseudo by varying the weight
λ4 in our open-set domain adaptive point sampling (OS-DAPS) method.
We report the classification accuracies over 3 rounds of experiments on
the PointDA-10 dataset. We can observe that a higher weight λ4 will
degrade the recognition performance. On one hand, a high λ4 will force
the model to treat all of the target samples as belonging to the target-
specific category, thus damaging the decision boundary learnt by the Lcls

and enabling the model to misclassify more samples to the target-specific
category. On the other hand, a low λ4 can hardly influence the decision
boundary learnt by the Lcls, thus the model will misclassify the samples
to the source-known categories and can hardly distinguish the samples
that belong to the target-specific class.

Table 6.2: Ablation study on the effectiveness of our open-set domain
adaptive point sampling (OS-DAPS) method.

λ4 0.1 0.2 0.3 0.4 0.5 1.0
Avg. 56.8 57.9 57.1 55.9 54.7 50.8

6.3 Summary

In this chapter, we have extended our proposed domain adaptive sam-
pling (DAS) method to the open-set scenario and proposed a new open-
set domain adaptive sampling (OS-DAS) approach. First, our OS-DAPS
approach learns a coarse open-set classifier and then our DACS method
refines the classifier with the selected pseudo-labelled target samples ac-
cording to the entropy of the predictions. Comprehensive experiments
on the benchmark dataset have demonstrated the effectiveness of our
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newly proposed OS-DAS approach. However, our OS-DAS method is
sensitive to the weights of the losses. Therefore, the performance of the
model on different datasets using the same set of parameters may vary a
lot.
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Conclusion and Future Work

7.1 Conclusion

With the development of deep neural network (DNN) techniques, deep
learning (DL) methods on point clouds have shown great potential in
various vision tasks like autonomous driving and robotics. However,
the success of DL methods is mainly due to the huge amount of anno-
tated datasets and it takes great effort to collect precisely labelled data
for training the networks. Moreover, a learnt model on one dataset may
not generalise well on another one. These factors influence the imple-
mentation of DL methods. Therefore, domain adaptation methods on
point clouds are attracting increasing attention. In this thesis, we have
proposed two domain adaptation methods for cross-domain point cloud
recognition, and we further extend our method to the open-set scenario.
In this chapter, we conclude the contributions of this thesis.

The contributions of this thesis are summarised as follows:

• We have proposed a new point-level domain adaptive point sam-
pling (DAPS) strategy for cross-domain point cloud recognition.
Our proposed DAPS strategy enhances the domain-invariant rep-
resentation of point clouds by progressively focusing on represen-
tative points within each point cloud based on geometric consis-
tency.

• We have proposed a new instance-level domain adaptive cloud
sampling (DACS) method for cross-domain point cloud recogni-
tion. Our DACS method learns target-specific information based
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on a self-paced learning paradigm, where we select a set of use-
ful pseudo-labelled target point clouds to train our designed light-
weighted adapters without modifying the learnt domain-invariant
representation.

• We have proposed a new two-stage open-set domain adaptive sam-
pling (OS-DAS) for open-set cross-domain point cloud recognition.
Our OS-DAS method learns an open-set recognition model in a
coarse-to-fine manner. We first learn a coarse recognition model by
performing shared categories domain alignment in a self-supervised
manner. Then we select two sets of pseudo-labelled target samples
based on the entropy of the predictions to fine-tune the recognition
model. Our OS-DAS method can efficiently classify the samples
belonging to the source-known classes as well as the target-specific
class.

We have conducted extensive experiments on benchmark datasets
to evaluate the effectiveness of our DAPS, DACS and OS-DAS approaches.

7.2 Future Work

There are three potential research directions in future work: (1) Few-
shot cross-domain point cloud recognition; (2) Cross-domain point cloud
recognition with noisy labels; and (3) Domain generalisation on the point
cloud.

Few-shot cross-domain point cloud recognition. In this thesis, we
only consider the domain adaptation problem where all samples from
the source domain are annotated. However, the annotation of the source
domain also takes great effort. Therefore, how to learn a recognition net-
work with only a few annotated source data and large-scale unlabelled
source and target data becomes an urgent task, which has not been ex-
plored so far.

Cross-domain point cloud recognition with noisy labels. In this
thesis, we only consider the domain adaptation problem where all of the
samples from the source domain are correctly annotated. However, is it
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inevitable that some samples are mislabelled. Therefore, it is important
to learn a recognition network with noisy annotated source data and un-
labelled target data, which has also not been explored.

Domain generalisation on the point cloud. In this thesis, we only
consider the domain adaptation problem where we can access the target
data. However, in some scenarios, the target data might be unavailable
and we also need the model to have a good recognition performance on
any given target domain, which is known as the domain generalisation
(DG) problem. This is a promising direction to explore but only a few
works have studied this direction.

In conclusion, domain adaptation on point clouds is an urgent but
not fully explored research topic. We believe that with the development
of domain adaptation methods, the implementation of deep learning
methods on point clouds will be accelerated in the future.
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